
Namn:

Person-nummer:

Systems programming and Operating systems, 2005

Tentamen 2005-12-14

Instructions:

• Make sure that your exam is not missing any sheets, then write your name and person-nummer on the
front. If you need extra pages be sure to write on those too.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

Page 1 of 14

Problem 1. (12 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

main() {

if (fork() == 0) {
if (fork() == 0) {

printf("3");
}
else {

pid_t pid; int status;
if ((pid = wait(&status)) > 0) {

printf("4");
}

}
}
else {
if (fork() == 0) {

printf("1");
exit(0);

}
printf("2");

}

printf("0");

return 0;
}

Out of the 6 outputs listed below, circle only the valid outputs of this program. Assume that all processes
run to normal completion.

A. 2030401 B. 1234000 C. 2300140

D. 2034012 E. 3200410 F. 3010240

Page 2 of 14

Problem 2. (8 points):
This problem tests your understanding of exceptional control flow in C programs.
For problems A-C, indicate how many “hello” output lines the program would print.
Caution: Don’t overlook the printf function in main.

Problem A

void doit() {
fork();
fork();
printf("hello\n");
return;

}

int main() {
doit();
printf("hello\n");
exit(0);

}

Answer: _____ output lines.

Problem B

void doit() {
if (fork() == 0) {
fork();
printf("hello\n");
exit(0);

}
return;

}

int main() {
doit();
printf("hello\n");
exit(0);

}

Answer: _____ output lines.

Problem C

void doit() {
if (fork() == 0) {
fork();
printf("hello\n");
return;

}
return;

}

int main() {
doit();
printf("hello\n");
exit(0);

}

Answer: _____ output lines.

Page 3 of 14

For problem D, indicate the value of the counter variable that the program would print.

Problem D

int counter = 1;

int main() {

if (fork() == 0) {
counter--;
exit(0);

}
else {
wait(NULL);
counter++;
printf("counter = %d\n", counter);

}
exit(0);

}

Answer: counter = _____.

Page 4 of 14

Problem 3. (8 points):
This problem concerns the following four versions of the tfgets routine, a timeout version of the Unix
fgets routine.
The tfgets routine waits for the user to type in a string and hit the return key. If the user enters the string
within 5 seconds, the tfgets returns normally with a pointer to the string. Otherwise, the routine “times
out” and returns a NULL string.

tfgets: Version A

void handler(int sig) {
siglongjmp(env, 1);

}

char *tfgets(char *s, int size, FILE *stream) {
pid_t pid;
signal(SIGCHLD, handler);

if (!sigsetjmp(env, 1)) {
pid = fork();
if (pid == 0) {

return fgets(s, size, stream);
}
else {

sleep(5);
kill(pid, SIGKILL);
wait(NULL);
return NULL;

}
}
else {
wait(NULL);
exit(0);

}
}

Page 5 of 14

tfgets: Version B

void handler(int sig) {
wait(NULL);
siglongjmp(env,1);

}

char *tfgets(char *s, int size, FILE *stream) {
pid_t pid;

signal(SIGUSR2, handler);
if (sigsetjmp(env, 1) != 0)
return NULL;

if ((pid = fork()) == 0) {
sleep(5);
kill(getppid(), SIGUSR2);
exit(0);

}
fgets(s, size, stream);
kill(pid, SIGKILL);
wait(NULL);
return s;

}

tfgets: Version C

void handler(int sig) {
wait(NULL);
siglongjmp(env, 1);

}

char *
tfgets(char *s, int size, FILE *stream) {

pid_t pid;
str = NULL;
signal(SIGCHLD, handler);

if ((pid = fork()) == 0) {
sleep(5);
exit(0);

}
else {
if (sigsetjmp(env, 1) == 0) {

str = fgets(s, size, stream);
kill(pid, SIGKILL);
pause();

}
return str;

}
}

Page 6 of 14

tfgets: Version D

void handler(int sig) {
wait(NULL);
siglongjmp(env, 1);

}

char *
tfgets(char *s, int size, FILE *stream) {

pid_t pid;
str = NULL;
signal(SIGCHLD, handler);

if ((pid = fork()) == 0) {
sleep(5);
return NULL;

}
else {
if (sigsetjmp(env, 1) == 0) {

str = fgets(s, size, stream);
kill(pid, SIGKILL);
pause();

}
return str;

}
}

Some of the preceding four versions of tfgets are correct, and others are flawed because the author didn’t
understand basic concepts of concurrency and signaling.

Circle the versions that are correct, in the sense that they return the input string if typed within 5 seconds,
timeout after 5 seconds by returning NULL, and correctly reap their terminated children.

Version A Version B Version C Version D

Note: The pause function sleeps until a signal is received and then returns.

Page 7 of 14

Problem 4. (12 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Virtual addresses are 16 bits wide.

• Physical addresses are 14 bits wide.

• The page size is 1024 bytes.

• The TLB is 4-way set associative with 16 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB and the page table
for the first 32 pages are as follows:

TLB
Index Tag PPN Valid

0 8 7 1
F 6 1
0 3 0
1 F 1

1 1 E 1
2 7 0
7 3 0
B 1 1

2 0 0 0
C 1 0
F 8 1
7 6 1

3 8 4 0
3 5 0
0 D 1
2 9 0

Page Table
VPN PPN Valid VPN PPN Valid

00 2 0 10 1 1
01 5 1 11 3 0
02 7 1 12 9 0
03 9 0 13 7 1
04 F 1 14 D 1
05 3 1 15 5 0
06 B 0 16 E 1
07 D 1 17 6 0
08 7 1 18 1 0
09 C 0 19 0 1
0A 3 0 1A 8 1
0B 1 1 1B C 0
0C 0 1 1C 0 0
0D D 0 1D 2 1
0E 0 0 1E 7 0
0F 1 0 1F 3 0

Page 8 of 14

Part 1

A. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If a field doesn’t exist, don’t draw it on
the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields
that would be used to determine the following:

PPO The physical page offset
PPN The physical page number

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 9 of 14

Part 2

For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate whether
the TLB misses and whether a page fault occurs.

If there is a page fault, enter “-” for “PPN” and leave part C blank.

Virtual address: 2F09

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address: 0C53

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 10 of 14

Problem 5. (10 points):
The following problem concerns dynamic storage allocation.

Consider an allocator that uses an implicit free list. The layout of each allocated and free memory block is
as follows:

31 2 1 0

Header | Block Size (bytes) | |
|____________________________|_____|
| |
| |
| |
| |
| |
|__________________________________|

Footer | Block Size (bytes) | |
|____________________________|_____|

Each memory block, either allocated or free, has a size that is a multiple of eight bytes. Thus, only the 29
higher order bits in the header and footer are needed to record block size, which includes the header and
footer. The usage of the remaining 3 lower order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to be 0.

Page 11 of 14

Given the contents of the heap shown on the left, show the new contents of the heap (in the right table)
after a call to free(0x400b010) is executed. Your answers should be given as hex values. Note that the
address grows from bottom up. Assume that the allocator uses immediate coalescing, that is, adjacent free
blocks are merged immediately each time a block is freed.

Address

0x400b028 0x00000012

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c 0x00000012

0x400b018 0x00000013

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c 0x00000013

0x400b008 0x00000013

0x400b004 0x400b601c

0x400b000 0x400b511c

0x400affc 0x00000013

Address

0x400b028

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c

0x400b018

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c

0x400b008

0x400b004 0x400b601c

0x400b000 0x400b511c

0x400affc

Page 12 of 14

Problem 6. (10 points):
This problem concerns deadlocking threads.
In some of the following five examples of parallell executing threads, there is a risk for deadlock.
In all five examples initially: a = 1, b = 1, c = 1

Example A
Thread 1: Thread 2:

P(a) P(c)
P(b) P(b)
V(b) V(b)
P(c) V(c)
V(c)
V(a)

Example B
Thread 1: Thread 2:

P(a) P(c)
P(b) P(a)
V(b) V(a)
P(c) V(c)
V(c)
V(a)

Example C
Thread 1: Thread 2:

P(a) P(c)
P(c) P(b)
V(c) V(b)
V(a) V(c)

Page 13 of 14

Example D

Thread 1: Thread 2: Thread 3:
P(a) P(c) P(a)
P(b) P(b) P(c)
V(b) V(b) V(a)
P(c) V(c) V(c)
V(c)
V(a)

Example E

Thread 1: Thread 2: Thread 3:
P(a) P(b) P(c)
P(b) P(c) P(a)
V(b) V(b) V(a)
P(c) V(c) V(c)
V(c)
V(a)

For each of the five examples, circle whether(Y) or not(N) it might deadlock.

A. Y N

B. Y N

C. Y N

D. Y N

E. Y N

Page 14 of 14

