Namn:

Per son-nummer :

Systems programming and Oper ating systems, 2005
Tentamen 2005-12-14

Instructions:

e Make surethat your exam is not missing any sheets, then write your name and person-nummer on the
front. If you need extra pages be sure to write on those too.

e Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

e The exam has a maximum score of 60 points.

e The problems are of varying difficulty. The point value of each problem isindicated. Pile up the easy
points quickly and then come back to the harder problems.

e Thisexam is OPEN BOOK. You may use any books or notes you like. Good luck!

Page 1 of 14

Problem 1. (12 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

mai n() {

if (fork() == 0) {
if (fork() == 0) {
printf("3");
}
el se {
pid t pid; int status;
if ((pid=wait(&status)) > 0) {
printf("4");
}

}
}

el se {
if (fork() == 0) {
printf("1");
exit(0);

}
printf("2");

}
printf("0");

return O;

}

Out of the 6 outputs listed below, circle only the valid outputs of this program. Assume that all processes
run to normal completion.

A. 2030401 B. 1234000 C. 2300140

D. 2034012 E. 3200410 F. 3010240

Page 2 of 14

Problem 2. (8 points):

This problem tests your understanding of exceptional control flow in C programs.
For problems A-C, indicate how many “hello” output lines the program would print.

Caution: Don't overlook the pri nt f function in mai n.

Problem A

void doit() {
fork();
fork();
printf("hello\n");
return;

} Answer:

int main() {
doit();
printf("hello\n");
exit(0);

}

Problem B

void doit() {
if (fork() 0) {
fork();
printf("hello\n");
exit(0);
}

return;

}

int main() {
doit();
printf("hello\n");
exit(0);

}

Problem C

void doit() {
if (fork()
fork();
printf("hello\n");
return;

}

return;

}

int main() {
doit();
printf("hello\n");
exit(0);

}

0) {

Answer:

output lines.

output lines.

output lines.

Page 3 of 14

For problem D, indicate the value of the count er variable that the program would print.

Problem D

int counter = 1;
int main() {

if (fork() == 0) {

counter--;

exit(0);
} Answer: counter =
el se {

wai t (NULL) ;

count er ++;

printf("counter = %\ n", counter);

}
exit(0);

}

Page 4 of 14

Problem 3. (8 points):

This problem concerns the following four versions of thet f get s routine, atimeout version of the Unix
f get s routine.

Thet f get s routine waits for the user to type in astring and hit the return key. If the user enters the string
within 5 seconds, thet f get s returns normally with a pointer to the string. Otherwise, the routine “times
out” and returns a NULL string.

tfgets: Verson A

void handler(int sig) {
si gl ongj mp(env, 1);
}

char ~tfgets(char s, int size, FILE xstream {
pid t pid;
si gnal (SI GCHLD, handl er);

if (!sigsetjnp(env, 1)) {
pid = fork();
if (pid==0) {
return fgets(s, size, stream;
}
el se {
sl eep(5);
Kill(pid, SIGKILL);
wai t (NULL) ;
return NULL;
}
}
el se {
wai t (NULL) ;
exit(0);
}

Page 5 of 14

tfgets: VersonB

void handler(int sig) {
wai t (NULL) ;
si gl ongj np(env, 1);

char ~tfgets(char s, int size, FILE xstream {
pid t pid;

si gnal (SI GUSR2, handl er);

if (sigsetjnmp(env, 1) != 0)
return NULL;

if ((pid=fork()) == 0) {
sl eep(5);
kKill (getppid(), SIGUSR2);
exit(0);

}

fgets(s, size, strean);

kill(pid, SIGKILL);

wai t (NULL) ;

return s;

tfgets: Verson C

void handler(int sig) {
wai t (NULL) ;
si gl ongj mp(env, 1);

}
char =
tfgets(char *s, int size, FILE xstream {
pid_t pid;
str = NULL;
si gnal (SI GCHLD, handl er);
if ((pid=fork()) == 0) {
sl eep(5);
exit(0);
}
el se {
if (sigsetjnp(env, 1) == 0) {
str = fgets(s, size, strean);
Kill(pid, SIGKILL);
pause();
}
return str;
}
}

Page 6 of 14

t fgets: Verson D

void handler(int sig) {
wai t (NULL) ;
si gl ongj mp(env, 1);

char =

tfgets(char *s, int size, FILE *strean) {
pid_t pid;
str = NULL;
si gnal (SI GCCHLD, handl er);

if ((pid=fork()) == 0) {
sl eep(5);
return NULL;

}

el se {
if (sigsetjnmp(env, 1) == 0) {
str = fgets(s, size, strean);
Kill(pid, SIGKILL);
pause();

}

return str;

}
}

Some of the preceding four versions of t f get s are correct, and others are flawed because the author didn’t
understand basic concepts of concurrency and signaling.

Circle the versions that are correct, in the sense that they return the input string if typed within 5 seconds,
timeout after 5 seconds by returning NULL, and correctly reap their terminated children.

Ver si on A Ver sion B Version C Version D

Note: The pause function sleeps until asignal isreceived and then returns.

Page 7 of 14

Problem 4. (12 points):

The following problem concerns the way virtual addresses are trandated into physical addresses.
e The memory is byte addressable.
e Memory accesses are to 1-byte wor ds (not 4-byte words).

Virtual addresses are 16 bits wide.

e Physical addresses are 14 bits wide.
e The page sizeis 1024 bytes.

e The TLB is4-way set associative with 16 total entries.

In the following tables, all numbersare given in hexadecimal. The contents of the TLB and the page table
for the first 32 pages are as follows:

TLB Page Table
Index | Tag PPN Valid VPN PPN Valid[VPN PPN Valid
0 8 7 1 60 2 0|10 1 1
F 6 1 o0 5 1|1 3 0
0 3 0 62 7 1|12 9 o0
1 F 1 3 9 0|18 7 1
1 1 E 1 4 F 1|14 D 1
2 7 0 6 3 1|15 5 0
7 3 0 6 B 0|16 E 1
B 1 1 07 D 1|17 6 0
2 0 0 0 8 7 118 1 0
c 1 0 O C 0|1 o0 1
F 8 1 (A 3 0 |1A 8 1
7 6 1 B 1 1|18B C O
3 8 4 0 oC 0 1]|1C 0 ©
3 5 0 o D 0 |1 2 1
o D 1 CE 0O O |1 7 O
2 9 0 OF 1 0|1 3 o0

Page 8 of 14

Part 1

A. The box below shows the format of avirtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If afield doesn’t exist, don’t draw it on
the diagram.)

VPO Thevirtual page offset
VPN Thevirtua page number
TLBI The TLB index

TLBT TheTLB tag

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields
that would be used to determine the following:
PPO The physical page offset
PPN The physical page number

3 12 117 10 9 8 7 6 S5 4 3 2 1 O

Page 9 of 14

Part 2

For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate whether
the TLB misses and whether a page fault occurs.

If there is a page fault, enter “-” for “PPN” and leave part C blank.
Virtual address: 2F09

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Addresstrandation

| Parameter | Value |
VPN 0x
TLB Index 04
TLB Tag Ox
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN Ox

C. Physical address format (one bit per box)
13 12 11 10 9 8 7 6 5 4 3 2 1 O

Virtual address: 0C53

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Addresstrandation

| Parameter | Value |
VPN 04
TLB Index 04
TLB Tag 04
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN Ox

C. Physical address format (one bit per box)
13 12 11 10 9 8 7 6 5 4 3 2 1 O

Page 10 of 14

Problem 5. (10 points):
The following problem concerns dynamic storage allocation.

Consider an alocator that uses an implicit free list. The layout of each allocated and free memory block is
asfollows:

31 210

Header Bl ock Size (bytes) |

Foot er Bl ock Size (bytes) |

Each memory block, either alocated or free, has a size that is a multiple of eight bytes. Thus, only the 29
higher order bits in the header and footer are needed to record block size, which includes the header and
footer. The usage of the remaining 3 lower order bitsis as follows:

e bit O indicates the use of the current block: 1 for allocated, O for free.
e bit 1 indicatesthe use of the previous adjacent block: 1 for allocated, O for free.

e bit 2isunused andisaways set to be 0.

Page 11 of 14

Given the contents of the heap shown on the left, show the new contents of the heap (in the right table)
after acal tof r ee(0x400b010) isexecuted. Your answers should be given as hex values. Note that the
address grows from bottom up. Assume that the allocator uses immediate coaescing, that is, adjacent free

blocks are merged immediately each time a block is freed.

Address Address

0x4000028 0x00000012 0x400b028

0x400b024 0x400b611c 0x400b024 0x400b611c
0x400b020 0x400b512c 0x400b020 0x400b512c
0x400ph01c 0x00000012 0x400b01c

0x400b018 0x00000013 0x400b018

0x400p0014 0x400b511c 0x4000014 0x400b511c
0x400b010 0x400b601c 0x400b010 0x400b601c
0x400b00c 0x00000013 0x400b00c

0x400b008 0x00000013 0x400b008

0x400b004 0x400b601c 0x400b004 0x400b601c
0x400b000 0x400b511c 0x400b000 0x400b511c
0x400affc 0x00000013 0x400affc

Page 12 of 14

Problem 6. (10 points):

This problem concerns deadlocking threads.

In some of the following five examples of parallell executing threads, there isarisk for deadlock.
Inal fiveexamplesinitialy: a = 1,b = 1,¢c = 1

Example A

Thread 1: Thread 2:
P(a) P(c)
P(b) P(b)
V(b) V(b)
P(c) V(c)
V(c)
V(a)

Example B

Thread 1: Thread 2:
P(a) P(c)
P(b) P(a)
V(b) V(a)
P(c) V(c)
V(c)
V(a)

Example C

Thread 1: Thread 2:
P(a) P(c)
P(c) P(b)
V(c) V(b)
V(a) V(c)

Page 13 of 14

Example D

Thread 1:
P(a)
P(b)
V(b)
P(c)
V(c)
V(a)

Example E

Thread 1:
P(a)
P(b)
V(b)
P(c)
V(c)
V(a)

Thread 2:

P(c)
P(b)
V(b)
V(c)

Thread 2:

P(b)
P(c)
V(b)
V(c)

Thread 3:
P(a)
P(c)
V(a)
V(c)

Thread 3:
P(c)
P(a)
V(a)
V(c)

For each of the five examples, circle whether(Y) or not(N) it might deadlock.

m o o w »

< < < =< <

z Z2 =z Z2 Z

Page 14 of 14

