Namn:

Per son-nummer :

Systems programming and Oper ating systems, 2007
Tentamen 2007-12-18

Instructions:

e Make surethat your exam is not missing any sheets, then write your name and person-nummer on the
front. If you need extra pages be sure to write on those too.

e Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

e The exam has a maximum score of 60 points.

e The problems are of varying difficulty. The point value of each problem isindicated. Pile up the easy
points quickly and then come back to the harder problems.

e Thisexam is OPEN BOOK. You may use any books or notes you like. Good luck!

e Remember that thereisa SURVEY on the homepage for the course. See * Senaste nytt”.

Page 1 of 12

Problem 1. (10 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

mai n() {

if (fork() == 0) {
if (fork() == 0) {
printf("3");
}
el se {
printf("4");
}
}

el se {
if (fork() == 0) {
printf("1");
exit(0);
}
if ((wait(NULL)) > 0) {
printf("2");
}
}

printf("0");

return O;

}

Out of the 6 outputs listed below, circle only the valid outputs of this program. Assume that al processes
run to normal completion.

A. 1234000 B. 1020340 C. 1203040

D. 4030201 E. 4321000 F. 3204010

Page 2 of 12

Problem 2. (16 points):
This prablem tests your understanding of exceptional control flow in C programs. Assume we are running
code on aUnix machine. The following problems all concern the value of the variable count er .

Part | (6 points)
int counter = O;

int main()
{
int i;
for (i =0; i <3; i ++){
counter ++;

fork();
printf("counter = %\ n", counter);

}

printf("counter = %\ n", counter);
return O;

A. How many times would the value of count er be printed:

B. What isthe value of count er printed in the first line?

C. What isthe value of count er printed in the last line?

Page 3 of 12

Part 11 (6 points)

pid t pid;
int counter = 0O;

void handlerl1(int sig)
{
counter ++;
printf("counter = %\ n", counter);
fflush(stdout); /* Flushes the printed string to stdout =*/
kKill(pid, SIGUSR1);
exit(0);
}

voi d handl er2(int siag)

{
counter += 3;
printf("counter = %\ n", counter);
exit(0);

}

mai n() {

pid_t p;

pid = getpid();

signal (SI GQUSR1, handl erl);

if ((p=fork()) >0) {
si gnal (SI GUSR1, handl er2);
kill(p, SIGUSR1);
while(1) {};

}

el se {
while(1l) {};

}

What is the output of this program?

Page 4 of 12

Part 111 (4 points)
int counter = 0O;

voi d handl er(int sig)

{
counter ++;
}
int main()
{
int i;
pid_t p;
si gnal (SI GCHLD, handl er);
for (i =0; i <5; i ++){
if ((p = fork()) == 0){
exit(0);
}
}
[+ wait for last created child to die */
wai t pi d(p, NULL, 0);
printf("counter = %\ n", counter);
return O;
}

A. Does the program output the same value of count er every timewerunit? Yes No

B. If theanswer to A is Yes, indicate the value of thecount er variable. Otherwise, list al possible values
of thecount er variable.

Answer: count er =

Page 5 of 12

Problem 3. (12 points):

The following problem concerns the way virtual addresses are trandated into physical addresses.
e The memory is byte addressable.
e Memory accesses are to 1-byte wor ds (not 4-byte words).

Virtual addresses are 16 bits wide.

Physical addresses are 12 bits wide.

The page sizeis 1024 bytes.

e The TLB is4-way set associative with 16 total entries.

The cache is 2-way set associative, with a4 byte line size and 8 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB, the page table
for thefirst 32 pages, and the cache are as follows:

TLB Page Table
Index | Tag PPN Valid VPN PPN Valid[VPN PPN Valid
0 4 0 1 0 0 1|10 0 1
2 2 1 oo 1 0 |1 2 0
0 1 1 2 3 0|12 2 1
5 3 0 03 1 113 1 0
1 4 1 0 4 2 0|14 0 O
7 3 0 5 2 1|15 2 0
5 2 0 6 1 0|16 1 0
3 1 0 0z 3 1|17 0 0
2 0 3 0 8 2 118 1 1
3 1 0 0 1 0|19 2 0
2 0 0 A 3 0]|1A 1 O
7 1 0 0B 2 0 |1B 3 0
3 6 1 0 oc 0 0 |1C 3 O
3 1 0 oo 1 0 |1 2 0
7 3 0 OE 1 1 |1 3 0
2 2 0 OF 0 0|1 1 0

2-way Set Associative Cache

Index| Tag Valid[ByteO Byte1 Byte2 Byte3|| Tag Valid|Byte 0 Byte1 Byte2 Byte 3
0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 OB 41
2 1B 1 00 02 04 08 0B 1 01 03 05 07
3 06 0 84 06 B2 9C FF 0 84 06 B2 9C

Page 6 of 12

Part 1

A. The box below shows the format of avirtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If afield doesn’t exist, don’t draw it on
the diagram.)

VPO Thevirtual page offset
VPN Thevirtua page number
TLBI The TLB index

TLBT TheTLB tag

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields
that would be used to determine the following:
PPO The physical page offset
PPN The physical page number
CO The block offset within the cache line
Cl The cache index
CT Thecachetag

117 10 9 8 7 6 5 4 3 2 1 O

Page 7 of 12

Part 2

For the given virtual address, indicate the TLB entry accessed, the physical address, and the cache byte
value returned in hex. Indicate whether the TLB misses, whether a page fault occurs, and whether a cache
Miss occurs.

If thereisacache miss, enter “-” for “Cache Byte returned”. If there isa page fault, enter “-” for “PPN” and
leave parts C and D blank.

Virtual address; 1FFD

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Addresstrandation

| Parameter | Value |
VPN 0x
TLB Index 04
TLB Tag (0
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
117 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

| Parameter | Vaue |
Byte offset (04
Cache Index 04
Cache Tag (04

Cache Hit? (Y/N)
Cache Byte returned | Ox

Page 8 of 12

Problem 4. (10 points):
The following problem concerns dynamic storage allocation.
Consider an allocator that uses an implicit freelist. The layout of each free memory block is asfollows:

31 210

Header Bl ock Size (bytes) |

Foot er Bl ock Size (bytes) |

Thelayout for an alocated memory block isthe same except for that there is no footer. Each memory block,
either allocated or free, has asize that is amultiple of eight bytes. Thus, only the 29 higher order bitsin the
header and footer are needed to record block size, which includes the header and footer. The usage of the
remaining 3 lower order bitsis asfollows:

e bit O indicates the use of the current block: 1 for allocated, O for free.
e bit 1 indicatesthe use of the previous adjacent block: 1 for allocated, O for free.

e bit 2isunused andisaways set to be 0.

Page 9 of 12

Given the contents of the heap shown on the left, show the new contents of the heap (in the right table)
after acal tof r ee(0x400b008) isexecuted. Your answers should be given as hex values. Note that the
address grows from bottom up. Assume that the allocator uses immediate coaescing, that is, adjacent free

blocks are merged immediately each time a block is freed.

Address Address

0x4000028 0x00000012 0x400b028

0x400b024 0x400b611c 0x400b024 0x400b611c
0x400b020 0x400b512c 0x400b020 0x400b512c
0x400ph01c 0x00000012 0x400b01c

0x400b018 0x400b412a 0x400b018

0x400p0014 0x400b511c 0x4000014 0x400b511c
0x400b010 0x400b601c 0x400b010

0x400b00c 0x400b531c 0x400b00c 0x400b531c
0x400b008 0x400b52cc 0x400b008

0x400b004 0x0000001B 0x400b004

0x400b000 0x400b511c 0x400b000

0x400affc 0x0000000B 0x400affc

Page 10 of 12

Problem 5. (12 points):

This problem concerns deadlocking threads.

In some of the following five examples of parallell executing threads, there isarisk for deadlock.
Inal fiveexamplesinitialy: a = 1,b = 1,¢c = 1

Example A

Thread 1: Thread 2:
P(a) P(c)
P(b) P(b)
P(c) V(b)
V(a) V(c)
V(c)
V(b)

Example B

Thread 1: Thread 2:
P(a) P(c)
P(b) P(a)
V(a) V(a)
P(c) V(c)
V(c)
V(b)

Example C

Thread 1: Thread 2:
P(a) P(c)
P(c) P(b)
V(c) V(b)
V(a) V(c)

Page 11 of 12

Example D

Thread 1: Thread 2: Thread 3:
P(a) P(c) P(b)
P(c) P(b) P(a)
V(a) V(b) V(b)
P(b) V(c) V(a)
V(c)

V(b)

Example E

Thread 1: Thread 2: Thread 3:
P(a) P(b) P(c)
V(a) P(c) P(a)
P(b) V(b) V(a)
P(c) V(c) V(c)
V(c)

V(b)

For each of the five examples, circle whether(Y) or not(N) it might deadlock. For the once that might
deadlock, suggest a change to the locking order so that there is no risc for deadlock.

A. Y N How to avoid deadlock:
B. Y N How to avoid deadlock:
C. Y N How to avoid deadlock:
D. Y N How to avoid deadlock:
E. Y N How to avoid deadlock:

Page 12 of 12

