
Namn:

Person-nummer:

Systems programming and Operating systems, 2007

Tentamen 2007-12-18

Instructions:

• Make sure that your exam is not missing any sheets, then write your name and person-nummer on the
front. If you need extra pages be sure to write on those too.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

• Remember that there is a SURVEY on the homepage for the course. See “Senaste nytt”.

Page 1 of 12

Problem 1. (10 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

main() {

if (fork() == 0) {
if (fork() == 0) {

printf("3");
}
else {

printf("4");
}

}
else {

if (fork() == 0) {
printf("1");
exit(0);

}
if ((wait(NULL)) > 0) {

printf("2");
}

}

printf("0");

return 0;
}

Out of the 6 outputs listed below, circle only the valid outputs of this program. Assume that all processes
run to normal completion.

A. 1234000 B. 1020340 C. 1203040

D. 4030201 E. 4321000 F. 3204010

Page 2 of 12

Problem 2. (16 points):
This problem tests your understanding of exceptional control flow in C programs. Assume we are running
code on a Unix machine. The following problems all concern the value of the variable counter.

Part I (6 points)

int counter = 0;

int main()
{

int i;

for (i = 0; i < 3; i ++){
counter ++;
fork();
printf("counter = %d\n", counter);

}

printf("counter = %d\n", counter);
return 0;

}

A. How many times would the value of counter be printed: ____________

B. What is the value of counter printed in the first line? ____________

C. What is the value of counter printed in the last line? ____________

Page 3 of 12

Part II (6 points)

pid_t pid;
int counter = 0;

void handler1(int sig)
{

counter ++;
printf("counter = %d\n", counter);
fflush(stdout); /* Flushes the printed string to stdout */
kill(pid, SIGUSR1);
exit(0);

}

void handler2(int sig)
{

counter += 3;
printf("counter = %d\n", counter);
exit(0);

}

main() {
pid_t p;
pid = getpid();
signal(SIGUSR1, handler1);
if ((p = fork()) > 0) {

signal(SIGUSR1, handler2);
kill(p, SIGUSR1);
while(1) {};

}
else {

while(1) {};
}

}

What is the output of this program?

Page 4 of 12

Part III (4 points)

int counter = 0;

void handler(int sig)
{

counter ++;
}

int main()
{

int i;
pid_t p;

signal(SIGCHLD, handler);

for (i = 0; i < 5; i ++){
if ((p = fork()) == 0){

exit(0);
}

}

/* wait for last created child to die */
waitpid(p, NULL, 0);

printf("counter = %d\n", counter);
return 0;

}

A. Does the program output the same value of counter every time we run it? Yes No

B. If the answer to A is Yes, indicate the value of the counter variable. Otherwise, list all possible values
of the counter variable.

Answer: counter = __________________

Page 5 of 12

Problem 3. (12 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Virtual addresses are 16 bits wide.

• Physical addresses are 12 bits wide.

• The page size is 1024 bytes.

• The TLB is 4-way set associative with 16 total entries.

• The cache is 2-way set associative, with a 4 byte line size and 8 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB, the page table
for the first 32 pages, and the cache are as follows:

TLB
Index Tag PPN Valid

0 4 0 1
2 2 1
0 1 1
5 3 0

1 4 1 0
7 3 0
5 2 0
3 1 0

2 0 3 0
3 1 0
2 0 0
7 1 0

3 6 1 0
3 1 0
7 3 0
2 2 0

Page Table
VPN PPN Valid VPN PPN Valid

00 0 1 10 0 1
01 1 0 11 2 0
02 3 0 12 2 1
03 1 1 13 1 0
04 2 0 14 0 0
05 2 1 15 2 0
06 1 0 16 1 0
07 3 1 17 0 0
08 2 1 18 1 1
09 1 0 19 2 0
0A 3 0 1A 1 0
0B 2 0 1B 3 0
0C 0 0 1C 3 0
0D 1 0 1D 2 0
0E 1 1 1E 3 0
0F 0 0 1F 1 0

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 0B 41
2 1B 1 00 02 04 08 0B 1 01 03 05 07
3 06 0 84 06 B2 9C FF 0 84 06 B2 9C

Page 6 of 12

Part 1

A. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If a field doesn’t exist, don’t draw it on
the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields
that would be used to determine the following:

PPO The physical page offset
PPN The physical page number
CO The block offset within the cache line
CI The cache index
CT The cache tag

11 10 9 8 7 6 5 4 3 2 1 0

Page 7 of 12

Part 2

For the given virtual address, indicate the TLB entry accessed, the physical address, and the cache byte
value returned in hex. Indicate whether the TLB misses, whether a page fault occurs, and whether a cache
miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”. If there is a page fault, enter “-” for “PPN” and
leave parts C and D blank.

Virtual address: 1FFD

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 8 of 12

Problem 4. (10 points):
The following problem concerns dynamic storage allocation.

Consider an allocator that uses an implicit free list. The layout of each free memory block is as follows:

31 2 1 0

Header | Block Size (bytes) | |
|____________________________|_____|
| |
| |
| |
| |
| |
|__________________________________|

Footer | Block Size (bytes) | |
|____________________________|_____|

The layout for an allocated memory block is the same except for that there is no footer. Each memory block,
either allocated or free, has a size that is a multiple of eight bytes. Thus, only the 29 higher order bits in the
header and footer are needed to record block size, which includes the header and footer. The usage of the
remaining 3 lower order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to be 0.

Page 9 of 12

Given the contents of the heap shown on the left, show the new contents of the heap (in the right table)
after a call to free(0x400b008) is executed. Your answers should be given as hex values. Note that the
address grows from bottom up. Assume that the allocator uses immediate coalescing, that is, adjacent free
blocks are merged immediately each time a block is freed.

Address

0x400b028 0x00000012

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c 0x00000012

0x400b018 0x400b412a

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c 0x400b531c

0x400b008 0x400b52cc

0x400b004 0x0000001B

0x400b000 0x400b511c

0x400affc 0x0000000B

Address

0x400b028

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c

0x400b018

0x400b014 0x400b511c

0x400b010

0x400b00c 0x400b531c

0x400b008

0x400b004

0x400b000

0x400affc

Page 10 of 12

Problem 5. (12 points):
This problem concerns deadlocking threads.
In some of the following five examples of parallell executing threads, there is a risk for deadlock.
In all five examples initially: a = 1, b = 1, c = 1

Example A
Thread 1: Thread 2:

P(a) P(c)
P(b) P(b)
P(c) V(b)
V(a) V(c)
V(c)
V(b)

Example B
Thread 1: Thread 2:

P(a) P(c)
P(b) P(a)
V(a) V(a)
P(c) V(c)
V(c)
V(b)

Example C
Thread 1: Thread 2:

P(a) P(c)
P(c) P(b)
V(c) V(b)
V(a) V(c)

Page 11 of 12

Example D

Thread 1: Thread 2: Thread 3:
P(a) P(c) P(b)
P(c) P(b) P(a)
V(a) V(b) V(b)
P(b) V(c) V(a)
V(c)
V(b)

Example E

Thread 1: Thread 2: Thread 3:
P(a) P(b) P(c)
V(a) P(c) P(a)
P(b) V(b) V(a)
P(c) V(c) V(c)
V(c)
V(b)

For each of the five examples, circle whether(Y) or not(N) it might deadlock. For the once that might
deadlock, suggest a change to the locking order so that there is no risc for deadlock.

A. Y N How to avoid deadlock:

B. Y N How to avoid deadlock:

C. Y N How to avoid deadlock:

D. Y N How to avoid deadlock:

E. Y N How to avoid deadlock:

Page 12 of 12

