Namn:

Per son-nummer:

Systems programming and Oper ating systems, 2005
Test Exam

Instructions:

e Make surethat your exam is not missing any sheets, then write your name and person-nummer on the
front. If you need extra pages be sure to write on those too.

e Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

e The exam has a maximum score of 60 points.

e The problems are of varying difficulty. The point value of each problem isindicated. Pile up the easy
points quickly and then come back to the harder problems.

e Thisexam is OPEN BOOK. You may use any books or notes you like. Good luck!

Page 1 of 12

Problem 1. (8 points):

In this problem let REF(x. i) --> DEF(x. k) denote that the linker will associate an arbitrary refer-
ence to symbol x in modulei to the definition of x in module k. For each example below, use this notation to
indicate how the linker would resolve references the multiply defined symbol in each module. If thereisa
link-time error, write“ERROR”. If thelinker arbitrarily chooses one of the definitions, write“UNKNOWN?”.

A.
[+ Module 1 */ /+ NModule 2 */
int main() static int main=1;
{ int p2()
} {
}
(@ REF(mmin.l1l) --> DEF(___)
() REF(main.2) --> DEF(__)
B.
[+ NModule 1 */ /+ Module 2 */
int x; doubl e x;
voi d mai n() int p2()
} }
{ }
(@ REF(x.1) --> DEF(___)
(b) REF(x.2) --> DEF(___)
C.
int x =1, double x = 1.0;
voi d mai n() int p2()
} }
{ }
(@ REF(x.1) --> DEF(___)
() REF(x.2) --> DEF(___)

Page 2 of 12

Problem 2. (10 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

int min () {
if (fork() == 0) {
if (fork() == 0) {

printf("3");
}
el se {
pidt pid; int status;
if ((pid=wait(&tatus)) > 0) {
printf("4");
}
}
}
el se {
printf("2");
exit(0);
}
printf("0");
return O;

}

For each of thefollowing strings, circle whether (Y) or not (N) thisstring is apossible output of the program.

A. 32040 Y N
B. 34002 Y N
C. 30402 Y N
D. 23040 Y N
E. 40302 Y N

Page 3 of 12

Problem 3. (16 points):
This prablem tests your understanding of exceptional control flow in C programs. Assume we are running
code on aUnix machine. The following problems all concern the value of the variable count er .

Part | (6 points)
int counter = O;

int main()
{ . .
int i;
for (i =0; i <2; i ++){
fork();

counter ++;
printf("counter = %\ n", counter);

}

printf("counter = %\ n", counter);
return O;

A. How many times would the value of count er be printed:

B. What isthe value of count er printed in the first line?

C. What isthe value of count er printed in the last line?

Page 4 of 12

Part 11 (6 points)

pid t pid;
int counter = 0O;

void handlerl1(int sig)

{
counter ++;
printf("counter = %\ n", counter);
fflush(stdout); /+* Flushes the printed string to stdout =/
kKill(pid, SIGUSRL);
}
voi d handl er2(int sig)
{
counter += 3;
printf("counter = %\ n", counter);
exit(0);
}
mai n() {
si gnal (SI GUSR1, handl erl);
if ((pid=fork()) == 0) {
signal (SI GQUSR1, handl er2);
kKill (getppid(), SIGUSRL);
while(1) {};
}
el se {
pidt p; int status;
if ((p=wait(&status)) > 0) {
counter += 2,
printf("counter = %\ n", counter);
}
}
}

What is the output of this program?

Page 5 of 12

Part 111 (4 points)
int counter = 0O;

voi d handl er(int sig)
{

}

counter ++;

int main()
{ . .
int i;
si gnal (SI GCHLD, handl er);
for (i =0; i <5 i ++){
if (fork() == 0){
exit(0);
}

}

/* wait for all children to die */
while (wait(NULL) !'= -1);

printf("counter = %\ n", counter);
return O;

A. Does the program output the same value of count er every timewerunit? Yes No

B. If theanswer to A is Yes, indicate the value of thecount er variable. Otherwise, list al possible values
of thecount er variable.

Answer: count er =

Page 6 of 12

Problem 4. (4 points):
Consider the following C program. (For space reasons, we are not checking error return codes. You can
assume that al functions return normally.)

int val = 10;
voi d handl er (si Q)

val += 5;
return;

int main()
int pid;

si gnal (SI GCHLD, handl er);
if ((pid = fork()) ==0) {
val -= 3;
exit(0);
}
wai t pi d(pi d, NULL, 0);
printf("val = %l\n", val);
exit(0);
}

What is the output of this program? val =

Page 7 of 12

Problem 5. (10 points):

Consider an allocator that uses an implicit free list. Each memory block, either alocated or free, has asize
that is a multiple of eight bytes. Thus, only the 29 higher order bits in the header and footer are needed to
record block size, which includes the header and footer and is represented in units of bytes. The usage of
the remaining 3 lower order bitsis asfollows:

e bit O indicates the use of the current block: 1 for alocated, O for free.
e bit 1 indicatesthe use of the previous adjacent block: 1 for allocated, O for free.

e bit 2isunusedandisaways set to beO.

Five helper routines are defined to facilitate the implementation of f r ee(voi d *p) . The functionality
of each routine is explained in the comment above the function definition. Fill in the body of the helper
routines the code section label that implement the corresponding functionality correctly.

/* given a pointer p to an allocated block, i.e., pis a
poi nter returned by some previous malloc()/realloc() call;
returns the pointer to the header of the bl ockx/

voi d * header (voi d* p)

{
void =ptr;

return ptr;

}

A ptr=p-1
B. ptr=(void *)((int *)p-1)
C. ptr=(void *)((int *)p-4)

/* given a pointer to a valid block header or footer,
returns the size of the block */

i nt size(void *hp)

{

int result;

return result;

}

A result=(xhp)&~7)
B. result=((*(char *)hp)&~5))<<2
C. result=(*(int *)hp)&~7)

Page 8 of 12

/* given a pointer p to an allocated block,i.e. pis
a pointer returned by sone previous malloc()/realloc() call
returns the pointer to the footer of the bl ock+/

void » footer(void *p)

{

void *ptr;

return ptr;

—

pt r =p+si ze(header (p))-8
pt r=p+si ze(header (p))-4
ptr=(int =)p+size(header(p))-2

Ow>

/* given a pointer to a valid block header or footer,
returns the usage of the currect bl ock
1 for allocated, O for free =/

int allocated(void *hp)

{

int result;

return result;
}
A result=(x(int *x)hp)&l
B. result=(*(int =hp)&0
C. result=(x(int *)hp)|1

/* given a pointer to a valid block header
returns the pointer to the header of previous block in nenory =*/
void * prev(void *hp)

{
void *ptr;
return ptr;
}
A ptr = hp - size(hp)
B. ptr = hp - size(hp-4)
C. ptr = hp - size(hp-4) + 4

Page 9 of 12

Problem 6. (12 points):

The following problem concerns the way virtual addresses are trandated into physical addresses.
e Thememory is byte addressable.
e Memory accesses are to 1-byte wor ds (not 4-byte words).

Virtual addresses are 16 bits wide.

e Physical addresses are 13 bits wide.
e Thepage sizeis 512 bytes.
e The TLB is8-way set associative with 16 total entries.

e The cacheis 2-way set associative, with a4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB, the page table
for thefirst 32 pages, and the cache are as follows:

TLB Page Table
Index | Tag PPN Vadid VPN PPN Vaid[VPN PPN Vaid

0 09 4 1 00 6 1 10 0 1

12 2 1 01 5 0 11 5 0

10 0 1 02 3 1 12 2 1

08 5 1 03 4 1 13 4 0

05 7 1 04 2 0 14 6 0

13 1 0 05 7 1 15 2 0

10 3 0 06 1 0 16 4 0

18 3 0 o7 3 0 17 6 0

1 04 1 0 08 5 1 18 1 1

0oC 1 0 09 4 0 19 2 0

12 0 0 OA 3 0 1A 5 0

08 1 0 0B 2 0 1B 7 0

06 7 0 0oC 5 0 1C 6 0

03 1 0 0D 6 0 1D 2 0

o7 5 0 OE 1 1 1E 3 0

02 2 0 OF 0 0 1F 1 0

2-way Set Associative Cache
Index| Tag Valid[ByteO Byte1 Byte 2 Byte3|| Tag Valid|Byte 0 Byte1 Byte2 Byte 3

0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 0B 41
2 1B 1 00 02 04 08 0B 1 01 03 05 o7
3 06 0 84 06 B2 aC 12 0 84 06 B2 9C
4 o7 0 43 6D 8F 09 05 0 43 6D 8F 09
5 0D 1 36 32 00 78 1E 1 Al B2 c4 DE
6 11 0 A2 37 68 31 00 1 BB 77 33 00
7 16 1 11 C2 11 33 1E 1 00 Co OF 00

Page 10 of 12

Part 1

A. The box below shows the format of avirtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If afield doesn’t exist, don’t draw it on
the diagram.)

VPO Thevirtual page offset
VPN Thevirtua page number
TLBI The TLB index

TLBT TheTLB tag

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields
that would be used to determine the following:
PPO The physical page offset
PPN The physical page number
CO The block offset within the cache line
Cl The cache index
CT Thecachetag

12 117 10 9 8 7 6 S5 4 3 2 1 O

Page 11 of 12

Part 2

For the given virtual address, indicate the TLB entry accessed, the physical address, and the cache byte
value returned in hex. Indicate whether the TLB misses, whether a page fault occurs, and whether a cache
Miss occurs.

If thereisacache miss, enter “-” for “Cache Byte returned”. If there isa page fault, enter “-” for “PPN” and
leave parts C and D blank.

Virtual address; 1DDE

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Addresstrandation

| Parameter | Value |
VPN 0x
TLB Index 04
TLB Tag (0
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 O

D. Physical memory reference

| Parameter | Vaue |
Byte offset (04
Cache Index 04
Cache Tag (04

Cache Hit? (Y/N)
Cache Byte returned | Ox

Page 12 of 12

