
Namn:

Person-nummer:

Systems programming and Operating systems, 2005

Test Exam

Instructions:

• Make sure that your exam is not missing any sheets, then write your name and person-nummer on the
front. If you need extra pages be sure to write on those too.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

Page 1 of 12



Problem 1. (8 points):
In this problem let REF(x.i) --> DEF(x.k) denote that the linker will associate an arbitrary refer-
ence to symbol x in module i to the definition of x in module k. For each example below, use this notation to
indicate how the linker would resolve references the multiply defined symbol in each module. If there is a
link-time error, write “ERROR”. If the linker arbitrarily chooses one of the definitions, write “UNKNOWN”.

A.

/* Module 1 */ /* Module 2 */
int main() static int main=1;
{ int p2()
} {

}

(a) REF(main.1) --> DEF(_____.__)

(b) REF(main.2) --> DEF(_____.__)

B.

/* Module 1 */ /* Module 2 */
int x; double x;
void main() int p2()
} }
{ }

(a) REF(x.1) --> DEF(_____.__)

(b) REF(x.2) --> DEF(_____.__)

C.

int x = 1; double x = 1.0;
void main() int p2()
} }
{ }

(a) REF(x.1) --> DEF(_____.__)

(b) REF(x.2) --> DEF(_____.__)

Page 2 of 12



Problem 2. (10 points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

int main () {
if (fork() == 0) {

if (fork() == 0) {
printf("3");

}
else {

pid_t pid; int status;
if ((pid = wait(&status)) > 0) {

printf("4");
}

}
}
else {

printf("2");
exit(0);

}
printf("0");
return 0;

}

For each of the following strings, circle whether (Y) or not (N) this string is a possible output of the program.

A. 32040 Y N

B. 34002 Y N

C. 30402 Y N

D. 23040 Y N

E. 40302 Y N

Page 3 of 12



Problem 3. (16 points):
This problem tests your understanding of exceptional control flow in C programs. Assume we are running
code on a Unix machine. The following problems all concern the value of the variable counter.

Part I (6 points)

int counter = 0;

int main()
{

int i;

for (i = 0; i < 2; i ++){
fork();
counter ++;
printf("counter = %d\n", counter);

}

printf("counter = %d\n", counter);
return 0;

}

A. How many times would the value of counter be printed: ____________

B. What is the value of counter printed in the first line? ____________

C. What is the value of counter printed in the last line? ____________

Page 4 of 12



Part II (6 points)

pid_t pid;
int counter = 0;

void handler1(int sig)
{

counter ++;
printf("counter = %d\n", counter);
fflush(stdout); /* Flushes the printed string to stdout */
kill(pid, SIGUSR1);

}

void handler2(int sig)
{

counter += 3;
printf("counter = %d\n", counter);
exit(0);

}

main() {
signal(SIGUSR1, handler1);
if ((pid = fork()) == 0) {

signal(SIGUSR1, handler2);
kill(getppid(), SIGUSR1);
while(1) {};

}
else {

pid_t p; int status;
if ((p = wait(&status)) > 0) {

counter += 2;
printf("counter = %d\n", counter);

}
}

}

What is the output of this program?

Page 5 of 12



Part III (4 points)

int counter = 0;

void handler(int sig)
{

counter ++;
}

int main()
{

int i;

signal(SIGCHLD, handler);

for (i = 0; i < 5; i ++){
if (fork() == 0){

exit(0);
}

}

/* wait for all children to die */
while (wait(NULL) != -1);

printf("counter = %d\n", counter);
return 0;

}

A. Does the program output the same value of counter every time we run it? Yes No

B. If the answer to A is Yes, indicate the value of the counter variable. Otherwise, list all possible values
of the counter variable.

Answer: counter = __________________

Page 6 of 12



Problem 4. (4 points):
Consider the following C program. (For space reasons, we are not checking error return codes. You can
assume that all functions return normally.)

int val = 10;

void handler(sig)
{

val += 5;
return;

}

int main()
{

int pid;

signal(SIGCHLD, handler);
if ((pid = fork()) == 0) {

val -= 3;
exit(0);

}
waitpid(pid, NULL, 0);
printf("val = %d\n", val);
exit(0);

}

What is the output of this program? val = ____________

Page 7 of 12



Problem 5. (10 points):
Consider an allocator that uses an implicit free list. Each memory block, either allocated or free, has a size
that is a multiple of eight bytes. Thus, only the 29 higher order bits in the header and footer are needed to
record block size, which includes the header and footer and is represented in units of bytes. The usage of
the remaining 3 lower order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to be 0.

Five helper routines are defined to facilitate the implementation of free(void *p). The functionality
of each routine is explained in the comment above the function definition. Fill in the body of the helper
routines the code section label that implement the corresponding functionality correctly.

/* given a pointer p to an allocated block, i.e., p is a
pointer returned by some previous malloc()/realloc() call;
returns the pointer to the header of the block*/

void * header(void* p)
{

void *ptr;

_______;
return ptr;

}

A. ptr=p-1
B. ptr=(void *)((int *)p-1)
C. ptr=(void *)((int *)p-4)

/* given a pointer to a valid block header or footer,
returns the size of the block */

int size(void *hp)
{

int result;

_______;
return result;

}

A. result=(*hp)&(˜7)
B. result=((*(char *)hp)&(˜5))<<2
C. result=(*(int *)hp)&(˜7)

Page 8 of 12



/* given a pointer p to an allocated block,i.e. p is
a pointer returned by some previous malloc()/realloc() call;
returns the pointer to the footer of the block*/

void * footer(void *p)
{

void *ptr;

_______;
return ptr;

}

A. ptr=p+size(header(p))-8
B. ptr=p+size(header(p))-4
C. ptr=(int *)p+size(header(p))-2

/* given a pointer to a valid block header or footer,
returns the usage of the currect block,
1 for allocated, 0 for free */

int allocated(void *hp)
{

int result;

______;
return result;

}

A. result=(*(int *)hp)&1
B. result=(*(int *hp)&0
C. result=(*(int *)hp)|1

/* given a pointer to a valid block header,
returns the pointer to the header of previous block in memory */

void * prev(void *hp)
{

void *ptr;

______;
return ptr;

}

A. ptr = hp - size(hp)
B. ptr = hp - size(hp-4)
C. ptr = hp - size(hp-4) + 4

Page 9 of 12



Problem 6. (12 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Virtual addresses are 16 bits wide.

• Physical addresses are 13 bits wide.

• The page size is 512 bytes.

• The TLB is 8-way set associative with 16 total entries.

• The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB, the page table
for the first 32 pages, and the cache are as follows:

TLB
Index Tag PPN Valid

0 09 4 1
12 2 1
10 0 1
08 5 1
05 7 1
13 1 0
10 3 0
18 3 0

1 04 1 0
0C 1 0
12 0 0
08 1 0
06 7 0
03 1 0
07 5 0
02 2 0

Page Table
VPN PPN Valid VPN PPN Valid

00 6 1 10 0 1
01 5 0 11 5 0
02 3 1 12 2 1
03 4 1 13 4 0
04 2 0 14 6 0
05 7 1 15 2 0
06 1 0 16 4 0
07 3 0 17 6 0
08 5 1 18 1 1
09 4 0 19 2 0
0A 3 0 1A 5 0
0B 2 0 1B 7 0
0C 5 0 1C 6 0
0D 6 0 1D 2 0
0E 1 1 1E 3 0
0F 0 0 1F 1 0

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 0B 41
2 1B 1 00 02 04 08 0B 1 01 03 05 07
3 06 0 84 06 B2 9C 12 0 84 06 B2 9C
4 07 0 43 6D 8F 09 05 0 43 6D 8F 09
5 0D 1 36 32 00 78 1E 1 A1 B2 C4 DE
6 11 0 A2 37 68 31 00 1 BB 77 33 00
7 16 1 11 C2 11 33 1E 1 00 C0 0F 00

Page 10 of 12



Part 1

A. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If a field doesn’t exist, don’t draw it on
the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields
that would be used to determine the following:

PPO The physical page offset
PPN The physical page number
CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Page 11 of 12



Part 2

For the given virtual address, indicate the TLB entry accessed, the physical address, and the cache byte
value returned in hex. Indicate whether the TLB misses, whether a page fault occurs, and whether a cache
miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”. If there is a page fault, enter “-” for “PPN” and
leave parts C and D blank.

Virtual address: 1DDE

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

C. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 12 of 12


