BALTIC OLYMPIAD IN INFORMATICS
Stockholm, April 18-22, 2009

Page 1 of ?? ENG candy

Candy Machine

Spoiler

A first, simple approach is to use dynamic programming oventagon positions. This would lead
to a run time ofO(n"); 20% of the score should be awarded to such a solution.

When looking for a better solution, we observe that the pathsvo wagons never need to cross.
Two crossing paths can be replaced by two paths with the pfigsthe crossing exchanged. Then,
we have a “smallest” wagon, i.e. a wagon such that there isandycwith a smaller position than
any of the candies caught by that wagon. Now assume we canuterapoptimal smallest wagon
path (OSWP) such that this wagon catches as many candies at lgogsiterwards, we disregard all
candies caught by the smallest wagon, compute the OSWPdaethaining candies, and so on. If
the computation of the OSWP can be don®ifr), the whole algorithm runs it (n?).

Indeed, it is possible to compute an OSWRIMm). We pass through all candies by increasing output
time and maintain a stack of candies; candies on the stackaaight by the wagon. The first candy
is pushed on top of the stack. Furtheron, we consider themucandyc and the candy on top of the
stack (the last candy to be caught by the waggn)f the wagon can run from the position @fto the
position ofc such that it catcheson time, thert is put on top of the stack. Else, and if the position
of ¢ is smaller than that of;, the stack is popped untilis reachable frone, again. Afterwardsg is

put on the stack. 60% of the score should be awarded to a té¥(e€) algorithm.

A more efficient algorithm builds upon the idea non-crosgaths, too, but passes candies by posi-
tion. Each candy is to be assigned to the leftmost possibi@maf binary search is used to determine
the wagon and a balanced tree is used to store each wagodissamrun time o (n log? n) is pos-
sible. Full score should be awarded to a correct algorithth stich runtime.

Further improvements may even yield a runtimeogh. log n):

#i ncl ude <cstdi o>
#i ncl ude <vector>
#incl ude <al gorithm
usi ng nanespace std;

typedef pair<long long, long long> pii;

int N

vector<pii> candies;

vector <l ong | ong> wagons;
vector<pair<pii, int> > output;

int main() {
scanf ("%", &N);
for (int i =0; i <N i++) {
| ong Iong p, t;
scanf ("% 1d%|d", &, &t);
candi es. push_| back(pll(p +t, t - p));

sort(candi es. begin(), candies.end());
for (int i =0; i <N i++) {
long long a = candies[i].first, b = -candies[i].second;
int pos = | ower_bound(wagons. begi n(), wagons.end(), b) - wagons. begin();
if (pos == (int) wagons.size()) {
wagons. push_back(b) ;
} else {
wagons[pos] = b;

}
out put . push_back(make_pair(pii((a+ b) / 2, (a - b) / 2), pos + 1));
}
printf("%\n", wagons.size());
for(|nt|-0 i <N i+t
printf("%1d %1d %\n", output[i].first.first, output[i].first.second, output[i].second);

return 0;

