
BALTIC OLYMPIAD IN INFORMATICS
Stockholm, April 18-22, 2009

Page 1 of ?? ENG candy

Candy Machine

Spoiler

A first, simple approach is to use dynamic programming over the wagon positions. This would lead
to a run time ofO(nw); 20% of the score should be awarded to such a solution.

When looking for a better solution, we observe that the pathsof two wagons never need to cross.
Two crossing paths can be replaced by two paths with the partsafter the crossing exchanged. Then,
we have a “smallest” wagon, i.e. a wagon such that there is no candy with a smaller position than
any of the candies caught by that wagon. Now assume we can compute anoptimal smallest wagon
path (OSWP) such that this wagon catches as many candies at possible. Afterwards, we disregard all
candies caught by the smallest wagon, compute the OSWP for the remaining candies, and so on. If
the computation of the OSWP can be done inO(n), the whole algorithm runs inO(n2).

Indeed, it is possible to compute an OSWP inO(n). We pass through all candies by increasing output
time and maintain a stack of candies; candies on the stack arecaught by the wagon. The first candy
is pushed on top of the stack. Furtheron, we consider the current candyc and the candy on top of the
stack (the last candy to be caught by the wagon)cs. If the wagon can run from the position ofcs to the
position ofc such that it catchesc on time, thenc is put on top of the stack. Else, and if the position
of c is smaller than that ofcs, the stack is popped untilc is reachable fromcs again. Afterwards,c is
put on the stack. 60% of the score should be awarded to a correct O(n2) algorithm.

A more efficient algorithm builds upon the idea non-crossingpaths, too, but passes candies by posi-
tion. Each candy is to be assigned to the leftmost possible wagon. If binary search is used to determine
the wagon and a balanced tree is used to store each wagon’s candies, a run time ofO(n log2

n) is pos-
sible. Full score should be awarded to a correct algorithm with such runtime.

Further improvements may even yield a runtime ofO(n log n):

#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;

typedef pair<long long, long long> pii;

int N;
vector<pii> candies;
vector<long long> wagons;
vector<pair<pii, int> > output;

int main() {
scanf("%d", &N);
for (int i = 0; i < N; i++) {

long long p, t;
scanf("%lld%lld", &p, &t);
candies.push_back(pii(p + t, t - p));

}
sort(candies.begin(), candies.end());
for (int i = 0; i < N; i++) {

long long a = candies[i].first, b = -candies[i].second;
int pos = lower_bound(wagons.begin(), wagons.end(), b) - wagons.begin();
if (pos == (int) wagons.size()) {

wagons.push_back(b);
} else {

wagons[pos] = b;
}
output.push_back(make_pair(pii((a + b) / 2, (a - b) / 2), pos + 1));

}
printf("%d\n", wagons.size());
for (int i = 0; i < N; i++) {

printf("%lld %lld %d\n", output[i].first.first, output[i].first.second, output[i].second);
}
return 0;

}


