
BALTIC OLYMPIAD IN INFORMATICS
Stockholm, April 18-22, 2009

Page 1 of ?? ENG radio

Radio Transmission

Spoiler

First, notice that there is no way to distinguish the actual message from any of its cyclic shifts based
on what is received from the station. For instance, in the example given in the task text, the 3-character
message could be ‘abc’ or ‘bca’ or ‘cab’.

This means that for a message of lengthL′, the firstL′ characters received could be the message just
as well as any otherL′ consecutive characters in the sequence. Since the message is repeated, this
means each following character after that has to be the same as the oneL′ positions to the left. Such
a correspondence can be found by comparingS[1 . . . L − i] to S[i + 1 . . . L] for i = 1, 2, . . . , L and
returning the smallesti for which they match. The running time of such a solution isO(L2).

The above algorithm is suspiciously similar to the naive method for finding a given pattern as a sub-
string in a given text. This should serve as a good hint to lookfor similar optimizations. And indeed,
the repeated comparisons look for the longest prefix of the received sequence that is also a suffix of the
same sequence. Keeping track of such prefix/suffix pairs is exactly what the Knuth-Morris-Pratt algo-
rithm ([?], [?]) is about. The solution based on theπ-function from the Knuth-Morris-Pratt algorithm
runs inO(L) time usingO(L) memory in addition to the sequence itself.

One could also be tempted to take advantage of the search functions built into the standard library
(strstr for C, eitherstrstr or string::find for C++,pos for Pascal). As it turns out, they
are not efficient enough; there are test cases where just one call to one of these functions would exceed
the time limit.

References

[1] D. E. Knuth, J. H. Morris, V. R. Pratt, “Fast Pattern Matching in Strings,” SIAM J. Computing,
vol. 6, no. 2, pp. 323–350, 1977.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,Introduction to Algorithms, Section 32.4:
The Knuth-Morris-Pratt algorithm, pp. 923–931, MIT Press and McGraw-Hill, 2001.

Test data overview

1. L = 1, S = a. L′ = 1. Minimal test case. 4 points.

2. L = 5, S = a5. L′ = 1. Minimal answer. 3 points.

3. L = 5, S = abcde. L′ = 5. “Maximal” answer. 3 points.

4. L = 20, S = (abcdeabcdf)2. L′ = 10. The message divides the sequence evenly. 10 points.

5. L = 24, S = df(abcdeabcdf)2ab. L′ = 10. The message does not divide the sequence evenly.
10 points.



BALTIC OLYMPIAD IN INFORMATICS
Stockholm, April 18-22, 2009

Page 2 of ?? ENG radio

6. L = 100, S = {xyz}100. L′ = 99. A random sequence of ‘x’, ‘y’, ‘z’. 10 points.

7. L = 100000, S = x5a99990x5. L′ = 99995. A big test case engineered against the naive
algorithm. 20 points.

8. L = 200001, S = a100000xa100000. L′ = 100001. A big test case engineered against the naive
algorithm. 20 points.

9. L = 1000000, S = (a16384xa32768xa1692xa32768xa16384)10, L′ = 100000. Maximal test case
engineered against the naive algorithm. 20 points.

In the above,
xn means ‘x’ repeatedn times;

(xyz)n means ‘xyz’ repeatedn times;
{xyz}n means a sequence ofn characters, each randomly taken from ‘x’, ‘y’, ‘z’.


