
NWERC 2006
The 2006 ACM Northwestern European Programming Contest

KTH - Royal Institute of Technology, Stockholm, Sweden

The Problem Set

A Sudoku
B The SetStack Computer
C Pie
D Ticket to Ride
E The Bookcase
F Printer Queue
G Prime Path
H Lineland’s Airport
I Leonardo’s Notebook

Almost blank page

Problem A: Sudoku 1

Problem A: Sudoku

Oh no! Bill just realized that the sudoku puzzle he
had spent the last ten minutes trying to solve es-
sentially was last week’s puzzle, only rotated coun-
terclockwise. How cheap! Couldn’t the magazine
afford to make a new one every week? Of course,
he had no way of knowing about this before he
started to solve it, as the holes to fill with digits
were other than last week. Nevertheless, realizing
that this week’s puzzle was a simple derivative of
last week’s certainly took the fun out of solving the
rest of it.

The sudoku board consists of 9 × 9 cells. These can be grouped into 3 × 3 regions of 3 × 3
cells each. Some of the cells are filled with a digit 1 through 9 while the rest of them are left
empty. The aim of the game is to fill each empty cell with a digit 1 . . . 9 so that every row,
every column and every region contains each of the numbers 1 . . . 9 exactly once. A proper
sudoku puzzle always has exactly one solution.

Help Bill avoid unpleasant surprises by creating a program that checks whether an un-
solved sudoku puzzle is in fact derived from an earlier puzzle by simple operations.

The allowed operations are:

1. Rotating the entire puzzle clockwise or counterclockwise.

2. Swapping two columns within a 3 × 9 column segment.

3. Swapping two rows within a 9 × 3 row segment.

4. Swapping entire row or column segments.

5. Applying a permutation f of the digits 1 . . . 9 to every cell (i.e. replace x by f (x) in
every cell).

An operation is considered being performed on the sudoku solution (rather than on the
unsolved puzzle) and always guarantees that if the board before the transformation was a
solution to a sudoku puzzle, it still is afterwards.

Input

The input starts with the number of test cases 0 ≤ N ≤ 50 on a single line.
Then for every test case follow nine lines describing last week’s puzzle solution, from top

to bottom. Each line corresponds to a row in the puzzle and consists of nine digits (1 . . . 9),
describing the contents of the cell from left to right.

Last week’s solution is followed by nine lines describing this week’s unsolved puzzle.
Here, also, every line corresponds to a puzzle row and every digit (0 . . . 9) describes the
contents of a cell. 0 indicates that the cell is empty. The rows are presented ordered from top
to bottom, and within each row, the cells are ordered from left to right.

After every test case except the last one follows a blank line. Every unsolved puzzle
is guaranteed to be uniquely solvable and last week’s solution is always a proper sudoku
solution.

2 Problem A: Sudoku

Output

For every test case, output Yes if the sudoku puzzle can be derived from the given solved
puzzle using the allowed operations, or No if this is not possible.

Sample input Sample output
2
963174258
178325649
254689731
821437596
496852317
735961824
589713462
317246985
642598173
060104050
200000001
008305600
800407006
006000300
700901004
500000002
040508070
007206900

534678912
672195348
198342567
859761423
426853791
713924856
961537284
287419635
345286179
010900605
025060070
870000902
702050043
000204000
490010508
107000056
040080210
208001090

Yes
No

Problem B: The SetStack Computer 3

Problem B: The SetStack Computer

Background from Wikipedia: “Set theory is
a branch of mathematics created principally
by the German mathematician Georg Can-
tor at the end of the 19th century. Initially
controversial, set theory has come to play
the role of a foundational theory in mod-
ern mathematics, in the sense of a theory in-
voked to justify assumptions made in math-
ematics concerning the existence of math-
ematical objects (such as numbers or func-
tions) and their properties. Formal versions
of set theory also have a foundational role
to play as specifying a theoretical ideal of
mathematical rigor in proofs.”

Given this importance of sets, being the basis of mathematics, a set of eccentric theorist
set off to construct a supercomputer operating on sets instead of numbers. The initial Set-
Stack Alpha is under construction, and they need you to simulate it in order to verify the
operation of the prototype.

The computer operates on a single stack of sets, which is initially empty. After each
operation, the cardinality of the topmost set on the stack is output. The cardinality of a set S
is denoted |S| and is the number of elements in S. The instruction set of the SetStack Alpha
is PUSH, DUP, UNION, INTERSECT, and ADD.

• PUSH will push the empty set {} on the stack.

• DUP will duplicate the topmost set (pop the stack, and then push that set on the stack
twice).

• UNION will pop the stack twice and then push the union of the two sets on the stack.

• INTERSECT will pop the stack twice and then push the intersection of the two sets on
the stack.

• ADD will pop the stack twice, add the first set to the second one, and then push the
resulting set on the stack.

For illustration purposes, assume that the topmost element of the stack is

A = {{}, {{}}}
and that the next one is

B = {{}, {{{}}}}.

For these sets, we have |A| = 2 and |B| = 2. Then:

• UNION would result in the set { {}, {{}}, {{{}}} }. The output is 3.

• INTERSECT would result in the set { {} }. The output is 1.

• ADD would result in the set { {}, {{{}}}, {{},{{}}} }. The output is 3.

4 Problem B: The SetStack Computer

Input

An integer 0 ≤ T ≤ 5 on the first line gives the cardinality of the set of test cases. The first
line of each test case contains the number of operations 0 ≤ N ≤ 2 000. Then follow N lines
each containing one of the five commands. It is guaranteed that the SetStack computer can
execute all the commands in the sequence without ever popping an empty stack.

Output

For each operation specified in the input, there will be one line of output consisting of a
single integer. This integer is the cardinality of the topmost element of the stack after the
corresponding command has executed. After each test case there will be a line with ***
(three asterisks).

Sample input Sample output
2
9
PUSH
DUP
ADD
PUSH
ADD
DUP
ADD
DUP
UNION
5
PUSH
PUSH
ADD
PUSH
INTERSECT

0
0
1
0
1
1
2
2
2

0
0
1
0
0

Problem C: Pie 5

Problem C: Pie

My birthday is coming up and traditionally
I’m serving pie. Not just one pie, no, I have
a number N of them, of various tastes and of
various sizes. F of my friends are coming to
my party and each of them gets a piece of pie.
This should be one piece of one pie, not sev-
eral small pieces since that looks messy. This
piece can be one whole pie though.

My friends are very annoying and if one
of them gets a bigger piece than the others,
they start complaining. Therefore all of them
should get equally sized (but not necessarily equally shaped) pieces, even if this leads to
some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece
of pie for myself too, and that piece should also be of the same size.

What is the largest possible piece size all of us can get? All the pies are cylindrical in
shape and they all have the same height 1, but the radii of the pies can be different.

Input

One line with a positive integer: the number of test cases. Then for each test case:

• One line with two integers N and F with 1 ≤ N, F ≤ 10 000: the number of pies and
the number of friends.

• One line with N integers ri with 1 ≤ ri ≤ 10 000: the radii of the pies.

Output

For each test case, output one line with the largest possible volume V such that me and my
friends can all get a pie piece of size V. The answer should be given as a floating point
number with an absolute error of at most 10−3.

Sample input Sample output
3
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2

25.1327
3.1416
50.2655

Almost blank page

Problem D: Ticket to Ride 7

Problem D: Ticket to Ride

Ticket to Ride is a board game for up to 5 players.
The goal of the game is to set up train lines (and to
thwart the opponents’ attempts at setting up their
train lines). At the beginning of play, each player
is assigned four train lines. A player may choose
to discard as many of these four assignments as she
likes. Each assignment has a score, corresponding to
its difficulty (so, typically, a train line between e.g.
Stockholm and Tokyo would be worth more than a
train line between e.g. Stockholm and Utrecht). At
the end of the game, each player gets points for the
assignments that they have successfully completed,
and penalty points for the assignments that they
have failed to complete.

An assignment consists of a pair of cities that are to be connected by a series of shorter
railway routes. A route can be claimed (for a certain cost associated with the route), but
things are complicated by the fact that there is only a limited number of routes, and once a
player claims a route, none of the other players can claim it. A player has successfully set up
a train line between two cities if there is a path between the two cities using only routes that
have been claimed by this player. For simplicity, we will ignore all additional aspects of the
game (including the actual process of claiming routes and additional ways to score points).

For instance, if your assignment is to connect Stockholm and Amsterdam in the Figure
above, you would probably want to claim the routes between Stockholm and Copenhagen,
and between Copenhagen and Amsterdam. But if another player manages to claim the route
between Copenhagen and Stockholm before you, your train line would have to use some
other routes, e.g. by going to Copenhagen via Oslo.

In this problem, we will consider the rather bold strategy of trying to complete all four
assignments (typically, this will be quite hard). As a preliminary assessment of the difficulty
of achieving this, we would like to calculate the minimum cost of setting up all four lines
assuming that none of the other players interfere with our plans. Your job is to write a
program to determine this minimum cost.

Input

The input consists of several (at most 20) games to be analyzed. Each game starts with two
integers 1 ≤ n ≤ 30, 0 ≤ m ≤ 1 000, giving the number of cities and railway routes in the
map, respectively. Then follow n lines, giving the names of the n cities. City names are at
most 20 characters long and consist solely of lower case letters (’a’-’z’).

After this follow m lines, each containing the names of two different cities and an integer
1 ≤ c ≤ 10 000, indicating that there is a railway route with cost c between the two cities.
Note that there may be several railway routes between the same pair of cities. You may
assume that it is always possible to set up a train line from any city to any other city.

Finally, there will be four lines, each containing the names of two cities, giving the four
train line assignments.

The input is terminated by a case where n = m = 0. This case should not be processed.

8 Problem D: Ticket to Ride

Output

For each game, output a single line containing a single integer, the minimum possible cost
to set up all four train lines.

Sample input Sample output
10 15
stockholm
amsterdam
london
berlin
copenhagen
oslo
helsinki
dublin
reykjavik
brussels
oslo stockholm 415
stockholm helsinki 396
oslo london 1153
oslo copenhagen 485
stockholm copenhagen 522
copenhagen berlin 354
copenhagen amsterdam 622
helsinki berlin 1107
london amsterdam 356
berlin amsterdam 575
london dublin 463
reykjavik dublin 1498
reykjavik oslo 1748
london brussels 318
brussels amsterdam 173
stockholm amsterdam
oslo london
reykjavik dublin
brussels helsinki
2 1
first
second
first second 10
first first
first first
second first
first first
0 0

3907
10

Ticket to Ride is copyrighted by Days of Wonder, Inc.

Problem E: The Bookcase 9

Problem E: The Bookcase

No wonder the old bookcase caved under
the massive piles of books Tom had stacked
on it. He had better build a new one, this
time large enough to hold all of his books.
Tom finds it practical to have the books close
at hand when he works at his desk. There-
fore, he is imagining a compact solution
with the bookcase standing on the back of
the desk. Obviously, this would put some
restrictions on the size of the bookcase, it
should preferably be as small as possible.
In addition, Tom would like the bookcase
to have exactly three shelves for aesthetical
reasons.

Wondering how small his bookcase could be, he models the problem as follows. He mea-
sures the height hi and thickness ti of each book i and he seeks a partition of the books in

three non-empty sets S1, S2, S3 such that
(

∑3
j=1 maxi∈Sj hi

)
×

(
max3

j=1 ∑i∈Sj
ti

)
is minimized,

i.e. the area of the bookcase as seen when standing in front of it (the depth needed is obvi-
ously the largest width of all his books, regardless of the partition). Note that this formula
does not give the exact area of the bookcase, since the actual shelves cause a small additional
height, and the sides cause a small additional width. For simplicity, we will ignore this small
discrepancy.

Thinking a moment on the problem, Tom realizes he will need a computer program to
do the job.

Input

The input begins with a positive number on a line of its own telling the number of test
cases (at most 20). For each test case there is one line containing a single positive integer N,
3 ≤ N ≤ 70 giving the number of books. Then N lines follow each containing two positive
integers hi, ti, satisfying 150 ≤ hi ≤ 300 and 5 ≤ ti ≤ 30, the height and thickness of book i
respectively, in millimeters.

Output

For each test case, output one line containing the minimum area (height times width) of a
three-shelf bookcase capable of holding all the books, expressed in square millimeters.

10 Problem E: The Bookcase

Sample input Sample output
2
4
220 29
195 20
200 9
180 30
6
256 20
255 30
254 15
253 20
252 15
251 9

18000
29796

Problem F: Printer Queue 11

Problem F: Printer Queue

The only printer in the computer science stu-
dents’ union is experiencing an extremely heavy
workload. Sometimes there are a hundred jobs
in the printer queue and you may have to wait
for hours to get a single page of output.

Because some jobs are more important than
others, the Hacker General has invented and im-
plemented a simple priority system for the print
job queue. Now, each job is assigned a priority
between 1 and 9 (with 9 being the highest prior-
ity, and 1 being the lowest), and the printer op-
erates as follows.

• The first job J in queue is taken from the queue.

• If there is some job in the queue with a higher priority than job J, then move J to the
end of the queue without printing it.

• Otherwise, print job J (and do not put it back in the queue).

In this way, all those important muffin recipes that the Hacker General is printing get printed
very quickly. Of course, those annoying term papers that others are printing may have to
wait for quite some time to get printed, but that’s life.

Your problem with the new policy is that it has become quite tricky to determine when
your print job will actually be completed. You decide to write a program to figure this out.
The program will be given the current queue (as a list of priorities) as well as the position of
your job in the queue, and must then calculate how long it will take until your job is printed,
assuming that no additional jobs will be added to the queue. To simplify matters, we assume
that printing a job always takes exactly one minute, and that adding and removing jobs from
the queue is instantaneous.

Input

One line with a positive integer: the number of test cases (at most 100). Then for each test
case:

• One line with two integers n and m, where n is the number of jobs in the queue (1 ≤
n ≤ 100) and m is the position of your job (0 ≤ m ≤ n − 1). The first position in the
queue is number 0, the second is number 1, and so on.

• One line with n integers in the range 1 to 9, giving the priorities of the jobs in the queue.
The first integer gives the priority of the first job, the second integer the priority of the
second job, and so on.

12 Problem F: Printer Queue

Output

For each test case, print one line with a single integer; the number of minutes until your job
is completely printed, assuming that no additional print jobs will arrive.

Sample input Sample output
3
1 0
5
4 2
1 2 3 4
6 0
1 1 9 1 1 1

1
2
5

Problem G: Prime Path 13

Problem G: Prime Path

The ministers of the cabinet were quite upset by the
message from the Chief of Security stating that they
would all have to change the four-digit room num-
bers on their offices.
— It is a matter of security to change such things ev-
ery now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good
reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also
a prime. You will just have to paste four new digits
over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change
the first digit to an 8, then the number will read 8033
which is not a prime!
— I see, being the prime minister you cannot stand
having a non-prime number on your door even for a
few seconds.
— Correct! So I must invent a scheme for going from
1033 to 8179 by a path of prime numbers where only
one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one
pound.
— Hmm, in that case I need a computer program to minimize the cost. You don’t know
some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on. . .
Help the prime minister to find the cheapest prime path between any two given four-digit
primes! The first digit must be nonzero, of course. Here is a solution in the case above.

1033
1733
3733
3739
3779
8779
8179

The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2
can not be reused in the last step – a new 1 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100). Then for each test
case, one line with two numbers separated by a blank. Both numbers are four-digit primes
(without leading zeros).

14 Problem G: Prime Path

Output

One line for each case, either with a number stating the minimal cost or containing the word
Impossible.

Sample input Sample output
3
1033 8179
1373 8017
1033 1033

6
7
0

Problem H: Lineland’s Airport 15

Problem H: Lineland’s Airport

Lineland is a strange country. As the name suggests, it’s shape (as seen from above) is just a
straight line, rather than some two-dimensional shape. The landscape along this line is very
mountainous, something which occasionally leads to some problems. One such problem
now occurs: in this modern era the king wants to build an airport to stimulate the country’s
economy. Unfortunately, it’s impossible for airplanes to land on steep airstrips, so a horizon-
tal piece of land is needed. To accommodate for the larger airplanes, this strip needs to have
length at least L.

Over the years, the inhabitants of Lineland have become very proficient in flattening
pieces of land. Given a piece a land, they can remove rock quickly. They don’t want to
add rock for that may lead to an unstable landing strip. To minimize the amount of effort,
however, they want to remove the least amount of rock necessary to reach their goal: a flat
piece of land of length L. What is this minimum amount? Because of the low-dimensional
nature of Lineland, the amount of rock that needs to be removed is measured as the total
area of land above the place where the landing strip is placed, rather than the volume (so in
the Figure below, the amount of land removed is given by the lightly shaded area).

L

Input

One line with a positive number: the number of test cases (at most 25). Then for each test
case:

• One line with an integer N, 2 ≤ N ≤ 500, the number of points, and an integer L,
1 ≤ L ≤ 10 000, the necessary length to flatten.

• N lines with two integers xi and yi with 0 ≤ xi, yi ≤ 10 000 describing the landscape
of Lineland. The xi are in (strictly) ascending order. At position xi the height of the
landscape is yi. Between two xi the landscape has constant slope. (So the landscape is
piecewise linear). The difference between xN and x1 is greater than or equal to L.

16 Problem H: Lineland’s Airport

Output

For each test case, output one line with the minimum amount of rock which must be re-
moved in order to build the airport. The answer should be given as a floating point number
with an absolute error of at most 10−3.

Sample input Sample output
4
3 5
0 2
4 2
14 0
4 3
0 2
2 0
4 0
5 3
3 10
10 2
30 2
35 7
2 777
222 333
4444 5555

0.9000
0.3750
0.0000
373362.4867

Problem I: Leonardo’s Notebook 17

Problem I: Leonardo’s Notebook

— I just bought Leonardo’s secret notebook!
Rare object collector Stan Ucker was really agitated
but his friend, special investigator Sarah Keptic was
unimpressed.
— How do you know it is genuine?
— Oh, it must be, at that price. And it is written in
the da Vinci code.
Sarah browsed a few of the pages. It was obvious to
her that the code was a substitution cipher, where
each letter of the alphabet had been substituted by
another letter.
— Leonardo would have written the plain-text and
left it to his assistant to encrypt, she said. And he
must have supplied the substitution alphabet to be
used. If we are lucky, we can find it on the back
cover!
She turned up the last page and, lo and behold, there was a single line of all 26 letters of the
alphabet:

QWERTYUIOPASDFGHJKLZXCVBNM

— This may be Leonardo’s instructions meaning that each A in the plain-text was to be
replaced by Q, each B with W, etcetera. Let us see...
To their disappointment, they soon saw that this could not be the substitution that was used
in the book. Suddenly, Stan brightened.
— Maybe Leonardo really wrote the substitution alphabet on the last page, and by mistake
his assistant coded that line as he had coded the rest of the book. So the line we have here is
the result of applying some permutation TWICE to the ordinary alphabet!
Sarah took out her laptop computer and coded fiercely for a few minutes. Then she turned
to Stan with a sympathetic expression.
— No, that couldn’t be it. I am afraid that you have been duped again, my friend. In all
probability, the book is a fake.
Write a program that takes a permutation of the English alphabet as input and decides if it
may be the result of performing some permutation twice.

Input

The input begins with a positive number on a line of its own telling the number of test cases
(at most 500). Then for each test case there is one line containing a permutation of the 26
capital letters of the English alphabet.

Output

For each test case, output one line containing Yes if the given permutation can result from
applying some permutation twice on the original alphabet string ABC...XYZ, otherwise out-
put No.

18 Problem I: Leonardo’s Notebook

Sample input Sample output
2
QWERTYUIOPASDFGHJKLZXCVBNM
ABCDEFGHIJKLMNOPQRSTUVWXYZ

No
Yes

