Learning multiple visual domains with residual adapters

Early Transfer learning

- * Use activation of fc layers as feature extractor
- * Use ANN or other ML technique on fc features

Fine tuning

* New domain has large dataset \rightarrow you may tune all parameters in network

Causes catastrophic forgetting: * Network is no longer good at old problem

Background

Catastrophic forgetting:

- * I think it is a non issue
- * If training data is too much to store other methods could be used
- * For example reservoir sampling
- * Could be useful in online learning

Joint training:

- Have multiple datasets
- Train on all datasets at the same time
- Does not cause catastrophic forgetting

Less forgetting learning * Try to not change fc output too much when doing transfer learning to avoid CF

Learning without forgetting * Tune fc layers for old tasks to make output stimilar to before

Different batch norm for different domains

Add new weights for new domains, only train new weights.

- * Train all new weights on new domain
- * since old weights not trained \rightarrow no CF

Resnet

New architecture

Replace Conv+BN+RELU with

Where BN has domain specific parameters

New architecture

Possible to tune network on a per domain basis

New evaluation method

- "Visual decathlon challenge"
- Test performance of multi domain learning on 10 domains
- only classification tasks

New evaluation method

- Evaluation metric seems strange

"we double the error rates of the fully finetuned networks"

- i.e. for max score you need half the error of the baseline (?)

Finding domain

- Some part about classifying which domain the input is from

- Often input domain should be known from, for example metadata.

Notes

On "finetune all" all domains were finetuned jointly, which explains the #par for model

"network accept 64x64 images as input" \rightarrow all input scaled to this size (?)

Summary

- * Introduce way to add domain specific parameters
- * Training on all image categories (Res. Adapt finetune all) gave superior results to domain specific fine tuning.
- * Benchmark for multiple domains