Scene Graph Generation by Iterative Message Passing

Danfei Xu, Yuke Zhu, Christopher B. Choy, Li Fei-Fei (2017)

https://arxiv.org/abs/1701.02426

Scene Graph

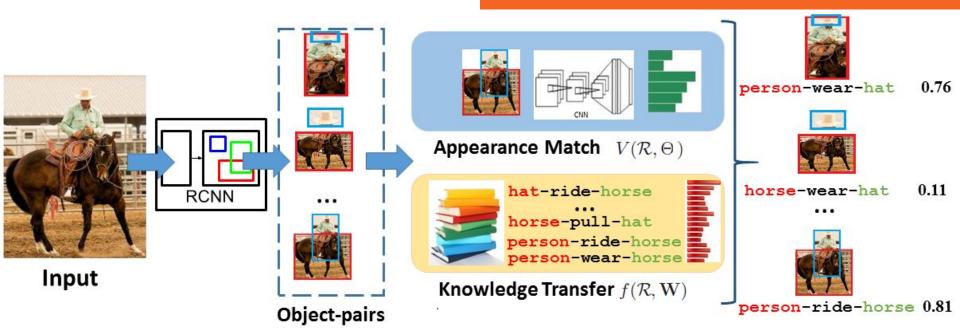
In every image, there's more than meets the object detector wearing glasses feeding horse man holding eat from bucket

Problem statement

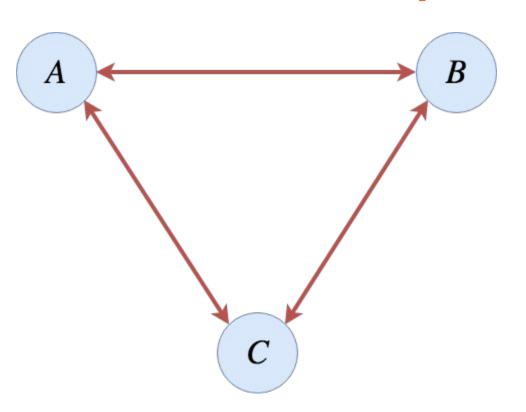
Given an image / and a set of boxes *B* from pretrained Region Proposal Network, we want to identify:

- Object classes
 For each box, the object class
- → Box offsets

 For each box, the offset w.r.t. the proposed box coordinates
- → Pairwise relationships


 For each pair of boxes, the most likely relationship between their objects

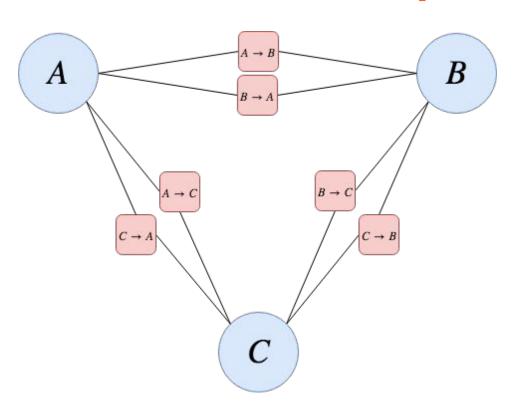
The baseline


Visual Relationship Detection with Language Priors

Cewu Lu, Ranjay Krishna, Michael Bernstein, Li Fei-Fei (2016)

- Uses visual features from the region containing 2 objects
- Uses language priors to cluster relationships together
- Similar to the approach of this paper, without message passing

Primal Dual Graph

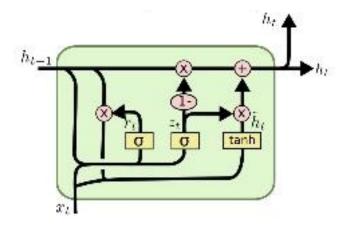

→ Nodes

Represent objects in the scene

→ Edges

Represent object relationships

Primal Dual Graph



- → Object nodes Represent objects in the scene
- Relationship nodes

 Represent object relationships
- → Edges

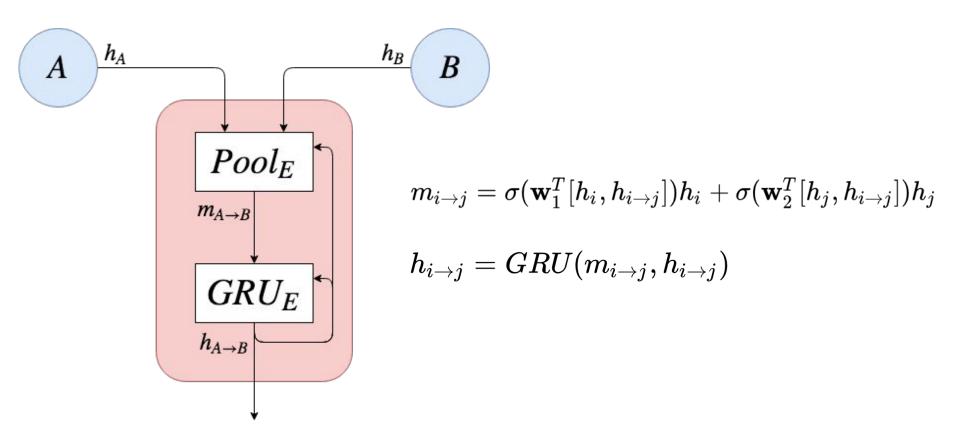
Represent messages exchanged between object and relationship nodes

Object nodes and relationship nodes form a bipartite graph

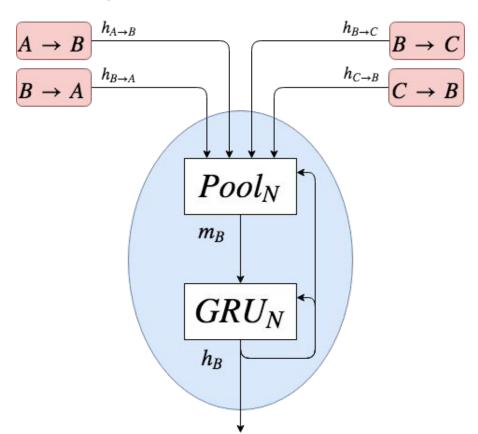
$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$


$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Gated Recurrent Unit


Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio (2014)

Relationship node A → B

Object node B

$$egin{aligned} m_i &= \sum_{j:i o j} \sigma(\mathbf{v}_1^T[h_i,h_{i o j}]) h_{i o j} \; + \ &\sum_{j:j o i} \sigma(\mathbf{v}_2^T[h_i,h_{j o i}]) h_{j o i} \end{aligned}$$

$$h_i = GRU(m_i, h_i)$$

Training procedure

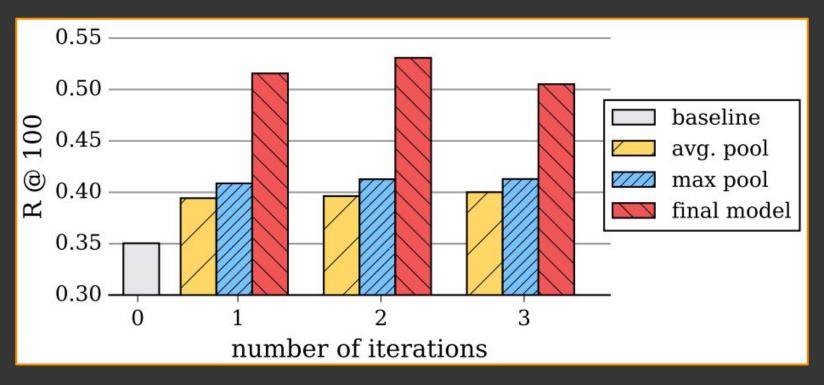
- Pretrained VGG-16 for region proposals and visual feature
- 512-dimensional vectors for state and messages
- For each image, 128 boxes are randomly selected from the top 2.000 proposed boxes
- For each image, 128 labeled relationships are randomly selected from the 8.128 possible object pairs
- For inference, only the top 50 boxes and all their pairs are considered

_

Visual Genome

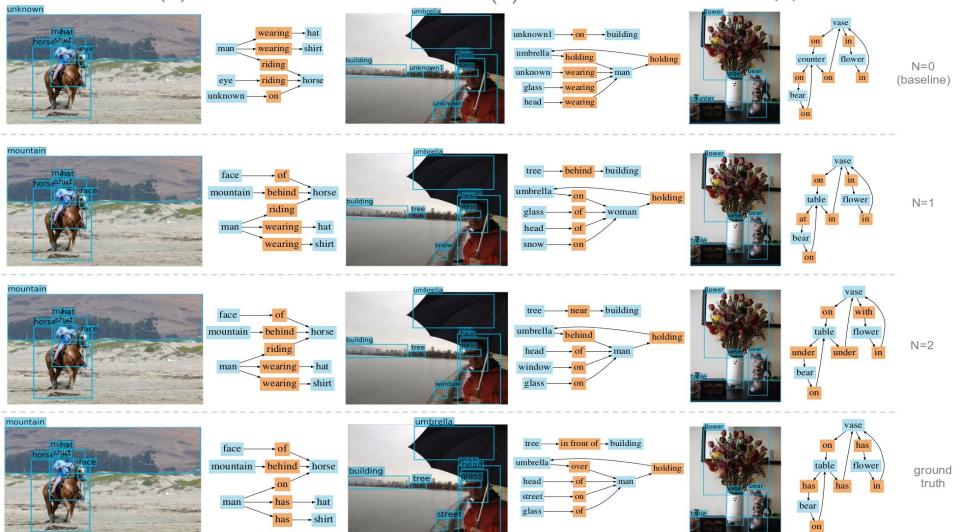
- 100k images
- Top 150 object classes (avg. 25 per image)
- Top 50 relationships (avg. 6.2 per image)

Note


This is a cleaned version of the <u>VG dataset</u>, because the original annotations were of poor quality.

Visual Genome

	[26]	avg. pool	max pool	final
R@50	27.88	32.39	34.33	44.75
R@100	35.04	39.63	41.99	53.08
R@50	11.79	15.65	16.31	21.72
R@100	14.11	18.27	18.70	24.38
R@50	0.32	2.70	3.03	3.44
R@100	0.47	3.42	3.71	4.24
	R@100 R@50 R@100 R@50	R@5027.88R@10035.04R@5011.79R@10014.11R@500.32	R@50 27.88 32.39 R@100 35.04 39.63 R@50 11.79 15.65 R@100 14.11 18.27 R@50 0.32 2.70	R@50 27.88 32.39 34.33 R@100 35.04 39.63 41.99 R@50 11.79 15.65 16.31 R@100 14.11 18.27 18.70 R@50 0.32 2.70 3.03


_

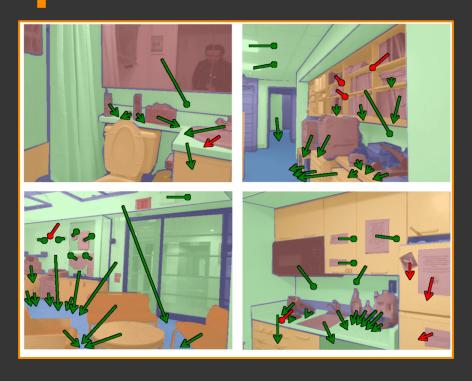
Visual Genome

Visual Genome

predicate	[26]	ours	predicate	[26]	ours
on	99.71	99.25	under	28.64	52.73
has	98.03	97.25	sitting on	31.74	50.17
in	80.38	88.30	standing on	44.44	61.90
of	82.47	96.75	in front of	26.09	59.63
wearing	98.47	98.23	attached to	8.45	29.58
near	85.16	96.81	at	54.08	70.41
with	31.85	88.10	hanging from	0.00	0.00
above	49.19	79.73	over	9.26	0.00
holding	61.50	80.67	for	12.20	31.71
behind	79.35	92.32	riding	72.43	89.72

NYU Depth v2

- 1.449 RGB-D images
- 4 object classes
 (floor, structure, furniture, prop)
- 3 support relationships (behind, below, hidden)



Notes

The depth channel is not used during the experiments.

Ground-truth object locations are provided as inputs, not predicted.

NYU Depth v2

_

NYU Depth v2

	Support Accuracy		PREDCLS	
	t-ag	t-aw	R@50	R@100
Silberman et al. [28]	75.9	72.6	8-	-
Liao <i>et al</i> . [24]	88.4	82.1	-	-
Baseline [26]	87.7	85.3	34.1	50.3
Final model (ours)	91.2	89.0	41.8	55.5

Discussion