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Methods by level of supervision

● simple models, weak annotations
● least effort, potentially fast learning, not best results

● complicated models, weak annotation
● state-of-the-art performance (multiple instance learning, 
latent parts, latent structural SVM)
● non-convex optimization
● slow training
● Hard to pinpoint error source (optimization error, 
inappropriate model or feature space, insufficient training 
data)
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Methods by level of supervision

• Strong annotation
- Very time consuming
- Easy learning task (possible convex optimization)
- Generalization guarrantee
- Sensitive to quality and style of annotation

Qusetion: Is it possible to have strong supervision 
properties with weak annotation computational 
efficiency?
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 Yes! Interactive Labelling and Online Learning

• 1- Model part structures with structured models

• 2- Bring up a new image, 
- predict the part locations with current model
- Correct the wrong locations

• 3-Update the learned model and go to 2
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Interactive Labelling + Online Learning
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Interactive Labelling + Online 
Learning

• Interactive Labelling
- Real time detection
- Easy update
- Tree-structured deformable parts model with dynamic 

programming is a good choice!
• Online Learning

- Fast model updating
- Convex optimization
- Stochastic gradient descent
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Related works

• Interactive labelling
- Grab cut (Segmentation)
- Label me video 
- Visipedia (attributes)
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Related works

• Active learning
- Intelligent computer decide which image to annotate
- More savings than interactive labeling
- In comparison to strong supervision
• Higher computational complexity
• Fewer theoretical guarantees
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Model and Interactive UI
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Learning framework

• Strong Convex formualtion

• Gradient computable 
• by one inference

• Stochastic gradient descent
• Process an image at each step

- Pegasus!
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Theoretical properties

• Pegasos
- Faster convergence rate  than linear SVM
- Performance guarantee with the number of iterations
- Training time does not increase with increasing number 

of images (for a specific performance)
- Slower steps than linear svm
• Inference at each step

• Interactive labelling
- Loss function is defined as the number of misplaced part
- Number of annotation is bounded!
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Some results...
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Tables
• 50 images: 

- 6.6 / 13 correction. 
- 19.7 seconds

• 4000 images: 
- 3.9 / 13 correction
- 12 seconds
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Conclusion

• Framework for large scale annotation
• Simulataneous learning of structured models
• Nice theoretical properties, seen in practice
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Cross-category Object Recognition 
(CORE)

• University of Illinois at Urbana-Champaign

• more detailed models and for exploring cross-category 
generalization in object recognition
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CORE – Data overview

• Images from ImageNet, thus coming with object 
hierarchy

• Binary attributes
- Pose
- Sorrounding context
- Viewpoint
- Etc.
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CORE – data overview

• Ploygon labels
- Objects
- Pre-defined parts of 

a category
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CORE – data overview

• Segmentation mask
- Materials
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Quality Measures

• Way of collecting images
• Which attributes

-  Easily annotatable
-  Unsure buttun

• Quality assurance methods... 
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