RICH FEATURE HIERARCHIES FOR ACCURATE OBJECT DETECTION AND SEMANTIC SEGMENTATION

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitandra Malik (UC Berkeley)

Presenter: Hossein Azizpour

ABSTRACT

Can CNN improve s.o.a. object detection results?

- > Yes, it helps by learning rich representations which can then be combined with computer vision techniques.
- Can we understand what does a CNN learn?
 - Sort of!, we can check which positive (or negative) image regions stimulates a neuron the most
- > It will evaluate different layers of the method
- Experiments on segmentation
- ► mAP on VOC 2007: **48%** !

APPROACH

REGION PROPOSALS

- over segmentation (initial regions)
- bottom-up grouping at multiple scales
- Diversifications (different region proposals, similarity for grouping,...)
- Enables computationally expensive methods
- Potentially reduce false positives

method	recall	MABO	# windows
Arbelaez et al. [3]	0.752	0.649 ± 0.193	418
Alexe et al. [2]	0.944	0.694 ± 0.111	1,853
Harzallah et al. [16]	0.830	-	200 per class
Carreira and Sminchisescu [4]	0.879	0.770 ± 0.084	517
Endres and Hoiem [9]	0.912	0.791 ± 0.082	790
Felzenszwalb et al. [12]	0.933	0.829 ± 0.052	100,352 per class
Vedaldi et al. [34]	0.940	-	10,000 per class
Single Strategy	0.840	0.690 ± 0.171	289
Selective search "Fast"	0.980	0.804 ± 0.046	2,134
Selective search "Quality"	0.991	0.879 ± 0.039	10,097

Version	Diversification Strategies	MABO	# win	# strategies	time (s)
Single Strategy	HSV C+T+S+F k = 100	0.693	362	1	0.71
Selective Search Fast	HSV, Lab C+T+S+F, T+S+F k = 50,100	0.799	2147	8	3.79
Selective Search Quality	HSV, Lab, rgI, H, I C+T+S+F, T+S+F, F, S k = 50, 100, 150, 300	0.878	10,108	80	17.15

R-CNN: Regions with CNN features

CNN PRE-TRAINING

- Rectified non-linearity
- Local Response Normalization
- > Overlapping max pooling
- > 5 convolutional layers
- > 2 fully connected layers
- Softmax
- Drop out
- > 224x224x3 input
- ImageNet samples

R-CNN: Regions with CNN features

CNN FINE-TUNING

- Iower learning rate (1/100)
- only pascal image regions
- > 128 patch per image

Positives: overlap >= 0.5, Negative otherwise

LEARNING CLASSIFIER

- Positives: full patches
- Negatives: overlap < 0.3 (very important!)</p>
- Linear SVM per each class
- Standard hard negative mining
- Pre-computed and saved features

TIMING

Training SVM for all classes on a single core takes 1.5 hours

- > Extracting feature for a window on GPU takes 5 ms
- Inference requires a matrix multiplication, for 100K classes it takes 10 secs
- Compared to Google Dean et al. paper (CVPR best paper): 16% mAP in 5 minutes. Here 48% in about 1 minute!

DETECTION RESULTS

VOC 2010 test		aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	
DPM HOG [19]		45.6	49.0	11.0	11.6	27.2	50.5	43.1	23.6	17.2	23.2	
SegDPM [18]		56.4	48.0	24.3	21.8	31.3	51.3	47.3	48.2	16.1	29.4	
UVA [36]		56.2	42.4	15.3	12.6	21.8	49.3	36.8	46.1	12.9	32.1	
ours (R-CNN FT	fc ₇)	65.4	56.5	45.1	28.5	24.0	50.1	49.1	58.3	20.6	38.5	
	table	dog	hors	e mh	ike n	arcon	nlant	cheen	sofa	train	ty	mΔT
	·	uog	11015		inc p		plant	sheep	5014	uam	ιv	IIIAI
	10.7	20.5	42.5	5 44	1.5	41.3	8.7	29.0	18.7	40.0	34.5	29.6
Pascal 2010	10.7 19.0	20.5 37.5	42.5 44.1	5 44 5 51	1.5 	41.3 44.4	8.7 12.6	29.0 32.1	18.7 28.8	40.0 48.9	34.5 39.1	29.6 36.6
Pascal 2010	10.7 19.0 30.0	20.5 37.5 36.5	42.5 44.1 43.5	5 44 5 51 5 52	1.5 5 2.9	41.3 44.4 32.9	8.7 12.6 15.3	29.0 32.1 41.1	18.7 28.8 31.8	40.0 48.9 47.0	34.5 39.1 44.8	29.6 36.6 35.1

 UVA uses the same region proposals with large combined descriptors and HIK SVM

- 10 million held-out regions
- sort by the activation response
- potentially shows modes and invariances
- max pool layer #5 (6x6x256=9216D)

I-Cat (positive SVM weight) 2-Cat (negative SVM weight) 3-Sheep (Positive SVM Weight)

> 4- Person (positive SVM weight) 5,6- Some generic unit (diagonal bars, red blobs)

ABLATION STUDY

- With and without fine tuning on different layers
- Pool 5 (only 6% of all parameters, out of ~60 million parmeters)
- ► No Color: (grayscale pascal input): 43.4% → 40.1% mAP

VOC 2007 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
R-CNN pool5	49.3	58.0	29.7	22.2	20.6	47.7	56.8	43.6	16.0	39.7	37.7	39.6	49.6	55.6	37.5	20.6	40.5	37.4	47.8	51.3	40.1
R-CNN fc6	56.1	58.8	34.4	29.6	22.6	50.4	58.0	52.5	18.3	40.1	41.3	46.8	49.5	53.5	39.7	23.0	46.4	36.4	50.8	59.0	43.4
R-CNN fc7	53.1	58.9	35.4	29.6	22.3	50.0	57.7	52.4	19.1	43.5	40.8	43.6	47.6	54.0	39.1	23.0	42.3	33.6	51.4	55.2	42.6
R-CNN FT pool5	55.6	57.5	31.5	23.1	23.2	46.3	59.0	49.2	16.5	43.1	37.8	39.7	51.5	55.4	40.4	23.9	46.3	37.9	49.7	54.1	42.1
R-CNN FT fc6	61.8	62.0	38.8	35.7	29.4	52.5	61.9	53.9	22.6	49.7	40.5	48.8	49.9	57.3	44.5	28.5	50.4	40.2	54.3	61.2	47.2
R-CNN FT fc7	60.3	62.5	41.4	37.9	29.0	52.6	61.6	56.3	24.9	52.3	41.9	48.1	54.3	57.0	45.0	26.9	51.8	38.1	56.6	62.2	48.0
DPM HOG [19]	33.2	60.3	10.2	16.1	27.3	54.3	58.2	23.0	20.0	24.1	26.7	12.7	58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
DPM ST [29]	23.8	58.2	10.5	8.5	27.1	50.4	52.0	7.3	19.2	22.8	18.1	8.0	55.9	44.8	32.4	13.3	15.9	22.8	46.2	44.9	29.1
DPM HSC [32]	32.2	58.3	11.5	16.3	30.6	49.9	54.8	23.5	21.5	27.7	34.0	13.7	58.1	51.6	39.9	12.4	23.5	34.4	47.4	45.2	34.3

DETECTION ERROR ANALYSIS

- Compared to DPM, more of the FPs come from poor localization
- Animals: fine-tuning reduces the confusion with other animals
- Vehicles: fine-tuning reduces the confusion with other animals amongst the high scoring FPs

DETECTION ERROR ANALYSIS

> Sensitivity is the same, but we see improvements, in general, for all of the subsets

SEGMENTATION

- CPMC region proposals
- ► SVR
- Compared to s.o.a. O2P
- ► VOC 2011
- > 3 versions, full, foreground, full+foreground
- Fc6 better than fc7
- > O2P takes 10 hours, CNN takes 1 hour

VOC 2011 test	bg	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
R&P [2]	83.4	46.8	18.9	36.6	31.2	42.7	57.3	47.4	44.1	8.1	39.4	36.1	36.3	49.5	48.3	50.7	26.3	47.2	22.1	42.0	43.2	40.8
O ₂ P [5]	85.4	69.7	22.3	45.2	44.4	46.9	66.7	57.8	56.2	13.5	46.1	32.3	41.2	59.1	55.3	51.0	36.2	50.4	27.8	46.9	44.6	47.6
ours (full+fg R-CNN fc6)	84.2	66.9	23.7	58.3	37.4	55.4	73.3	58.7	56.5	9.7	45.5	29.5	49.3	40.1	57.8	53.9	33.8	60.7	22.7	47.1	41.3	47.9

	full R	-CNN	fg R-	CNN	full+f	g R-CNN
$O_2P[5]$	fc ₆	fc7	fc ₆	fc7	fc ₆	fc7
46.4	43.0	42.5	43.7	42.1	47.9	45.8

LEARNING AND TRANSFERRING MID-LEVEL IMAGE REPRESENTATIONS USING CONVOLUTIONAL NEURAL NETWORKS

Maxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic (INRIA, WILLOW)

APPROACH

- Dense sampling of 500 patches per image instead of segmented regions
- Different positive/negative criteria
- Resampling positives to make the balance
- Classification

$$\operatorname{score}(C_n) = \frac{1}{M} \sum_{i=1}^M y(C_n | P_i)^k,$$

FINAL RESULTS

	plane	bike	bird	boat	btl	bus	car	cat	chair	cow	table	dog	horse	moto	pers	plant	sheep	sofa	train	tv	mAP
INRIA [32]	77.5	63.6	56.1	71.9	33.1	60.6	78.0	58.8	53.5	42.6	54.9	45.8	77.5	64.0	85.9	36.3	44.7	50.6	79.2	53.2	59.4
NUS-PSL [44]	82.5	79.6	64.8	73.4	54.2	75.0	77.5	79.2	46.2	62.7	41.4	74.6	85.0	76.8	91.1	53.9	61.0	67.5	83.6	70.6	70.5
Pre-1000C	88.5	81.5	87.9	82.0	47.5	75.5	90.1	87.2	61.6	75.7	67.3	85.5	83.5	80.0	95.6	60.8	76.8	58.0	90.4	77.9	77.7

Table 1: Per-class results for object classification on the VOC2007 test set (average precision %).

	plane	bike	bird	boat	btl	bus	car	cat	chair	cow	table	dog	horse	moto	pers	plant	sheep	sofa	train	tv	mAP
NUS-PSL [49]	97.3	84.2	80.8	85.3	60.8	89.9	86.8	89.3	75.4	77.8	75.1	83.0	87.5	90.1	95.0	57.8	79.2	73.4	94.5	80.7	82.2
NO PRETRAIN	85.2	75.0	69.4	66.2	48.8	82.1	79.5	79.8	62.4	61.9	49.8	75.9	71.4	82.7	93.1	59.1	69.7	49.3	80.0	76.7	70.9
Pre-1000C	93.5	78.4	87.7	80.9	57.3	85.0	81.6	89.4	66.9	73.8	62.0	89.5	83.2	87.6	95.8	61.4	79.0	54.3	88.0	78.3	78.7
Pre-1000R	93.2	77.9	83.8	80.0	55.8	82.7	79.0	84.3	66.2	71.7	59.5	83.4	81.4	84.8	95.2	59.8	74.9	52.9	83.8	75.7	76.3
Pre-1512	94.6	82.9	88.2	84.1	60.3	89.0	84.4	90.7	72.1	86.8	69.0	92.1	93.4	88.6	96.1	64.3	86.6	62.3	91.1	79.8	82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action	jump	phon	instr	read	bike	horse	run	phot	comp	walk	mAP
STANFORD [1]	75.7	44.8	66.6	44.4	93.2	94.2	87.6	38.4	70.6	75.6	69.1
OXFORD [1]	77.0	50.4	65.3	39.5	94.1	95.9	87. 7	42.7	68.6	74.5	69.6
NO PRETRAIN	43.2	30.6	50.2	25.0	76.8	80.7	75.2	22.2	37.9	55.6	49.7
Pre-1512	73.4	44.8	74.8	43.2	92.1	94.3	83.4	45.7	65.5	66.8	68.4
Pre-1512U	74.8	46.0	75.6	45.3	93.5	95.0	86.5	49.3	66.7	69.5	70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

DETECTION POTENTIAL

DETECTION POTENTIAL

DETECTION POTENTIAL

