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In @ nutshell

Modern deep networks usually achieve low
generalization error

Why?!



In @ nutshell

o Statistical learning theory on low generalization error:
« Properties of the model family and training procedure

« Upper bound on generalization error
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In @ nutshell

« Statistical learning theory on low generalization error:
e Properties of the model family and training procedure
« Upper bound on generalization error

« Regularization
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In @ nutshell

Study to see whether regularization or
theories on the generalization bound explain
the performance of deep networks



In @ nutshell

« Experiments 1: (many) deep architectures can fit the
same dataset they learn with low generalization error,
even with random labels

Statistical learning theories cannot explain the

generalization abilities of deep networks




In @ nutshell

« Experiments 2: Removing all regularization practices of a
modern deep network does not fundamentally cripple
the generalization.

Rregularization is not a necessary factor for low

generalization error in deep networks




In @ nutshell

Thus,

we need to rethink “generalization” when dealing with
deep networks!



Experiments



Experiments

« Datasets:
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Experiments

e Architectures

Modified AlexNet for Cifar10 (smaller)

Inception V4

MLP




Experiments (1)
Randomization Test

Assign random labels to CIFAR10 images
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Experiments (1)
Randomization Test

Same random permutation applied to pixels of CIFAR10 images
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Experiments (1)
Randomization Test

Different random permutation applied to pixels of CIFAR10 images
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Experiments (1)
Randomization Test

Totally Gaussian random pixels with
mean/variance from CIFAR10 images
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Experiments (1)
Randomization Test

Soft Label Corruption
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“neural networks are able to capture the remaining signal in the
data, while at the same time fit the noisy part using brute-force.”



Experiments (1)
some claims

“The effective capacity of neural networks is sufficient for
memorizing the entire data set”




Experiments (1)
some claims

“Even optimization on random labels remains easy. In fact,
trgiMng time increases only by a small constant factor

/{;\:ﬁff compared with training on the true labels.”
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Experiments (1)
some claims
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“Randomizing labels is solely a dath\#ansformation, leaving
all other properties of the learning problem unchanged”



Experiments (1)
some claims

The network learns different labeling of same data
perfectly = shatters the data disregarding its labeling;
Thus,

Rademacher complexity and VC dimension only offer
unusable upper bound on the generalization err)c}r/ J
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Experiments (2)
Turn off regularization
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Implicit vs. explicit regularization

If they are specifically designed for regularization



Experiments (2)
Turn off regularization

model # params  random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 o yes 1000 86,03
no no 100.0 835.75
(fitting random labels) no no 100.0 0.78
Inception w/o no yes 100.0 83.00
BatchNorm 1049402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22
yes no 99.82 79.66
Alexnet 1,387,786 o yes 100.0 77 36
no no 100.0 76.07
(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35
MLP 3x512 1,735,178 o o 100.0 5739
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39
MLP 1x512 1,209,866 o o 100.0 5051
(fitting random labels) no no 99.34 10.61




accuracy

Experiments (2)
Turn off regularization
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(a) Inception on ImageNet (b) Inception on CIFAR10



Experiments (2)
claim

Explicit regularization may improve generalization

performance, but is neither necessary nor by itself
sufficient for controlling generalization error.




Some Theorems



Theorem (1)

expressivity of deep nets

“a very simple two-layer ReLU network with p = 2n+d
parameters can express any labeling of any sample of size n
in d dimensions.”



Theorem (1)

SGD as regularization

“For linear models, initialized at zero, SGD always
converges to a solution with small norm.”

ICLR 2017: ENTROPY-SGD: BIASING GRADIENT DESCENT INTO WIDE VALLEYS
NIPS 1999: SIMPLIFYING NEURAL NETS BY DISCOVERING FLAT MINIMA
ICLR 2017: On large-batch training for deep learning: Generalization gap and sharp minima.



Other works

DEEP NETS DON’T LEARN VIA MEMORIZATION

David Krueger, ..., Aaron Courville

ICLR 2017 workshops

“Deep neural networks (DNNs) do not achieve their performance by
memorizing training data, they learn a simple available hypothesis

that fits the finite data samples.”




Other works

DEEP NETS DON’T LEARN VIA MEMORIZATION

David Krueger, ..., Aaron Courville

ICLR 2017 workshops

“more capacity is needed to fit noise”

performance with random examples as a function of capacity
random inputs random labels
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Other works

DEEP NETS DON’T LEARN VIA MEMORIZATION

David Krueger, ..., Aaron Courville

ICLR 2017 workshops

“time to convergence is longer for random labels, but shorter for random inputs”

decrease in time-to-convergence as a function of capacity
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Other works

DEEP NETS DON’T LEARN VIA MEMORIZATION

David Krueger, ..., Aaron Courville

ICLR 2017 workshops

“DNNs trained on real data examples learn simpler functions than
when trained with noise data, as measured by the sharpness of the
loss function at convergence.”
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Other works

DEEP NETS DON’T LEARN VIA MEMORIZATION

David Krueger, ..., Aaron Courville
ICLR 2017 workshops
“for appropriately tuned explicit regularization, e.g. dropout, we can

degrade DNN training performance on noise datasets without
compromising generalization on real data”
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Other works

A Closer Look at Memorization in Deep Networks

ICML 2017



Other works

On Generalization and Regularization in Deep Learning (explaining related topics on statistical learning theory in
more details)

Behnam Neyshabour et al. Exploring Generalization in Deep Learning (a closer look at different measures
which can explain generalization of deep nets)

Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes (studies the
difference of good and bad local minima by comparing the loss surface)

Deep Learning is Robust to Massive Label Noise (closer look on training from noisy datasets. On MINIST they find
that accuracy of above 90 percent is still attainable even when the dataset has been diluted with 100 noisy examples for each
clean example.)

High-dimensional dynamics of generalization error in neural networks (studies the dynamics of over-
parametrized deep networks when trained using gradient descent)

Naftali Tishby, Opening the Black Box of Deep Neural Networks via Information (the goal of the network is
to optimize the Information Bottleneck (IB) tradeoff between compression and prediction, successively, for each layer)

Behnam Neyshabour et al. In Search Of The Real Inductive Bias : On The Role Of Implicit

Regularization In Deep Learning (directly explaining why one should go beyond the deep network parameter size to
explain complexity control mechanisms of deep nets)



Final word

So, we need to “rethink” generalization when it comes to
deep networks

That probably boils down to

understanding how deep networks prefer simpler solutions

while capable of memorizing more than simple patterns




