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Invariance to Transformations



  

Invariance and Equivariance

● Consider some 
transformation,       
like rotation.

● We would like object 
classification to be 
invariant to rotation.

● We would like object 
detection to be 
equivariant to rotation.



  

The Problem
● Input space: 

● Output space: 

● Consider a transformation t acting on the input 
and output:

● We want to learn a predictor f(x,w) that is  
invariant or equivariant to the transformation t:

X
Y

t=( tX , t Y )∈T
t X : X → X
tY :Y →Y

f (t X x ; w)= f (x ; w) invariance (t y= I )
f (t X x ; w)=tY f (x ; w) equivariance



  

The Problem

● Most of the time we do not have enough 
training data, representing all possible 
transformations.



  

One Approach

● Can generate more training data by 
transforming the original data.

● How many samples should be generated? How 
densely? What samples are relevant?



  

Another Approach

● Could explicitly model and estimate 
transformations as latent variables.

● Learning problem becomes non-convex. 
Inference might be slower.



  

Their Approach

● Generalize  Structured SVM to incorporate 
invariance and equivariance into a convex 
training procedure.

● Removes the need for ad-hoc sampling 
strategies. Only generates the virtual samples 
that are necessary.

● Inference does not require the estimate of latent 
variables.



  

Toy Example

X=R2

Y={r , g , b}

Assuming rotation invariance

Gradually enforce invariance to larger rotations →



  

Standard Structured SVM

● Let X and Y be the input and output and let Ω
X
 

and Ω
Y
 be their sample spaces. These can be  

ANY spaces, not just integers or real vector 
spaces.

● A feature function Ψ is used to map a pair from 
these complicated spaces to something we can 
compute with:

Ψ :ΩX×ΩY →R
d



  

Standard Structured SVM

● A classifier described by a vector ω predicts a 
class by solving

f (x ;ω)=argmax
y

ω⋅Ψ(x , y )

● This imposes a restriction on Ψ



  

Standard Structured SVM

During training the STRUCTURE of the output 
space is taking into account by defining a loss 
function

Δ : ΩY×ΩY→ R

Δ( y , y p)⩾0
Δ( y , y p)=0 iff y= y p

which quantifies the loss of predicting y
p 
when 

the true output is y. It should fulfill

Δ should thus reflect the quantity which 
measures how well the classifier performs.



  

Standard Structured SVM

● Given a training set (x
1
,y

1
)...(x

N
,y

N
) of ”only 

positives” and a regularization constant C a 
classifier ω is trained by solving the convex 
optimization problem:

min
ω

∥ω∥
2
+C∑

n

max
y

(Δ( yn , y)+ω⋅Ψ(xn , y )−ω⋅Ψ(xn , yn))

Search for difficult classifications



  

Their Generalization of S-SVM

min
ω

∥ω∥
2
+C∑

n

max
y

(Δ( yn , y) + ω⋅Ψ(xn , y) − ω⋅Ψ(xn , yn))

min
ω

∥ω∥
2
+C∑

n

max
y , t

(Δ(t , yn , y)+ω⋅Ψ(tX xn , y)−ω⋅Ψ(tX xn ,t Y yn))

Transformation equivariant generalization:

Standard S-SVM:

When looking for the difficult classifications 
we search over all possible equivariant 
variations of input and output.



  

Training

● The problem can be optimized using standard 
S-SVM solvers.

● These solvers handle the large number of 
constraints by generating the necessary ones 
on the fly.

● This corresponds to generating relevant virtual 
training data.



  

Advantages

● Principled approach to the generation of 
relevant virtual training data.

● Training is convex and no more expensive than 
standard Structured SVM and latent SVM.

● Inference is faster than latent SVM, since the 
latent variable, corresponding to the 
transformation, is not estimated.



  

Experiment 1
Rotation Equivariant Object Detection

● Let Φ(x,y) be the HOG-descriptor of a block 
of 7x7 HOG-cells at position y in the image x.

● A linear HOG model is not sufficient to 
capture arbitrary object rotations.

● They use something they call “slot kernel”.

● The cluster the HOG-space into Q=18 
clusters.

● The total feature function is the outer product:

Ψ(x , y )=ϕ( x , y)eq (ϕ(x , y))
T



  

Experiment 1 - Results

Aerial car detection. 
30 images having a 
total of 1000 cars with 
different rotations. 
Unclear division of 
training and test data.



  

Motion as Natural Transformations

● Consider pedestrian detection in video.

● Training data consists of many sequences of moving 
persons.

● The frames from the same sequence are highly 
correlated.

● This breaks the assumption of i.i.d. samples, which is 
fundamental for most machine learning methods.



  

Motion as Natural Transformations

● Consider a sequence as a single training 
sample, and the different frames in it as 
transformations of it.



  

Experiment 2
Pedestrian Classification

● DaimlerChrysler pedestrian classification 
benchmark. The training data consists of 800 
positive images and 5000 negative images, and 
two test sets of the same size.

● Consider mirroring and translation by 1 pixel as 
transformations.

● Also consider motion as natural 
transformations.

● They derive and compare an invariant binary 
SVM and an invariant rank SVM.



  

Experiment 2



  

Conclusion

● The authors propose the use of their algorithm 
instead of ad-hoc sampling strategies or latent 
variables to incorporate invariance and 
equivariance.
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