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Loss landscape

Goal: study properties of the loss surface and optimisation
I theoretical studies

I given strong assumptions on the network architecture or
data

I characterise the minima found by gradient descent
I hypothesis: sgd brings optimisations in regions with good

minima (global under strong assumptions)
I empirical studies

I study the geometry of the loss landscape to achieve better
optimisers

I attempt to drive optimisation towards wide basins of the
error surface
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Loss landscape

Not covered in this presentation:
I “Flat minima”. Hochreiter, and Schmidhuber. 1997.
I “The loss surface of multilayer networks”. Choromanska,

Henaff, Mathieu, Ben Arous, LeCun. 2015.
I “Entropy-SGD: biasing gradient descent into wide valleys”.

Chaudhari et al. 2016.
I “On large-batch training for deep learning: generalisation

and sharp minima”. Keskar et al, 2016.
I “The loss surface of deep and wide neural networks”.

Nguyen, Q. and Hein, M. 2017.
I “Theoretical insights into the optimisation landscape of

over-parameterised shallow neural networks”.
Soltanolkotabi, Javanmard and Lee. 2018.
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Loss landscape
Theoretical studies

Not covered in this presentation: “The loss surface of deep and
wide neural networks”. Nguyen, Q. and Hein, M. 2017.

I square activation, square loss, rank of weight matrices
maximal in each critical point

I every critical point is a global minimum
“Theoretical insights into the optimisation landscape of
over-parameterised shallow neural networks”. Soltanolkotabi,
Javanmard and Lee. 2018.

I square loss, single layer network, synthetic data
I all local minima are global, independent of labelling of data



5/ 55

Loss landscape
Empirical studies

Not covered in this presentation:
I “Entropy-SGD: biasing gradient descent into wide valleys”.

Chaudhari et al. 2016.
I “On large-batch training for deep learning: generalisation

and sharp minima”. Keskar et al, 2016.
Based on: “Flat minima”. Hochreiter, and Schmidhuber. 1997.

I in a flat minimum, the loss varies slowly in a relatively lare
neighbourhood.
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Flat minima

Study the loss function in a neighbourhood of a solution.
Conjecture:

I “flat” minima are robust to perturbations in the parameter
space and numerical errors (Hochreiter and Schmidhuber,
1997).

I information theory: low-precision weights encode less
information from the training data

I hence they favour a “simpler” model and tend to generalise
well in practice
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Flat minima

Motivation:
I (Chaudhari, 2016) intuitive: wide valleys of the loss contain

close to optimal minima
I (Keskar, 2016) small batch SGD finds wider basins,

observed to generalise better than wider basins found by
large batch methods

I (Hinton and Vancamp, 1993) bayesian argument.
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Sharp minima can generalise

Bayesian argument is non-parametric, while the definitions of
flatness proposed in the literature depend on the
parametrisation of the weight space

Any measure expressing how the weights should change, for a
given unit change in the model behaviour, would depend on the
highly non-linear geometry induced on the parameter space by
the network architecture.
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Sharp minima can generalise

Outline of the presentation:
I definitions of flatness
I theoretical setting
I methodology
I theoretical results
I connection to empirical studies
I open questions
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Sharp minima can generalise

Interesting insights:
I geometry induced by ReLU on the parameter space
I how to control eigenvalues without altering the behaviour

of the model
I for a given minimum with good generalisation power, there

exist another minimum with the same generalisation
performance but arbitrary measure of flatness.
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Definitions of flatness

All definitions are given in a neighbourhood of a minimum
θ ∈ Θ.

I ε-flatness (Hochreiter and Schmidhuber. 1997)
I ε-sharpness (Keskar et al. 2017)
I Second-order measures (Chaudhari et al. 2017)

I Eigenvalues of the Hessian (Chaudhari et al. 2017 and
Keskar et al. 2017)

I spectral norm and trace of the Hessian
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Definitions of flatness
ε-flatness

For ε > 0, flatness is defined as the largest connected region in
the param space for which the error is approximately constant

(up to a factor of ε).
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Definitions of flatness
ε-sharpness

For ε > 0, B2(ε, θ),
maxθ′∈B2(ε,θ)

(L(θ′)−L(θ))
1+L(θ)
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Definitions of flatness
Hessian based measures

I characterise flatness with the eigenvalues of the hessian at
θ

I spectral radius (∝ largest eigenvalue)
I trace norm (∝ sum of eigenvalues)
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Setting

Framework:
I study deep rectifier networks
I supervised learning setting
I scalar output (scalar loss)
I network learns a scalar function fθ : X → R, parametrised

by θ ∈ Θ
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Setting

I loss assumed non-negative
I with continuous second order partial derivatives (in a

neigh. of a minimum θ).
I depth-K rectifier network with linear output layer formalised

as:
y = φrelu(φrelu(· · ·φrelu(x · θ1) · · · ) · θK−1)θK
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Methodology

I Loss L(fθ(x)) as a function of the weights only, L(θ).
I Symmetries induced by non-negative homogeneity of

ReLU:
∀α > 0, φrelu(α · x) = α · φrelu(x)

e.g. for a 2-layer network

φrelu(θ1 · x) · θ2 = φrelu(x · (αθ1)) · (α−1θ2)

I parameter space: Θ : (θ1, θ2) = (θ1
1, . . . , θ

1
n1
, θ2

1, . . . , θ
2
n2

)
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Methodology

Observational equivalence:
I (θ, θ′) ∈ Θ2 are observationally equivalent if

fθ(x) = fθ′(x) ∀x ∈ X

I w.r.t ReLU (θ1, θ2) and (αθ1, α
−1θ2) are equivalent.
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Methodology

Parameter transformations:
I Tα : (θ1, θ2) 7→ (αθ1, α

−1θ2)

I produce obs. equivalent parameters
I the behaviour of the prediction function is not altered

(same output of the network)
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Navigating the parameter space

Same loss value, network architecture and input x
=⇒ same generalisation error
6=⇒ same flatness

The definitions depend on the parameter θ
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Results

Strategy:
I exploit symmetries induced on the parameter space by the

architecture
I equivalence of norms for finite spaces
I control the proposed measures and make them diverge

Move along level curves of the loss function in Θ to control the
flatness around a minimum
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ε-flatness

Proof provided ∀ε > 0, for a 2-dimensional NN

y = φrelu(x · θ1) · θ2

sketch of the proof:
I consider the largest connected region C′ of Θ containing θ,

where the loss remains approx. constant
I show that C′ can be lower-bounded by one with infinite

volume
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ε-flatness

Every minimum is contained in a region of infinite volume
with approximately constant loss.
Hence, all minima are equally ε-flat.
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ε-sharpness

Proof provided ∀ε > 0, for a 2-dimensional NN.
I for each minimum θ it is possible to find another minimum
θ′ with high ε-sharpness

I for θ′, the maximum loss in B2(ε, θ′) is as high as that of the
degenerate model y ≡ 0, which is assumed to be high.
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Second order measures
Preliminary results

The loss and hessian depend on the parameter transformation
Tα.

by differentiating both sides of L(θ1, θ2) = L(αθ1, α
−1θ2)

I (∇L)(αθ1, α
−1θ2) = (∇L)(θ1, θ2)

(
α−1In1 0

0 αIn2

)
I (∇2L)(αθ1, α

−1θ2) =(
α−1In1 0

0 αIn2

)
(∇2L)(θ1, θ2)

(
α−1In1 0

0 αIn2

)
(1)
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Second order measures

Given a minimum with non
degenerate Hessian, the
transformations allow to find an
obs. equivalent minimum with
arbitrarily large spectral norm
(and thus, trace norm and
spectral radius).



27/ 55

Full eigenspectrum
Wide valleys

To move in the parameter space along multiple directions while
exploiting the geometry induced by ReLU:

I depth-K rectifier networks are considered
I for αk > 0 : Tα : (θ1, . . . , θK ) 7→ (α1θ1, . . . , αK θK )

so that
K∏

k=1
αK = 1.
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Full eigenspectrum

I then, eq. 1 becomes

(∇2L)(Tα(θ)) = Dα(∇2L)(θ)Dα

I where Dα is the inverse of the Jacobian J(Tα(θ)):

Dα =


α−1

1 In1 0 . . . 0
0 α−1

2 In2 . . . 0
...

...
. . .

...
0 0 . . . α−1

K InK
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Full eigenspectrum

I If the hessian matrix in a minimum θ in the full space has
rank r

I the authors provide a sufficient condition to make r − nK
eigenvalues arbitrarily large.

I i.e. they can control all but nk eigenvalues (k ≤ K is
chosen arbitrarily).

I let n :=
∑
k

nk , no control over the n − r eigenvalues that

are zero.
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Hessian matrix in practice

Summary:
I Assuming a positive, semidefinite Hessian, up to (r − nk )

eigenvalues can be made arbitrarily large.
I How does the Hessian at a minimum look in practice?
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Hessian matrix in practice

“Empirical analysis of the Hessian of over-parametrised
neural networks”. Sagun, L. and Evci, U. and Güney, V. and
Dauphin, Y. and Bottou, L. ICLR 2018 Workshop paper.

I Empirical study of the Hessian matrix before and after
optimisation.

I Interesting case: depth-2 fully connected rectifier network
with scalar output.
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Hessian matrix in practice

Two hidden-layer ReLU network (≈ 5000 params). Eigenvalues
before (random initial point) and after (minimum?) training.
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Hessian matrix in practice
Data vs eigenvalues

Two hidden-layer ReLU network (≈ 4− 5000 params), k
outputs, synthetic data (k clusters).
The number of large eigenvalues (above threshold)
matches k .
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Hessian matrix in practice
Number of parameters vs eigenvalues

Two hidden-layer ReLU network trained on subset of
MNIST.
Top 120 eigenvalues. Almost no change in size and
number of eigenvalues.
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Hessian matrix in practice
Batch size vs eigenvalues

CNN with ReLU and maxpooling + 2 FC layers, trained on
subset of MNIST.
Batch size of 10 vs 512.
Top 40 eigenvalues. Large batch produces larger positive
eigenvalues.
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Hessian matrix in practice
Negative eigenvalues

Two hidden-layer ReLU network trained on subset of
MNIST.
Negative eigenvalues at the end of training have smaller
magnitude than the positive ones.
x-axis: percentage of small eigenvalues.
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Hessian matrix in practice
Negative eigenvalues

CNN with ReLU and maxpooling + 2 FC layers, trained on
subset of MNIST.
Batch size of 10 vs 512.
x-axis: percentage of small eigenvalues.
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Open questions

I What is the geometry induced on the parameter space the
the size of each layer?

I How does overparametrisation of a hidden layer affect the
Hessian at a minimum?

I Does the gradient always find a minimiser?
I Is ε-sharpness a well defined measure when averaged

over random subspaces of the parameter space (Keskar et
al. 2017)?
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Sharp minima can generalize for deep
networks

Questions?
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ε-flatness
proof

One-layer rectifier network:

y = φrelu(x · θ1) · θ2

If θ ∈ Θ minimum s.t. θ1 6= 0, θ2 6= 0
∀ε > 0, C(L, θ, ε) has infinite volume.

Note:
I Tα : (θ1, θ2) 7→ (αθ1, α

−1θ2) has Jacobian determinant
αn1−n2 .

I Tα ◦ Tβ = Tαβ.
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ε-flatness
proof

Case 1: n1 6= n2

I goal: show that ∀ε > 0 there exists a region of
approximately constant loss with infinite volume.

1. ∃r > 0 s.t . B∞(ε, θ) ⊆ C(L, θ, ε).
In fact, L continuous =⇒ L−1(B2(ε,L(θ)) is open in Θ, so
r > 0.

2. since θ1 6= 0 and θ2 6= 0, B∞(ε, θ) has volume
v = 2rn1+n2 > 0.

3. the volume of Tα(B∞(ε, θ)) is vαn1−n2 .
4. hence, by picking α arbitrarily large, the volume of C(L, θ, ε)

can be controlled.
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ε-flatness
proof

Case 2: n1 = n2

I goal: show that ∀ε > 0 there exists a region of
approximately constant loss with infinite volume.

1. let C′ =
⋃
α′>0 Tα′(B∞(r , θ))

Tα′(B∞(r , θ)) has volume v , ∀α′ > 0
2. C′ is a connected region with approximately constant

volume.

Goal: lowerbound C′ with a region of infinite volume.
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ε-flatness
proof

Case 2: n1 = n2

I goal: lowerbound C′ with a region of infinite volume.
3. B∞(r , θ) = B∞(r , θ1)× B∞(r , θ2).
4. then Tα(B∞(r , θ)) = B∞(αr , αθ1)× B∞(α−1r , α−1θ2) for

α = 2 ||θ1||∞+r
||θ2||∞−r

5. and Tα(B∞(r , θ)) ∩ B∞(r , θ) = 0.
6. similarly {T k

α(B∞(r , θ))}k≥0 are disjoint sets, each of
volume v

7. then, volume C′ > v + v + v + . . ..
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ε-sharpness
proof

One-layer rectifier network:

y = φrelu(x · θ1) · θ2

If θ ∈ Θ minimum s.t. θ1 6= 0, θ2 6= 0
∀ε > 0, ∃θ′ ∈ Θ with higher ε-sharpness than θ.

Note:
I For (θ1, θ2) = (0, θ2) the prediction function degenerates to

y ≡ 0, ∀x ∈ X .
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ε-sharpness
proof

I goal: show that ∀ε > 0, ∃θ′ ∈ Θ s.t.

{(θ1, θ2) ∈ Θ, θ1 = 0} ∩ B2(ε, θ′) 6= ∅

1. define α = ε
||θ1||2

2. let Tα(θ1, θ2) = (ε θ1
||θ1||2 , α

−1θ2).
3. since ||θ1||2 ≤ ||θ||2 then (0, α−1θ2) ∈ B2(ε,Tα(θ)).



46/ 55

Spectral norm
proof

One-layer rectifier network:

y = φrelu(x · θ1) · θ2

If θ ∈ Θ minimum s.t. (∇2L)(θ) 6= 0
∀M > 0,∃α > 0 s.t. ||(∇2L)(Tα(θ))||2 > M.



47/ 55

Spectral norm
proof

I goal: lower bound ||(∇2(L)(Tα(θ))||2 with arbitrary M > 0
1. if hessian is non-zero, since θ is minimum, there exists a

positive eigenvalue γ > 0, e.g. for θ1.
2. hence, the Frobenius norm ||(∇2(L)(Tα(θ))||F is at least

α−2γ.
3. by the equivalence of norms in finite spaces, ∃r > 0 s.t.

r ||A||F ≤ ||A||2 for any symmetric matrix A.

4. by picking α <
√

rγ
M , the thesis follows.
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Hessian in many dimensions

K -layer rectifier network:

y = φrelu(φrelu(. . . φrelu(x · θ1) . . .)θK−1)θK

If θ = (θ1, . . . , θK ) ∈ Θ minimum s.t.
hessian in θ has rank r
∀M > 0,∃α > 0 so that r − min

k≤K
(nk ) eigenvalues are

greater than M.

Note:
I (∇2L)(Tα(θ)) = Dα(∇2L)(θ)Dα
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Hessian in many dimensions

I goal: sort eigenvalues of the hessian and lower bound
r − min

k≤K
nk of them with an arbitrary M > 0

1. the hessian of L is assumed to be positive semidefinite and
symmetric in a neighbourhood of θ.

I idea: compute the singular values of Dα(∇2L)(θ)Dα and
apply Horn’s inequalities

I Horn’s inequalities: given the singular values of A and B,
relationship on the singular values of AB



50/ 55

Hessian in many dimensions

I goal: sort eigenvalues of the hessian and lower bound
r − min

k≤K
nk of them with an arbitrary M > 0

2. To apply the inequalities, we work on the singular values√
(∇2L)(θ)D2

α, which are the square root of the eigenvalues
of the Dα(∇2L)(θ)Dα

3. for k ≤ K , αk is chosen as: αk = β−1 and αK = βK−1.
4. Horn’s inequalities: ∀i ≤ n, j ≤ (n − nK ) :

λi+j−n((∇2L)(θ)D2
α) ≥ λi ((∇2L)(θ))β2, for any β > 0
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Hessian in many dimensions

I goal: sort eigenvalues of the hessian and lower bound
r − min

k≤K
nk of them with an arbitrary M > 0

5. for β >
√

M
λr (∇2L)(θ)

6. ∀i ≤ (r − nK )

λi ((∇2L)(θ)D2
α) ≥ λi+nk ((∇2L)(θ))β2 ≥ λr ((∇2L)(θ))β2 > M
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Weight normalisation

Weight normalisation allows to define isotropic rescalings:
I non-zero weight v
I normalised as w← s v

||v||2 , s scale
I since w is invariant to rescaling of v
I define Tα = v 7→ αv , α 6= 0.



53/ 55

Weight normalisation
Implications

I every minimum has infinite volume ε-flatness
I every minimum is obs. equivalent to an infinitely sharp

minimum and to an infinitely flat minimum when
considering the eigenvalues of the hessian

I every minimum is obs. equivalent to a minimum with
arbitrarily low full-space ε-sharpness and a minimum with
high full-space ε-sharpness.
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