Meta-Learning Probabilistic Inference for Prediction

J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, R. E. Turner

ICLR 2019

presented by: Patrik Barkman

Few-shot learning

Meta-Learning

(Learning to learn)

Meta-Learning Probabilistic Inference for Prediction

- General probabilistic framework for few-shot learning
- Neural network based implementation of the framework
- New state-of-the art in few-shot learning benchmarks

Outline

Background

- Probabilistic framework
- Implementation

Experiments

Summary

- Siamese networks (2015)
- Matching networks (2016)
- Prototypical networks (2017)
- Model-agnostic meta-learning (2017)
- Meta-Learner LSTM (2017)

Siamese networks (2015)

Matching networks (2016)

Prototypical networks (2017)

 Model-agnostic meta-learning (2017)

▶ Meta-Learner LSTM (2017)

Koch, G. et. al. Siamese Neural Networks for One-shot Image Recognition. ICML (2015)

Siamese networks (2015)

Matching networks (2016)

 $P(\hat{y}|\hat{x},S) = \sum_{i=1}^{k} a(\hat{x},x_i,S)y_i$

Prototypical networks (2017)

- Model-agnostic meta-learning (2017)
- Meta-Learner LSTM (2017)

Vinyals, O., et al. Matching Networks for One Shot Learning. NIPS (2016)

Siamese networks (2015)

Matching networks (2016)

Prototypical networks (2017)

 Model-agnostic meta-learning (2017)

▶ Meta-Learner LSTM (2017)

Snell, J., et al. Prototypical Networks for Few-shot Learning. NIPS (2017)

Siamese networks (2015)

Matching networks (2016)

Prototypical networks (2017)

 Model-agnostic meta-learning (2017)

Meta-Learner LSTM (2017)

Finn, C. et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML (2017)

Siamese networks (2015)

Matching networks (2016)

Prototypical networks (2017)

- Model-agnostic meta-learning (2017)
- Meta-Learner LSTM (2017)

Ravi, S., & Larochelle, H. Optimization as a Model for Few-Shot Learning. ICLR (2017)

Probabilistic framework

Meta-Learning Probabilistic Inference for Predicition (ML-PIP)

Probabilistic multi-task learning

$$p(\tilde{y}^{(t)}|\tilde{x}^{(t)},\theta) = \int p(\tilde{y}^{(t)}|\tilde{x}^{(t)},\psi^{(t)},\theta)p(\psi^{(t)}|\tilde{x},D^{(t)},\theta) \, \mathrm{d}\psi^{(t)}$$

Approximating the predictive distribution

$$p(\tilde{y}^{(t)}|\tilde{x}^{(t)}, D^{(t)}, \theta) = \int p(\tilde{y}^{(t)}|\tilde{x}^{(t)}, \psi^{(t)}, \theta) p(\psi^{(t)}|\tilde{x}, D^{(t)}, \theta) \, \mathrm{d}\psi^{(t)}$$

$$p(\psi^{(t)}|\tilde{x}^{(t)}, D^{(t)}, \theta) \approx q_{\phi}(\psi^{(t)}|D^{(t)}, \theta)$$

e.g. $\psi^{(t)} \sim \mathcal{N}(\mu, \sigma), \{\mu, \sigma\} = f(D^{(t)}; \phi)$

2. Compute approximate predictive distribution

$$q_{\phi}(ilde{y}^{(t)}| ilde{x}^{(t)}, \mathcal{D}^{(t)}, heta) = \int p(ilde{y}^{(t)}| ilde{x}^{(t)}, \psi^{(t)}, heta) q_{\phi}(\psi^{(t)}|\mathcal{D}^{(t)}, heta) \, \mathrm{d}\psi^{(t)}$$

e.g. using Monte Carlo sampling

Meta-learning the predictive distribution

$$q_{\phi}(\tilde{y}^{(t)}|\tilde{x}^{(t)}, D^{(t)}, \theta) = \int p(\tilde{y}^{(t)}|\tilde{x}^{(t)}, \psi^{(t)}, \theta) q_{\phi}(\psi^{(t)}|D^{(t)}, \theta) \, \mathrm{d}\psi^{(t)}$$

Consider tasks as samples from some distribution

$$D, \tilde{x}, \tilde{y} \sim p(D, \tilde{x}, \tilde{y})$$

Minimize expected divergence

$$\min_{\phi,\theta} \mathbb{E}_{p(D,\tilde{x})} \bigg[\mathsf{KL} \big[p(\tilde{y} | \tilde{x}, D, \theta) \big\| q_{\phi}(\tilde{y} | \tilde{x}, D, \theta) \big] \bigg]$$

Meta-learning the predictive distribution

$$\mathcal{L}(heta,\phi) = \mathbb{E}_{oldsymbol{p}(D, ilde{x}, ilde{y})} \left[\log \int oldsymbol{p}(ilde{y}| ilde{x},\psi, heta) oldsymbol{q}_{\phi}(\psi|D, heta) \; \mathsf{d}\psi
ight]$$

$$\hat{\mathcal{L}}(\theta,\phi) = \frac{1}{MT} \sum_{m,t} \log \frac{1}{L} \sum_{l} p(\tilde{y}_{m}^{(t)} | \tilde{x}_{m}^{(t)}, \psi_{l}^{(t)}, \theta)$$
$$\psi_{l}^{(t)} \sim q_{\phi}(\psi | D^{(t)}, \theta)$$
$$D^{(t)}, \tilde{x}_{m}^{(t)}, \tilde{y}_{m}^{(t)} \sim p(D^{(t)}, \tilde{x}_{m}^{(t)}, \tilde{y}_{m}^{(t)})$$

Inference

Given a new dataset D and test input x

1. Sample L task-specific parameters

$$\psi_I \sim q_{\phi}(\psi_I | D, \theta)$$

2. Estimate predictive distribution

$$\hat{q}_{\phi}(y|x,D, heta) = rac{1}{L}\sum_{l=1}^{L} p(y|x,\psi_l, heta)$$

Unification

- Gradient-based Meta-Learning (MAML, Meta-Learner LSTM)
- Metric-based few-shot learning (Prototypical networks, Matching networks)
- Amortized MAP inference (hypernetworks)
- Conditional models trained via maximum likelihood (neural processes)

Implementation

Versatile Amortized Inference (VERSA)

A versatile system

Inference system that is rapid and flexible

amortization network \longrightarrow rapid

flexibility?

Datasets as input (i.e. unordered sets as input)

Different types of tasks (e.g. number of classes)

High dimensional output space (i.e. many parameters)

permutation-invariant instance-pooling

$$f(\{x_1,\ldots,x_n\})\approx g(h(x_1),\ldots,h(x_n))$$

Qi, C. R. et. al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR (2017) Zaheer, M. et. al. Deep Sets. NIPS (2017)

Few-shot Classification

N-way, k-shot learning

discriminate between N classes given k examples of each class.

Few-shot Classification

N-way, *k*-shot learning

discriminate between *N* classes given *k* examples of each class.

What if N and k varies between tasks?

Few-shot Classification

Let $\psi \in \mathbb{R}^{d \times C}$ be the parameters of a linear classifier.

Assume context independency

$$q_{\phi}(\psi|D,\theta) \approx \prod_{c=1}^{C} q_{\phi}(\psi_{c}|\{h_{\theta}(x_{n}^{c})\}_{n=1}^{k_{c}},\theta)$$

Theoretical support from density estimation and empirically justified for h_{θ} with sufficient capacity

Experiments

Toy-data Image classification Image reconstruction Toy-data

Ground truth model

$$p(\theta) = \delta(\theta), \quad p(\psi^{(t)}|\theta) = \mathcal{N}(\psi^{(t)};\theta,\sigma_{\psi}^{2})$$
$$(y_{n}^{(t)}|\psi^{(t)}) = \mathcal{N}(y_{n}^{(t)};\psi^{(t)},\sigma_{y}^{2})$$

Toy-data

Ground truth model

$$p(\theta) = \delta(\theta), \quad p(\psi^{(t)}|\theta) = \mathcal{N}(\psi^{(t)};\theta,\sigma_{\psi}^{2})$$
$$(y_{n}^{(t)}|\psi^{(t)}) = \mathcal{N}(y_{n}^{(t)};\psi^{(t)},\sigma_{y}^{2})$$

$$\implies p(\psi^{(t)}|D^{(t)},\sigma_y^2) = \mathcal{N}(\psi^{(t)};\hat{\mu},\hat{\sigma}^2)$$
$$\hat{\mu} = \hat{\sigma}^2 \left(\frac{1}{\sigma_y^2} \sum_{n=1}^N y_n^{(t)} + \frac{\theta}{\sigma_\psi^2}\right) \qquad \frac{1}{\hat{\sigma}^2} = \frac{1}{\sigma_\psi^2} + \frac{N}{\sigma_y^2}$$

Amortization model

$$q_{\phi}(\psi|D^{(t)}) = \mathcal{N}(\psi; \mu_q^{(t)}, \sigma_q^{(t)^2})$$
$$\mu_q^{(t)} = w_{\mu} \sum_{n=1}^{N} y_n^{(t)} + b_{\mu}, \quad \sigma_q^{(t)^2} = \exp\left(w_{\sigma} \sum_{n=1}^{N} y_n^{(t)} + b_{\sigma}\right)$$

Toy-data

T = 250 tasks, $k \in \{5, 10\}$ shots, M = 15 test observations.

Omniglot

- 1623 characters
- 50 languages
- > 20 instances for each character

miniImageNet

- 60 000 images
- 100 classes
- 600 instances for each class

New state-of-the-art

20-way, 1-shot Omniglot (97.66%, ▲ 0.02%) 5-way 5-shot minilmageNet (67.37%, ▲ 1.38%)

On par with state-of-the-art

5-way, 1-shot Omniglot (99.70%) 5-way, 5-shot Omniglot (99.75%) 5-way 1-shot minilmageNet (53.40%)

Worse than state-of-the-art

20-way 5-shot Omniglot (98.77%, ▼ 0.59%)

Performance is robust to variations in "way" and "shots"

ML-PIP

$$\mathcal{L}_{ ext{ML-PIP}} = rac{1}{T}\sum_{t=1}^T rac{1}{M_t}\sum_{m=1}^{M_t} \log rac{1}{L}\sum_l p(ilde{y}_m^{(t)}| ilde{ extbf{x}}_m^{(t)}, heta)$$

Variational inference

$$\mathcal{L}_{\mathsf{VI}} = \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{(x,y) \in D^{(t)}} \left(\frac{1}{L} \sum_{l=1}^{L} \log p(y|x, \psi^{(l)}, \theta) \right) - \mathsf{KL} \left[q_{\phi}(\psi|D^{(t)}, \theta) \| p(\psi|\theta) \right] \right)$$

	Omniglot				miniImageNet	
	5-way NLL		20-way NLL		5-way NLL	
Method	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
Amortized VI	0.179 ± 0.009	0.137 ± 0.004	0.456 ± 0.010	0.253 ± 0.004	1.328 ± 0.024	1.165 ± 0.010
Non-Amortized VI	0.144 ± 0.005	0.025 ± 0.001	0.393 ± 0.005	0.078 ± 0.002		
VERSA	0.010 ± 0.005	0.007 ± 0.003	0.079 ± 0.009	0.031 ± 0.004	1.183 ± 0.023	0.859 ± 0.015

Given an image of an object, produce an image of the object in any rotation

ShapeNetCore v2

- 12 object categories
- ▶ 37 108 objects
- 36 views for each object

Model	MSE	SSIM
C-VAE 1-shot	0.0269	0.5705
VERSA 1-shot	0.0108	0.7893
VERSA 5-shot	0.0069	0.8483

$$\label{eq:MSE} \begin{split} \mathsf{MSE} &= \mathsf{mean} \ \mathsf{square} \ \mathsf{error} \\ \mathsf{SSIM} &= \mathsf{structural} \ \mathsf{similarity} \ \mathsf{index} \end{split}$$

Summary

- Unifying probabilistic framework
- Flexible and rapid implementation
- Tested on
 - Image classification
 - Image reconstruction
- New state-of-the-art