Improved Fusion of Visual and Language Representations by Dense Symmetric Co-Attention for Visual Question Answering

Duy-Kien Nguyen, Takayuki Okatani

CVPR 2018

Reading group

Presented by: Sebastian Bujwid

• Authors tackle the problem of Visual Question Answering (VQA)

- Requires interaction between vision and language
- Possible to evaluate small number of possible correct answers

• Authors tackle the problem of Visual Question Answering (VQA)

- Requires interaction between vision and language
- Possible to evaluate small number of possible correct answers
- A model for dense, bi-directional interaction between two modalities (text, vision)
 - Model: *dense co-attention network* (DCN)

• Authors tackle the problem of Visual Question Answering (VQA)

- Requires interaction between vision and language
- Possible to evaluate small number of possible correct answers
- A model for dense, bi-directional interaction between two modalities (text, vision)
 - Model: *dense co-attention network* (DCN)
- State-of-the-art results on VQA and VQA 2.0 datasets

Background

Soft attention mechanism

- $q \in \mathbb{R}^{d_q}$ query
- $K \in \mathbb{R}^{L imes d_k}$ keys
- $V \in \mathbb{R}^{L imes d_v}$ values

$$egin{aligned} & [lpha_1,\ldots,lpha_L] = ext{softmax}(f(q,K)) \ & ext{attention}(q,K,V) = \sum_{i=1}^L lpha_i v_i \end{aligned}$$

•
$$v_i \in V$$

• $f: \mathbb{R}^{d_q} imes \mathbb{R}^{L imes d_k} o \mathbb{R}^L$ - compatibility function

Why attention mechanism?

- Conditional representations
- Meaning of a word in the context of a sentence
- Meaning of an object in the context of a question

Why attention mechanism?

- Conditional representations
- Meaning of a word in the context of a sentence
- Meaning of an object in the context of a question
- Modeling long-term dependencies
- O(1) vs. O(N) for RNNs

Why attention mechanism?

- Conditional representations
- Meaning of a word in the context of a sentence
- Meaning of an object in the context of a question
- Modeling long-term dependencies
- $\circ O(1)$ vs. O(N) for RNNs
- Some interpretability

Attention mechanism - VQA

What are these animals

What are these animals

Is it cloudy

Pred: Giraffes, Ans: Giraffes

Is it cloudy Pred: No, Ans: No

• Focus at relevant regions or relevant question words

Attention mechanism - VQA

What are these animals

What are these animals

Is it cloudy

Pred: Giraffes, Ans: Giraffes

Is it cloudy Pred: No, Ans: No

- Focus at relevant regions or relevant question words
- Representations conditioned on the context

What sport is this woman playing

Dot-product attention

- $q \in \mathbb{R}^{d_q}$ query
- $K \in \mathbb{R}^{L imes d_k}$ keys
- $V \in \mathbb{R}^{L imes d_v}$ values

$\operatorname{attention}(Q,K,V) = \operatorname{softmax}(QK^\top)V$

• $d_q = d_k$

Dot-product attention

- $q \in \mathbb{R}^{d_q}$ query
- $K \in \mathbb{R}^{L imes d_k}$ keys
- $V \in \mathbb{R}^{L imes d_v}$ values

$\operatorname{attention}(Q,K,V) = \operatorname{softmax}(QK^{ op})V$

• $d_q = d_k$

Method: DCN

dense, bi-directional interactions between the two modalities

- Each word represented in the context of the image
- Each image region represented in the context of the question

DCN - attention maps

- + $Q_l = [q_{l1}, \dots, q_{lN}] \in \mathbb{R}^{d imes N}$ N question words
- $V_l = [v_{l1}, \dots, v_{lT}] \in \mathbb{R}^{d imes T}$ T image regions

Compute the affinity matrix:

$$A_l = V_l^ op W_l Q_l$$

• $A_l \in \mathbb{R}^{T imes N}$

DCN - attention maps

- $Q_l = [q_{l1}, \ldots, q_{lN}] \in \mathbb{R}^{d imes N}$ N question words
- $V_l = [v_{l1}, \dots, v_{lT}] \in \mathbb{R}^{d imes T}$ T image regions

Compute the affinity matrix:

$$A_l = V_l^ op W_l Q_l$$

• $A_l \in \mathbb{R}^{T imes N}$

Two attention maps:

$$egin{aligned} A_{Q_l} &= ext{softmax}(A_l) \ A_{V_l} &= ext{softmax}ig(A_l^{ op}ig) \end{aligned}$$

DCN - attention maps

- + $Q_l = [q_{l1}, \dots, q_{lN}] \in \mathbb{R}^{d imes N}$ N question words
- $V_l = [v_{l1}, \dots, v_{lT}] \in \mathbb{R}^{d imes T}$ T image regions

Compute the affinity matrix:

$$A_l = V_l^ op W_l Q_l$$

• $A_l \in \mathbb{R}^{T imes N}$

Two attention maps:

 $egin{aligned} &A_{Q_l} = ext{softmax}(A_l) \ &A_{V_l} = ext{softmax}ig(A_l^{ op}ig) \end{aligned}$

This is of course **not** exactly what they do!

DCN - the actual attention maps

• Multiple attention maps: $oldsymbol{A}_l^{(i)}$ instead of $oldsymbol{A}_l$, where $oldsymbol{i}$ - attention number

DCN - the actual attention maps

- Multiple attention maps: $A_l^{(i)}$ instead of A_l , where i attention number
- Weight matrix W_l is replaced with two matrices of lower-rank: $W_{\tilde{V}_l}^{(i) \top} W_{\tilde{Q}_l}^{(i)}$ where

$$W_{ ilde{V}_l}^{(i)} \in \mathbb{R}^{d_h imes d}$$
, $W_{ ilde{Q}_l}^{(i)} \in \mathbb{R}^{d_h imes d}$

$$A_l^{(i)} = \left(W_{ ilde{V}_l}^{(i)} ilde{V}_l
ight)^ op \left(W_{ ilde{Q}_l}^{(i)} ilde{Q}_l
ight)$$

DCN - the actual attention maps

- Multiple attention maps: $A_l^{(i)}$ instead of A_l , where i attention number
- Weight matrix W_l is replaced with two matrices of lower-rank: $W^{(i)}_{ ilde{V}_l} W^{(i)}_{ ilde{Q}_l}$ where

$$W_{ ilde{V}_l}^{(i)} \in \mathbb{R}^{d_h imes d}$$
, $W_{ ilde{Q}_l}^{(i)} \in \mathbb{R}^{d_h imes d}$

$$A_l^{(i)} = \left(W_{ ilde{V}_l}^{(i)} ilde{V}_l
ight)^ op \left(W_{ ilde{Q}_l}^{(i)} ilde{Q}_l
ight)^ op$$

• Alternative low-rank approach:

Kim, Jin-Hwa, Jaehyun Jun, and Byoung-Tak Zhang. "Bilinear attention networks." *Advances in Neural Information Processing Systems*. 2018.

Scaled by $\sqrt{d_h}$ (not justified in the paper)

$$A_{Q_l}^{(i)} = ext{softmax}igg(rac{A_l^{(i)}}{\sqrt{d_h}}igg)$$

$$A_{V_l}^{(i)} = ext{softmax}igg(rac{A_l^{(i) op}}{\sqrt{d_h}}igg)$$

Scaled by $\sqrt{d_h}$ (not justified in the paper)

$$egin{aligned} &A^{(i)}_{Q_l} = ext{softmax}igg(rac{A^{(i)}_l}{\sqrt{d_h}}igg) \ &A^{(i)}_{V_l} = ext{softmax}igg(rac{A^{(i) op}_l}{\sqrt{d_h}}igg) \end{aligned}$$

- For high d_h the variance of dot products is high very small gradients
- The scaling results in smoother distribution

$$egin{aligned} A_{Q_l} &= rac{1}{h} \sum_{i=1}^h A_{Q_l}^{(i)} \ A_{V_l} &= rac{1}{h} \sum_{i=1}^h A_{V_l}^{(i)} \end{aligned}$$

- \$\$A_{Q_l} \in \mathbb{R}^{\tilde{T} \times \tilde{N}}\$\$ word probability for each image region
 \$\$A_{V_l} \in \mathbb{R}^{\tilde{N} \times \tilde{T}}\$\$ image region probability for each word

$$egin{aligned} A_{Q_l} &= rac{1}{h} \sum_{i=1}^h A_{Q_l}^{(i)} \ A_{V_l} &= rac{1}{h} \sum_{i=1}^h A_{V_l}^{(i)} \end{aligned}$$

- $oldsymbol{A}_{Q_l} \in \mathbb{R}^{ ilde{T} imes ilde{N}}$ word probability for each image region
- $A_{V_l} \in \mathbb{R}^{ ilde{N} imes ilde{T}}$ image region probability for each word

Attended feature representations:

$$\hat{Q}_l = ilde{Q}_l A_{Q_l} [1:\mathrm{T},:]^ op$$

- $\hat{Q}_l \in \mathbb{R}^{d imes T}$ - an average of word vectors weighted by their relevance to (compatibility with) the image regions

$$egin{aligned} A_{Q_l} &= rac{1}{h} \sum_{i=1}^h A_{Q_l}^{(i)} \ A_{V_l} &= rac{1}{h} \sum_{i=1}^h A_{V_l}^{(i)} \end{aligned}$$

- $oldsymbol{A}_{Q_l} \in \mathbb{R}^{ ilde{T} imes ilde{N}}$ word probability for each image region
- $A_{V_l} \in \mathbb{R}^{ ilde{N} imes ilde{T}}$ image region probability for each word

Attended feature representations:

$$\hat{Q}_l = ilde{Q}_l A_{Q_l} [1:\mathrm{T},:]^ op$$

- $\hat{Q}_l \in \mathbb{R}^{d imes T}$ - an average of word vectors weighted by their relevance to (compatibility with) the image regions

$$\hat{V_l} = ilde{V_l} A_{V_l} [1:\mathrm{N},:]^ op$$

- $\hat{V_l} \in \mathbb{R}^{d imes N}$ - an average of image region vectors weighted by their relevance to (compatibility with) the word

$$egin{aligned} A_{Q_l} &= rac{1}{h} \sum_{i=1}^h A_{Q_l}^{(i)} \ A_{V_l} &= rac{1}{h} \sum_{i=1}^h A_{V_l}^{(i)} \end{aligned}$$

- $A_{Q_l} \in \mathbb{R}^{ ilde{T} imes ilde{N}}$ word probability for each image region
- $A_{V_l} \in \mathbb{R}^{ ilde{N} imes ilde{T}}$ image region probability for each word

Attended feature representations:

$$\hat{Q}_l = ilde{Q}_l A_{Q_l} [1:\mathrm{T},:]^ op$$

- $\hat{Q}_l \in \mathbb{R}^{d imes T}$ - an average of word vectors weighted by their relevance to (compatibility with) the image regions

$$\hat{V_l} = ilde{V_l} A_{V_l} [1:\mathrm{N},:]^ op$$

- $\hat{V_l} \in \mathbb{R}^{d \times N}$ - an average of image region vectors weighted by their relevance to (compatibility with) the word

These are **still unimodal representations**, just attended

Fusing representations

Each word is fused with a (**unique**) representation of the image

$$q_{(l+1)n} = ext{ReLU}igg(W_{Q_l}igg[egin{matrix} q_{ln} \ \hat{v}_{ln} \end{bmatrix} + b_{Q_l}igg) + q_{ln}$$

- \hat{v}_{ln} - meaning of the image in the context of the *n*-th word

Each image region is fused with a (**unique**) representation of the question

$$v_{(l+1)t} = ext{ReLU}igg(W_{V_l}igg[egin{smallmatrix} v_{lt}\ \hat{q}_{\,lt} \end{bmatrix} + b_{V_i}igg) + v_{lt}$$

• \hat{q}_{lt} - meaning of the question in the context of the *t*-th image region

DCN model

Figure 3: Computation of dense co-attention maps and attended representations of the image and question.

Figure 2: The internal structure of a single dense coattention layer of layer index l + 1.

DCN model

Figure 1: The global structure of the dense co-attention network (DCN).

Question representation

$$\overrightarrow{q_n} = ext{Bi-LSTM}\left(\overrightarrow{q_{n-1}}, e_n^Q
ight)$$
 $\overleftarrow{q_n} = ext{Bi-LSTM}\left(\overleftarrow{q_{n+1}}, e_n^Q
ight)$

• e_n^Q - GloVe embedding of the *n*-th word

$$q_n = \left[\overrightarrow{q_n}^ op, \overleftarrow{q_n}^ op
ight]^ op$$

$$Q = [q_1, \dots, q_N] \in \mathbb{R}^{d imes N}$$

Image representation

4 layers from ResNet-152

- Each layer of different depth
- Different shapes \rightarrow max pooling and 1 x 1 convolution \rightarrow 4 layers, each of shape $d \times 14 \times 14$

Image representation

4 layers from ResNet-152

- Each layer of different depth
- Different shapes ightarrow max pooling and 1 x 1 convolution ightarrow 4 layers, each of shape d imes 14 imes 14

The relative importance of features corresponding to each depth level depends on the given question:

 $\left[lpha_{1},lpha_{2},lpha_{3},lpha_{4}
ight]= ext{softmax}(ext{MLP}\left(s_{Q}
ight))$

- Features weighted by alphas are summed together
- $V = [v_1, \dots, v_T] \in \mathbb{R}^{d imes T}$
- $T = 14 \times 14$

DCN - predicting answers

$$egin{aligned} s_{Q_L} &= \sum_{n=1}^N lpha_n^Q q_{Ln} \ s_{V_L} &= \sum^N lpha_n^V v_{Ln} \end{aligned}$$

n=1

Different methods for predicting answers:

$$egin{aligned} & (ext{score of answers encoded as } s_A) = \sigma \left(s_A^ op W \left(s_{Q_L} + s_{V_L}
ight)
ight), (extsf{16}) \ & (ext{ score of answers }) = \sigma \left(ext{MLP} ig(s_{Q_L} + s_{V_L} ig) ig), (extsf{17}) \ & (ext{ score of answers }) = \sigma \left(ext{MLP} ig(igst| igst| s_{Q_L} igst| igst) igst), (extsf{18}) \end{aligned}$$

DCN - predicting answers

$$egin{aligned} s_{Q_L} &= \sum_{n=1}^N lpha_n^Q q_{Ln} \ s_{V_L} &= \sum^N lpha_n^V v_{Ln} \end{aligned}$$

n=1

Different methods for predicting answers:

$$egin{aligned} &(ext{score of answers encoded as } s_A) = \sigma \left(s_A^ op W \left(s_{Q_L} + s_{V_L}
ight)
ight), ext{(16)} \ &(ext{ score of answers }) = \sigma \left(ext{MLP} ig(s_{Q_L} + s_{V_L} ig) ig), ext{(17)} \ &(ext{ score of answers }) = \sigma \left(ext{MLP} ig(igst| igst| s_{Q_L} iggst| igst) iggr), ext{(18)} \end{aligned}$$

• (17) and (18) can produce only answers that are considered when training

Experiments

Datasets

• Images from MS-COCO (200k+ images)

VQA (1.0):

• 240k+ train, 120k+ val, 240k+ test questions

VQA 2.0:

- The largest VQA dataset
- 440k+ train, 210k+ val, 440k+ test questions
- Reduced language bias

Results VQA 1.0

Table 2: Results of the proposed method along with published results of others on VQA 1.0 in similar conditions (i.e., a single model; trained without an external dataset).

Model	Test-dev				Test-standard			
	Overall	Other	Number	Yes/No	Overall	Other	Number	Yes/No
VQA team [2]	57.75	43.08	36.77	80.50	58.16	43.73	36.53	80.569
SMem [31]	57.99	43.12	37.32	80.87	58.24	43.48	37.53	80.80
SAN [32]	58.70	46.10	36.60	79.30	58.90	-	-	-
FDA [12]	59.24	45.77	36.16	81.14	59.54	-	-	-
DNMN [1]	59.40	45.50	38.60	81.10	59.40	-	-	-
HieCoAtt [21]	61.00	51.70	38.70	79.70	62.10	-	-	-
RAU [24]	63.30	53.00	39.00	81.90	63.20	52.80	38.20	81.70
DAN [23]	64.30	53.90	39.10	83.00	64.20	54.00	38.10	82.80
Strong Baseline [14]	64.50	55.20	39.10	82.20	64.60	55.20	39.10	82.00
MCB [6]	64.70	55.60	37.60	82.50	-	-	-	-
N2NMNs [11]	64.90	-	-	-	-	-	-	-
MLAN [35]	64.60	53.70	40.20	83.80	64.80	53.70	40.90	83.70
MLB [16]	65.08	54.87	38.21	84.14	65.07	54.77	37.90	84.02
MFB [36]	65.90	56.20	39.80	84.00	65.80	56.30	38.90	83.80
MF-SIG-T3 [5]	66.00	56.37	39.34	84.33	65.88	55.89	38.94	84.42
DCN (16)	66.43	56.23	42.37	84.75	66.39	56.23	41.81	84.53
DCN (17)	66.89	57.31	42.35	84.61	67.02	56.98	42.34	85.04
DCN (18)	66.83	57.44	41.66	84.48	66.66	56.83	41.27	84.61

Results VQA 2.0

Table 3: Results of the proposed method along with published results of others on VQA 2.0 in similar conditions (i.e., a single model; trained without an external dataset). DCN(number) indicates the DCN equipped with the prediction layer that uses equation (number) for score computation. *: trained with external datasets. ‡: the winner of VQA challenge 2017, unpublished.

Model	Test-dev			Test-standard				
	Overall	Other	Number	Yes/No	Overall	Other	Number	Yes/No
VQA team-Prior [8]	-	-	-	-	25.98	01.17	00.36	61.20
VQA team-Language only [8]	-	-	-	-	44.26	27.37	31.55	67.01
VQA team-LSTM+CNN [8]	-	-	-	-	54.22	41.83	35.18	73.46
MCB [6] reported in [8]	-	-	-	-	62.27	53.36	38.28	78.82
MF-SIG-T3 * [5]	64.73	55.55	42.99	81.29	-	-	-	-
Adelaide Model * ‡ [28]	62.07	52.62	39.46	79.20	62.27	52.59	39.77	79.32
Adelaide + Detector * ‡ [28]	65.32	56.05	44.21	81.82	65.67	56.26	43.90	82.20
DCN (16)	66.87	57.26	46.61	83.51	66.97	57.09	46.98	83.59
DCN (17)	66.72	56.77	46.65	83.70	67.04	56.95	47.19	83.85
DCN (18)	66.60	56.72	46.60	83.50	67.00	56.90	46.93	83.89

Ablation study

Table 1: Ablation study on each module of DCNs using the validation set of the Open-Ended task (VQA 2.0). * indicates modules employed in the final model.

Category	Detail	Accuracy
Attention direction	$\mathbf{I} \gets \mathbf{Q}$	60.95
	$\mathrm{I} \to \mathrm{Q}$	62.63
	$\mathrm{I}\leftrightarrow\mathrm{Q*}$	62.94
Memory size (K)	1	62.53
	3*	62.94
	5	62.83
Number (h) of	2	62.82
parallel attention	4*	62.94
maps	8	62.81
Number (L) of	1	62.43
stacked layers	2	62.82
	3*	62.94
	4	62.67
Attention in answer	Attention used*	62.94
prediction layer	Avg of features	61.63
Attention in image	Attention used*	62.94
extraction layer	Only last conv layer	62.39

- $(I \leftarrow Q)$ question-guided attention on image region
- $(I \rightarrow Q)$ image-guided attention on question words
- $(I \leftrightarrow Q)$ DCN co-attention: attention in both directions

How deep features?

- Layer 1:
 - *Yes/No* questions *is/are/does/can/could*
- Layer 3:
 - High importance on questions about colors
- Layer 4:
 - Highest importance in general
 - semantics: what

Qualitative evaluation

Pred: Yellow, Ans: Yellow

Pred: White, Ans: White

What is the name of the utensil What is the name of the utensil Pred: Fork, Ans: Fork

What is the name of the utensil What is the name of the utensil Pred: Fork, Ans: Spoon (Error type: 1)

Pred: 5 feet, Ans: Tall (Error type: 1)

Pred: 5 feet, Ans: 6 feet (Error type: 2)

What is the color of pants the What is the color of pants the woman is wearing Pred: Plaid, Ans: Red and White (Error type: 4)

What is the color of pants the What is the color of pants the woman is wearing Pred: Green, Ans: Black (Error type: 4)

What color is lit up on the What color is lit up on the street lights Pred: Yellow, Ans: Green (Error type: 3)

What color is lit up on the What color is lit up on the street lights street lights Pred: White, Ans: None (Error type: 1)

• matter the Does order?

- matter the Does order?
 - Permuation of the order of the features (but not the inputs) has no effect
 - Global or relative positions

- matter the Does order?
 - Permuation of the order of the features (but not the inputs) has no effect
 - Global or relative positions
- Counting from weighted averages

- matter the Does order?
 - Permuation of the order of the features (but not the inputs) has no effect
 - Global or relative positions
- Counting from weighted averages
- Not sure how conclusive ablation study is

- matter the Does order?
 - Permuation of the order of the features (but not the inputs) has no effect
 - Global or relative positions
- Counting from weighted averages
- Not sure how conclusive ablation study is
- Other paper with dense interactions:
 - Kim, Jin-Hwa, Jaehyun Jun, and Byoung-Tak Zhang. "Bilinear attention networks." *Advances in Neural Information Processing Systems*. 2018.

- matter the Does order?
 - Permuation of the order of the features (but not the inputs) has no effect
 - Global or relative positions
- Counting from weighted averages
- Not sure how conclusive ablation study is
- Other paper with dense interactions:
 - Kim, Jin-Hwa, Jaehyun Jun, and Byoung-Tak Zhang. "Bilinear attention networks." *Advances in Neural Information Processing Systems.* 2018.
- Often high dataset biases in VQA problems
- Do attention maps look at the same regions as humans?
 - Das, Abhishek, et al. "Human attention in visual question answering: Do humans and deep networks look at the same regions?." *Computer Vision and Image Understanding 163 (2017): 90-100.*

The End