
Pictorial Strucutures for Articulated Human Pose Estimation
Technical Report

Vahid Kazemi
vahidk@kth.se

September 6, 2011

1 Introduction
In this report we describe a framework to efficiently solve part matching problems in the form a pictorial
structure. The framework can be used to solve a range of problems in Computer Vision including object
detection, recognition and 2D pose estimation.

The problem of human pose estimation which we are going to focus on in this report is, given a set of
images of humans with annotated parts, find the location of these parts in novel images. Figure 1 shows
a sample image from our dataset with annotations. As you can see each image in the training set comes
with 10 bounding boxes outlining the major parts of the body. The aspect ratio of the bounding boxes
are assumed to be fixed, therefore we only need to find 4 parameters including the position (x, and y),
angle, and scale of the parts.

Figure 1: Sample image from IIP dataset [5] with annotated parts.

To find the location of parts we train individual models for each part by extracting PHOG descriptors
[2] from the image and feeding them to a SVM classifier. The naive approach of finding the location of
parts by taking the maximum likelihood of each part individually doesn’t work well (Figure 2). Therefore
we need a way to take into account not only the local appearance of each part, but the global configuration
of parts as well. One way to formulate this is to use the pictorial structure [4] model. Pictorial structure
represents an object as a graph (G = [V,E]) where each node represents a part of the object. To simplify

Figure 2: Taking the maximum likelihood of each part individually doesn’t give good results.

1

the problem appearance of parts are considered to be independent. The penalty for a configuration L is
given by the sum of deformation score (dij) between all connected nodes plus the mismatch score (mi)
of appearance of each part.

penalty(L) =
∑

(vi,vj)∈E

dij(li, lj) +
∑

vi∈V

mi(li) (1)

This is what we want to minimize over all the possible locations. The complexity of a brute-force
approach to solve this is O(Hn) where H is the number possible location for each part, and n is the
number of parts. It’s easy to see that this solution is not tractable even for small images. In fact the
method that we present in this report is able to find the optimal solution in linear time, that is O(Hn),
with the simplification of using a tree instead of a generic graph, and by approximating the distribution
of relative location of pairs of nodes with Gaussian distributions.

2 Efficient Minimization
In this section we describe how we can use dynamic programming to efficiently solve the described
minimization problem efficiently. The basic idea is to calculate the contribution of each node of the
graph from the leaves up to the root of the tree, and take the minimum on the location of root to get
the global minimum. The contribution of jth node in the total configuration score is given by:

Bj(li) = min
lj

mj(lj) + dij(li, lj) +
∑

(vj ,vc)∈E

Bc(lj)

 (2)

The optimal location of a leaf node can be simply expressed as a function of only its parents:

Bj(li) = min
lj

(mj(lj) + dij(li, lj)) (3)

The optimal location of every other node (except root) is dependent on the location of parent in
addition to the optimal location of children nodes. Therefore we can simply solve the problem starting
from the maximum depth, calculating the contribution of the leaf nodes for all possible locations in a
grid, and then doing the same for the lower depth. In the next section we describe how to calculate the
value of Bj efficiently using the generalized distance transform [3].

3 Generalized Distance Transform
Consider we have a set of points (B) on a grid (G), and we want to find for every point on the grid, the
distance to the closest point in the set.

DB(x) = min
y∈B

ρ(x, y) (4)

In the most simple case consider a one dimensional grid, and a euclidean distance function. Distance
transform in this case can be efficiently computed in two passes. First we initialize the values on the grid
with zero where the points are and infinities in the other locations. Then there would be a pass from left
to right, and one from right to left, where we replace the value of each location with the maximum of
current value and the last value plus the difference between two locations which is 1 in this case:

sequence: 0 0 1 0 0 1 0 0 0
initialization: ∞ ∞ 0 ∞ ∞ 0 ∞ ∞ ∞
left to right: ∞ ∞ 0 1 2 0 1 2 3
right to left: 2 1 0 1 1 0 1 2 3

The distance transform formulation can be extended to transform arbitrary functions. To understand
this, first consider the indicator function 1B(y), that is:

1B(y) =
{

0 y ∈ B
∞ otherwise

(5)

Using this we can rewrite equation 4 as:

DB(x) = min
y∈G

ρ(x, y) + 1B(y) (6)

2

Similar concepts can apply to an arbitrary choice of function instead of the indicator function, this gives
the formulation of the generalized distance transform:

Df (x) = min
y∈G

ρ(x, y) + f(y) (7)

Getting back to the original problem, we can define the deformation function in equation 2 in the
form of the Mahalanobis distance of transformed locations:

dij(li, lj) = (Tij(li)− Tji(lj))TM−1
ij (Tij(li)− Tji(lj)) (8)

where Mij is a diagonal covariance matrix, and Tij and Tji are transformation functions. We can
then define the transformation function in such a way that enables us to use the generalized distance
transform to efficiently calculate Bj(li):

Bj(li) = Df (Tij(li)) (9)

Using 2 we can find f as follows:

f(y) = mj(T−1
ji (y)) +

∑
(vj ,vc)∈E

Bc(T−1
ji (y)) (10)

Note that to ensure that Mij is a diagonal matrix, different dimensions of Tij(li)− Tji(lj) should be
uncorrelated. Furthermore it should be zero mean (for 8 to hold). Assuming that li− lj has a mean equal
to sij and the covariance Σij , the transformation can be defined to satisfy the constraints as follows:

Tij(li) = UT
ij (li − sij) (11)

Tji(lj) = UT
ij lj (12)

where Σij = UijDijU
T
ij . Therefore the joint distribution of li and lj will have zero mean with diagonal

covariance:
p(li, lj) ∼ N (Tij(li)− Tji(lj), 0, Dij) (13)

Now the question remains how to calculate the generalized distance transform with the distance
function from equation 8. The fact the Gaussian distribution is assumed to be zero mean, with diagonal
covariance enables us to calculate the distance transform efficiently for any number of dimensions. Figure
3 shows that the generalized distance transform for a Mahalanobis distance function can be calculated
by taking the lower envelope of n parabolas (where n is the length of the grid). Note how this satisfies
the definition of the generalized distance transform (7), the value of distance transform at each point on
the grid is equal to the minimum of value of that point on the grid and the value of each other point plus
the distance between the pair of points.

To find the lower envelope of the parabolas we only need to find the intersection of them. Two
parabolas have one intersection point. Consider two points p and q on the grid, If q is less than p,
parabola centered on q will be under the parabola centered on p before the intersection point, and over
it after the intersection point. This gives the idea of a simple algorithm that calculates the distance
transform on the grid in O(n). The intersection point of two parabolas can be simply calculated as
follows:

f(q) + (s− q)2 = f(p) + (p− s)2 (14)

s = (f(p) + p2)− (f(q) + q2)
2(p− q) (15)

The complete algorithm for calculating the distance transform comes in the following:

Algorithm DT(f)
k = 0
v [0] = 0
z [0] = −∞
z [1] = +∞
f o r q = 1 to n−1

s = ((f (q) + q2) − (f (v [k]) + v [k] ^2)) / (2 q − 2v [k])
i f s ≤ z [k] then

k = k − 1
goto 6

3

Figure 3: This figure shows that the generalized distance transform for a Mahalanobis distance function
can be calculated by taking the lower envelope of n parabolas. (Source: [3])

(a) before transformation (b) after transformation

Figure 4: In these figures you see the distribution of relative location of two parts (centered around the
parent part center). It can be seen that after transforming the location of the child node to the location
of the joint ((b)), the Gaussian distribution will be a far better estimate.

e l s e
k = k + 1

end
v [k] = q
z [k] = s
z [k + 1] = ∞

end
k = 0
f o r q = 0 to n−1

whi l e z [k + 1] < q
k = k + 1

end
Df (q) = (q − v [k])^2 + f (v [k])

end

Pay attention that since we ensured that the different dimensions of f are uncorrelated we can simply
extend the algorithm to arbitrary number of dimensions by applying the 1D distance transform to each
dimension individually.

4 Optimal Joint Locations
In the last section we assumed that the deformation function can be estimated with a Gaussian distribu-
tion, but looking at figure 4(a) you can see that the Gaussian distribution may not be a good choice if we
have the joints far from the center of the parts. This problem can be solved with a simple transformation

4

Figure 5: A sample result from IIP dataset. Yellow lines show the result of pictorial structures, and red
lines show the result of finding each part independently.

to the joint location [1], as is shown in figure 4(b):
x′

y′

θ′

s′

 =

xi + sip

ij
x cos θi − sip

ij
y sin θi

yi + sip
ij
x sin θi + sip

ij
y cos θi

θi + θ̄ij

si

 (16)

x′

y′

θ′

s′

 =

xj + sjp

ji
x cos θj − sjp

ji
y sin θj

yj + sjp
ji
x sin θj + sjp

ji
y cos θj

θj

sj

 (17)

where (pij
x , p

ij
y) is the relative location of intersection joint of part i and j in respect to the center of

part i, and (pji
x , p

ji
y) is the relative location of the joint in respect to the center of part j. We can find

the optimal joint locations by solving an overdetermined set of equations using least squares as follows:(
x′i
y′i

)
=
(
xi

yi

)
+ si

(
cos θi − sin θi

sin θi cos θi

)(
pij

x

pij
y

)
(18)

(
x′j
y′j

)
=
(
xj

yj

)
+ sj

(
cos θj − sin θj

sin θj cos θj

)(
pji

x

pji
y

)
(19)

We will find pji
x and pji

y in such a way that the difference between transformed positions is minimized:

min
pij ,pji

((
x′i
y′i

)
−
(
x′j
y′j

))2

(20)

this results to an overdetermined set of problems:xi − xj

yi − yj

...

 =

sj cos θj −sj sin θj −si cos θi si sin θi

sj sin θj sj cos θj −si sin θi −si cos θi

...
...

...
...

pji

x

pji
y

pij
x

pij
y

 (21)

which we can simply solve to get the get the optimal location of joints.
Figure 5 shows a sample result from IIP dataset.

5 Results
S J B 0.96 0.83 0.91 0.90 0.88 0.94 0.88 0.91 0.89 0.90
S I - 0.97 0.91 0.93 0.93 0.95 0.95 0.91 0.94 0.96 0.93
S I B 0.97 0.91 0.92 0.93 0.94 0.95 0.90 0.93 0.96 0.93

5

References
[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated

pose estimation. 2009.

[2] A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid kernel. CIVR,
2007.

[3] P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions.

[4] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. International
Journal of Computer Vision, 61(1):55–79, 2005.

[5] D. Ramanan. Learning to parse images of articulated bodies. In In NIPS 2007. NIPS, 2006.

[6] W. Yang, T. Duan, and L. Zicheng. Learning hierarchical poselets for human parsing. 2011.

6

