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I. INTRODUCTION

Autonomous grasping of any kind of object in arbitrarily
complex environments is still unattainable for today’s robots.
There have been great advances in robust grasping and even
manipulation of known objects in environments of moderate
complexity, e.g. by Righetti et al. [18], Hudson et al. [10],
Kazemi et al. [12]. However, the higher the uncertainty about
crucial aspects of a manipulation task, the harder it becomes
for the robot to successfully plan and execute its actions.

For example, there are theoretically well-founded metrics to
evaluate the performance of a grasp given complete informa-
tion about the object, the hand and their relative poses [8]
that are implemented in all the major simulators such as
GraspIt! [16] or OpenRave [6]. But how to let a robot
grasp an object of uncertain global shape is an active area
of research. There is little agreement in the community on
how to best represent partial object information and infer a
grasp given this. This is however a very common problem
in real-world scenarios. Especially in cluttered scenes, large
parts of an object may be occluded and segmentation of the
visible parts from its surroundings becomes more difficult. A
comprehensive overview of the different approaches towards
this problem is given by Bohg et al. [3].

There are a few methods that try to estimate global object
shape from partial information, e.g. [2, 1, 7]. They are often
motivated to provide the basis for grasp planning methods that
assume knowledge of a full object model.

Other methods do not attempt to predict global object shape
but rather to predict graspability directly from the partial
and local information. Commonly, these methods employ
supervised learning techniques on annotated grasp experience
databases to predict where and how to grasp an object in a
scene [19, 17, 5, 15, 9, 13, 14]. Local methods have several ad-
vantages over method representing global object shape. They
allow to generalize learned models across different objects
that may have a very different global shape but are locally
similar. Because they only rely on local information, they
are also less sensitive to segmentation errors or occlusions.
Furthermore, no prior semantic knowledge on e.g. object
identity or category is necessary. All these factors reduce the

complexity of information extraction from raw sensory data.
However, global object shape has a large influence on whether
a grasp will succeed or not. This is naturally not captured by
local information. If two objects share two similar parts but
have otherwise vastly different global shapes, different grasps
may be required. In this paper, we propose a method that
predicts (i) graspability and (ii) global object shape given
only local information. Thereby, we inherit the advantages
of local methods and still yield a prediction of global object
shape. This can form the input to subsequent grasp planners
or controllers.

II. APPROACH

An overview of the proposed system is shown in Fig. 1.
In detail, we propose a novel method that enables a robot
to infer a grasp pre-shape for an object of unknown identity,
category or shape given only noisy and partial information
that is obtained from an RGB-D camera. In line with some
of the aforementioned related work [19, 15, 9, 13, 14], we
formulate this as a classification problem that takes in a local
shape representation and outputs the probability of a grasp
applied at this location to be successful. We learn the function
that maps our local shape feature to grasp stability based on a
recently proposed large-scale synthetic database Kappler et al.
[11]. In total, it contains around 500k data points of annotated
local shape representation, referred to as templates throughout
the remainder of this abstract. This is by far the largest dataset
available in the community with stability metrics that are
verified through crowdsourcing.

As a classifier, we use a Random Forest.
For our second aim of predicting global object shape from

local information we exploit the ability of the Random Forest
to cluster the dataset into locally similar templates. Given a
classified query template, obtained from the trained Random
Forest, we can extract all the exemplars of the training data
set that ended up at the same leaf nodes. Since we have access
to complete information about these exemplars, we can use it
to make predictions about some latent properties of the target
object. These can be object categories but also global object
shape. Here, we will focus on the latter as this constitutes
important information for grasp planners and robot controllers.
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Fig. 1. Overview of the proposed system from extracting the point cloud, suggesting a grasp to predicting global shape. (Left) A point cloud of the whole
scene is recorded with an RGB-D camera. The point cloud needs to be sampled for grasp candidates. We use a simple table-plane based segmentation to
restrict the sampling to the remaining clusters on top of the plane. Each grasp candidate is represented by a local shape representation: template. Here we
show the three channels this template consists of: surface, occlusion and free space. We extract a feature from each channel of this template. It consists of
pairs of probes as also used in [20, 4]. and is stacked into one feature vector. This feature vector is then used for training and at test time. (Middle) The
feature vector serves as an input to a Random Forest Classifier which has been trained offline on a database. By averaging over the response of each tree in
the forest, the input feature vector is classified as either stable or not. Additionally, each leaf node at which a query data point ends up is associated with a
subset of the training data. This is shown in the ’mosaics’ of the bottom row in which each square represents a template of a training data point. A green
frame indicates a positive and a red frame a negative example. (Right) This locally similar data can then not only be used for predicting the set of stable
grasps per point cloud, but also for predicting other global object properties such as object category and global object shape. Regarding the latter, the left
image shows a shape distribution (gray) given synthetic data from the database as input. Since ground truth object models (red) are available for all test
data points in the database, we can quantitatively evaluate how well this distribution predicts global object shape. On the right, you see an example for the
prediction of global object shape for real point clouds.

Specifically, we model the global shape of the target object as
a non-parametric distribution that is populated with the mesh
models of the retrieved training data points. As these point
ended up in the same leaf nodes of the random forest, their
feature description must be similar to the one of the query data
point. Therefore, they are locally similar to each other. We are
interested in analysing if they are also globally similar.

III. RESULTS

In experiments, we will show that our trained model for
predicting grasp stability achieves the same performance as
the current state-of-the-art on this data set which uses a Con-
volutional Neural Net (CNN). In terms of our second aim, we
can quantitatively show that global shape of unknown objects
can be coherently predicted from locally similar training data
points. We also show that this works particularly well when
only considering positively-labeled exemplars, i.e. exemplars
that yielded a successful grasp. This suggests that they have
a particularly high predictive power for global object shape.
This makes sense, as global object shape has a high influence
on grasp success. Furthermore, we show qualitative examples
of grasp retrieval and object shape prediction on real data.
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