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Abstract—We present a general method for one-shot learning
of dexterous grasps and object placement. We rely on a product
of experts formulation. Experts in the product are of two types.
The first is a contact model and is a density over the pose of a
single hand link relative to the local object surface. The second
is the hand configuration model and is a density over the whole
hand configuration. Grasp generation for a novel object optimises
the product of these two model types. Selection between grasp
types is also automatic. The success rate is 84.4% or 77.7% if
seven views or a single view of the test object are taken. We also
show initial results on object placement.

I. INTRODUCTION

Previous work in learning generalisable grasps falls broadly
into two classes. One class utilises the shape of common
object parts or their appearance to generalise grasps across
object categories [8, 2, 3, 7]. This works well for low DoF
hands. Another class captures the global properties of the
hand shape [1]. This global hand shape can be associated
with global object shape, allowing generalisation by warping
grasps to match warps of global object shape [4]. This second
class works well for high DoF hands, but generalisation is
more limited. We achieve the advantages of both classes,
generalising grasps across object categories with high DoF
hands. The method can be simply adapted to learn object
placement in the same manner, here we show learning of
placing different sized plates into a dishrack. Our grasping
work is described in more detail in [5, 6].

II. APPROACH

The technical innovation to achieve this is to learn two
types of models from the example grasp (Figure 3 left and
centre), and then recombine them using a product of experts
formulation when inferring a new grasp (Figure 3 right). Dex-
terous grasping involves simultaneously satisfying multiple
constraints, and our central insight is that a product of experts
is a natural way to encode these. Both model types are density
functions. The first is a contact model of the relation between
a rigid link of the hand, and the local object shape near its
point of contact (Figure 3 left). We learn one contact model for
each link of the hand involved in the grasp, and these capture
local constraints in the grasp. To capture global information
we learn a second type of model, a hand configuration model
from the example grasp (Figure 3 centre).

When presented with a novel object the contact model is
combined with the point cloud of the new object to create
a contact query density. Figure 2 shows the contact query
densities for two finger links, where the training grasp was
on a bowl and the test object is a kettle. It can be seen that

Fig. 1: Left: The four objects on the left were used for training,
the forty three objects on the right were used as test objects.
Right: The Boris manipulation platform.

the finger links (marked in blue) generate different densities
over the kettle. A contact query density is calculated for the
new object point cloud, for each finger link in each trained
grasp. This uses a Monte Carlo procedure which is fast (¡1
sec for four training grasps).

Then grasp generation is performed, followed by grasp
improvement (Figure 3 right). The grasp generation proceeds
as follows: a finger link is picked at random, a pose on the
new object is sampled from its contact query density, and a
hand configuration is sampled from the hand configuration
model for the grasp type. By forward kinematics this defines
a complete hand pose. Thus the hand configuration model
constrains the combined search space for the link placements.
Many such grasps are generated on the new object for each
grasp type. In the final stage these grasps are optimised.
Grasp improvement is carried out by performing simulated
annealing on a product of experts expressing the grasp
likelihood for each candidate. The optimised grasps are
ranked by this likelihood. The whole process takes 5-25 secs

Fig. 2: Contact query density (red cloud) for two links (blue).
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Fig. 3: Grasp training (left) and testing procedure (right).

Fig. 4: Grasp transfer. Training grasp in left column. Grasp
for test object in the centre and right columns.

on a standard PC, where between 500 and 2500 grasps are
generated and optimised. The ranking of the individual grasps
by likelihood can be seen as a probabilistic, factored, memory
based grasping. Once normalistion is performed then grasps
generalised from different training grasps are interleaved
in this ranking, and so the method automatically enables
simultaneous selection and adaptation of grasp type. After
grasp optimisation and ranking, kinematic infeasible grasps
are discarded, and the top ranked grasp is executed. Given
greater reconstruction of the test object surface the success
rate is higher, so that seven views from a depth camera give
a success rate of 84.4%, and one view gives a success rate
of 77.7%. The generalisation ability is shown in Figure 4.
The method is also applicable to learning object placement.
Here the placement is shown for test plates, of varying sizes
and shapes. Placement is into a dishrack, which acts as the
receiving ‘hand’ and the learning is able to infer various
poses and approaches for the object to be stably placed in the
dishrack. Figure 5 shows two test plates, with their visualised
positions. This shows that the same approach of products
of experts is able to learn to generalise both grasping and
placement from one training example.

Fig. 5: Small and large plate dishwasher placement example.
Left: wrist pose densities for the dishwasher-plate contact (red)
and the plate insertion trajectory (green). Right: computed
maximum likelihood wrist pose of the densities product.
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