
Game Environment for
Command and Control
Operations (GECCO)

System Description

Joel Brynielsson, Henrik Bäärnhielm, Andreas Enblom,
Jing Fu Zi, Niklas Hallenfur, Karl Hasselström,
Henrik Hägerström, Oskar Linde, Klas Wallenius

and Jon Åslund

Department of Numerical Analysis and Computer Science
Royal Institute of Technology

SE-100 44 Stockholm
Sweden

gecco@nada.kth.se

14th May 2001

Contents
1 Introduction 2

1.1 Background . 2
1.2 The Java code . 2
1.3 Components of the system . 2

2 The server 2
2.1 Layers of the game . 3
2.2 Server modules . 3

3 The communication layer 4
3.1 Introduction . 4
3.2 The role model . 4
3.3 The Interface from the outside 5
3.4 The Interface from the inside . 5

3.4.1 The client . 6
3.4.2 The server . 6

3.5 The way of a message . 7
3.5.1 Starting the server . 7
3.5.2 Starting and connecting the client 8
3.5.3 Messages sent during the game 8

4 The client 9
4.1 Pieces . 10
4.2 Actions . 10
4.3 The client * server abstraction 10
4.4 Game control . 10
4.5 Ghost pieces . 10

1

1 Introduction

1.1 Background
GECCO is a platform for simulating strategic games. It is written in Java, and
this document contains information about the Java implementation.

The three related documents GECCO General Description[2], GECCO De-
veloper's manual [1] and GECCO User's Manual [3] o2er additional information
about the system, and should be read for general understanding of the func-
tionallity of the platform.

1.2 The Java code
The system is written for Java 2 version 1.3, and consists of a number of packages
that are, in some sense, unaware and independent of each other.

The system is documented in detail by comments in the source 4les. Every
part of the system is commented for use with the Javadoc tool. The generated
Javadoc web pages are accessible at

http://www.nada.kth.se/projects/proj01/krigsspel/docs.html

The following description will be kept on a high abstract level, mostly avoiding
the implementation details, and we refer to the Javadoc documentation for the
details.

1.3 Components of the system
The system consists of three large parts; the server (documented in section 2),
the communication layer (section 3) and the client (section 4).

The server simulates the game, and is aware of the clients only as di2erent
roles, that may know and control some part of the game. The server
handles all updates of the game (e.g. moving units) and sends messages
about those updates to selected roles via the communication layer.

The communication layer handles the TCP/IP network communication be-
tween the server and the clients. This layer is aware of the clients, and
how many of them that are connected to every role.

The client presents the game to the players, and send messages via the com-
munication layer about control operations of the units.

2 The server
Our wish when we started working on the design of the platform was to make
everything as modular and generic as possible, so that further development
would be possible by just replacing certain modules. What we came up with is
something that we are quite satis4ed with.

2

2.1 Layers of the game
The game consists of two layers, not to confuse with the communication layer
between the server and the clients. First, there is the automaton layer, also
known as the map. Every pixel on the map is a 4nite state automaton, and
thus the map can change, adding a special kind of dynamic behaviour to the
game. The automaton layer has a discrete coordinate system, due to the use
of raster images. Above the map is the unit layer where all units dwelve. The
unit layer has a continous coordinate system (well, at least approximately), but
they are always located withing the bounds of one speci4c automaton.

The two layers can interact in two ways. Either can the units manipulate the
automatons when they execute actions, like >Set ground on 4re?, or the automa-
tons can do the same thing on the units, by sending events. Naturally, there can
also be interactions inside the layers, because units can a2ect other units with
actions, like >Attack?, and automatons can a2ect other nearby automatons. See
the description of the Action Processor and the Queue Manager below.

As of genericity, both units and automatons can and should be subclassed
by every real game on the platform, creating whole new rules of interaction
between and inside the layers. Thus, we have achieved quite much modularity.

2.2 Server modules
The server consists of a number of more or less separable modules: The Action
Processor, the Queue Mananager, the Visibility Manager, the Unit Manager,
the map of automatons, the initialization and the Communication Interface.
Here is a brief description of each module. For more detailed explanations, we
refer to the Javadoc documentation.

• The initialization is the class that one uses to start the server process.
Among all the things it does is to read all con4guration 4les of the current
game, the background image and all unit images, and allocate memory for
the map. It initializes the automaton queue and the action queue, puts
all units at their initial positions and starts all threads that will listen for
incoming connections from clients. The initialization is contained in the
package server.startup.

• The Unit Manager keeps track of all units in the game, maintaining data
structures of them and providing various ways to get and set properties
of units, like the commander and the observers. The Unit Manager is
contained in the package server.unitmanager.

• The Visibility Manager keeps track of all areas of visibility of all units and
ranges, providing methods that compute if a role can see a certain position
of the map. To do that e2eciently it maintains certain data structures
which it keeps updated as the units move. The Visibility Manager is
contained in the package server.visibility.

• The map of automatons is similar to the Unit Manager, but for the au-
tomatons instead. It maintains references to every automaton on the map,
and provides methods for allocating and initializing the automatons, given
a normal raster image, like a GIF 4le. There are also ways to access each

3

automaton, get and set its properties, send events to it, and other things.
The map of automatons is contained in the package server.automaton.

• The Communication Interface is the server's implementation of the Call-
back Interface of the communication layer, described more thoroughly in
the next section. It consists of methods that take care of the messages
from the clients, like initiating all actions the clients have executed, con-
necting a new role and similar things. The Communication Interface is
contained in the package server.core.

• The Action Processor and The Queue Manager are the modules where
everything happens (maybe in conjunction with the Communication In-
terface). The Action Processor maintains a queue of all ongoing actions
in the game and from time to time take out one and calls its checkpoint
routine. Then, depending on the return value, the action is reinserted in
the queue, completed or aborted. The Action Processor is contained in
the package server.actionprocessor.

• The Queue Manager is basically the same thing as the Action Proces-
sor, but for automatons and events to or from automatons. When an
automaton is updated, it can choose to insert itself and possibly also its
neighbours, thus spreading the update across the map. In this way the
automaton layer can be very dynamic, and model widespread activities
like 4re, radioactivity, explosions and Conway's Game of Life. The Queue
Manager is contained in the package server.qmanager.

The di2erent modules are not as modular as the three di2erent system com-
ponents, but anyway we have achieved relatively much modularity. For example,
if one wants to change some global behaviour about units, it should be almost
only the Unit Manager, and its surrounding classes that must be changed, rather
than many places all over the server.

3 The communication layer

3.1 Introduction
The communication is the glue between the server and the client. The main
purpose of the communication part is to provide the possibility of having the
server on one computer and a client on another.

The communication could have been integrated in the client and in the
server, but that would mean that they had to handle the details of the TCP/IP
communication all by themselves. By constructing communication interfaces
for both the client and the server, the server and client communicate via these
interfaces instead and just have to worry about their respective part.

3.2 The role model
Except for the raw details of TCP/IP, there are other things that the server and
client doesn't need to know. In our current model, we have servers, roles and
clients. The server only knows which roles are connected. There can be many
clients for each role (you can start several clients for the role God's eye, which

4

sees everything), but the server only sends messages to a role. It's the job of
the communication part to send the message to the right clients.

The client on the other hand only knows what server it is attached to and
have no idea that there may be other clients with the same role.

Server

Role

Role

Client

Client

Client

Figure 1: The Role Model.

3.3 The Interface from the outside
The messages that the client and server sends and receives are completely dif-
ferent (what the server sends, the client receives, and vice versa), but they both
have interfaces with similar purpose. Both the client side and the server side
have:

• Ambassador interface. A java interface, implemented in the communi-
cation part. The server and client uses this interface to speak with the
communication part. The methods that the server and client can use to
send messages are here.

• Callback interface. A java interface, implemented by both the server and
client. The communication part uses this interface to speak with the client
and the server when a new message has arrived.

The ambassador interface on the client side is called Server because it ad-
dresses the server, and the ambassador interface on the server side is likewise
called Client.

The callback interface on client side is called Client, and the callback in-
terface on the server side is called Server.

3.4 The Interface from the inside
The client and the server part of the communication have many similarities
when it comes to handling the communication. Here follows the part that looks
almost the same on both sides.

• Connection. Called ClientConnection on the server side, and ServerConnection
on the client side. It is created by the ambassador and contains the sockets
and data streams needed for network communication.

5

• DataInputExchangeHandler. Separate thread that is started on both sides
when a client sends a startGame message. The thread waits for incoming
messages, by a blocking read on the input stream of the connection. When
a message is received, it calls the appropriate method in the callback
interface.

• DataOutputExchangeHandler. A thread that is started together with the
DataInputExchangeHandler. This thread waits for messages to appear
in its message queue. Messages are put in the queue when the server or
client calls its respective ambassador interface. When a message is in the
queue, the DataOutputExchangeHandler sends it to the output stream of
the connection.

3.4.1 The client

ServerAmbassador

«interface»
Server

ServerConnection

DataInputExchangeHandler

DataOutputExchangeHandler

MessageQueue

«interface»
Client

«uses»

1

1

1 1

1

1

1

0..1

1

0..11

1

Figure 2: Client UML chart.

The client creates a ServerAmbassador and implements the interface client.Client.
The ServerAmbassador creates a ServerConnection. When the client starts
the game it creates a DataInputExchangeHandler which listens to incoming
messages from the server and a DataOutputExchangeHandler which sends mes-
sages to the server. When creating the DataOutputExchangeHandler, the
ServerAmbassador gives a MessageQueue as an argument. That is the queue
where the newly created thread will look for messages to send.

3.4.2 The server

The server creates a ClientAmbassador, and implements the interface server.core.Server.
When a ClientAmbassador is created, it takes a vector containing RoleDefinition

6

«interface»
Client

«interface»
Client

ClientAmbassador RoleConnection ClientConnectionHandler

DataInputExchangeHandler DataOutputExchangeHandler

MessageQueue

NewClientListener

1 * 1 *

1

0..1

1

0..1

ClientConnection«uses» 0..1

1
0..1

1

1

1

skapar1

*

Figure 3: Server UML chart.

objects as an argument. For each RoleDefinition, a RoleConnection is cre-
ated and put into a hashtable.

The constructor for ClientAmbassador also takes an int, representing a port
number, as an argument. The ServerAmbassador creates a NewClientListener,
that will listen for incoming connections on that port, and handle the initial
handshaking with the clients.

When a client has successfully joined a game, the NewClientListener cre-
ates a ClientConnection and tells the ClientAmbassador to add that to the
connected clients. ClientAmbassador calls add in the RoleConnection repre-
senting the client's role, and a new ClientConnectionHandler is then created
by RoleConnection.

3.5 The way of a message
3.5.1 Starting the server

The server creates a ClientAmbassador. The constructor takes three argu-
ments; a Vector containing RoleDe4nition objects, an object that implements
server.core.Server, and an int representing the port number, to which the
server will listen for incoming connections. For each RoleDefinition in the
Vector, a corresponding RoleConnection is created and put into a HashTable
representing connections to all the roles. The ClientAmbassador creates a
NewClientListener, that will listen for incoming connections on the speci4ed
port, and handle the initial handshaking with the clients.

The ClientAmbassador is now ready to start receiving messages from clients,
and sending messages from the server, but since no clients are connected yet,
nothing will happen if the server sends a message.

7

3.5.2 Starting and connecting the client

The client creates a ServerAmbassador, with an object implementing client.Client
as argument. The ServerAmbassador in turn creates a ServerConnection.

When the client is ready to connect to the server, it calls the method
ServerAmbassador.connect, which takes the server name as a String, and the
port number as an int. The ServerAmbassador in turn calls the connect method
in its ServerConnection object. On the server side, the NewClientListener
accepts the incoming socket. If the connection was successful, the client gets the
return value true, and is now able to join as a role by calling ServerAmbassador.joinAsRole.

But 4rst the client might want to know what roles are available to join
as, so it calls getAvailableRoles. The ServerAmbassador now writes the int
MessageType.getAvailableRoles to the ServerConnection's DataOutputStream.
On the server side, the NewClientListener reads that int, and asks the ClientAmbassador
for the available roles by calling rolesLeft, and sends the roles as a UTF-string.
The ClientAmbassador reads that String, and splits it up into the roles by
separating on whitespaces (See StringTokenizer). The StringTokenizer is
then returned to the client.

When the client is ready to join it calls joinAsRole with a speci4ed role.
The ServerAmbassador sends the message. NewClientListener checks if the
role is available for joining and sends true back to the ServerAmbassador if it
is.

Now the client wants to start the game, but it has to receive the map 4rst
so it calls getMap. The ServerAmbassador sends the message as per usual and
receives the map from NewClientListener.

After receiving the map the client 4nally calls startGame. The ServerAmbassador
sends the startGame message to the NewClientListener and then starts the
threads DataOutputExchangeHandler and DataInputExchangeHandler. When
the NewClientListener reads the startGamemessage it creates a new ClientConnection
and tells the ClientAmbassador to add it. After creating the DataOutputExchangeHandler
the ServerAmbassador puts a startGamemessage in DataOutputExchangeHandler's
MessageQueue. The handshaking is now completed and the game can begin.

3.5.3 Messages sent during the game

After the server has received the startGame message it sends many refresh
messages so that the client is up to date. This makes it possible to join a game
any time.

We are now going to describe the path of a typical message that is sent from
the server to the client. All messages are sent exactly the same way.

Assume that the server calls unitInvisible in ClientAmbassador to indi-
cate that a unit no longer is visible to a role. The arguments are a role and a unit
handle. The ClientAmbassador creates a UnitDeletedMessage and sends it to
the RoleConnection speci4ed by the role argument. RoleConnection in turn
calls sendMessage for each ClientConnectionHandler connected to the role.
The ClientConnectionHandler then calls addMessage in DataOutputExchangeHandler,
which puts the message in the message queue. The DataOutputExchangeHandler
discovers the message in the queue, and calls the corresponding sendUnitDeleted
method. This method 4rst writes the int MessageType.UnitDeleted, and then
the handle of the unit which is no longer visible, to the DataOutputStream in

8

ClientConnection.
The DataInputExchangeHandler on the client side now discovers the int

MessageType.UnitDeleted in the DataInputStream in ServerConnection. The
method getUnitDeleted is called, and reads the unit's handle from the DataInputStream.
Then the client is told about the deleted unit via the method removePiece in
the callback interface Client.

Communicating the other way is handled in almost the same way. The
client calls a method in ServerAmbassador, a message is created, and put in
the message queue of DataOutputExchangeHandler. From here on, the message
is passed in exactly the same way as in the example above.

4 The client
The client consist of the Java packages client, client.animation, client.dialogs
and client.infopanels.

The package client.dialogs contains the dialogs of the game (such as a dia-
log for connecting to a game, and an error dialog), whereas client.infopanels
contain panels where information about game units (or pieces as they will be
referred to in this section) is displayed. The client.animation package sup-
ply support for animated pieces (such as explosions). These three packages are
rather self-explainative and need no further comments, apart from the Javadoc
documentation.

The client package (see 4gure 4) is the main client package. It contain most
of the classes that control the client operations (i.e. displaying information to
the user, and o2ering control over some parts).

Game

«interface»
Client

Server

Piece

Symbols

1

*

Property Position Action

ActionQueue

Board

Map

Ghost

paints using

sets up

communicates

controls

creates

1

1

contains

1

1

0..1

0..*

1
1

0..*

0..*
can do

1

0..*

1
1

actions to be
executed

ongoing

Figure 4: UML chart of the client package.

9

4.1 Pieces
A most central concept of the client is a piece, the client's view of a controllable
game unit. A piece has a name, type and a unique identi4er known as a handle.
The piece also has a position, several properties (such as health and fuel), and
a number of actions that represent things that the piece can do.

4.2 Actions
The piece keeps track of actions assigned by the user to be executed in order.
These actions are entered by the user and may take an arguments (another
piece, or a position on the map). The actions are usually chosen among those
possible for the piece to execute. Some actions are marked instantaneous and
are executed the moment the user assign them.

4.3 The client 2 server abstraction
From the client's point of view the server is an interface (Server) towards the
communication. It contains the necessary methods for obtaining the required in-
formation and controlling the controllable pieces. When the game starts up, the
class communication.client.ServerAmbassador that implements the Server
interface is instantiated, and all server operations are executed through that
instance.

The communication uses the interface Client as an abstraction of some
client in a similar manner (see section 3).

To create alternate clients, simply implement the Client interface, and
make sure it contacts some class implementing the Server interface (normally
communication.client.ServerAmbassador).

4.4 Game control
The game is controlled by the class Game. It contains a game board that interacts
with the user. The board displays the map and the pieces of the game, together
with scrollbars and zoom buttons. This class implements the Client interface.

The symbols used for painting pieces are handled by the class Symbols. The
symbols are loaded and added to the rest by the server.

4.5 Ghost pieces
Ghost pieces are semi-transparent pieces that are used for client-speci4c pur-
poses (see GECCO User's Manual [3]). Such pieces are instances of the class
Ghost. The ghosts are painted with semi-transparent symbols.

10

References
[1] Joel Brynielsson, Henrik Bäärnhielm, Andreas Enblom, Jing Fu Zi, Niklas

Hallenfur, Karl Hasselström, Henrik Hägerström, Oskar Linde, Klas Walle-
nius, and Jon Åslund. GECCO Developer's Manual. Department of Numer-
ical Analysis and Computer Science, Royal Institute of Technology, Stock-
holm, Sweden, May 2001.

[2] Joel Brynielsson, Henrik Bäärnhielm, Andreas Enblom, Jing Fu Zi, Niklas
Hallenfur, Karl Hasselström, Henrik Hägerström, Oskar Linde, Klas Walle-
nius, and Jon Åslund. GECCO General Description. Department of Numer-
ical Analysis and Computer Science, Royal Institute of Technology, Stock-
holm, Sweden, May 2001.

[3] Joel Brynielsson, Henrik Bäärnhielm, Andreas Enblom, Jing Fu Zi, Niklas
Hallenfur, Karl Hasselström, Henrik Hägerström, Oskar Linde, Klas Walle-
nius, and Jon Åslund. GECCO User's Manual. Department of Numerical
Analysis and Computer Science, Royal Institute of Technology, Stockholm,
Sweden, May 2001.

11

