What is this Unique Games Conjecture that everyone keeps talking about?

Per Austrin austrin@kth.se

Theory Group School of Computer Science and Communication KTH – Royal Institute of Technology, Stockholm

2007-02-05

イロン イボン イヨン イヨン

- Assorted graph problems
- Constraint satisfaction

3 Progress?

ヘロト ヘアト ヘビト ヘビト

The conjecture

Implications

- Assorted graph problems
- Constraint satisfaction

3 Progress?

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

The Label Cover Problem

- In the Label Cover problem we are given
 - A graph G = (V, E)
 - A set of "labels" L
 - For each edge e = (v, w) ∈ E, a set R_e ⊆ L × L consisting of a set of "permissible" values for the pair (v, w)

イロト イポト イヨト イヨト 一座

The Label Cover Problem

- In the Label Cover problem we are given
 - A graph G = (V, E)
 - A set of "labels" L
 - For each edge e = (v, w) ∈ E, a set R_e ⊆ L × L consisting of a set of "permissible" values for the pair (v, w)
- Goal: assign a label *l_v* ∈ *L* to each vertex *v* ∈ *V* such that as many edges as possible are satisfied

イロト イポト イヨト イヨト 一座

The Label Cover Problem

- In the Label Cover problem we are given
 - A graph G = (V, E)
 - A set of "labels" L
 - For each edge e = (v, w) ∈ E, a set R_e ⊆ L × L consisting of a set of "permissible" values for the pair (v, w)
- Goal: assign a label *l_v* ∈ *L* to each vertex *v* ∈ *V* such that as many edges as possible are satisfied
- An edge e = (v, w) is satisfied if $(I_v, I_w) \in R_e$.

<ロ> (四) (四) (三) (三) (三)

The Label Cover Problem

- In the Label Cover problem we are given
 - A graph G = (V, E)
 - A set of "labels" L
 - For each edge e = (v, w) ∈ E, a set R_e ⊆ L × L consisting of a set of "permissible" values for the pair (v, w)
- Goal: assign a label *l_v* ∈ *L* to each vertex *v* ∈ *V* such that as many edges as possible are satisfied
- An edge e = (v, w) is satisfied if $(I_v, I_w) \in R_e$.
- We denote by Val(X) ∈ [0, 1] the maximum possible fraction of satisfied edges.

<ロ> (四) (四) (三) (三) (三)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Same graph.
- $L = \{1, 2, 3\}$
- $R_e = \{ (1,2), (1,3), (2,1), (2,3), (3,1), (3,2) \}$ for all edges.

▲口 > ▲圖 > ▲ 画 > ▲ 画 > ● ④ ● ●

- Same graph.
- $L = \{1, 2, 3\}$
- $R_e = \{ (1,2), (1,3), (2,1), (2,3), (3,1), (3,2) \}$ for all edges.
- $Val(X) = 1 \Leftrightarrow G$ is 3-colorable.

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のQの

- Same graph.
- $L = \{1, 2, 3\}$
- $R_e = \{ (1,2), (1,3), (2,1), (2,3), (3,1), (3,2) \}$ for all edges.
- $Val(X) = 1 \Leftrightarrow G$ is 3-colorable.

Thus it is NP-hard to determine if we can satisfy all edges.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Another example

• Consider a system of linear equations mod *n*, where each equation contains exactly 2 variables.

A E > A E >

Another example

- Consider a system of linear equations mod *n*, where each equation contains exactly 2 variables.
- Goal: satisfy as many equations as possible.

< 🗇 ▶

(* E) * E)

Another example

- Consider a system of linear equations mod *n*, where each equation contains exactly 2 variables.
- Goal: satisfy as many equations as possible.
- This is an instance of Label Cover with label set $L = \mathbb{Z}_n$.

ヘロト ヘ回ト ヘヨト ヘヨト

We can view 3-satisfiability as a Label Cover problem.

・ロト ・ 一下・ ・ ヨト ・ ヨト

-20

We can view 3-satisfiability as a Label Cover problem.

• V =Clauses \cup Variables

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

We can view 3-satisfiability as a Label Cover problem.

- V =Clauses \cup Variables
- Edge between clause ϕ and variable x if x occurs in ϕ .

イロト イポト イヨト イヨト 一座

We can view 3-satisfiability as a Label Cover problem.

- V =Clauses \cup Variables
- Edge between clause ϕ and variable x if x occurs in ϕ .
- $L = \{000, 001, 010, 011, 100, 101, 110, 111, 0, 1\}$

イロト イポト イヨト イヨト 一座

We can view 3-satisfiability as a Label Cover problem.

- V =Clauses \cup Variables
- Edge between clause ϕ and variable x if x occurs in ϕ .
- $L = \{000, 001, 010, 011, 100, 101, 110, 111, 0, 1\}$
- Edge between ϕ and x satisfied if
 - label for ϕ is one of the seven satisfying assignments for the three variables in ϕ .
 - labels for x and ϕ give the same value to x.

・ロン・(部)とくほどくほどう ほ

We can view 3-satisfiability as a Label Cover problem.

- V =Clauses \cup Variables
- Edge between clause ϕ and variable x if x occurs in ϕ .
- $L = \{000, 001, 010, 011, 100, 101, 110, 111, 0, 1\}$
- Edge between ϕ and x satisfied if
 - label for ϕ is one of the seven satisfying assignments for the three variables in ϕ .
 - labels for x and ϕ give the same value to x.

Does this seem familiar?

・ロン・(部)とくほどくほどう ほ

Two-prover games

- Consider a two-prover game:
 - two provers try to convince us (the verifier) that some 3-CNF formula is satisfiable
 - we send a question to each of the provers, which they have to answer independently

ヘロト ヘアト ヘビト ヘビト

Two-prover games

- Consider a two-prover game:
 - two provers try to convince us (the verifier) that some 3-CNF formula is satisfiable
 - we send a question to each of the provers, which they have to answer independently
- We can view this as a Label Cover problem

< < >> < </>

Two-prover games

- Consider a two-prover game:
 - two provers try to convince us (the verifier) that some 3-CNF formula is satisfiable
 - we send a question to each of the provers, which they have to answer independently
- We can view this as a Label Cover problem
 - *V* = the set of possible questions
 - L = the set of possible answers
 - An edge (*v*, *w*) is satisfied by a pair of answers if that pair of answers make the verifier accept

くロト (過) (目) (日)

Two-prover games

- Consider a two-prover game:
 - two provers try to convince us (the verifier) that some 3-CNF formula is satisfiable
 - we send a question to each of the provers, which they have to answer independently
- We can view this as a Label Cover problem
 - *V* = the set of possible questions
 - L = the set of possible answers
 - An edge (*v*, *w*) is satisfied by a pair of answers if that pair of answers make the verifier accept
- Finding a good strategy for the provers is equivalent to solving the label cover problem

・ロン ・ 一 マン・ 日 マー・

Approximating Label Cover

Theorem

For every $\eta > 0$ it is NP-hard to distinguish Label Cover instances with Val(X) = 1 from those with $Val(X) \le \eta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Approximating Label Cover

Theorem

For every $\eta > 0$ there is an L such that it is NP-hard to distinguish Label Cover instances with Val(X) = 1 from those with $Val(X) \le \eta$ for X with label set L

イロト イポト イヨト イヨト 三油

Approximating Label Cover

Theorem

For every $\eta > 0$ there is an L such that it is NP-hard to distinguish Label Cover instances with Val(X) = 1 from those with $Val(X) \le \eta$ for X with label set L

(Follows from PCP theorem and Parallel Repetition theorem)

ヘロト ヘアト ヘビト ヘビト

 Unique Label Cover is the special case of Label Cover when the relation for each edge is a permutation

ヘロト ヘアト ヘビト ヘビト

Unique Label Cover

- Unique Label Cover is the special case of Label Cover when the relation for each edge is a permutation
 - In other words, for each edge e = (v, w) and choice of label for v there is exactly one choice of label for w that satisfies the edge (and vice versa)

イロト イ押ト イヨト イヨトー

Unique Label Cover

- Unique Label Cover is the special case of Label Cover when the relation for each edge is a permutation
 - In other words, for each edge e = (v, w) and choice of label for v there is exactly one choice of label for w that satisfies the edge (and vice versa)
 - In the 2-prover game, given the answer from one of the provers, there is exactly one answer from the other prover that will make the verifier accept

★ 문 ► ★ 문 ►

Unique Label Cover

- Unique Label Cover is the special case of Label Cover when the relation for each edge is a permutation
 - In other words, for each edge e = (v, w) and choice of label for v there is exactly one choice of label for w that satisfies the edge (and vice versa)
 - In the 2-prover game, given the answer from one of the provers, there is exactly one answer from the other prover that will make the verifier accept
- Our example with linear equations is a Unique Label Cover problem if *n* is prime

・ロト ・ 同ト ・ ヨト ・ ヨト

Unique Label Cover

- Unique Label Cover is the special case of Label Cover when the relation for each edge is a permutation
 - In other words, for each edge e = (v, w) and choice of label for v there is exactly one choice of label for w that satisfies the edge (and vice versa)
 - In the 2-prover game, given the answer from one of the provers, there is exactly one answer from the other prover that will make the verifier accept
- Our example with linear equations is a Unique Label Cover problem if *n* is prime
- How hard is Unique Label Cover?

・ロト ・ 同ト ・ ヨト ・ ヨト

The Unique Games Conjecture

Conjecture (Khot, 2002)

For any $\eta > 0$ there is an L such that it is NP-hard to distinguish Unique Label Cover instances with $Val(X) \ge 1 - \eta$ from those with $Val(X) \le \eta$ for X with label set L.

イロト イポト イヨト イヨト 三油

Assorted graph problems Constraint satisfaction

Agenda

Implications

- Assorted graph problems
- Constraint satisfaction

3 Progress?

・ロン ・ 一 マン・ 日 マー・

Assorted graph problems Constraint satisfaction

But first some terminology

 Approximation ratio of an algorithm is expected value of solution found divided by optimum value

ヘロト ヘアト ヘビト ヘビト

Assorted graph problems Constraint satisfaction

But first some terminology

- Approximation ratio of an algorithm is expected value of solution found divided by optimum value
 - \leq 1 for maximization problems
 - $\bullet \ge 1$ for minimization problems

イロン 不得 とくほ とくほ とう
Assorted graph problems Constraint satisfaction

But first some terminology

- Approximation ratio of an algorithm is expected value of solution found divided by optimum value
 - \leq 1 for maximization problems
 - \geq 1 for minimization problems
- A problem ${\cal P}$ is "UG-hard" if Unique Label Cover can be "efficiently" reduced to ${\cal P}$

イロト イポト イヨト イヨト 三油

Assorted graph problems Constraint satisfaction

But first some terminology

- Approximation ratio of an algorithm is expected value of solution found divided by optimum value
 - \leq 1 for maximization problems
 - \geq 1 for minimization problems
- A problem \mathcal{P} is "UG-hard" if Unique Label Cover can be "efficiently" reduced to \mathcal{P}
- UG-hard \Rightarrow NP-hard assuming the UGC

イロト イポト イヨト イヨト 三日

Assorted graph problems Constraint satisfaction

Min Vertex Cover

 Given a graph G = (V, E), a set C ⊆ V is a vertex cover if for each edge {v, w}, at least one of v and w is in C

Assorted graph problems Constraint satisfaction

Min Vertex Cover

 Given a graph G = (V, E), a set C ⊆ V is a vertex cover if for each edge {v, w}, at least one of v and w is in C

Assorted graph problems Constraint satisfaction

Min Vertex Cover

- Given a graph G = (V, E), a set C ⊆ V is a vertex cover if for each edge {v, w}, at least one of v and w is in C
- Goal: find a vertex cover of minimum cardinality

Assorted graph problems Constraint satisfaction

Min Vertex Cover

• Easy to approximate within a factor 2

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Assorted graph problems Constraint satisfaction

Min Vertex Cover

- Easy to approximate within a factor 2
 - While there are edges which are not covered, include both vertices of one such edge in the cover

Assorted graph problems Constraint satisfaction

Min Vertex Cover

- Easy to approximate within a factor 2
 - While there are edges which are not covered, include both vertices of one such edge in the cover
- Dinur and Safra, 2002: NP-hard to approximate within 1.36

Assorted graph problems Constraint satisfaction

Min Vertex Cover

- Easy to approximate within a factor 2
 - While there are edges which are not covered, include both vertices of one such edge in the cover
- Dinur and Safra, 2002: NP-hard to approximate within 1.36
- Khot and Regev, 2003: UG-hard to approximate within 2ϵ for any $\epsilon > 0$

<ロ> <同> <同> <同> <同> <同> <同> <同> <

Assorted graph problems Constraint satisfaction

Max Independent Set

• Consider the Maximum Independent Set problem restricted to graphs where every vertex has degree $\leq \Delta$

ヘロト 人間 ト ヘヨト ヘヨト

Assorted graph problems Constraint satisfaction

Max Independent Set

• Consider the Maximum Independent Set problem restricted to graphs where every vertex has degree $\leq \Delta$

Assorted graph problems Constraint satisfaction

Max Independent Set

- Consider the Maximum Independent Set problem restricted to graphs where every vertex has degree $\leq \Delta$
 - Think of ∆ as big, but constant
 - NP-hard for any constant $\Delta \geq 3$

Assorted graph problems Constraint satisfaction

Max Independent Set

• Easy to approximate within $1/(\Delta + 1)$

Per Austrin The Unique Games Conjecture

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Assorted graph problems Constraint satisfaction

Max Independent Set

- Easy to approximate within $1/(\Delta + 1)$
- Vishwanathan, unpublished: Can be approximated within $\frac{c\log\Delta}{\log\log\Delta}\cdot 1/\Delta$ for some c>0

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Assorted graph problems Constraint satisfaction

Max Independent Set

- Easy to approximate within $1/(\Delta + 1)$
- Vishwanathan, unpublished: Can be approximated within $\frac{c\log\Delta}{\log\log\Delta}\cdot 1/\Delta$ for some c>0
- Trevisan, 2001: NP-hard to approximate within $2^{c\sqrt{\log \Delta}}/\Delta$ for some c > 0

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Assorted graph problems Constraint satisfaction

Max Independent Set

- Easy to approximate within $1/(\Delta + 1)$
- Vishwanathan, unpublished: Can be approximated within $\frac{c\log\Delta}{\log\log\Delta}\cdot 1/\Delta$ for some c>0
- Trevisan, 2001: NP-hard to approximate within $2^{c\sqrt{\log \Delta}}/\Delta$ for some c > 0
- Samorodnitsky and Trevisan, 2005: UG-hard to approximate within (log Δ)^c/Δ for some constant c

<ロト (四) (日) (日) (日) (日) (日) (日)

Assorted graph problems Constraint satisfaction

Almost 3-coloring

• Given a graph G = (V, E), we want to remove some vertices and get a 3-colorable graph

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Assorted graph problems Constraint satisfaction

Almost 3-coloring

• Given a graph G = (V, E), we want to remove some vertices and get a 3-colorable graph

Assorted graph problems Constraint satisfaction

Almost 3-coloring

- Given a graph G = (V, E), we want to remove some vertices and get a 3-colorable graph
- Goal: remove as few vertices as possible
 - Call this number *R*(*G*)

Assorted graph problems Constraint satisfaction

Almost 3-coloring

- Given a graph G = (V, E), we want to remove some vertices and get a 3-colorable graph
- Goal: remove as few vertices as possible
 - Call this number *R*(*G*)
- Dinur, Mossel, and Regev, 2005: UG-hard to distinguish between R(G) ≤ ε|V| and R(G) ≥ (1 − ε)|V| for any ε > 0

イロト イポト イヨト イヨト 三日

Assorted graph problems Constraint satisfaction

Max Cut

• Given a graph G = (V, E) and a set $S \subseteq V$, let $|E(S, \overline{S})|$ denote the number of edges cut by S

• Given a graph G = (V, E) and a set $S \subseteq V$, let $|E(S, \overline{S})|$ denote the number of edges cut by S

Assorted graph problems Constraint satisfaction

Max Cut

- Given a graph G = (V, E) and a set S ⊆ V, let |E(S, S)| denote the number of edges cut by S
- Goal: maximize number of edges cut

Assorted graph problems Constraint satisfaction

Max Cut

• Easy to approximate within a factor 1/2

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Assorted graph problems Constraint satisfaction

Max Cut

- Easy to approximate within a factor 1/2
- Goemans and Williamson, 1995: Max Cut can be approximated to within a factor $\alpha_{GW} \approx 0.8785$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assorted graph problems Constraint satisfaction

Max Cut

- Easy to approximate within a factor 1/2
- Goemans and Williamson, 1995: Max Cut can be approximated to within a factor $\alpha_{GW} \approx 0.8785$
- Håstad, 2001: NP-hard to approximate within $16/17 + \epsilon \approx 0.9418$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Assorted graph problems Constraint satisfaction

Max Cut

- Easy to approximate within a factor 1/2
- Goemans and Williamson, 1995: Max Cut can be approximated to within a factor $\alpha_{GW} \approx 0.8785$
- Håstad, 2001: NP-hard to approximate within $16/17 + \epsilon \approx 0.9418$
- Khot, Kindler, Mossel and O'Donnell, 2004: UG-hard to approximate within $\alpha_{GW} + \epsilon$ for any ϵ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Assorted graph problems Constraint satisfaction

 Given a 2-CNF formula, find an assignment which satisfies as many clauses as possible

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Assorted graph problems Constraint satisfaction

Max 2-Sat

• Given a 2-CNF formula, find an assignment which satisfies as many clauses as possible

$$x_1 = \text{True}$$

$$x_2 = TRUE$$

$$x_3 = \text{TRUE}$$

$$x_4 = FALSE$$

$$x_5 = \text{True}$$

$$x_6 = FALSE$$

$$x_7 = FALSE$$

$$x_8 = FALSE$$

$$x_9 = \text{FALSE}$$

Assorted graph problems Constraint satisfaction

Easy to approximate within a factor 3/4

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Assorted graph problems Constraint satisfaction

Max 2-Sat

- Easy to approximate within a factor 3/4
- Lewin, Livnat and Zwick, 2002: Max 2-Sat can *apparently* be approximated to within a factor $\alpha_{LLZ} \approx 0.9401$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Assorted graph problems Constraint satisfaction

Max 2-Sat

- Easy to approximate within a factor 3/4
- Lewin, Livnat and Zwick, 2002: Max 2-Sat can *apparently* be approximated to within a factor $\alpha_{LLZ} \approx 0.9401$
- Håstad, 2001: NP-hard to approximate within $21/22 + \epsilon \approx 0.9546$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assorted graph problems Constraint satisfaction

Max 2-Sat

- Easy to approximate within a factor 3/4
- Lewin, Livnat and Zwick, 2002: Max 2-Sat can *apparently* be approximated to within a factor $\alpha_{LLZ} \approx 0.9401$
- Håstad, 2001: NP-hard to approximate within $21/22 + \epsilon \approx 0.9546$
- Austrin, 2006: UG-hard to approximate within $\alpha_{\textit{LLZ}} + \epsilon$ for any ϵ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Assorted graph problems Constraint satisfaction

 In the Max k-CSP problem we are given a set of constraints, each of which acts on at most k variables

Assorted graph problems Constraint satisfaction

EAL OF

~

- In the Max k-CSP problem we are given a set of constraints, each of which acts on at most k variables
- Goal: satisfy as many constraints as possible

$$\begin{array}{rclcrcrc} ((x_1 \lor \overline{x_2}) \land x_4) & \land & (x_3 \oplus x_4 \oplus x_5) \land \\ (x_1 \lor x_4) & \land & (x_2 \land \overline{x_4} \land x_1) \land \\ (x_2 \lor (x_3 \oplus x_5)) & \land & (\overline{x_1} \land \overline{x_3}) \end{array} \qquad \begin{array}{rclcrc} x_1 & = & \mathsf{FALSE} \\ x_2 & = & \mathsf{FALSE} \\ x_3 & = & \mathsf{FALSE} \\ x_4 & = & \mathsf{TRUE} \\ x_5 & = & \mathsf{TRUE} \end{array}$$

Assorted graph problems Constraint satisfaction

• Easy to approximate within 1/2^k

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで
Assorted graph problems Constraint satisfaction

- Easy to approximate within $1/2^k$
- Charikar, Makarychev and Makarychev, 2006: Max k-CSP can be approximated within 0.44k/2^k

ヘロト ヘ回ト ヘヨト ヘヨト

Assorted graph problems Constraint satisfaction

Max k-CSP

- Easy to approximate within $1/2^k$
- Charikar, Makarychev and Makarychev, 2006: Max k-CSP can be approximated within 0.44k/2^k
- Engebretsen and Holmerin, 2005: NP-hard to approximate within 2^{\sqrt{2k}}/2^k

イロト イポト イヨト イヨト 一座

Assorted graph problems Constraint satisfaction

Max k-CSP

- Easy to approximate within $1/2^k$
- Charikar, Makarychev and Makarychev, 2006: Max k-CSP can be approximated within 0.44k/2^k
- Engebretsen and Holmerin, 2005: NP-hard to approximate within 2^{\sqrt{2k}}/2^k
- Samorodnitsky and Trevisan, 2005: UG-hard to approximate within 2k/2^k

イロト イポト イヨト イヨト 三油

Assorted graph problems Constraint satisfaction

Max k-CSP

- Easy to approximate within $1/2^k$
- Charikar, Makarychev and Makarychev, 2006: Max k-CSP can be approximated within 0.44k/2^k
- Engebretsen and Holmerin, 2005: NP-hard to approximate within 2^{\sqrt{2k}}/2^k
- Samorodnitsky and Trevisan, 2005: UG-hard to approximate within 2k/2^k

• For $k = 2^d - 1$, hard to approximate within $(k + 1)/2^k$

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Assorted graph problems Constraint satisfaction

Random Max k-CSP

• Pick a random predicate *P* on *k* variables by, for each input $x \in \{0, 1\}^k$ letting P(x) = 1 with probability *q*

イロト イポト イヨト イヨト 一座

Assorted graph problems Constraint satisfaction

Random Max k-CSP

- Pick a random predicate *P* on *k* variables by, for each input $x \in \{0, 1\}^k$ letting P(x) = 1 with probability *q*
- Håstad, unpublished: If q ≥ (1/k)^{1/2+ϵ}, the probability that it is UG-hard to approximate P better than a random assignment tends to 1 as k → ∞

イロン 不得 とくほ とくほう 一座

Assorted graph problems Constraint satisfaction

Random Max k-CSP

- Pick a random predicate *P* on *k* variables by, for each input $x \in \{0, 1\}^k$ letting P(x) = 1 with probability *q*
- Håstad, unpublished: If q ≥ (1/k)^{1/2+ϵ}, the probability that it is UG-hard to approximate P better than a random assignment tends to 1 as k → ∞
 - For $k = 2^d 1$, we can take $q \ge (1/k)^{1+\epsilon}$ instead

<ロト (四) (日) (日) (日) (日) (日) (日)

Assorted graph problems Constraint satisfaction

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Assorted graph problems Constraint satisfaction

 Lewin, Livnat and Zwick, 2002: Max 2-CSP can *apparently* be approximated within 0.8740

Assorted graph problems Constraint satisfaction

- Lewin, Livnat and Zwick, 2002: Max 2-CSP can *apparently* be approximated within 0.8740
- Håstad, 2001: NP-hard to approximate within $11/12 + \epsilon \approx 0.9167$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assorted graph problems Constraint satisfaction

- Lewin, Livnat and Zwick, 2002: Max 2-CSP can *apparently* be approximated within 0.8740
- Håstad, 2001: NP-hard to approximate within $11/12 + \epsilon \approx 0.9167$
- Austrin, unpublished: UG-hard to approximate within 0.8744

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Assorted graph problems Constraint satisfaction

2-query proof verification

 Consider extremely lazy verification of proofs, where we only read two bits.

<ロ> (四) (四) (三) (三) (三)

Assorted graph problems Constraint satisfaction

2-query proof verification

- Consider extremely lazy verification of proofs, where we only read two bits.
- Our verification protocol has completeness c and soundness s if

イロト イポト イヨト イヨト 一座

Assorted graph problems Constraint satisfaction

2-query proof verification

- Consider extremely lazy verification of proofs, where we only read two bits.
- Our verification protocol has completeness *c* and soundness *s* if
 - for correct statements there is a proof which we accept with probability $\geq c$

イロト イポト イヨト イヨト 一座

Assorted graph problems Constraint satisfaction

2-query proof verification

- Consider extremely lazy verification of proofs, where we only read two bits.
- Our verification protocol has completeness *c* and soundness *s* if
 - for correct statements there is a proof which we accept with probability $\geq c$
 - for incorrect statements every proof is accepted with probability $\leq s$

イロト イポト イヨト イヨト 三油

Assorted graph problems Constraint satisfaction

2-query proof verification

- Consider extremely lazy verification of proofs, where we only read two bits.
- Our verification protocol has completeness *c* and soundness *s* if
 - for correct statements there is a proof which we accept with probability $\geq c$
 - for incorrect statements every proof is accepted with probability $\leq s$
- How large separation can we get between *s* and *c*?

イロト イポト イヨト イヨト 三油

Assorted graph problems Constraint satisfaction

2-query proof verification

• Assuming the UGC (and $P \neq NP$)

<ロ> (四) (四) (三) (三) (三)

Assorted graph problems Constraint satisfaction

2-query proof verification

• Assuming the UGC (and $P \neq NP$)

• can take *c* = 0.4411 and *s* = 0.3858

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assorted graph problems Constraint satisfaction

2-query proof verification

• Assuming the UGC (and $P \neq NP$)

- can take *c* = 0.4411 and *s* = 0.3858
- can take $c = 1 \epsilon$ and $s = 1 \Theta(\sqrt{\epsilon})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assorted graph problems Constraint satisfaction

2-query proof verification

- Assuming the UGC (and $P \neq NP$)
 - can take *c* = 0.4411 and *s* = 0.3858
 - can take $c = 1 \epsilon$ and $s = 1 \Theta(\sqrt{\epsilon})$
- Assuming $P \neq NP$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Assorted graph problems Constraint satisfaction

2-query proof verification

- Assuming the UGC (and $P \neq NP$)
 - can take *c* = 0.4411 and *s* = 0.3858
 - can take $c = 1 \epsilon$ and $s = 1 \Theta(\sqrt{\epsilon})$
- Assuming $P \neq NP$
 - can not have *c* = 0.4411 and *s* = 0.3855

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Assorted graph problems Constraint satisfaction

2-query proof verification

- Assuming the UGC (and $P \neq NP$)
 - can take *c* = 0.4411 and *s* = 0.3858
 - can take $c = 1 \epsilon$ and $s = 1 \Theta(\sqrt{\epsilon})$
- Assuming $P \neq NP$
 - can not have *c* = 0.4411 and *s* = 0.3855
 - can not have $c = 1 \epsilon$ and $s = 1 \omega(\sqrt{\epsilon})$

Agenda

- Assorted graph problems
- Constraint satisfaction

・ロン ・ 一 マン・ 日 マー・

æ

 Easy to find an assignment which satisfies an 1/L fraction of all edges, so must have L ≥ 1/μ

ヘロト 人間 とくほとくほとう

- Easy to find an assignment which satisfies an 1/L fraction of all edges, so must have L ≥ 1/μ
- Khot, Kindler, Mossel, and O'Donnell, 2004: If the UGC is true, we can choose $|L| \le (1/\eta)^{2/\eta-1}$

イロト イポト イヨト イヨト 三油

- Easy to find an assignment which satisfies an 1/L fraction of all edges, so must have L ≥ 1/μ
- Khot, Kindler, Mossel, and O'Donnell, 2004: If the UGC is true, we can choose $|L| \le (1/\eta)^{2/\eta-1}$

• For $\eta = 0.01$, this is 10^{398}

イロト イポト イヨト イヨト 三油

- Easy to find an assignment which satisfies an 1/L fraction of all edges, so must have L ≥ 1/μ
- Khot, Kindler, Mossel, and O'Donnell, 2004: If the UGC is true, we can choose $|L| \le (1/\eta)^{2/\eta-1}$
 - For $\eta = 0.01$, this is 10^{398}
 - Furthermore, we can use linear equations mod p

ヘロト ヘ回ト ヘヨト ヘヨト

- Easy to find an assignment which satisfies an 1/L fraction of all edges, so must have L ≥ 1/μ
- Khot, Kindler, Mossel, and O'Donnell, 2004: If the UGC is true, we can choose $|L| \le (1/\eta)^{2/\eta-1}$
 - For $\eta = 0.01$, this is 10^{398}
 - Furthermore, we can use linear equations mod p
- Charikar, Makarychev and Makarychev, 2006: The UGC is *not* true for |L| ≤ (Ω(1/η))^{2/η}.

<ロ> (四) (四) (三) (三) (三)

Inapproximability of Unique Label Cover

Theorem (Feige and Reichman)

For any $\eta > 0$ there is a $0 < \gamma < 1$ and L and such that it is NP-hard to distinguish between Unique Label Cover instances with $Val(X) \ge \gamma$ and $Val(X) \le \eta \cdot \gamma$ for X with label set L.

イロト イポト イヨト イヨト 三連

Proof (1/3)

Recall

Theorem

For every $\eta > 0$ there is an L such that it is NP-hard to distinguish Label Cover instances with Val(X) = 1 from those with $Val(X) \le \eta$ for X with label set L.

<ロト (四) (日) (日) (日) (日) (日) (日)

Proof (1/3)

Recall

Theorem

For every $\eta > 0$ there is an L such that it is NP-hard to distinguish Label Cover instances with Val(X) = 1 from those with $Val(X) \le \eta$ for X with label set L.

We'll reduce this problem to linear equations mod *p*.

イロト イポト イヨト イヨト 一座

Proof (1/3)

Recall

Theorem

For every $\eta > 0$ there is an L such that it is NP-hard to distinguish Label Cover instances with Val(X) = 1 from those with $Val(X) \le \eta$ for X with label set L.

We'll reduce this problem to linear equations mod *p*.

 Pick L as in the theorem, and let X = (V, E, L, {R_e}) be a Label Cover instance with either Val(X) = 1 or Val(X) ≤ η.

イロト イポト イヨト イヨト 三油

Proof (1/3)

Recall

Theorem

For every $\eta > 0$ there is an L such that it is NP-hard to distinguish Label Cover instances with Val(X) = 1 from those with $Val(X) \le \eta$ for X with label set L.

We'll reduce this problem to linear equations mod *p*.

- Pick *L* as in the theorem, and let X = (V, E, L, {R_e}) be a Label Cover instance with either Val(X) = 1 or Val(X) ≤ η.
- Take a prime p ≥ 1 + |L|²/η, and identify the elements of L with elements of Z_p in some arbitrary way.

<ロ> <同> <同> <同> <同> <同> <同> <同> <

For each edge $e = (u, v) \in E$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

For each edge $e = (u, v) \in E$

- For each $(a, b) \in R_e$ and $i \in \{1, \dots, p-1\}$
 - Add the equation $x_u a = i \cdot (x_v b)$

For each edge $e = (u, v) \in E$

- For each $(a, b) \in R_e$ and $i \in \{1, ..., p-1\}$
 - Add the equation $x_u a = i \cdot (x_v b)$
- Note that given an assignment to the x variables

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- For each $(a, b) \in R_e$ and $i \in \{1, ..., p-1\}$
 - Add the equation $x_u a = i \cdot (x_v b)$
- Note that given an assignment to the *x* variables
 - If (x_u, x_v) ∉ R_e at most |R_e| ≤ |L|² ≤ η(p − 1) of the equations are satisfied

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- For each $(a, b) \in R_e$ and $i \in \{1, ..., p-1\}$
 - Add the equation $x_u a = i \cdot (x_v b)$
- Note that given an assignment to the *x* variables
 - If (x_u, x_v) ∉ R_e at most |R_e| ≤ |L|² ≤ η(p − 1) of the equations are satisfied
 - If $(x_u, x_v) \in R_e$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- For each $(a, b) \in R_e$ and $i \in \{1, ..., p-1\}$
 - Add the equation $x_u a = i \cdot (x_v b)$
- Note that given an assignment to the *x* variables
 - If (x_u, x_v) ∉ R_e at most |R_e| ≤ |L|² ≤ η(p − 1) of the equations are satisfied
 - If $(x_u, x_v) \in R_e$
 - at least p 1 of the equations are satisfied

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- For each $(a, b) \in R_e$ and $i \in \{1, ..., p-1\}$
 - Add the equation $x_u a = i \cdot (x_v b)$
- Note that given an assignment to the x variables
 - If (x_u, x_v) ∉ R_e at most |R_e| ≤ |L|² ≤ η(p − 1) of the equations are satisfied
 - If $(x_u, x_v) \in R_e$
 - at least p 1 of the equations are satisfied
 - at most $p 1 + |R_e| 1 \le 2p 2$ of the equations are satisfied

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

• Let Opt be the maximum number of equations satisfied

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Let Opt be the maximum number of equations satisfied
- If Val(X) = 1, $Opt \ge |E| \cdot (p-1)$

- Let Opt be the maximum number of equations satisfied
- If Val(X) = 1, $Opt \ge |E| \cdot (p 1)$
- If $Val(X) \leq \eta$

$$Opt \leq (1 - \eta)|E| \cdot \eta(p - 1) + \eta|E| \cdot (2p - 2)$$

- Let Opt be the maximum number of equations satisfied
- If Val(X) = 1, $Opt \ge |E| \cdot (p 1)$
- If $Val(X) \leq \eta$

$$\begin{array}{rcl} \textit{Opt} & \leq & (1-\eta)|\textit{E}|\cdot\eta(\textit{p}-1)+\eta|\textit{E}|\cdot(2\textit{p}-2) \\ & \leq & 3\eta\cdot|\textit{E}|\cdot(\textit{p}-1) \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

The conjecture Implications Progress?

Questions!

Per Austrin The Unique Games Conjecture

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで