
On recent attacks against
Cryptographic Hash Functions

Martin Ekerå & Henrik Ygge

1

Outline

‣ First part

‣ Preliminaries

‣ Which cryptographic hash functions exist?

‣ What degree of security do they offer?

‣ An introduction to Wang’s attack

‣ Second part

‣ Wang’s attack applied to MD5

‣ Demo

2

Part I

3

Operators

Symbol Meaning

x ⊞ y Addition modulo 2n

x ⊟ y Subtraction modulo 2n

x ⊕ y Exclusive OR

x ⋀ y Bitwise AND

x ⋁ y Bitwise OR

¬ x The negation of x.

x ≪ s Shifting of x by s bits to the left.

x ⋘ s Rotation of x by s bits to the left.

4

Bitwise Functions

Function

IF (x, y, z) (x ⋀ y) ⋁ ((¬ x) ⋀ z)

XOR (x, y, z) x ⊕ y ⊕ z

MAJ (x, y, z) (x ⋀ y) ⋁ (y ⋀ z) ⋁ (z ⋀ x)

XNO (x, y, z) y ⊕ ((¬ z) ⋁ x)

‣ The functions above are all bitwise.

5

Hash Functions

‣ A hash function maps elements from a finite or infinite domain,
into elements of a fixed size domain.

6

Attacks on Hash Functions

‣ Collision attack
Find m and m’ ≠ m such that H(m) = H(m’).

‣ First pre-image attack
Given h find m such that h = H(m).

‣ Second pre-image attack
Given m find m’ ≠ m such that H(m) = H(m’).

7

Attack Complexities

‣ Collision attack
Naïve complexity O(2n/2) due to the birthday paradox.

‣ First pre-image attack
Naïve complexity O(2n)

‣ Second pre-image attack
Naïve complexity O(2n)

8

Cryptographic Hash Functions

‣ It is desirable for a cryptographic hash function to be collision
resistant, first pre-image resistant and second pre-image resistant.

9

Construction Schemes

Davies-Meyer

‣ The Davies-Meyer scheme builds a compression function C from an
encryption function E.

s

m E

C

11

Merkle-Damgård

‣ The Merkle-Damgård scheme builds a collision resistant hash function H
from a collision resistant compression function C.

C

m1

C

m0

s0
s1

C

mn-1

sn

12

H

A Genealogy

1990 MD4

MD21989

collision found

theoretical attack

only birthday attack

RIPEMD MD5HAVAL-1281992

SHA-11995

SHA-22002

RIPEMD-1601996

SHA-32012

1993 SHA-0

time
13

MD4

‣ Designed by Ron Rivest at MIT in 1990 as a successor to MD2.

‣ Established the basic structure of most hash functions in use today.

14

Structure of MD4

‣ Iterated encryption function

‣ Three rounds with 16 steps in each round.

‣ Encrypts the 128 bit input state under a 512 bit message block.

‣ Compression function created using the Davies-Meyer scheme.

‣ Hash function created using the Merkle-Damgård scheme.

15

E

C

MD4 Compression Function
sj

Yi

mσ(i)

Y47

mσ(47)

Y1

mσ(1)

Y0

mσ(0)

σ Mj

16

(512 bits)

(128 bits)

m0

m1

m15

(32 bits)

sj+1 (128 bits)

MD4 Step Function

a b c d

Fi ki

mσ(i)

a b c d

ri⋘

Yi

s

17

Round Functions & Constants

Round Step Fi ki

1 1 to 16 IF (a, b, c) 0x00000000

2 17 to 32 MAJ (a, b, c) 0x5A827999

3 33 to 48 XOR (a, b, c) 0x6ED9EBA1

18

Attacks on MD4

‣ Last two rounds attacked in 1991 by den Boer and Bosselaers.

‣ Full collision with complexity O(222) by Dobbertin in 1996.

‣ Wang et al. presented an attack in 2004 using "hand calculation" O(28).

‣ The current complexity of finding a collision is less than the complexity of
one pass through the compression function.

‣ MD4 should not be used anymore.

19

MD5

‣ Designed by Ron Rivest in 1992 as a successor to MD4.

‣ A response to the analytic attacks of den Boer and Bosselaers on MD4.

‣ Standardized in RFC 1321 and widely used.

‣ Same overall structure as its predecessor.

‣ One additional round. Different round functions.

‣ Uses a new constant in each step.

‣ Slightly modified step function.

20

MD5 Step Function

a b c d

a b c d

Yi

s

21

Fi ki

mσ(i)

ri⋘

Round Functions & Constants

‣ The 64 steps are divided into 4 rounds with 16 steps each.

‣ A unique constant ki is now used in each step.

Round Step Fi

1 1 to 16 IF (a, b, c)

2 17 to 32 IF (c, a, b)

3 33 to 48 XOR (a, b, c)

4 49 to 64 XNO (a, b, c)

22

Attacks on MD5

‣ Psuedo-collision C(m, s1) = C(m, s2) by den Boer and Bosselaers in 1993.

‣ Psudo-collision C(m1, s1) = C(m2, s2) by Dobbertin in 1996.

‣ Full collision by Wang et al. with complexity O(237) in 2004.

‣ Wang's attack was optimized by Vlastimil Klíma in 2006.

‣ NIST recommends against using MD5.

23

SHA-0

‣ Designed by the NSA and standardized by NIST in 1993.

‣ Was created out of the concerns that the hash digest size of MD5
was becoming too short.

‣ Hash digest length is 160 bits which gives a complexity of O(280) for
a brute force attack.

24

SHA-0

‣ Uses a more complex message expansion:

25

{wi =
mi i < 16

otherwisewi-3 ⊕ wi-8 ⊕ wi-14 ⊕ wi-16

MD5 Step Function

a b c d

a b c d

Yi

s

Fi ki

mσ(i)

ri⋘

26

SHA-0 Step Function

b c d e

b c d e

Yi

s

Fi ki

wi

ri⋘

a

a

27

SHA-0 Step Function

b c d e

b c d e

Yi

s

Fi ki

wi

a

a

28

SHA-0 Step Function

b c d e

b c d e

Yi

s

Fi ki

wi

a

a

29

⋘5

⋘30

Round Functions & Constants

‣ The 80 steps are divided into 4 rounds with 20 steps each.

Round Step Fi ki

1 1 to 20 IF (b, c, d) 0x5A827999

2 21 to 40 XOR (b, c, d) 0x6ED9EBA1

3 41 to 60 MAJ (b, c, d) 0x8F1BBCDC

4 61 to 80 XOR (b, c, d) 0xCA62C1D6

30

Attacks on SHA-0

‣ The first attack was published by Chabaud and Joux in 2002
with complexity O(261).

‣ Biham and Shamir improved upon the attack and reduced the
complexity to O(251).

‣ The first collision was found by Joux in 2004 after 80 000 CPU
hours on a 256 itanium processor cluster.

‣ Wang et al. published an attack in 2005 with complexity O(239).

‣ SHA-0 is not recommended for use by NIST anymore.

31

SHA-1

‣ Standardized by NIST in 1995 as a replacement for SHA-0, in response to
concerns voiced by NSA over a weakness in the message schedule.

‣ NSA never officially explained the nature of the weakness.

‣ More recent studies have verified that this change has strengthened
the hash function.

32

SHA-1

‣ Uses an even more complex message expansion:

33

{wi =
mi i < 16

otherwise(wi-3 ⊕ wi-8 ⊕ wi-14 ⊕ wi-16) ⋘ 1

Attacks on SHA-1

‣ No collision has yet been found, but a theoretical attack with complexity
O(263) was presented by Wang et al. in 2005.

‣ SHA-1 should not be used in new implementations and NIST recommends
that the use of SHA-1 be discontinued by 2010 in favor of SHA-2.

34

SHA-2

‣ Designed by the NSA and standardized by NIST in 2002.

‣ Consists of a family of hash functions

‣ SHA-224

‣ SHA-256

‣ SHA-384

‣ SHA-512

35

SHA-2

‣ More complex message expansion involving shift and rotate operations.

‣ No concept of rounds since the same step function is always used.

Function Digest Length Message Block Length Steps Word Length Max Input Length

SHA-224 224 bits 512 bits 64 32 bit 264 – 1 bits

SHA-256 256 bits 512 bits 64 32 bit 264 – 1 bits

SHA-384 384 bits 1024 bits 80 64 bit 2128 – 1 bits

SHA-512 512 bits 1024 bits 80 64 bit 2128 – 1 bits

36

SHA-2 Step Function

e f g h

e f g h

Yi

s

kiIF

d

d

b ca

b ca

wi

∑1

∑0

MAJ

37

SHA-2

‣ SHA-2 was developed...

‣ ...as a response to the attacks on SHA-0 and SHA-1.

‣ ...since 160 bit digests provide insufficient security.

‣ ...because a more flexible set of hash functions was needed.

‣ ...to provide 64-bit support.

38

Attacks on SHA-2

‣ No theoretical attack has been presented as of yet.

‣ SHA-2 is recommended by NIST and should be used in newly developed
software until the release of SHA-3, which is planned in 2012.

39

SHA-3

‣ Specified as a drop-in replacement for SHA-2.

‣ Same hash digest lengths as SHA-2.

‣ Public competition.

‣ Announced after concerns that an attack would be found on SHA-2.

‣ "Should be secure for several decades to come."

40

41

time

‣ Submissions accepted until the 31st of October 2008.2008

‣ First round candidates to be presented in 2009.2009

‣ Final candidates to be announced in 2010.2010

‣ The 2nd of November 2007, NIST sent out a formal request for candidate
algorithms for the standardization of SHA-3.2007

‣ Standard to be presented in 2012.2012

SHA-3 Timeline

Wang's Attack

42

Wang's attack

‣ In 2004 Wang et al. presented the first collisions on MD5,
RIPEMD and HAVAL-128, as well as a new collision on MD4.

‣ They used a differential attack to analyze how small message and input
state differences propagate through the step functions.

‣ It is a generic attack which is applicable to most iterated hash functions.

‣ Used to find a collision on SHA-0 in 2004, as well as a collision on
SHA-1 reduced to 58 steps.

43

Outline of Wang's Attack

‣ Select an appropriate message difference ∂M.

‣ Select an input state difference ∂s.

‣ Derive a differential path describing how differences propagate
through the step function.

44

Outline of Wang's Attack

∂sj,1

sj,n + ∂sj,n + sj + ∂sj = sj+1 + ∂sj+1sj,n + sj = sj+1

∂sj + ∂sj,n

σ Mj + ∂MjσMj

Y0

sj

sj,1

Y0

sj + ∂sj

sj,1 + ∂sj,1

Y1 Y1

sj,2 sj,2 + ∂sj,2

∂sj,2

Yi Yi

Yn-1 Yn-1

sj,n sj,n + ∂sj,n

∂sj,n

45

Outline of Wang's Attack

‣ Derive a set of pseudo-sufficient conditions on bit differences
in the intermediary states, for the differential path to hold.

‣ Employ message modification techniques to efficiently search
for a message M that fulfills the conditions for the unperturbed
left branch.

‣ Then, the messages M and M + ∂M with input states s and s + ∂s
give the desired output difference.

‣ We can select differences to obtain collisions.

46

Part II

47

Another look at MD5

a b c d

a b c d

Yi

s

48

Fi ki

mσ(i)

ri⋘

Another look at MD5

‣ Only the A register is updated in each step

‣ Create a vector Q = [q-3, .. q1, .., q64] where

‣ qi is the value set in the A register in step i > 0

‣ q-3 to q0 are the IV values

49

MD5 Step Function

qi-1 qi-2 qi-3 qi-4

qi qi-1 qi-2 qi-3

Yi

s

Fi ki

mσ(i)

ri⋘

‣ Or on equation form

qi = qi-1 ⊞ (qi-4 ⊞ Fi (qi-1, qi-2, qi-3) ⊞ mσ(i) ⊞ ki) ⋘ ri

Ti50

Round Functions & Constants

‣ The 64 steps are divided into 4 rounds with 16 steps each.

‣ A unique constant ki is now used in each step.

Round Step Fi

1 1 to 16 IF (qi-1, qi-2, qi-3)

2 17 to 32 IF (qi-3, qi-1, qi-2)

3 33 to 48 XOR (qi-1, qi-2, qi-3)

4 49 to 64 XNO (qi-1, qi-2, qi-3)

51

The Permutation σ
‣ Sigma is a permutation of the message words, such that each message

word is used exactly once in each round.

Round Step i σ(i)

1 1 to 16 i-1

2 17 to 32 (5(i-1) + 1) mod 16

3 33 to 48 (3(i-1) + 5) mod 16

4 49 to 64 7(i-1) mod 16

52

The Rotational Constants ri

‣ Four rotational constants are used cyclically in each round.

Round Step i ri

1 1 to 16 7, 12, 17, 22, 7, 12, ...

2 17 to 32 5, 9, 14, 20, 5, 9, ...

3 33 to 48 4, 11, 16, 23, 4, 11, ...

4 49 to 64 6, 10, 15, 21, 6, 10, ...

53

Wang's Attack

54

Wang's Attack

∂s1
M0 C

s0

s1

C

s0 ⊞ ∂s0

s1 ⊞ ∂s1

C C

s2 s2 ⊞ ∂s2

∂s2

C C

C C

sn sn ⊞ ∂sn

∂sn

M1

Mi

Mn-1

M0 ⊞ ∂M0

M1 ⊞ ∂M1

Mi ⊞ ∂Mi

Mn-1 ⊞ ∂Mn-1

55

Wang's Attack

∂s1
M0 C

s0

s1

C

s'0

s'1

C C

s2 s'2
∂s2

C C

C C

sn s'n

∂sn

M1

Mi

Mn-1

M'0

M'1

M'i

M'n-1

‣ Let x' = x ⊞ ∂x.

Tracking Differences

‣ We seek to track how differences propagate between steps...

‣ ...that is how bits differ between qi and q'i in each step.

‣ The differences are expressed additively as ∂qi = q'i ⊟ qi.

‣ Also, the differences are expressed as binary signed digit
representations ∆qi, which specify the bitwise difference.

∆qi [j] qi [j] q'i [j]

. 0 0

. 1 1

+ 0 1

- 1 0

57

Observations on the MD5
Round Functions

58

Observations on the MD5
Round Functions

Function Absorbs Flip 1 Flip 2 Flip 3

IF Yes Maybe Maybe Maybe

XOR No Yes No Yes

XNO Yes Maybe Maybe Maybe

‣ Flip N means that the function will change the output bit if N input bits are flipped.

59

Observations on the MD5
Round Functions

‣ The third round is critical, since one may not use the round function
to absorb any single input bit differences.

‣ Select a message difference ∂M to handle the third round.

60

Selecting Message Differences

61

Selecting Message Differences

‣ If four consecutive ∂q values in the third round are set to 231

‣ ... and no message words interfere further down ...

‣ ... then all remaining ∂q values in the third round will be set to 231.

62

Proof by Induction

qi = qi-1 ⊞ (qi-4 ⊞ Fi (qi-1, qi-2, qi-3) ⊞ mσ(i) ⊞ ki) ⋘ ri

q'i = q'i-1 ⊞ (q'i-4 ⊞ Fi (q'i-1, q'i-2, q'i-3) ⊞ m'σ(i) ⊞ ki) ⋘ ri

q'i = q'i-1 ⊞ (q'i-4 ⊞ XOR (qi-1 ⊞ 231, qi-2 ⊞ 231, qi-3 ⊞ 231) ⊞ mσ(i) ⊞ ki) ⋘ ri

q'i = q'i-1 ⊞ (q'i-4 ⊞ (qi-1 ⊕ 231) ⊕ (qi-2 ⊕ 231) ⊕ (qi-3 ⊕ 231) ⊞ mσ(i) ⊞ ki) ⋘ ri

q'i = q'i-1 ⊞ (qi-4 ⊞ 231 ⊞ (qi-1 ⊕ qi-2 ⊕ qi-3) ⊞ 231 ⊞ mσ(i) ⊞ ki) ⋘ ri

q'i = qi-1 ⊞ 231 ⊞ (qi-4 ⊞ (qi-1 ⊕ qi-2 ⊕ qi-3) ⊞ mσ(i) ⊞ ki) ⋘ ri

q'i = qi ⊞ 231

∂mσ(i) = 0 and ∂q'i-1 = ∂q'i-2 = ∂q'i-3 = ∂q'i-4 = 231 and Fi = XOR

63

Selecting Message Differences

‣ Assume that the last four ∂q values in the second round are zero

 ∂q29 = ∂q30 = ∂q31 = ∂q32 = 0

‣ Pick four message word differences so as to obtain

 ∂qi = ... = ∂qi+3 = 231

at some point in the third round.

64

∂qi = ∂mσ(i) ⋘ ri = 231

Selecting Message Differences

∂qi = ∂qi-1 ⊞ (∂qi-4 ⊞ ∂Fi (qi-1, qi-2, qi-3) ⊞ ∂mσ(i)) ⋘ ri

∂qi-1 = ∂qi-2 = ∂qi-3 = ∂qi-4 = 0

∂qi+1 = ∂qi ⊞ (∂qi-3 ⊞ ∂Fi (qi, qi-1, qi-2) ⊞ ∂mσ(i+1)) ⋘ ri+1

∂qi+1 = 231 ⊞ (231 ⊞ ∂mσ(i+1)) ⋘ ri+1 = 231

∂qi+2 = ∂qi+1 ⊞ (∂qi-2 ⊞ ∂Fi (qi+1, qi, qi-1) ⊞ ∂mσ(i+2)) ⋘ ri+2

∂qi+2 = 231 ⊞ (∂mσ(i+2)) ⋘ ri+2 = 231

∂qi+3 = ∂qi+2 ⊞ (∂qi-1 ⊞ ∂Fi (qi+2, qi+1, qi) ⊞ ∂mσ(i+3)) ⋘ ri+3

∂qi+3 = 231 ⊞ (231 ⊞ ∂mσ(i+3)) ⋘ ri+3 = 231 ⇒ ∂mσ(i+3) = 231

⇒ ∂mσ(i) = 231 – ri

⇒ ∂mσ(i+1) = 231

⇒ ∂mσ(i+2) = 0

65

IV

unknown

assume ∂q = 0

∂q = 0

∂q = 231

unknown

Round 1

Round 2

Round 3

Round 4

66

Additional Constraints for
the Fourth Round

‣ In the fourth round, it is often trivial to handle differences in
the 31st bit but difficult to handle differences in other bits.

‣ Therefore, we need the difference that is in bit 31 – ri to
enter late into the fourth round.

‣ This is the case for Wang's path.

67

Wang's Message Differences
Step i σ(i) ∂mσ(i)

33 5 0

34 8 0

35 11 215

36 14 231

37 1 0

38 4 231

39 7 0

40 10 0

41 13 0

42 0 0

43 3 0

44 6 0

45 9 0

46 12 0

47 15 0

48 2 0

Step i σ(i) ∂mσ(i)

49 0 0

50 7 0

51 14 231

52 5 0

53 12 0

54 3 0

55 10 0

56 1 0

57 8 0

58 15 0

59 6 0

60 13 0

61 4 231

62 11 215

63 2 0

64 9 0

Round 3 Round 4

Output Difference

‣ The output difference is given by

 (231, 231 ⊞ 225, 231 ⊞ 225, 231 ⊞ 225)

69

Forward & Backward
Differential Derivation

70

IV

unknown

assume ∂q = 0

∂q = 0

∂q = 231

slightly perturbed ∂q

Round 1

Round 2

Round 3

Round 4

forward compute

backward compute

71

Forward Differential Derivation

‣ The round functions Fi are bitwise and depend on qi–1, qi–2 and qi–3.

‣ If we know the binary signed digit representations ∆qi–1, ∆qi–2 and
∆qi–3, then we know the possible values of ∆Fi.

72

∂Fi

........+.+.∆qi-3 =

........-.+.∆qi-2 =

......+.∆qi-1 =

‣ Consider an example in the first round where Fi = IF(qi–1, qi–2, qi–3).

........±.+.∆Fi =
fixed differencevariable difference

±

73

∂Fi

........+.+.∆qi-3 =

........-.+.∆qi-2 =

......+.∆qi-1 =

‣ Consider an example in the first round where Fi = IF(qi–1, qi–2, qi–3).

........+.+.∆Fi =
fixed differencevariable difference

74

∂Fi

........+.+.∆qi-3 =

......^.-.+.∆qi-2 =

......+.0.∆qi-1 =

‣ Consider an example in the first round where Fi = IF(qi–1, qi–2, qi–3).

........+.+.∆Fi =
fixed differencevariable difference

‣ Select the desired ∆Fi and impose additional conditions on the . bits.

75

Additional Differential
Conditions

Symbol Step i

. qi = q'i

1 qi = q'i = 1

0 qi = q'i = 0

+ qi = 0 and q'i = 1

- qi = 1 and q'i = 0

^ qi = qi-1 and q'i = q'i-1

! qi ≠ qi-1 and q'i ≠ q'i-1

76

∂Ti and ∂qi

‣ If we know ∆Fi, we know which ∂Ti values are obtainable, since

 ∂Ti = ∂qi-4 ⊞ ∆Fi ⊞ ∂mσ(i)

‣ Then we have at most four possible values of

 ∂qi = ∂qi–1 ⊞ (∂Ti ⋘ ri)

‣ Select a ∂qi and select a BSDR representation ∆qi.

‣ It is appropriate to minimize the number of set signed bits in ∆qi.

77

Backward Differential
Derivation

‣ Analogous to forward differential derivation.

78

IV

forward compute

unknown

backward compute

assume ∂q = 0

∂q = 0

∂q = 231

slightly perturbed ∂q

Round 1

Round 2

Round 3

Round 4

79

Joining the Partial Paths

80

Joining the Paths

‣ We need to join the paths over four consecutive steps.

‣ That is, select a set of compatible BSDRs ∆qk, ∆qk+1, ∆qk+2, ∆qk+3

‣ These BSDRs may have a lot of set signed bits.

‣ It is trivial to respect conditions in the first round.

‣ Select k such that k + 3 ≤ 16

81

Joining Column-wise

‣ Estimate or "guess" values of ∂qk to ∂qk+3

‣ The paths may be joined column-wise from step k – 4 to k + 7.

‣ The most computationally intense step.

‣ May fail, in which case new partial paths must be selected.

82

The Second Block

83

The Second Block

‣ Negate the message word differences.

‣ Proceed in the same way as for the first block.

‣ In general, the output from encrypting the second block is then
the negation of the encryption of the first block.

‣ When these are added in the Davies-Meyer scheme, we
obtain a two block collision!

84

Collision Search

85

Collision Search

‣ Find a message M which follows the differential path.

‣ Use single-message modification in the first round.

‣ Compute rounds 2 to 4 and verify each step.

86

Single Message Modification

‣ In the first round, there exists a bijection between mσ(i) and qi

provided that qi-4 to qi-1 have been fixed.

qi = qi-1 ⊞ (qi-4 ⊞ Fi (qi-1, qi-2, qi-3) ⊞ mσ(i) ⊞ ki) ⋘ ri

mσ(i) = ((qi ⊟ qi-1) ⋙ ri) ⊟ qi-4 ⊟ Fi (qi-1, qi-2, qi-3) ⊟ ki

‣ For i = 1, .., 16, simply select qi by randomizing the . bits.

‣ Set the other bits to respect conditions such as ^, !, 0, 1, etc.

‣ Compute the message word mi-1 using the formula above.

87

Verification

‣ Compute the step function for steps 17 up to 64 and verify that
the sought BSDRs are indeed obtained in each step.

‣ Every condition after step 16 increases the complexity.

‣ If there are n conditions after step 16, complexity O(2n)

‣ Wang's first path has 37 such conditions, giving O(237).

‣ This is why we joined the paths in the first round.

88

Complexity Analysis

‣ In the second blocks, there are differences in the IV.

‣ Some of the bits in the IV will be fixed by the Fi functions when
the differential path for the second block is constructed.

‣ If there are m additional conditions on the IV then the complexity
will increase with a factor 2m since we need to find ≈ 2m messages
that pass the first path before we can start with the second block.

‣ Total complexity O(2m+n) for the first block.

89

Optimizations

90

Tunnels

‣ Vlastimil Klíma introduced the concept of tunnels in March of 2006.

‣ Tunnels provide a means of varying the message words slightly
without recomputing all steps in rounds 2.

‣ Using tunnels reduces the search complexity.

91

Tunnels

‣ As an example, consider steps 9 to 13 in the first round.

q9 = q8 ⊞ (q5 ⊞ IF(q8, q7, q6) ⊞ m8 ⊞ k9) ⋘ r9

q10 = q9 ⊞ (q6 ⊞ IF(q9, q8, q7) ⊞ m9 ⊞ k10) ⋘ r10

q11 = q10 ⊞ (q7 ⊞ IF(q10, q9, q8) ⊞ m10 ⊞ k11) ⋘ r11

q12 = q11 ⊞ (q8 ⊞ IF(q11, q10, q9) ⊞ m11 ⊞ k12) ⋘ r12

q13 = q12 ⊞ (q9 ⊞ IF(q12, q11, q10) ⊞ m12 ⊞ k13) ⋘ r13

92

Tunnels

‣ As an example, consider steps 9 to 13 in the first round.

q9 = q8 ⊞ (q5 ⊞ IF(q8, q7, q6) ⊞ m8 ⊞ k9) ⋘ r9

q10 = q9 ⊞ (q6 ⊞ IF(q9, q8, q7) ⊞ m9 ⊞ k10) ⋘ r10

q11 = q10 ⊞ (q7 ⊞ IF(q10, q9, q8) ⊞ m10 ⊞ k11) ⋘ r11

q12 = q11 ⊞ (q8 ⊞ IF(q11, q10, q9) ⊞ m11 ⊞ k12) ⋘ r12

q13 = q12 ⊞ (q9 ⊞ IF(q12, q11, q10) ⊞ m12 ⊞ k13) ⋘ r13

‣ We seek to vary q9 whilst keeping q10 to q13 constant.

‣ Only vary bits in q9 for which q10 = 0 and q11 = 1.

93

Tunnels

‣ As an example, consider steps 9 to 13 in the first round.

q9 = q8 ⊞ (q5 ⊞ IF(q8, q7, q6) ⊞ m8 ⊞ k9) ⋘ r9

q10 = q9 ⊞ (q6 ⊞ IF(q9, q8, q7) ⊞ m9 ⊞ k10) ⋘ r10

q11 = q10 ⊞ (q7 ⊞ q8 ⊞ m10 ⊞ k11) ⋘ r11

q12 = q11 ⊞ (q8 ⊞ q10 ⊞ m11 ⊞ k12) ⋘ r12

q13 = q12 ⊞ (q9 ⊞ IF(q12, q11, q10) ⊞ m12 ⊞ k13) ⋘ r13

‣ We seek to vary q9 whilst keeping q10 to q13 constant.

‣ Only vary bits in q9 for which q10 = 0 and q11 = 1.

‣ We then only have to recompute m8, m9 and m12.

94

Tunnels

‣ In the second round, m9 is first to appear, in step 25.

q17 = q16 ⊞ (q13 ⊞ IF(q14, q16, q15) ⊞ m1 ⊞ k17) ⋘ r17

q18 = q17 ⊞ (q14 ⊞ IF(q15, q17, q16) ⊞ m6 ⊞ k18) ⋘ r18

q19 = q18 ⊞ (q15 ⊞ IF(q16, q18, q17) ⊞ m11 ⊞ k19) ⋘ r19

q20 = q19 ⊞ (q16 ⊞ IF(q17, q19, q18) ⊞ m0 ⊞ k20) ⋘ r20

q21 = q20 ⊞ (q17 ⊞ IF(q18, q20, q19) ⊞ m5 ⊞ k21) ⋘ r21

q22 = q21 ⊞ (q18 ⊞ IF(q19, q21, q20) ⊞ m10 ⊞ k22) ⋘ r22

q23 = q22 ⊞ (q19 ⊞ IF(q20, q22, q21) ⊞ m15 ⊞ k23) ⋘ r23

q24 = q23 ⊞ (q20 ⊞ IF(q21, q23, q22) ⊞ m4 ⊞ k24) ⋘ r24

q25 = q24 ⊞ (q21 ⊞ IF(q22, q24, q23) ⊞ m9 ⊞ k25) ⋘ r25

‣ If we had not used the tunnel, we would have had to begin at step 19.

‣ There are a lot of conditions in steps 17 to 24 that may be skipped.
95

Tunnels

‣ There are more tunnels in MD5 which may be combined.

‣ This reduces the search complexity considerably.

‣ Tunnels exist in some other hash functions as well.

96

Demo & Questions

97

Thanks!

98

