On recent attacks against Cryptographic Hash Functions

Martin Ekerå & Henrik Ygge

Outline

First part

- Preliminaries
- Which cryptographic hash functions exist?
 - What degree of security do they offer?
- An introduction to Wang's attack

Second part

- Wang's attack applied to MD5
- Demo

Part I

Operators

Symbol	Meaning		
x⊞y	Addition modulo 2 ⁿ		
x∃y	Subtraction modulo 2 ⁿ		
$x \oplus y$	Exclusive OR		
×∧y	Bitwise AND		
$x \vee y$	Bitwise OR		
¬х	The negation of x.		
x ≪ s	Shifting of x by s bits to the left.		
x ≪ s	Rotation of x by s bits to the left.		

Bitwise Functions

Function	
IF (x, y, z)	$(x \wedge y) \vee ((\neg x) \wedge z)$
XOR (x, y, z)	$x \oplus y \oplus z$
MAJ (x, y, z)	$(x \wedge y) \vee (y \wedge z) \vee (z \wedge x)$
XNO (x, y, z)	y ⊕ ((¬ z) ∨ x)

The functions above are all bitwise.

Hash Functions

A hash function maps elements from a finite or infinite domain, into elements of a fixed size domain.

Attacks on Hash Functions

- Collision attack
 Find m and m' ≠ m such that H(m) = H(m').
- First pre-image attack
 Given h find m such that h = H(m).
- Second pre-image attack
 Given m find m' ≠ m such that H(m) = H(m').

Attack Complexities

- Collision attack
 Naïve complexity $O(2^{n/2})$ due to the birthday paradox.
- First pre-image attack
 Naïve complexity O(2ⁿ)
- Second pre-image attack Naïve complexity O(2ⁿ)

Cryptographic Hash Functions

It is desirable for a **cryptographic** hash function to be collision resistant, first pre-image resistant and second pre-image resistant.

Construction Schemes

Davies-Meyer

The Davies-Meyer scheme builds a compression function $\mathcal C$ from an encryption function $\mathcal E$.

Merkle-Damgård

The Merkle-Damgård scheme builds a collision resistant hash function H from a collision resistant compression function C.

A Genealogy

MD4

- Designed by Ron Rivest at MIT in 1990 as a successor to MD2.
- Established the basic structure of most hash functions in use today.

Structure of MD4

- Iterated encryption function
 - Three rounds with 16 steps in each round.
 - Encrypts the 128 bit input state under a 512 bit message block.
- Compression function created using the Davies-Meyer scheme.
- Hash function created using the Merkle-Damgård scheme.

MD4 Compression Function

MD4 Step Function

Round Functions & Constants

Round	Step	Fi	k _i
	I to 16	IF (a, b, c)	0x0000000
2	17 to 32	MAJ (a, b, c)	0x5A827999
3	33 to 48	XOR (a, b, c)	0x6ED9EBA1

Attacks on MD4

- Last two rounds attacked in 1991 by den Boer and Bosselaers.
- Full collision with complexity $O(2^{22})$ by Dobbertin in 1996.
- Wang et al. presented an attack in 2004 using "hand calculation" $O(2^8)$.

- The current complexity of finding a collision is less than the complexity of one pass through the compression function.
- MD4 should not be used anymore.

MD5

- Designed by Ron Rivest in 1992 as a successor to MD4.
 - A response to the analytic attacks of den Boer and Bosselaers on MD4.
- Standardized in RFC 1321 and widely used.
- Same overall structure as its predecessor.
 - One additional round. Different round functions.
 - Uses a new constant in each step.
 - Slightly modified step function.

MD5 Step Function

Round Functions & Constants

Round	Step	F _i
	1 to 16	IF (a, b, c)
2	17 to 32	IF (c, a, b)
3	33 to 48	XOR (a, b, c)
4	49 to 64	XNO (a, b, c)

- The 64 steps are divided into 4 rounds with 16 steps each.
- \blacktriangleright A unique constant k_i is now used in each step.

Attacks on MD5

- Psuedo-collision $C(m, s_1) = C(m, s_2)$ by den Boer and Bosselaers in 1993.
- Psudo-collision $C(m_1, s_1) = C(m_2, s_2)$ by Dobbertin in 1996.
- Full collision by Wang et al. with complexity $O(2^{37})$ in 2004.
 - Wang's attack was optimized by Vlastimil Klíma in 2006.

NIST recommends against using MD5.

SHA-0

- Designed by the NSA and standardized by NIST in 1993.
- Was created out of the concerns that the hash digest size of MD5 was becoming too short.
- Hash digest length is 160 bits which gives a complexity of $O(2^{80})$ for a brute force attack.

SHA-0

Uses a more complex message expansion:

$$W_i = \begin{cases} m_i & i < 16 \\ w_{i-3} \oplus w_{i-8} \oplus w_{i-14} \oplus w_{i-16} & \text{otherwise} \end{cases}$$

MD5 Step Function

SHA-0 Step Function

SHA-0 Step Function

SHA-0 Step Function

Round Functions & Constants

Round	Step	Fi	k _i
	I to 20	IF (b, c, d)	0x5A827999
2	21 to 40	XOR (b, c, d)	0x6ED9EBA1
3	41 to 60	MAJ (b, c, d)	0x8F1BBCDC
4	61 to 80	XOR (b, c, d)	0xCA62C1D6

The 80 steps are divided into 4 rounds with 20 steps each.

Attacks on SHA-0

- The first attack was published by Chabaud and Joux in 2002 with complexity $O(2^{6l})$.
- Biham and Shamir improved upon the attack and reduced the complexity to $O(2^{5l})$.
- The first collision was found by Joux in 2004 after 80 000 CPU hours on a 256 itanium processor cluster.
- Wang et al. published an attack in 2005 with complexity $O(2^{39})$.

SHA-0 is not recommended for use by NIST anymore.

SHA-I

- Standardized by NIST in 1995 as a replacement for SHA-0, in response to concerns voiced by NSA over a weakness in the message schedule.
- NSA never officially explained the nature of the weakness.
- More recent studies have verified that this change has strengthened the hash function.

SHA-I

Uses an even more complex message expansion:

$$W_{i} = \begin{cases} m_{i} & i < 16 \\ (w_{i-3} \oplus w_{i-8} \oplus w_{i-14} \oplus w_{i-16}) \ll 1 & \text{otherwise} \end{cases}$$

Attacks on SHA-I

No collision has yet been found, but a theoretical attack with complexity $O(2^{63})$ was presented by Wang et al. in 2005.

SHA-I should not be used in new implementations and NIST recommends that the use of SHA-I be discontinued by 2010 in favor of SHA-2.

SHA-2

- Designed by the NSA and standardized by NIST in 2002.
- Consists of a family of hash functions
 - ► SHA-224
 - ▶ SHA-256
 - ▶ SHA-384
 - ▶ SHA-512

SHA-2

Function	Digest Length	Message Block Length	Steps	Word Length	Max Input Length
SHA-224	224 bits	512 bits	64	32 bit	2 ⁶⁴ – 1 bits
SHA-256	256 bits	512 bits	64	32 bit	2 ⁶⁴ – 1 bits
SHA-384	384 bits	1024 bits	80	64 bit	2 ¹²⁸ – 1 bits
SHA-512	512 bits	1024 bits	80	64 bit	2 ¹²⁸ – 1 bits

- More complex message expansion involving shift and rotate operations.
- No concept of rounds since the same step function is always used.

SHA-2 Step Function

SHA-2

- SHA-2 was developed...
 - ...as a response to the attacks on SHA-0 and SHA-1.
 - ...since 160 bit digests provide insufficient security.
 - ...because a more flexible set of hash functions was needed.
 - ...to provide 64-bit support.

Attacks on SHA-2

- No theoretical attack has been presented as of yet.
- SHA-2 is recommended by NIST and should be used in newly developed software until the release of SHA-3, which is planned in 2012.

SHA-3

- Specified as a drop-in replacement for SHA-2.
 - Same hash digest lengths as SHA-2.
- Public competition.
 - Announced after concerns that an attack would be found on SHA-2.
 - "Should be secure for several decades to come."

SHA-3 Timeline

The 2nd of November 2007, NIST sent out a formal request for candidate algorithms for the standardization of SHA-3.

Submissions accepted until the 31st of October 2008.

First round candidates to be presented in 2009.

Final candidates to be announced in 2010.

Standard to be presented in 2012.

time

- In 2004 Wang et al. presented the first collisions on MD5, RIPEMD and HAVAL-128, as well as a new collision on MD4.
- They used a differential attack to analyze how small message and input state differences propagate through the step functions.
- It is a generic attack which is applicable to most iterated hash functions.
- Used to find a collision on SHA-0 in 2004, as well as a collision on SHA-1 reduced to 58 steps.

Outline of Wang's Attack

- Select an appropriate message difference ∂M.
- Select an input state difference ∂s.
- Derive a differential path describing how differences propagate through the step function.

Outline of Wang's Attack

Outline of Wang's Attack

- Derive a set of pseudo-sufficient conditions on bit differences in the intermediary states, for the differential path to hold.
- Employ message modification techniques to efficiently search for a message M that fulfills the conditions for the unperturbed left branch.
- Then, the messages M and M + ∂ M with input states s and s + ∂ s give the desired output difference.
 - We can select differences to obtain collisions.

Part II

Another look at MD5

Another look at MD5

- Only the A register is updated in each step
 - Create a vector $Q = [q_{-3}, .., q_1, .., q_{64}]$ where
 - q_i is the value set in the A register in step i > 0
 - q_{-3} to q_0 are the IV values

MD5 Step Function

Or on equation form

$$q_i = q_{i\text{-}1} \boxplus \underbrace{\left(\ q_{i\text{-}4} \boxplus \ F_i \left(q_{i\text{-}1}, q_{i\text{-}2}, q_{i\text{-}3} \right) \boxplus \ m_{\sigma(i)} \boxplus \ k_i \right)}_{50} \ll r_i$$

Round Functions & Constants

Round	Step	F _i
	1 to 16	IF $(q_{i-1}, q_{i-2}, q_{i-3})$
2	17 to 32	IF (q _{i-3} , q _{i-1} , q _{i-2})
3	33 to 48	XOR (q _{i-1} , q _{i-2} , q _{i-3})
4	49 to 64	XNO (q _{i-1} , q _{i-2} , q _{i-3})

- The 64 steps are divided into 4 rounds with 16 steps each.
- A unique constant k_i is now used in each step.

The Permutation of

Sigma is a permutation of the message words, such that each message word is used exactly once in each round.

Round	Step i	σ (i)
	l to 16	i-l
2	17 to 32	(5(i-1) + 1) mod 16
3	33 to 48	(3(i-1) + 5) mod 16
4	49 to 64	7(i-1) mod 16

The Rotational Constants ri

Four rotational constants are used cyclically in each round.

Round	Step i	r_i
	l to 16	7, 12, 17, 22, 7, 12,
2	17 to 32	5, 9, 14, 20, 5, 9,
3	33 to 48	4, 11, 16, 23, 4, 11,
4	49 to 64	6, 10, 15, 21, 6, 10,

Tracking Differences

- We seek to track how differences propagate between steps...
 - ...that is how bits differ between qi and q'i in each step.
- The differences are expressed additively as $\partial q_i = q'_i \boxminus q_i$.
- Also, the differences are expressed as binary signed digit representations Δq_i , which specify the bitwise difference.

Δq _i [j]	q; [j]	q'; [j]
	0	0
	1	I
+	0	I
-	I	0

Observations on the MD5 Round Functions

Observations on the MD5 Round Functions

Function	Absorbs	Flip I	Flip 2	Flip 3
IF	Yes	Maybe	Maybe	Maybe
XOR	No	Yes	No	Yes
XNO	Yes	Maybe	Maybe	Maybe

Flip N means that the function will change the output bit if N input bits are flipped.

Observations on the MD5 Round Functions

- The third round is critical, since one may not use the round function to absorb any single input bit differences.
- ▶ Select a message difference ∂M to handle the third round.

Selecting Message Differences

Selecting Message Differences

- If four consecutive ∂q values in the third round are set to 2^{31}
 - ... and no message words interfere further down ...
 - ... then all remaining ∂q values in the third round will be set to 2^{31} .

Proof by Induction

$$\begin{split} \partial m_{\sigma(i)} &= 0 \quad \text{and} \quad \partial q'_{i\text{-}1} = \partial q'_{i\text{-}2} = \partial q'_{i\text{-}3} = \partial q'_{i\text{-}4} = 2^{31} \quad \text{and} \quad F_i = XOR \\ q_i &= q_{i\text{-}1} \boxplus \left(\ q_{i\text{-}4} \boxplus \ F_i \left(q_{i\text{-}1}, q_{i\text{-}2}, q_{i\text{-}3} \right) \boxplus \ m_{\sigma(i)} \boxplus \ k_i \right) \ll r_i \\ q'_i &= q'_{i\text{-}1} \boxplus \left(\ q'_{i\text{-}4} \boxplus \ F_i \left(q'_{i\text{-}1}, q'_{i\text{-}2}, q'_{i\text{-}3} \right) \boxplus \ m'_{\sigma(i)} \boxplus \ k_i \right) \ll r_i \end{split}$$

$$\begin{array}{l} q'_i=q'_{i\text{-}1} \boxplus \left(\ q'_{i\text{-}4} \boxplus \ XOR \left(q_{i\text{-}1} \boxplus \ 2^{31}, q_{i\text{-}2} \boxplus \ 2^{31}, q_{i\text{-}3} \boxplus \ 2^{31} \right) \boxplus \ m_{\sigma(i)} \boxplus \ k_i \right) \ll r_i \\ \\ q'_i=q'_{i\text{-}1} \boxplus \left(\ q'_{i\text{-}4} \boxplus \left(q_{i\text{-}1} \oplus \ 2^{31} \right) \oplus \left(q_{i\text{-}2} \oplus \ 2^{31} \right) \oplus \left(q_{i\text{-}3} \oplus \ 2^{31} \right) \boxplus \ m_{\sigma(i)} \boxplus \ k_i \right) \ll r_i \\ \\ q'_i=q'_{i\text{-}1} \boxplus \left(\ q_{i\text{-}4} \boxplus \ 2^{31} \boxplus \left(q_{i\text{-}1} \oplus q_{i\text{-}2} \oplus q_{i\text{-}3} \right) \boxplus \ 2^{31} \boxplus \ m_{\sigma(i)} \boxplus \ k_i \right) \ll r_i \\ \\ q'_i=q_{i\text{-}1} \boxplus \ 2^{31} \boxplus \left(\ q_{i\text{-}4} \boxplus \left(q_{i\text{-}1} \oplus q_{i\text{-}2} \oplus q_{i\text{-}3} \right) \boxplus \ m_{\sigma(i)} \boxplus \ k_i \right) \ll r_i \\ \\ q'_i=q_i \boxplus \ 2^{31} \end{array}$$

Selecting Message Differences

Assume that the last four ∂q values in the second round are zero

$$\partial q_{29} = \partial q_{30} = \partial q_{31} = \partial q_{32} = 0$$

Pick four message word differences so as to obtain

$$\partial q_i = ... = \partial q_{i+3} = 2^{31}$$

at some point in the third round.

Selecting Message Differences

$$\begin{split} \partial q_{i-1} &= \partial q_{i-2} = \partial q_{i-3} = \partial q_{i-4} = 0 \\ \partial q_i &= \partial q_{i-1} \boxplus \left(\partial q_{i-4} \boxplus \partial F_i \left(q_{i-1}, q_{i-2}, q_{i-3} \right) \boxplus \partial m_{\sigma(i)} \right) \ll r_i \\ \partial q_i &= \partial m_{\sigma(i)} \ll r_i = 2^{31} \\ \partial q_{i+1} &= \partial q_i \boxplus \left(\partial q_{i-3} \boxplus \partial F_i \left(q_i, q_{i-1}, q_{i-2} \right) \boxplus \partial m_{\sigma(i+1)} \right) \ll r_{i+1} \\ \partial q_{i+1} &= 2^{31} \boxplus \left(2^{31} \boxplus \partial m_{\sigma(i+1)} \right) \ll r_{i+1} = 2^{31} \\ \partial q_{i+2} &= \partial q_{i+1} \boxplus \left(\partial q_{i-2} \boxplus \partial F_i \left(q_{i+1}, q_i, q_{i-1} \right) \boxplus \partial m_{\sigma(i+2)} \right) \ll r_{i+2} \\ \partial q_{i+2} &= 2^{31} \boxplus \left(\partial m_{\sigma(i+2)} \right) \ll r_{i+2} = 2^{31} \\ \partial q_{i+3} &= \partial q_{i+2} \boxplus \left(\partial q_{i-1} \boxplus \partial F_i \left(q_{i+2}, q_{i+1}, q_i \right) \boxplus \partial m_{\sigma(i+3)} \right) \ll r_{i+3} \\ \partial q_{i+3} &= 2^{31} \boxplus \left(2^{31} \boxplus \partial m_{\sigma(i+3)} \right) \ll r_{i+3} = 2^{31} \\ &\Rightarrow \partial m_{\sigma(i+3)} = 2^{31} \end{split}$$

Additional Constraints for the Fourth Round

- In the fourth round, it is often trivial to handle differences in the 31st bit but difficult to handle differences in other bits.
- Therefore, we need the difference that is in bit $31 r_i$ to enter late into the fourth round.
 - This is the case for Wang's path.

Wang's Message Differences

Round 3

Step i	σ(i)	∂m _{σ(i)}
33	5	0
34	8	0
35	H	215
36	14	231
37	I	0
38	4	231
39	7	0
40	10	0
41	13	0
42	0	0
43	3	0
44	6	0
45	9	0
46 47	12	0
47	15	0
48	2	0

Round 4

Step i	σ (i)	$\partial m_{\sigma(i)}$
49	0	0
50	7	0
51	14	231
52	5	0
53	12	0
54	3	0
55	10	0
56		0
57	8	0
58	15	0
59	6	0
60	13	0
61	4	231
62	Ш	215
63	2	0
64	9	0

Output Difference

The output difference is given by

$$(2^{31}, 2^{31} \oplus 2^{25}, 2^{31} \oplus 2^{25}, 2^{31} \oplus 2^{25})$$

Forward & Backward Differential Derivation

Forward Differential Derivation

- The round functions F_i are bitwise and depend on q_{i-1} , q_{i-2} and q_{i-3} .
 - If we know the binary signed digit representations Δq_{i-1} , Δq_{i-2} and Δq_{i-3} , then we know the possible values of ΔF_i .

Consider an example in the first round where $F_i = IF(q_{i-1}, q_{i-2}, q_{i-3})$.

$$\Delta q_{i-3} = \ldots + \ldots + \ldots$$

$$\Delta q_{i-2} = \ldots \ldots \ldots \ldots$$

$$\Delta q_{i-1} = \ldots + \ldots + \ldots$$

$$\Delta F_i = \dots \pm \dots \pm \dots \pm \dots$$

Consider an example in the first round where $F_i = IF(q_{i-1}, q_{i-2}, q_{i-3})$.

$$\Delta q_{i-3} = \ldots \ldots \ldots \ldots + \ldots \ldots + \ldots \ldots$$

$$\Delta q_{i-2} = \ldots \ldots \ldots$$

$$\Delta q_{i-1} = \ldots + \ldots + \ldots$$

$$\Delta F_i = \ldots \ldots + \ldots + \ldots + \ldots$$

∂F_i

Consider an example in the first round where $F_i = IF(q_{i-1}, q_{i-2}, q_{i-3})$.

 \blacktriangleright Select the desired Δ Fi and impose additional conditions on the . bits.

Additional Differential Conditions

Symbol	Step i
	$q_i = q'_i$
	$q_i = q'_i = I$
0	$q_i = q'_i = 0$
+	$q_i = 0$ and $q'_i = 1$
-	$q_i = I$ and $q'_i = 0$
Λ	$q_i = q_{i-1}$ and $q'_i = q'_{i-1}$
!	$q_i \neq q_{i-1}$ and $q'_i \neq q'_{i-1}$

∂T_i and ∂q_i

If we know ΔFi , we know which ∂T_i values are obtainable, since

$$\partial T_i = \partial q_{i-4} \boxplus \Delta F_i \boxplus \partial m_{\sigma(i)}$$

Then we have at most four possible values of

$$\partial q_i = \partial q_i - I \oplus (\partial T_i \ll r_i)$$

- Select a ∂q_i and select a BSDR representation Δq_i .
 - It is appropriate to minimize the number of set signed bits in Δq_i .

Backward Differential Derivation

Analogous to forward differential derivation.

Joining the Partial Paths

Joining the Paths

- We need to join the paths over four consecutive steps.
 - That is, select a set of compatible BSDRs Δq_k , Δq_{k+1} , Δq_{k+2} , Δq_{k+3}
 - These BSDRs may have a lot of set signed bits.
 - It is trivial to respect conditions in the first round.
 - Select k such that $k + 3 \le 16$

Joining Column-wise

- Estimate or "guess" values of ∂q_k to ∂q_{k+3}
- The paths may be joined column-wise from step k 4 to k + 7.
 - The most computationally intense step.
 - May fail, in which case new partial paths must be selected.

The Second Block

The Second Block

- Negate the message word differences.
- Proceed in the same way as for the first block.
- In general, the output from encrypting the second block is then the negation of the encryption of the first block.
 - When these are added in the Davies-Meyer scheme, we obtain a two block collision!

Collision Search

Collision Search

- Find a message M which follows the differential path.
 - Use single-message modification in the first round.
 - Compute rounds 2 to 4 and verify each step.

Single Message Modification

In the first round, there exists a bijection between $m_{\sigma(i)}$ and q_i provided that q_{i-1} to q_{i-1} have been fixed.

$$\begin{split} q_i = q_{i\text{-}1} & \boxplus \left(\ q_{i\text{-}4} \boxplus \ F_i \left(q_{i\text{-}1}, q_{i\text{-}2}, q_{i\text{-}3} \right) \boxplus \ m_{\sigma(i)} \boxplus \ k_i \right) \ll \ r_i \\ & \qquad \qquad \downarrow \\ m_{\sigma(i)} = \left(\left(q_i \boxminus \ q_{i\text{-}1} \right) \gg \ r_i \right) \boxminus \ q_{i\text{-}4} \boxminus \ F_i \left(q_{i\text{-}1}, q_{i\text{-}2}, q_{i\text{-}3} \right) \boxminus \ k_i \end{split}$$

- For i = 1, ..., 16, simply select q_i by randomizing the . bits.
 - Set the other bits to respect conditions such as ^, !, 0, I, etc.
 - Compute the message word m_{i-1} using the formula above.

Verification

- Compute the step function for steps 17 up to 64 and verify that the sought BSDRs are indeed obtained in each step.
 - Every condition after step 16 increases the complexity.
 - If there are n conditions after step 16, complexity $O(2^n)$
 - Wang's first path has 37 such conditions, giving $O(2^{37})$.
 - This is why we joined the paths in the first round.

Complexity Analysis

- In the second blocks, there are differences in the IV.
 - Some of the bits in the IV will be fixed by the F_i functions when the differential path for the second block is constructed.
 - If there are m additional conditions on the IV then the complexity will increase with a factor 2^m since we need to find $\approx 2^m$ messages that pass the first path before we can start with the second block.
 - Total complexity $O(2^{m+n})$ for the first block.

Optimizations

- Vlastimil Klíma introduced the concept of tunnels in March of 2006.
- Tunnels provide a means of varying the message words slightly without recomputing all steps in rounds 2.
- Using tunnels reduces the search complexity.

As an example, consider steps 9 to 13 in the first round.

```
q_9 = q_8 \boxplus (q_5 \boxplus IF(q_8, q_7, q_6) \boxplus m_8 \boxplus k_9) \ll r_9
q_{10} = q_9 \boxplus (q_6 \boxplus IF(q_9, q_8, q_7) \boxplus m_9 \boxplus k_{10}) \ll r_{10}
q_{11} = q_{10} \boxplus (q_7 \boxplus IF(q_{10}, q_9, q_8) \boxplus m_{10} \boxplus k_{11}) \ll r_{11}
q_{12} = q_{11} \boxplus (q_8 \boxplus IF(q_{11}, q_{10}, q_9) \boxplus m_{11} \boxplus k_{12}) \ll r_{12}
q_{13} = q_{12} \boxplus (q_9 \boxplus IF(q_{12}, q_{11}, q_{10}) \boxplus m_{12} \boxplus k_{13}) \ll r_{13}
```

As an example, consider steps 9 to 13 in the first round.

```
q_9 = q_8 \boxplus (q_5 \boxplus IF(q_8, q_7, q_6) \boxplus m_8 \boxplus k_9) \ll r_9
q_{10} = q_9 \boxplus (q_6 \boxplus IF(q_9, q_8, q_7) \boxplus m_9 \boxplus k_{10}) \ll r_{10}
q_{11} = q_{10} \boxplus (q_7 \boxplus IF(q_{10}, q_9, q_8) \boxplus m_{10} \boxplus k_{11}) \ll r_{11}
q_{12} = q_{11} \boxplus (q_8 \boxplus IF(q_{11}, q_{10}, q_9) \boxplus m_{11} \boxplus k_{12}) \ll r_{12}
q_{13} = q_{12} \boxplus (q_9 \boxplus IF(q_{12}, q_{11}, q_{10}) \boxplus m_{12} \boxplus k_{13}) \ll r_{13}
```

- We seek to vary q_9 whilst keeping q_{10} to q_{13} constant.
 - Only vary bits in q_9 for which $q_{10} = 0$ and $q_{11} = 1$.

As an example, consider steps 9 to 13 in the first round.

```
q_9 = q_8 \boxplus (q_5 \boxplus IF(q_8, q_7, q_6) \boxplus m_8 \boxplus k_9) \ll r_9
q_{10} = q_9 \boxplus (q_6 \boxplus IF(q_9, q_8, q_7) \boxplus m_9 \boxplus k_{10}) \ll r_{10}
q_{11} = q_{10} \boxplus (q_7 \boxplus q_8 \boxplus m_{10} \boxplus k_{11}) \ll r_{11}
q_{12} = q_{11} \boxplus (q_8 \boxplus q_{10} \boxplus m_{11} \boxplus k_{12}) \ll r_{12}
q_{13} = q_{12} \boxplus (q_9 \boxplus IF(q_{12}, q_{11}, q_{10}) \boxplus m_{12} \boxplus k_{13}) \ll r_{13}
```

- We seek to vary q_9 whilst keeping q_{10} to q_{13} constant.
 - Only vary bits in q_9 for which $q_{10} = 0$ and $q_{11} = 1$.
 - We then only have to recompute m_8 , m_9 and m_{12} .

In the second round, m₉ is first to appear, in step 25.

```
q_{17} = q_{16} \boxplus (q_{13} \boxplus IF(q_{14}, q_{16}, q_{15}) \boxplus m_1 \boxplus k_{17}) \ll r_{17}
q_{18} = q_{17} \boxplus (q_{14} \boxplus IF(q_{15}, q_{17}, q_{16}) \boxplus m_6 \boxplus k_{18}) \ll r_{18}
q_{19} = q_{18} \boxplus (q_{15} \boxplus IF(q_{16}, q_{18}, q_{17}) \boxplus m_{11} \boxplus k_{19}) \ll r_{19}
q_{20} = q_{19} \boxplus (q_{16} \boxplus IF(q_{17}, q_{19}, q_{18}) \boxplus m_0 \boxplus k_{20}) \ll r_{20}
q_{21} = q_{20} \boxplus (q_{17} \boxplus IF(q_{18}, q_{20}, q_{19}) \boxplus m_5 \boxplus k_{21}) \ll r_{21}
q_{22} = q_{21} \boxplus (q_{18} \boxplus IF(q_{19}, q_{21}, q_{20}) \boxplus m_{10} \boxplus k_{22}) \ll r_{22}
q_{23} = q_{22} \boxplus (q_{19} \boxplus IF(q_{20}, q_{22}, q_{21}) \boxplus m_{15} \boxplus k_{23}) \ll r_{23}
q_{24} = q_{23} \boxplus (q_{20} \boxplus IF(q_{21}, q_{23}, q_{22}) \boxplus m_4 \boxplus k_{24}) \ll r_{24}
q_{25} = q_{24} \boxplus (q_{21} \boxplus IF(q_{22}, q_{24}, q_{23}) \boxplus m_9 \boxplus k_{25}) \ll r_{25}
```

- If we had not used the tunnel, we would have had to begin at step 19.
 - There are a lot of conditions in steps 17 to 24 that may be skipped.

- There are more tunnels in MD5 which may be combined.
 - This reduces the search complexity considerably.
- Tunnels exist in some other hash functions as well.

Demo & Questions

Thanks!