# Generic Attacks on Stream Ciphers





## Overview

- What is a stream cipher?
- Classification of attacks
- Different Attacks
  - □ Exhaustive Key Search
  - □ Time Memory Tradeoffs
  - Distinguishing Attacks
  - Guess-and-Determine attacks
  - Correlation Attacks
  - □ Algebraic Attacks
  - □ Sidechannel Attacks
- Summary

### What is a stream cipher?

- Input: Secret key (*k* bits)
  Public IV (*v* bits).
- Output: Sequence z<sub>1</sub>, z<sub>2</sub>, … (keystream)
- The state (s bits) can informally be defined as the values of the set of variables that describes the current status of the cipher.
- For each new state, the cipher outputs some bits and then jumps to the next state where the process is repeated.
- The ciphertext is a function (usually XOR) of the keysteam and the plaintext.

## Classification of attacks

- Assumed that the attacker has knowledge of the cryptographic algorithm but not the key.
- The aim of the attack
  - □ Key recovery
  - □ Prediction
  - □ Distinguishing
- The information available to the attacker.
  - □ Ciphertext-only
  - □ Known-plaintext
  - □ Chosen-plaintext
  - □ Chosen-chipertext

## Exhaustive Key Search

- Can be used against any stream cipher. Given a keystream the attacker tries all different keys until the right one is found.
- If the key is k bits the attacker has to try 2<sup>k</sup> keys in the worst case and 2<sup>k-1</sup> keys on average.
- An attack with a higher computational complexity than exhaustive key search is not considered an attack at all.

# Time Memory Tradeoffs (state)

- Large amounts of precomputed data is used to lower the computational complexity.
- Assume a key size of k bits and a state size of s bits. Generate keystream for 2<sup>m</sup> different states and store them. Observe 2<sup>d</sup> different keystreams. By the birthday paradox, we will on average be able to break one of these keystreams when

$$m = d = s / 2.$$

- $\Rightarrow$  State size  $\ge$  2 \* Key size
- Example: Attack on A5 used in GSM

# Time Memory Tradeoffs (key/IV)

- Tradeoffs can work on key/IV pair instead of the state.
- Key size of k bits and an IV size of v bits. Generate keystream for 2<sup>m</sup> different key/IV pairs and store them. Observe 2<sup>d</sup> different keystreams. By the birthday paradox, we will be able to break one of these keystreams when

$$m = d = (k + v) / 2$$

 $\Rightarrow$  IV size  $\geq$  Key size

# Distinguishing Attacks

- Method for distinguishing the keystream from a truly random sequence.
- A typical attack uses the fact that some part of the keystream, with a high probability, is a function of some other parts of the keystream.

$$z_i = f(z_{i-1}, z_{i-1}, \ldots, z_{i-n})$$

• Example: Attack on MAG ( $z_i$  = bytes)  $z_{i+128} = z_i \oplus z_{i+127} \oplus z_{i+1} \oplus z_{i+2}$  with p = 0.5 $z_{i+128} = z_i \oplus z_{i+127} \oplus z_{i+1} \oplus \sim z_{i+2}$  with p = 0.5

## Generic Distinguishing Attacks

- Ordinary statistical tests were designed to evaluate PRNGs, only used for catching implementation errors.
  - Marsaglia's Diehard Battery of Tests
    NIST Statistical Test Suite
- There exists generic distinguishing attacks on block ciphers in OFB or counter mode.
- More sofisticated generic distingushing attacks concentrate on the correlation between key, IV, and keystream.

### Example: Saarinen's chosen-IV attack

- Able to distinguish 6/35 eStream candidates.
- The attack can be summarized as
  - 1. Choose *n* bits  $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n)$  in the IV as variables. The rest of the IV/key are given fixed values.
  - 2. Find the boolean function *f* from **x** to a single keystream bit (typically, the first).
  - Check if the ANF (Algebraic Normal Form) expression of the Boolean function has the expected number of d-degree monomials. A monomial is a product of positive integer powers of a fixed sets of variables, for example, x<sup>1</sup>, x<sup>1</sup>x<sup>3</sup>, or x<sup>2</sup>x<sup>3</sup>x<sup>7</sup>.

### **Guess-and-Determine attacks**

#### Three steps

- 1. Guess some parts of the key or state of the cipher.
- 2. Determine other parts of the key/state under some assumption. The assumption is that the key/IV pair is of some subset of the total set that makes the cipher weak.
- 3. By calculating keystream from the deduced values and compare with the known keystream we can check if the guess is right and the assumption holds.
- The attack is successful if

 $2^{g} \cdot (1/\rho) \cdot w < 2^{k}$ 

**Example:** My attack on Polar Bear.

### **Correlation Attacks**

- For a correlation attack to be applicable, the keystream z<sub>1</sub>, z<sub>2</sub>, ... must be correlated with the output sequence a<sub>1</sub>, a<sub>2</sub>... of a much simpler internal device, such as a LFSR.
- The two sequences are correlated if the probalility P(z<sub>i</sub> = a<sub>i</sub>) ≠ 0.5

### Basic Correlation Attack

- Nonlinear combination generator with *n* LFSRs.
- For each possible initial state  $\mathbf{u}_0 = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_l)$  an output sequence **a** of length N is generated. Define  $\beta = N d_H(\mathbf{a}, \mathbf{z})$ .
- If we run through all 2<sup>I</sup> possible initial states and if N is large enough, β will with high probability take its largest value when u<sub>0</sub> is the correct initial state.
- Computational complexity is reduced from  $\Pi_{i=1..n}(2^{I_i})$  to  $\Sigma_{i=1..n}(2^{I_i})$  where  $I_i$  is the length of LFSR i.
- Applicable when the length of the shift registers are small and when the combining function leaks information about individual input variables.

- Significantly faster than exhaustive search over the target LFSR, but requires received sequences of large length.
- Use certain parity check equations that are created from the feedback polynomial.
- Two phases
  - $\Box$  In the first, a set of parity check equations are found.
  - In the second these equations are used in a decoding algorithm to recover the transmitted codeword (the internal output sequence).

## First phase

Suppose that the feedback polynomial g(x) has t non-zero coefficients.

$$g(x) = 1 + c_1 x + c_2 x^2 + \ldots + c_l x^l$$

From this we get *t* different parity check equations for the digit  $a_i$ . And by noting that  $g(x)^{2k} = 1 + c_1 x^{2k} + c_2 x^{2k+1} + \ldots + c_l x^{l*2k}$ 

we get t more for each squaring.

The total number of check equations that can be obtained by squaring the feedback polynomial is

 $m \approx t^* \log(N / 2I)$ 

#### Second phase

The *m* parity check equations can be written as

$$a_i + s_j = 0$$
 *j*=1..*m*

If we substitute a<sub>i</sub> with z<sub>i</sub> we get the following expressions.

$$z_i + y_j = L_j \quad j = 1..m$$

By counting the number of equations that hold we can calculate the probability

 $p^* = P(z_i = u_i | h equations hold)$ 

p\* is calculated for each observed symbol and the /positions with highest value of p\* are used to find the correct initial state

## Example: Geffe's generator

The combining function used in the Geffe's generator

$$f(x_1, x_2, x_3) = x_3 \oplus x_1 x_2 \oplus x_2 x_3$$

is vulnerable to correlation attacks because

$$P(f(x) = x_1) = P(f(x) = x_3) = 0.75$$

Solution: Correlation immune combining function.

But, there is a tradeoff between the correlation immunity *m* and the nonlinear order k. A *m*-th order correlation immune function can have at most nonlinear order *n* – *m*.

### Algebraic Attacks

#### Principle

- 1. Find system of equations in keystream bits  $z_i$  and the unknown key bits  $k_i$ .
- 2. Reduce the degree of the equations. (*fast algebraic attacks*)
- 3. Insert the observed keystream bits  $z_i$ .
- 4. Recover the key by solving the system of equations
- Have been used to attack for example: Toyocrypt, E0 (used in bluetooth), and a modified Snow

# Finding Equations

- For a pure combiner we have that z<sub>i</sub> = f(x<sub>i</sub>) But x<sub>i</sub> is a linear function of the secret key k (applied i times).
- So  $z_i = f(L^t(k))$  and our equation system is  $z_i \oplus f(L^i(k)) = 0$  for every i
- For combiners with memory (E0) it is possible to cancel out the memory bits at the cost of more keystream.
- More output at a time gives equations of substantially lower degree ⇒ much faster attacks.

#### Equation solving - Linearization (XL, XSL...)

- Use a over defined system of equations.
- Replace each monomial with a new variable.
- Solve as a linear system.
  - $x + y + z = 0 \qquad x + y + z = 0$   $xyz + xy + z = 0 \qquad \rightarrow \qquad u + t + z = 0$  $y + xyz = 0 \qquad y + u = 0$
- But this is NP-complete in general case. Complexity O(n<sup>3d</sup>) where d is the maximum degree of the equations, d ≤ n
- Another option is Gröbner bases, but difficult to predict complexity

## Sidechannel Attacks

- Uses information from the physical implementation instead of theoretic weaknesses
- Any information that can be measured and is dependent on the key, state or plaintext can potentially be used in a sidechannel attack.
- Examples of Sidechannel attacks are
  - □ Timing analysis
  - □ Power analysis
  - □ Electromagnetic radiation
  - □ Acoustic analysis

# Summary

- Large number of different attacks to consider when designing stream ciphers.
- Most stream cipher proposals are broken, at least theoretical, (Distinguishing in O(2<sup>100</sup>) time)
- Implementation is important.