
A New Way of Using Semidefinite Programming

with Applications to Linear Equations mod p

Gunnar Andersson, Lars Engebretsen, and Johan H̊astad

Royal Institute of Technology

SE-100 44 Stockholm

SWEDEN

February 18, 2002

1

New Use of Semidefinite Programming 2

Suggested running head: New Use of Semidefinite Programming

Corresponding author: Johan H̊astad, johanh@nada.kth.se

New Use of Semidefinite Programming 3

Abstract

We introduce a new method to construct approximation algorithms

for combinatorial optimization problems using semidefinite programming.

It consists of expressing each combinatorial object in the original problem

as a constellation of vectors in the semidefinite program. When we apply

this technique to systems of linear equations mod p with at most two

variables in each equation, we can show that the problem is approximable

within (1 − κ(p))p, where κ(p) > 0 for all p. Using standard techniques,

we also show that it is NP-hard to approximate the problem within a

constant ratio, independent of p.

Warning: Essentially this paper has been published in Journal of

Algorithms and is subject to copyright restrictions. In particular it

is for personal use only.

New Use of Semidefinite Programming 4

List of symbols used:
α lower case Greek letter alpha.
δ lower case Greek letter delta.
ε lower case Greek letter epsilon.
κ lower case Greek letter kappa.
λ lower case Greek letter lambda.
µ lower case Greek letter mu.
π lower case Greek letter pi.
σ lower case Greek letter sigma.
θ lower case Greek letter theta.
Θ upper case Greek letter Theta.
ϕ lower case Greek letter phi.
Φ upper case Greek letter Phi.
ζ lower case Greek letter zeta.
ξ lower case Greek letter xi.

 lower case Latin letter ell.∫

integral sign.∑
summation sign.

R bold face upper case Roman letter ar (denotes the set of reals).
Z bold face upper case Roman letter zed (denotes the set of integers).
⊥ perpendicular sign.
← left arrow.
�→ right arrow with small bar (denotes “maps to”).
=⇒ double right arrow (denotes implication).
⇐⇒ double left-right arrow (denotes equivalence).
∅ the empty set.
∪ set union.
∩ set intersection.
∈ belongs to sign.
| · | absolute value.
‖ · ‖ Euclidean norm.
〈·, ·〉 angular brackets (denotes inner product)
∀ universal quantifier.
∃ existential quantifier.√· square root sign.
× multiplication sign.

New Use of Semidefinite Programming 5

1 Introduction

Several combinatorial maximization problems have the following property: The

naive algorithm which simply chooses a solution at random from the solution

space is guaranteed to give a solution of expected weight at least some constant

times the weight of the optimal solution. For instance, applying the above ran-

domized algorithm to Max Cut yields a solution with expected weight at least

half the optimal weight. For a long time, better polynomial time approximation

algorithms than the randomized ones were not known to exist for many of the

problems with the above property. This situation changed when Goemans and

Williamson [5] showed that it is possible to use semidefinite programming to

efficiently find a solution to Max Cut which is only a factor approximately

1.14 worse than the optimal value. Extending the techniques of Goemans and

Williamson, Frieze and Jerrum [4] showed that it is possible to construct also

for Max k-Cut a polynomial time approximation algorithm better than the

simple randomized one.

The problem of systems of linear equations mod p is a basic and very general

combinatorial problem, which exhibits the property described above: The naive

randomized algorithm which chooses a solution at random approximates the

problem within p. Recently, H̊astad [7] studied systems of linear equations

mod p with exactly k unknowns in each equation, and showed that it is NP-

hard to approximate the problem within p − ε for all ε > 0, all p ≥ 2, and

all k ≥ 3.

In this paper we study the remaining problem of this type, systems of linear

equations mod p with at most two unknowns in each equation, denoted by Max

2-Lin mod p. We also study systems of linear equations mod p with exactly two

unknowns in each equation, denoted by Max E2-Lin mod p. When p = 2, this

problem has been studied previously, but for p > 2 not much is known. We use

semidefinite programming combined with randomized rounding to show, that

for both Max 2-Lin mod p and Max E2-Lin mod p it is possible to do better

New Use of Semidefinite Programming 6

than the naive randomized heuristic. Specifically, we show that there exists,

for all p, a randomized polynomial time algorithm which approximates both

problems within (1 − κ(p))p, where κ(p) > 0 for all p. On the negative side,

we show that it is NP-hard to approximate Max E2-Lin mod p within some

constant performance ratio, independent of p.

The usual way to use semidefinite programming in approximation algorithms

is to formulate the problem as an integer program, and then relax this program

to a semidefinite one. In order to approximate Max k-Cut, Frieze and Jer-

rum [4] instead associated a vector with each vertex, and added constraints

enforcing the vectors to have certain properties. To refine their technique, we

let each variable in the system of linear equations be represented by a constella-

tion of several vectors. By adding suitably chosen constraints to the semidefinite

program, we make sure that the solution to the semidefinite program has the

same type of symmetries as the solution to the original problem.

Our approach is in some sense dual to the one of Frieze and Jerrum. We use

many vectors to represent one variable and one random vector in the rounding;

they use one vector for each variable and many random vectors in the rounding.

Our algorithm can be used also for Max k-Cut, since Max k-Cut is a special

case of Max E2-Lin mod k. It is not clear a priori how our method and

the method of Frieze and Jerrum relate to each other. We elucidate on this and

show, using local analysis, that the performance ratio of our algorithm cannot be

better than the one of the algorithm of Frieze and Jerrum, and we have obtained

numerical evidence that the algorithms actually achieve the same performance

ratio.

2 Preliminaries

We start by defining our problems and our performance measure.

Definition 1. We denote by Max Ek-Lin mod p the problem of, given a

system of m linear equations mod p with exactly k variables in each equation

New Use of Semidefinite Programming 7

together with positive weights wi, i = 1, 2, . . .m, maximizing the total weight

of satisfied equations.

Definition 2. We denote by Max k-Lin mod p the problem of, given a system

of m linear equations mod p with at most k variables in each equation together

with positive weights wi, i = 1, 2, . . .m, maximizing the total weight of satisfied

equations.

Definition 3. Let P be a maximization problem. For an instance x of P let

opt(x) be the optimal value. A C-approximation algorithm is an algorithm that

on any input x outputs a value V such that opt(x) ≥ V ≥ opt(x)/C.

In our positive results, i.e., examples of algorithms achieving a certain ap-

proximation ratio, the algorithm in fact does more than required by the above

definition. Apart from finding the number V it also finds an assignment which,

on the average, satisfies equations of total weight V . We think of this assignment

as the main output of the algorithm and hence concentrate on the description

on how to find it using a randomized procedure. The numerical value V , which

is found without randomness, is only a side effect.

In our negative results, i.e., proofs that no efficient approximation algorithm

exists, we rule out even algorithms only giving the numerical approximation

without producing a feasible solution.

From now on, p always denotes a prime, although all our results generalize

to composite p. Regarding the lower bound, it is easy to see, that if p is a prime

factor in m we can convert a Max E2-Lin mod p instance to an equivalent

Max E2-Lin mod m instance by multiplying each equation with m/p. Since

we show a constant lower bound, independent of p, the lower bound generalizes.

We will show later how to generalize our upper bounds to composite p.

To get acquainted with the above definitions, we now show that a simple

randomized heuristic, which can be derandomized by the method of conditional

probabilities, for Max 2-Lin mod m has performance ratio m. Since an equa-

tion axi − bxi′ = c mod m can only be satisfied if gcd(a, b,m) divides c, we can

New Use of Semidefinite Programming 8

assume that all equations have this property.

Algorithm 1. Takes as its input an instance of Max 2-Lin mod m, m =

pα1
1 · · · pαk

k , with variables x1, . . . , xn. Outputs an assignment with expected

weight at least a fraction 1/m of the weight of the satisfiable equations in the

instance. The algorithm picks the values of xi uniformly at random.

Since the behavior modulo different pαs
s is independent it is sufficient to

establish the lemma below.

Lemma 1. If we guess an assignment to the xi mod pαs
s uniformly at random,

an equation of the form axi − bxi′ = c mod pαs
s is satisfied with probability at

least 1/pαs
s .

Proof. If either a or b is a unit mod pαs
s , the proof is trivial. Otherwise,

gcd(a, b) = pt
s for some t ≥ 1, and in this case we can divide a, b and c by pt

s to

produce an equivalent equation

a

pt
s

xi − b

pt
s

xi′ =
c

pt
s

mod pαs−t
s . (1)

This equation will be satisfied with probability greater than 1/pαs
s .

Corollary 2. There exists, for all m ≥ 2, a deterministic algorithm for Max

2-Lin mod m with performance ratio m.

Proof. Algorithm 1 satisfies any satisfiable equation with probability at least 1/m.

With this in mind, the corollary follows from the fact that the optimum of an

instance is at most the weight of the satisfiable equations, and that the al-

gorithm can be derandomized by using the standard technique of conditional

probabilities. In this method one determines the values of the variables one by

one making sure that the expected number of satisfied equation, conditioned

upon the choices made so far, never decreases [2, Chapter 15].

New Use of Semidefinite Programming 9

2.1 Earlier work

Goemans and Williamson [5] construct an approximation algorithm for Max

Cut by studying a relaxation of an integer quadratic program. Frieze and

Jerrum [4] extend the methods of Goemans and Williamson, and thereby con-

struct an approximation algorithm for Max k-Cut. To obtain an intuitive

understanding of our algorithms, it is instructive to study these particular al-

gorithms.

For a graph G = (V,E) with vertices V = {1, . . . , n}, we introduce for each

vertex i in the graph a variable yi ∈ {−1, 1}. If we denote by wij the weight

of the edge (i, j), the weight of the maximum cut in the graph is given by the

optimum of the integer quadratic program

maximize
∑
i<i′

wii′
1− yiyi′

2

subject to yi ∈ {−1, 1} for all i.

(2)

The partition (V1, V2) yielding the optimum cut can be formed as

V1 = {i : yi = 1}, (3)

V2 = {i : yi = −1}. (4)

It is NP-hard to solve (2) optimally. To obtain a polynomial time approximation

algorithm, Goemans and Williamson [5] construct a relaxation of the above

integer quadratic program by using n-dimensional real vectors vi instead of the

integer variables yi. The products yiyi′ are then replaced by the inner products

〈vi, vi′〉. This gives the semidefinite program

maximize
∑
i<i′

wii′
1− 〈vi, vi′〉

2

subject to 〈vi, vi〉 = 1 for all i.

(5)

Given any ε > 0, this program can be solved within an additive error of ε in time

polynomial in n, log 1
ε and the number of bits needed to represent the weights

New Use of Semidefinite Programming 10

wii′ [1]. To obtain from the solution to the semidefinite relaxation a partition

of the graph, the algorithm selects a random vector r, uniformly distributed on

the unit sphere in Rn, and sets

V1 = {i : 〈vi, r〉 > 0}, (6)

V2 = {i : 〈vi, r〉 < 0}. (7)

Vectors satisfying 〈vi, r〉 = 0 can be assigned a part in the partition arbitrarily

since they occur with probability zero.

We note that both the integer quadratic program and the semidefinite re-

laxation exhibit a symmetry inherent to the Max Cut problem: If we negate

each yi and each vi, respectively, the solution is unaffected. This is a natural

property of an algorithm for Max Cut, since it does not matter which of the

parts in the partition of V we choose to call V1, as long as we call the other

part V2.

In their approximation algorithm for Max k-Cut, Frieze and Jerrum [4]

face a complication similar to ours: representing variables which can take one of

k values. To do this, they use a regular (k − 1)-simplex centered at the origin.

If the vertices of the simplex are {a1, a2, . . . , ak} the Max k-Cut problem can

be formulated as

maximize
k − 1
k

∑
i<i′

wii′
(
1− 〈yi, yi′〉

)
subject to yi ∈ {a1, a2, . . . , ak} for all i.

(8)

The partition is formed according to

Vj = {i : yi = aj}. (9)

Since 〈ai, aj〉 = − 1
k−1 when i �= j and 〈ai, ai〉 = 1, the natural way to relax this

program to a semidefinite one is to use vectors vi which are not constrained to

New Use of Semidefinite Programming 11

the vertices of a simplex:

maximize
k − 1
k

∑
i<i′

wii′
(
1− 〈vi, vi′〉

)
subject to 〈vi, vi〉 = 1 for all i,

〈vi, vi′〉 ≥ − 1
k−1 for all i �= i′.

(10)

To obtain from the solution to the semidefinite relaxation a partition of the

graph, the algorithm selects k independent random vectors r1, r2, . . . , rk from a

spherically symmetric distribution in Rn, and sets

Vj =
{
i : 〈vi, rj〉 ≥ 〈vi, rj′〉 for all j′ �= j

}
. (11)

When k = 2 this algorithm is equivalent to the Max Cut algorithm of Goemans

and Williamson.

2.2 Our construction

Our goal is to generalize the algorithm of Goemans and Williamson to Max

2-Lin mod p. We first construct an approximation algorithm for systems of

linear equations where the equations are of the form

xi − xi′ = c. (12)

A problem in applying the approach of Frieze and Jerrum is that it has no

“metric” information, it can only express equality and non-equality and thus

it would only know how to distinguish equations of the form c = 0 and c �= 0

but not to distinguish equations with c = 1 and c = 2. The reason for this

is that the algorithm chooses p random vectors without any linear structure.

Our way of getting a linear structure is by representing each variable xi by a

constellation of p vectors, {ui
0, u

i
1, . . . , u

i
p−1}. The idea now is that if a certain

value of a corresponds to a particular constellation of vectors then the value

a+ c corresponds the same set of vectors but the order is given a cyclic shift of

New Use of Semidefinite Programming 12

c. This implies that an equation x− y = c is modeled by taking pairwise inner

products of vectors in the constellation of x with vectors in the constellation of

y where the pairing is such that a vector in the constellation of y is paired with

a vector at distance c in the cyclic ordering. If the constellations correspond to

legitimate encodings that satisfy the equation this would imply that each inner

product is formed between two identical vectors resulting in unit value.

The rounding can now be performed by using one random vector r. The

partitions would then be constructed as

Vj =
{
xi : 〈ui

j , r〉 ≥ 〈ui
j′ , r〉 for all j′ �= j

}
, (13)

and all variables in Vj are assigned the value −j.
We create a consistent linear structure of these constellations by requiring

that for all i, i′ and all j, j′, k,

〈ui
j, u

i′
j+k〉 = 〈ui

j′ , u
i′
j′+k〉. (14)

If we denote by wii′c the weight of the equation xi − xi′ = c, we can thus write

our restricted version of the Max E2-Lin mod p problem as the following

program:

maximize
∑
i,i′,c

wii′c


p− 1

p2

p−1∑
j=0

〈ui
j, u

i′
j+c〉+

1
p




subject to 〈ui
j, u

i
j〉 = 1 ∀i, j,

〈ui
j, u

i
j′〉 = − 1

p−1 ∀i∀j �= j′,

〈ui
j, u

i′
j′〉 ∈ {1,− 1

p−1} ∀i �= i′∀j, j′,
〈ui

j, u
i′
j+k〉 = 〈ui

j′ , u
i′
j′+k〉 ∀i, i′, j, j′, k.

(15)

To simplify the terminology, we will now define formally the constellation of

vectors associated with each variable in the above program.

Definition 4. For each variable xi ∈ Zp we construct an object henceforth

New Use of Semidefinite Programming 13

called a simplicial porcupine in the following way:

We take p vectors {ui
j}p−1

j=0 and add the following constraints to the semidef-

inite program:

〈ui
j, u

i
k〉 =




1 when j = k,

− 1
p−1 otherwise,

(16a)

for all i and all j, k ∈ Zp,

〈ui
j, u

i′
j+k〉 = 〈ui

j′ , u
i′
j′+k〉 (16b)

for all i, i′ and all j, j′, k ∈ Zp, and

〈ui
j, u

i′
k 〉 ≥ −

1
p− 1

(16c)

for all i, i′ and all j, k ∈ Zp.

We can now relax the program (15) to a semidefinite one, and then apply

the rounding procedure described above. For completeness, we write out the

semidefinite relaxation:

maximize
∑
i,i′,c

wii′c


p− 1

p2

p−1∑
j=0

〈ui
j, u

i′
j+c〉+

1
p




subject to 〈ui
j, u

i
j〉 = 1 ∀i, j,

〈ui
j, u

i
j′〉 = − 1

p−1 ∀i∀j �= j′,

〈ui
j, u

i′
j′〉 ≥ − 1

p−1 ∀i �= i′∀j, j′,
〈ui

j, u
i′
j+k〉 = 〈ui

j′ , u
i′
j′+k〉 ∀i, i′, j, j′, k.

(17)

When we are to analyze the rounding procedure, we want to study the inner

products Xj = 〈ui
j , r〉. Unfortunately, the random variables Xj are dependent,

which complicates the analysis. We would obtain a simpler analysis if the vectors

corresponding to a variable were orthogonal, since then the corresponding inner

products would be independent. It is easy to construct such a semidefinite

New Use of Semidefinite Programming 14

program. All constraints change accordingly and for each equation the terms

1
p

p−1∑
j=0

〈vi
j , v

i′
j+c〉 (18)

are included in the objective function. Such a construction gives the semidefinite

program

maximize
∑
i,i′,c

wii′c


1
p

p−1∑
j=0

〈vi
j , v

i′
j+c〉




subject to 〈vi
j , v

i
j〉 = 1 ∀i, j,

〈vi
j , v

i
j′ 〉 = 0 ∀i∀j �= j′,

〈vi
j , v

i′
j′ 〉 ≥ 0 ∀i �= i′∀j, j′,

〈vi
j , v

i′
j+k〉 = 〈vi

j′ , v
i′
j′+k〉 ∀i, i′, j, j′, k.

(19)

We use the same rounding procedures in both cases: xi is assigned the value −j
if 〈vi

j , r〉 > 〈vi
j′ , r〉 for all j′ �= j. It is this program we will analyze in Sec. 3.

Definition 5. For each variable xi ∈ Zp we construct an object henceforth

called an orthogonal porcupine in the following way:

We take p vectors {vi
j}p−1

j=0 and add the following constraints to the semidef-

inite program:

〈vi
j , v

i
k〉 =




1 when j = k,

0 otherwise,
(20a)

for all i and all j, k ∈ Zp,

〈vi
j , v

i′
j+k〉 = 〈vi

j′ , v
i′
j′+k〉 (20b)

for all i, i′ and all j, j′, k ∈ Zp, and

〈vi
j , v

i′
k 〉 ≥ 0 for all i, i′ and all j, k ∈ Zp. (20c)

New Use of Semidefinite Programming 15

When no confusion can arise, we will simply call the above object a porcupine.

In fact, the simplicial and orthogonal formulations are equally good, in terms

of the quality of the relaxation.

Theorem 3. The simplicial and orthogonal porcupine models achieve the same

performance ratio for the restriction of Max E2-Lin mod p to equations of the

form xi − xi′ = c.

Proof. An orthogonal porcupine {vi
j}p−1

j=0 can be transformed into a simplicial

porcupine {ui
j}p−1

j=0 by letting

bi =
1
p

p−1∑
j=0

vi
j , (21)

ui
j =

√
p

p− 1
(
vi

j − bi
)
. (22)

The vector bi is usually called the barycenter of the vectors {vi
j}p−1

j=0 . The or-

thogonality of vi
k, k = 0, 1, . . . p− 1 implies that

〈ui
j, u

i
j〉 =

p

p− 1

(
(p− 1)2

p2
+ (p− 1) · 1

p2

)
= 1, (23)

while for j �= k

〈ui
j, u

i
k〉 =

p

p− 1

(
−2 · p− 1

p2
+ (p− 2) · 1

p2

)
= − 1

p− 1
(24)

and thus (16a) is satisfied. The constraints (20b) imply the constraints (16b).

Also, the constraints (20b) and (20c) together imply the constraints (16c). To

see this, it is enough to show that

−1/p ≤ 〈vi
j − bi, vi′

j′ − bi
′〉

= 〈vi
j , v

i′
j′ 〉 − 〈vi

j , b
i′〉 − 〈bi, vi′

j′〉+ 〈bi, bi′〉.
(25)

New Use of Semidefinite Programming 16

Now note that the constraints (20b) imply that

〈vi
j , b

i′〉 = 〈bi, vi′
j′ 〉 = 〈bi, bi′〉, (26)

and thus

〈vi
j − bi, vi′

j′ − bi
′〉 = 〈vi

j , v
i′
j′ 〉 − 〈bi, bi

′〉 ≥ −‖bi‖‖bi′‖ = −1/p. (27)

Consider the contribution to the objective function from the equation xi−xi′ = c

in the two models. The simplicial porcupine gives

p− 1
p2

p−1∑
j=0

〈ui
j , u

i′
j+c〉+

1
p

=
1
p

p−1∑
j=0

〈vi
j , v

i′
j+c〉 −

1
p2
〈
p−1∑
k=0

vi
k,

p−1∑
k=0

vi′
k 〉+

1
p

≥ 1
p

p−1∑
j=0

〈vi
j , v

i′
j+c〉

(28)

with equality if and only if the orthogonal porcupines {vi
j}p−1

j=0 and {vi′
j }p−1

j=0 have

the same barycenters.

A simplicial porcupine {ui
j}p−1

j=0 can be transformed into an orthogonal por-

cupine {vi
j}p−1

j=0 by letting

vi
j =

√
1
p
u⊥ +

√
p− 1
p

ui
j, (29)

where u⊥ is a unit vector such that 〈u⊥, ui
j〉 = 0 for all i, j. This construction

results in the barycenters of all orthogonal porcupines coinciding if the same u⊥

is used for all simplicial porcupines. Also, the constraints (20b) will be sat-

isfied in the orthogonal porcupine if the constraints (16b) are satisfied in the

simplicial porcupine. This implies that we can assume that the barycenters of

all orthogonal porcupines coincide. For, using the transformations (22)–(29),

we can transform an arbitrary family of orthogonal porcupines into a family

New Use of Semidefinite Programming 17

of orthogonal porcupines with coinciding barycenters without decreasing the

objective function.

The probability of the equation xi − xi′ = c being satisfied after the ran-

domized rounding is

p× Pr[xi ← c and xi′ ← 0]

= p× Pr

[
p−1⋂
j=0

(
〈vi

−c, r〉 ≥ 〈vi
j , r〉

)
∩

p−1⋂
j=0

(
〈vi′

0 , r〉 ≥ 〈vi′
j , r〉

)]
.

(30)

The transformations between the different types of porcupines only involve scal-

ing both sides of the inequalities by the same positive factor or adding the same

constant to both sides. Hence Pr[xi ← c and xi′ ← 0] is unaffected.

When studying the Max E2-Lin mod p problem, we will use orthogonal

porcupines. Let us show that our construction is a relaxation of Max E2-Lin

mod p.

Lemma 4. Given an instance of Max E2-Lin mod p with all equations of the

form xi−xi′ = c and the corresponding semidefinite program (19), the optimum

of the former can never be larger than the optimum of the latter.

Proof. Suppose that we have an assignment π to the variables xi, such that xi

is assigned the value π(xi). Let {êj}p−1
j=0 be orthonormal unit vectors in Rp and

set

vi
j = êj+π(xi) for all i and all j ∈ Zp, (31)

where indices are calculated using modulo p arithmetic. The sum (18) corre-

sponding to an equation xi − xi′ = c then takes the value

1
p

p−1∑
j=0

〈vi
j , v

i′
j+c〉 =

1
p

p−1∑
j=0

〈êj+π(xi), êj+c+π(xi′)〉. (32)

New Use of Semidefinite Programming 18

If the equation xi − xi′ = c is satisfied, then π(xi) = π(xi′) + c, and

1
p

p−1∑
j=0

〈êj+π(xi), êj+c+π(xi′)〉 = 1. (33)

On the other hand, if the equation is not satisfied, then π(xi) �= π(xi′) + c, and

1
p

p−1∑
j=0

〈êj+π(xi), êj+c+π(xi′)〉 = 0. (34)

Thus, the maximum of the semidefinite program can never be less than the

optimum of the Max E2-Lin mod p instance.

3 Our algorithms

In this section we use the relaxations constructed in Sec. 2.2 to formulate an al-

gorithm approximating Max 2-Lin mod p within (1− κ(p))p, where κ(p) > 0,

for all p. The algorithm is constructed in three steps. First, we describe an

algorithm which works for instances of Max E2-Lin mod p where all equa-

tions are of the form xi − xi′ = c. This algorithm is then generalized to handle

instances where also equations of the form xi = c are allowed. Finally, the re-

sulting algorithm is generalized once more to handle general Max 2-Lin mod p

instances.

3.1 Equations of the form xi − xi′ = c

We use the semidefinite program (19) constructed in Sec. 2.2. We can now

formulate the algorithm to approximate Max E2-Lin mod p restricted to in-

stances where every equation is of the form xi−xi′ = c. Below, κ is a constant,

which is to be determined during the analysis of the algorithm. Given a set of

linear equations, we run both Algorithm 1 and the following algorithm:

Algorithm 2. Construct and solve the semidefinite program (19). Use the

vectors obtained from the optimal solution to the semidefinite program to obtain

New Use of Semidefinite Programming 19

an assignment to the variables xi in the following way: A vector r is selected by

independently choosing each component as an N(0, 1) random variable. Then,

for each porcupine {vi
j}p−1

j=0 we find the j maximizing 〈vi
j , r〉, and set xi = −j.

We take as our result the maximum of the results obtained from Algorithms 1

and 2. By Corollary 2, we will always approximate the optimum within (1−κ)p

if the optimum weight is less than 1− κ times the total weight of all equations.

Thus, when analyzing the performance of Algorithm 2, we can assume that

the optimum is at least 1 − κ times the weight of all equations. Intuitively,

this means that for most equations, the two porcupines involved will be almost

perfectly aligned.

Lemma 5. If the objective function is at least 1 − κ times the total weight of

all equations, then equations of total weight at least 1 − 2κ/ε times the total

weight of the instance have the property that the corresponding terms (18) in

the objective function evaluate to at least
√

1− ε.

Proof. Let µ be the fraction of the equations with the property that the corre-

sponding terms (18) in the objective functions are less than
√

1− ε. Then, the

inequality

µ
√

1− ε+ (1− µ) ≥ 1− κ (35)

must always hold. When we solve for µ we obtain µ ≤ κ/(1 − √1− ε) ≤
2κ/ε.

The conclusion in Lemma 5 is useful because of the following lemma.

Lemma 6. There is a universal constant ε such that for all primes p, for any

equation xi − xi′ = c whose corresponding terms (18) in the objective function

sum up to at least
√

1− ε,

Pr[equation satisfied] >
3
2p
. (36)

New Use of Semidefinite Programming 20

One acceptable value for ε is 3 · 10−7.

Proof. For notational simplicity we assume that the value of the corresponding

term in objective function is exactly
√

1− ε since a larger value only increases

the probability of satisfying the equation. Thus we have

1
p

p−1∑
j=0

〈vi
j , v

i′
j+c〉 =

√
1− ε. (37)

By the constraints (20b), the identity (37) implies that

vi′
j+c =

√
1− εvi

j +
√
εecj, (38)

where ecj is orthogonal to vi
j and ‖ecj‖ = 1.

Definition 6. For a fixed equation xi−xi′ = c, let Xj = 〈vi
j , r〉, Yj = 〈vi′

j+c, r〉,
and Zj = 〈ecj , r〉.

By the construction of the porcupines and the choice of r, the Xj are

i.i.d. N(0, 1) and the Zj are, possibly dependent, N(0, 1). However, for each

fixed j, Xj and Zj are independent.

The proof needs four lemmas following from undergraduate probability the-

ory stated and proved in Appendix A.

The randomized rounding succeeds if the “chosen” vectors are vi
j and vi′

j+c,

respectively, for some j. Another way to state this is that we want to esti-

mate the probability that some j maximizes Yj , given that the very same j

maximizes Xj .

We will first show that the theorem holds for large p: Let A(δ) be the event

that the largest Xj is at least (1 + δ)
√

2 ln p and all other Xj are at most

(1 + δ/2)
√

2 ln p. By Lemma 33,

Pr[A(δ)] >
1

2p2δ+δ2(1 + δ)
√
π ln p

(
1− 1

2 ln p
− 1

2pδ
√
π ln p

)
. (39)

New Use of Semidefinite Programming 21

Next, let us study the Zj . Let

B(δ, ε) =
p−1⋂
j=0

{
|Xj − Yj | < δ

4

√
(1− ε)2 ln p

}
. (40)

Since Yj =
√

1− εXj +
√
εZj, we can use Lemma 34 to obtain

Pr[B(δ, ε)] <
4p1−δ2(1−ε)/32ε

δ

√
2ε

(1− ε)π ln p
. (41)

The equation is satisfied if both A(δ) and B(δ, ε) occur. The probability that

this happens can be bounded by

Pr[A(δ) ∩B(δ, ε)] ≥ Pr[A(δ)] − Pr[B(δ, ε)]. (42)

Now set δ = 10−2 and ε = 10−6. Then

Pr[B(δ, ε)] ≤ 400p−2

√
2 · 10−6

3 ln p
≤ 1

2p
, (43)

and thus it is sufficient to establish that Pr[A(δ)] ≥ 2/p. If we multiply the

estimate of Pr[A(δ)] given in (39) by p/2 we get an increasing function in p and

a direct verification shows that it is larger than 1 for p ≥ 20.

Now it remains to be shown that the theorem is valid also for p ≤ 19.

Let C(δ) be the event that the difference between the largest and the second-

largest Xj is at least δ, and let D(δ) be the event that, for all j, |Xj−Yj| ≤ δ/2.

By Lemmas 35 and 36,

Pr[C(δ)] ≥ 1− p2δ

(p− 1)
√

2π
, (44)

Pr[D(δ)] ≤ 4p
δ

√
ε

π
. (45)

The equation is satisfied if both C(δ) and D(δ) occur. Assuming

δ ≤ (2p− 3)(p− 1)
√

2π
4p3

(46)

New Use of Semidefinite Programming 22

and

ε ≤ (2p− 3)2δ2π
256p4

(47)

we see that the probability that this happens can be bounded by

Pr[C(δ) ∩D(δ)] ≥ Pr[C(δ)]− Pr[D(δ)] ≥ 1− 2p− 3
4p

− 2p− 3
4p

=
3
2p
. (48)

For p ≤ 19 we see that it is sufficient to take ε = 3 · 10−7.

Putting the pieces together we obtain:

Theorem 7. There exists a universal constant κ such that there exists, for all

primes p, a randomized polynomial time algorithm approximating systems of

linear equations mod p of the form xi − xi′ = c within (1− κ)p. One acceptable

value of κ is 10−8.

Proof. The algorithm is as described above. Denote by w the total weight of

the instance. If the optimum is at most (1 − κ)w, Algorithm 1 approximates

the solution within (1− κ)p.

Otherwise, by Lemma 5, equations with total weight at least (1 − 2κ/ε)w

have the property that the corresponding terms in the objective function in the

semidefinite program evaluate to at least
√

1− ε in the optimal solution. By

Lemma 6, if we choose ε = 10−7 and κ = 10−8, these equations are satisfied

with probability at least 3/2p, over the choice of the random vector r. Thus, the

expected weight of the solution obtained by the rounding is at least 12w/10p >

w(1 − κ)/p.

It is straightforward to adapt the algorithm to handle equations with one

unknown. Simply introduce a new variable x0 which should take the value zero.

Each equation of the form xi = c is replaced by xi − x0 = c. If x0 �= 0 in the

optimal solution, we transform the solution according to xi ← xi−x0. This new

assignment to the variables satisfies exactly the same equations as the original

New Use of Semidefinite Programming 23

one.

Finally, since nothing in Sec. 3.1 actually uses that p is prime, the results hold

also for composite p—indeed, they hold for equations over any finite Abelian

group. In this case, the vectors in the porcupines correspond to the elements of

the group; the number of vectors in each porcupine is equal to the order of the

group.

3.2 General equations

In this section we extend the algorithm from Sec. 3.1 to handle general Max

2-Lin mod p instances. We do this by associating p− 1 porcupines, {vi,1
j }p−1

j=0

up to {vi,p−1
j }p−1

j=0 , with each variable xi. These porcupines are supposed to

represent xi, 2xi, up to (p− 1)xi, respectively. The porcupines are constructed

as described in Definition 5, with the constraints (20) generalized to

〈vi,�
j , v

i,�
k 〉 =




1 when j = k,

0 otherwise,
(49a)

for all i, all j, k ∈ Zp, and all
 ∈ Z∗
p ;

〈vi,�
j , v

i′,�′
j+k〉 = 〈vi,�

j′ , v
i′,�′
j′+k〉 (49b)

for all i, i′, all j, j′, k ∈ Zp, and all
,
′ ∈ Z∗
p ;

p−1∑
j=0

〈vi,�
j , v

i′′,�′′
j′′ 〉 =

p−1∑
j=0

〈vi′,�′
j , vi′′,�′′

j′′ 〉 (49c)

for all i, i′, i′′, all j′′ ∈ Zp and all
,
′,
′′ ∈ Z∗
p ; and

〈vi,�
j , v

i′,�′
k 〉 ≥ 0 (49d)

for all i, i′, all j, k ∈ Zp, and all
,
′ ∈ Z∗
p .

The condition (49c) ensures that all porcupines have the same barycenter.

New Use of Semidefinite Programming 24

We would want the porcupines to be dependent in such a way that xi = c is

equivalent to kxi = kc, but since the resulting constraint is not linear, this seems

hard to achieve. Instead, we allow the porcupines corresponding to the same

variable to vary freely. Somewhat surprisingly, it turns out that this enables

us to construct an algorithm which approximates Max 2-Lin mod p within

p− κ(p), where κ(p) > 0 for all p, but tends to zero as p grows to infinity.

To handle equations of the form axi = c we introduce a new variable x0.

Our algorithm will be designed in such a way that x0 always gets the value 0.

Each equation axi = c can thus be changed to axi − x0 = c. For each equation

axi − bxi′ = c we include the terms

1
p(p− 1)

p−1∑
k=1

p−1∑
j=0

〈vi,ka
j , vi′,kb

j+kc〉 (50)

in the objective function. We remind the reader that all indices are counted

modulo p. Since we use the same type of objective function as in the algorithm

for equations of the form xi − xi′ = c, the simplicial and orthogonal porcupine

models achieve the same performance ratio also for general instances of Max

2-Lin mod p. We analyze orthogonal porcupines.

Lemma 8. Given an instance of Max 2-Lin mod p and the corresponding

semidefinite program constructed as described above, the optimum of the former

can never be larger than the optimum of the latter.

Proof. Suppose that we have an assignment π to the variables xi. Let {êj}p−1
j=0

be orthonormal unit vectors in Rp and set

vi,�
j = êj+�π(xi) (51)

for all i, all j ∈ Zp and all
 ∈ Z∗
p . The terms (50) corresponding to an equation

New Use of Semidefinite Programming 25

axi − bxi′ = c are then

1
p(p− 1)

p−1∑
k=1

p−1∑
j=0

〈vi,ka
j , vi′,kb

j+kc〉

=
1

p(p− 1)

p−1∑
k=1

p−1∑
j=0

〈êj+kaπ(xi), êj+kc+kbπ(xi′)〉.
(52)

If the equation is satisfied by the assignment π, then kaπ(xi) = kbπ(xi′) + kc,

and

1
p(p− 1)

p−1∑
k=1

p−1∑
j=0

〈êj+kaπ(xi), êj+kc+kbπ(xi′)〉 = 1. (53)

On the other hand, if the equation is not satisfied, then kaπ(xi) �= kbπ(xi′)+kc,

and

1
p(p− 1)

p−1∑
k=1

p−1∑
j=0

〈êj+kaπ(xi), êj+kc+kbπ(xi′)〉 = 0. (54)

Thus, the maximum of the semidefinite program can never be less than the

optimum of the Max 2-Lin mod p instance.

The intuition behind the algorithm for Max 2-Lin mod p is as follows:

There are p − 1 porcupines corresponding to each variable. Each of these por-

cupines give one vote on a “good” assignment to the corresponding variable.

Since there are at most p− 1 different votes, a random guess among these votes

satisfies any equation with probability almost 1/(p − 1), which is more than

1/p. We now give the details of this algorithm by a suitable generalization of

Algorithm 2.

Algorithm 3. Construct and solve the above semidefinite program. Use the

vectors obtained from the optimal solution to the semidefinite program to obtain

an assignment to the variables xi in the following way: A vector r is selected by

independently choosing each component as an N(0, 1) random variable. Then,

we do the following:

New Use of Semidefinite Programming 26

Find the j ∈ Zp maximizing 〈v0,1
j , r〉.

Set t← j.

For each i ∈ [0..n],

For all j ∈ Zp, set qi,j ← 0.

For all k ∈ Z∗
p ,

Find the j ∈ Zp maximizing 〈vi,k
j , r〉.

Set qi,k−1(j−t) ← qi,k−1(j−t) + 1
p−1 .

Finally, given the resulting qi,j , each variable xi, but x0, is given the value −j
with probability qi,j . The variable x0 is given the value 0.

Remark 1. By the choice of t in Algorithm 3 above, q0,0 will always be non-

zero. This turns out to be essential for analyzing equations containing x0.

To obtain our estimate of the optimum of the Max 2-Lin mod p instance,

we take the maximum of the results obtained from Algorithms 1 and 3.

By Corollary 2 and Lemma 8, Algorithm 1 is a (1 − κ)p-approximation

algorithm if the optimum weight of the semidefinite program is less than 1− κ
times the weight of all equations. Thus, when analyzing the performance of

Algorithm 3, we can assume that the optimum of the semidefinite program

is at least 1 − κ times the weight of all equations. By this assumption and

Lemma 5, equations of total weight at least 1 − 2κ/ε times the weight of the

instance have the property that the sum of the corresponding terms (50) in the

objective functions is at least
√

1− ε. Let us now study an arbitrary equation

axi − bxi′ = c with that property. I.e.,

1
p(p− 1)

p−1∑
k=1

p−1∑
j=0

〈vi,ka
j , vi′,kb

j+kc〉 ≥
√

1− ε. (55)

We want to show that this equation is satisfied with probability a little bit larger

than 1/p. Let us study the details of the selection procedure in Algorithm 3.

Informally, we expect the following:

• By the condition (55) we expect the vectors vi,ka
j and vi′,kb

j+kc to be almost

New Use of Semidefinite Programming 27

perfectly aligned, for all j and k.

• For each k, this should imply, that if some j maximizes 〈vi,ka
j , r〉 then,

with high probability over the choice of r, we will have that j′ = j + kc

maximizes 〈vi′,kb
j′ , r〉.

• In terms of qi,j this means that

qi,a−1j = qi′,b−1(j+c) (56)

should hold for each j with high probability.

• If the above equivalence holds for all j, the randomized assignment at the

end of Algorithm 3 will find a satisfying assignment with probability at

least 1/(p− 1).

We now formalize this intuition.

Definition 7. Xk
j = 〈vi,ak

j , r〉 and Y k
j = 〈vi′,bk

j+kc, r〉.

Remark 2. By the construction of the porcupines and the choice of r, the Xk
j

are i.i.d. N(0, 1).

Definition 8. Let εk be defined by the relation

1
p

p−1∑
j=0

〈vi,ka
j , vi′,kb

j+kc〉 =
√

1− εk. (57)

Remark 3. By the constraints (49), the above definitions imply that

Y k
j =

√
1− εkXk

j +
√
εkZ

k
j , (58)

where Zk
j ∈ N(0, 1).

Lemma 9. Let axi − bxi′ = c be an arbitrary equation with the property that

the corresponding terms in the objective function satisfy the bound (55), and let

New Use of Semidefinite Programming 28

Ak be the event that the same j maximizes Xk
j and Y k

j . Then, for all δ > 0,

Pr
[
Ak

]
≤ p2δ

(p− 1)
√

2π
+

4p
δ

√
εk
π
. (59)

Proof. Let Xk
(p) and Xk

(p−1) be the maximum and the second maximum, respec-

tively, of the Xk
j . Define the events Bk(δ) and Ck(δ) as follows:

Bk(δ) =
{
Xk

(p) > X
k
(p−1) + δ

}
, (60)

Ck(δ) =
p−1⋂
i=0

{∣∣Xk
i − Y k

i

∣∣ < δ

2

}
. (61)

If both Bk(δ) and Ck(δ) occur, then Ak must occur. Furthermore, if there exists

some δ such that Bk(δ) and Ck(δ) both occur with high probability, Ak will also

occur with high probability. For,

Bk(δ) ∩ Ck(δ) ⊆ Ak =⇒ Pr
[
Ak

]
≤ Pr

[
Bk(δ)

]
+ Pr

[
Ck(δ)

]
. (62)

By Lemma 35 we obtain the bound

Pr
[
Bk(δ)

]
≤ p2δ

(p− 1)
√

2π
, (63)

and by the relation (58) and Lemma 36 we obtain

Pr
[
Ck(δ)

]
≤ 4p
δ

√
εk
π
. (64)

When the bounds (62), (63), and (64) are combined, the lemma follows.

Lemma 10. For fixed i and i′, let Ak be the event that the same j maximizes

Xk
j and Y k

j . Then, if Ak occur for all k, we are ensured that qi,j = qi′,b−1(aj+c)

for all j ∈ Zp.

Proof. Fix i and i′. Initially in the algorithm, all qi,j are zero. Suppose qi,j1

is incremented in Algorithm 3 for a certain k = ak1. Then the maximum was

New Use of Semidefinite Programming 29

obtained at j = t+ kj1 = t+ ak1j1.

We now want to show that this implies that qi′,b−1(aj1+c) is also incremented.

Since Ak1 occurs, for k = bk1 the maximum in the loop for i′ appears at j+k1c =

t+ak1j1 +k1c and hence qi′,j2 is incremented for j2 = (bk1)−1(t+ak1j1 +k1c−
t) = b−1(aj1 + c). The lemma now follows.

Lemma 11. Let axi − bxi′ = c be an arbitrary equation with the property that

the corresponding terms in the objective function satisfy the bound (55). Then,

Pr


 ⋂

j∈Zp

qi,j = qi′,b−1(aj+c)


 ≥ 1− p2δ√

2π
− 4p(p− 1)

δ

√
ε

π
, (65)

where δ > 0 is arbitrary.

Proof. By Lemmas 9 and 10,

Pr

[
p−1⋂
j=0

qi,a−1j = qi′,b−1(j+c)

]
≥ Pr

[
p−1⋂
k=1

Ak

]

≥ 1−
p−1∑
k=1

Pr
[
Ak

]

≥ 1− p2δ√
2π
− 4p
δ
√
π

p−1∑
k=1

√
εk .

(66)

Since the function x �→ √1− x is concave when x ∈ [0, 1], we can apply Jensen’s

inequality, which states that

∑
i

aif(xi) ≤ f
(∑

i

aixi

)
(67)

for any positive ai such that
∑

i ai = 1 and any concave function f [8]. Applied

to our case, this inequality implies that

√
1− ε ≤

p−1∑
k=1

√
1− εk
p− 1

≤
√√√√1−

p−1∑
k=1

εk
p− 1

, (68)

where the first inequality follows from the bound (55) combined with the relation

New Use of Semidefinite Programming 30

(57), and the second from Jensen’s inequality. Thus,

p−1∑
k=1

εk
p− 1

≤ ε. (69)

Using the Cauchy-Schwartz inequality, we obtain from (69) the bound

p−1∑
k=1

√
εk ≤

√√√√(
p− 1

) p−1∑
k=1

εk ≤ (p− 1)
√
ε. (70)

When this is inserted into (66), the proof is complete.

Lemma 12. If q0,0 > 0 and qi,j = qi′,b−1(aj+c) for all i, i′ and all j ∈ Zp, then

the equation axi − bxi′ = c will be satisfied with probability at least 1/(p− 1).

Proof. By the construction of the system of linear equations there are no equa-

tions axi − bxi′ = c where i = 0. If i′ �= 0 the qi,j and qi′,j, computed using

the probabilistic construction described above, are used to independently assign

values to xi and xi′ . Thus,

Pr[equation satisfied] =
∑

j

qi,jqi′,b−1(aj+c) =
∑

j

q2i,j , (71)

where the second equality follows from the initial requirement in the formulation

of the lemma. Now since any nonzero value of qi,j is at least 1/(p− 1) we have

∑
j

q2i,j ≥
1

p− 1

∑
qi,j =

1
p− 1

. (72)

If i′ = 0 we know that b = 1 and xi′ = 0. Then

Pr[equation satisfied] = qi,−a−1c = q0,0. (73)

Since q0,0 �= 0 we know, by the construction of Algorithm 3, that q0,0 ≥ 1/(p−1),

and the lemma follows.

New Use of Semidefinite Programming 31

Theorem 13. It is possible to choose ε(p) > 0 such that, for all primes p,

Pr[equation satisfied] >
2

2p− 1
(74)

for all equations with the property that the corresponding terms in the objective

function are at least
√

1− ε(p).

Proof. It follows immediately from the construction of Algorithm 3, together

with Lemmas 9–12, that

Pr[equation satisfied] >
1

p− 1

(
1− p2δ√

2π
− 4p(p− 1)

δ

√
ε

π

)
. (75)

Setting

δ(p) =
√

2π
8p3

, (76)

ε(p) =
δ(p)2π

1024p4(p− 1)2
=

π2

32768p10(p− 1)2
, (77)

and substituting into (75) we obtain

Pr[equation satisfied] >
1

p− 1

(
1− 1

8p
− 1

8p

)
≥ 2

2p− 1
. (78)

As an immediate corollary, the main theorem follows. It is proved in exactly

the same way as Theorem 7.

Theorem 14. For all primes p, there exists a randomized polynomial time

algorithm approximating Max 2-Lin mod p within (1−κ(p))p, where κ(p) > 0

for all p.

Proof. The algorithm is as described above. Denote by w the total weight of

the instance and set κ(p) = ε(p)/6p where ε(p) is given in Theorem 13. If the

optimum is at most (1 − κ)w, Algorithm 1 approximates the solution within

(1− κ)p.

New Use of Semidefinite Programming 32

Otherwise, Lemma 5 tells us that equations with total weight at least (1 −
2κ(p)/ε(p))w = (1− 1

3p)w have the property that the corresponding terms in the

objective function in the semidefinite program evaluate to at least
√

1− ε(p) in

the optimal solution. By Theorem 13, the resulting solution will, on the average,

satisfy equations of weight at least

2(1− 1
3p)w

2p− 1
≥ w

p(1− 1
6p)
≥ w

p(1− κ)
. (79)

If we use the explicit value of κ(p) from the proof of Theorem 13, we see

that Max 2-Lin mod p is approximable within p−Θ(p−12).

It is possible to generalize the algorithm to Max 2-Lin mod m for com-

posite m: First notice that since equations where gcd(a, b,m) does not divide c

can never be satisfied, we can remove them from the instance. Assume that

the total weight of all remaining equations is w. If the optimum is less than

(1−κ)w, there is nothing to prove since we can simply apply Algorithm 1, while

if it at least (1− κ)w we consider a prime factor p of m and proceed as follows:

We determine values {ai}ni=1 mod p such that when setting xi = ai + px′i we

get a system mod m/p in x′i such that the weight of the satisfiable equations is

at least w/p(1− κ(p)). The result then follows by applying Algorithm 1 to this

resulting system yielding a solution that satisfies equations of weight at least

w/m(1 − κ(p)). The condition that an equation remains satisfiable is simply a

linear equation mod p and by the assumption that it is possible to find a solution

mod m that satisfies almost all equations, desired values ai can be found by the

approximation algorithm for a prime modulus.

In fact, since the only property of Zp used in the algorithm and the proof of

correctness is the existence of a multiplicative inverse, our algorithm generalizes

to linear equations over any finite field.

New Use of Semidefinite Programming 33

4 Max k-Cut and comparison to

the algorithm of Frieze and Jerrum

In this section, we go back to simplicial porcupines to ease the comparison with

the algorithm of Frieze and Jerrum [4], which is described in Sec. 2.1. We

observe that Max k-Cut is a special case of Max E2-Lin mod k: That the

edge (i, i′) is to be cut is equivalent to exactly one of the equations xi−xi′ = c,

for c = 1, 2, . . . , k − 1, being satisfied. This corresponds to the term

k−1∑
c=1


k − 1

k2

k−1∑
j=0

〈ui
j , u

i′
j+c〉+

1
k


 (80)

in the objective function. Note that if we use the fact that
∑

j u
i
j = 0 for all i,

we obtain exactly the same objective function (8) as Frieze and Jerrum used.

Thus, it is possible to solve Max k-Cut by formulating the instance as a Max

E2-Lin mod k instance and solve it using the methods developed in Sec. 3.1.

It is interesting to study how this method of solution compares to that of Frieze

and Jerrum.

Another, seemingly good, strategy to improve the algorithm of Frieze and

Jerrum is to change the rounding procedure by adding constraints forcing the

random vectors to be far apart.

We show that the two approaches outlined above to some extent are equiv-

alent to the relaxation (10) with the original randomized rounding strategy.

Notice, however, that Frieze and Jerrum’s semidefinite program cannot be used

for Max E2-Lin mod k as their objective function is not able to represent

equations of the form xi − xi′ = c.

4.1 Using porcupines for the rounding

Frieze and Jerrum round the solution to their semidefinite program using k ran-

dom vectors r0, . . . , rk−1 where the components of each ri can be chosen as

independent N(0, 1) variables. At first, it seems that it would be better to in-

New Use of Semidefinite Programming 34

stead choose a random porcupine. To make the situation more like the rest

of the paper we fist scale all vectors by a factor
√
n to make each component

N(0, 1/
√
n). This scaling does not change the algorithm.

Definition 9. A random orthogonal porcupine is a porcupine chosen as follows:

The first vector s0 in the porcupine is chosen uniformly at random. Then, for

each i ≥ 1, the vector si is chosen uniformly at random from the subspace

orthogonal to the space spanned by the vectors s0, . . . , si−1. Finally all vectors

are normalized. When no confusion can arise, we will simply call the above

object a random porcupine.

One could also imagine using a random simplicial porcupine, defined in the

obvious way. We note in passing that a theorem analogous to Theorem 3 holds

for random porcupines.

Theorem 15. Rounding using a random orthogonal porcupine is equivalent to

rounding using a random simplicial porcupine.

Proof. Let {si}k−1
i=0 be an orthogonal porcupine and

s′i =

√
k

k − 1


si − 1

k

∑
j

sj


 . (81)

It is easy to verify that {s′i}k−1
i=0 is a simplicial porcupine. The probability that

the edge (i, i′) is not cut after the rounding is

k × Pr

[
k−1⋂
j=1

(
〈vi, s′0〉 ≥ 〈vi, s′j〉

)
∩

k−1⋂
j=1

(
〈vi′ , s′0〉 ≥ 〈vi′ , s′j〉

)]
(82)

where vi and vi′ are vectors from the semidefinite program. Using the same

argument as in the proof of Theorem 3, we conclude that this probability is the

same for the orthogonal and simplicial porcupine models.

We now relate the rounding procedure proposed above to the rounding pro-

cedure of Frieze and Jerrum. The first thing to notice is that the k random

New Use of Semidefinite Programming 35

vectors r0 . . . , rk−1 are in fact close to a random orthogonal porcupine with

high probability.

Lemma 16. Let ε ≤ 1. Construct the random vectors r0, . . . , rk−1 by choosing

the components of each vector as independent N(0, 1/
√
n) random variables.

Then

E[〈ri, rj〉] =




1 if i = j,

0 otherwise,
(83)

Pr[|〈ri, rj〉 − E[〈ri, rj〉]| > ε] ∈ O
(
1/nε2

)
. (84)

Proof. If X and Y are independent N(0, 1/
√
n) random variables,

E[X2] = 1/n, (85)

E[X4] = 3/n2, (86)

E[XY] = 0, (87)

E[X2Y 2] = E[X2]E[Y 2] = 1/n2, (88)

which implies that

Var[X2] = 2/n2, (89)

Var[XY] = 1/n2. (90)

Since the components of the vectors r0, . . . , rk−1 are independent N(0, 1/
√
n)

random variables,

E[〈ri, rj〉] =




1 if i = j,

0 otherwise,
(91)

Var[〈ri, rj〉] =




2/n when i = j,

1/n otherwise.
(92)

New Use of Semidefinite Programming 36

The above equations combined with Chebyshev’s inequality complete the proof.

Note that we regard k as a constant and hide it in the O(·) notation. We

now study the generation of the random porcupine in greater detail.

Definition 10. LetR be the matrix whose columns are r0, . . . , rk−1 and letG be

the Cholesky factorization of RTR, i.e., G is an upper triangular matrix such

that GTG = RTR. (By construction, RTR is positive definite with probability

one, and thus a unique G exists with probability one.) Define the matrix S by

S = RG−1.

Since the matrix S constructed in Definition 10 is an orthonormal (n× k)-

matrix and the matrix G used to construct S is upper triangular, multiplying R

by G−1 from the right is equivalent to performing a Gram-Schmidt orthogo-

nalization of the random vectors r0, . . . , rk−1. Thus, the vectors s0, . . . , sk−1,

forming the columns of S, constitute a random porcupine.

Lemma 17. Suppose that

∣∣〈rj , r�〉 − E[〈rj , r�〉]
∣∣ ≤ ε (93)

for all j,
. Then all elements of G− I are O(ε).

Proof. Since the Cholesky factorization is unique for symmetric positive definite

matrices, it follows from the factorization algorithm [6, Algorithm 5.2-1] that

|Gjj − 1| ∈ O(ε), and |Gj�| ∈ O(ε) when j �=
.

Corollary 18. Construct the random vectors r0, . . . , rk−1 by choosing the com-

ponents of each vector as independent N(0, 1/
√
n) random variables. Construct

the vectors s0, . . . , sk−1 by performing a Gram-Schmidt orthogonalization of the

vectors r0, . . . , rk−1. Let v be any vector in Rn, and vr be the projection of v

into the subspace spanned by the vectors r0, . . . , rk−1. With probability at least

New Use of Semidefinite Programming 37

1−O(1/nε2) over the choice of r0, . . . , rk−1,

|〈v, sj − rj〉| < ‖vr‖O(ε). (94)

Proof. Let ej be the k-dimensional vector with zeros in all components but the

jth. Then

‖sj − rj‖ = ‖S(I −G)ej‖ = ‖(I −G)ej‖ ∈ O(ε), (95)

since, by Lemma 17, all elements of I −G are O(ε).

The second important property of the rounding procedure is that the prob-

ability of a “photo finish” in the rounding procedure is small.

Lemma 19. Let v be any vector in Rn and vr be the projection of v into the

subspace spanned by the vectors r0, . . . , rk−1. Then,

Pr[|〈v, sj − s�〉| < ‖vr‖δ] ∈ O(δ). (96)

Proof. By construction, the vectors s0, . . . , sk−1 are orthogonal unit length vec-

tors with random orientation. Thus, we can instead view the situation as fol-

lows: We select a random unit length k-dimensional vector w, and compute the

probability that

|〈w, s〉| ∈ O(ε), (97)

where s = sj − s�. But this probability is O(ε) for any k-dimensional vector s

of constant length.

Corollary 20. The probability that the edge (i, i′) is not cut can be written as

k−1∑
j=0

Pr


k−1⋂

�=0
� �=j

{
〈vi, rj〉 ≥ 〈vi, r�〉

}
∩

k−1⋂
�=0
� �=j

{
〈vi′ , rj〉 ≥ 〈vi′ , r�〉

}
 . (98)

New Use of Semidefinite Programming 38

Suppose that

∣∣〈rj , r�〉 − E[〈rj , r�〉]
∣∣ ≤ ε (99)

for all j,
. Given that (i, i′) is not cut, the probability that the above inequalities

hold with a margin of at least ‖vi
r‖O(ε) and ‖vi′

r ‖O(ε), respectively, is 1−O(ε).

Proof. By Corollary 18, 〈v, rj〉 and 〈v, sj〉 differ by at most ‖vr‖O(ε), and by

Corollary 19

Pr[|〈v, sj − s�〉| < ‖vr‖δ] ∈ O(δ). (100)

If we select δ ∈ O(ε) this completes the proof, since there is only a constant

number of inequalities in (98).

We can now fit the pieces together.

Theorem 21. The probability of the edge (i, i′) being cut when the solution

to the semidefinite program of Frieze and Jerrum is rounded using k random

vectors differs by a factor 1 +O(n−1/3) from the probability of it being cut when

a random orthogonal porcupine is used in the rounding.

Proof. It follows from Corollaries 18 and 20 that the probability that the edge

(i, i′) is cut when the rounding procedure uses s0, . . . , sk−1 differs from the

probability that it is cut when the rounding procedure uses r0, . . . , rk−1 by a

factor

1−O(
1/nε2

)−O(
ε). (101)

If we choose ε = n−1/3 this factor is 1−O(n−1/3).

4.2 Using porcupines to represent variables

Traditionally, the analysis of the performance ratio of semidefinite programming

based approximation algorithms is done using local analysis. In our case this

New Use of Semidefinite Programming 39

corresponds to finding the worst possible configuration of two porcupines (or

vectors).

Theorem 22. Consider the edge (i, i′). For each configuration of vectors vi

and vi′ from Frieze and Jerrum’s semidefinite program there exists a configura-

tion of simplicial porcupines {ui
j}k−1

j=0 and {ui′
j }k−1

j=0 such that the ratio between

the probability of the edge being cut after rounding and the corresponding term

in the objective function is the same for the two configurations.

Corollary 23. Using local analysis, the performance ratio of the porcupine

algorithm for Max k-Cut is no less than that obtained by Frieze and Jerrum.

Proof of Theorem 22. We can without restriction choose coordinate system in

such a way that

vi = (1, 0, . . .), (102)

vi′ = (λ,
√

1− λ2, 0, . . .), (103)

where λ ≥ −1/(k − 1). Let wj ∈ Rk−1, j = 0, . . . , k − 1, be the vertices of a

regular k-simplex with ‖wj‖ = 1. Suppose that wj has the coordinates wj =

(wj,1, . . . , wj,k−1), and consider a simplicial porcupine {ui
j}k−1

j=0 which we wish

to put in correspondence with vi. Let Li be the (k − 1)-dimensional subspace

spanned by {ui
j}k−1

j=0 . By symmetry, we can assume that the coordinates of ui
j

in Li are (wj,1, . . . , wj,k−1). We construct another simplicial porcupine {ui′
j }k−1

j=0

(corresponding to vi′) with the following properties. Let L⊥
i = Li′ −Li. Denote

with πL(v) the projection of v onto the subspace L. Then ui′
j can be assumed

to have the coordinates
√

1− λ2(wj,1, . . . , wj,k−1) in L⊥
i (again by symmetry)

and satisfy πLi(ui′
j) = λui

j. We note that {ui
j}k−1

j=0 and {ui′
j }k−1

j=0 satisfy the

constraints (16a) and (16c).

If we scale each random vector by a factor 1/
√
n, we can view the rounding

scheme of Frieze and Jerrum as if it chooses k random vectors r0, . . . , rk−1 where

the components of each rj are independent N(0, 1/
√
n) variables. This process

New Use of Semidefinite Programming 40

is equivalent to choosing a random variable from the kn-dimensional normal

distribution with mean zero and covariance matrix 1
nI, where I denotes the

unit matrix.

Consider the following way to generate the random vectors s0, . . . , sk−1:

sj =

√
k − 1
k

k−1∑
�=1

wj,�t� +

√
1
k
t0 (104)

where the components of each tj , j = 0, . . . , k−1, are independent N(0, 1/
√
n).

Denote with sj,m the mth component of sj , 0 ≤ j ≤ k − 1 and 1 ≤ m ≤ n.

Then sj,m ∈ N(0, 1/
√
n) for all j and m. Furthermore,

E[sj,msj′,m′] =




1/n when j = j′ and m = m′,

0 otherwise.
(105)

Therefore the sj,m variables can be viewed as the components of a single ran-

dom variable with the kn-dimensional normal distribution with mean zero and

covariance matrix 1
nI. This implies that rounding using the random vectors

s0, . . . , sk−1 is equivalent to rounding using the vectors r0, . . . , rk−1.

Using the same techniques as in the proof of Theorem 3, it can be shown that

we instead of the random vectors defined in (104) can perform the randomized

rounding using the vectors

s′j =
k−1∑
�=1

wj,�t� (106)

for j = 0, . . . , k − 1. We let t� = (ξ�, ζ�, . . .) where ξ�, ζ� ∈ N(0, 1/
√
n) for

all l. The rest of the coordinates are N(0, 1/
√
n) as well but are not used in the

calculations below.

Let us now compute the probability of the edge being cut using the approach

New Use of Semidefinite Programming 41

of Frieze and Jerrum. Let Ai
j be the event that 〈vi, s′0〉 ≥ 〈vi, s′j〉. Then,

Pr[(i, i′) is not cut] =

= k × Pr[xi ← 0 and xi′ ← 0] =

= k × Pr


k−1⋂

j=1

(
Ai

j ∩Ai′
j

)
 .

(107)

Equations (102), (103) and (106) immediately imply that

Ai
j ⇐⇒

k−1∑
�=1

(w0,� − wj,�)ξ� ≥ 0, (108)

Ai′
j ⇐⇒ λ

k−1∑
�=1

(w0,� − wj,�)ξ�+

√
1− λ2

k−1∑
�=1

(w0,� − wj,�)ζ� ≥ 0.

(109)

Finally, we focus on the randomized rounding used to obtain a cut from a

configuration of porcupines. The random vector r used in the rounding can be

assumed to satisfy

πLi(r) = (ξ1, ξ2, . . . , ξk−1) (110)

πL⊥
i

(r) = (ζ1, ζ2, . . . , ζk−1) (111)

where ξi, ζi ∈ N(0, 1) for all i. Let Bi
j be the event that 〈ui

0, r〉 ≥ 〈ui
j, r〉. Then,

Pr[(i, i′) is not cut] =

= k × Pr[xi ← 0 and xi′ ← 0] =

= k × Pr


k−1⋂

j=1

(
Bi

j ∩Bi′
j

)
 .

(112)

New Use of Semidefinite Programming 42

Equations (110) and (111) imply that

Bi
j ⇐⇒

k−1∑
�=1

(w0,� − wj,�)ξ� ≥ 0, (113)

Bi′
j ⇐⇒ λ

k−1∑
�=1

(w0,� − wj,�)ξ�+

√
1− λ2

k−1∑
�=1

(w0,� − wj,�)ζ� ≥ 0,

(114)

which shows that the probability of the edge being cut is indeed identical in

both cases.

To finish the proof, we just note that the corresponding terms in the objective

functions in both cases evaluate to k−1
k (1− λ).

We cannot conclude that the performance ratios are the same as there might

exist porcupine configurations which cannot be put in correspondence with fea-

sible solutions to (10). Also, the configurations used in the above proof might

not be optimal for the semidefinite program. Using local analysis, we have ob-

tained numerical evidence that the performance ratios are indeed the same, but

we have not been able to prove it formally.

5 Negative results

In this section we show that there exists a universal constant, such that it is NP-

hard to approximate Max E2-Lin mod p within that constant. We do this by

reducing Max E3-Lin mod p to Max E2-Lin mod p. This reduction is valid

for all primes p ≥ 3. However, since the quality of this reduction deteriorates

when p increases we cannot use it to show that it is NP-hard to approximate

Max E2-Lin mod p within a constant factor independent of p. To deal with

this, we also make a reduction from Max E3-Lin mod 2 to Max E2-Lin

mod p. While this reduction is only valid for large enough p, it guarantees that

it is NP-hard to approximate Max E2-Lin mod p within a constant factor

New Use of Semidefinite Programming 43

independent of p. The two reductions combined then give the desired result.

The reductions we construct are through gadgets which are local reduction

taking one constraint of the original problem and constructing one or more

constraints, possibly using weights, of the target problem. These constrains

use the variables of the original problem and also possibly some new auxiliary

variables. A gadget is an α-gadget if whenever the original constraint is satisfied,

then the auxiliary variables can be adjusted to satisfy constraints of total weight

exactly α while if the constraint is not satisfied than the obtainable maximum

is exactly α− 1 [9]. The usefulness of gadgets follows from the below theorem.

Theorem 24. Suppose there is an α-gadget reducing constraint satisfaction

problem A to constraint satisfaction problem B, and that is NP-hard to, given

an instance of A of total weight w, distinguish instances where the maximal

weight of simultaneous satisfiable constraints is at least a1w and and when it is

at most a2w. Then it is NP-hard to approximate B within a factor

α+ a1 − 1
α+ a2 − 1

. (115)

Proof. This theorem is standard so let us only sketch the proof. By the prop-

erties of a gadget an instance of A where the maximal simultaneous satisfiable

weight is aw is transformed into an instance of B where the maximal simul-

taneous satisfiable weight is (α + a − 1)w. The theorem follows directly from

this.

5.1 Small p

For the case p = 2, it is possible to use the methods of Trevisan et al. [9] to con-

struct a gadget reducing Max E3-Lin mod 2 to Max E2-Lin mod 2. When

this gadget is combined with the hardness results by H̊astad [7], it follows,

as described in [7], that it is NP-hard to approximate Max E2-Lin mod 2

within 12/11−ε. We now show how to construct a gadget which can be used to

show hardness results for Max E2-Lin mod p when p ≥ 3. Note, that although

New Use of Semidefinite Programming 44

Trevisan et al. [9] have constructed an algorithm which computes optimal gad-

gets, this algorithm seems to be on no use to us to construct the gadgets for

p ≥ 3; the running time of the algorithm is simply too large to run it in on

existing computers.

We start with an instance of Max E3-Lin mod p of total weight w. For

each equation in the instance we construct a number of equations with two

variables per equation. By the result of H̊astad [7], for any ε > 0 it is NP-

hard to distinguish the case when the maximal simultaneous satisfiable weight

is (1 − ε)w and when it is (1 + ε)w/p. This theorem applies to the case when

all coefficients in the equations are equal to one. Thus, we can assume that, for

all i, the ith equation in the Max E3-Lin mod p instance is of the form

xi1 + xi2 + xi3 = c. (116)

For an arbitrary equation of this form we now construct the corresponding

equations in the Max E2-Lin mod p instance. Consider assignments to the

variables xi1 , xi2 , and xi3 with the property that xi1 = 0. There are p2 such

assignments, and p of those are satisfying. For each of the p2 − p unsatisfying

assignments

(xi1 , xi2 , xi3)← (0, a, b) a+ b �= c (117)

we introduce a new auxiliary variable yi,a,b and construct the following triple of

equations:

xi1 − yi,a,b = 0, (118a)

xi2 − yi,a,b = a, (118b)

xi3 − (p− 2)yi,a,b = b. (118c)

The variable yi,a,b is an auxiliary variable that appears only in this triple of

equations. Our Max E2-Lin mod p instance contains 3m(p2 − p) equations if

New Use of Semidefinite Programming 45

the Max E3-Lin mod p instance contains m equations.

Lemma 25. When p ≥ 3 is prime, the above construction is a (p− 1)(p+ 3)-

gadget.

Proof. Let π be an assignment to the xi and the yi,a,b, such that the number

of satisfied equations in the Max E2-Lin mod p instance is maximized. Since

each fixed yi,a,b occurs only in three equations, we can assume that π(yi,a,b) is

such that as many as possible of these three equations are satisfied. We now

study some arbitrary equation

xi1 + xi2 + xi3 = c (119)

from the Max E3-Lin mod 2 instance, and the corresponding 3(p2 − p) equa-

tions of type (118) from the Max E2-Lin mod p instance. Assume that

π(xi1 , xi2 , xi3) = (s1, s2, s3), (120)

and that (s1, s2, s3) satisfies (119). Then, for arbitrary a and b such that a+b �= c

there is no assignment to yi,a,b such that all corresponding equations (118)

containing yi,a,b are satisfied. For, if we sum the three equations in a triple,

the left hand side becomes s1 + s2 + s3 and the right hand side a + b. If all

equations in the triple (118) were satisfied, then this new equation would also

be satisfied. But a+ b �= c by construction, which contradicts this assumption.

We can, however, always satisfy one of the three equations containing yi,a,b by

choosing π(yi,a,b) = π(xi1). In some cases it is possible to satisfy two of the

three equations. In fact, exactly 3(p− 1) of the p2− p triples of type (118) have

this property.

To see this, remember that each triple (118) corresponds to an assignment

which do not satisfy (119). There are exactly 3(p−1) ways to construct unsatis-

fying assignments (u1, u2, u3) with the property that (s1, s2, s3) and (u1, u2, u3)

New Use of Semidefinite Programming 46

differ in exactly one position. Such an assignment corresponds to the triple

xi1 − yi,a,b = 0, (121a)

xi2 − yi,a,b = u2 − u1, (121b)

xi3 − (p− 2)yi,a,b = u3 − (p− 2)u1. (121c)

With the assignment π(yi,a,b) = u1, all of the equations are satisfied in the

assignment (u1, u2, u3) and since (s1, s2, s3) and (u1, u2, u3) differ in exactly one

position, the assignment (s1, s2, s3) must satisfy two equations. Furthermore,

two different unsatisfying assignments (u1, u2, u3) and (u′1, u
′
2, u

′
3), both with the

property that they differ from the satisfying assignment in exactly one position,

can never correspond to the same triple. For, if that were the case, the equations

u2 − u1 = u′2 − u′1 (122)

u3 − (p− 2)u1 = u′3 − (p− 2)u′1 (123)

uk = u′k for some k ∈ {1, 2, 3} (124)

would have to be simultaneously satisfied. This, however, implies that uk = u′k

for all k. Summing up, the contribution to the objective function in the Max

E2-Lin mod p instance is

2× 3(p− 1) +
(
(p2 − p)− 3(p− 1)

)
= (p− 1)(p+ 3). (125)

Let us now assume that (s1, s2, s3) does not satisfy (119). Then for exactly

one triple, namely a = s2 − s1 and b = s3 − (p − 2)s1, all three equations

containing yi,a,b can be satisfied. By a similar argument as above, triples where

exactly two equations can be satisfied are in one-to-one correspondence with not

satisfying triplets (u1, u2, u3) differing from (s1, s2, s3) in exactly one coordinate.

There are exactly 3(p−2) such triples, and in the remaining triples one equation

can be satisfied. The contribution to the objective function in the Max E2-Lin

New Use of Semidefinite Programming 47

mod p is

3 + 2× 3(p− 2) +
(
(p2 − p)− (3(p− 2) + 1)

)
= (p− 1)(p+ 3)− 1.

(126)

Theorem 26. For all ε > 0 and all p ≥ 3, it is NP-hard to approximate Max

E2-Lin mod p within (p2 + 3p)/(p2 + 3p− 1)− ε.

Proof. This follows from the above quoted result of H̊astad [7], Lemma 25, and

Theorem 24.

5.2 Large p

Recently, H̊astad showed that it is NP-hard to approximate Max E3-Lin

mod 2 within 2 − ε for any constant ε > 0 [7]. In his proof, H̊astad con-

structs a PCP which in each round reads from the proof three bits, bf , bg1

and bg2 , where f , g1 and g2 are functions. The equations constructed in the

instance are of the form xf + xg1 + xg2 = {0, 1}. For each equation, f and g1

are chosen independently at random, and then g2 is defined pointwise, in such

a way that f(x) + g1(x) = g2(x) with probability 1− ε.
In our construction, we encode such an equation as a number of equations

with two variables in each equation. Let θ be a number mod p. (We will need

some properties of θ later.) In our Max E2-Lin mod p instance, we have

the new variables yg, yg1,g2 and yf . We arrange things so that they take values

xg(1+θ), xg1 +θxg2 and xf , respectively. Since the equations xf +xg1 +xg2 = 0

and xf + xg2 + xg1 = 0 are satisfied simultaneously we can assume that yg1,g2

and yg2,g1 appear in the same type of equations with the same probabilities.

Definition 11. Denote by wg1,g2 the total weight of the equations contain-

ing xg1 and xg2 (in this order) and by wf the total weight of the equations

containing xf . Also, let the total weight of all equations containing xg be wg

and the total weight of all equations be w.

New Use of Semidefinite Programming 48

Remark 4. Since each equation contains two g variables and one f variable,

2w =
∑

g wg and w =
∑

f wf . Also, since each g can be either the first or the

last entry, wg = 2
∑

g2
wg,g2 .

We now construct the equations in our instance of Max E2-Lin mod p.

The variable z used below should be thought of as zero, it is included merely to

produce a Max E2-Lin mod p instance. First, for any g we have the equations

yg − z = h for h ∈ {0, 1 + θ}, (127)

each with weight wg . To make sure that coding of pairs is done correctly we

add equations

yg1,g2 − yg1 = h for h ∈ {0,±θ}, (128)

and

yg1,g2 − yg2 = h for h ∈ {0,±1}, (129)

each with weight wg1,g2 . To make sure that xf is coded in a legal way we have

equations

yf − z = h for h ∈ {0, 1}, (130)

each with weight wf . Finally, we include equations corresponding to the original

equation from the Max E3-Lin mod 2 instance. Every such equation has the

same weight as the original equation. If the original equation is of the form

xf + xg1 + xg2 = 0, we include the equations

yf − yg1,g2 = h for h ∈ {0,±1− θ}. (131)

If the right-hand side of the original equation is 1, we use the right-hand sides

New Use of Semidefinite Programming 49

h ∈ {±1,−θ} instead in (131).

The only property from θ that we need is that variables that satisfy an

equation of type (127) or (130) do not satisfy other equations for “incorrect”

reasons. It turns out to be sufficient that the numbers h1 + h2θ for h1, h2 ∈
{0,±1} are all distinct and thus we can set θ = 3 which works for any p ≥ 9.

Let us now turn to analyzing the set of equations.

As mentioned above, the variable z should be thought of as zero. By the

following lemma, it can actually never be optimal to have z �= 0.

Lemma 27. There always exists an optimal solution to the systems of linear

equations with z = 0.

Proof. Suppose that z = c �= 0 in the optimal solution. Since all equations are

of the form x− y = k, the following transformation does not make any satisfied

equation unsatisfied: yf ← yf−c, yg ← yg−c, yg1,g2 ← yg1,g2−c and z ← 0.

By Lemma 27, we can assume that z = 0 in the optimal solution. We will

implicitly use this assumption in the following two lemmas, which show that it

is always optimal to encode yf and yg correctly.

Lemma 28. For each f , yf is always either 0 or 1 in an optimal solution.

Proof. Each variable yf appears in equations of total weight 5wf . If yf is either

0 or 1, the weight of all satisfied equations containing yf is at least wf , otherwise

this weight is at most wf (only one of type (131) for each left-hand side). Thus

we can assume that an optimal solution has yf equal to 0 or 1.

Lemma 29. For each g, yg is always either 0 or 1 + θ in an optimal solution.

Proof. If yg is either 0 or 1+θ, the weight of all satisfied equations containing yg

is at least wg, otherwise this weight is at most
∑

g2
wg,g2 + wg2,g = wg (only

one of each of the types (128) and (129) for each left-hand side). Thus we can

assume that an optimal solution has yg equal to 0 or 1 + θ.

In view of Lemma 29 we can write the value of yg in the optimal assignment

as xg(1 + θ) for xg ∈ {0, 1}. Next we have

New Use of Semidefinite Programming 50

Lemma 30. For all g1 and g2, yg1,g2 = xg1 + xg2θ in an optimal solution.

Proof. Consider the equations containing yg1,g2 . If we satisfy one equation of

each of the types (128) and (129) then at least equations of weight 2wg1,g2 are

satisfied while otherwise the weight is at most 2wg1,g2 (namely at most one of

those two equations and all equations of type (131)). Now assume that the

two equations are satisfied with right hand sides h1θ and h2, respectively where

h1, h2 ∈ {0,±1}. Subtracting the two equations yield (xg1 − xg2)(1 + θ) =

h2 − h1θ. For each value of xg1 − xg2 we have one “natural” solution h1 =

−h2 = xg2 − xg1 and by the assumption on θ there are no other possibilities.

Clearly this natural solution corresponds to the value of yg1,g2 stated in the

lemma.

We are now ready to prove the main theorem.

Theorem 31. When p ≥ 11, it is NP-hard to approximate Max E2-Lin mod p

within 12/11− ε for all ε > 0.

Proof. By Lemmas 28, 29 and 30, we know that the optimal assignment is

given by a correct encoding. It then satisfies equations of type (127) with a

total weight of

∑
g

wg = 2w, (132)

and equations of type (130) with a total weight of

∑
f

wf = w, (133)

and equations of types (128) and (129) each of weight w. Thus, if the corre-

sponding assignment to the binary variables satisfies equations of weight t, we

satisfy equations of total weight 5w+ t in our transformed case. By the result of

H̊astad [7] it is NP-hard to distinguish the cases when t is w− ε1 and when t is

w/2 + ε2 for arbitrarily small ε1, ε2 > 0, whence it follows that it is NP-hard

New Use of Semidefinite Programming 51

to approximate Max E2-Lin mod p within 12/11− ε for any ε > 0.

When we combine this result with the results for small p, we obtain the

following general result:

Theorem 32. For all primes p, it is NP-hard to approximate Max E2-Lin

mod p within 70/69− ε.

Proof. For p = 2 we use the hardness result by H̊astad [7]. For p ∈ {3, 5, 7} we

use Theorem 26, and for p ≥ 11 we use Theorem 31.

6 Conclusions

We have shown that there exists a randomized polynomial time algorithm ap-

proximating Max 2-Lin mod p within p−Θ(p−12). For the special case of Max

2-Lin mod p, where the equations are either of the form xi − xi′ = c or xi = c,

we have shown that there exists a randomized polynomial time algorithm ap-

proximating the problem within (1− 10−8)p. We have numerical evidence that

the performance ratio in the latter, simpler case is actually 1.27 when p = 3. In

fact, we have not tried to find the tightest possible inequalities in our proofs;

our primary goal was to show a performance ratio less than p. Most likely, our

bounds can be improved significantly.

We have also shown that it is NP-hard to approximate Max E2-Lin mod p

within 70/69−ε. Of major interest at this point is, in our opinion, to determine

if the lower bounds are in fact increasing with p, or if there exists a polynomial

time algorithm approximating Max 2-Lin mod p within some constant ratio.

7 Acknowledgments

We are most grateful to Madhu Sudan for helpful discussions on these subjects.

Ron Rivest raised the question of an algorithm for arbitrary finite fields. We

also thank two anonymous referees for many detailed comments helping the

presentation and pin-pointing some inaccuracies.

New Use of Semidefinite Programming 52

References

[1] Farid Alizadeh. Interior point methods in semidefinite programming with

applications to combinatorial optimization. SIAM Journal on Optimization,

5(1):13–51, February 1995.

[2] Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley &

Sons, New York, 1991.

[3] William Feller. An Introduction to Probability Theory and Its Applications,

volume 1. John Wiley & Sons, New York, second edition, 1962.

[4] Alan Frieze and Mark Jerrum. Improved approximation algorithms for MAX

k-CUT and MAX BISECTION. Algorithmica, 18:67–81, 1997.

[5] Michel X. Goemans and David P. Williamson. Improved approximation

algorithms for maximum cut and satisfiability problems using semidefinite

programming. Journal of the ACM, 42(6):1115–1145, November 1995.

[6] Gene H. Golub and Charles F. van Loan. Matrix Computations. North

Oxford Academic Publishing, Oxford, 1983.

[7] Johan H̊astad. Some optimal inapproximability results. In Proceedings of

Twenty-ninth Annual ACM Symposium on Theory of Computing, pages 1–

10, El Paso, Texas, May 1997. ACM Press. Accepted for publication in

Journal of the ACM.

[8] David G. Luenberger. Linear and Nonlinear Programming. Addison Wesley,

Reading, second edition, 1973.

[9] Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson.

Gadgets, approximation, and linear programming. SIAM Journal on Com-

puting, 29(6):2074–2097, 2000.

New Use of Semidefinite Programming 53

A Four lemmas from elementary

probability theory.

Let

ϕ(x) =
e−x2/2

√
2π

(134)

be the density function of a normal distribution with standard deviation 1 and

let

Φ(x) =
∫ x

−∞
ϕ(t) dt. (135)

As is well known [3], we have

ϕ(x)
(

1
x
− 1
x3

)
< 1− Φ(x) <

ϕ(x)
x
, (136)

when x > 0. This bound will be used to prove the following lemmas.

Lemma 33. Let X0, . . . , Xp−1 be independent identically distributed N(0, 1)

random variables. Denote the maximum of the Xi by X(p), and the second

maximum by X(p−1). Then, for any δ > 0,

Pr
[
X(p) ≥ (1 + δ)

√
2 ln p

⋂
X(p−1) ≤ (1 + δ/2)

√
2 ln p

]
>

1
2p2δ+δ2(1 + δ)

√
π ln p

(
1− 1

2 ln p
− 1

2pδ
√
π ln p

)
.

(137)

Proof. Since the Xi are i.i.d. N(0, 1), we know that

Pr[X(p) ≥ x ∩X(p−1) ≤ y] = p(1− Φ(x))Φ(y)p−1 (138)

when x ≥ y. We now apply the bound (136) on Φ(x). This bound, together

New Use of Semidefinite Programming 54

with the fact that δ > 0, implies that

1− Φ
(

(1 + δ)
√

2 ln p
)

>
1√

2πp(1+δ)2

(
1

(1 + δ)
√

2 ln p
− 1

(1 + δ)3(2 ln p)3/2

)

>
1

2p1+2δ+δ2(1 + δ)
√
π ln p

(
1− 1

2 ln p

)
,

(139)

and that

Φ
(

(1 + δ/2)
√

2 ln p
)
> 1− 1√

2πp(1+δ/2)2(1 + δ/2)
√

2 ln p

> 1− 1
2p1+δ

√
π ln p

.

(140)

Using (1 − a)b ≥ 1− ab, valid for positive a and b > 1 we see that

(
1− 1

2p1+δ
√
π ln p

)p−1

≥ 1− 1
2pδ
√
π ln p

. (141)

Inserting the derived bounds into (138), using (1 − x)(1 − y) ≥ 1 − x − y, the

lemma follows.

Lemma 34. Let X and Z be i.i.d. N(0, 1) and ε ∈ [0, 1]. Then, for any δ > 0,

Pr
[∣∣∣(1−√1− ε

)
X −√εZ

∣∣∣ > δ

4

√
2(1− ε) ln p

]

≤ 4p−δ2(1−ε)/32ε

δ

√
2ε

(1− ε)π ln p
.

(142)

Proof. Let W = (1 −√1− ε)X −√εZ. Since X and Z are independent, W ∈
N(0, σ), where

σ =

√(
1−√1− ε

)2

+ ε ≤
√

2ε. (143)

New Use of Semidefinite Programming 55

Since Pr[|W | > w] = 2(1− Φ(w/σ)), we can use the bound (136).

Pr
[
|W | > δ

4

√
2(1− ε) ln p

]
= 2

(
1− Φ

(
δ

4σ

√
2(1− ε) ln p

))

≤ 2
4σ

δ
√

2(1− ε) ln p
× p

−δ2(1−ε)/16σ2

√
2π

≤ 4p−δ2(1−ε)/32ε

δ

√
2ε

(1− ε)π ln p
.

(144)

Lemma 35. Let X0, . . . , Xp−1 be i.i.d. N(0, 1) random variables. Denote the

maximum of the Xi by X(p), and the second maximum by X(p−1). Then

Pr
[
X(p) > X(p−1) + δ

]
> 1− p2δ

(p− 1)
√

2π
. (145)

Proof. Since the Xi are independent,

Pr
[
X(p) > X(p−1) + δ

]
= p× Pr

[
p−1⋂
i=1

X0 > Xi + δ

]
. (146)

To compute the latter probability we condition on X0.

Pr

[
p−1⋂
i=1

X0 > Xi + δ

]
=

∫ ∞

−∞
Φp−1(x − δ)ϕ(x) dx. (147)

To bound Φp−1(x − δ), we use the mean value theorem. (In the following

equations, ξ ∈ [x− δ, x].)

Φp−1(x− δ) =
(
Φ(x)− δϕ(ξ)

)p−1

≥ Φp−1(x) − pδϕ(ξ)Φp−2(x)

≥ Φp−1(x) − pδ√
2π

Φp−2(x).

(148)

New Use of Semidefinite Programming 56

From this bound on ϕ(x), we obtain

∫ ∞

−∞
Φp−1(x− δ)ϕ(x) dx

≥
∫ ∞

−∞
Φp−1(x)ϕ(x) dx − pδ√

2π

∫ ∞

−∞
Φp−2(x)ϕ(x) dx

=
1
p
− pδ

(p− 1)
√

2π
.

(149)

Lemma 36. Let X and Z be i.i.d. N(0, 1) and ε ∈ [0, 1]. Then, for any δ > 0,

Pr
[∣∣∣(1−√1− ε

)
X −√εZ

∣∣∣ > δ/2]
≤ 4
δ

√
ε

π
. (150)

Proof. Since X and Z are independent,

(
1−√1− ε

)
X −√εZ ∈ N(0, σ), (151)

where

σ =

√(
1−√1− ε

)2

+ ε ≤
√

2ε. (152)

Thus,

Pr
[∣∣∣(1−√1− ε

)
X −√εZ

∣∣∣ > δ/2]
≤ 2

(
1− Φ

(
δ/2σ

))
≤ 4σ
δ
√

2π

≤ 4
δ

√
ε

π
.

(153)

