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Abstract

An approximation algorithm for a constraint satisfaction problem is

said to be nontrivial if its performance ratio is strictly superior to the

expected performance of the algorithm which simply chooses a random

assignment. We prove that any constraint satisfaction problem where

each variable appears a bounded number of times admits a nontrivial

polynomial time approximation algorithm.

1 Introduction

Some NP-hard optimization problems have the property that the polynomial
time approximation algorithm with the best provable performance ratio is rather
trivial. Consider Max-E3Sat, i.e., we are given a set of m clauses, each contain-
ing exactly 3 literals and the objective is to �nd an assignment that satis�es the
maximal number of clauses. It is easy to see that a random assignment satis�es
7m=8 clauses on average and it is not diÆcult to �nd an assignment that satis�es
at least this many clauses by the method of conditional expected values, and
this is the basis for the classical approximation algorithm of Johnson [8]. Since
no assignment can satisfy more than all m clauses this gives an approximation
algorithm with performance ratio 8=7. It is a surprising fact [7] that this is best
possible in that, unless NP=P, no polynomial time approximation can guaran-
tee a performance ratio 8=7 � � for any � > 0. We conclude that Max-E3Sat
does not admit a nontrivial eÆcient approximation algorithm.

For an NP-hard optimization problem it is a basic question whether it ad-
mits a nontrivial eÆcient approximation algorithm. Both positive and negative
results are known along these lines. On the one hand, Max-EkSat for k � 3,
Max-Linear equations over �nite �elds, and Set-splitting of sets of size at least
4 do not allow nontrivial eÆcient approximation algorithms [7]. On the other
hand, Max-cut, Max-directed cut, Max-2Sat and Set-splitting for sets of size at
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most 3 [6, 5], Max-linear equations with two variables in each equation [1] as
well as many constraint satisfaction problems [11] do allow nontrivial eÆcient
approximation algorithms.

In many approximation preserving reductions it is easier to start with an
instance of a Max-E3Sat where each variable appears at most a bounded number
of times. Although it is known [9, 4] that 5 occurrences of each variable is
suÆcient to make Max-E3Sat hard to approximate perfectly, the constant of
inapproximability is weaker than the above mentioned 8/7. If we relax the
requirement that each clause is of length exactly 3 to being of length at most
3, a similar statement is true (see Theorem 8.14 of [2]) even if we allow only
3 occurrences of each variable and the situation is similar for many constraint
satisfaction problems where we bound the number of occurrences [3]. The goal
of this paper is to show that this is no accident and in fact for any constraint
satisfaction problem, any constant bound on the number of occurrences of each
variable implies the existence of a nontrivial eÆcient approximation algorithm.

The method of proof turns out to be rather straightforward. We write down
a polynomial over the real numbers that gives the total weight of constraints
that are satis�ed. The structure of this polynomial is simple enough to allow
us to �nd an assignment of nontrivial quality.

2 Preliminaries

For notational convenience our basic domain is f�1; 1g where we think of �1
as \true" and 1 as \false". A Boolean constraint satisfaction problem (CSP) is
given by a function f : f�1; 1gk 7! f0; 1g for some constant k. An instance of
the CSP is given by a collection, (Ci)

m
i=1, of k-tuples of literals together with

corresponding nonnegative weights (wi)
m
i=1. By a literal we here mean a variable

or the negation of a variable. An assignment satis�es constraint Ci if f , applied
to the values of the literals in Ci, returns 1. As an example, for Max-E3Sat we
have

f(x; y; z) = 1�
(1 + x)(1 + y)(1 + z)

8
=

7� x� y � z � xy � xz � yz � xyz

8
: (1)

The goal is to �nd an assignment that satis�es constraints of total weight as
large as possible. Before we proceed let us give the de�nition of approximation
ratio for an algorithm A.

De�nition 2.1 An approximation algorithm A has performance ratio c for a

CSP-problem if it, for each instance, returns an assignment that satis�es con-

straints of total weight at least O=c, where O is the total weight of all constraints

satis�ed by the optimal assignment.

It is natural to think of f as a multilinear polynomial of degree k and since
we have chosen f�1; 1g as our basic domain the coeÆcients of this polynomial
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are exactly the elements of the discrete Fourier transform of f . We write

f(x) =
X
��[k]

f�x
�;

where [k] is the set of integers f1; 2; : : : ; kg and x� =
Q

i2� xi. We need a couple
of standard facts.

Lemma 2.2 The coeÆcient f; gives the probability that a random assignment

satis�es f . Each f� is a multiple of 2�k and
X
�

f2� = f; � 1:

Proof: The �rst two facts follow from the formula

f� = 2�k
X
x

f(x)x�;

while the last fact is a consequence of Parseval's identity,
P

� f
2
� = 2�k

P
x f(x)

2,
and 2�k

P
x f(x)

2 = 2�k
P

x f(x) = f;.

We derive a simple consequence of the last property.

Lemma 2.3 We have X
�

jf�j � 2k=2:

Proof: By Cauchy-Schwartz' inequality we have
X
�

jf�j � (
X
�

1)1=2(
X
�

f2�)
1=2 � 2k=2:

We say that an approximation algorithm is nontrivial if it is provably supe-
rior to picking a random assignment or, equivalently, if its performance ratio is
smaller than f�1

; .
For an instance I = (Ci)

m
i=1; (wi)

m
i=1 of a CSP we de�ne a polynomial PI .

Let xCi
denote the restriction of an assignment x to the literals in Ci where a

negated variable is replaced by the corresponding variable with a minus sign.
Then

PI(x)
4
=

mX
i=1

wif(xCi
) (2)

and it is a polynomial of degree at most k which gives the total weight of satis�ed
constraints.

De�ne W =
Pm

i=1 wi and let cj be the sum of all wi such that the variable
xj appears in Ci, with or without negation. For a monomial � we let

c� =
X
j2�

cj : (3)

Note that in the case of no (or to be precise, all unit-size) weights, cj is simply
the number of occurrences of xj which is bounded from above by B.
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3 Finding good assignments for polynomials

Let P be a polynomial containing only multilinear terms of degree at most k
with coeÆcients p�. In other words

P (x) =
X

��[n];j�j�k

p�x
�:

We say that P is an a-polynomial i� each p� is an integer multiple of a. Fur-
thermore, de�ne

jP j
4
=
X
�6=;

jp�j;

the sum of the absolute values of all coeÆcients except the constant term and

Di
P

4
=
X
i2�

jp�j

the sum of absolute values of all coeÆcients of terms containing i. Finally, let

Dmax
P

4
=maxiD

i
P .

Di
P is a measure on how much P depends on variable i. Since we are inter-

ested in assigning values �1 to the inputs, changing the value of xi can never
change the value P by more than 2Di

P . Similarly Dmax
P is a measure on how

much P depends on any single variable. In our situation we have an almost
immediate estimate of Dj

PI
and hence of Dmax

P .

Lemma 3.1 For 1 � j � n we have Dj
PI
� cj2

k=2.

Proof: Each term p�x
� where j 2 � comes from one or more terms of the

type wif(xCi
) in (2) such that the variable xj appears in Ci. Since xj appears

in constraints of total weight at most cj and, by Lemma 2.3,
P
jf�j � 2k=2 it

follows that Dj
P � cj2

k=2.

We want to �nd an assignment x 2 f�1; 1gn such that P (x) is large. The
expected value of P (x) for a random x is p; and �nding an assignment with
P (x) � p; is essentially Johnson's [8] classical approximation algorithm. In the
current situation we want to do better. To bound the possible improvement we
note that

P (x) � p; +
X
�6=;

jp�j = p; + jP j; (4)

which only could be achieved if all terms of P can be made positive at the
same time. The key parameter on how close we can get to this upper-bound is
a(Dmax

P )�1. The role of a is to be a lower bound on the size of the absolute value
of any nonzero coeÆcient, not only in P but also in any polynomial obtained
from P by substituting �1-values for some variables. The role of Dmax

P is to
measure the maximal change to all coeÆcients of P caused by a substitution of
a single variable.

We are now ready for our main lemma.

4



Lemma 3.2 Given an a-polynomial P of degree at most k then it is possible, in

polynomial time, to �nd x 2 f�1; 1gn such that P (x) � p; + ajP j(2kDmax
P )�1.

Proof: We construct x by an inductive procedure. Assume that P is non-
constant since otherwise jP j = 0 making the statement trivial. Take any set �
corresponding to a minimal nonzero term, i.e., such that p� 6= 0 but such that
p� = 0 for ; 6= � � �. Now, �nd an assignment in f�1; 1g� to the variables in �
such that p�x

� = jp�j and substitute these values into P making it a polynomial
Q of n�j�j variables. We want to prove that this is a good partial substitution
by establishing that

q; + ajQj(2kDmax
Q )�1 � p; + ajP j(2kDmax

P )�1: (5)

If we establish (5) we claim that the lemma follows since if we iterate this pro-
cedure we eventually get to an assignment which makes P reduce to a constant
which then must be at least p;+ajP j(2kDmax

P )�1. Note also that the procedure
clearly can be implemented in polynomial time. We turn to establishing (5).

The constant term q; of Q is p;+ jp�j � p;+a and Q is of degree at most k.
Since each q� with i 2 � is the sum of some p�0 with i 2 �0 we have Di

Q � Di
P

for any i which implies Dmax
Q � Dmax

P .
We turn to studying jQj which might be smaller than jP j due to cancellation

of terms. However only terms of P containing elements from � can create such
cancellation. Since � is of size at most k, the sum of the absolute values of all
coeÆcients of all terms a�ected is bounded by kDmax

P . Each such term a�ected
can at most cancel another term and hence we have

jQj � jP j � 2kDmax
P :

Summing up, we get

q; + ajQj(2kDmax
Q )�1 � p; + a+ ajQj(2kDmax

P )�1 �

p; + a+ a(jP j � 2kDmax
P )(2kDmax

P )�1 = p; + ajP j(2kDmax
P )�1

and we have established (5) and the lemma follows.

4 CSPs without weights

We now present the theorem for CSPs without weights. The weighted case is
slightly more complicated and we study that case in next section.

Theorem 4.1 Consider a CSP given by f de�ned on k-tuples of literals where
all nonzero weights take the value 1. On the class of instances where each vari-

able appears at most B times this problem can be approximated within (f;+(1�
f;)2

�3k=2(2kB)�1)�1 in polynomial time. In other words, we have a nontrivial

eÆcient approximation algorithm for any f and any constant B.
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Proof: Given an instance I , consider the polynomial PI de�ned by (2). We
want to apply Lemma 3.2 to this polynomial. It is of degree at most k and
by Lemma 2.2 we conclude that each coeÆcient is a multiple of 2�k and that
it has constant term mf;. By Lemma 3.1, Dmax

PI
� maxj cj2

k=2 � B2k=2 and
thus we have all the information to apply Lemma 3.2 to PI . The result is an
assignment that satis�es at least mf; + jPI j2�k(2kB2k=2)�1 of the constraints.
On the other hand, by (4), no assignment can satisfy more than mf; + jPI j
constraints and another upper bound is given by all constraints m. Thus the
performance ratio of the algorithm is bounded by

min(m;mf; + jPI j)

mf; + jPI j2�k(2kB2k=2)�1
:

This is maximized when the two terms in the minimum are equal in which case
jPI j = (1� f;)m and this gives performance ratio

(f; + (1� f;)2
�3k=2(2kB)�1)�1:

Let us apply the theorem to one of the most popular problems, Max-E3Sat-
B. Since k = 3 and f; = 7=8, we see that it can be approximated within
(7=8 + c=B)�1 for c = 2�17=23�1. A tighter analysis below improves the value
of c.

Remember the explicit formula for f given by (1) and let us go over the
steps of the proof. Suppose we choose the � in the proof of Lemma 3.2 to be of
minimal size among all sets corresponding to a nonzero term.

If j�j = 1 then we note that for any occurrence of a variable x in a clause we
get a total contribution 3=8 to coeÆcients of terms containing x together with
other variables. Thus we get that the sum of absolute values of coeÆcients of
such terms is bounded by 3B=8. Since each term might cancel another term,
we conclude that jPI j decreases by at most 3B=4.

If j�j = 2 then two variables, x and y, are involved, but since PI does
not contain any linear terms we can get improved estimates of the cancellation
by a more careful analysis. Of terms containing x or y, the only degree-two
terms in PI that can get cancelled are terms cancelling each other. The sum
of absolute values of coeÆcients of such terms is bounded by B=2. Terms of
degree 3 involving x or y have coeÆcients of total absolute value at most B=4,
but since they can cancel other terms they may cause cancellation of terms of
total absolute value at most B=2. Thus, in total, we conclude that jPI j decreases
by at most B in the case j�j = 2.

If j�j = 3 we only have terms of degree 3 in PI . The total absolute value of
coeÆcients of terms containing one of 3 variables is 3B=8 and thus cancellation
in this case is bounded by 3B=4.

Summing up, we see that we increase the constant term by at least 1=8
and decrease jPI j by at most B. We conclude that we �nd an assignment that
satis�es at least 7m=8+ jPI j=(8B) clauses. Since we should compare this to the
minimum of m and 7m=8+ jPI j we get performance ratio (7=8 + 1=(64B))�1.
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5 The weighted case

Let us extend the results of the last section to the weighted case. We start by
stating the theorem

Theorem 5.1 Consider a weighted CSP given by f de�ned on k-tuples of lit-
erals. On the class of instances where each variable appears at most B times

this problem can be approximated within (f; + (1 � f;)
22�3k=2(4kB)�1)�1 in

polynomial time. In other words, we have a nontrivial eÆcient approximation

algorithm for any f and any constant B.

Proof: The problem that arises is that it is no longer true is that any nonzero
coeÆcient is large compared to all other coeÆcients and we have to be more
careful.

The algorithm to �nd a good assignment is now governed by a parameter c,
which will take the value (k2kB)�1(1�f;). It �nds an � which is minimal such
that jp�j � cc�, where c� is de�ned in (3), and sets the variables in � such that
the constant term in P increases by at least jp�j. If there is no such � then it
simply sets any remaining variables without decreasing the constant coeÆcient.
Finding an assignment to the variables in � that gives the increase jp�j is not as
straightforward as before since there might be � � � with p� small but nonzero.
Note, however that for any such �, E[p�x

� ] = 0 where the expectation is taken
over a random assignment to the variables in � such that p�x

� = jp�j. This
proves the existence of such an assignment and it can be found by trying the at
most 2k�1 ways of assigning values to the variables in � such that p�x

� = jp�j.
To analyze this algorithm we establish two facts. Firstly that while we �nd

p� with jp�j � cc� the decrease in jP j is balanced by an increase in p; and
secondly when there is no such �, jP j is small and hence not much is lost.

By Lemma 3.1 we know that Dj
P � 2k=2cj and thus assigning the variables in

� causes a decrease of jP j by at most 21+k=2c�. This implies that during the �rst
part of the assignment process p; + jP jc2�(1+k=2) is nondecreasing. To analyze
the second phase we have the following lemma. Remember that W =

Pm
i=1 wi.

Lemma 5.2 If jp�j � cc� for all � where c = (k2kB)�1(1 � f;), then jP j �
(1� f;)W=2.

Proof: For each � with p� 6= 0 assign j 2 � a cost

jp�jcjc
�1
�

The total cost assigned to all variables is jP j and the cost assigned from one
monomial to a variable xj is at most ccj . Since each variable appears in at most
B constraints, there are at most B2k�1 monomials containing any given variable
and hence variable xj is assigned cost at most cB2k�1cj . Finally

P
cj = kW

since the weight of one constraint is counted for k variables. Adding these facts
together and substituting the value for c establishes the lemma.
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We are now in a position to complete the proof of the theorem. From the
obtained information we see that the obtained assignment satis�es constraints
of total weight at least

min
�
p;; p; + (jP j � (1� f;)W=2) c2�(1+k=2)

�

and, as before, the optimal assignment satis�es constraints of total weight at
most

max(W; p; + jP j):

Now p; = f;W and it is not diÆcult to see that the maximal value of the quo-
tient giving the performance ratio is obtained when either the two values in the
minimum or the two values in the maximum agree. Thus the interesting cases
to study are jP j = (1�f;)W=2 and jP j = (1�f;)W . The former gives quotient
(1 + f;)=(2f;) and the latter gives quotient (f; + (1 � f;)c2

�(2+k=2))�1. It is
not diÆcult to see that, since f; � 2�k, the latter is the larger and substituting
the value of c, the theorem follows.

6 Discussion

Assuming familiarity with [7] let us give a brief discussion of the optimality
of these results. In that paper, to establish inapproximability 2 � � for Max-

Lin-2, an instance is constructed where each variables appears at most 22
O(v)

times. The parameter v satis�es cv < �O(1) for a constant c < 1. Thus we get

B = O(2�
�d

) for some constant d.
Since the same relationship applies to essentially all problem studied in [7]

we see that, unless P=NP, we could not hope in general to get performance
ratio better than

(f; + c(logB)�d)�1;

for some positive constants c and d by an algorithm running in polynomial time.
Trevisan [10] has observed that this result can be improved in some cases.

The argument goes as follows: Take the constraints of [7] and assume they have
n variables. Take a random subset of size Bn=k of the constraints where k is
the size of the constraints. This creates a CSP where each variable appears B
times on the average. To make this a worst case bound we take any variable
that appears more than 2B times and simply erase it together with all the
constraints that contain it. If the set of constraints produced by [7] has the
property that each variable appears the same number of times one can prove that
this construction implies that a polynomial time algorithm that approximates
better than

(f; + cB�1=2)�1

for a speci�c constant c would imply a randomized polynomial time algorithm
solving an NP-hard problem. The condition of each variable appearing the same
number of times is true for most predicates studied in [7] that are of size 4. In
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particular it applies to Max-E4-Sat and Set-splitting of sets of size at least 4
and Max-Linear equations with 4 variables in each equation.
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