
A Robust Shallow Parser for Swedish

Ola Knutsson, Johnny Bigert, Viggo Kann
Numerical Analysis and Computer Science

Royal Institute of Technology, Sweden
{knutsson, johnny, viggo }@nada.kth.se

Abstract

In this paper, a robust parser for Swedish
is presented. The parser identifies the in-
ternal structure of phrases, but does not
build full trees. In addition to phrase
identification, clause boundaries are de-
tected. The parser is designed for robust-
ness against noisy and ill-formed data. An
evaluation on 15 000 words shows that the
parser’s accuracy on phrase bracketing is
88.7 per cent and the F-score for clause
boundary identification is 88.3 per cent.

1 Introduction

In many NLP-applications, the robustness of the in-
ternal modules of an application is a prerequisite for
the success and usability of the system. The term
robustness is a bit unclear and vague, but in NLP, it
is often used in the sense robust against noisy, ill-
formed, and partial natural language data. The full
spectrum of robustness is defined by Menzel (1995),
and further explored according to parsing in (Basili
and Zanzotto, 2002). In the following, we will fo-
cus on a parser developed for robustness against ill-
formed and partial data, called Granska Text Ana-
lyzer (GTA).

2 Shallow Parsing

Shallow parsing is becoming a strong alternative to
full parsing, see e.g. (Li and Roth, 2001) due to
its robustness and quality. Shallow parsing can be
seen as a parsing approach in general, but also as

pre-processing for full parsing. It is not one tech-
nique, rather a collection of techniques including
hand-crafted rule based methods and systems based
on machine learning. The main idea is to parse
only parts of the sentence and not build a connec-
ted tree structure and thus limiting the complexity
of the analysis. The partial analysis is well suit-
able for modular processing which is important in
a system that should be robust (Basili and Zan-
zotto, 2002). A major initiative in shallow pars-
ing came from Abney (1991), arguing both for psy-
cholinguistic evidence for shallow parsing and also
its usability in applications for real world text or
speech. Abney used hand-crafted cascaded rules im-
plemented with finite state transducers. Current re-
search in shallow parsing is mainly focusing on ma-
chine learning techniques (Hammerton et al., 2002).

An initial step in shallow parsing is often called
text chunking, i.e. dividing the sentence into base
level phrases. The Swedish sentenceDen mycket
gamla mannen gillade mat(The very old man liked
food) would be chunked as:
(NP Den mycket gamla mannen)(VC gillade)(NP
mat)
The next step after chunking is often called phrase
bracketing. Phrase bracketing means analyzing the
internal structure of the base level phrases (chunks).
Many researchers have focused on NP bracketing
e.g. (Tjong Kim Sang, 2000). The same sentence
as above will be bracketed with internal structure of
the phrases:
(NP Den (AP mycket gamla) mannen)(VC gil-
lade)(NP mat)

What internal phrases that should be assimilated
with other more high-level phrases is a question for
debate, and also how complex a phrase could be,
for instance isGamla stans bokhandelone phrase or
should it by bracketed like [NP Gamla stans] [NP
bokhandel]? These questions and others make it
hard to compare different parsers with one another.
The only way to compare is to use the same annot-
ated test data, a tree bank. The chosen bracketing
depends on the relation to a specific syntactic theory
or the needs in real world applications. Some shal-
low parsers do also include some analysis of gram-
matical functions (subject, main verb, object etc.).

3 Parsers for Swedish

Most parsers for Swedish are surface oriented, and
designed for unrestricted text. Early initiatives on
parsing Swedish focused on the usage of heurist-
ics (Brodda, 1983) and surface information as in
the Morp Parser (K̈allgren, 1991). The Morp was
also designed for parsing using very limited lexical
knowledge.

A more full syntactic analysis is accomplished
by the Uppsala Chart Parser (UCP) (Sågvall Hein,
1982). UCP has been used in several applications,
for instance in machine translation (Sågvall Hein et
al., 2002).

Two other parsers, have been developed recently.
One uses machine learning (Megyesi, 2002) while
the other is based on finite-state cascades, called
Cass-Swe (Kokkinakis and Johansson-Kokkinakis,
1999). Notable is that Cass-Swe also assigns func-
tional information to constituents.

There is also a deep parser developed in the Core
Language Engine (CLE) framework (Gambäck,
1997). The deep nature of this parser limits its cov-
erage.

Furthermore, two other parsers identify de-
pendency structure using Constraint Grammar
(Birn, 1998) and Functional Dependency Grammar
(Voutilainen, 2001). These two parsers are also
commercialized. The Functional Dependency parser
actually builds a connected tree structure, where
every word points at a dominating word.

4 A Robust Shallow Parser for Swedish

The Granska Text Analyzer is rule-based and relies
on hand-crafted rules written in a formalism with
a context-free backbone. The rules are augmented
with features. It is quite often claimed that the gram-
mars of shallow parsers are quite large, containing
thousands of rules (Hammerton et al., 2002). This
is not the case with GTA. In total GTA contains 260
rules. 200 of these rules identify different kinds of
phrases, 40 rules are disambiguation rules that select
heuristically between ambiguous phrase identifica-
tions. Clause boundaries are identified with 20 rules.
However, the number of rules is not the only aspect
of grammar complexity. Interaction between rules
and recursion are also important aspects of grammar
complexity.

In a first phase, the parser selects grammar rules
top-down and uses a passive chart. The rules in
the grammar are applied on part-of-speech tagged
text, either from an integrated tagger or from an ex-
ternal source. GTA identifies constituents and as-
signs phrase labels. However, no full trees with a
top node are built.

The disambiguation of phrase boundaries is in a
first phase done within the rules, and secondly us-
ing heuristic selection. In a third phase, a disam-
biguation and selection algorithm called the Tetris
algorithm is applied to the remaining ambiguities.

The analysis is surface-oriented and identifies
many types of phrases in Swedish. The basic phrase
types are adverb phrases (ADVP), adjective phrases
(AP), infinitive verb phrases (INFP), noun phrases
(NP), prepositional phrases (PP) and limited verb
phrases and verb chains (VC). The internal structure
of the phrases is parsed when appropriate and the
heads of the phrases are identified. PP-attachment
is left out of the analysis since the parser does not
include a mechanism for resolving PP-attachments.

4.1 Basic Phrase Categories in GTA

The selection of phrase categories is based on the
needs in rule based and statistical grammar check-
ing (Bigert and Knutsson, 2002). When a Swedish
standard for phrase bracketing is present (i.e. a tree-
bank), GTA will be converted to it. Some important
changes in the phrase bracketing will also be done
based on the evaluation below. Most work in the

development of GTA focused on the noun phrases.
Noun phrases are often difficult to identify correctly,
but also very important in many applications.

• Noun Phrases (NP)

The identification of noun phrases includes
minimal noun phrases e.g.en liten bil (a little
car), proper names likePeter Forsberg, and
pronouns e.g.jag (I). Complex noun phrases
with apposition (e.g.min v̈an generalen(my
friend the general) and coordinated NPs like
långa spelare och tuffa backar(tall players
and tough backs) are also identified. Com-
plex noun phrases are bracketed as one noun
phrase including two noun phrases. Relative
clauses are attached to the NP, e.g.mannen
som st̊ar därborta (the man that stands over
there) is identified as one NP, but prepositional
phrases are not included in the noun phrase.
In the next version of GTA, no post-modifying
phrases will be included in the noun phrases
to make the phrase bracketing more consistent
and transparent.

• Verb Chains and limited Verb Phrases (VC)

Simple verb chains likehar spelat(has played)
and more complex verb phrases likehar
mannen inte spelat(has the man not played)
are identified by GTA.

• Prepositional Phrases (PP)

Only non-recursive prepositional phrases are
identified, which means thatmannen p̊a bänken
i parken (the man on the bench in the park)
is identified as two prepositional phrases. The
general prepositional phrase includes a preposi-
tion followed by a noun phrase, e.g.i det gamla
huset(in the old house).

• Adverb Phrases (ADVP)

Adverb phrases are singleton adverbs e.g.snart
(soon) or a group of adverbsså långt norrut
(that far north).

• Adjective Phrases (AP)

Adjective phrases are simple groups of adject-
ives e.g. lilla r öda (little red) or coordinated
adjectivesliten och r̈od (small and red).

• Infinitive Verb Phrases (INFP)

All infinitive verb phrases that are identified be-
gin with the infinitive marker and are followed
by the infinitive verb and an optional NP. Ex-
amples of infinitive verb phrases that are iden-
tified by GTA areatt sjunga(to sing) andatt
spela fotboll(to play soccer).

4.2 Clause Boundary Detection

The detection of clause boundaries is an important
step in sentence processing. Dividing the sentence
into clauses limits the complexity of the sentence.
In addition to the parsing of phrase structure, clause
boundaries (CLB) are detected in GTA, resembling
Ejerhed’s algorithm for clause boundary detection
(Ejerhed, 1999). Ejerhed’s rules for clause bound-
ary detection are implemented in a straightforward
manner following the patterns pointed out in Ejer-
hed’s paper. A few new rules have been developed.
Totally, 20 rules for clause boundary detection are
used in the parser.

The output from the parser is given in the so-
called IOB format (Ramshaw and Marcus, 1995).
See Figure 1 for a sentence with phrase labels and
clause boundaries in theIOB format.

As an example, the wordkraftfulla (powerful) in
the sentence in figure 1 was tagged with theIOB
tags APB, NPB and PPI which means that the word
kraftfulla begins (B) an adjective phrase (AP) and
noun phrase (NP) and is inside (I) a prepositional
phrase (PP). Some words/tokens in the sentence are
outside the phrases and are therefore assigned the
tag O (outside).

4.3 Robustness against ill-formed and
Fragmentary Natural Language Data

The parser was designed for robustness against ill-
formed and fragmentary sentences. One task for
the parser is to analyze text from second language
learners and other text types which include different
kinds of errors.

The parser is not facilitated with relaxation tech-
niques, which is convenient in many systems (see
e.g. (Jensen, 1993)). Instead the design of the
parser follows the lines in the design of Con-
straint Grammar parsing (Karlsson et al., 1995) and
also Functional Dependency parsing (Järvinen and

Vi (we) NPB CLB
har (have) VCB CLI
inga (no) NPB CLI
pengar (money) NPI CLI
och (and) O CLB
vi (we) NPB CLI
kan (can) VCB CLI
inte (not) ADVPB|VCI CLI
finansiera (finance) VCI CLI
vår (our) NPB CLI
verksamhet (business) NPI CLI
utan (without) PPB CLI
kraftfulla (powerful) APB|NPB|PPI CLI
besparingar (savings) NPI|PPI CLI
, O CLB
hävdar (claims) VCB CLI
han (he) NPB CLI
. 0 CLI

Figure 1: Example sentence showing theIOB
format.

Tapanainen, 1997) – the question of grammatical-
ity is not dealt with within the parser. Grammatic-
ality is more used as a reason for the selection of
one interpretation prior to another. In addition to the
noise in textual data, there is also a rich source for
errors from the internal modules of the parsing sys-
tem, e.g. tokenization and tagging errors. Robust
parsers must handle these internal errors, or at least
degrade gracefully.

As an example, agreement is not considered
in noun phrases and predicative constructions
(Swedish has a constraint on agreement in these con-
structions). By avoiding the constraint for agree-
ment, the parser will not fail due to textual errors or
tagging errors. In other words, the parser does not
decide about the grammaticality in such construc-
tions. Tagging errors that do not concern agreement
are to some extent handled using a set of tag correc-
tion rules based on heuristics on common tagging
errors.

Another important design feature of the parser is
that no top node is built. Only local trees are built,
and there is no interaction between the rules for dif-
ferent phrase types, e.g. the rules for NP recognition
are not interacting with the rules that identify verb
chains. The final selection of the internal structure
of the local trees is not done within the grammar;
instead, a special module takes care of this work,
thereby limiting the complexity of the grammar and
keeping the parser efficient.

4.4 Modularization: to Disambiguate or not to
Disambiguate?

One interesting question in parsing is at what stage
the program should disambiguate. Should a mod-
ule disambiguate with the information at hand or
should it leave some ambiguity to the next modules?
Voutilainen (1994) argues for the value of dealing
with both morphological, clause boundary, and syn-
tactical ambiguities in the same rule. This requires a
lexical approach with information actually including
the wanted parse.

We have chosen to disambiguate as completely as
possible. The input to the parser is part-of-speech
tagged text, with only one tag assigned to each word.
But at the same time it is still possible in the rules
to use textual data and also alternatives rejected by
the tagger. To conclude, the basic case in GTA is
fully disambiguated data, but text matchings and al-
ternative morphosyntactic tagging can be used in
the grammar rules when appropriate, for instance to
handle systematic tagging errors. The output from
the parser is fully disambiguated, but internally al-
ternative parses are always available. Modulariz-
ation is thus the choice of GTA, but the modules
can interact with each other partly bi-directionally,
which means that low level rules (e.g. tagging cor-
rection) can interact with the ambiguous syntactic
level, but not with the disambiguated surface syn-
tactic level.

4.5 Different Kinds of Rules

The rules in GTA are written in a partly object-
oriented notation resembling Java or C++. An ex-
ample rule,NPmin below, has two parts separated
with an arrow. The first part contains a matching
condition. The second part specifies the action that
is triggered when the matching condition is fulfilled.

Each line in the first part of the rule contains an
expression that must evaluate to true in the matching
rule. This expression may be a general Java expres-
sion, another rule or a feature value (matching text,
lemma, word class, or grammatical feature).

The action part of the rule states that the rule is
a so called help rule (possibly recursive function),
which may be used by other rules. In addition, the
feature values of the whole phrase or pattern are as-
signed.

In the example, the action is triggered when
a determiner (determiners, not including “denna”,
“dessa” and “denne” (this/these)) is followed by
an optional adverb or a cardinal number, followed
by another token with the word class adjective, or-
dinal number or participle (optional), followed by a
noun. The reason for excluding “denna”, “dessa”
and “denne” is that these determiners set the feature
value for species of the NP to definite.

The noun is identified by the ruleNN, which
matches nouns that are fully recognized by the tag-
ger, the rule also identifies and more important as-
signs feature values to nouns that are only partly re-
cognized by the tagger. It is important to notice that
NPmin contains several rules separated by the oper-
ator ; which means logicalor between rules. In the
example ofNPmin below, two rules are presented.
The first rule matches constructions likeden lilla bi-
lenbut also the errorneous NPden liten bil. There is
no constraint for agreement between for instance the
adjective and noun in this rule. The second rule in
NPmin detects only NPs without initial determiners.
Thus, the first disambiguation of phrase boundaries
is done in this first basic rule. The rule uses the lim-
ited context-sensitive abilities of the rule language
in GTA. Without the power of context sensitive rules
the parser will end up with several analyses even on
simple NPs.

If there are no feature values in the part-of-speech
tagged data, the ruleNN NO TAGS looks at the left
context of the noun, and assigns the values from pre-
ceding token if the preceding word seems to belong
to the same NP. In ruleNPmin the feature values are
taken from the noun, but as seen in ruleNN NO TAGS

the feature values are taken from the context.

4.6 Selecting the Constituent Structure

Heidorn and Jensen (Jensen et al., 1983) developed
an algorithm for dealing with ill-formed and frag-
mentary sentences, called parse fitting. Parse fit-
ting is used when the parser has failed to analyze
a sentence using a conventional grammar. The fit-
ting algorithm is implemented as a set of rules, that
chooses a head constituent, and then the remaining
constituents are fitted in. The selection is based on
linguistic preference, i.e. first is a VP with tense and
subject chosen. If such a VP is not found a VP with
tense but no subject is selected. After that, phrases

NPmin@
{
X((wordcl=dt & text!="denna" &

text!="dessa" & text!="denne"
& text!="detta")
| wordcl=hd | wordcl=rg),

X2(wordcl=ab | wordcl=rg)?,
Y(wordcl=jj | wordcl=ro | wordcl=pc)*,
(NN/Z)()
-->
action(help, wordcl:=Z.wordcl, pnf:= undef,

gender:=Z.gender, num:=Z.num,
spec:=Z.spec, case:=Z.case)

;

X(wordcl!=dt & wordcl!=hd),
---endleftcontext---,
X2(wordcl=ab | wordcl=rg),
Y(wordcl=jj | wordcl=ro | wordcl=pc)+,
(NN/Z)()
-->
action(help, wordcl:=Z.wordcl, pnf:= undef,

gender:=Z.gender, num:=Z.num,
spec:=Z.spec, case:=Z.case)

;

...
}

NN@
{
X(wordcl=nn & gender!=undef &

num!=undef & spec!=undef & case!=undef)
-->
action(help, wordcl:=nn, gender:=X.gender,

num:=X.num, spec:=X.spec, case:=X.case)
;
(NN_NO_TAGS/X)()
-->
action(help, wordcl:=nn, gender:=X.gender,

num:=X.num, spec:=X.spec, case:=X.case)
}

NN_NO_TAGS@
{
X(wordcl=dt | wordcl=hd | wordcl=ps |

wordcl=jj | wordcl=ro),
endleftcontext,
Z(wordcl=nn & gender=undef &

num=undef & spec=undef & case=undef)
-->
action(help, wordcl:=nn, gender:=X.gender,

num:=X.num, spec:=X.spec, case:=nom)
;
...
}

without verbs (NPs, PPs) are chosen and so forth. If
this head constituent does not cover the entire sen-
tence, remaining constituents are added on either
side of the head constituent based on another pref-
erence. The fitting procedure works outward from
the head constituent.

The Tetris Algorithm

One main difference between GTA and Heidorn and
Jensens approach is that GTA never tries to build full
tree from a core grammar. GTA always make a parse
fitting procedure, by doing so many ambiguity and
efficiency problems are avoided. GTA’s approach to
parse fitting is not linguistically motivated, instead it
relies on longest matching. The constituents are sor-
ted according to length. Then the longest constitu-
ent is selected from the right to the left. The fitting
procedure then tries to fit in the second longest con-
stituent to the left, to the right and inside the selected
constituent and so forth. Overlapping constituents
cannot be selected. Thus, the whole sentence will
be assigned a constituent structure, and in addition,
the internal strucuture of the constituents is filled in
when a shorter constituent can be fitted in a longer
constituent.

5 Evaluation

The parser has been evaluated on 15 000 words from
the SUC corpus. Five text genres were used. In
the absence of a Swedish treebank annotated with
constituency trees, the texts were manually annot-
ated with constituency structure, without top-nodes,
based on the output from the parser. However, the
manual annotation is more homogenous across the
phrase types than the output of GTA. This means
that there are systematic errors in the output from
the parser. The evaluation results are therefore cal-
culated on the untuned output from the parser. The
accuracy on the phrase structure task is 88.7 per cent
(see table 1) and the F-score for the clause boundary
detection is 88.2 per cent (see table 2). In the evalu-
ation we used part-of-speech tagged data from four
different sources/taggers: a baseline tagger called
Unigram, which chooses the most frequent tag for a
given word and the most frequent tag (for open word
classes) for unknown words, the original corpus tags
from SUC (Ejerhed et al., 1992), a faster version

of the Brill tagger, called fnTBL (Ngai and Florian,
2001) and the hidden Markov model (HMM) tagger
TnT (Brants, 2000) were used in the evaluation.

The parser seems to work best on PPs, APs, VCs
and NPs (see table 3). Adverb phrases and infinit-
ive verb phrases are identified with a lower accur-
acy. It is often hard for the rules to determine the
end of these constructions. Some noun phrases are
identified with post attributes as relative clauses, the
results are not fully satisfying, and therefore one
refinement of GTA should be to exclude all post-
modifying phrases from the analysis. For a more
detailed description of the evaluation see (Bigert et
al., 2003).

In addition to the standard evaluation described
above, a glass-box evaluation of GTA’s robustness
was made (Bigert et al., 2003). In this evaluation
spelling errors were automatically introduced in the
texts, and fed to the parsing system. The evaluation
showed that GTA is robust, and degrades gracefully,
i.e. GTA degrades linearly with the part-of-speech
taggers’ degradation. In other words, if the tagger is
robust (i.e. predictable), GTA will also be robust.

6 Concluding Remarks and Future Work

Without a Swedish tree bank the results of the eval-
uation are preliminary, they can only serve as an
indicator of the parser’s performance. The choices
made when annotating the test corpus are important
when evaluating a parser. When there is a Swedish
treebank available, more reliable and easy compar-
able evaluations of GTA1 can be made.

The next step in the development of GTA is to ex-
tend the analysis to clause types and syntactic func-
tions. With syntactic functions included in the ana-
lysis, GTA can be compared not only with parsers
assigning constituency structure, but partly with de-
pendency parsers as well.

1GTA can be tested here:http://skrutten.nada.kth.se/grim/form.html

Tagger Accuracy
UNIGRAM 81.0
BRILL 86.2
TNT 88.7

Table 1: Accuracy in per cent from the parsing task. Parsing based on the on the manual tagging in SUC
had 88.4% accuracy. A baseline parser using the original SUC tagging had 59.0% accuracy. For a given
part-of-speech tag the baseline parser assigns the most frequent parse for that tag.

Tagger F − score
UNIGRAM 84.2
BRILL 87.3
TNT 88.3

Table 2: F-score from the clause boundary identification task. Identification based on the original SUC
tagging had an F-score of 88.2%. A baseline identifier had an F-score of 69.0%. The baseline identifier
assigns CLB to the first word of each sentence and CLI to the other words.

Type Accuracy Count
ADVP 81.9 1008
AP 91.3 1332
INFP 81.9 512
NP 91.4 6895
O 94.4 2449
PP 95.3 3886
VC 92.9 2562
Total 88.7

Table 3: F-scores for the individual phrase categories from the parse task.TNT was used to tag the text.

References
S. Abney. 1991. Parsing by chunks. In R. C. Berwick,

S. P. Abney, and C. Tenny, editors,Principle-Based
Parsing: Computation and Psycholinguistics, pages
257–278. Kluwer Academic Publishers, Boston.

R. Basili and F. M. Zanzotto. 2002. Parsing engineering
and empirical robustness.Natural Language Engin-
eering, 8(2–3):97–120.

J. Bigert and O. Knutsson. 2002. Robust error detection:
A hybrid approach combining unsupervised error de-
tection and linguistic knowledge. InProc. 2nd Work-
shop Robust Methods in Analysis of Natural language
Data (ROMAND’02), Frascati, Italy, pages 10–19.

J. Bigert, O. Knutsson, and J. Sjöbergh. 2003. Automatic
evaluation and robustness and degradation in tagging
and parsing. InProc. RANLP 2003, pages 51–57,
Borovets, Bulgaria.

J. Birn. 1998. Swedish constraint grammar. Technical
report, Lingsoft Inc, Helsinki, Finland.

T. Brants. 2000. Tnt – a statistical part-of-speech tag-
ger. In Proc. 6th Applied NLP Conference, ANLP-
2000, Seattle, USA.

B. Brodda. 1983. An experiment with heuristic pars-
ing of Swedish. InProc. of First Conference of
the European Chapter of the Association for Compu-
tatlona Linguistics, pages 66–73, Pisa, Italy.

E. Ejerhed, G. K̈allgren, O. Wennstedt, and M.̊Aström.
1992. The Linguistic Annotation System of the
Stockholm-Ume̊a Project. Department of Linguistics,
University of Ume̊a, Sweden.

E. Ejerhed. 1999. Finite state segmentation of dis-
course into clauses. In A. Kornai, editor,Extended Fi-
nite State Models of Language, chapter 13. Cambridge
University Press.

B. Gamb̈ack. 1997. Processing Swedish Sentences: A
Unification-Based Grammar and some Applications.
Ph.D. thesis, The Royal Institute of Technology and
Stockholm University.

J. Hammerton, M. Osborne, S. Armstrong, and W. Daele-
mans. 2002. Introduction to special issue on ma-
chine learning approaches to shallow parsing.J. Ma-
chine Learning Research, Special Issue on Shallow
Parsing(2):551–558.

T. J̈arvinen and P. Tapanainen. 1997. A dependency
parser for English. Technical report, Department of
Linguistics, University of Helsinki.

K. Jensen, G. Heidorn, L. Miller, and L. Ravin. 1983.
Parse fitting and prose fixing: getting a hold on ill-
formedness.American Journal of Computational Lin-
guistics, 9(3–4):147–160.

K. Jensen. 1993. PEG: The PLNLP English grammar.
In K. Jensen, G. E. Heidorn, and S. D. Richardson, ed-
itors, Natural Language Processing: The PLNLP Ap-
proach, pages 29–43. Kluwer, Boston, USA.

G. Källgren. 1991. Parsing without lexicon: the morp
system. InProc. Fifth Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 143–148, Berlin, Germany.

F. Karlsson, A. Voutilainen, J. Heikkilä, and A. Anttila.
1995. Constraint Grammar. A Language Independ-
ent System for Parsing Unrestricted text. Mouton de
Gruyter, Berlin, Germany.

D. Kokkinakis and S. Johansson-Kokkinakis. 1999. A
cascaded finite-state parser for syntactic analysis of
Swedish. InProc. 9th European Chapter of the As-
sociation of Computational Linguistics (EACL), pages
245–248, Bergen, Norway. Association for Computa-
tional Linguistics.

X. Li and D. Roth. 2001. Exploring evidence for shal-
low parsing. In Walter Daelemans and Rémi Zajac,
editors,Proc. of CoNLL-2001, pages 38–44, Toulouse,
France.

B. Megyesi. 2002. Shallow parsing with PoS taggers
and linguistic features.J. Machine Learning Research,
Special Issue on Shallow Parsing(2):639–668.

W. Menzel. 1995. Robust processing of natural lan-
guage. InProc. 19th Annual German Conference on
Artificial Intelligence, pages 19–34, Berlin. Springer.

G. Ngai and R. Florian. 2001. Transformation-based
learning in the fast lane. InProceedings of NAACL-
2001, pages 40–47, Carnegie Mellon University, Pitts-
burgh, USA.

L. Ramshaw and M. Marcus. 1995. Text chunking us-
ing transformation-based learning. In David Yarovsky
and Kenneth Church, editors,Proc. Third Workshop
on Very Large Corpora, pages 82–94, Somerset, New
Jersey. Association for Computational Linguistics.

A. Sågvall Hein, A. Almqvist, E. Forsbom, J. Tiedemann,
P. Weijnitz, L. Olsson, and S. Thaning. 2002. Scal-
ing up an mt prototype for industrial use. Databases
and data flow. InProc. Third International Confer-
ence on Language Resources and Evaluation (LREC
2002), pages 1759–1766, Las Palmas, Spain.

A. Sågvall Hein. 1982. An experimental parser. InProc.
of the Ninth International Conference on Computa-
tional Linguistics (Coling 82), pages 121–126, Prague.

E. F. Tjong Kim Sang. 2000. Noun phrase representation
by system combination. InProc. ANLP-NAACL 2000,
Seattle, Washington, USA.

A. Voutilainen. 1994. Designing a parsing grammar.
Technical report, Department of Linguistics, Univer-
sity of Helsinki, Finland.

A. Voutilainen. 2001. Parsing Swedish. InProc.
13th Nordic Conference on Computational Linguistics
(Nodalida-01), Uppsala, Sweden.

