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Abstract

This paper describes a method to detect errors
in written text which requires no manual work.
The method used is to simply annotate a lot
of errors in written text and train an off-the-
shelf machine learning implementation to rec-
ognize such errors. To avoid manual annotation
synthetically created errors are used for train-
ing. The method is evaluated on erroneously
split compounds and word order errors. Results
are comparable to a state of the art grammar
checker based on manually created rules. The
evaluation is performed on real (not synthetic)
errors.

1 Introduction

Automatic grammar checking is traditionally
done by manually written rules, constructed by
a computer linguist. We present a method that
saves a lot of work by training a machine learn-
ing algorithm on automatically created errors.

Methods for detecting grammatical errors
without using manually constructed rules have
been presented before. Atwell (1987) uses the
probabilities in a statistical part-of-speech tag-
ger, detecting errors as low probability part-
of-speech sequences. A similar method is pre-
sented by Bigert and Knutsson (2002), where
new text is compared to known correct text and
deviations from the “norm” are flagged as sus-
pected errors. Chodorow and Leacock (2000)
present a method based on mutual information
measurements to detect incorrect usage of diffi-
cult words.

Training a machine learning algorithm to de-
tect errors has been tried by Izumi et al. (2003),
who manually annotated errors in (transcribed)
spoken language to detect new errors. Mangu
and Brill (1997) used machine learning to de-
tect when one word has been confused with an-
other. Golding (1995) combines several meth-
ods to solve the same problem.

Unlike most of the methods mentioned our
method is applicable to a wide range of error
types. Our method is similar to the one pre-
sented by Izumi et al. (2003). A big differ-
ence is that our method does not require man-
ual annotation of errors (time consuming and
expensive), nor access to large amounts of hu-
man produced (unintentional) errors. Machine
learning generally requires many training exam-
ples, which might be hard to find for rare error
types.

2 Method to Detect Errors

Our method works by automatically adding er-
rors to a lot of (mostly error free) unannotated
text. When adding an error, the words that
now make up the error are marked “error”. All
other words are marked “correct”. The result-
ing annotated text is then used as training data
for a machine learning algorithm. The machine
learner is thus trained to detect new errors of
the same type that was automatically gener-
ated.

It is possible to train many machine learning
modules, each on a different type of error, by
simply generating different types of errors. It is
also possible to generate many different types of
errors and training a single machine learner to
recognize all types. We use the first approach.
One big benefit of this is that it is often pos-
sible to suggest corrections if only one type of
error is detected. For instance, if word w and
the following word u are both marked as errors
by a module that detects word order errors the
correct word order is likely achieved by putting
u before w.

Our method is most useful for those types of
errors which are easy to generate but result in
“unpredictable” changes to the text. Examples
include split compounds and word order errors.
It is easy to split a compound or change the
word order, but it is not obvious what the re-
sulting sentence structure would be when these



errors occur. Thus it is hard to create rules for
them manually.

Since our method uses synthetically gener-
ated errors no manual work is required to build
the error detecting modules. The machine
learner would probably be better at detecting
errors if it was trained on real errors, since it
would then have a proper view of what kind
of errors actual writers make. This would re-
quire quite a lot of manual work to find and
annotate the errors (and to produce text with
unintentional errors in), though, so we have not
tried this. Collecting real errors should be feasi-
ble, though. Students, for instance, write a lot
of text that a teacher later checks for correct-
ness. Publishers and newspapers also do man-
ual proofreading of a lot of text.

The transformation based rule learner fnTBL
(Ngai and Florian, 2001) was used as the ma-
chine learning implementation in our experi-
ments. It produces rules that are very easily un-
derstood by humans. This means that the gen-
erated rules could be handed over to a linguist
with no computer skills. Possibly the linguist
could tweak the automatically learned rules (us-
ing linguistic knowledge) to get better perfor-
mance. The learner generates a lot of rules (sev-
eral hundred) though.

3 Evaluation

We evaluate this error detection method on two
different problems, erroneously split compounds
(a bit like writing “a wet nurse” when “a wet-
nurse” was intended; a common problem in for
instance Swedish and German) and word order
errors (relevant for any fixed order language).
Both error types were evaluated on Swedish
texts.

The results are compared to three grammar
checkers for Swedish.

• Granska (Domeij et al., 2000), a state of
the art grammar checker based on manu-
ally constructed rules for many error types.

• Probgranska (Bigert and Knutsson, 2002),
an extension to Granska, based on statis-
tics, which detects errors by looking for
things that are “different” from known cor-
rect text.

• The Swedish grammar checker in Microsoft
Word 2000, which uses a grammar checker
developed by Lingsoft (Arppe, 2000; Birn,
2000).

The automatic method, based on syntheti-
cally created errors, generally has lower preci-
sion but higher recall than the manual rules.
The automatic method can also be tailored
(somewhat) for high recall (at the cost of pre-
cision) or high precision (at the cost of recall).
The manual rules and the automatic method
complement each other somewhat, so combin-
ing them gives good results.

3.1 Split Compounds

In compounding languages, such as Swedish or
German, a common error is to split a compound
word. This is especially common with non-
native speakers with a non-compounding native
language.

To find erroneously split compounds a one
million words corpus of written Swedish, the
Stockholm-Ume̊a Corpus, SUC (Ejerhed et al.,
1992), was used as training data. A modi-
fied spell checker (Domeij et al., 1994; Kann et
al., 2001) was used to automatically split com-
pounds. The training data consisted of the cor-
pus texts (to show correct language use) and an-
other copy of all the corpus texts, but with all
compounds recognized by the compound split-
ter split into their components. The splitter
marked all components from split compounds
with “error” and all other words were marked
“correct”.

The machine learning implementation used
was fnTBL, a transformation based learner.
The features for the learner was the word it-
self and its part of speech (PoS). The PoS was
automatically assigned, using a statistical PoS
tagger, TnT (Brants, 2000). TnT was automat-
ically trained on the SUC, which is PoS anno-
tated. The text was also parsed using the auto-
matic parser GTA (Knutsson et al., 2003) and
chunks were extracted. Giving chunk informa-
tion to fnTBL was also tried.

The initial guess for each word was its uni-
gram annotation, i.e. the most common of “er-
ror” or “correct” as annotation for this word in
the training data.

The rule templates used unigrams, bigrams
and trigrams of words, PoS, and error annota-
tion. A few combinations of these were also al-
lowed, such as the current word and annotation
trigrams. When chunks were used, unigrams,
bigrams and trigrams of chunks were also used
in the rule templates.

The test data was 5 124 words, of which 812
were components from split compounds. Most



Granska PoS Chunk Filtered Baseline Baseline One Both
(manual) only Filtered

Detected 322 588 594 545 331 120 593 274
Missed 490 224 218 267 481 692 219 538
False alarms 6 49 49 28 162 6 33 1
Precision 98% 92% 92% 95% 67% 95% 95% 100%
Recall 40% 72% 73% 67% 41% 15% 73% 34%

Table 1: Detection of split compound components. The baseline is simply the most common tag
for each word (“error” or “correct”), from the training data. “One” is any word marked “error” by
either the manual rules or the filtered automatic rules. “Both” is any word marked by both.

compounds consisted of only two components.
All such components were manually annotated
with “error” and all other words automatically
marked “correct”. These sentences were taken
from real texts, i.e. these were not synthetic er-
rors.

The results of training on synthetic split com-
pound errors to detect real split compounds
is summarized in Table 1. In general the re-
call is much higher for the automatic learner
than for the manual rules of the grammar
checker Granska, but the precision is much
worse (though still quite good). The test data is
possibly to favorable for Granska, since the lin-
guist developing the rules for Granska looked at
these sentences during early rule development.
The rules have changed a lot since then. Eval-
uations of Granska on other texts give similar
recall but much lower precision.

Granska is one of the few grammar checkers
that actually tries to detect split compounds
and is likely the best grammar checker currently
available for this. Some grammar checkers for
Swedish only detect split compounds when they
result in some other common error type (such
as disagreement between adjective and noun).

A commercial grammar checker for Swedish
is included in Microsoft Word. We ran our test
data through Microsoft Word 2000. It does not
detect split compounds per se but split com-
pounds sometimes look like other types of errors
that Word recognizes. On our test data Word
indicated an error 66 times related to split com-
pounds. 15 errors were caused by the compound
also being misspelled, 18 were caused by a com-
pound component not known by the grammar
checker to be an actual word (such as proper
nouns, “Rambo”), 17 split compounds looked
like spelling errors (caused by the changed mor-
phology of the head), 15 looked like agreement
errors and 1 as erroneous usage of a verb. The

errors would correspond to 75 detected errors
for the other methods.

The Probgranska extension to Granska often
finds split compounds. On our test data it gen-
erates 117 alarms, most of which are for split
compounds. The output of Probgranska is not
directly comparable to the data in Table 1 but
it would correspond to 171 correct detections
(generously counted), 23 false alarms and 6 er-
rors of other types (such as a missing word).

To improve the precision of the automatically
learned rules, all detected errors were filtered
through the spell checker Stava (Domeij et al.,
1994). To report a word as an actual error it had
to be possible to combine the word with a neigh-
boring word also suspected to be an error, and
the combination should be a compound word
recognized by the spell checker. The precision
increased a lot through this but it did also re-
move quite a few actual split compounds. Most
of these were compounds that were misspelled
as well as erroneously split (there were quite a
lot of errors in the test data, not just split com-
pounds).

Since the test data contains a lot of errors,
about one erroneously split compound per sen-
tence, it is perhaps too easy to reach a high
precision. On the other hand, there are a lot of
other errors too in the test texts, which make
it harder to detect the split compounds. To see
how the method performs on the other end of
the spectrum, the trained learner was run on
text from a high quality newspaper, which has
very few errors. On 10 000 words of newspaper
text (not part of the training data) there were
72 false alarms, using filtering but without us-
ing chunking which usually improves precision a
little. There were also 8 correctly detected split
compounds missed by the proofreaders. This
indicates that false alarms is not a great prob-
lem.



Granska Random Random Verbs Verbs Verbs Manual Manual
(manual) Naive Trigram Naive Trigram Mix + Random + Verbs

Detected 9 14 13 47 53 42 21 59
Missed 132 127 128 94 88 99 120 82
False alarms 1 6 6 31 35 24 7 36
Precision 90% 70% 68% 60% 60% 64% 75% 62%
Recall 6% 10% 9% 33% 38% 30% 15% 42%

Table 2: Detection of word order errors. False alarm only means that no word order error occurred
at the suggested position. Many false alarms were caused by other types of errors. “Random”
means that errors were generated by moving a randomly selected word, “Verbs” means only verbs
and the Swedish word for “not” were selected. “Naive” means that the initial guess of the system
was that all words were correctly placed, “Trigram” means the initial guess was based on part-
of-speech trigrams and “Mix” means that trigrams were used for the training data and the naive
method for the test data (to increase precision). The last two columns combine Granska with the
automatic rules by reporting any error found by at least one method.

The manual rules of the grammar checker
and the automatic rules complement each other
somewhat. That means that the precision or
the recall can be improved by combining these
methods. In Table 1 the results of using the
union (i.e. at least one method thinks it is a split
compound, high recall) and the intersection (i.e.
both methods must believe it is an error, high
precision) is shown.

3.2 Word Order Errors

Word order errors are not very common in
Swedish for native speakers, but second lan-
guage learners make many word order errors.
Swedish has different word order in different
types of clauses, such as reversed word order for
questions. In Swedish the placement of adver-
bial phrases is different in subordinate clauses
compared to the main clause, which is a com-
mon difficulty for learners of Swedish.

To create a word order error detector the SUC
corpus was again used as a reference text and
fnTBL as the machine learner. The rule tem-
plates used the same features as for split com-
pounds, i.e. words, PoS and the “error/correct”
annotation. Since the correct word order in
Swedish is different in different types of clauses
adding the first word of the clause was also tried.
This made almost no difference except demand-
ing more processing time and memory for the
training step so it was only tested once. Chunk-
ing also had very little impact, so it too was only
tested a few times.

Word order errors turned out to be much
harder to detect than split compounds, so sev-
eral different strategies for generating synthetic

errors was tried. It was also hard to find a
good initial guess for the annotation, so several
strategies was tried for this too.

As test data 70 sentences from second lan-
guage learner essays were manually annotated
by marking all word order errors with “error”.
Usually a word order error resulted in two words
being marked “error” and would be corrected if
these two switched places. There were 1 241
words, of which 141 words were marked “er-
ror”. There were also a lot of errors that were
not word order errors. These were marked “cor-
rect” (in the sense that they are not word order
errors). Such words caused many of the false
alarms.

To generate synthetic errors the first strategy
used was to simply switch places of one ran-
domly selected word and a neighboring word
in each sentence. The second strategy was to
select only among verbs and the word “inte”
(which is Swedish for “not”) and switching them
and a neighboring word. This was based on
the assumption that most word order errors in
Swedish concerns the verb of the sentence, and
that “inte” is hard to place correctly. This
method also generated more than one error per
sentence (on average two errors per sentence).
Both error generation strategies also added a
copy of each sentence without any introduced
errors to the training data. By adding more
word order errors to the training data the recall
can be improved dramatically, but at a high cost
in precision.

The first strategy for an initial guess for the
learner was that all words are “correct”. This is
very uninformative and does not give the learner



much to work with. The second strategy was to
mark words based on the PoS trigram centered
on the word. Trigrams that were more often
marked as “error” than “correct” in the training
data were given an initial guess of “error”. Any
trigram seen only one or two times in the train-
ing data was also marked “error”. The idea was
that this forces the learner to learn more rules
that correct false alarms, hopefully increasing
precision.

In the test data there are a lot of PoS trigrams
that do not occur at all in the training data. If
these are marked “error” it gives a lot of “false
alarms”, since these are often not word order
errors but some other form of error. These false
alarms are somewhat reduced when using the
second strategy, but not very much. To avoid
false alarms such trigrams were marked “cor-
rect” in the initial guess.

The results of automatic detection of word or-
der errors is summarized in Table 2. The results
are not as impressive as for split compounds,
though the automatic method still has higher
recall than the manual rules.

Since there are a lot of errors in the test data,
the word order error detector was also run on
10 000 words of newspaper texts (not part of the
training data). These are proofread and contain
very few errors. Training using the second strat-
egy for generating the training errors resulted
in 363 alarms on the newspaper texts. Of these
6 were actual word order errors missed by the
proofreaders, 2 were caused by other errors in
the text (wrong tense of verbs) and the rest were
false alarms. Many false alarms were caused by
quotes from interviews using sentence structure
rarely used in written text (the training data
consisted mostly of written text).

The grammar checker Granska only has a
few rules for word order errors, which are by
no means meant to catch all such errors. The
Probgranska extension to Granska can detect
some types of word order errors. In our test
data it finds five word order errors, six errors
of other types (such as using “small” instead of
“little”) and makes two false alarms. The out-
put of Probgranska is not directly comparable
to the data in Table 2 but a reasonable trans-
lation would give it 6 correct detections and 2
false alarms.

The grammar checker in Microsoft Word 2000
has the ability to detect some types of word or-
der errors. We ran our test data through Word
but it did not detect any of the word order er-

rors present in our test data.
The manual rules of Granska and the auto-

matic rules complement each other much more
for word order errors than for split compounds.
There is just two or three (depending on which
error generation method is used) errors that
they both detect. This means that the com-
bination of both methods could be very useful,
mainly for high recall. In Table 2 the results of
this is presented. They could also be combined
for high precision, the precision will be 100% if
reporting only those errors that both methods
agree on (they have no common false alarms),
but the recall will be very low (2%).

4 Conclusions

We presented an error detection method that
requires no manual work. It works quite well
for detecting errors. It has (much) higher re-
call than manually constructed rules, but lower
precision. Using manually annotated real er-
rors would likely give better performance, but
requires manual work. A nice property of the
method is that it is easy to suggest a correction.

While using more sophisticated NLP tools
such as chunking did improve the results a little,
using only part of speech tagging achieved re-
sults that are still very useful. This means that
not only is no manual work required, only com-
monly available resources such as unannotated
text and a PoS tagger is required.

It is especially interesting that the method
works so well for split compounds. This is a very
common problem for second language learners
of Swedish (and quite common in informal texts
by native speakers). It is also a hard problem
to write rules for manually. Very few grammar
checkers handle these errors.

If several different modules are trained to de-
tect different types of errors they can be com-
bined into one framework that detects many er-
ror types. In this case false alarms become a
problem, since even if each module only pro-
duce a few false alarms the sum of them might
be too high. In our tests many false alarms were
caused by some other type of error occurring, so
this might not be such a big problem. It is also
possible to steer the machine learner towards
high precision (few false alarms).
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