
Replica Placement in P2P Storage: Complexity and

Game Theoretic Analyses

Krzysztof Rzadca

School of Computer Engineering

Nanyang Technological University

Singapore

Email: krz@ntu.edu.sg

Anwitaman Datta

School of Computer Engineering

Nanyang Technological University

Singapore

Email: anwitaman@ntu.edu.sg

Sonja Buchegger

School of Computer Science

KTH

Sweden

Email: buc@kth.se

�bstract—In peer-to-peer storage systems, peers replicate each
others’ data in order to increase availability. If the matching is
done centrally, the algorithm can optimize data availability in an
equitable manner for all participants. However, if matching is
decentralized, the peers’ selfishness can greatly alter the results,
leading to performance inequities that can render the system
unreliable and thus ultimately unusable.
We analyze the problem using both theoretical approaches

"complexity analysis for the centralized system, game theory for
the decentralized one) and simulation. We prove that the problem
of optimizing availability in a centralized system is NP-hard.
In decentralized settings, we show that the rational behavior
of selfish peers will be to replicate only with similarly-available
peers. Compared to the socially-optimal solution, highly available
peers have their data availability increased at the expense of
decreased data availability for less available peers. The price of
anarchy is high: unbounded in one model, and linear with the
number of time slots in the second model.
We also propose centralized and decentralized heuristics that,

according to our experiments, converge fast in the average case.
The high price of anarchy means that a completely decentral-

ized system could be too hostile for peers with low availability,
who could never achieve satisfying replication parameters. More-
over, we experimentally show that even explicit consideration
and exploitation of diurnal patterns of peer availability has a
small effect on the data availability—except when the system
has truly global scope. Yet a fully centralized system is infeasible,
not only because of problems in information gathering, but also
the complexity of optimizing availability. The solution to this
dilemma is to create system-wide cooperation rules that allow
a decentralized algorithm, but also limit the selfishness of the
participants.
Index Terms—price of anarchy, equitable optimization, dis-
tributed storage

I. INTRODUCTION

A decentralized system for data storage and replication

is an important building block of many peer-to-peer (p2p)

applications, such as backup (e.g., wuala.com), or social net-

works [1] (in which, when a user is off-line, the system ensures

that her data is available for her friends). In such systems,

individual users (peers) store other users’ data. Data storage

uses not only storage space but, more importantly, consumes

bandwidth [2]. In return, a user expects that her data will also

be stored remotely, increasing availability and resilience. As

The work in this paper has been funded in part by NTU/MoE’s AcRF Tier-1
RG 29/09 and A*Star SERC 072 134 0055 grants.

users in p2p systems are assumed to be independent [3], [4],

they seek to maximize their perceived profits (e.g., availability

of their data) and to minimize their contribution (e.g., the

amount of other users’ data they store). Thus, the crucial

decision an user must take is to choose other users that will

replicate her data (and whose data she will replicate, assuming

a reciprocity-based scheme). Depending on the organization of

the system, this decision is either done through the agency of

a centralized matching system (like in wuala.com), or using a

fully decentralized algorithm in which users form replication

agreements [5], [6].

In this paper, we study the problem of maximization of

data availability in a decentralized data replication system. In

order to obtain worst-case bounds in these complex systems,

we model what we consider the crucial characteristics of the

problem along two axes: (1) peer availability (deterministic

time slots or probabilistic); (2) matching (centralized and

enforced or decentralized and autonomous).

In the probabilistic model, a peer’s availability is the

probability of the peer being available (correlated with the

peer’s expected lifetime, like in [7], [6]). The goal is to

maximize data availability given the constraints on the storage

size. In contrast, in the time slot (deterministic) model peer

availability is a function of time, either in a periodic way [8]

(also observed for the whole system in [9]), or according to

a detailed prediction for the next time period. In this model,

availability is a set of time slots in which the peer is available

with certainty. The goal is to minimize the number of replicas

such that the sum of their availability periods covers the whole

prediction time.

We analyze both availability models when matching is done

either centrally or in a decentralized manner. A centralized

system collects information about the peers’ availabilities and

then derives replication groups so that the expected availability

(or resource usage) is optimized in a manner equitable to all

the participants. In a decentralized system, each peer seeks to

find replication partners maximizing her own data availability.

In centralized systems with global knowledge, we prove

that achieving equitable allocation in both probabilistic (Sec-

tion III-A) and time slot (Section IV-A) models is NP-

complete. We also propose heuristics (Section V) to achieve

equitable availability in the probabilistic model. According to

our experimental evaluation (Section VII-A2), this heuristic

achieves data availability one to two orders of magnitude better

than the random allocation for all classes of peers.

In the decentralized, probabilistic model, we prove the exis-

tence of a unique subgame perfect equilibrium (Section III-B),

in which peers replicate data with other peers that have similar

availability (thus, the most available peers replicate data only

among themselves). Such an equilibrium may seem inefficient

for the system goal, as we show an instance in which it is

arbitrarily far from the equitable solution, i.e., the price of

anarchy [10] is unbounded. Yet the equilibrium is fair in the

sense that the peers who are stable and highly available have

their data replicated better than erratic, unstable peers. We

propose a distributed heuristic (Section VI-A) that according

to our experimental evaluation (Section VII-A3) efficiently

converges to the subgame perfect solution.

Finally, in the decentralized, time slot model, we prove

that, even if a peer has complete knowledge about others’

availabilities and every other peer is willing to replicate,

constructing the replication set with minimal size is NP-hard.

The price of anarchy is at least linear with the number of time

slots (Section IV-B). We also propose a distributed heuristic to

form replication cliques (Section VI-B). Using the heuristic,

we experimentally show that data availabilities in the time

slot model are higher than in the probabilistic model only if

disparity of peers’ availability slots is high (Section VII-B).

II. SYSTEM MODEL AND ASSUMPTIONS

A system is composed of n peers, representing independent

users. The i-th peer is denoted by pi, or alternatively by i if
it is not ambiguous.

For simplicity, we assume that peers are homogeneous in

terms of storage needs and available storage resources to

share. Thus, all the peers provide a storage space of s units
to the system, while themselves need to store data of one

unit. We also assume that peers replicate data by storing

complete copies, in contrast to erasure codes. Although erasure

codes are more efficient for some applications, they have

other drawbacks like increased maintenance costs and system

complexity [11]. This is anyway somewhat orthogonal to the

results discussed here.

Peer i’s availability av(i, t) is the probability of being

online at time t. Peer’s unavailability representing the prob-
ability that the peer i is not available at time t is given by

nav(i, t) � 1 − av(i, t). We assume that the availability is

known and cannot be tampered with by peers, e.g., using [12].

Assume that i’s data is replicated at peers {i1, i2, . . . , ik},
where i1 = i. i’s data is thus unavailable with probability

dnav(i, t) equal to the probability of the event that all the

replicators are offline, dnav(i, t) =
�

j=1...k nav(ij , t) (as-
suming that the peers’ failures are independent [3], [4]).

We also assume that peers form replication groups (cliques)

{Gk}. Each member i ∈ Gk of the group replicates data

of all other members j �= i : j ∈ Gk. We define group

unavailability nav(Gk, t) �
�

i∈Gk
nav(i, t). Note that, ∀i ∈

Gk : dnav(i, t) = nav(Gk, t). Such groups have several

advantages compared with the pair-based allocation. Firstly,

groups are naturally formed in the subgame perfect solution

of some of the decentralized versions of the problem (see

Proposition 4 that considers the problem without assuming

replication groups and proves that such groups will be formed).

Secondly, with groups, it is easier to optimize some of the

system’s parameters not directly considered in this paper, like

data dissemination during updates, when a group can form a

spanning tree. Thirdly, as groups are based on reciprocity, it

is easier for peers to directly control their replicas and react

to free-riding.

As peers are assumed to be rational and to derive utility

from availability of their data, each peer wants its data to be

replicated as well as possible. Thus, i minimizes its dnav(i)
by choosing, or forming, a group with nav(Gk, t) as small
as possible. Depending on the constraints of the system, this

goal can be expressed in two ways:

1) given the storage size s, find s peers Gk = {i2, . . . , is}
such that nav(Gk, t) is minimized;

2) given the maximal tolerable unavailability �, minimize
the size of the replicating group min s = |Gk|.

Both types of goals can be expressed also from the sys-

tem’s perspective. The system should guarantee that peers

are treated fairly [13] by optimizing all groups’ unavailabil-

ities nav(Gk, t). In this paper, instead of a multi-objective

approach, we will aggregate the groups’ goals using two

aggregating functions: (1)
�

nav(Gk, t) (often used in other
domains, but not a fair aggregation in the sense of [13]); (2)

minmaxnav(Gk, t) (which can be inefficient for the system,
by focusing on the worst-off group).

III. COMPLEXITY AND WORST-CASE BOUNDS IN THE

PROBABILISTIC MODEL

In this section, we assume that peers’ availabilities are

constant in time. Thus, for each peer pi, av(i, t) = av(i). Such
a model is commonly used in the literature (e.g., [6], [7]). First

we prove that even for a centralized matching (applicable in

systems like wuala.com), equitable optimization of the avail-

ability is NP-hard. Then, in a decentralized matching, we show

that the subgame perfect equilibrium of a game with selfish

peers can be arbitrarily far from the equitably-optimal solution.

We propose heuristics to optimize allocation in centralized and

decentralized systems in Sections V and VI-A.

A. Complexity of Centralized Matching

The task of the fair matching system is to divide peers

into replicating groups such that: (1) the probability of data

being online is as high as possible; (2) the size of each

group is bounded. In this section, we firstly define a simple

version of this replication problem and prove that it is NP-

complete. Then, using this result, we prove that both system-

level problems are NP-hard (namely, optimizing availability

given constraints on the storage, and optimizing group size

given minimal availability). Complete details (omitted here

due to space constraints) can be found in an extended version

available at http://sands.sce.ntu.edu.sg/p2pstorage/.

We define a simplified version of the replication problem

as follows.

Definition 1. An instance of the decision version of a Simple

Stochastic Fair Replication Problem !SSFRP) is given by the

set of the peers’ non-availabilities {nav(i)} and bound B. We
ask whether there is grouping G1, G2 such that both groups

are non-empty and nav(G1) + nav(G2) ≤ B.

Proposition 1. The decision version of the Simple Stochastic

Fair Replication Problem is NP-complete.

Proof: (Sketch) Reduction from Partition with nav(i) =
2−ai , B = 2 · 2−S/2.

As the most unrestricted version of the replication problem

is already NP-complete, other problems are similarly NP-

complete. For instance, creating 3 non-empty groups corre-

sponds to the strongly NP-complete 3-partition problem [14].

Similarly, maximizing availability with constrained re-

sources (Optimum Availability Constrained Storage, OACS)

translates into a problem of forming groups with a limited

number of members. SSFRP can be thus solved by OACS

with unlimited groups.

Proposition 2. The problem of optimizing availability given

the maximum number of peers in each group !OACS) is NP-

complete.

Finally, we consider the problem of minimizing the used

storage space, given a constraint on minimum availability

(Optimum Storage Constrained Availability, OSCA). OSCA

is solved by forming the maximum number of groups such

that each group provides at least the required availability level

R.

Definition 2. The Decision version of OSCA is defined as

follows. Given the peers’ non-availabilities {nav(i)}, we ask
whether it is possible to construct at least N disjoint groups

{G1, . . . , GN}, so that in each group Gj

�
i∈Gj

nav(i) ≤ R.

Proposition 3. OSCA is NP-complete.

Proof: (Sketch) Reduction from DUAL BIN PACKING

with nav(i) = 2−ai and R = 2−B .

B. Game Theoretic Analysis of the Decentralized Matching

In decentralized matching, we assume that each peer is

selfishly interested in maximizing the availability of her data.

In this section, we predict replication agreements that will be

formed in such systems. We model the resulting game as

an extensive game in which peers change their replication

agreements. We show that in the unique subgame-perfect

equilibrium peers will form replication agreements with peers

of similar availability. The drop in the system’s efficiency

(
�

Gk∈G

�
i∈Gk

nav(Gk)) in this equilibrium is unbounded.

As data replication is a long-lasting agreement, two distinct

phases can be logically distinguished. In the first, organiza-

tional phase, each peer forms zero, one or more agreements

with other peers in which she commits to storing their data.

In the second, production phase, the peer can either honor

the previous agreements, or break some of them by explicitly

dropping other peers’ data or by lowering her availability.

Naturally, in a real system these two phases will overlap,

as peers come and go. In such systems, contracts can be

negotiated with a grace period during which they can be

broken—the grace period, together with making contracts that

start in the future, corresponds to the organizational phase

discussed below.

The game in the production phase of the system is triv-

ially similar to the repeated Prisoner’s Dilemma [15]: a peer

prefers not to honor the previous commitments, as storing

data consumes peer’s resources. However, the goal of the

replication system is to make the data available in the longer

time period, thus the game can be modeled by the infinitely

repeated Prisoner’s Dilemma with a discount factor δ close

to 1. Thus, breaking the agreements is only profitable in a

very short term: when j detects that i stopped replicating j’s
data, j will not only break all her agreements with i, but also
notify other peers of a “cheater” (directly, or with a help of

a reputation system), which, in turn, can effectively exclude i
from the replication system.

The game occurring in the organizational phase is much

more interesting. We formally define it as an extensive

(multi-round) game with infinite horizon and simultaneous

moves [15]. Intuitively, in each round of the game, zero, one

or more peers propose to replicate other peers’ data and/or

withdraw previous proposals. The game ends when no peer

changes her set of replicating peers.

Definition 3. The Stochastic Replication Game !SRG) is

defined as an extensive game with infinite horizon and simul-

taneous moves, in which:

• the set of players is equal to the set of peers;

• the set of terminal histories contains list of sets

({rk(i, 0 ∨ 1, j)}), i.e., sets of replication proposals !de-
noted by rk(i, 1, j)) or withdraws of previous proposals
!rk(i, 0, j), possible only when ∃k� : rk�(i, 1, j)), made
by peers !i) to other peers !j) in each round k; in each
round, for each peer, the number of active replication

proposals does not exceed the peer’s storage capacity s;
all terminal histories end with an empty set ∅;

• the player function P = {pi}, i.e., after all histories all
players can make proposals;

• each player minimizes the expected unavailability of

her data computed as a product of unavailabilities

of players who propose replicating the player’s data

!and who do not withdraw their proposals in subse-

quent rounds). We denote by Rj the replication set of

j !after a terminal history), i.e., Rj = {i : (∃k1 :
rk1(j, 1, i)) ∧ (�k2 > k1 : rk2(j, 0, i))}. The pay-off is
u(i) = nav(i)

�
j : i∈Rj

nav(j).

The game is defined as an extensive game to model the fact

that during the organizational phase peers will react to other

peers’ decisions and adapt their replication sets accordingly.

Similarly, the game is not repeated, as the game models the

organizational phase in which the payoff is computed for the

production phase rather than for the short-term state after each

round. For this theoretical analysis, we do not limit the number

of rounds in the game,

We study the outcome of the game assuming that peers’

strategies are tit-for-tat based, i.e., if peer i proposes to

replicate j’s data in round k (rk(i, 1, j)) and peer j does

not propose to replicate i’s data in the subsequent round at

the latest (�k� ≤ k + 1: rk�(j, 1, i)), peer i will withdraw its

proposal in the next round rk+2(i, 0, j). This assumption on
strategies helps peers to coordinate their actions. At the same

time, such strategies are flexible and allow peers to react to

actions of other peers.

The following proposition shows the subgame perfect [15]

equilibrium of the game. Every subgame perfect equilibrium is

a Nash equilibrium. In extensive games, the notion of the Nash

equilibrium is considered artificial, as it is based on so-called

empty threats. In contrast, the subgame perfect equilibrium

requires that each player’s strategy must be optimal for every

history after which the player moves. In order to illustrate the

difference, assume that s = 1 (each peer can replicate data of
only one other peer), and av(1) > av(2) > av(3) > av(4). If
p2 and p3 commit to mutual replication, and p4 has a tit-for-

tat strategy and replicates p1, in the Nash equilibrium p1 must

replicate p4 data—after p1 proposes to replicate p2, p2 would

not withdraw p3, even though it is optimal for her to do so.

Proposition 4. In a subgame perfect equilibrium of the

Stochastic Replication Game, assuming that peers use tit-for-

tat strategies, peers form � n
s+1� replication cliques of size

s + 1 and one clique of size n mod (s + 1). The cliques

group peers with similar availability. If peers are numbered

according to non-increasing availabilities !av(i) ≥ av(i+1)),
the k-th clique is formed by peers {1 + (s + 1)(k − 1), 2 +
(s+ 1)(k − 1), . . . , s+ 1 + (s+ 1)(k − 1)}. The equilibrium
is unique if and only if the peers’ availabilities differ, i.e.,

∀i : av(i) > av(i+ 1).
Proof: If the game ends, no peer changed her proposal in

the next to the last round (denoted by k). As the outcome is
subgame perfect, given the other peers’ actions, for each peer

it was optimal not to change any of her proposals in round k.
The proof is by contradiction.

By induction, we show that peers replicate in cliques. For

the first clique, assume that peer i (1 ≤ i ≤ s+ 1) replicates
data of at least one peer j� > s + 1. Thus, by tit-for-tat,

at least one peer j from {1, . . . , s + 1} does not replicate

i’s data (instead replicating data of j�� > s + 1). Thus, i
could increase her availability by stopping replication of j�

(rk(i, 0, j
�)) and proposing rk(i, 1, j): as av(i) > av(j��) it is

optimal for j to stop replicating j�� (rk+1(j, 0, j
��)) and start

replicating i (rk+1(j, 1, i)) (otherwise, by tit-for-tat, i would
withdraw her proposal for j). This contradicts the assumption
that it is optimal for i not to change her proposals in round k.

By similar reasoning, if |Ri| < s (i-th storage is not fully
utilized), or if |Rj | < s, rk(i, 1, j) results in rk+1(j, 1, i), thus
both i and j gain in availability.

For the i-th clique, observe that, by the induction as-

sumption, all the peers {1, . . . , (s + 1)(i − 1)} replicate data

between themselves, thus none of them replicates with peers

{1+(s+1)(i−1), . . . , n}. Consequently, the same reasoning
as for the first clique applies, as peers belonging to i-th clique
can either replicate between themselves, or with peers with

lower availability.

The grouping corresponding to the subgame perfect equi-

librium is easy to achieve in a system with centralized

information in O(n log n) time. It is sufficient to sort the

peers according to non-increasing availabilities and then form

replication cliques as in Proposition 4.

The following proposition shows that for the system goal,

the subgame perfect equilibrium can be arbitrarily far from

the equitable solution.

Proposition 5. In the Stochastic Replication Game, the price

of anarchy is unbounded.
Proof: Consider an instance with s + 1 highly available

peers (with nav(i) = nh → 0) and (s + 1) · s less available
peers (nav(i) = nl → 1).
A equitable solution minimizing

�
Gi∈G

�
i∈Gi

nav(i) con-
structs s + 1 cliques; in each clique there is exactly one

highly available peer and s less available peers (indeed, any
assignment in which there are more than one highly available

peer in the same clique has worse overall availability). The

resulting unavailability is equal to (s+ 1)nhn
s
l .

In the subgame perfect solution, highly available peers form

a clique, thus leaving the less available peers to form cliques

between each other. The resulting unavailability is equal to

ns+1
h + sns+1

l .

The price of anarchy is thus equal to:

ns+1
h + sns+1

l

(s+ 1)nhns
l

=
ns

h

(s+ 1)ns
l

+
snl

(s+ 1)nh
−−−−→
n�→0

∞.

We discuss the consequences of such a high price of anarchy

in the experimental evaluation (Section VII-A2).

IV. COMPLEXITY AND WORST-CASE BOUNDS IN THE

TIME SLOT MODEL

In this section, we study the impact of availabilities chang-

ing in time. In the previous section, availabilities were constant

in time, but continuous in [0, 1], corresponding to probabilities.
Here, we assume that peers’ availabilities change in time, but

are crisp. We again study the complexity of centralized match-

ing and for decentralized matching we define the resulting

game and prove that the drop in the system performance (the

price of anarchy) is at least linear in the number of time slots.1

We assume that av(i, t) ∈ {0, 1}, i.e., for all time moments
we can predict with certainty whether i will be off-line or
on-line. We also assume that the domain T of av(i, t) is

finite, defined from the current time moment to the period

of av(i, t), or the horizon of the prediction. We divide T into

T non-overlapping time slots. For instance, if T = 24h, it can
be divided into T = 24 one-hour slots. As a result of these

two kinds of discreteness, we associate with each peer i a set

1Local time for different peers are different, e.g., say in Central Europe
versus Japan are different, and are representative of two time slots.

of time slots in which she is available, called i’s (discrete)
availability Ai ⊆ T = {1, . . . , T}.
Consequently, i’s data must be replicated only during the

time slots not covered by i herself, i.e., T − Ai. As in

the previous section, we assume that peers form replication

cliques Gk, in which every member replicates data of all other

members. We denote as AGk the availability of clique Gk,

AGk =
�

i∈Gk
Ai. Clique Gk is complete, if availabilities of

peers pi ∈ Gk cover the whole period T , AGk = T .

A. Complexity of Centralized Matching in the Time Slot Model

A centralized matching system should organize peers into

complete cliques G = {G1, . . . , GN}. As each clique covers
T , there is no need for replication between cliques. As a

peer replicates the data of other peers from the same clique,

the peer’s objective is to be in the clique with the smallest

number of members. The goal of the system is to provide

a fair grouping, taking into account the objectives of all the

peers.

In a clique Gk, each member has the same value of her

objective, that is equal to the size of the clique. Thus, a fair

aggregation is a function of (|G1|, . . . , |GN |). Among many
possible functions, we will use minmax(|G1|, . . . , |GN |) (for
short, denoted as minmax |Gi|), i.e., minimizing the maxi-

mum size of the clique.

Therefore, the Fair Peer Replication (FPR) problem is

defined as follows.

Definition 4. An instance of the Fair Peer Replication !FPR)

problem consists of: the time period T = {1, . . . , T}; the
set of peers {p1, . . . , pn}; and, for each peer pi, its avail-

ability Ai ⊆ T . The optimization goal is to assign each

peer to a clique, such that all the cliques are complete

!∀Gk : AGk = T) and the size of the largest clique is

minimized !minmax(|G1|, . . . , |GN |)).

As FPR is difficult to analyze theoretically, we will also

analyze a related problem—Max Clique Number (MCN), in

which the number of complete cliques is maximized.

Definition 5. An instance of the Max Clique Number !MCN)

consists of the same elements as an instance of FPRP. The

optimization goal is to assign each peer to a clique, such that

all the cliques are complete !∀Gk : AGk = T) and the total
number of cliques is maximized !max |{G1, . . . , Gn}|).

MCN is a restricted version of the Maximum d-Vector

Covering problem [14, problem SR3]. Ai correspond to T
dimensional vectors, with t-th dimension equal to 1 if t ∈ Ai,

0 otherwise. Thus, in MCN the vectors are composed of binary

{0, 1}, and not real [0, 1] numbers.
The following proposition establishes an upper bound on

MCN.

Proposition 6. A time slot is called a critical time slot !and

denoted as tc), if it is covered by the least number of peers.
The maximum number of cliques is bounded from above by the

number of peers that cover tc. This bound is not always equal
to the maximum number of cliques that can be constructed.

Fig. 1. Reduction of graph coloring to Max Clique Number. Labels assigned
by the algorithm are shown next to nodes. Nodes X and Y are added
by the reduction. The produced instance of MCN has the following peers’

availabilities:
�

�0}� �1}� �0� 1� 2}� �2� 3}� �2� 3}� �3}� �1}� �0}
�

Proof: Assume that a critical time slot tc (1 ≤ t ≤ T)
is covered by kc peers (kc = |{pi : tc ∈ Ai}|). By the

definition of tc, for other time slot t, kt ≥ kc. The proof

is by contradiction. Assume that there are n > kc complete

cliques. But, at least (n−kc) cliques do not cover t
c, thus are

not complete.

This bound is not always equal to the maximum number

of cliques. Consider an instance with T = 3 and three peers
having availabilities {1, 2}, {1, 3} and {2, 3}. All the time

slots are covered by exactly two peers, yet only one complete

clique can be constructed.

The following proposition states that an optimal solution for

MCN can be O(T) times worse for FPRP.

Proposition 7. A solution with the maximum number of

complete cliques !max |{G1, . . . , Gn}|) can be T/2 times

worse for minmax |Gi|.

Proof: Consider an instance with: T peers {1, . . . , T} that
cover the whole period T (1 ≤ pi ≤ T : Ai = T); and also
T peers {T + 1, . . . 2T}, each covering exactly one, distinct
time slot (T + 1 ≤ pi ≤ 2T : Ai = (i − T)). To maximize
the number of cliques, we construct T one-peer cliques, each

with one of the peers 1 ≤ pi ≤ T ; and one clique with the
remaining peers T + 1 ≤ pi ≤ 2T . The size of the largest
clique is T . In contrast, to minimize the size of the largest

clique, we construct T one-peer cliques as in the previous

case. Then, to each clique, we assign one peer from T + 1 ≤
pi ≤ 2T . All the cliques have thus two peers.

The following proposition shows the complexity of MCN.

Definition 6. The decision version of the Max Clique Number

!MCN) problem is the following. Given the set of peers’

availabilities {Ai}, is it possible to construct at least n
complete cliques G1, . . . , Gn, such that each peer belongs to

exactly one clique.

Proposition 8. Max Clique Number is NP-complete.

Proof: (Sketch) Reduction from GRAPH 3 COLORING

(Problem GT5, [14]). Given a graph, we construct an instance

of MCN, such that, if n = 3 complete cliques can be

constructed, the cliques match the 3 coloring of the graph. A

peer in MCN corresponds to a vertex in the graph; the peer’s

availability slots are produced by an algorithm (see Figure 1).

B. Game Theoretic Analysis of the Decentralized Matching

In a decentralized version of the problem, each peer i has
to find other peers that will replicate her data during time slots

in which i is unavailable. As replicating other peers’ data uses
i’s resources, i will minimize the number of peers she uses
as replicators. We start with a proof that a combinatorial (and

not game theoretic) version of the problem from a perspective

of a single peer is already NP-complete. Then, we define an

extensive matching game and show an instance in which the

price of anarchy is linear with the number of peers.

We start with an analysis of the replication problem from

the perspective of a single peer i: assuming that all peers want
to replicate data with i, which peers should i choose to form a

minimal complete clique? We call this problem a Selfish Peer

Time Slot Replication (SPTR) problem.

Definition 7. An instance of the Selfish Peer Time Slot

Replication !SPTR) problem is composed of a selected peer

i and all peers’ availabilities {Aj}. The question is whether
there is a complete clique G of size at most k.

Proposition 9. The decision version of Selfish Peer Time Slot

Replication is NP-complete.

Proof: (Sketch) Reduction from SET COVER with peers’

availabilities corresponding to the subsets.

Let us now consider a game theoretic perspective, in which

each peer chooses other peers whose data she will repli-

cate. Similar to the analysis of the probabilistic model (Sec-

tion III-B), we only consider the game in the organizational

phase of the system, when peers form replication agreements.

Definition 8. The Time Slot Replication Game !TRG) is

defined as an extensive game with infinite horizon and simul-

taneous moves, in which the set of players, terminal histories

and the player function is the same as in game 3.

The players’ preferences are two-fold. Firstly, peer i max-
imizes the number of time slots during which her data is

replicated !i.e., the number of time slots in which peers who

have i in their replication set are available, |
�

j : i∈Rj
Aj |).

Secondly, if the number of time slots is the same, peer i
minimizes |Pi|, i.e., the number of peers whose data she

replicates.

As it is not realistic to assume that all availability pat-

terns will differ, in TRG the subgame-perfect equilibrium

does not necessarily result in forming cliques. For instance,

consider an instance with T = 3 and peers with availabilities�
{1}, {2}, {3}, {1}, {2}, {3}

�
. A grouping in which all peers

form a chain (replicating data in pairs i ↔
�
(i+1)mod n

�
has

the same size of the largest replication set (3) as a grouping

with two cliques.

Nevertheless, a lower bound on the price of anarchy can be

established:

Proposition 10. Assuming that peers use tit-for-tat strategies,

the price of anarchy in the Time Slot Replication Game is at

least T/2.
Proof: Consider the same instance as in Proposition 7,

with T peers p1, . . . , pT who cover T , and T peers

pT+1, . . . , p2T , each covering exactly one, different time slot.

In the subgame perfect equilibrium, each of the peers

p1, . . . , pT does not replicate any other peer’s data (as each

such peer already covers the whole T , so Pi = ∅ is the

preferred action). Peers pT+1, . . . , p2T form one, large clique:

if any such peer starts replicating one of p1, . . . , pT , it would

only increase its Pi size, without increasing the availability,

thus it would result in a less preferred outcome; yet if any

such peer stops replicating pj ∈ {pT+1, . . . , p2T }, by tit-for-
tat, in the next iteration pj would stop replicating pi, and thus

reduce the data availability of pi. Thus, in the subgame perfect

equilibrium, the largest group has T members.

The socially-optimal solution (minmax |Gi|) groups peers
in pairs, in which each one from p1, . . . , pT is paired with

one from pT+1, . . . , p2T . The maximum clique size is 2.
Consequently, the price of anarchy is T/2.

V. HEURISTICS FOR THE CENTRALIZED MATCHING IN THE

PROBABILISTIC MODEL

The following greedy heuristic optimizes the assignment of

peers to cliques in OAFS (Section III-A), assuming global

knowledge and coordination of peers. The idea of the al-

gorithm is similar to the First Fit Decreasing approximation

algorithm for minimum bin packing [14].

Firstly, the peers are sorted by non-increasing availabilities

av(i). Then, � n
s+1� most available peers are assigned to sep-

arate cliques. Finally, for each of the remaining peers (in the

sorted order), the peer is assigned to clique Gk that currently

has the highest unavailability Gk = argmax
�

i∈Gk� nav(i).
We experimentally compare this algorithm to the random

allocation in Section VII-A2. The assignment resulting from

the above heuristic can be further optimized by a global search

meta-heuristic, such as Simulated Annealing (SA). However,

in our initial experiments, SA did not significantly improve

results returned by the heuristic, probably because of the large

number of cliques to consider.

VI. HEURISTICS FOR THE DECENTRALIZED MATCHING

A. Decentralized Matching in the Probabilistic Model

The following algorithm creates an environment similar to

the Stochastic Replication Game (Definition 3). The main goal

of the algorithm is to reduce the time needed to reach the

subgame-perfect equilibrium (Proposition 4) in the context of

a real distributed system, that, through limited bandwidth and

peers’ processing power, limits the number of replication pro-

posals that each peer can make. Among replication candidates

(most of whom are unknown due to the distributed nature of

the system), the algorithm helps peers find and choose partners

that not only maximize data availability, but also are not likely

to withdraw replication agreements—thus, the partners from

the equilibrium. At the same time, all the decisions imposed

by the algorithm are rational (never decrease the peer’s data

availability), thus the algorithm converges to cliques defined in

the subgame perfect equilibrium. Consequently, even if some

of the peers choose not to follow the algorithm (but still are

rational), the steady state will be the same—the equilibrium—

but reached more slowly (or faster, if the aberrants use, e.g.,

an oracle).

To illustrate this difference, consider a peer with a medium

availability. To maximize her data availability, the peer should

try to form a replication agreement with a peer with high

availability. However, such a highly available peer is likely

to already have (or have in near future) highly available

replication partners; thus the replication request from the

“mediocre” peer will be either rejected, or withdrawn soon.

Each peer maintains a list of candidates for replicas. This

list is refreshed by the T-Man [16] gossiping protocol. Each

peer i has two pools of peers: a random pool rand(i)—at most

sr peers forming a sample of the population; and a metric pool

metric(i) with sm peers that score well according to a local

metric. In an iteration of T-Man, each peer updates its random

pool by gossiping with a randomly-chosen peer from this pool.

During this operation, to form the new random pool, each peer

chooses sr most recently added peers from both random pools.

After modifying the random pool, the metric pool is updated

as the best sm peers from the current metric pool and the

current random pool. Then, the peer communicates with the

best peer from its metric pool: the metric pools are exchanged,

merged, scored and then each peer chooses the best sm peers

from the merged pools.

To form replication agreements, peers use heuristics to

compare the current replicas with the candidates. We first

describe a framework, then several possible heuristics to

choose candidates.

In each turn, each peer i scores the peers in its metric

pool that are not i’s current replicas nor on its taboo list.

If i has less replicas than its maximum capacity, it proceeds

to querying the peer j∗ with the highest score. Otherwise,

candidates are compared with i’s worst current replica k
(k = argmaxl : replica(i�l) nav(k)). i queries the first candidate
j∗ (in order of non-decreasing score) better than k (for which
nav(j) < nav(k)). If there is no such candidate, i does not
switch replicas.

The queried candidate j∗ decides whether to accept the

mutual replication: if it has less replicas than its maximum

capacity, i is accepted. Otherwise, i is accepted only if

nav(i) < nav(k�), where k� is j∗ worst replica.
Finally, if j∗ accepts i, and i already has as many replicas

as its maximum capacity, i drops its current worst replica k.
In order not to repetitively query the same peers, each peer i

maintains a taboo list, consisting of former replicas that have

been dropped or that dropped i; and of peers that did not

accept replication with i.
We used three variants of the above algorithm that differ in

the trade-off between short-sighted selfishness and the speed

of convergence. In Optimistic Queries, candidate j’s score is
equal to its availability scoreo(i, j) = av(j). In Pragmatic

Queries, candidate j’s score is equal to the absolute difference
between its availability and the availability of the assessing

peer i, scoreP (i, j) = |av(i)− av(j)|.
Finally, Explicit Cliques maintains cliques composed of one

function scorec(peer i, peer j, Gk : i ∈ Gk , Gl : j ∈ Gl)
if |Gk| < s + 1 then

if |Gk| + |Gl| ≤ s + 1 then

return |av(i) − av(j)|
else if |Gl| < s + 1 then

return 0.5 · |av(i) − av(j)|
else

return 0

else

navH
k

= maxi���k
nav(i�)

navL
k

= mini���k
nav(i�)

navH
l

= maxj���l
nav(j�)

navL
l

= minj���l
nav(j�)

if navH
l

< navL
k
or (|Gl| = s + 1 and navL

l
> navH

k
) then

return 0
else

return max(navH
k

� navH
l

) − min(navL
k

� navL
l

)

Algorithm 1: Computing j-th peer score in Explicit Cliques.

or more peers. Every member of a clique replicates data of all

other members. Thus, a representative i of a clique Gk, after

choosing peer j∗ with the maximum score scoreC(i, j), tries
to merge its clique with the clique Gl : j

∗ ∈ Gl of the chosen

candidate. The two cliques exchange members: the “better”

clique groups s+ 1 peers with the highest availability (or the
two cliques combined, if the combined clique has at most s+1
members); the “worse” clique groups remaining members of

both cliques.

The scoring function scoreC(i, j) depends on the size of

the cliques i ∈ Gk and j ∈ Gl (see Algorithm 1).

If |Gk| < s+1, Gk is not complete and the algorithm should

increase its size (as it considerably reduces nav(Gk)). It is
best to have Gl such that the two cliques will be merged into

one, |Gk| + |Gl| ≤ s + 1. Thus, scoreC(i, j) = scoreP (i, j)
in this case; otherwise, if |Gl| < s + 1, scoreC(i, j) =
0.5scoreP (i, j); finally if |Gl| = s + 1, scoreC(i, j) = 0
(as in this case one of the cliques after merging will still be

of size |Gk|).
If |Gk| = s + 1, the goal is to find a clique Gl that

after merging will reduce the variance of availabilities of

peers in both cliques. During merging of Gk with Gl, the

two cliques will exchange members (and thus reduce the

variance) if: 1) the intersection of availability ranges is not

empty, [navL
k , nav

H
k]∩ [navL

l , nav
H
l] �= ∅; or 2) |Gl| < s+1

and navH
l > navL

k . In these two cases, the score is equal

to the range of unavailability that will be reduced; otherwise

scoreC(i, j) = 0.
We compare these three algorithms on randomly-generated

instances in Section VII-A3.

B. Decentralized Optimization in the Time Slot Model

The decentralized algorithm constructing replication cliques

in the time slot model is similar to Explicit Cliques. The

differences are: 1) scoring of candidates; 2) merging the

cliques; and 3) removing redundant peers from cliques in each

iteration.

The scoring function scoreT (i, j) depends on whether the
clique Gk : i ∈ Gk is complete (covers T). If Gk is not

complete, the score of j depends on the number of newly

covered time slots (possibly replacing one of the existing

members of Gk), scoreT (i, j) = |Aj − AGk|/T . If Gk is

complete, the score is inversely proportional to the difference

in the number of members in cliques, scoreT (i, j) = 1 −
||Gk| − |Gl||/(max(Gk, Gl)).
When two cliques Gk and Gl are merged, and |Gk|+|Gl| >

s + 1, we use a greedy algorithm to construct the “better”

clique. The algorithm starts with choosing the peer who covers

the maximum number of time slots. Then, from the remaining

peers, the algorithm adds the peer that covers the maximum

number of currently uncovered time slots. This step is repeated

until there are peers able to cover uncovered time slots (with a

limit of maximum clique size s+1) or the number of remaining
peers is greater than s + 1 (as the remaining peers will form
one clique).

Finally, as peers also minimize the clique size, each clique

periodically removes redundant members. A peer j is redun-
dant for clique Gk if and only if all the time slots covered

by j are covered by other members of the clique, thus

AGk−{j} = AGk.

The algorithm is evaluated in Section VII-B.

VII. SIMULATION OF THE ALGORITHMS

A. Probabilistic Model

1) Simulation Settings: Peers’ availabilities were generated

in three steps. Firstly, according to [6], 10R of the peers

have availability 0.95, 25R—0.87, 30R—0.75 and 30R—

0.33. Then, we added a Gaussian noise with σ = 0.1 to

each availability. Finally, we caped the resulting value, so

that 0.03 ≤ av(i) ≤ 0.97. Histogram on Figure 2 shows the

resulting distribution of peers. We repeated each experiment on

50 instances with peers’ availabilities generated as described

above; error bars on plots denote standard deviations.

We set the storage size s = 5 and the sizes of random and

metric pools in T-Man gossiping to 50.
We implemented decentralized algorithms in a custom dis-

crete event simulator. In each round of the simulated matching,

all the peers are processed sequentially in random order. Each

peer performs one iteration of T-Man gossiping, and then one

iteration of the decentralized matching algorithm (in the first

four rounds we perform only gossiping in order to “warm up”

the metric pools).

2) Centralized Algorithms: Subgame Perfect vs Equitable

Solutions: We started with comparing random, subgame per-

fect and equitable allocation algorithms according to the

resulting data unavailability. We ran these algorithms on 50

randomly-generated instances of 10000 peers each; then we

computed averages over all the random instances and all

peers having similar availabilities (with resolution equal to

two decimal places, e.g., the score for 0.95 is an average for
all peers with 0.95 ≤ av(i) < 0.96). Figure 2 summarizes the
obtained results.

The equitable algorithm produces cliques that result in

similar data availability regardless of the peer’s availability.

In contrast, the subgame perfect equilibrium results in wide

range of data availabilities: while the highly available peers

←− worse better −→

←
−

b
et
te
r

w
o
rs
e
−
→

10−8

10−6

10−4

10−2

100

es
ti
m
at
ed

d
at
a
u
n
av
a
il
a
b
il
it
y

0 0.2 0.4 0.6 0.8 1

peer availability

0k

10k

20k

30k

40k

50k
n
u
m
b
er

o
f
p
eers

in
b
u
cket

(h
istogram

)

peers (histogram)

random

equitable

subgame perfect

Fig. 2. Peers’ expected data unavailability as a function of their availability
in random, equitable and subgame perfect assignment. Histogram shows the
number of peers in each availability bucket.

have their data available with expected failure probability of

approximately 10−9, the weakest available peers almost do not

gain from replication, with data unavailability close to 1.
Such diversification in the subgame perfect solution pro-

vides incentives for peers to be highly available. A highly

available peer is able to replicate its data with other highly

available peers, which exponentially increases peer’s data

availability. Thus, the subgame perfect solution is fair to par-

ticipants. However, the subgame perfect solution might be too

“extreme” to the less-available peers. Peers with availabilities

less than approximately 0.5 have their data available with

probability less than 0.99 (approximately), which might be not
sufficient for some applications. This, in turn, can discourage

such peers to join the system, and consequently, prohibit the

system from growing to a critical mass.

On the other hand, an equitable solution does not reward

highly available peers. In absence of altruistic peers, the

system would degenerate.

Consequently, a robust system might require a hybrid of

the selfish and the equitable solution: guaranteeing some

minimal level of service to less available peers (but also

requiring minimal availability), at the same time rewarding

highly available peers with higher data availability.

Also note that the equitable solution clearly Pareto-

dominates the random assignment, resulting in higher data

availabilities for all classes of peers.

3) Decentralized Algorithms: Speed of Convergence: In

the next series of experiments, we measure how fast do the

decentralized algorithms presented in Section VI-A converge

to the subgame perfect cliques.

Initial experiments revealed that the Optimistic Queries

version of the algorithm is inefficient. After the first few

rounds when the underlying gossiping protocol efficiently fills

the metric pools of all peers with the same set of 50 highest

available peers, in the subsequent rounds the whole population

queries the best peer, the second-best peer, and so on. Thus,

replication agreements are formed extremely slowly. We ob-

serve that if peers’ availabilities are distinct, approximately

k/(s+ 1) cliques are formed after approximately k rounds.

Figure 3 compares the convergence speed of Pragmatic

Queries to Explicit Cliques, measured as the median average

0.001

0.01

0.1

1

10

100
m
ed
ia
n
re
la
ti
v
e
d
eg
ra
d
at
io
n

0 20 40 60 80 100

round

pragmatic queries

cliques

Fig. 3. Convergence speed of decentralized algorithms to subgame perfect
cliques. Y axis is the median (computed over only non-zero elements) of
relative degradation vs. the subgame perfect solution. n = 2000

0

10

25

50

75

100

co
n
ve
rg
en
ce

ti
m
e
(r
ou
n
d
s)

0 1k 2k 4k 6k 8k 10k 12k 15k 18k 20k

n – number of peers

all peers

max degr < 10%

median degr < 5%

all peers (n mod (s+ 1) �= 0)

max degr < 10% (n mod (s+ 1) �= 0)

Fig. 4. Convergence speed of the clique-based algorithm to the subgame
perfect cliques as a function of the number of peers in the system. The
solid line denotes the number of rounds needed to reduce the degradation
of all peers to less than 10−�; the dashed—to reduce the maximum relative
degradation to less than 10�; the dotted—to reduce the median degradation
to less than 5�. Outliers (denoted by 	 and ◦) denote the performance for
instances with the total number of peers not divisible by the clique size (s+1).

degradation vs. the subgame perfect solution (we treated

differences less than 10−9 as zero). In this experiments, we

excluded peers with boundary availabilities (0.97 and 0.03)

from the results.

Explicit Cliques converges much faster (in about 25 rounds),

by, firstly, quickly building as many full cliques as possible,

and then optimizing their contents. Note that high standard

deviation observed in rounds 18-25 is an artifact of computing

the median from only few values.

In contrast, Pragmatic Queries form 2 chains of peers

(grouping highly available peers in one and less in the other).

The chains are formed because each peer i replicates with
s closest neighbours according to the absolute value of the

difference in availabilities: s/2 peers with availabilities higher
than i and s/2 peers with lower availabilities. Only the s/2
most-available peers, lacking even higher available peers, form

agreements with worse peers. In subsequent rounds, these

worse peers gradually drop their chain neighbours in favor

of higher available peers; thus, the dropped neighbours do not

longer have higher available neighbors, and the phenomenon

propagates towards the next peers.

Figure 4 shows the speed of convergence of Explicit Cliques

as a function of number of peers. Explicit Cliques manages

to converge in less than 100 rounds in all instances except

46R of instances with 20,000 peers (however, it converges

for all instances with 19,998 peers). The algorithm reduces

the median degradation to less than 5R in about 10 rounds.

For absolute convergence (solid line) and the approximate

maximum degradation (dashed line), the algorithm converges

faster if the total number of peers is divisible by 6, the size

of the clique. The phenomenon is caused by boundary effects

of the one incomplete clique.

B. Time Slot Model

In the previous series of experiments, we demonstrated that

the subgame perfect solution, while efficient for highly avail-

able peers, results in low data availability for less available

peers. The goal of this series of experiments is to see whether

the performance for such peers can be improved by explicitly

considering their availability patterns.

1) Simulation Settings: In order to simulate only less

available peers, we reduced availabilities generated as in the

previous experiments (Section VII-A1) by multiplying them by

1/3. A peer is available during �T · av(i)� consecutive hours
(from 1 up to 8 hours, see the histogram in Figure 5).

The first hour in which the peer is available is its time

zone t0(i). As we could not find data about the distribution
of time zones of users in large-scale systems, we generated

time zones as follows. Firstly, we do a random permutation

of (1, . . . , T) (we do it only once for each repetition of the
simulation). Then, for each peer, we pick the time zone from

the permuted list taking the index from the Pareto distribution

with controlled shape parameter α ∈ {0.1, 0.5, 1.0, 1.5, 2.0}.
The greater is α, the more peers are in the most popular

time zones: for α = 1, around 33% of the peers are in the

most popular time zone; whereas for α = 2 it is 55%. The
initial permutation permits to obtain time zone distribution in

which popularity is not correlated with time zone index. We

used Pareto (and not, e.g., uniform) distribution because in

some online social networking websites we observed that the

distribution of users is highly uneven: rather than being evenly

spread over the globe, these sites have vast majority of their

users either in the US, or in Europe, or in India, or in China.

We used the distributed algorithm described in Section VI-B

with the same settings as in the previous section, except for the

warm-up period (2 rounds) and the total time of the algorithm

(10 rounds).

2) Influence of Peer Availability: Figure 5 shows the es-

timated data unavailability of peers as a function of their

availability. A negative correlation between these two values

is still clearly visible: a peer available during 1 hour has its

data available during roughly 7 hours; while a peer available

during 8 hours—roughly 21 hours. These results are similar

to the results of the probabilistic model, in which peers with

availability of 0.33 had data availability of approximately 0.9.
Large standard deviations are caused by uneven distribution of

peers in time zones: a peer covering unpopular time slots will

�� ����� ������ ��

�
�
�
��
��
�

�
��
��
�
�

	

�	

�

�	
��
�

�
��
��
�
��
�
�
�
��
�

�
�
�

�

�
�
��
��
��
�

	 � � � �
 � � � �
���� ���
���
�
�� �������

	�

�
�

	�

�
�

�		�

��
�

�
	�

�
����

!��
��"�

���
��
�

�
��

#�

���$���

%

 ����� #�
���$���%

��& ���& ���� �����
���
�
��

Fig. 5. Estimated unavailability as a function of peers’ availability for the
time slot algorithm. 250 instances, n = 2000. The histogram shows the
number of peers for each availability bucket.

←− more disperse less disperse −→

←
−

b
et
te
r

w
o
rs
e
−
→

0

2.5

5

7.5

10

12.5

15

es
ti
m
at
ed

d
at
a
u
n
av
a
il
a
b
il
it
y
[h
o
u
rs
]

0 0.1 0.5 1 1.5 2

alpha (timezone disparity)

0

500

1000

1500

2000

#
p
eers

w
ith

d
ata

alw
ay
s
availab

le

av. est. data unavailability (left axis)

peers with data always available (right axis)

Fig. 6. Estimated average unavailability and number of peers in complete
cliques as a function of disparity of peers in time zones. n = 2000.

be eagerly accepted to join a clique, even if its availability

period is short; on the other hand, a peer covering popular

time slots (from a popular time zone) might not find partners

to cover unpopular time slots, even if its availability is high.

3) Influence of Time Zone Disparity: Figure 6 shows the

data unavailability of peers as a function of the time zone

disparity α. The figure clearly shows that data availabilities

are higher if the time zones are more diverse (smaller α). In
such systems, peers cover very different time slots, and thus

are able to find other matching peers to form complete cliques.

For more diverse time zone distribution, the resulting aver-

age unavailability is smaller than in the probabilistic model.

In the probabilistic model, the average data unavailability

averaged over peers with availabilities less than 0.33 is 0.37.
In the time slot model, for α = 0.1, the average data

unavailability is 2.32 hours, which averaged over 24 hours

corresponds to average unavailability of 0.10. Similarly, for
α = 0.5, we obtain 0.26. Starting from α = 1.0, the data is
less available in the time slot model than in the probabilistic

model. This is caused by the fact that, in the time slot model,

adding replication peers does not increase data availability,

unless peers have matching availability patterns.

VIII. RELATED WORK

Our paper analyzed the problem of replica placement in a

p2p storage system. In order to optimize the data availability,

we explicitly choose the nodes on which the data is to be

replicated (unlike, e.g., DHTs [17]).

There are many papers assessing the loss of efficiency of

the system caused by selfishness of individual participants,

starting from the analysis of selfish routing in [10]. [3]

studies incentives for system-optimal behavior in p2p systems.

[18] considers a game of network creation in which selfish

nodes optimize the cost of creating new links that minimize

distances to other nodes. [19] considers similar model in a p2p

system. In contrast, in p2p storage systems, the “transaction”

(i.e., storing data of another peer) is persistent rather than

temporary; unlike in the classic Prisoner’s Dilemma, a peer’s

utility from “cheating” is small, as the cheated party can easily

detect cheating and quickly adjust its strategy. Thus, the typical

problems of enforcing agreements can be easily solved using

reciprocity and a basic reputation system; that is why in the

game theoretic analysis, we could focus on the process of

forming, rather than enforcing, replication agreements.

The most common approach to p2p storage is to place

enough replicas randomly in the system. For instance, [20]

analyzes how many replicas are required to achieve a desired

level of availability. Existing systems based on such random

placement include Pastiche [21] and Total Recall [7].

Approaches that explicitly optimize the placement of repli-

cas include [5], [6], [22], [23]. [6] studies by simulation an

algorithm similar to our Pragmatic Queries, with a slightly

more complex acceptance (score(i, j)) function. Similarly to
our theoretic and simulation results, the experiments in [6]

show that highly available peers achieve better performance

than the peers with lower availability.

Very recently, [22] and [23] analyzed a problem similar

to the decentralized version of the probabilistic model. [22]

observes that the “system stabilizes when peers are grouped

into clusters, pooling users that have similar profiles”, however

the proof is left for future work. In our paper, Proposition 4

provides a proof for the analogous behavior in our model;

moreover, we compute the price of anarchy (Proposition 5).

Additionally, we prove that the centralized optimization of

availability is NP-hard (Propositions 1-3), which is hypoth-

esised, but deferred for future work in [23].

Equitable optimization of availability in the probabilistic

model is similar to the problem considered in [5], where

replicas of individual files are spread over a pool of hosts with

given availabilities; however, as [5] has an implicit assumption

of a single owner of the system, it does not have to consider

reciprocity, nor cliques, in the assignment.

[24] assumes that the replica placement policy is partly

determined by locality constraints. The “Buddy” policy is

similar to our Clique-Based allocation; however our cliques

are optimized, and not partly fixed. By simulation, the authors

conclude that locality-aware policies are less efficient than

the global, randomized allocation; in contrast, our Equitable

heuristic is more efficient than the random allocation.

IX. DISCUSSION AND CONCLUSIONS

We studied the problem of replica placement in a p2p

storage system in order to optimize availability and/or the

number of replicas. We argued that replication should be

based on cliques of peers replicating each others’ data, rather

than on a directory or bilateral assignments. We analyzed

two idealistic models of peer availability that capture the

two important phenomena in p2p systems: uncertainty in the

probabilistic model; and diurnal patterns in the time slot

model. For both models, we proved that it is NP-hard to

optimize availability for the socially-equitable scheme (in

which the data availability of all peers is similar). We also

analyzed a game theoretic version of the problem in which

peers form bilateral replication agreements. We demonstrated

that the loss in the global efficiency compared to the socially-

optimal solution (the price of anarchy) is high: unbounded

in the time-independent model and at least linear in the time

slot model. For both decentralized models and the centralized

probabilistic model, we proposed heuristics that perform well

in simulation experiments.

Our results have quite a few more practical consequences

for p2p storage or replication systems. Most importantly, in

such systems, if allowed to choose partners by themselves,

highly available peers will tend to replicate data among

each other, and to exclude peers with low availability. This

could result in unacceptable performance for peers with lower

availabilities (in our experiments, less than about 30R). While

this phenomenon provides an incentive for peers to be highly

available, it can be also discouraging for the newcomers to

join, and thus—hard for the system to gain momentum and

large scale.

The performance for less available peers can be improved

by considering diurnal patterns of peer availability, rather than

just a single number. However, exploiting diurnal patterns

has a measurable impact only when the system has truly

global scope, gathering participants from different time zones.

Another possibility is to centralize, at least partially, the

matching between peers; however, the exact solution is NP-

hard to get. Consequently, the solution to this dilemma is most

probably somewhere in the middle: a system allowing peers to

optimize their replication agreements; but forcing each group

to accept, e.g., at least one worse-off peer.

In this paper, we deliberately focused on a single issue,

replica placement, which allowed us to derive mathematical,

as well as simulation results. We left unaddressed other

problems like maintenance [25], redundancy schemes [11], or

heterogeneity of peers’ storage needs and capabilities.

Storage heterogeneity would only slightly alter the resulting

equilibrium. A peer with higher storage space would be

able to form more “unit” replication agreements (and thus

increase her data availability), although with peers having

lower availabilities (or with peers with higher storage space

and higher availabilities). A peer having more data to store

would need to surrender storing complete copies on all the

replicas which would result in lower data availability.

In our future work, we plan to conduct more realistic

experiments by combining the two models, and simulating

permanent and temporary churn of peers during the process

of matching. In the theoretical analysis, we left open the com-

plexity of the centralized, equitable optimization in the time

slot model. We also plan to design approximation algorithms

for both models.

REFERENCES

[1] S. Buchegger, D. Schiöberg, L. Vu, and A. Datta, “PeerSoN: P2P social
networking: early experiences and insights,” in ACM SNS, Proc., 2009.

[2] M. Feldman, K. Lai, J. Chuang, and I. Stoica, “Quantifying disincentives
in peer-to-peer networks,” in P2P Econ, Proc., 2003.

[3] M. Babaioff, J. Chuang, and M. Feldman, Algorithmic Game Theory.
Cambridge, 2007, ch. Incentives in Peer-to-Peer Systems, pp. 593–611.

[4] R. Bhagwan, S. Savage, and G. Voelker, “Understanding availability,”
in IPTPS, Proc., ser. LNCS, vol. 2735. Springer, 2003, pp. 256–267.

[5] J. Douceur and R. Wattenhofer, “Competitive hill-climbing strategies
for replica placement in a distributed file system,” in DISC, Proc., ser.
LNCS, vol. 2180. Springer, 2001, pp. 48–62.

[6] S. Bernard and F. Le Fessant, “Optimizing peer-to-peer backup using
lifetime estimations,” in Damap Proc., 2009.

[7] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker, “Total recall:
System support for automated availability management,” in NSDI, Proc.,
2004.

[8] J. Douceur, “Is remote host availability governed by a universal law?”
ACM SIGMETRICS Performance Evaluation Review, vol. 31, no. 3, pp.
25–29, 2003.

[9] M. Steiner, T. En-Najjary, and E. Biersack, “Long term study of peer
behavior in the kad dht,” IEEE/ACM Transactions on Networking,
vol. 17, no. 6, 2009.

[10] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” in STACS,
Proc., ser. LNCS, no. 1563. Springer, 1999, pp. 404–413.

[11] R. Rodrigues and B. Liskov, “High availability in dhts: Erasure coding
vs. replication,” in IPTPS, Proc., ser. LNCS, vol. 3640. Springer, 2005.

[12] F. Le Fessant, C. Sengul, and A. Kermarrec, “Pace-maker: Tracking peer
availability in large networks,” INRIA, Tech. Rep. RR-6594, 2008.

[13] M. Kostreva, W. Ogryczak, and A. Wierzbicki, “Equitable aggregations
and multiple criteria analysis,” European Journal of Operational Re-

search, vol. 158, no. 2, pp. 362–377, 2004.
[14] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-

Spaccamela, and M. Protasi, Complexity and approximation. Springer,
1999.

[15] M. Osborne, An introduction to game theory. Oxford University Press,
2004.

[16] M. Jelasity and O. Babaoglu, “T-man: Gossip-based overlay topology
management,” in ESOA, Proc., ser. LNCS, vol. 3910. Springer, 2006.

[17] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems,” in Middleware
Proc., ser. LNCS, vol. 2218. Springer, 2001, pp. 329–350.

[18] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, and S. Shenker,
“On a network creation game,” in PODC, Proc. ACM, 2003, pp. 347–
351.

[19] T. Moscibroda, S. Schmid, and R. Wattenhofer, “On the topologies
formed by selfish peers,” in Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing. ACM New York,
NY, USA, 2006, pp. 133–142.

[20] R. Bhagwan, S. Savage, and G. Voelker, “Replication strategies for
highly available peer-to-peer storage systems,” Proceedings of Fu-DiCo:
Future directions in Distributed Computing, 2002.

[21] L. Cox, C. Murray, and B. Noble, “Pastiche: Making backup cheap and
easy,” ACM Operating Systems Rev., vol. 36, pp. 285–298, 2002.

[22] P. Michiardi and L. Toka, “Selfish neighbor selection in peer-to-peer
backup and storage applications,” in Euro-Par, Proc., ser. LNCS, vol.
5704, 2009.

[23] L. Toka and P. Michiardi, “Analysis of user-driven peer selection in
peer-to-peer backup and storage systems,” Telecommunication Systems
J. !to be published), 2009.

[24] F. Giroire, J. Monteiro, and S. Pérennes, “P2p storage systems: How
much locality can they tolerate?” INRIA, Tech. Rep. 7006, 2009.

[25] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica mainte-
nance for distributed storage systems,” in NSDI, Proc., vol. 6, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

