
A Weakest Precondition Approach to Robustness�

Musard Balliu1 and Isabella Mastroeni2

1 School of Computer Science and Communication, Royal Institute of Technology,
Stockholm, Sweden
musard@kth.se

2 Dipartimento di Informatica, Università di Verona, Strada Le Grazie 15, I-37134,
Verona, Italy

isabella.mastroeni@univr.it

Abstract. With the increasing complexity of information management computer
systems, security becomes a real concern. E-government, web-based financial
transactions or military and health care information systems are only a few exam-
ples where large amount of information can reside on different hosts distributed
worldwide. It is clear that any disclosure or corruption of confidential informa-
tion in these contexts can result fatal. Information flow controls constitute an
appealing and promising technology to protect both data confidentiality and data
integrity. The certification of the security degree of a program that runs in un-
trusted environments still remains an open problem in the area of language-based
security. Robustness asserts that an active attacker, who can modify program code
in some fixed points (holes), is unable to disclose more private information than a
passive attacker, who merely observes unclassified data. In this paper, we extend
a method recently proposed for checking declassified non-interference in pres-
ence of passive attackers only, in order to check robustness by means of weakest
precondition semantics. In particular, this semantics simulates the kind of analy-
sis that can be performed by an attacker, i.e., from public output towards private
input. The choice of semantics allows us to distinguish between different attacks
models and to characterize the security of applications in different scenarios.

Our results are sound to address confidentiality and integrity of software run-
ning in untrusted environments where different actors can distrust one another.
For instance, a web server can be attacked by a third party in order to steal a ses-
sion cookie or hijack clients to a fake web page.

Keywords: program semantics, non-interference, robustness, declassification,
active attackers, abstract interpretation, security.

1 Introduction

Security is an enabling technology, hence security means power. So to cite some
examples, the correct functionality and coordination of large scale organizations, e-
government, web services in general relies on confidentiality and integrity of data

� We would like to thank Mads Dam and anonymous referees for insightful suggestions and
comments.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. X, LNCS 6340, pp. 261–297, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

262 M. Balliu and I. Mastroeni

exchanged between different agents. Nowadays, distributed and service oriented archi-
tectures are the first business alternative to the old fashioned client-server architectures.
According to OWASP (Open Web Application Security Project) [1], the most critical
security risks are due to application level attacks as injections flaws or XSS (Cross Site
Scripting). Moreover, current and future trends in software engineering prognosticate
mobile code technology (multi application smart cards, software for embedded systems),
extensibility and platform independence. It is worth noting that all these features, almost
unavoidable, become real opportunities for the attackers to exploit system bugs in order to
disclose and/or corrupt valuable information. For instance, in such a context, it is easier
to distribute worms or viruses that run everywhere or to embed malicious code to exploit
vulnerabilities in a web server.

In many scenarios, different agents, each having their own security policy and proba-
bly not trusting each other, have to cooperate for a certain goal, for example electing the
winner in an online auction. It can happen that the host used for computation violates
security by either leaking information itself or causing other hosts to leak information
[27,5]. In a cryptographic context, secure multi-party computation (MPC) [25] consists
of computing a function between different agents, each knowing a secret they don’t
want to reveal to the other participating agents. It is very common that an adversary is
part of such a systems by taking the control of some hosts and trying to reveal private
data of the other participating hosts. As a result, it is both useful and necessary to ad-
dress problems on confidential information disclosed by an adversary that can control
and observe part of the system, to characterize the possible harm in case some condition
is verified or to state conditions when the whole system is robust to some extent. Ap-
plication level enforcement that combines programming languages and static analysis
seems a promising remedy to such a problem [26,5]

Secure information flow concerns the problem of disclosing private information to
an untrusted observer. This problem is indeed actual each time a program, manipulat-
ing both sensitive and public information, is executed in an untrusted environment. In
this case, security is usually enforced by means of non-interference policies [13], stat-
ing that private information must not affect the observable public information. In the
non-interference context, variables have a confidentiality level, usually public/low and
private/high, and variations of the private input has not to affect the public output. In
this case, we are considering attackers that can only observe the I/O behavior of pro-
grams and that, from these observations, can make some kind of reverse engineering in
order to derive private information from the observation of public data.

Our starting idea is that of finding the program vulnerabilities by simulating the
possible reasonings that an attacker can perform on programs. Indeed, we can think that
the attacker can use the output observation in order to derive, backward, some (even
partial) private input information. This is the idea of the backward analysis recently
proposed in [3] for declassified non-interference, where declassification is modeled by
means of abstract domains [8]. The ingredients of this method are: the initial declassifi-
cation policy modeled as an abstraction of private input domain and the weakest liberal
precondition semantics of programs [12,11], characterizing the backward analysis (i.e.,

A Weakest Precondition Approach to Robustness 263

from outputs to inputs) and the simulation of the attacker observational activity. The
certification process consists in considering a possible output (public) observation and
computing the weakest liberal precondition semantics of the program starting from this
observation. By definition, the weakest precondition semantics provides the greatest set
of possible input states leading to the given output observation. In other words, it char-
acterizes the greatest collection of input states, and in particular of private inputs, that
an attacker can identify starting from the given observation. In this way, the attacker can
restrict the range of private inputs inside this collection, which corresponds to a partial
release of private information. Moreover, we can note that, the fact that we compute the
weakest precondition for the given observation, provides a characterisation of the max-
imal information released by the observation, in the lattice of abstract interpretations.
Namely, starting from the results provided by the analysis, we construct an abstract
domain, representing the private abstract property released, which is the most concrete
one released by the program [3].

Our aim is to use these ideas also in presence of active attackers, namely attackers
that can both observe and modify program semantics. We consider the model of active
attackers proposed in [20] which can transform program semantics simply by insert-
ing malicious code in some fixed program points (holes), known by the programmer.
We can show that, also in presence of this kind of attackers, the weakest precondition
semantics computation can be exploited for characterising the information disclosed,
and therefore for revealing program vulnerabilities. This characterisation can be inter-
preted from two opposite points of view: the attacker and the program administrator.
The attacker can be any malicious adversary trying to disclose confidential information
about the system; the administrator wants to know whether the system releases private
information due to particular inputs.

An important security property concerning active attackers, and related to the in-
formation disclosed, is robustness [26]. It “measures” the security degree of programs
wrt active attackers by certifying that active attackers cannot disclose more information
than what a passive attacker (a simple observer) can do.

We propose to use the weakest precondition-based analysis in order to certify also
robustness of programs. The first idea we consider is to compute the maximal informa-
tion disclosed both for passive attackers [3] and for active attackers, and then compare
the results in the lattice of abstract interpretations for certifying robustness: if there
exists at least one active attacker disclosing more than the passive one, the program fails
to be robust. The problem of this technique is that it requires a program analysis for
each attack, this means that it becomes unfeasible when dealing with an infinite number
of possible active attacks. In order to overcome this problem, we need an analysis
independent of the code of the particular active attack. For this reason, we exploit the
weakest precondition computation in order to provide a sufficient condition that guaran-
tees robustness independently of the attack. In particular we provide a condition that has
to hold before each hole, for preventing the attacker to be successful. We initially study
this condition for I/O attackers, i.e., attackers that can only observe the I/O program be-
havior, and afterwards we extend it to attackers able to observe also intermediate states,

264 M. Balliu and I. Mastroeni

i.e., trace semantics of programs. Finally, we note that, in some restricted contexts, for
example where the activity of the attackers is limited by the environment, the standard
notion of robustness may become too strong. For dealing with these situations we in-
troduce a weakening of robustness, i.e., relative robustness, where we restrict the set of
active attackers that we are checking for robustness.

There are various interesting applications where our approach is successful to capture
confidential information flaws. Here we select two cases concerning API (Application
Programming Interface) security and XSS attacks and apply the weakest precondition
analysis to check robustness. The first case enforces the security of an API used to
verify the password inserted in an ATM cash machine. The adversary is able to reveal
the entire password by tampering with low integrity data prior to call API function [4].
The second example concerns a web attacks using Javascript. As we will see, a naive
control of code integrity can reveal the session cookie to the adversary [23,6]. Our
robustness analysis by weakest precondition semantics is sufficient to prevent attacks
in both examples.

Roadmap. The rest of the paper is organized as follows. In Section 2 we give a gen-
eral overview of abstract interpretation, which constitutes the underlying framework
that we use to compare the information disclosed. In Section 3 we present the target
security background that we address in our approach. In particular we recall notions
of non-interference, robustness, declassification, decentralized label model and decen-
tralized robustness. In Section 4 we compute (qualitatively) the maximal private infor-
mation disclosed by active attackers. In particular, Section 4.1 introduces the problem
of computing the maximal release by active attackers for I/O (denotational) seman-
tics. Section 4.2 extends the analysis for attacks observing program traces. In Section 5
we discuss conditions to enforce robustness, which constitutes our main contribution.
Section 5.1 presents a static analysis approach based on weakest preconditions to en-
force robustness for I/O semantics; Section 5.3 extends these results for trace semantics;
In Section 5.4 we compare our method with type-based methods. Section 6 introduces
relative robustness which deals with restricted classes of attacks; in Section 6.1 we inter-
pret decentralized robustness in our approach. In Section 7 we use the current approach
in the context of real applications and explain how it captures the security properties we
are interested in. Sect. 8 we present the most relevant related works. We conclude with
Section 9 by discussing the current state of art and devising new directions for future
work. This is an extended and revised version of [2].

2 Abstract Interpretation: An Informal Introduction

We use the standard framework of abstract interpretation [8,9] for modeling properties.
For example, instead of computing on integers we might compute on more abstract
properties, such as the sign {+,−, 0} or parity {even,odd}. Consider the program
sum(x , y) = x + y , then it is abstractly interpreted as sum∗: sum∗(+, +) = +,
sum∗(−,−) = −, but sum∗(+,−) = “I don’t know” since we are not able to de-
termine the sign of the sum of a negative number with a positive one (modeled by
the fact that the result can be any value). Analogously, sum∗(even,even) = even,

A Weakest Precondition Approach to Robustness 265

sum∗(odd,odd) = even and sum∗(even,odd) = odd. More formally, given a
concrete domain C we choose to describe abstractions of C as upper closure operators.
An upper closure operator (uco for short) ρ : C → C on a poset C is monotone,
idempotent, and extensive: ∀x ∈ C . x ≤C ρ(x). The upper closure operator is the
function that maps the concrete values with their abstract properties, namely with the
best possible approximation of the concrete value in the abstract domain. For example,
the operator Sign : ℘(Z) → ℘(Z), on the powerset of integers, associates each set of in-
tegers S with its sign: Sign(∅) =“none”, Sign(S) = + if ∀n ∈ S .x > 0, Sign(0) = 0,
Sign(S) = − if ∀n ∈ S . n < 0 and Sign(S) = “I don’t know” otherwise. The used
property names “none”, +,0,− and “I don’t know” are the names of the following
sets in ℘(Z): ∅,

{
n ∈ Z

∣
∣n > 0

}
, {0},

{
n ∈ Z

∣
∣n < 0

}
and Z. Namely the abstract

elements, in general, correspond to the set of values with the property they represent.
Analogously, we can define an operator Par : ℘(Z) → ℘(Z) associating each set of in-
tegers with its parity. Par(∅) = “none” = ∅, Par(S) = even =

{
n ∈ Z

∣
∣n is even

}

if ∀n ∈ S . n is even, Par(S) = odd =
{

n ∈ Z
∣
∣n is odd

}
if ∀n ∈ S . n is odd and

Par(S) = “I don’t know” = Z otherwise. Formally, closure operators ρ are uniquely
determined by the set of their fix-points ρ(C), for instance Sign = {Z, > 0, < 0, 0, ∅}.
Abstract domains on the complete lattice 〈C ,≤,∨,∧,	,⊥〉 form a complete lattice,
formally denoted 〈uco(C),�,,�, λx . 	, λx . x 〉, where ρ � η means that ρ is more
concrete than η, namely it is more precise, �iρi is the greatest lower bound taking the
most abstract domain containing all the ρi , iρi is the least upper bound taking the
most concrete domain contained in all the ρi , λx .	 is the most abstract domain unable
to distinguish concrete elements, the identity on C , λx . x , is the most concrete abstract
domain, the concrete domain itself.

3 Security Background

Information flow models of confidentiality, also called non-interference [13], are widely
studied in literature [21]. Generally they consider the denotational semantics of a pro-
gram P , denoted �P� and all program variables, in addition to their base type (int, float
etc.), have a security type that varies between private (H) and public (L). In this paper
we consider only terminating computations. Hence, there are basically two ways the
program can release private information by the observation of the public outputs: due
to an explicit flow corresponding to a direct assignment of a private variable to a public
variable and due to an implicit flow corresponding to control structures of the program,
such as the conditional if or the while loop [21].

3.1 Non-interference and Declassification

A program satisfies standard non-interference if for all the variations of private input
data there is no variation of public output data. More formally, given a set of program
states Σ, namely a set of functions mapping variables to values V, we represent a state
as a tuple (�h,�l) where the first component denotes the value of private variables and the
second component denotes the value of public variables. Let P be a program, then P
satisfies non-interference if

∀l ∈ V
L, ∀h1, h2 ∈ V

H.�P�(h1, l)L = �P�(h2, l)L

266 M. Balliu and I. Mastroeni

where v ∈ V
T, T ∈ {H, L}, denotes the fact that v is a possible value of a variable with

security type T and (h, l)L = l . Declassified non-interference considers a property on
private inputs which can be observed [7,3]. Consider a predicate φ on V

H, a program P
satisfies declassified non-interference if

∀l ∈ V
L, ∀h1, h2 ∈ V

H.
φ(h1) = φ(h2) ⇒ �P�(h1, l)L = �P�(h2, l)L

3.2 Robust Declassification

In language-based settings, active attackers are known for their ability to control, i.e.,
observe and modify, part of the information used by the program.

Security levels form a lattice whose ordering specifies the relation between different
security levels. Each program variable has two security types that model, respectively,
the confidentiality level and the integrity level. In our context, all the variables have
only two security levels; L stands for low, public, modifiable and H stands for high,
private, unmodifiable. Moreover, we assume, for each variable x , the existence of two
functions, C(x) (confidentiality level) which shows whether the variable x is observable
or not and I(x) (integrity level) which shows whether the variable x is modifiable or
not. Definitively, each variable can have four possible security types, i.e., LL, LH, HL, HH.
For example, if the variable x has type LL then x can be both observed and modified by
the attacker, if the variable x has type HL then x can be modified by the attacker, but it
cannot be observed, and so on.

The programs are written according to the syntax of a simple while language. In
order to allow semantic transformations during the computation, we consider another
construct, called hole and denoted by [•], which models the program locations where a
potential attacker can insert some code [20].

c ::= skip | x := e | c1; c2 | if e then c1 else c2 |
while e do c | [•]

where e ::= v ∈ V | x | e1 op e2. The low integrity code inserted in holes models
the untrusted code assumed under the control of the attacker. Hence, let P [�•] denote
a program with holes and �a (vector of fixed attacks for each program hole) an attack,
P [�a] denotes the program under control of the given attack. A fair attack is a program
respecting the following syntax [20]:

a ::= skip | x := e | a1; a2 | if e then a1 else a2 |
while e do a

where all variables in e and x have security type LL. It is worth noting that fair attackers
can use in their attacks only the variables that are both observable and modifiable.

An important notion when dealing with active attackers is robustness [26]. Infor-
mally, a program is said to be robust when no active attacker, who actively controls
the code in the holes, can disclose more information about private inputs than what
can be disclosed by a passive attacker, who merely observes the programs I/O. Note
that, by using this attacker definition it becomes possible to translate robustness into a

A Weakest Precondition Approach to Robustness 267

language-based setting. Indeed, robust declassification holds if for all attacks �a when-
ever program P [�a] cannot distinguish program behavior on some memories, any other
attacker code �a′ cannot distinguish program behavior on these memories [20]. Thus,
we can formally recall the notion of robustness, for terminating programs, in presence
of active fair attackers [20].

∀h1, h2 ∈ V
H, ∀l ∈ V

L, ∀�a, �a′ active fair attack :
�P [�a]�(h1, l)L = �P [�a]�(h2, l)L ⇒ �P [�a′]�(h1, l)L = �P [�a′�(h2, l)L

Namely, a program is robust if any active (fair) attacker can disclose at most the same
information (property of private inputs) as a passive attacker can disclose. A passive
attacker is an attacker able only to observe program execution, which in this context
corresponds to the active attacker �a = �skip.

3.3 Weakest Liberal Precondition Semantics

In this section we briefly present the weakest liberal precondition semantics (Wlp for
short), which constitutes our basic instrument for performing static analysis. In partic-
ular, given a program c and a predicate P , Wlp(c,P) corresponds to the greatest set of
input states σ such that if (c, σ) terminates in a final state σ′, then σ′ satisfies the pred-
icate P [15,14]. In our case, these predicates correspond to quantifier-free first order
formulas which are transformed by the Wlp semantics. Below, we present the rules of
the semantics.

• Wlp(skip, Φ) = Φ

• Wlp(x := e, Φ) = Φ[e/x]
• Wlp(c1; c2, Φ) = Wlp(c1, Wlp(c2, Φ))
• Wlp(if e then c1 else c2, Φ) = (e ∧ Wlp(c1, Φ)) ∨ (¬e ∧ Wlp(c2, Φ))
• Wlp(while e do c, Φ) =

∨n
i=0 Wlpi(while e do c, Φ)

where given (C def= while B do C1)

{
Wlp0(C , Φ) def= ¬B ∧ Φ

Wlpi+1(C , Φ) def= Wlp(if B then C1 else skip, Wlpi(C , Φ))

Almost all the above rules are easy to read. For instance, the weakest precondition of the
conditional, given a postcondition Φ, corresponds to the disjunction of conjunctions of
Wlp of each branch and the boolean condition of the guard. It is also worth noting that
the Wlp of the loop requires the computation of some invariant formula. There exists
techniques for doing that [16], but in this paper we don’t consider them explicitly. The
automatic generation of such invariants would be an interesting future direction we plan
to explore more in details. Unlike weakest precondition semantics, Wlp defines a partial
verification condition, namely only if the program does terminate the post-condition Φ
should hold. In any case, for the purposes of this paper, we will be interested only in
terminating programs, so we can establish the weakest liberal precondition in a finite
number of iterations.

268 M. Balliu and I. Mastroeni

3.4 Certifying Declassification

In this section, we introduce a technique recently proposed for certifying declassifica-
tion policies [3,18] in presence of passive attackers only, i.e., attackers that can only
observe program execution. The method performs a backward analysis, computing the
weakest precondition semantics starting from output observation, in order to derive the
maximal information that an attacker can disclose from a given observation. We use
abstract interpretation for modeling the declassified properties.

Certifying declassification. In [3,18] the authors present a method to compute the
maximal private input information disclosed by passive attackers. They consider only
terminating computations, which means that the logical language does not have expres-
siveness limits [24]. Their method has two main characteristics: it is a static analysis,
and it performs a backward analysis from the observed outputs towards the inputs to
protect. The first aspect is important since we would like to certify programs without
executing them, the latter is important because non-interference aims to protect the sys-
tem private input while attackers can observe public outputs. Both these characteristics
are embedded in the weakest liberal precondition semantics of programs. Starting from
a given observed output Wlp semantics computes, by definition, the greatest set of in-
put states leading to the given observation. From this characterisation we can derive in
particular the private input information released by observing output public variables.
This corresponds exactly to the maximal private information disclosed by the program
semantics. In this way, we are statically simulating the kind of analysis an attacker can
perform in order to obtain initial values of (or initial relations among) private informa-
tion. We can model this information by a first order predicate; the set of program states
disclosed by the Wlp semantics are the ones which satisfy this predicate. In order to be
as general as possible, we consider the public observations parametric on some sym-
bolic value represented by some logical variable. We denote by �l = �n the parametric
value of each low confidentiality program variable. For instance, the formula (l = n)
means that the program variable l has the symbolic value n . Generally, the public out-
put observation corresponds to a first order formula that is the conjunction of all low
confidentiality variables, i.e., variables with security types LL or LH.

Φ0
def= {l1 = n1 ∧ l2 = n2 ∧ · · · ∧ lk = nk} =

k∧

i=1

(li = ni)

where ∀li . C(li) = L. Without loss of generality, we can assume this formula to be in a
disjoint normal form, namely a disjunction of conjunctions. We call free variables of a
logical formula Φ and denote FV(Φ) the set of program variables occurring in Φ, where
Φ is a quantifier-free. Moreover, we assume to eliminate all possible redundancies and
all subformulas that can be subsumed by others in the same formula. For instance, let
(l > 1∧l > 0) be a logical formula. We can simply write (l > 1) because this subsumes
the fact that l > 0. From now on we’ll suppose to have each logical formula in this form
called normal form.

A Weakest Precondition Approach to Robustness 269

For instance, consider the program P with h1, h2 : HH and l : LL.

P def= if (h1 = h2) then l := 0; else l := 1;

Wlp(P , l = n) = {(h1 = h2 ∧ n = 0) ∨ (h1 �= h2 ∧ n = 1)}.
If we observe l = 0 in public output, all we can say about private inputs h1, h2 is

h1 = h2. Otherwise, if we observe l = 1, we can conclude that h1 �= h2.
In [3,18] this technique is formally justified by considering an abstract domain

completeness-based [8] model of declassified non-interference. Here we avoid the for-
mal details, and we simply show where and how we use abstract interpretation. Note
that, usually Wlp semantics is applied to specific output states in order to derive the
greatest set of input states leading to the output one. Here, the technique starts from the
state�l = �n , which is indeed an abstract state, namely the state where the private vari-
ables can have any value, while the public variables�l have the specific symbolic value
�n . This corresponds to the abstraction H ∈ uco(℘(V)) [3] modeling the fact that the
attacker cannot observe private data. Formally, it associates with a generic output state
〈h, l〉 the abstract state 〈VH, l〉 =

{ 〈h′, l〉 ∣
∣h′ ∈ V

H
}

. As far as the input characterisa-
tion is concerned, we know that an abstract property is described by the set of all the
concrete values satisfying the property. Hence, if the Wlp semantics characterises a set
of inputs, and in particular of private inputs, then this set can be uniquely modeled as an
abstract domain, i.e., the abstract property released. Consider, for instance, the trivial
program fragment P above. According to the output value observed, l = 0 or l = 1, we
have respectively the set of input states {〈h1, h2, l〉 | h1 = h2} or {〈h1, h2, l〉 | h1 �= h2}.
This characterisation can be uniquely modeled by the abstract domain1

φ = {	, {〈h1, h2, l〉 | h1 = h2}, {〈h1, h2, l〉 | h1 �= h2}, ∅}
Hence, if we declassify φ, the program is secure since the information released cor-
responds to what is declassified. While if, as in standard non-interference, nothing is
declassified, modeled by the declassification policy φ′ = λx . 	2, then φ � φ′, namely
the policy is violated since the information released is more (concrete) than what is
declassified.

3.5 Decentralized Label Model and Decentralized Robustness

Decentralized label model was proposed as a fine-grained model to enforce end-to-end
security for systems with mutual distrust and decentralized authority that want to share
data with each other [19]. Basically, every agent in the system defines and controls his
own security policy and states which data, under his ownership, could be visible (declas-
sified) to other agents in the system. The system itself must ensure that security policies
are not circumvented and satisfy security concerns of all agents. More precisely, decen-
tralized label model consists of two basic flavors: principals, whose security should be
ensured in the model and labels, which constitute the means to enforce security poli-
cies. Principals can be users, processes, groups, roles possibly related by an acts-for

1 The elements � and ∅ are necessary for obtaining an abstract domain.
2 Since ∀x , y we have φ′(x) = φ′(y), declassified non-interference with φ′ corresponds to

standard non-interference.

270 M. Balliu and I. Mastroeni

relation which allows delegation of authority between them. For instance, if principal
P acts-for principal Q , formally P � Q , it means that P has all privileges of Q . On the
other hand, labels are data annotations that express the security policy the owner sets
on his data. In particular, if some data are annotated by label owner: reader, the policy
on that data defines the owner and the set of principals that can read such data. Security
labels form a security lattice where the higher an element is in the lattice, the more re-
strictive are the security concerns of the data it labels. Moreover, the decentralized label
model supports a declassification mechanism and allows to express policies regarding
both confidentiality and integrity. The model is used to perform static analysis based on
type systems to enforce information flow policies.

Decentralized robustness is an approach to enforce the security condition of robust-
ness in the decentralized label model [5]. In particular, the fact that each principal does
not trust the others means that each principal may be a potential attacker. Hence, robust-
ness is analyzed relatively to two principals: one fixes the point of view of the analysis,
the other is the potential attacker. In particular, the former fixes which data it believes
the latter can read and/or write. More formally, decentralized robustness is defined wrt
a pair of principals p and q , with power 〈Rp→q ,Wp←q〉, where Rp→q allows to char-
acterise the data p believes that q can read, while Wp←q allows to characterise the
data p believes that q can modify. A system is robust wrt all the attackers if it is robust
with respect to all the pairs p, q of principals. In [5], the authors use type systems to
enforce robustness against all attackers in a simple while language with holes and ex-
plicits declassification. Basically, it allows holes to occur in low confidentiality contexts
and prevents attackers to influence both (explicit) declassification decision and data to
be declassified as explained in [20]. Once we fix the point of view of the attacker, a safe
hole insertion relation defines the admissible holes for the attacker in question together
with variables he can modify and/or observe in the program.

4 Maximal Release by Active Attackers

The notion of robustness defined in Sect. 3 implicitly concerns the confidential infor-
mation released by the program. Indeed, if we are able to measure the maximal release
(the most concrete private property observable) in presence of active attacks, then we
can compare it with the private information disclosed by passive attackers and con-
clude about program robustness. Thus, in this section we compute (when possible) the
maximal private information disclosed by an active attacker.

The active attack model we use here is more powerful than the one defined in
Sect. 3.2, i.e., fair attacks. In addition, our attackers can manipulate (use and modify)
variables of security type HL, i.e., variables that the attacker cannot observe but can
use. Indeed, HL is the type of those variables whose name is visible, i.e., usable by the
attacker in his code, but whose value is not observable. Thus, in the following active
attacks are programs (without holes) such that, for all the variables x occurring in the
attacks code, I(x) = L. We call them unfair attacks. Unfair attacks are more general
than fair attacks because they can modify variables of security type LL and HL. For in-
stance, suppose that a system user wants to change his password, he accesses a variable

A Weakest Precondition Approach to Robustness 271

(the password) he can write but not read (blind writing), i.e., of type HL. Now we want
to compute the maximal information release in presence of unfair attacks.

4.1 Observing Input-Output

It is clear that, in order to certify the security degree of a program, also in presence of
active attackers, it is important to compute which is the maximal private information
released. Such information can help the programmer to understand what happens in
the worst case, namely when an active attacker inserts the most harmful unfair code.
Moreover, if we compute the most concrete property of private input data released by
program semantics for all active attacks, we can compare it with the private information
disclosed by a passive attacker and conclude about program robustness. In this section,
we consider denotational semantics, namely input/output semantics. Hence, the set of
program points where the attacker can observe low confidentiality data corresponds to
program inputs and program outputs. Note that, the active attacker can insert code (fair
or unfair) in fixed points, therefore he can change program semantics and consequently
the property of confidential information released can be different in presence of dif-
ferent active attacks. Moreover, the number of possible unfair attacks may be infinite,
thus, it becomes hard to compute the private information disclosed by all of them. The
real problem is that it is impossible to characterise the maximal information released
to attackers that modify program semantics, because different attacks obtain different
private properties which may be incomparable if there are infinitely many such attacks.

This problem is overcome when we consider a finite number of attackers, for instance
a finite class of attacks for which we want to certify our program. In this case, we can
compute the maximal information disclosed by each attacker and, afterwards, we can
consider the greatest lower bound (in the lattice of abstract domains) characterising
the maximal information released for the fixed class of attackers. Let us introduce an
example to illustrate the problem.

Example 1. Consider the program P ::= l := h; [•]; with variables h : HH, l : LL and
k : HL. We can have the following attacks:

– Wlp
(
l := h; [skip], {l = n})={h = n}

– Wlp
(
l := h; [l := k], {l = n})={k = n}

– Wlp
(
l := h; [l := l + k], {l = n})={h + k = n}

For all cases the attacker discloses different information about confidential data. In par-
ticular, in the first case the attacker obtains the exact value of variable h, in the second he
obtains the exact value of variable k and in the third case he obtains a relation (the sum)
between h and k . Note that if all possible active attacks were only those considered
above, we can compute the greatest lower bound (glb for short) of private information
disclosed by all of them. In this case glb corresponds to the identity value of confidential
variables h and k .

However, as shown in the previous example, we can compute the private informa-
tion disclosed by an attacker who fixes his attack and check if that particular attack

272 M. Balliu and I. Mastroeni

compromises program robustness. To this end, we just have to use the method introduced
in [3] and verify that the method described in Sect. 3.4holds for the transformed program.

In the previous example, we have seen that, even though we have a finite number
of attackers, we have to compute a Wlp analysis for each active attacker. In the fol-
lowing, we suggest a method for computing only one analysis dealing with a (possible
infinite) set of active attackers. We follow the idea proposed in [3], where, in order to
avoid an analysis for each possible output observation, the authors compute the anal-
ysis parametrically on the symbolic output observation l = n . In particular, note that
an attacker, being an imperative program, corresponds to a function manipulating low
integrity variables, i.e., LL and HL variables.

Hence, we propose a Wlp computation parametric on the possible expressions f (�l)
assigned by the active attacker to low integrity variables�l , which we call attack schemas
(in line with program schemas [10]). In other words, the attacker can assign to all low
integrity variables an expression which can possibly depend on all other low integrity
variables. For instance, given a program where the only low integrity variables are l
and k , all possible unfair attacks concern the variables l and k , namely l := f (l , k) and
k = g(l , k), where f , g are expressions that can contain variables l , k free.

The confidential information released by such parametric computations can be ex-
ploited by both the programmer and the attacker. Indeed, looking at the final formula
which can contain f as parameter, the former can detect vulnerabilities about the con-
fidential information released by the program, while the latter can exploit such vulner-
abilities to build the most harmful attack in order to disclose as much as possible about
private input data. Let us introduce an example that shows the above technique.

Example 2. Consider the program in Ex. 1. The only low integrity variables are l : LL
and k : HL. According to the method described above we have to substitute possible
unfair attacks in [•] with attack schema 〈l , k〉 := 〈f (l , k), g(l , k)〉. The initial formula
is Φ0 = {l = n} because l is the only program variable s.t. C(l) = L. Thus, the Wlp
calculation yields the following formula:

{f (h, k) = n}
l := h;

{f (l , k) = n}
[〈l , k〉 := 〈f (l , k), g(l , k)〉;]

{l = n}

Note that the final formula (f (h, k) = n) contains information about high confidential-
ity variables h and k . Thus, fixing the unfair attacks as we did in the previous example,
we obtain information about symbolic value of h, k or any relation between them.

It is worth pointing out that attack schemas capture pretty well the idea of classes of
attacks which have a similar semantic effect (up to stuttering) on confidential informa-
tion disclosed by an active attacker. We conjecture a close relationship between attack
schemas and program schemas [10] and postpone their investigation as part of our future
work.

A Weakest Precondition Approach to Robustness 273

4.2 Observing Program Traces

So far we have tried to compute the maximal private information disclosed by an active
attacker which tampers with low integrity data in predefined program points (holes) and
observes public input and public output of target program. In particular, the attacker
could not observe low confidentiality data in any intermediate program point (random
traces or holes). This condition is unrealistic in a mutual distrust scenario, where the
attacker can control a compromised machine. Indeed, nothing prevents it to analyze
low confidentiality data in points he is tampering code with and reveal secrets even
though the overall computation has not terminated yet. This man-in-the-middle kind
of attack requires to extend the analysis and consider intermediate program points as
possible channels of information leakage. In many practical applications, it is common
to have scenarios where a bunch of threads are running concurrently together with a
malicious thread which reads the content of shared variables and dumps them in output
each time the thread is scheduled to run.

In [18] the authors notice that the semantic model constitutes an important dimen-
sion for program security, the where dimension [22], which influences both the ob-
servation policy and the declassification policy. It seems obvious that an attacker who
observes low confidentiality variables in intermediate program points is able to dis-
close more information than an attacker that observes only input/output. In this section,
we aim to characterise the maximal information released by a program in presence of
unfair attacks. In general, we can fix the set of program points where the attacker can
observe low confidentiality variables (say O) and we can denote by H the set of pro-
gram points where there is a hole, namely where the attacker can insert malicious code.
Moreover, we assume that the attacker can observe the low confidentiality variables for
all program points in H, namely H ⊆ O. In order to compute the maximal release of
confidential information, an attacker can combine, at each observation point, the public
information he can observe at that point together with the information he can derive
by computing Wlp from the output to that observation point [18]. For instance, with
trace semantics, an attacker can observe low confidentiality data for all intermediate
program point. Let us introduce an example that presents this technique for passive
attackers.

Example 3. Consider the program P with variables l1, l2 : LL and h1, h2 : HH.

P ::=
[
h1 := h2; h2 := h2 mod 2;
l1 := h2; h2 := h1; l2 := h2; l2 := l1;

We want to compute the private information disclosed by an attacker that observes pro-
gram traces. As for standard non-interference, here we want to protect private inputs
h1 and h2. In order to make only one iteration on the program even when dealing with
traces, the idea is to combine the Wlp semantics computed at each observable point of
execution, together with the observation of public data made at the particular observa-
tion point. We denote in square brackets the value observed in that program point. The
Wlp calculation yields the following result.

274 M. Balliu and I. Mastroeni

{h2 mod 2 = m ∧ h2 = n ∧ l2 = p ∧ l1 = q}
h1 := h2;

{h2 mod 2 = m ∧ h1 = n ∧ l2 = p ∧ l1 = q}
h2 := h2 mod 2;

{h2 = m ∧ h1 = n ∧ l2 = p ∧ [l1 = q]}
l1 := h2;

{l1 = m ∧ h1 = n ∧ l2 = p}
h2 := h1;

{l1 = m ∧ h2 = n ∧ [l2 = p]}
l2 := h2;

{l1 = m ∧ [l2 = n]}
l2 := l1;

{l1 = l2 = m}
For instance the information observed by the assignment l2 := l1 is the combination
of Wlp calculation (l1 = m) and attackers observation at that point ([l2 = n]). The
attacker is able to deduce the exact value of h2. It is worth noting that this attacker is
more powerful than the one who merely observes the input-output behavior; in fact, the
latter can only distinguish the parity of variable h2. This is made clear by the fact that
the value of h2’s parity (m) is the value derived by the output, while the value of h2 (n)
is a value observed during the computation.

We would like to compute the maximal private information release in presence of unfair
attacks. Here the problem is similar to the one described in the previous section. Un-
fair attacks, by definition, manipulate (modify and use) both variables of type LL and
HL. Even though the attacker can observe low confidentiality variables in presence of
holes, he cannot observe the variables of type HL. Hence, different unfair attacks cause
different information releases, as it happens for attackers observing only the I/O, and in
general there can be an infinite number of these attacks. However, if we fix the unfair
attack we can use the method described above and compute the maximal release for that
particular attack.

Things change when we consider only fair attacks, i.e., manipulating only LL vari-
ables. The following proposition shows that we can generalise all possible fair attacks
to constant assignments�l := �c to variables of type LL.

Proposition 1. Let P [�•] be a program with holes and H ⊆ O. Then, all fair attacks
can be written as�l := �n , where l : LL.

Proof. In general, all fair attacks have the form �l := f (�l). Moreover, H ⊆ O so the
attacker can observe at least the program points where there is a hole. Thus, all the
formal parameters of expression f (�l) are known. We conclude that�l := �n .

Now we are able to measure the maximal private information disclosed by an active
attacker. Indeed, we can use the approach of Ex. 3 and whenever we have a program
hole, we substitute it by the assignment�l := �c, parametric on symbolic constant values
�c. The following example shows this method.

A Weakest Precondition Approach to Robustness 275

Example 4. Consider the program P with variables h : HH and l : LL. O is set of all
program points.

P ::= l := 0; [•]; if (h > 0) then skip else l := 0;

In presence of passive attackers P does not release any information about private
variable h. Indeed, the output value of variable l is always 0. An active attacker who
observes each program point and injects fair attacks, discloses the following private
information:

{((h > 0 ∧ c = m) ∨ (h ≤ 0 ∧ m = 0)) ∧ c = n ∧ p = 0}
l := 0;

{((h > 0 ∧ c = m) ∨ (h ≤ 0 ∧m = 0)) ∧ c = n ∧ [l = p]}
[l := c;]

{((h > 0 ∧ l = m) ∨ (h ≤ 0 ∧ m = 0)) ∧ [l = n]}
if (h > 0) then skip else l := 0;

{l = m}
Thus, an active attacker is able to disclose whether the variable h is positive or not.
Hence, this is the maximal private information disclosed by an attacker who observes
program traces and injects fair code in the holes.

5 Enforcing Robustness

In this section, we want to understand, by static program analysis, when an active at-
tacker that transforms program semantics is not able to disclose more private informa-
tion than a passive attacker, who merely observes public data. The idea is to consider
Wlp semantics in order to find sufficient conditions which guarantee program robust-
ness. Here we introduce a method to enforce programs which are robust in presence of
active attackers.

We know [3] that declassified non-interference is a completeness problem in abstract
interpretation theory and there exists systematic methods to enforce this notion. Let
P [�•] be a program with holes and Φ a first order formula that models the declassification
policy. In order to check robustness for this program, we must check the corresponding
completeness problem for each possible attack a, as introduced in Sect. 3.4 where P [�a]
is program P under the attack �a . We want to characterise those situations where the
semantic transformation induced by the active attack does not generate incompleteness.
If there exists at least one attack a such that the program releases more confidential
information than the one released by the policy, then the program is deemed not robust.

The following example shows the ability of active attackers to disclose more confi-
dential information wrt passive attackers.

Example 5. Consider the program P with h : HH, l : LL.

P ::= l := 0; [•] if (h > 0) then (l := 1) else (l := l + 1);

276 M. Balliu and I. Mastroeni

Suppose the declassification policy is 	, i.e., nothing has to be released. In presence of
a passive attacker (the hole substituted by skip) program P satisfies the security policy,
namely non-interference, because public output is always 1. Wlp semantics formalizes
this fact.

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 1)} = {n = 1}
l := 0;

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = l + 1)}
if (h > 0) then (l := 1) else (l := l + 1);

{l = n}
Now suppose that an active attacker inserts the code l := 1. In this case Wlp semantics
shows that the attacker is able to distinguish positive values of private variable h from
non positive ones. Using the Wlp calculation parametric on public output {l = n} we
have the following result.

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 2)}
l := 0;

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 2)}
[l := 1;]

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = l + 1)}
The final formula shows that the adversary is able to distinguish values of h greater
than 0 from values less or equal than 0 by observing, respectively, the values 1 or 2 of
public output l . We can conclude that program P is not robust and the active attackers
are effectively more powerful than passive ones.

If we had a method to compute the maximal private information release in presence of
unfair attacks, then we could conclude about program robustness by comparing it with
the information disclosed by a passive attacker. Unfortunately, in the previous section,
we have seen that it is not possible to compute the maximal information released for all
possible attacks, which can possibly be infinite. Hence, our aim is to look for methods
enforcing robust programs without computing the maximal information released.

5.1 Robustness by Wlp

In this section we first distinguish between active attacks of different power and, after-
wards, we present the proof of our approach to certify robust programs. The proof is
organised as follows: it starts with a lemma that applies to sequential programs with
one hole only, then we give a a theorem that generalizes the lemma to sequential pro-
grams with more holes and conclude with another theorem that applies the robustness
condition to all terminating while programs.

Let us make some considerations about logical formulas and the set of program states
they manipulate. The free variables of the output observation formula Φ0 correspond to
the set of low confidentiality variables LL and LH, namely

FV(Φ0) = {x ∈ Var(Φ0)|C(x) = L}.

A Weakest Precondition Approach to Robustness 277

If a low confidentiality variable does not occur free at some program point, it means that
such variable was previously, wrt backward analysis of Wlp semantics, substituted by
an expression that does not contain that variable. This means that, it can have any value
in that point. From the viewpoint of information flow, even if the variable contains some
confidential information in that point this is useless for the analysis, because the variable
is going to be subsequently overwritten and therefore this information can never be
disclosed through public outputs.

Our aim is to generalise the most powerful active attacks and study their impact
on program robustness. As a first approach one can try to represent all possible active
attacks by a constant assignment to low integrity variables. Hence, the attacker observes
only the input/output value of low confidentiality variables, i.e., LL and LH variables.
The following example shows that this is not sufficient enough and there exist more
powerful attacks that disclose more private information and break robustness.

Example 6. Consider the program P with variables l : LL, k : LL, h : HH and declassi-
fication policy that releases nothing about private variables.

P ::=

⎡

⎣
k := h; [•];
if (l = 0) then (l := 0; k := 0)

else (l := 1; k := 1);

First notice that P does not release private information in presence of a passive attacker
who merely observes the I/O variation of public data. Indeed, the assignment of h to k is
subsequently overwritten by constants 0 or 1 and depends exclusively on the variation of
public input l . If it was possible to represent all active attacks by constant assignments
we can see that P would be robust. In fact, if the attacker assigns constants c1 and c2,
respectively, to variables l and k , Wlp calculation deems the program robust.

{(c1 = 0 ∧m = 0 ∧ n = 0) ∨ (c1 �= 0 ∧ m = 1 ∧ n = 1)}
k := h;

[l := c1; k := c2;]
{(l = 0 ∧m = 0 ∧ n = 0) ∨ (l �= 0 ∧m = 1 ∧ n = 1)}

if (l = 0) then (l := 0; k := 0) else (l := 1; k := 1);
{l = m ∧ k = n}

The final formula shows that such program satisfies non-interference. But if we assign
to low integrity variables an expression depending on other low integrity variables, then
we obtain more powerful attacks, which make P not robust. For instance, the assignment
a ::= l := k ; makes the attacker distinguish the zeroness of private variable h.

{(h = 0 ∧m = 0 ∧ n = 0) ∨ (h �= 0 ∧m = 1 ∧ n = 1)}
k := h;

{(k = 0 ∧m = 0 ∧ n = 0) ∨ (k �= 0 ∧ m = 1 ∧ n = 1)}
[l := k ;]

{(l = 0 ∧m = 0 ∧ n = 0) ∨ (l �= 0 ∧m = 1 ∧ n = 1)}
Definitely, program P is not robust and therefore we cannot reduce active attacks to a
constant assignment to low integrity variables.

278 M. Balliu and I. Mastroeni

In general, an active attack is a piece of code that concerns low integrity variables, i.e.,
a function manipulating low integrity variables. If we assign to low integrity variables
a constant value then we erase the high confidentiality information that this variables
might have accumulated before reaching that point or we are not considering the possi-
bility of assigning to that variable another one which contains some private information
that possibly may be lost subsequently as shown in Ex. 6.

We can use the ideas discussed so far to present a sufficient condition ensuring pro-
gram robustness. Remember that we represent formally the observable public output as
a first order formula, Φ0, that corresponds to the conjunction of program variables x
such that C(x) = L, parametric on the observed public outputs ni , namely

Φ0 =
k∧

i=1

(li = ni) and ∀i .C(li) = L.

In particular, we first describe how to characterise the sufficient condition when the
holes are not nested in control structures. This is obtained in two steps, the lemma shows
the result for programs with only one hole, while the first theorem extends the result to
programs with an arbitrary number of holes. Afterwards, we show how to exploit this
result in order to characterise the sufficient condition to robustness also when holes are
nested in control structures.

In the following, we denote by •i the i-th hole in P and by Pi the portion of code in
P after the hole •i where all the following holes (•j , with j ∈ H, j > i) are substituted
with skip. Then Φi = Wlp(Pi , Φ0) is the formula corresponding to the execution of the
subprogram Pi .

Lemma 1. Let P = P2; [•];P1 be a program (P1 without holes, possibly empty). Let
Φ = Wlp(P1, Φ0). Then P is robust wrt unfair attacks if ∀v ∈ FV(Φ).I(v) = H.

Proof. We prove this theorem by induction on the attack’s structure and on the length of
its derivation. In particular, we prove that for any attack a, Wlp(a, Φ) = Φ, namely the
formula Φ does not change, hence from the semantic point of view, the attack behaves
like skip, namely like a passive attacker. Note that, here we consider unfair attacks,
hence it can use both LL and HL variables.

– a ::= skip: The initial formula Φ does not change, namely Wlp(skip, Φ) = Φ, and
the attacker acts as a passive one.

– a ::= l := e: By definition of active attack we have I(l) = L and by hypothesis
variable l does not occur free in Φ. Applying the Wlp definition for assignment, we
have Wlp(l := e, Φ) = Φ[e/l] = Φ.

– a ::= c1; c2: By inductive hypothesis we have Wlp(c1, Φ) = Wlp(c2, Φ) = Φ as
attacks of minor length. The Wlp definition for sequential composition states that
Wlp(c1; c2, Φ) = Wlp(c1, Wlp(c2, Φ)) = Φ

– a := if B then c1 else c2: By inductive hypothesis (applied to an attack of minor
length) we have Wlp(c1, Φ) = Wlp(c2, Φ) = Φ. Applying the definition of Wlp
for the conditional construct Wlp(if B then c1 else c2, Φ) = (B ∧ Wlp(c1, Φ)) ∨
(¬B ∧ Wlp(c2, Φ)) = (B ∧ Φ) ∨ (¬B ∧ Φ) = Φ.

A Weakest Precondition Approach to Robustness 279

– a ::= while B do c: By hypothesis we consider terminating computations, so the
while loop halts in a finite number of iterations. Applying the inductive hypothesis
to command c we have Wlp(c, Φ) = Φ, so every iteration the formula does not
change. Moreover, if the guard is false the formula remains unchanged too. Apply-
ing Wlp rule for the while loop and the inductive hypothesis we have:
Wlp(while B do c, Φ) = (¬B ∧ Φ) ∨ (B ∧ Φ) ∨ · · · ∨ (B ∧ Φ) ∨ (B ∧ Φ) = Φ

Theorem 1. Let P [�•] be a program. Then we say that P is robust wrt unfair attacks if
∀i ∈ H.∀v ∈ FV(Φi). I(v) = H.

Proof. Suppose P has n holes:

P ≡ P ′n+1; [•n];P ′n . . .P ′2; [•1];P ′1

Let us define the following programs from 1 ≤ i ≤ n + 1

Pi
def=

{
P ′1 if i = 1
P ′iPi−1 otherwise

Namely Pi is the portion of code in P after the hole •i where all the following holes
(•j , with j ∈ H, j > i) are substituted with skip. We prove by induction on n that
∀1 ≤ i ≤ n. P ′i+1; [•i];P ′i ; [•i−1]; . . . ; [•1];P ′1 is robust wrt unfair attacks. By proving
this fact, we prove the thesis since when i = n we obtain exactly P .

BASE: Consider the first hole from the end of the program P , i.e., P ′2; [•1];P ′1. Then
by Lemma 1 we have that P ′2; [•1];P ′1 is robust, being P ′1 without holes by con-
struction. This implies that any active attacker can disclose the same information as
the passive (skip) attacker can do, hence •1 can be substituted with skip, namely
P ′2[•1]P ′1 can be substituted by P2 in P without changing the robustness property
of P .

INDUCTIVE STEP: Suppose, by inductive hypothesis, that
P ′i ; [•i−1];P ′i−1; . . . ;P

′
2; [•1];P ′1 is robust. This means that, exactly as we noticed

in the base of the induction, the holes are useless for an attacker, therefore we can
substitute all the •j with skip obtaining a program (from the robustness point of
view) equivalent to Pi . Hence, P ′i+1; [•i];P ′i ; [•i−1]; . . . ; [•1];P ′1 ≡ P ′i+1; [•i];Pi ,
and robustness of this last program holds by Lemma 1, being Pi without holes by
construction.

In this way we prove that P ≡ P ′n+1; [•n];Pn is robust.

In other words, the fact that a low integrity variable is not free in the formula means that
the information in the corresponding program point cannot be exploited for revealing
confidential properties. In this case we can say that a generic active attacker is not
stronger than a passive one. Before showing what happens for control structures, let us
introduce an example that illustrates Th. 1.

Example 7. Let us check robustness of program P with variables l : LL, h : HH and
k : HL.

P ::=
[
l := h + l ; [•]; l := 1; k := h;
while (h > 0) do (l := l − 1; l := h);

280 M. Balliu and I. Mastroeni

Analysing P from the hole [•] to the end we have:

{(h ≤ 0 ∧ n = 1) ∨ (h > 0 ∧ n = 0)}
l := 1; k := h;

{(h ≤ 0 ∧ l = n) ∨ (h > 0 ∧ n = 0)}
while (h > 0) do (l := l − 1; l := h);

{l = n}
The formula Φ = (h ≤ 0∧ n = 1)∨ (h > 0∧ n = 0) satisfies the conditions of Th. 1.
We can conclude the program P is robust. Intuitively, even though the value of private
input h flows to public variable l (l := l + h), such relation is immediately canceled
when we assign the constant 1 (l := 1) after the hole.

The following example shows that Th. 1 is just a sufficient condition, namely there ex-
ists a robust program that violates the preconditions. This is because Th. 1 corresponds
to a local condition for robustness, but one must analyze the entire program in order to
have a global vision about the confidential information revealed.

Example 8. Consider the program

P ::=
[
l := h; l := 1; [•];
while (h = 0) do (h := 1; l := 0);

where h : HH and l : LL. The precondition of the while is:

Wlp (while (h = 0) do (h := 1; l := 0), {l = n}) =
{(h = 0 ∧ n = 0) ∨ (h �= 0 ∧ l = n)}

This formula does not satisfy the conditions of Th. 1, since it contains a free occurrence
of a low integrity variable, namely l = n . However, we can see that program P is
robust. No modification of the public variable l contains information about the private
variable h because the guard of the while loop depends exclusively on private variables.
Every terminating attack modifies the subformula {l = a} and influences the final
value of the observed public output. Moreover, the private information obtained by
the assignment l := h is canceled by the successive assignment l := 1. So the only
confidential information released by P concerns the zeroness of h, the same as a passive
attacker. This means that P is robust and Th. 1 is a sufficient and not necessary condition
for robustness.

Let us show, now, how Theorem 1 applies to programs where the hole occurs in the
branch of a conditional or in a loop. As the following theorem shows, in such cases we
need to apply recursively Theorem 1 to the formula corresponding to each branch. It is
worth noting that the loop can be unfolded a finite number of times until we reach the
invariant formula (see the Wlp rule for while in section 3.3), as the computations we
are dealing with are all terminating ones.

Theorem 2. Let Pc [�•] ≡ if B then P1[�•] else P2[�•] and Pw [�•] ≡ while B do P [�•] be
a program with holes and a first order formula Φ. Then,

– Pc [�•] is robust wrt unfair attacks iff P1[�•] and P2[�•] are robust wrt unfair attacks
and post-condition Φ.

A Weakest Precondition Approach to Robustness 281

– Pw [�•] is robust wrt unfair attacks iff P [�•] is robust wrt unfair attacks and post-
conditions Wlpi(Pw [�•], Φ)

Proof. We do induction on the structure of P1[�•]; the other case is symmetric. If P1[�•]
straight line program with holes (as in the hypothesis of Theorem 1), we apply the
theorem to check robustness. Otherwise, P1[�•] is a conditional and it trivially holds
from the induction hypothesis.

In the case of a loop we need to apply the recursive computation as described in
section 3.3. If P [�•] is a straight line program we apply theorem 1 as before and check
at each step of Wlp computation whether low integrity variables occur in the formula
when we reach the hole. Note that the occurrence of the loop guard B in the formula
makes sure that the active attacker never influences the variables of B . In this way, we
are sure that if the condition is verified the formula remains unchanged for all active
attacks. Otherwise, if P [�•] is a loop or a conditional we apply the induction hypothesis
and we are done.

The result above shows how to treat situations where the construct [•] may be placed
in an arbitrary depth inside an if conditional or a while loop. The following example
describes this situation.

Example 9. Consider the program P

P ::=

⎡

⎣
k := h mod 3;
if (h mod 2 = 0) then[•]; l := 0; k := l ;

else l := 1;

where h : HH, l : LL and k : LL. Applying the weakest liberal precondition rules to the
initial formula {l = m ∧ k = n} we have:

{
(h mod 2 = 0 ∧ m = 0 ∧ n = 0)∨

(h mod 2 �= 0 ∧ m = 1 ∧ k = n)

}

if (h mod 2 = 0) then [•]; l := 0; k := l ; else l := 1;
{l = m ∧ k = n}

The subformula corresponding to the then branch (which contains the hole [•]) satisfies
the conditions of Th.1, therefore P is robust. Every possible attack in this point manip-
ulates the variables l , k which will immediately be substituted by constant 0 and will
lose all private information they have accumulated so far.

Note that the invariant enforced by the theorems is the fact that the first order formula
determined by the active attack remains inalterate compared to the formula determined
by the passive attack. In particular, Theorem 1 proves our security condition, while
Theorem 2 model the fact that such condition should be applied recursively in case of
conditionals and loops. In the next section we present and algorithmic approach that
puts all the pieces together.

5.2 An Algorithmic Approach to Robustness

In this section we present our approach algorithmically in order to make clear how the
above theorems apply to terminating while programs. In particular, Robust(P [�•], Φ,S)

282 M. Balliu and I. Mastroeni

is the main procedure that takes in input a program with holes P [�•], a first order for-
mula Φ and a set of low integrity variables S and if it returns a formula, the program
is robust and such formula corresponds to the private information disclosed to both
passive and active attackers, otherwise (if it returns false) we don’t know whether the
program is robust or not. The procedure Check(Φ,S) corresponds to our security con-
dition, namely, it returns true if no low integrity variables in S occur in Φ as well.
Moreover, we assume that we have a procedure that transforms a first order formula in
the normal form in order to reduce the false alarms in our analysis. The algorithm runs
recursively over the syntactical structure of while programs (with holes) and applies,
at each step, the rules of Wlp semantics, as described in section 3.3. The procedure
Compute(while B do c, Φ,S) checks whether the formula remains unchanged for the
while loop. In particular, this corresponds to the unfolding of the loop, with a finite
number of conditionals. In particular, it applies a finite number of times the security
condition of Theorem 2.

Robust(P [�•], Φ,S) :

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

case(P [�•]) :

[•] : Check(Φ,S)
skip : Φ
x := e : Φ[e/x]
P1[�•];P2[�•] : Φ′ := Robust(P2[�•], Φ,S)

Robust(P1[�•], Φ′,S)
if B then P1[�•] else P2[�•] : (B ∧ Robust(P1[�•], Φ,S))∨

(¬B ∧ Robust(P2[�•], Φ,S))
while B do P1[�•] : Compute(while B do P1[�•], Φ,S)

Check(Φ,S) :

⎡

⎣
Normalize the formula Φ
if FV(Φ) ∩ S = ∅ return true
otherwise return false

Compute(while B do c, Φ,S) :

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

Φi+1 := ¬B ∧ Φ
result := Φi+1

do
Φi := Φi+1

Φi+1 := Robust(if B then c else skip, Φi ,S)
result∨ := Φi+1

while Φi �= Φi+1

5.3 Robustness on Program Traces

In this section, we want to find local conditions guaranteeing robustness also in pres-
ence of active attackers which observe trace semantics instead of I/O semantics. In other
words, we want to characterise the analogous of Th. 1 when dealing with trace seman-
tics. Note that, in this case, the problem becomes really different because the attacker is

A Weakest Precondition Approach to Robustness 283

still able to modify low integrity variables, but he can also observe low confidentiality
variables in the holes. In this case, the problem is that the attacker can assign variables
of type HL to variables of type LL, observe the corresponding trace and disclose imme-
diately the value of HL variables. Hence, it is necessary to analyse the global program
behavior in order to check robustness for all possible unfair attacks. On the other hand,
if we consider fair attacks, i.e., attacks that manipulate only LL variables, the attackers
capability to observe program points where the hole occurs allows us to reduce all the
possible attacks to constant assignments to variables of type LL.

By using the method introduced in [18], illustrated for active attackers in Sect. 4.2,
we are able to state a sufficient condition of robustness in presence of fair attacks for
trace semantics. The idea is that an attacker can combine the public information he
can observe at a program point together with the information he can derive by com-
puting the Wlp from the output to that observation point. Moreover, he can manipulate
program semantics by inserting fair code in the holes. If the formula corresponding to
Wlp semantics of the subprogram before reaching the hole does not contain free any
variables of type LL then we can conclude that the program is robust. The following
example shows the robustness condition similar to Th. 1.

Example 10. Consider the program P with variables l : LH, k : LL and h1, h2, h3 : HH:

P ::= k := h1 + h2; [•]; k := h3 mod 2; l := h3; l := k ;

A passive attacker who observes each program point discloses the following private
information.

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ h1 + h2 = q}
k := h1 + h2;

[skip;]
{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ [k = q]}

k := h3 mod 2;
{k = m ∧ h3 = n ∧ [l = p]}

l := h3;
{k = m ∧ [l = n]}

l := k ;
{l = k = m}

Hence, a passive attacker reveals the symbolic value of variable h3 and the sum of vari-
ables h1 and h2. In what follows we notice that no fair attack (in our case manipulating
k) can do better, because the subformula corresponding to the information disclosed by
the attacker does not contain free the variable k : LL. Thus, no constant assignment
influences the private information released. Indeed, if we compute the information dis-
closed in presence of a fair attack the final formula is the same.

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ h1 + h2 = r}
k := h1 + h2;

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ q = d1 ∧ [k = r]}
[k := d1;]

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ [k = q]}

284 M. Balliu and I. Mastroeni

Note that, it is useless to consider the observed value of LL variable before the hole
because the attacker knows exactly what fair attack he is going to inject in.

Now we can introduce a sufficient condition for robustness for trace semantics. Basi-
cally, the idea is to propose an extension of Th. 1 to traces. We have first to note that in
Th. 1 we deal with unfair attackers, which can use also variables of type HL. In the trace
semantics context this may be a problem whenever attackers can observe low confiden-
tiality data in at least one point where they can inject their code, i.e., if H ∩ O �= ∅. In
particular what may happen is that the attacker can use variables of type HL and observe
the result at the same time, possibly disclosing the value of these variables. This clearly
means that the program is trivially not robust as shown in the following example.

Example 11. Consider the program

P := l := k mod 2; [•]; if (h = 0) then l := 0 else l := 1;

where l : LL, k : HL and h : HH. We want to check robustness in presence of unfair
attacks who observe each program point. First, we notice that a passive attacker dis-
closes the zeroness of variable h and the parity of variable k . Now let us compute the
information released in the hole.

{(h = 0 ∧ n = 0) ∨ (h �= 0 ∧ n = 1)}
if (h = 0) then l := 0 else l := 1;

{l = n}
This formula satisfies the conditions of Prop. 2: no low integrity variables occur free in
it. But, if we attack this program with the unfair attack (e.g., l := k), we can see that
the program releases the exact symbolic value of the private variable k .

{
((h = 0 ∧ n = 0) ∨ (h �= 0 ∧ n = 1))∧

k = p ∧ k mod 2 = q

}

l := k mod 2;
{((h = 0 ∧ n = 0) ∨ (h �= 0 ∧ n = 1)) ∧ k = p ∧ [l = q]}

[l := k ;]
{((h = 0 ∧ n = 0) ∨ (h �= 0 ∧ n = 1)) ∧ [l = p]}

We can conclude that program P is not robust (wrt unfair attacks) even though the
conditions of Th. 1 are satisfied.

At this point we can provide, in the following proposition, the robustness sufficient
condition that has to hold for traces, depending on the relation between hole points
H and observable points O. In particular, if we consider attackers that observe low
confidentiality data in at least one hole point, i.e., H ∩ O �= ∅, then we can prove
robustness only wrt fair attacks, otherwise we can consider general unfair attackers. In
fact, when H∩O = ∅ the attackers cannot combine their capabilities of observing low
confidentiality variables and of modifying low integrity variables, making possible to
guarantee robustness.

Proposition 2. Consider P [�•] and Φi = Wlp(Pi , Φ0) (where Pi is obtained as in
Th. 1). Then we have that:

A Weakest Precondition Approach to Robustness 285

1. If H ∩ O �= ∅ then P is robust wrt fair attacks if ∀i ∈ H.∀v ∈ FV(Φi).I(v) = H.
2. If H∩O = ∅ then P is robust wrt unfair attacks if ∀i ∈ H.∀v ∈ FV(Φi).I(v) = H.

Proof. Consider the program P . First of all note that the difference between observ-
ing I/O semantics and trace semantics consists simply on the fact that the attacker
can enrich the Wlp analysis with the observation that it can perform during the com-
putation. Hence, we can define an enriched weakest precondition semantic function:
Wlp′(c, φ) def= Wlp(c, φ ∧ φ′), where φ′ = true if the corresponding program point is
not in O, φ′ is the observable property otherwise. At this point, by using Wlp′ instead
of Wlp we can apply Th. 1 with the following restrictions:

1. If H ∩ O �= ∅ then the attacker can use variables of type HL and observe the result
at the same time, disclosing the HL variables and violating robustness. In particular,
if the program has l : LL and k : HL, then the attacker can always insert the code
l := k , and by observing the result can directly know the value of k violating
confidentiality and, obviously, robustness. This is not a problem for fair attackers,
since these attackers cannot use variables of type HL.

2. If H ∩ O = ∅ then the unfair attacker cannot observe the result of the added code
and therefore robustness can again hold, at least when the sufficient condition of
Th. 1 is satisfied.

5.4 Wlp vs. Security Type System

In [20] the authors define the notion of robustness in presence of active attackers and
enforce it by using a security type system. The active attacker can replace the holes by
fair attacks which manipulate variables of security type LL. The key result of the article
states that typable programs satisfy robust declassification. Thus, it is important, when
dealing with robustness, for the holes not to be placed into high confidentiality contexts.
In particular they introduce a security environment and a program counter pc in order to
trace the security contexts and avoid implicit flows. The following typing rule considers
cases where the construct [•] is admissible.

C(pc) ∈ LC

Γ, pc � •
Let A be the attacker code, then LC

def= {l |C(l) � C(A)}, namely LC is the set of
variables whose confidentiality level is not greater than attackers confidentiality level.
Hence, an active attacker that manipulates this variables does not obtain further con-
fidential information. The type system is highly imprecise with respect to standard
non-interference since it rules out all programs containing low assignments under high
guards or any sub-command with an explicit assignment from high to low. Basically,
the type system admits programs that associate low with low, high with high and do not
use high expressions on guards of conditionals or loops. This corresponds to a trace-
based characterization of non-interference where the attacker can observe the content
of low variables in each program point. Now if we ignore the explicit declassification
(declassify(e)) and consider only programs with holes, the typing rule for the hole re-
quires them to occur in low confidentiality security context, namely program is robust

286 M. Balliu and I. Mastroeni

if there is no interaction between high and low, neither explicit nor implicit and this
is quite restrictive. Getting back to explicit declassification, the rule requires it occurs
in low confidentiality and high integrity program context, namely the guard of a condi-
tional or a loop is allowed to evaluate only on variables of security type LH if we want to
embed declassification. Moreover, only high integrity variables can be declassified, i.e.,
declassification from variables of security type HH to variables of security type LH is al-
lowed. Putting all together, the type system approach deems robust programs that never
branch on a secret value (unless each branch assigns only to high) and admit explicit
flow (from high to low) in certain program points because of declassification.

Our approach, in particular Th. 2, captures exactly those situations where the hole
occurs in some confidentiality context (possibly high) and, nevertheless, the fair at-
tack does not succeed, namely where there are no low integrity variables in the cor-
responding first order formula. If our condition holds, we are more precise to capture
the main goal of robustness, i.e., an active attacker does not disclose more private in-
formation than a passive one, as we perform a flow sensitive analysis. Indeed, if the
target program has some intended global interference (the what dimension in [22]), the
type system is unable to model it (as it considers the where dimension in [22]), while
our approach characterizes robustness with respect to a program and a global declas-
sification policy. Moreover, our method deals with more powerful active attacks, the
unfair attacks, which can manipulate code that contains variables with security type LL
and HL. However, both these approaches study program robustness as a local condi-
tion and therefore cannot provide a precise characterisation of robustness: Th. 2 pro-
vides only a sufficient condition and the type system is not complete. Anyway, we
can say that, when it can be applied, namely when the hypotheses of the theorems
hold, then our semantic-based method is more precise, in the sense that it generates
less false alarms, than the type-based one. For instance, let us consider the program
P ::= [•]; if h > 0 then l := 0 else l := 0 where h : HH and l : LL. Our method
certifies this program as robust since, there are no low integrity variables in the formula
corresponding to the Wlp semantics of the control statement if. If we try to type check
this program by using the rules in [20] we notice that the environment before hole is a
high confidentiality one. Thus, this program is deemed not robust.

We have, anyway, to note that our approach, if compared with the type-based one,
loses effectiveness in order to keep precision, i.e., in order to reduce false alarms. In-
deed, in the future, in order to make our certification approach systematic we will surely
have to weaken the semantic precision.

6 Relative Robustness

So far, we have given only sufficient conditions to enforce robust programs. The prob-
lem is that an active attacker transforms program semantics and these transformations
can be infinitely many or of infinitely many kinds. This may be an issue, first of all
because it becomes hard to compute the private information released by all the active
attacks (as underlined in Sect. 4), but also because, in some restricted contexts, standard
robustness can be too strong a requirement.

A Weakest Precondition Approach to Robustness 287

Indeed, we can consider a restricted class of active attacks and check robustness wrt
to these attacks. Namely, we aim to check whether the program, in presence of these
attacks, does not release more private information than a passive attacker. Thus, we
define a relaxed notion of robustness, called relative robustness.

Definition 1. Let P [�•] be a program and A a set of attacks. The program is said rela-
tively robust iff for all �a ∈ A, then P [�a] does not release more confidential information

than P [
−−→
skip].

Recall that we model the information disclosed by the attacker by first order formulas,
which we interpret by means of abstract domains in the lattice of abstract interpreta-
tions as explained in section 3.4. In particular, if the attacker a1 discloses more private
information than attacker a2, it means that the abstract domain corresponding to the
private property revealed to a1 is contained in the abstract domain corresponding to the
private property relealed to a2.

In order to check relative robustness we can compute the confidential information re-
leased for all possible attacks, compute the greatest lower bound of all information and
compare it with the confidential information released by a passive attacker. Moreover,
given a program and a set of attacks we can statically certify the security degree of the
program with respect to that particular finite class of active attacks. This corresponds
to the glb of private information released by all these attacks. Hence, a programmer
who wants to certify program robustness in presence of a fixed class of attacks, have to
declassify at least the glb of private information disclosed by all attacks.

Consider Ex. 1. We noticed that different active attackers can disclose different kind
of private information, for this reason the program P is not robust. Now, consider a
restriction of the possible active attacks, for example we restrict to fair attacks only.
This implies that the attacker can use only variable l and derive information exclusively
about private variable h. In particular, P already releases in l the exact value of h
and consequently no attack involving variable l can disclose more private information.
Thus, we can conclude that program P satisfies relative robustness with respect to the
class of fair attacks.

We can extend Th. 1 in order to cope with relative robustness. In particular, we re-
call that this theorem provides a sufficient condition to robustness requiring that the
formulas before each hole do not contain any low integrity variable. We weaken this
sufficient condition by requiring that the formulas before each hole do not contain only
the variables modifiable and usable by the attackers in A. It is worth noting that both
Prop. 3 and Prop. 4 are easily extended to programs with more holes occuring at differ-
ent depths, exactly the same way as we derived Th. 1 from Lemma 1 and Th. 2 from
Th. 1. Next proposition is a rewriting of Lemma 1 for relative robustness.

Proposition 3. Let P = P2; [•];P1 be a program (where P1 is without holes). Let
Φ = Wlp(P1, Φ0). P is relatively robust wrt unfair attacks in A if ∀a ∈ A.Var(a) ∩
FV(Φ) = ∅.

Proof. Note that the variables used by the active attacker do not occur free in Φ as the
intersection is empty (by hypothesis). By Lemma 1 program P is robust.

It is worth noting that we can use this result also for deriving the class of harmless ac-
tive attackers starting from the semantics of the program. Indeed, we can certify that a

288 M. Balliu and I. Mastroeni

program is relatively robust wrt all the active attackers that involve low integrity vari-
ables not occurring free in the formulas corresponding to the private information dis-
closed before reaching each hole.

6.1 Relative vs. Decentralized Robustness

In this section, we claim that, from certain viewpoints, relative robustness is a more
general notion than decentralized robustness. The reasons are the same as the ones
discussed in 5.4. In a nutshell, we can observe that, once the pair of principals is fixed,
also the data security levels are fixed, namely we know which are the variables readable
and/or modifiable by the attacker q from the point of view of a principal p. We can
denote by Cp→q the confidentiality levels and by Ip←q the integrity levels characterised
so far. For instance, for each variable x , Ip←q (x) = L if p believes that q can modify x ,
Ip←q (x) = H otherwise. In particular, given a program and a security policy in DLM
fashion, we compute the set of readers and writers for each pair of principals p, q , as
in [5], and check robustness for each pair by using Proposition 3. Hence, we have the
following generalisation of relative robustness in DLM.

Proposition 4. Let P = P2; [•];P1 be a program (where P1 is without holes). Let
Φ = Wlp(P1, Φ0). P satisfies decentralized robustness wrt principals p, q if we have
that

{
x

∣
∣Ip←q(x) = L

} ∩ FV(Φ) = ∅.

Proof. Given a pair of principals (p, q) we compute the set of readers and writers as
for decentralized robustness. Consequently, we have a static labeling of program data
with respect to confidentiality and integrity. At this point we apply Lemma 1 as the
hypothesis of proposition guarantees that no low integrity variable occurring free in Φ
is used by the active attack. Since this holds for all possible pairs of principals, the claim
is true.

This characterization suits perfectly to client-side web languages such as Javascript as
it allows to prevent injection attacks or dynamically loaded third-party code. In partic-
ular, suppose we have a web page that accepts advertising adds from different sources,
with different security concerns and wonder if it leaks private information to a mali-
cious attacker. Moreover, we can assume that the web page has different trust relations
with domains providing adds and this is specified in the security policy. Given this in-
formation, one can analyze the DOM (Document Object Model) tree and classify each
attribute in sensitive and insensitive with respect to a possible attacker [17]. The session
cookie might be an attribute to protect wrt all attackers, while the history object might be
public to some trusted domains and private to others. At this point we can apply weak-
est precondition analysis to web server from the point it discloses information on any
public channel such as the output web page or the reply information sent as response
to a client request. The holes correspond to program points where the server receives
adds from different clients and embeds them in its code. Analyzing the formula cor-
responding to the sensitive information disclosed before parsing and embedding such
adds, namely using the eval() operation in Javascript, we can identify harmless low in-
tegrity variables and certify security modulo (relative to) programs manipulating this
variables.

A Weakest Precondition Approach to Robustness 289

Example 12. Consider the following Javascript-like code (modified version of the ex-
ample in [6]). Lines 3-6 correspond to an add received from a third party to be displayed
on the web page. Moreover, the web site contains a simple function login() which au-
thenticates users by verifying username and password inserted in a form. The function
runs when the user clicks on a button, lines 7-16. Function initSettings corresponds to
the output channel of the web page as it identifies the server used to authenticate the
user, i.e., to send username and password.

1. <script type="javascript">
// 2: initialization of the output server

2. initSettings("mysite.com/login.php", 1.0);
// 3-4-5: definition of the add

3. <div id="AdNode">
4. <script src="adserver.com/display.js">
5. </div>
6. eval(src)

7. var login = function() {
8. var pwd = document.nodes.PasswordTextBox.value;
9. var user = document.nodes.UsernameTextBox.value;
11. var params = "u=" + user + "&p=" + pwd;

//12: sends the parameters (params) to baseUrl
12. post(document.settings.baseUrl, params);}
14. </script>

//15-16:login interface
15. <text id="UsernameTextBox"> <text id="PasswordTextBox">
16. <button id="ButtonLogin" onclick="login()">

Now, suppose the add code corresponds to the hole and the public output is the final
web page together with the result (out : LL) of post in line 12. Since formal parameters
of function initSettings (defining variable baseUrl : LL) have low integrity, a malicious
add could overwrite the parameters and redirect the high confidentiality part of the
output of post (login and password, i.e., user, pwd: HH) to the attacker. Let us see how
our approach allows to identify such security flaws. First, we compute the weakest
precondition of function login and obtain the following formula:

[•]
{baseUrl + user + pwd = a}

var pwd = document .nodes .PasswordTextBox .value;
var user = document .nodes .UsernameTextBox .value;

var params = ”u = ” + user + ”&p = ” + pwd ;
{baseUrl + params = a}

post(document .settings .baseUrl , params)
{out = a}

Observing the final formula we can state that private information concerning username
and password is related to the low integrity variable baseUrl and therefore the program
does not satisfy confidentiality. Moreover, the program is not even robust since low in-
tegrity variable baseUrl is free before the “hole”. In particular, a malicious add could

290 M. Balliu and I. Mastroeni

hijack such information to a malicious website and obtain username and password.
However, we can deem this program robust relative to fair attacks which do not manip-
ulate the low integrity variable baseUrl. In decentralized robustness, this corresponds
to say that the program is robust wrt all the pairs (p, q) such that p does not believes
that q can write the low integrity variable baseUrl.

7 Applications

In this section we present two applications where our approach captures soundly the
possible security violations. The first example considers a secure API function widely
used to perform PIN checking in a bank and is retrieved from [4]. The attacker is able to
play with low integrity variables and reveal the real PIN by analyzing the implicit flow
released by the API. The second example concerns a web application where third party
code is allowed to be embedded in. Cross Site Scripting attacks (XSS) are name of the
game in such contexts. In particular [23], the attacker tries to steal a session cookie and
hijack the user to an evil website. In both examples our analysis is sufficient to capture
the possible security violations.

7.1 Secure API Attack

This example concerns the use of secure API to authenticate and authorize a user to
access an ATM cash machine. The user inserts the credit card and the PIN code at the
machine. The PIN code gets encrypted and travels along the network until it reaches the
issuing bank. At this point, a verifying API is executed in order to check the equality
of the real user PIN and the trial PIN inserted at the cash machine. The verifying API,
called PIN V, is the one exploited by the attacker to disclose the real PIN.

The real PIN is derived through the PIN derivation key pdk and public data offset,
vdata, dectab, while the trial PIN comes encrypted by key k . Of course, the two keys,
pdk and k are pre-loaded in the Hardware Security Modules (HSM) of the bank server
and never travel the network. Here is the description of the API, PIN V.

PIN_V(EPB, len, offset, vdata,dectab) {
x1 := enc_pdk(vdata);
x2 := left(len, x1);
x3 := decimalize(dectab, x2);
x4 := sum_mod10(x3, offset);
x5 := dec_k(len, EPB);
if(x4 == x5) then return ("PIN correct");

else return ("PIN wrong");
}

where:

– len is the length of real PIN obtained by the encryption of the validation data vdata
(a kind of user profile) with the PIN derivation key pdk (x1), taking the len hex-
adecimal digits (x2), decimalising through dectab (x3), and digit-wise summing
modulo 10 the offset (x4).

A Weakest Precondition Approach to Robustness 291

– EPB (Encrypted PIN Block) is the ciphertext containing the trial password en-
crypted with the key k . The trial PIN is recovered by decrypting EPB with
key k .

The above snippet of code is insecure and there is a very nice attack used to disclose
the exact PIN code just by modifying low integrity variables offset and dectab (of type
LL) and observing low confidentiality output, namely by observing the I/O behavior of
API method [4].

Example 13. Let len = 4, offset = 4732, x1 = A47295FDE32A48B1 and dectab =
9753108642543210which is a substitution function encoding the mapping 0 → 9, 1 →
7, · · · ,F → 0. Moreover, let EPB = enck (9897), where 9897 is the correct PIN. With
these parameters PIN V returns PIN correct.

Indeed, consider x2 = left(4,A47295FDE32A48B1) = A472, and consider x3 =
decimalize(dectab,A472) = 5165 and x4 = sum mod10(5165, 4732) = 9897 which
is the same as the trial PIN.

Now the attacker first chooses dectab1 = 9753118642543211 where the two 0’s
have been replaced by 1’s. In this way the intruder discovers whether or not 0 appears
in x3. Invoking the API with dectab1 we obtain the same intermediate and final values,
as decimalize(dectab1,A472) = decimalize(dectab,A472) = 5165. This means that
0 does not appear in x3.

The attacker proceeds by replacing the 1 of dectab by 2.
If dectab2 = 9753208642543220 he obtains that decimalize(dectab2,A472) =

5265 �= decimalize(dectab,A472) = 5165, reflecting the presence of in the original
value of x3. Then, x4 = sum mod10(5265, 4732) = 9997 instead of 9897 returning
PIN wrong.

Now, the attacker knows that digit 1, occurs in x3 for sure. In order to discover its
position and its multiplicity, he varies the offset so to compensate for the modification of
dectab. In particular, the attacker decrements each offset digit by 1 until it finds the one
that makes the API return PIN correct. For this particular instance the possible variations
of the offset are: 3732, 4632, 4722, 4731 and the one that succeeds is the offset 4632.
So, the attacker revealed that the second digit of x3 is 1. Given that the offset is public,
he derives the second digit of user PIN as 1 + 7mod10, where 7 is the second digit of
the initial offset. Iterating this procedure the attacker discloses the entire value of PIN.

In the following computation we show weakest precondition approach captures the se-
curity flaws in API.

Let us observe the final formula corresponding to the weakest precondition of the
API. Clearly, we can first note that the program does not satisfy confidentiality since
the public output (the answer to the comparison between the real and the trial password)
depends clearly on the high confidentiality variable containing the real password. From
the viewpoint of robustness we can note that our sufficient condition is not satisfied
since there are low integrity variables, i.e., dectab and offset, which are free before the
hole (supposed to be in the input of the API, namely in the communication phase).
Indeed, exactly those are the variables used by the attacker for disclosing the PIN.

292 M. Balliu and I. Mastroeni

⎧
⎪⎪⎨

⎪⎪⎩

(sum mod10(decimalize(dectab, left(len, encpdk(vdata))), offset) = deck (len,EPB)
∧a = 1)∨

(sum mod10(decimalize(dectab, left(len, encpdk(vdata))), offset) �= deck (len,EPB)
∧a = 0)

⎫
⎪⎪⎬

⎪⎪⎭

x1 := encpdk(vdata);{
(summod10(decimalize(dectab, left(len, x1)), offset) = deck (len,EPB) ∧ a = 1)∨
(summod10(decimalize(dectab, left(len, x1)), offset) �= deck (len,EPB) ∧ a = 0)

}

x2 := left(len, x1);{
(sum mod10(decimalize(dectab, x2), offset) = deck (len,EPB) ∧ a = 1)∨
(sum mod10(decimalize(dectab, x2), offset) �= deck (len,EPB) ∧ a = 0)

}

x3 := decimalize(dectab, x2);{
(sum mod10(x3, offset) = deck (len,EPB) ∧ a = 1)∨
(sum mod10(x3, offset) �= deck (len,EPB) ∧ a = 0)

}

x4 := sum mod10(x3, offset);
{(x4 = deck (len,EPB) ∧ a = 1) ∨ (x4 �= deck (len,EPB) ∧ a = 0)}

x5 := deck (len,EPB);
{(x4 = x5 ∧ a = 1) ∨ (x4 �= x5 ∧ a = 0)}

if (x4 == x5) then (return 1) else (return 0)
{l = a}

The authors [4] fix this problem by using a MAC (Message Authentication Code)
security primitive. In particular, MACs are used to guarantee the integrity of information
received from an untrusted source, namely any modification of data before calling the
API is prevented by MAC. Semantically, this means that the variables dectab and offset
can be modified only by authorised agents. In our approach, this can be modelled by
assigning the security level LH to dectab and offset, i.e., by considering them as high
integrity. In this way, we are done, because our weakest precondition approach yields a
formula containing free only high integrity variables. Hence the robustness condition is
satisfied.

7.2 Cross Site Scripting Attack

Javascript is a very flexible dynamic object-based scripting language running in almost
all modern web browsers. The language allows to transfer, parse and run code sent
over the network between different web-based applications. While very useful and user-
friendly, such flexibility comes at a great price as the underlying applications become
vulnerable to code injection attacks. These attacks circumvent the security enforcement
mechanism of Javascript, namely the same-origin policy which prevents a document
or script loaded from one origin from getting or setting properties of a document from
another origin [17]. Indeed, when the browser receives a compromised web page, it is
executed in the context of the website hosting it, therefore, the same-origin policy deems
the operation secure. Afterwards, the malicious code can establish a connection to the
attacker server and transfer sensitive information such as cookie sessions for instance.
The following example shows that language-based security techniques can be used to
prevent this kind of attacks.

A Weakest Precondition Approach to Robustness 293

Suppose a user visits a untrusted web site in order to download a picture, where an
attacker has inserted his own malicious Javascript code (Fig. 1), and execute it on the
clients browser [23].

In the following we described a simplified version. The Javascript code snippet in
Fig. 1 can be used by the attacker to send users cookie3 to a web server under the
attackers control.

var cookie = document.cookie;
/*initialisation of the cookie by the server*/

var dut;
if (dut == undefined) {dut = "";}
while(i<cookie.length) {

switch(cookie[i]) {
case ’a’: dut += ’a’; break;
case ’b’: dut += ’b’; break;
...

}
}

/* dut contains now copy of cookie*/
document.images[0].src = "http://badsite/cookie?" + dut;

/* when the user click on the image dut is sent
to the web server under the attackers control*/

Fig. 1. Code creating a XSS vulnerability

One can easily see that the variable dut contains a copy of users cookie. This at-
tack circumvents same-origin policy in client browser as it is correctly received after a
request to some server where the attacker injected the malicious code. Now lets apply
our analysis to the above Javascript snippet. In particular, suppose that variable cookie
has security type HL and variable dut has security type LL. Moreover, imagine we emu-
late the switch-case operator by a chain of if-then-else constructs and cookie.length has
security type LL .

[•]
{cookie + dut = res}

while(i < cookie.length){
switch(cookie[i]){
case ′a′ : dut+ =′ a′; break ;
case ′b′ : dut+ =′ b′; break ;

...}}
{dut = res}

3 A cookie is a text string stored by a user’s web browser. A cookie consists of one or more
name-value pairs containing bits of information, sent as an HTTP header by a web server to a
web browser (client) and then sent back unchanged by the browser each time it accesses that
server. It can be used, for example, for authentication.

294 M. Balliu and I. Mastroeni

By observing the final formula we can notice that confidentiality is violated since there
is a (implicit) flow of information from private variable cookie towards the public vari-
able dut. However, this is the sensitive information disclosed by a passive attacker when
dut is initialised in the code to the empty string. Nevertheless, dut is free before the hole,
i.e., where the attacker can insert other malicious code, therefore the (active) attacker
can exploit dut for disclosing other user confidential information. Suppose, for instance,
the attacker to be interested in the history object (with security type HL) together with
its attributes4. In this case, an active attack could loop over the elements of the history
object and pass through variable dut all the web pages the client has had access to.
Consider for example the injection of the code in Fig. 2.

<script language="JavaScript">
var dut = "";
for (i=0; i<history.length; i++){

dut = dut + history.previous;
}
</script>

Fig. 2. Malicious code exploiting XSS vulnerability

Hence, in this case the program violates the robustness condition since the attacker
can exploit the low integrity variable dut, which occurs free in the formula before the
hole, in order to disclose more confidential information. Moreover we have shown that
the attacker can exploit this vulnerability by inserting the code in Fig. 2 just before
the malicious code (Fig. 1) in the untrusted web page, getting both history and cookie
through the variable dut.

It is worth noting that our approach provides a theoretical model for the existing
techniques used in practice for protecting code from XSS attacks [23].

8 Related Work

Prior work on robustness, in the language-based setting, has been addressed in [26,20].
In these papers the authors give a trace-based definition of robustness and enforce it with
a flow-insensitive type system. They consider a simple while language, as we do in the
this paper, but, in addition they consider an additional construct for declassifying the
security of variables in fixed program points (the where dimension in [22]). Therefore,
a program is robust is an active attacker is unable to manipulate program semantics
and declassify more information than a passive attacker does. The security type system
enforces both non-interference and robustness so a program is ruled out if neither of
the two security properties holds. On the other hand, our semantic approach is different
as we model global declassification policies (the what dimension in [22]). Moreover,
we capture a cleaner characterization of robustness, namely the active attacker does

4 The history object allows to navigate through the history of websites that a browser has visited.

A Weakest Precondition Approach to Robustness 295

not disclose more private information than a passive one, even though the program
under passive attacker does not satisfy non-interference. Other differences between two
approaches are shown in section 5.4.

The idea of considering the weakest liberal precondition semantics for static cer-
tification of program security is borrowed from [18]. The authors define declassified
non interference as a completeness problem in abstract interpretation and the semantic
function corresponds to the Wlp semantics. However this paper considers only passive
attackers and moreover the idea of computing Wlp wrt first order formulas is novel in
our approach.

Decentralized robustness [5] expresses robustness in the context of the decentralized
label model and enforces it statically by a type system. In this paper we showed that
the approach can be characterized by our notion of relative robustness. Section 6.1
compares the two approaches.

Language-based techniques for security are more and more being applied to client-
side web languages such as Javascript to prevent different attacks [6,23]. Basically,
they combine static and dynamic analysis to enforce information flow properties such
as non interference. However, our idea of interpreting robustness for Javascript, to the
best of our knowledge, is novel and could nicely fit in as a good security model for such
language. In particular, the security type HL can model the code injected by an attacker,
which knows a certain variable exists (password for instance), but doesn’t know its
value.

9 Conclusions

In this paper, we addressed an important notion in language-based security called ro-
bustness [26,20]. In general a program can run in any distributed environment in pres-
ence of untrusted components. This fact is modeled by fixed program points called
holes, namely program points where the attacker can insert untrusted code. At this
point, the program is robust if an active attacker cannot disclose more private infor-
mation than a passive one. We noted that an active attacker can transform program
semantics and control private information released by the program. Moreover, different
active attacks can release different properties of private data. Hence, the total number
of attacks may be infinite so it is impossible to find the most harmful attack for a given
program. Here we characterised a sufficient condition that enforces robustness for un-
fair attacks (using LL and HL variables). Moreover, we have considered robustness in
two different semantic models, I/O and trace semantics. Then we introduced the notion
of relative robustness which is a relaxation of robustness dealing with a restricted class
of attacks. Finally, we conclude with two real application: the analysis of the API for
PIN verification and the analysis of code vulnerable to XSS attacks.

The analysis we performed in this paper results very interesting from both theoreti-
cal and practical point of view. On the one hand the semantic condition of robustness
addresses the issue of systematic transformations of program code that preserve inter-
esting extensional properties, robustness for instance. Indeed abstract interpretation is
a possible framework to play with in order to guarantee such properties. On the other
hand, we saw that our approach is a good remedy to the lack of precise static analysis
approaches in real application domains concerning security.

296 M. Balliu and I. Mastroeni

However, this is just the beginning and there is much more work to do. First, we need
to implement the algorithm for static certification of robust programs. Hence, given a
program we need to effectively compute when it happens to be robust. It would be im-
portant to characterize classes of attacks that induce the same semantic transformation,
namely disclose the same property of private inputs. In this way, we can hope for finding
a finite number of such attack classes. Second, our work can be generalised to deal with
abstract active attackers. Namely, as it happens for abstract non-interference, one can
consider attackers modifying properties of low integrity data. Third, we plan to extend
our approach to different attacker models such as concurrent attackers or attackers able
to erase parts of program code. Off we go.

References

1. http://www.owasp.org
2. Balliu, M., Mastroeni, I.: A weakest precondition approach to active attacks analysis. In:

PLAS, pp. 59–71 (2009)
3. Banerjee, A., Giacobazzi, R., Mastroeni, I.: What you lose is what you leak: Information

leakage in declassification policies. In: Proc. of the 23th Internat. Symp. on Mathematical
Foundations of Programming Semantics MFPS 2007. Electronic Notes in Theoretical Com-
puter Science, vol. 1514. Elsevier, Amsterdam (2007)

4. Centenaro, M., Focardi, R., Luccio, F.L., Steel, G.: Type-based analysis of pin processing
apis. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 53–68. Springer,
Heidelberg (2009)

5. Chong, S., Myers, A.C.: Decentralized robustness. In: Proc. the IEEE Computer Security
Foundations Workshop (CSFW-19), Washington, DC, USA, pp. 242–256. IEEE Computer
Society, Los Alamitos (2006)

6. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for javascript. In:
PLDI, pp. 50–62 (2009)

7. Cohen, E.S.: Information transmission in sequential programs. In: DeMillo, et al. (eds.)
Foundations of Secure Computation, pp. 297–335. Academic Press, New York (1978)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proc. of Conf. Record of the
4th ACM Symp. on Principles of Programming Languages POPL 1977, pp. 238–252. ACM
Press, New York (1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of Conf.
Record of the 6th ACM Symp. on Principles of Programming Languages POPL 1979, pp.
269–282. ACM Press, New York (1979)

10. Danicic, S., Harman, M., Hierons, R., Howroyd, J., Laurence, M.: Applications of linear
program schematology in dependence analysis. In: PLID (2004)

11. Dijkstra, E.W.: A discipline of programming. Series in automatic computation. Prentice Hall,
Englewood Cliffs (1976)

12. Dijkstra, E.W.: Guarded commands, nondeterminism and formal derivation of programs.
Comm. of The ACM 18(8), 453–457 (1975)

13. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proc. IEEE Symp. on
Security and Privacy, pp. 11–20. IEEE Comp. Soc. Press, Los Alamitos (1982)

14. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)
15. Hehner, E.C.R.: The Logic of Programming. In: Hoare, C.A.R. (ed.) Series in Computer

Science. Prentice Hall, Englewood Cliffs (1984)

http://www.owasp.org

A Weakest Precondition Approach to Robustness 297

16. Rustan, K., Leino, M.: Efficient weakest preconditions. Inf. Process. Lett. 93(6), 281–288
(2005)

17. Ingo Lutkebohle. Same origin policy for javascript
18. Mastroeni, I., Banerjee, A.: Modelling declassification policies using abstract domain com-

pleteness. Technical Report RR 61/2008, Department of Computer Science, University of
Verona (May 2008)

19. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model. ACM Trans.
Softw. Eng. Methodol. 9(4), 410–442 (2000)

20. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification. In: Proc. IEEE
Symp. on Security and Privacy, pp. 21–34. IEEE Comp. Soc. Press, Los Alamitos (2004)

21. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. on Selected
Areas in Communications 21(1), 5–19 (2003)

22. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. J. of Computer Secu-
rity (2007)

23. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Krügel, C., Vigna, G.: Cross site scripting
prevention with dynamic data tainting and static analysis. In: NDSS (2007)

24. Winskel, G.: The formal semantics of programming languages: an introduction. MIT Press,
Cambridge (1993)

25. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164
(1982)

26. Zdancewic, S., Myers, A.C.: Robust declassification. In: Proc. of the IEEE Computer Secu-
rity Foundations Workshop, pp. 15–23. IEEE Comp. Soc. Press, Los Alamitos (2001)

27. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Untrusted hosts and confidentiality:
Secure program partitioning. In: SOSP, pp. 1–14 (2001)

	A Weakest Precondition Approach to Robustness
	Introduction
	Abstract Interpretation: An Informal Introduction
	Security Background
	Non-interference and Declassification
	Robust Declassification
	Weakest Liberal Precondition Semantics
	Certifying Declassification
	Decentralized Label Model and Decentralized Robustness

	Maximal Release by Active Attackers
	Observing Input-Output
	Observing Program Traces

	Enforcing Robustness
	Robustness by Wlp
	An Algorithmic Approach to Robustness
	Robustness on Program Traces
	Wlp vs. Security Type System

	Relative Robustness
	Relative vs. Decentralized Robustness

	Applications
	Secure API Attack
	Cross Site Scripting Attack

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

