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Abstract

This thesis concerns the design, implementation and evaluation of a spec-
ification based testing architecture for reactive systems using the paradigm
of learning-based testing. As part of this work we have designed, verified and
implemented new incremental learning algorithms for DFA and Kripke struc-
tures. These have been integrated with the NuSMV model checker to give a
new learning-based testing architecture. We have evaluated our architecture
on case studies and shown that the method is effective.
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Chapter 1

Introduction and Background to
Software Testing

1.1 Introduction

The purpose of software testing is to show that a software program works as desired
and to possibly detect any defects before its delivery. For testing purposes, a
program is executed with artificial data commonly known as test cases to spot
errors and identify anomalies. According to [Sommerville 2009] software testing
has two distinct goals: 1) to show to the customer and developer that software
meets its requirements and 2) to identify incorrect behaviour in the software with
respect to a specification. The former is referred to as validation testing and the
latter as defect testing.

Testing is a part of a broader paradigm of software verification and validation
to ensure the quality of the software end product. The subtle difference between
software verification and validation was described in [Boehm 1979]. According to
this description, validation aims to get the answer to the question whether we are
building the right product. Verification on the other hand refers to ascertaining
whether the product being built is correct according to some requirement specifi-
cation. Validation is a more generic term intended for customer satisfaction and
verification is a more specific term intended to ensure the correct behaviour of
the software system according to specifications. Since testing is seldom exhaustive
we cannot conclusively claim the absence of bugs after testing a software product
although it is a good approach to locate the bugs (see [Dijkstra et al. 1972]).

Testing can concern both functional and non-functional requirements of software
and it can begin either during the software development process or after coding
has been completed. When testing is done during the development process then it
involves the use of static techniques like reviews, walkthroughs or inspections. When
the software product is tested after the completion of coding then it usually involves
the use of dynamic testing techniques. In these the behaviour of the software is
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observed and compared with the requirements by actually running or executing the
software.

In this thesis a new approach to specification-based black-box testing of systems is
considered called learning-based testing (LBT). In LBT , we use a learning algorithm
(described in Chapter 3) to iteratively learn the system under test (SUT). The
iteratively learned model is then model checked (described in Chapter 4) against a
specific requirement formula expressed in temporal logic (described in Section 4.3).
Any violation to this formula is treated as a test case and applied to the SUT on the
next iteration of learning. The pass or fail verdict of the test case is automatically
decided by an oracle (described in Section 1.2 ) using requirement formula and the
outcome of the test case. Before we consider LBT in more detail (in Section 1.6),
it is appropriate to begin by reviewing different testing techniques.

1.2 Specification Based Testing

The development of any engineering system begins with a specification of what it is
required to do. A specification is an agreement between the developers and other
stakeholders (who want the system to be developed). The stakeholder’s focus is on
what the system should do and developers address the question how the system will
be built. The term specification has a precise meaning in traditional engineering
fields but its meaning may vary depending upon the context it is used in case of
software engineering. For example it is common to hear terms like requirements
specification, design specification and module specification etc in software engineer-
ing. All these terms are used during different phases of software development and
have a different meaning depending upon their context.

A specification can be described in a formal or an informal way. In an informal
way, the description is in natural language and can use visual aids like diagrams,
tables and other visual notations to enhance their understanding. On the other
hand a formal description of a specification requires a precise syntax and semantics
that can adequately capture the functionality of the system to be developed.

In specification based testing a set of test cases is generated from the specifi-
cation which are then executed on the System Under Test (SUT) and its output
observed and compared with the specification. The verdict about the test being ei-
ther pass or fail is given by an oracle. An oracle can either be manual or automated.
In the case of a manual oracle, a human decides the pass or fail verdict for the test.
A test is a pass if the observed value of the test is from the expected set of values
given in the test case description, otherwise the verdict is a fail. A manual oracle
can however be slow, time consuming, even error prone and sometimes impossible
for exhaustive testing. A manual oracle is used in case of informal specifications
because automating the testing process from them is not trivial . However it is
possible to use an automated oracle in case of formal specifications, in this case
an oracle is an implementation of some criteria that compares an observed value
against the set of expected values. It gives a verdict as pass if the expected set of
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values contains the observed values, otherwise the verdict is a fail.

1.3 Black Box and Glass Box Testing

Black Box Testing
The tester may have to use different sets of testing techniques depending upon
the availability or non-availability of source code. When the software tester doesn’t
have access to the source code then the software is treated as a black box and testing
techniques used in this case are called black-box testing or functional testing. In this
case SUT functionality is tested against a set of requirements and behavioral errors
corresponding to inputs are recorded. This kind of testing requires a test set either
generated automatically or manually depending upon whether the requirements
are formal or informal respectively. The verdict is given as pass or fail depending
upon the observed values and the expected values given in the test set. Different
types of black box testing include equivalence partitioning, boundary value analysis,
all pairs testing, model-based testing, exploratory testing (see [Jorgensen 2007]),
specification-based testing (see Section 1.2) and random testing (see Section 1.3).

Random Testing
Random testing is thought to be the opposite of systematic testing like black-box
testing or white-box testing. This is because of the fact that the word random is
associated with meanings of derogatory nature such as “having no specific pattern”
or “without a governing purpose” and so on. But in practice its use is described
in [Hamlet 2002] as, “Random testing, of course, is the most used and least useful
method.”

The question however is why random technique should be used instead of sys-
tematic testing technique? In [Hamlet 2002] two reasons have been described for
the usefulness of test case generation through a random approach. First, algorithms
exist for the selection of random points through pseudo random numbers which are
useful in defining a vast number of test cases. Secondly, the statistical indepen-
dence among test points enables statistical prediction of observations upon them.
The former can be compromised since the pass or fail of an easily generated test
case may not be that easily computable by the oracle. The latter however is useful
in the context of software testing theory. This is because in a physical context of
measurement only random fluctuations can be averaged out and refined to yield a
better result over several trials or experiments. This may not be the case of system-
atic fluctuations as a result of some systematic testing approach especially when
their cause or (even existence) is not identifiable (because system is treated as a
black box) which will render the measurement invalid forever. Therefore random
testing can be used as an effective tool when large number of test cases have to be
generated and for benchmarking of other testing techniques against random testing
because of its better statistical background.
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White Box Testing
When the tester has access to internal data structures, underlying algorithms and
the source code that implement them then white-box testing techniques are used
(also called glass-box testing).

The major advantage of white-box testing is the possibility to define SUT cov-
erage by a set of test cases representing the test requirements. Elements of graph
theory have been used quite efficiently for this purpose. To meet this end a graph
model of the SUT is set up and then coverage of the system by test cases is de-
scribed in terms of e.g node coverage, edge coverage or edge-pair coverage (see
[Amman and Offutt 2008]). Node coverage means the ability of the test suite to
cover all reachable nodes in the graph of SUT. Similarly edge coverage and edge-
pair coverage mean that the test cases in a test suite should be able to contain
each reachable path of length ≥ 1 and length ≥ 2 respectively in the underlying
graph of SUT. The quality of a test suite can also be determined by the extent
of functional coverage achieved i.e how many functions or statements it is able to
execute and test successfully. The former is called function coverage and the latter
is called statement coverage. The completeness of the test suite created with black
box testing can also be checked with this criteria.

The behaviour of black-box testing and white-box testing can be contrasted in
terms of scalability and testing from requirements. White-box testing techniques
are very good when it comes to describe the coverage of an SUT achieved. But
these are not particularly good when the test suite is to be scaled for large systems.
Such systems can possibly consist of thousands of paths with hundreds of selection
statements and loops. It is not possible to test all paths of loops in such programs
which renders exhaustive testing of such systems impossible. Similarly white-box
testing approach does not provide the possibility of generating the test suite from
requirements as it is meant to test different paths of the system. On both these
counts black-box testing fares much better than white-box testing.

1.4 Conformance Testing

Conformance testing is a success story in specification-based testing and is widely
used in telecom industry. The aim of conformance testing is to check whether a
given SUT conforms to a formal specification or not. This type of testing is quite
common for protocol testing and protocols are quite similar to reactive systems.
A framework for conformance testing of protocols is for example [Tretmans 1996].
The notion of conformance has to be defined formally in this context. A confor-
mance relation will precisely describe under what conditions an SUT conforms to
a specification. For example when the specification allows two possible outputs
for a particular input then the corresponding conformance relation can be defined
either as allowing only one output for that input or showing no output at all in
the implementation. More precisely we can say that an implementation I conforms
to a specification S when at any point during the execution it is able to handle
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at least as many inputs as the specification and at most as many outputs as the
specification.

A test suite is also generated from the specification. The behaviour of the SUT
is observed by executing test cases on it from the test suite. The pass and fail
verdict for a test case from the test suite is decided by a verdict function which
formally models observations of test execution with a test execution procedure.

A test suite is sound if every implementation that conforms to the specification
also passes the test suite. Conversely a test suite is complete if every non-conforming
implementation fails the test suite. For practical reasons it is impossible to achieve
completeness because every non-trivial system will require infinite number of test
cases to be executed before reaching completeness. Therefore an incomplete test
suite should at least be consistent. This means that it should pass all the correct
implementations and fail implementations showing errant behaviour. A good auto-
matic test case generation tool should be able to produce test suites that are sound
from a given specification.

1.5 Model Based Testing

Model-based testing (MBT) (see [Utting and Legeard 2006]) involves the use of a
design model to guide software testing by executing the necessary artifacts. The
model for testing purposes is an abstraction of the SUT but it should essentially
describe all aspects needed for testing i.e test cases and their execution environment.
The test cases so derived from this abstract model are also abstract and are part
of an abstract test suite (ATS). The ATS cannot however be executed on an SUT
directly rather it has to be converted into an executable test suite (ETS) by some
means for execution on a concrete SUT.

Since test cases are derived from models in case of MBT and not from source
code. Therefore, MBT is generally considered as a form of black box testing.
Nevertheless this approach allows us to define model coverage measures (again by
using e.g graph theory).

Model-based testing can be carried out either online or offline. When it is
online then the model-based testing tool acts directly on an SUT and executes
the test cases on it (conversion from abstract test cases to concrete ones is done
automatically by the tool ). In offline model-based testing on the other hand the
testing tool will generate test cases without actually executing them on an SUT.
The test suite can be generated at some point in time and can be deployed and
executed on the SUT at a later time.

The MBT approach can be used efficiently for the purpose of test automation
provided the model is a formal and adequate behavioral description of the SUT
which is also machine readable. Then it is possible to extract test cases automati-
cally. There are several algorithmic methods for the extraction of test suites from
formal descriptions of models which include test case generation by theorem prov-
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ing (see [Helke et al. 1997]), constraint logic programming and symbolic execution
(see [Offut 1991]) and more recently model checking (see [Fraser et al. 2009]).

1.6 Learning Based Testing

Learning-based testing (LBT) which is the subject of this thesis is an iterative
approach to automate specification-based black-box testing. The LBT framework
consists of the following:

• an SUT which is a black box

• a formal specification for SUT

• a learned model M of SUT

The former two are common to all specification-based testing. The latter however
is a distinctive feature of LBT only. The LBT approach is a heuristic iterative
approach which is based on the concept of learning a black-box SUT using tests as
queries.

An LBT algorithm will work by executing test case inputs on an SUT. Let us say
after the execution of n test case inputs i1, ..., in on the SUT outputs o1, ...,on have
been observed. The learning algorithm will synthesize these n input/output pairs
into a learned model Mn of the SUT. The learned model Mn is then satisfiability
checked against the formal specification for SUT and a counterexample is returned
in case of a fail. The counterexample will become input in+1 for the SUT and after
its execution output on+1 is observed. If the SUT fails this test case i.e (in+1,on+1)
does not satisfy the formal specification then the LBT algorithm terminates with
a true negative. If this test is a pass then Mn was an inaccurate model and the
test case was a false negative and the LBT algorithm goes on to construct a refined
model Mn+1.

The LBT paradigm has been applied to both procedural SUTs in [Meinke 2004]
and [Meinke and Niu 2010] and to reactive SUTs in [Meinke and Sindhu 2011].

A combination of learning and model checking has been considered in several
earlier works in the literature to test or formally verify reactive systems see e.g
[Peled et al. 1999], [Groce et al. 2006] and [Raffelt et al. 2008]. Reactive systems,
learning and model checking will be reviewed in Chapter 2, Chapter 3 and Chap-
ter 4 of this thesis respectively. Learning and model checking is also used in an
approach called counterexample guided abstraction refinement (CEGAR) for ver-
ification within the model checking community (this will be discussed in Section
1.9 ) . The LBT approach is distinct from the above mentioned in the sense that
its focus is on testing rather than verification. Its effectiveness is also significantly
enhanced by the use of incremental learning algorithms which form a central theme
of this thesis.
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1.7 Inductive Testing

Inductive testing is a heuristic approach to black-box testing. The heuristic idea of
inductive testing is also to learn a black box system using tests as queries. However
testing in this case is done without specifications. It is based on the idea that
software testing and inductive inference are the opposite sides of the same coin.
In software testing we try to find the optimum (finite) number of tests that are
sufficient to test the whole system. In computational learning (which provides the
algorithm for inductive testing) we try to find the minimum number of queries
sufficient to learn the whole system. While inductive inference aims at finding
the minimal behavioral representation of the system by executing a finite sample
of examples for the system. The common feature of learning and testing is very
aptly described in [Walkinshaw et al. 2010] as follows: “The success of techniques
in either area depends on the depth and breadth of the set of examples or tests”.
The likelihood of finding a bug or an inferred model is greater if the range of tests
or examples is broader.

Inductive testing therefore is based on the idea of constructing test cases through
a learning procedure. An inferred model will represent what has already been tested
and the test case generator will try to find new tests that learn unknown parts of
the SUT. The process of inductive testing is often terminated by means of an
equivalence test between the learned model and the SUT.

In [Walkinshaw et al. 2010] it has been shown that inductive testing can achieve
better functional coverage than random testing techniques and that it can be ap-
plied to large systems. The applicability of this approach was demonstrated by
generating a test set for the Linux TCP/IP stack.

1.8 Static Checking

We will contrast specification based testing with other methods for software quality
assurance such as formal methods based testing techniques including static checking
and verification. This is because: 1) they also use specifications and 2) they use
similar algorithms to those used in testing such as model checking and constraint
solving.

Static checking involves the use of program evaluation techniques without actu-
ally running the software. This contrasts with dynamic execution used in testing.
It can be done manually or with a tool in which case it is called automated static
checking. These techniques are not an alternative to testing but are complimentary
to it. Testing aims to find bugs while static checking/verification is used to prove
program correctness. Testing, static checking and scalability can also be contrasted
in terms of scalability. Verification is effective and used on small scales only but
the analysis reached is very strong as compared to static checking. Static checking
can be effectively used on a larger scale but the analysis is weaker compared to full
verification. Testing on the other hand can be used on a very large scale but the
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analysis about the behaviour of the program is compromised compared to static
checking and verification techniques.

Manual Static Checking
When done manually, approaches like reviews, walkthroughs and inspections are
able to detect bugs in the software.

A review may be done by the programmer , in which (s)he analyzes the logic of
the program by examining the source code. Such a review is called a code review. A
code review not only helps to spot and fix potential mistakes in the software prod-
uct, but it also improves the programmer’s skills. Common code problems identified
with this technique include race conditions, memory leaks, buffer overflows etc. A
review may also be carried out in collaboration with a colleague in which case it
is called a peer review. If the colleague happens to be more experienced than the
programmer can get useful feedback not only in terms of finding potential bugs
but also about optimizing sections of code by using more efficient programming
constructs. Pair programming (two programmers code together), over-the-shoulder
(one programmer looks over the shoulder of the author when he goes through the
code) and lightweight code reviews are other examples of a review used in static
checking.

A walkthrough is a kind of peer review different from the peer review discussed
above in which a developer leads interested stakeholders through a software product
and they ask questions and provide comments about possible problems. It differs
from a review primarily because direct suggestions for improvement can be ob-
tained, participants get familiar with the product and it omits product and process
metrics.

An inspection on the other hand involves a peer review conducted by well trained
individuals who analyze the software product for defects using a well defined pro-
cess. Inspectors try to reach on a consensus on a work product like software re-
quirements specifications and test plans. A defect in an inspection will be anything
that will keep the inspector from approving that work product.

Automated Static Checking
Automated static checking or static program analysis is another technique used for
the analysis of of computer programs without actually executing them. This is
done with the help of a tool which analyzes the source code or the object code of
a program to spot potential problems within the program. The sophistication of
these tools vary from one to the other as some tools analyze individual statements
and declarations, while other tools analyze complete source code. The informa-
tion contained in this analysis varies from tool to tool. It may simply consist of
highlighting code errors (e.g. as shown by the Lint tool which analyzes C code)
to more complicated programs that prove properties of a program mathematically
(e.g MAPLAS (see [Wichmann et al. 1995]) tool uses directed graphs and regular
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algebra to prove that software being analyzed meets its mathematical specification).
ESC/Java (see [Flanagan et al. 2002]) is another well known tool (ESC stands for
Extended Static Checker). It tries to find common run-time errors in Java programs
at compile time. It is based on a theorem prover analysis and a simplified semantic
model of Java code. Extended static checking which in this case means to statically
check the correctness of constraints of a given program for example an integer being
greater than zero or lying between upper and lower bounds of an array.

1.9 Full Verification

The type of static analysis in which properties of a program are proven mathemat-
ically is called formal verification. Its use is becoming increasingly widespread in
industry for the verification of properties of software used in safety-critical com-
puter systems. An important technique in this regard is called model checking. It
considers finite state systems or those which can be reduced to finite state by some
kind of abstraction technique. The model checking algorithm then checks this (ab-
stract) model against temporal logic requirements. If it finds an error it can either
report a counterexample to that specification or simply notify the error otherwise it
will report the specification to be valid for the model. A more detailed description
of model checking is given in Chapter 4.

CEGAR: Inductive Verification
There is a branch of formal verification which is particularly relevant to this thesis.
Formal verification can be used to mathematically prove the properties of programs
with techniques like model checking. But the model checking approach has its limi-
tations such as state space explosion that can occur if the components of the system
being verified make transitions in parallel. The problems of state space explosion
were a reduced in severity by the introduction of binary decision diagrams (BDDs)
see e.g. [Burch et al. 1992]. This approach was used in a well known model checker
developed around that time called NuSMV see [NuSMV 2.5.2]. But the state space
explosion problem has not completely been resolved yet despite the success of sym-
bolic techniques. Several reduction techniques have been introduced and studied
in this regard but a more flexible technique for handling this problem has been ab-
straction which intuitively means simplifying details or removing components from
the original design that are not relevant to the property being verified.

In the usual abstraction based approaches abstractions are often constructed
manually. This process can be time consuming and also error prone. But these two
drawbacks can be eliminated if a learning-based approach is used. In a learning-
based approach as described in Section 1.6 an abstraction can be built automatically
by using counterexamples to steer the process of learning. This combination of
learning and model checking is very similar to our own but the emphasis in CEGAR
is on full verification (or at least static checking) and complete learning rather than
testing.
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Spec-based
Testing Static Checking Full Verification

Counterexample
is easy to find

Proof
is easy to find

Figure 1.1: A comparison of Testing and Verification

A relative comparison of testing, static checking and full verification in terms of
convenience in finding a counterexample or a full proof of correctness is given in the
Figure 1.1. Moving left in the figure we approach spec-based testing where finding
counterexamples is convenient rather than full proof of correctness. Moving right
in the figure takes us closer to full verification where finding a proof of correctness
is more convenient than to find a counterexample.



Chapter 2

Principles of Finite Automata

2.1 State Machines and Formal Languages

State machines can be used to describe the behaviour of a diverse class of com-
putational systems e.g communication protocols, digital circuits, reactive systems
and objects, and hence are of great significance. Therefore it will be useful to begin
with a brief account of state machines. Let Σ be any set of symbols (aka alphabet)
then Σ∗ denotes the set of all finite strings over Σ including the empty string ε.
The length of any string α ∈ Σ∗ is denoted by |α| and |ε|= 0. For any two strings
α1,α2 ∈ Σ∗ α1.α2 denotes their concatenation.

Definition (Deterministic Finite Automata).
A deterministic finite automata (DFA) A is a quintuple 〈Q,Σ, δ,q0,F 〉 where :

• Q is a finite set of states,

• Σ is a finite set of input symbols,

• δ :Q×Σ→Q is the transition function,

• q0 ∈Q is the start state,

• F ⊆Q is the set of final states also called acceptor states.

Now δ can be inductively lifted to δ∗ :Q×Σ∗→Q , where δ(q,ε) = q and δ∗(q,σ1, ...,σn) =
δ(δ∗(q,σ1, ...,σn−1),σn). A string β of the form σ1, ...,σn is accepted by A iff
δ∗(q0,β)∈ F . The language accepted by A, denoted by L(A), consists of all strings
σ1...σn ∈ Σ∗ which are accepted by A i.e δ∗(q0,σ1...σn) ∈ F .

�
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For any given DFA A there exists a minimum state DFA A′ such that L(A) =
L(A′) and is called a canonical DFA. It can be shown that a canonical DFA has
one dead state at the most.

Several different generalizations of DFA have been proposed and studied to
model different classes of systems. Important examples among such state machine
models include Moore machines, Mealy machines, Extended Finite State Machines
(EFSM) and Kripke structures. All these types of state machines can be designed
to deal with either deterministic or non-deterministic behaviour depending upon
the type of the system to be modelled.

In the case of Moore machines the output depends on the input only. While in
the case of Mealy machines the output depends upon the input as well as the current
state. A Kripke structure on the other hand is a specific type of state machine which
uses a labelling function to label states corresponding to some atomic propositions
i.e multi-bit output. In this thesis we will focus on Moore machines and Kripke
structures. More precise definitions of both are given below.

Definition (Moore Machine).
A Moore machine M is a six-tuple such that M = 〈Q,Σ,Ω, q0, δ,λ〉 where:

• Q is a finite set of states,

• Σ = {σ1, ...,σn} is a finite set of input symbols,

• Ω = {ω1, ...,ωm} is a finite set of output symbols,

• δ :Q×Σ→Q is the transition function,

• λ :Q→ Ω is an output function that maps states to the output symbols,

• q0 ∈Q is the initial or start state.

Clearly δ can be inductively lifted to δ∗ as in Definition 2.1.1.

�

Definition (Mealy Machine).
A Mealy machineMly is a six-tupleMly = 〈Q,Σ,Ω, q0, δ,λ〉 where:

• Q is a finite set of states,

• Σ = {σ1, ...,σn} is a finite set of input symbols,

• Ω = {ω1, ...,ωm} is a finite set of output symbols,

• δ :Q×Σ→Q is the transition function,

• λ :Q×Σ→ Ω is the output function,
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• q0 ∈Q is the initial state.

Then Σ∗ and Ω∗ represent the set of all finite sequences of inputs and outputs over
Σ and Ω respectively.

�

Definition (Kripke Structure).
A (non-deterministic) Kripke structure K over a set AP of atomic propositions is
a five-tuple K = 〈Q,Σ, δ,q0,λ〉 where:

• Q is a finite set of states,

• Σ = {σ1, ...,σn} is a finite set of input symbols,

• δ ⊆Q×Q is a transition relation,

• q0 ∈Q is the initial or start state,

• λ :Q→ 2AP is a labelling function for states.

We say that K is deterministic if δ is a function δ : Q→Q. Each property in AP
describes some local property of system states q ∈ Q. Each state of the system is
assigned a set of propositions by the labelling function λ.

�

Since we want to work with Kripke structures as Moore machines with states
labelled by Boolean vectors the above definition of Kripke structures can be refor-
mulated as follows.

Definition (Deterministic Kripke Structure).
A deterministic Kripke structure K is a five-tuple 〈Q,Σ, δ,q0,λ〉 where:

• Q is a finite set of states,

• Σ = {σ1, ...,σn} is a finite set of input symbols,

• δ :Q×Σ→Q is the transition function,

• q0 ∈Q is the initial state,

• λ :Q→ Bk where (b1...bk) ∈ Bk is an enumeration or indexing of a set AP of
k atomic propositions.

As in Definition 2.1 we let δ∗ : Q×Σ∗ → Q denote the iterated state transition
function, where δ∗(q,ε) = q and δ∗(q,σ1, ...,σn) = δ(δ∗(q,σ1, ...,σn−1),σn). Here we
let λ∗ : Σ∗→Bk denote iterated output function λ∗(σ1, ...,σn) =λ(δ∗(q0,σ1, ...,σn)).

�



16 CHAPTER 2. PRINCIPLES OF FINITE AUTOMATA

2.2 Reactive Systems

Reactive systems are systems which continuously interact with their environment,
via a sequence of inputs and outputs. They typically execute cyclically in a loop,
and during this process they take inputs from their environment and return values
to the desired outputs according to the received inputs. Examples of such systems
include embedded systems such as cruise controllers in vehicles, systems controlling
mechanical devices like trains, air traffic control, medical devices or control system
in a nuclear reactor etc. A graphical user interface for a computer program can
also be thought as a type of reactive system. A distinctive feature of such systems
is that their behaviour can be modeled as automata (like the algebraic structures
discussed in Section 2.1). Also their behaviour can be specified in temporal logics
(temporal logics will be reviewed in Section 4.3) such as linear temporal logic (LTL)
and computational tree logic (CTL) etc. This makes them well suited to automatic
verification through the use of model checkers or to testing with an automated
testing technique. As examples of reactive systems we discuss two case studies
which appear in paper 2, these are:

1. a simple cruise controller

2. a 3-floor elevator

A Cruise Controller

A cruise controller (cc) is an embedded safety critical software system which is
commonly used in modern vehicles. A simplified model of such a cruise controller
is given in Figure 2.1. The input set of the cruise controller cc consists of the set
{break, dec, gas, acc, button}. The value break is used to reduce speed by the driver,
dec and acc represent physical constraints on speed corresponding to external fac-
tors such as going uphill and downhill respectively, and button is used to turn on
or turn off the cc. The cc has three modes namely manual, cruise and disengaged
and these are represented by the first two bits of a bit vector consisting of 5-bits
for this particular case. Therefore mode=00 in the figure represents the manual
mode, mode=01 represents the cruise mode and mode=10 represents the disen-
gaged mode. Similarly, there are three strongly discretized values for speed which
are 0,1 and 2 represented in a bit vector as speed=00, speed=01 and speed=10 re-
spectively. This discretization of speed focuses on the essential switching properties
of the cc. In manual mode the cc can take any of the allowed values of speed, in
cruise mode only value 1 or speed=01 is allowed and in disengaged mode the cc can
have speed values of 0 or speed=00 respresenting too low speed or 2 or speed=10
representing too high speed. The last bit in the bit vector represents the cc button,
which can have values 0 or 1 representing the “off” and “on” states of the button.
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� �

Figure 2.1: 5-bit Cruise Controller

A 3-Floor Elevator
The 3-Floor elevator model is another typical embedded safety critical system, this
example has 38 states and an 8-bit vector for the output as shown in Figure 2.2.
This particular representation is as a hierarchical statechart which can be flattened
to a conventional FSM. The input alphabet set consists of the symbols {c1, c2,
c3, tick} where c1, c2 and c3 represent the calls to first, second and third floors
respectively and tick is a special input which models the clock representing the
passage of time. The 8-bit output vector consists of bits denoted by w1, w2, w3, cl,
Stop, @1, @2, and @3 respectively, where w1, w2 and w3 represent queued calls
to floors one, two and three respectively. The elevator door state is represented by
cl and its negation !cl represents an open door. The elevator motion is represented
by the Boolean variable Stop and its negation !Stop denotes the elevator is moving.
Similarly the bits @1, @2, and @3 represent the location of the elevator on floor 1,
floor 2 and floor 3 respectively.
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Figure 2.2: 3-Floor Elevator



Chapter 3

Learning Theory

Computational learning involves designing algorithms that attempt to infer a spe-
cific structure s∈ S (also called a target) from a set of structures S given some data
D = d1, ...,di, ...,dn about s. The data is a set or sequence of data elements and a
learning algorithm tries to either predict a response for some future unseen input
or simply summarizes the behaviour corresponding to the seen input in a compre-
hensible manner as an approximation h ∈ H of the actual system. Both s and h
are assumed to be functions taking input of the form d ∈ D. An approximation
need not be exact and does not necessarily explain everything about the target. It
is based on some subset of the inputs d ∈D on which both h and s closely agree
(assuming approximation is not exact).

If s∈S has known values for data elements di ∈D and these are used to actually
construct approximations h ∈H about s ∈ S then such learning is called supervised
learning. On the other hand if the function values s(di) for di ∈D are not known
then the data values are partitioned in an appropriate way by the learning algorithm
and this type of learning is called unsupervised learning. The learning will be
called exact if s(di) = h(di) for all di ∈ D. Exact learning typically involves the
use of an adequate teacher sometimes also called an oracle that can answer the
queries s(di) =? and whether s(di) = h(di) for all di ∈ D. The former are called
membership queries and the latter are called equivalence queries. Sometimes there
can be separate oracles to answer both these types of queries. If an oracle answers
equivalence queries then it may or may not provide counterexamples in case of
a negative answer to an equivalence query. If a counterexample is provided by
the oracle then the counterexample is from the set s(di)\h(di) or h(di)\ s(di) for
di ∈D.

Learning can be either active or passive in the context of systems where the
learner is interacting with its environment. Learning is termed active if the learning
algorithm (learner) decides on which data points it has to receive a response from
the environment. On the other hand if the environment provides responses to the
learning algorithm (learner) on some data points without being asked by it then

19
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the learning is termed passive.
A learning algorithm can be complete or sequential in nature. A complete learn-

ing algorithm will construct a single hypothesis h when it has gathered sufficient
information about the target and asks the equivalence query s = h. A sequen-
tial learning algorithm on the other hand will construct a sequence of hypotheses
h1,h2... after each membership query which finitely converge to s i.e hn = s for
some n ∈ N . If each hypothesis hi+1 is able to use the information from hypoth-
esis hi then the learning algorithm is termed incremental. Therefore incremental
learning is a special type of sequential learning. Equivalence queries in the case
of incremental/sequential learning algorithms are used to terminate the algorithm
when hypothesis h has become equal to the target s. The goal of complete learning
is to exactly learn s while the goal of sequential learning is to make best guess at
any time using available data.

Machine learning is used in several types of social, managerial and natural sci-
ences such as artificial intelligence, pattern recognition, cognitive science, adaptive
control and theoretical computer science to name a few. Many different compu-
tational structures can be learnt including functions, logic programs and rule sets,
finite state machines and grammars. In this thesis we will focus on finite state
machines and the algorithms that learn them. Some preliminaries concerning these
are given in the following sections:-

3.1 Strings and Languages

Let Σ be a finite set of symbols then Σ∗ denotes the set of all finite strings over
Σ including the empty string ε. We let Σω denote the set of all infinite strings
σ0,σ1, ... . A string α ∈ Σ∗, is termed a prefix of string γ if and only if there exists
a string β such that γ = αβ and we let Pref(γ) denote the set of all prefixes of
string γ. A subset of Σ∗ is called a formal language and is denoted by L. Recall
from Kleene’s Theorem that a formal language L accepted by a finite automaton
iff L is a regular language. Let Lreg1 and Lreg2 vary over regular languages then
a recursive definition of all regular languages can be given by:

Lreg ::= ∅ | {ε} | {a} | Lreg1∪Lreg2 | Lreg1 ·Lreg2 | L∗reg (3.1)

In other words, the empty language ∅ , the empty string language ε , the sin-
gleton language {a} where a ∈ Σ∗ are all regular languages. Similarly union “∪”
and concatenation “.” of two regular languages Lreg1 and Lreg2 is also a regular
language. The Kleene star construction L∗reg applied to a regular language also
gives a regular language.

If S1 and S2 are sets then S1⊕S2 denotes the symmetric difference of S1 and
S2 which means those elements that are either in S1 or S2 but not both. The
cardinality of the set S is denoted by |S|.
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3.2 Automata Learning

In this thesis our focus will be entirely on computational learning algorithms that
infer state machines and Kripke structures. The inputs of such algorithms are
strings that may be words of a regular language. For this reason these algorithms
are also referred to as regular inference algorithms. In a typical regular inference
algorithm there is a Learner which initially has no knowledge of the targetM. It
starts by asking queries to a Teacher and an Oracle. There are two basic types of
queries depending upon whether these are posed to a Teacher or an Oracle.

• A query to the Teacher is called a membership query in which the Learner
asks whether a given string α ∈ Σ∗ is in L(M) .

• A query to the Oracle is called an equivalence query in which the Learner
asks whether the approximation or hypothesis H has become equal toM or
not. If they are not equal the Oracle will provide a counterexample either
from L(M)\L(H) or L(H)\L(M).

There are many algorithms for learning state machines in the literature includ-
ing [Gold 1967], [Trakhtenbrot and Barzdin 1973], [Angluin 1981], [Angluin 1987],
[Rivest and Schapire 1993], [Dupont 1996], [Parekh et al. 1998], [Meinke 2010] and
[Kearns and Vazirani 1994]. Most algorithms are for complete learning of deter-
ministic finite automaton DFA such as [Angluin 1981] and [Angluin 1987]. How-
ever, some algorithms are for incremental learning such as [Parekh et al. 1998],
[Dupont 1996] and some for sequential learning such as [Meinke 2010]. All these
algorithms learn in the limit to yield a minimal approximation of the target. The
concept of learning in the limit for DFA was first introduced by E. M Gold in
[Gold 1967] where he showed that a regular language L(M) corresponding to a
DFAM can be guessed by a finite number of wrong guesses(hypotheses) aboutM
by using some inference or learning algorithm for DFAM. This work led to several
other contributions on the subject of learning theory and regular inference later on
including the algorithms which we will discuss in the next sections.

In the following sections we will survey examples of learning algorithms which
are particularly relevant to learning based testing (LBT), these are Angluin’s L*
algorithm introduced in [Angluin 1987] , Angluin’s ID algorithm introduced in
[Angluin 1981] and the IDS algorithm introduced in [Meinke and Sindhu 2010].

3.3 L* Algorithm

Angluin’s L* algorithm see [Angluin 1987] is one of the classical complete learning
algorithms in the literature on DFA learning. It accumulates information in the
form of a finite collection of observations organized in an observation table OT
which is a tuple OT = (P,S,T ) for a given alphabet Σ such that:

• P ⊆ Σ∗ is a non-empty prefix closed set. A set is prefix closed if and only if
every prefix of every member of the set is also a member of the set.
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• S ⊆ Σ∗ is a non-empty suffix closed set. A set is suffix closed if and only if
every suffix of every member of the set is also a member of the set.

• T : ((P ∪P.Σ)× S) → {acc,rej} is a function which satisfies the property
ps= p′s′ implying T (p,s) = T (p′,s′) for p,p′ ∈ P ∪P.Σ and ∀s,s′ ∈ S.

The strings in P ∪P.Σ are called row labels and strings in S are called column
labels. The upper part of the observation table is indexed by P and the lower
part is indexed by all strings which don’t already appear in the upper part of the
observation table and are of the form pα where p ∈ P and α ∈ Σ. The table is
column-wise indexed by strings of a suffix-closed set S . Each row label p ∈ P
and each column label s ∈ S is mapped to the set {acc,rej} by the function T . If
ps ∈ L(M) then the entry field corresponding to that row label and column label
will be acc otherwise it will be rej.

Function row(p) is a finite function from S to {acc,rej} for every p ∈ (P ∪P.Σ)
and is defined by row(p)(s) = T (p,s) or more simply row(p) represents the tuple
of entries in the observation table corresponding to the row labelled p. All distinct
rows of the form row(p) where p ∈ P represent the states of the hypothesis DFA.
The hypothesis or approximation DFA can be constructed from the observation
table using the rows labelled by P.Σ to construct the transition function for the
hypothesis DFA. Two conditions must however be fulfilled by the observation table
OT for the successful construction of the hypothesis which are:

1. closure

2. consistency

An observation table OT is closed if for each p1 ∈ P.Σ there exists p2 ∈ P such that
row(p1) = row(p2) and OT is consistent provided that whenever p1,p2 ∈ P such
that row(p1) = row(p2) then for all α ∈ Σ, row(p1.α) = row(p2.α). These are two
examples of what we term book keeping queries, i.e queries generated internally by
a learning algorithm. We may contrast these with queries generated externally by
components such as:

• an equivalence oracle

• a data file

• a model checker

• a human being

When the observation table OT is closed and consistent then the hypothesis DFA
H can be defined over alphabet Σ, with state set Q, initial state q0 ∈Q , accepting
states F ⊆Q and the transition function δ by:

• Q= {row(p) : p ∈ P},
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• q0 = row(ε)

• F = {row(p) : p ∈ P and T (p) = acc},

• δ(row(p),α) = row(p.α)

The L* algorithm maintains the observation table OT and the sets P and S are
both initialized to {ε}. Then L* will perform membership queries for each α ∈ Σ
and ε which will result in either an acc or rej for each query and corresponding
fields in each row of OT are filled with these values. Afterwards OT is checked
for consistency and closure. If it is not consistent then inconsistency is resolved by
finding two strings p1,p2 ∈ P , α ∈ Σ and s ∈ S such that row(p1) = row(p2) but
T (p1α,s) 6= T (p2α,s) and setting the new suffix αs to S and filling in the missing
fields by asking membership queries.

If OT is not closed then L* finds p ∈ P and α ∈Σ such that row(pα) 6= row(p′)
for all p′ ∈ P and appends pα to P . The missing fields in this case are also updated
through membership queries.

After a number of membership queries, when OT has become consistent and
closed then the hypothesisH can be constructed and checked for correctness against
the targetM by an equivalence query to the Oracle. If the answer to the equivalence
query is "yes" then L* terminates with a correct hypothesis H as output. Otherwise
the Oracle will provide a counterexample β, such that β ∈ L(M) ⇐⇒ β /∈ L(H))
and L* will extend OT with β and all its prefixes by asking membership queries.

3.4 ID Algorithm

The ID algorithm introduced in [Angluin 1981] is a complete learning algorithm.
Unlike L∗ it assumes the availability of a live complete set P of strings for the target
DFA A. A state qi ∈Q is said to be live if there exists a string σ1, ...,σi ∈ Σ∗ such
that δ∗(q0,σ1, ...,σi) = qi and qi ∈ F . The string itself will be termed a live string
and a set consisting of at least one such string for each live state of a given DFA
is called a live complete set and is denoted by P . A state that is not live will be
called a dead state. A canonical DFA has only one dead state.

The ID algorithm proceeds in the following steps:

1. Initializations: i= 0; vi = ε, V = {ε}, T = {P ∪f((α,β)|(α,β)∈P×Σ)}, where
i is a counter that will count the number of distinguishing strings v, V is the
set of all distinguishing strings v. P is the live complete set, f is a special
concatenation function such that f : P ′×Σ→ Σ′, where P ′ = P ∪{d0} and
Σ′ = Σ∗∪{d0}. Therefore for any α ∈Σ and β ∈Σ∗ implies f(d0,α) = d0 and
f(α,β) = αβ.

2. ID computes T ′ = P ′∪{f(α,β)|(α,β) ∈ P ′×Σ}, where α ∈ P ′ and β ∈Σ and
T = T ′ \{d0}.
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3. ID will construct a partition of set T ′ such that elements of T ′ that belong to
the same state of A fall on the same block of partition of T ′ which is given by
function E which is defined for i elements of set V such that Ei = T ′→ 2V

and Ei(d0) = ∅ and Ei(α) = {vj |vj ∈ V,0≤ j ≤ i,αvj ∈ L(A)} for all α ∈ T ′.

4. Compute the function E0 for v0 = ε, by setting E(d0) = ∅ and for all α ∈ T if
α ∈ L(A) then set E0(α) = ε otherwise set it to E0(α) = ∅.

5. Once Ei(α) has been computed for all α ∈ T ′, ID searches for a pair α,β ∈ P ′
and a symbol σ ∈Σ such that Ei(α) =Ei(β) but Ei(f(α,σ)) 6=Ei(f(β,σ)). If
such a pair is found then i+1th partition of T ′ is constructed by choosing some
string γ ∈Ei(f(α,σ))⊕Ei(f(β,σ)) and a new distinguishing string vi+1 = σγ
is defined by ID. The purpose of a distinguishing string is to identify states
which have same behaviour for a particular string α ∈ Σ∗ but have different
behaviour for a suffix σ ∈Σ. After identifying a distinguishing string Ei+1(d0)
is set to ∅ and for each remaining α ∈ T ′, ID asks the query whether αvi+1 ∈
L(A). If the answer is “yes” then Ei+1(α) is set to Ei(α)∪{vi+1} otherwise
it is set to Ei(α).

6. If ID finds no such pair then m= i. Thus for all α,β ∈P ′ and σ ∈Σ, Em(α) =
Em(β) implies Em(f(α,σ)) =Em(f(β,σ)). ID then constructs the hypothesis
DFA H which is isomorphic to A as under:

a) states of H are all sets Em(α) where α ∈ T ′

b) the set Em(ε) represents the initial state of H
c) The final states of H are the sets Em(α) where α ∈ T and ε ∈ Em(α)
d) For all σ ∈Σ the transition relation δ of H is constructed by adding self

loops to all states represented by Em(α) if Em(α) = ∅ otherwise δ is set
as δ(Em(α),σ) = Em(f(α,σ))

7. ID outputs the description of hypothesis H and stops.

3.5 IDS Algorithm

The IDS algorithm introduced in [Meinke and Sindhu 2010] is an incremental learn-
ing algorithm . It takes its basic idea from the ID algorithm. But unlike the ID
algorithm the IDS algorithm does not require the presence of a live complete set
to start the inference procedure. It builds the hypothesis incrementally after each
membership query. These membership queries are retrieved from a file S or an
interface which gives a sequential order to the stream of examples. It assumes the
availability of a learned teacher A (which is a DFA) like the previous two algorithms
and it also assumes a stream of labelled examples as input. A labelled example for a
DFA A is a pair such that (α,label(α)) where α∈Σ∗ and label(α) = acc if α∈L(A)
and label(α) = rej if α /∈ L(A), the former is called a positive example for A and
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later a negative example for A. Thus IDS algorithm constructs a family of hypoth-
esis H1,H2, ... after reading each labelled example. Let Hm denotes the hypothesis
inferred after observing m examples. Initially H0 is the initial hypothesis which
is an automaton having transitions for all single character transitions in S, α ∈ Σ
read from the initial state to corresponding next states. Afterwards H0 is extended
for each labelled example (α,label(α)) received later. Each example is checked for
consistency against Hm (i.e whether Hm correctly accepts/rejects α), if α is consis-
tent with Hm then Hm+1 =Hm otherwise Hm is suitably modified to yield Hm+1
which is consistent with α. The steps for IDS algorithm are given below the sets
P, P ′, T, T ′, V and functions Pref(α), Ei(α), f(α,β) where α ∈Σ∗and β ∈Σ will
remain the same as in Section 3.4:

1. Initializations: i= 0; k = 0; m= 0; v0 = ε, V = {v0}

2. P0 = {ε}, P ′0 = P0∪{d0}, T0 = P0∪Σ, T ′0 = T0∪{d0}

3. Set E0(d0) = ∅ and for all α ∈ T0 if α ∈ L(A) then E0(α) = ε , otherwise
E0(α) = ∅.

4. Refine the partition of set T ′m as described in point 5 section 3.4 above.

5. Construct the representation of hypothesis automataHm as described in point
6 section 3.4 above

6. Wait for a new labelled example (α,label(α)) and check its consistency with
Hm, if it is consistent then Hm+1 =Hm and go to step 6. Otherwise k = k+
1, m=m+1, Pk =Pref(α)∪Pk−1, P ′k =Pk−1∪{d0}, Tk = Tk−1∪Pref(α)∪
{f(α,β)|(α,β) ∈ Pk \Pk−1×Σ}, T ′k = Tk−1 ∪{d0} and for all α ∈ Tk \Tk−1
fill in the entries of Ei(α) using membership queries according to the function
definition: Ei(α) = {vj |0≤ j ≤ i,αvj ∈ L(A)}, go to step 4.

3.6 L* Mealy Algorithm

Another complete learning algorithm was given by [Niese 2003] for the inference of
Mealy machines. It is different from the above algorithms in the sense that it is for
multi-bit output. The above mentioned algorithms are all DFA learning algorithms
and deal with one bit output.

This algorithm works under the same assumptions as L*. In particular it
requires the availability of an adequate teacher, an oracle to answer equivalence
queries and it asks the same type of membership queries like as L*. It constructs
a hypothesis when suitable information has been accumulated in the observation
table OT to construct one. The contrasting feature of this algorithm with L* how-
ever is that it looks at the output symbols produced by the SUT in response to
input strings rather than their accepted/rejected status by SUT as in L*.

In Niese’s approach the SUT can be assumed to be modeled by a target Mealy
machine which we refer to as MlyT = 〈Σ,ΩT ,QT , q

T
0 , δT ,λT 〉. The SUT will not
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provide accept/reject responses instead it will provide a response ω from a set ΩT

of output symbols. The observation table OT entries will consist of strings from
Ω∗T . The function T maps row and column labels to strings of output symbols and
can be defined as T : ((P ∪P.Σ)×S)→ Ω∗T . T (p,sσ) is changed to ω by iterative
output function λT (δT (qT

0 ,ps),σ) = ω where p∈P , sσ ∈ S, σ ∈Σ and ω ∈Ω∗T . The
range of function row(p) is changed from row(p) : S → {acc,rej} to cater for the
Mealy style output as row(p) : S→Ω∗T and the finite function row(p) is defined as
row(s)(e) = T (s,e). When the observation table has become closed and consistent
after the accumulation of adequate informationMlyH can be constructed by:

• Ω = {T (p,σ)|p ∈ P,σ ∈ Σ}

• Q= {row(p)|p ∈ P}

• q0 = row(ε)

• δ(row(p),σ) = row(pσ)

• λ(row(p),σ) = T (p,σ)

After the construction of the hypothesis an equivalence query is run on this hypoth-
esis and in case of negative answer from the equivalence oracle, a counterexample
which in this case is an input with different output forMlyH andMly is returned
otherwise, in case of a positive answer from the equivalence oracle the L* Mealy
algorithm will terminate.

3.7 Other Algorithms

In addition to the L*, ID, IDS and L* Mealy algorithms which were described in
the preceding sections there are many other learning algorithms as mentioned in
Section 3.2. They have different features of their own depending upon the number
of bits in the output and type of system (e.g Moore, Mealy, Kripke etc) they learn.
Most of them are complete learning algorithms. From the point of view of testing,
a complete learning algorithm is less efficient than an incremental or sequential
learning algorithm for the following reasons:

1. Real software systems can be too complex to be completely learned in a
reasonable time.

2. Testing of functional requirements in software systems often correspond to
the identified use case(s) and therefore testing a particular requirement does
not require the whole system to be tested.

3. Membership queries can be expensive in terms of execution time of the learn-
ing algorithm as observed in [Bohlin and Johnson 2008].
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4. Due to the high cost of membership queries, ideally each one of them should be
derived from the behavioral analysis of the hypothesis automaton (as these
can become interesting test cases), while queries for internal book keeping
should be minimal.

For these reasons we will focus on algorithms which construct hypotheses either
incrementally or sequentially. Two algorithms already seem particularly useful in
this context. The first was given by Dupont (see [Dupont 1996]) and the second
was given by Meinke (see [Meinke 2010]). Both these algorithms are sequential in
nature.

RPNI2 Algorithm
Dupont’s RPNI2 algorithm is based on the concept of positive and negative in-
ference which itself is an extension of RPNI algorithm which was introduced by
Oncina and Garcia in [Oncina and Garcia 1992]. The RPNI algorithm requires the
positive and negative information to be given as a whole which renders it irrel-
evant for learning based testing when new learning data becomes available as it
continues from where it finished and the whole process has to be restarted. The
RPNI2 algorithm removes this discrepancy of the RPNI algorithm and modifies
it for a sequential setting, where negative and positive information is served to it
in a random order and one at a time. It performs a recursive depth first search
with backtracking of a lexicographic state set. The state set of the hypothesis is
represented by computing an equivalence relation on input strings. It computes a
quotient automaton, performs consistency checking by parsing and then constructs
a non-deterministic hypothesis automaton which is later transformed into a deter-
ministic automaton as output. Dupont showed that both these algorithms converge
at the same rate and proved that RPNI2 will learn in the limit.

CGE Algorithm
The CGE algorithm is a sequential learning algorithm for Mealy automata. It
uses techniques from term rewriting theory and universal algebra to represent and
manipulate automata using finite congruence generator sets. This algorithm has
been proved to correctly learn in the limit. The CGE algorithm also performs a
recursive depth first search of lexicographic state set with backtracking. But unlike
RPNI2 which learns Moore automata the CGE algorithm is for learning Mealy
automata. It uses a purely symbolic approach in which congruence generator sets
are represented as string re-write systems (SRS) which are then used to compute
normal forms of states. It therefore doesn’t require the construction of quotient
automata and a consistency check through parsing, further the hypothesis is always
maintained as a deterministic automaton in CGE. In contrast to all four algorithms
discussed in the previous sections both RPNI2 and CGE algorithms don’t require
any internal book keeping queries to yield a hypothesis.
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IKL Algorithm

The IKL algorithm is a multi-bit extension of the IDS algorithm. A detailed version
of this algorithm appears in Appendix B of this thesis. Here we discuss only the
salient features of this algorithm. The IDS algorithm learns deterministic finite
automata DFA with one bit output and IKL extends this to learn deterministic
Kripke structures with k-bit output using the ideas of bit slicing and lazy partition
refinement. This is essential for practical testing of reactive systems as such systems
are not limited to one bit output. The approach used in IKL is to bit slice the output
of a k-bit Kripke structure A to k individual Kripke structures A1, ...,Ak with 1-bit
output. These component Kripke structures can be learnt by any regular inference
algorithm such as IDS. The inferred Kripke structures B1, ...,Bk are recombined
using a subdirect product into a k-bit Kripke structure which is behaviourally
equivalent to A. The basic idea of IKL is to construct a family of k different
equivalence relations E1

i1
, ...,Ek

ik
in parallel for the elements of set T ′ representing

state names which is shared among all 1-bit (bit sliced) Kripke structures. For each
equivalence relation Ej

ij
a set of distinguishing strings Vj is iteratively generated and

equivalence classes in Ej
ij
are modified until a congruence is reached. The concept of

lazy partition refinement here means to reuse each distinguishing string v wherever
possible to refine any equivalence relation Ej

ij
which is not yet a congruence, on the

other hand if it is already a congruence then it is not refined further. This helps in
minimizing the internal book keeping queries of the IKL algorithm which are not
useful from the perspective of testing as these usually do not make interesting test
cases.

A summary which compares the features of the algorithms discussed so far is
given in Table 3.1.

No Algorithm
Learned
Au-

tomata
Learning
Type

Book
Keeping
Queries

Bits in
output

Consistency
Check

Closure
Check

1 L∗ Moore Complete Yes 1 Yes Yes
2 ID Moore Complete Yes 1 Yes Yes
3 IDS Moore Incremental Yes 1 Yes Yes
4 L∗Mealy Mealy Complete Yes k ≥ 1 Yes Yes
5 RPNI2 Moore Incremental No 1 Yes Yes
6 CGE Mealy Sequential No k ≥ 1 No No
7 IKL Moore Incremental Yes k ≥ 1 Yes Yes

Table 3.1: Learning algorithm comparison
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3.8 Basic Complexity Results

Since we want to use an efficient learning algorithm for our testing framework
it is appropriate to discuss the complexity properties of these algorithms. The
complexity of a learning algorithm is usually described in terms of queries generated
by it to construct a hypothesis. The basic time complexities in terms of queries
generated by the algorithms discussed above is shown below in the Table 3.2. The
number of states in the automaton is represented by N , the length of the longest
counterexample in case of L∗ and L∗Mealy algorithms is denoted by M. The size of
the set of input alphabet for the automaton used in the table is represented by |Σ|.
The size of a live complete set in case of ID algorithm is represented by |P | and
similarly |Pk| represents the size of the live complete set in case of the IDS and IKL
algorithms for some k examples of the target and l in case of the IKL algorithm is
the size of the bit vector. In case of RPNI2, Sp ⊆ L(A) is a positive sample and
|Sp| represents its size similarly Sn ⊆ L′(A) represents a negative sample and |Sn|
represents its size. In case of CGE, n represents the longest acyclic path in the
automaton A.

No Algorithm Time Complexity O(Queries)
1 L∗ O(|Σ|.N2M)
2 ID O(|Σ|.|P |.N)
3 IDS O(|Σ|.|Pk|.N)
4 IKL O(|Σ|.|Pk|.Nl)
5 L∗Mealy O(max(N,Σ).|Σ|.NM)
6 RPNI2 O((|Sp|+ |Sn|)|Sp|2)
7 CGE O(|Σ|2n)

Table 3.2: Learning algorithm time complexities

In a testing context, each query should ideally be an interesting test case but in
practical situations this is not possible due to the reasons described at the beginning
of Section 3.7. From a testing perspective a learning algorithm will be termed
efficient compared to another learning algorithm if it can generate a query which
can yield an interesting test case earlier than the others. In other words how many
unique test cases it can generate before complete learning the target compared to
other learning algorithms.





Chapter 4

Model Checking

4.1 Introduction

Although we will make use of model checking as a black-box, it is useful to have
some insight into what model checkers do and how they do it. This chapter will
cover a brief review of preliminaries in the field of model checking.

4.2 Basic Ideas

During the last decade or so the paradigm of model checking has become a powerful
approach to automatic verification of a diverse class of systems e.g communication
protocols, digital circuits, reactive systems etc. A model checker is an algorithm
for analyzing the satisfiability of a logical formula φ that describes the behaviour
of the system respresented as some kind of automaton usually a Kripke structure
also called the model of the system and denotedM. Usually the formula φ is taken
from a temporal logic such as LTL, CTL or CTL*. We will explain more about
these logics in Section 4.3. Temporal logic is useful in describing dependencies
between actions or events where one action or event is supposed to occur before
or after another action or event. If the specification φ satisfies the modelM then
the model checker will report the specification to be true. On the other hand if the
specification φ is violated by the model M then the model checker will report an
error and may or may not construct a witness (a counterexample such as a path
or a state) to the violation of property. Model checkers that report witnesses or
counterexamples to the violation of a specification are especially useful in the field
of automated testing because the counterexample can be used as an interesting test
case input to SUT.

31
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4.3 Temporal Logic

Temporal logics constitute systems of rules and notations pertaining to the repre-
sention of propositions qualified in terms of time which enable us to reason about
such propositions. These logics are specific kinds of modal logics and have spe-
cial modal operators to deal with time. The most common type of temporal logic
is called Linear Temporal Logic (LTL) which was introduced into computer sci-
ence by Amir Pnueli in [Pnueli 1977]. Other categories of temporal logics include
Computational Tree Logic (CTL) also called Branching Time Logic introduced by
[Clarke and Emerson 1982], CTL* given by [Emerson and Halpern 1982] , Hennesy
& Milner Logic (HML) given by [Hennessy and Milner 1985] and Modal µ-calculus
given by [Kozen 1983] to name a few.

Linear Temporal Logic (LTL)
Linear time temporal logic or linear temporal logic (LTL) is the most commonly
used logic in model checking and it provides us with connectives with which we can
refer to time in the future. Time can be extended infinitely into the future as a
discrete sequence of states with the help of LTL. Any such particular sequence of
states is called a path of the system. Since the future may not be deterministic,
there can be several such future sequences of states and any one of them may be
the actual path of the system.

Definition.

A path π :=< q0, q1, ... > in a deterministic Kripke structure K corresponding to
an infinite word w = σ0,σ1... ∈ Σω is an infinite sequence such that ∀i≥ 0 : qi+1 =
δ(qi,σi) for K and q0 is the initial state of K.

Syntax of LTL
Definition.

Propositional linear temporal logic has the following syntax given in Backus Naur
Form (BNF)

φ ::=⊥ | > | p ∈AP | ¬φ | φ1∧φ2 | φ1∨φ2 | φ1→ φ2 |#φ | ♦φ |�φ | φ1∪φ2 (4.1)

The symbols ⊥ ,>, ¬, ∧, ∨ and → are the usual Boolean connectives which
have the same meaning in LTL as in propositional logic. The operators #, ♦, �
and ∪ are the temporal connectives. Here # means that φ is true in the next state,
♦ means that φ is true in some future state, � means that φ is true in all future
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states including the current state and ∪ is the binary LTL operator which means
that φ1 will remain true until the state where φ2 becomes true is reached. We
can also mention two more LTL operators W and R which stand for Weak Until
and Release respectively however they will not be used in this thesis. The precise
semantics of the LTL formulas above is given in next section.

Semantics of LTL
Let K be a deterministic Kripke structure which models our system and φ ∈ LTL
be a property we want to investigate. If φ is satisfied by the path π in K we can
write, K,π |= φ or simply π |= φ if K is obvious from the context. On the other
hand we write K,π 6|= φ if φ is not satisfied by the path π in the model K or simply
π 6|= φ.

We let Paths(K,q0) denote the set of all paths in our model K starting in state
q0, where q0 ∈Q is the initial state of K.

Definition.

For a given deterministic Kripke structure K = 〈Q,Σ, δ,q0,λ〉, and a given path
π ∈ Paths(K,q) where p ∈ AP and q ∈ Q, the satisfaction relation K,π |= φ for
LTL formulas is inductively defined on the structure of φ as follows:

K,π 6|=⊥ (4.2)
K,π |=> (4.3)
K,π |= p ⇐⇒ p ∈ δ∗(q0,σ0, ...,σi) (4.4)
K,π |= ¬φ ⇐⇒ K,π 6|= φ (4.5)
K,π |= φ1∧φ2 ⇐⇒ K,π |= φ1∧K,π |= φ2 (4.6)
K,π |= φ1∨φ2 ⇐⇒ K,π |= φ1∨K,π |= φ2 (4.7)
K,π |= φ1→ φ2 ⇐⇒ K,π 6|= φ1∨K,π |= φ2 (4.8)
K,π |= #φ ⇐⇒ K,π1 |= φ (4.9)
K,π |= ♦φ ⇐⇒ ∃i ∈ N : K,πi |= φ (4.10)
K,π |= �φ ⇐⇒ ∀i ∈ N : K,πi |= φ (4.11)

4.4 Model Checking

Model checking aims to determine the correctness of a given property for a given
model. Several algorithms have been designed and studied for this purpose such as
explicit model checking see [Lichtenstein and Pnueli 1985], symbolic model checking
see [McMillan 1993] and bounded model checking see [Biere et al. 1999]. These
algorithms can verify correctness properties expressed in several different kinds of
temporal logics including LTL discussed in Section 4.3.
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Explicit model checking was the first successful approach developed for model
checking. In this case the state space is explicitly represented and its forward
exploration is done to discover the violation of a property. For verification of LTL
properties for example the negation of an LTL property φ is represented as a Buchi
automaton. If the language intersection for the model and Buchi automaton is not
empty then this represents a violation of the property φ. This counterexample will
be a path from the initial state to a state violating the property. This approach
has been used in the SPIN model checker (see [Holzman 1997]).

Symbolic model checking uses binary decision diagrams (BDD) see [McMillan 1993]
to model states and function relations on these states. This gives the advantage
of expressing larger state spaces using this approach as compared to the explicit
model checking approach. But on the other hand the large number of BDD vari-
ables impedes performance and the ordering of BDD variables adversely impacts
the overall size of the described models.

The bounded model checking approach solves the model checking problem as a
constraint solving problem (CSP). This allows the use of satisfiability solvers (SAT)
to construct counterexamples up to a certain upperbound. As long as the boundary
is not very big this approach is very efficient. The NuSMV model checker see
[NuSMV 2.5.2] described in the next section uses the latter two approaches. We
chose NuSMV instead of the SPIN model checker for the implementation of our
incremental learning-based testing framework due to the following reasons:

• NuSMV uses the BDD approach which allows the representation of models
with larger state space as compared to explicit state approach used in SPIN.

• Extracting counterexamples from the SPIN model checker is not trivial. This
is because SPIN just provides a linear trace of states while the IKL learning
algorithm requires input in the form of a string of input symbols read to
reach that state. This can be handled in SPIN by modifications in the code
of the described model to output the input alphabet read from each state
while the model checker traverses that state. But still it will require special
filtering code to extract the counterexample from the SPIN output after the
verification of property. This job is however much less cumbersome in the
case of NuSMV as it provides both the state trace and the input symbol trace
from initial state to the state violating the property. The counterexample
can be filtered from the NuSMV output with much more ease compared to
SPIN. We do the filtering of counterexample from NuSMV output by using
Java language’s string manipulation features.

4.5 NuSMV Model Checker

The NuSMV [NuSMV 2.5.2] model checker is a symbolic model checker developed
as a joint project by several universities of USA and Europe. It supports BDD
based model checking see [McMillan 1993] as well as propositional satisfiability
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(SAT) based model checking see [Biere et al. 1999]. It supports the expression of
specifications in both LTL and CTL for both BDD based and SAT based model
checking. It supports the use of heuristics to control state space explosion and
enhance performance. The input language of NuSMV is SMV which is used to
provide description of models.

SMV Language
The SMV language is the input language of the NuSMV model checker. It provides
constructs to efficiently describe models as finite state machines. A small example
of a simple cruise controller model description in SMV language is given below in
Figure 4.1. The constructs of the SMV language that will be used in this thesis are
MODULE, VAR, IVAR, ASSIGN, SPEC and LTLSPEC. The MODULE construct
is used to define a method in SMV language. In our case we will be defining the
main method with the help of this construct. The VAR construct is used to describe
the state variables in the model. The IVAR construct is used to express the input
variables in model. The ASSIGN construct is used to define the transitions between
different states of the finite state machine which in our case will be a deterministic
Kripke structure.The LTLSPEC construct is used to write an LTL formula against
which the behaviour of the model will be verified by NuSMV. Commenting a piece
of text is done by a double dash “–”.

Expressing LTL in NuSMV
NuSMV also provides operators to express LTL formulas using the LTLSPEC re-
served word. The global operator � in LTL is written as G , the eventually or future
operator ♦ is written as F and next operator © is written as X in SMV language.
Some examples of such properties for reactive systems described in Section 2.2 are
given below:

1. G(mode = 01 & speed = 01 & input = dec -> X(speed = 01) )

2. G(mode = 01 & speed = 01 & input = gas -> X(mode = 10) )

These two are the safety properties for the cruise controller described in Section 2.2.
The property 1 describes the speed maintenance by cruise controller when going
uphill. Here mode = 01 (first 2 bits of the bit vector) means the vehicle is in cruise
mode and speed = 01 (3rd and 4th bits of the bit vector) means that the vehicle
is moving with the allowable cruise speed. The input = dec means that vehicle
is being decelerated externally like going uphill. The right side of the implication
shows that the cruise controller should maintain its cruise speed while going uphill.
The second property is also a safety property which shows that vehicle is disengaged
(mode = 10 ) when gas-pedal is pressed (input = gas) in the cruise mode (mode =
01).
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MODULE main()

VAR 

mode : {manual, cruise, disengage}; 
button : {on, off};
break_pedal : boolean; 
gas_pedal : {0,1,2}; --cruise mode will work only for values 1. 

ASSIGN

init(mode) := manual;
init(break_pedal) := FALSE; 
init(gas_pedal) := 0; 

NEXT(mode) := case 

mode = manual & (gas_pedal = 1 | gas_pedal = 2 ) & button = off : manual; 
mode = manual & (gas_pedal = 1 ) & (button = off & next(button = on)) : cruise; 
mode = cruise & !break_pedal & (gas_pedal = 1 ) & button = on : cruise; 
mode = cruise & (break pedal | gas_pedal = 0 | gas_pedal = 2) & button = on : disengage; 
mode = disengage & ((button = on & next(button = off)) | gas_pedal = 0) : manual; 
TRUE : mode; 
esac; 

LTLSPEC --one property at a time after this reserve word e.g the progress property shown below 
G(mode = manual → F (mode = cruise)) | G(mode = cruise → F (mode = manual ))

Figure 4.1: SMV code for a simple cruise controller



Chapter 5

Conclusions and Future Work

5.1 Summary

In chapters 1-4 we have provided a literature survey where we have seen the ex-
isting testing techniques and presented their salient features. We compared and
contrasted the features of different testing and verification techniques. Both of
these are intended to yield a defect free software. But testing alone (no matter how
exhaustive) can not be used as a guarantee for correct software. Verification on
the other hand is not feasible for large systems used in practice. But as they have
a common goal but complementary nature there is a need to develop an “inter-
mediate” approach. This approach should exploit complementary nature of both
testing and verification. From this point of view, verification techniques such as
model checking can be combined with a model inference/regular inference algo-
rithm to generate test cases. Therefore a review of regular inference algorithms in
the literature with their pros and cons and complexity properties in the context of
software testing were discussed in Chapter 3.

In this thesis we have introduced a novel approach which combines the fea-
tures of both testing and verification to test systems. This was done by integrating
a verification tool (NuSMV model checker) with an incremental regular inference
algorithm (IKL) for multi-bit output to generate test cases to yield the LBT frame-
work. The IKL algorithm is an extension of the IDS algorithm which is for one bit
output of DFA. The IDS algorithm and the experimental results to determine its
suitability for learning-based testing are presented in Paper 1 appended with this
thesis. Our research shows that making use of incremental learning for software
testing is more efficient than existing similar approaches that use complete learning
for this purpose. These results and the whole learning-based testing architecture
can be seen in Paper 2 appended with this thesis.
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5.2 Contributions of the thesis

The contribution of this thesis to the field can be summarized in the following
points:-

• We developed new incremental learning algorithms for DFA and Kripke struc-
tures.

• a black-box specification-based testing architecture for reactive systems (fol-
lowing the LBT paradigm).

• an implementation of this architecture

• evaluation results which support the thesis that the LBT is an effective testing
methodology.

5.3 Author’s personal contribution

The work on this thesis led to the following two papers:

Paper 1
An abridged version of this paper with IDS algorithm and without some proofs have
been submitted to the Conference on Algorithmic Learning Theory (ALT 2011).

The IDS algorithm presented in this paper was developed jointly during discus-
sions with my supervisor. I also worked on parts of the proof of correctness. I did all
the implementation and performed the experimental evaluation of this algorithm.

Paper 2
K. Meinke and M. Sindhu, Incremental Learning-based Testing for Reactive Sys-
tems, pp 134-151 in M. Gogolla and B. Wolff (eds) Proc Fifth Intl. Conf. on Tests
and Proofs (TAP 2011) LNCS 6706, Springer Verlag, 2011.

The IKL algorithm for Moore machines with multi-bit output and the corre-
sponding LBT framework presented in this paper were jointly developed during
discussions with my supervisor. I did all the implementation and experimental
evaluation of this framework.

5.4 Future Work

In the short term we envisage to do several optimizations to the current LBT
framework. These include optimizing the oracle. Currently the oracle is used
only for model checker generated queries but in future we could extend it to give
a verdict on random as well as book keeping queries. This seems possible for
some LTL properties. The IKL algorithm can also be improved further by using
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a minimization on the product automaton. This will enhance performance of the
system when the product automaton generated is relatively large and can be highly
non-minimal. We also plan to automate bit slicing of specification formulas as
currently this is done manually.

In the long term this research can be extended to several different areas which
include:

• graphical requirements languages that replace temporal logic

• hybrid / realtime automata

• more complicated case studies (MBAT project)

• abstraction to deal with SUT complexity i.e. non Boolean SUTs





Bibliography

[Amman and Offutt 2008] P. Amman, J. Offut, Introduction to Software Testing,
1st Ed, Cambridge University Press, 2008. ISBN 978-0-
521-88038-1

[Angluin 1981] D. Angluin, A note on the number of queries needed to
identify regular languages, Information and Control, 51:76-
87, 1981

[Angluin 1987] D. Angluin, Learning regular sets from queries and coun-
terexamples, Information and Computation, 75:87-106,
1987

[Biere et al. 1999] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without bdds. In Tools and Algorithms
for Construction and Analysis of Systems, In TACAS’99,
March 1999.

[Boehm 1979] B. W. Boehm, Software Engineering; ’R & D Trends and
defence needs.’ In Research Directions in Software Technol-
ogy. Wegner, P.(ed.). Cambridge, Mass.:MIT Press. 1-9.

[Bohlin and Johnson 2008] T. Bohlin, B. Johnson, Regular inference for commu-
nication protocol entities, Tech Report 2008-024, Dept. of
Information Technology, Uppsala University, 2008.

[Burch et al. 1992] J. Burch, E. Clarke, K. McMillan, Symbolic model check-
ing: 1020 states and beyond. Inf. Comput. 98, 142–170.

[Clarke et al. 2003] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith,
Counterexample-guided Abstraction Refinement for Sym-
bolic Model Checking. Journal of the ACM, Vol 50,
2003.doi: 10.1145/876638.876643.

[Clarke and Emerson 1982] E M. Clarke and E. A Emerson. Design and synthesis
of synchronization skeletons using branching-time tempo-
ral logic. In Logic of Programs, Workshop, pages 52-71,
London, UK, 1982. Springer-Verlag. ISBN 3-540-11212-X

41



42 BIBLIOGRAPHY

[DeMillo et al. 1978] R. A DeMillo, R. J Lipton and F. G Sayward, Hints on
test data selection: Help for the practicing programmer,
IEEE Computer, vol. 11, pp 34-41, April 1978.

[Dijkstra et al. 1972] E. W Dijkstra, O. J Dahl, C. A. R Hoare, Structured Pro-
gramming. London: Academic Press 1972.

[Dupont 1996] P. Dupont, Incremental regular inference, pp 222-237 in:
L.Miclet and C.Huguera (eds) Proceedings of the Third
ICGI-96, LNAI 1147, Springer, 1996.

[Emerson and Halpern 1982] E. A Emerson and J. Y Halpern, Decision proce-
dures and expressiveness in the temporal logic branching
time. In STOC’82:Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages 169-180,
New York,NY,USA, 1982. ACM Press. ISBN 0-89791-070-
2. doi:10.1145/800070.802190

[Flanagan et al. 2002] C. Flanagan, K.R.M Leino, M. Lillibridge, G. Nelson,
J. B Saxe and R. Stata, Extended static checking for
Java, In proc. Conference on Programming Language
Design and Implementation, pages 234–245, 2002. doi:
http://doi.acm.org/10.1145/512529.512558

[Fraser et al. 2009] G. Fraser, F. Watowa, P. E Ammann, Testing with model
checkers: a survey. Software Testing, Verification and Re-
liability, 19(3): 215-261, 2009.

[Gold 1967] E. M. Gold, Language identification in the limit. Informa-
tion and Control, 10(5):447-474,1967.

[Groce et al. 2006] A. Groce, D. Peled, M. Yannakakis: Adaptive Model
Checking. Logic Journal of the IGPL 14(5): 729-744, 2006.

[Hamlet 2002] Hamlet. R, Random Testing. Encyclopedia of Software En-
gineering. 2002.

[Helke et al. 1997] S. Helke, T. Neustupny and T. Santen, Automating Test
Case Generation from Z Specifications with Isabelle, pp
52-71 in LNCS, Springer-Verlag 1997.

[Hennessy and Milner 1985] M. Hennessy and R. Milner, Algebraic laws for nonde-
terminism and concurrency. J. ACM, 32(1):137-161, 1985.
ISSN 0004-5411. doi: 10.1145/2455.2460

[Holzman 1997] G. J Holzman, The model checker SPIN. IEEE Trans.
Softw. Eng., 23(5):279–295, 1997. ISSN 0098-5589. doi:
10.1109/32.588521.



BIBLIOGRAPHY 43

[Jorgensen 2007] P. C Jorgensen, Software Testing, A Craftman’s Approach,
3rd Ed, Auerbach Publications, 2007. ISBN 978-0-8493-
7475-3

[Kearns and Vazirani 1994] M. J. Kearns and U. V. Vazirani, An introduction to
computational learning theory. MIT Press, 1994.

[Kozen 1983] D. Kozen, Results on the propositional mu-calculus. Theor.
Computational Science. 27:333-354, 1983

[Lichtenstein and Pnueli 1985] O. Lichtenstein and A. Pnueli, Checking that finite
state concurrent programs satisfy their linear specification.
In POPL ’85: Proceedings of the 12th ACM SIGACT-
SIGPLAN symposium on Principles of programming lan-
guages, pages 97–107, New York, NY, USA, 1985. ACM
Press. ISBN 0-89791-147-4. doi: 10.1145/318593.318622.

[McMillan 1993] K.L. McMillan. Symbolic model checking. In Kluwer Aca-
demic Publ., 1993.

[Meinke 2004] K. Meinke, Automated Black-Box Testing of Functional
Correctness using Function Approximation, pp 143-153 in:
G. Rothermel (ed) Proc. ACM SIGSOFT Int. Symp. on
Software Testing and Analysis, ISSTA 2004, Software En-
gineering Notes 29(4), ACM Press, 2004.

[Meinke 2010] K. Meinke, CGE: A Sequential Learning Algorithm for
Mealy Automata pp 148-162 in J. Sempere and P. Garcia
(eds) Proc. Tenth Int. Colloq. on Grammatical Inference
(ICGI 2010), LNCS, Springer Verlag, Berlin, 2010.

[Meinke and Niu 2010] K. Meinke and F. Niu, A Learning-based approach to Unit
Testing of Numerical Software, in Proc. ICSTSS 2010, Lec-
ture Notes in Computer Science, Springer Verlag, 2010.

[Meinke and Sindhu 2010] K. Meinke and M. Sindhu, Correctness and Perfor-
mance of an Incremental Learning Algorithm for Finite
Automata, technical report, School of Computer Science
and Communication, Royal Institute of Technology, Stock-
holm, 2010.

[Meinke and Sindhu 2011] K. Meinke and M. Sindhu, Incremental Learning-based
Testing for Reactive Systems, pp 134-151 in M. Gogolla
and B. Wolf (eds) Proc Fifth Int. Conf on Tests and Proofs
(TAP 2011) LNCS 6706, Springer Verlag, 2011.



44 BIBLIOGRAPHY

[Niese 2003] Oliver Niese, An integrated approach to testing complex
systems. Technical report, Dortmund University, 2003.
Dissertation.

[NuSMV 2.5.2] The NuSMV Model Checker, http://nusmv.fbk.eu/

[Offut 1991] J. Offut, Constraint-Based Automatic Test Data Genera-
tion. IEEE Transactions on Software Engineering, 17:900-
910, 1991.

[Oncina and Garcia 1992] J. Oncina, P. Garcia, Inferring regular languages in poly-
nomial update time. In N. Perez de la Blanca, A. Sanfe-
liu, and E. Vidal, editors, Pattern Recognition and Image
Analysis, volume 1 of Series in Machine Perception and
Artificial Intelligence, pages 49-61. Word Scientific, 1992.

[Parekh et al. 1998] R.G. Parekh, C. Nichitiu and V. G Honavar. A polynomial
time incremental algorithm for regular grammar inference,
in: Proc. Fourth ICGI-98, Springer, 1998.

[Peled et al. 1999] D. Peled, M.Y. Vardi, M. Yannakakis, Black-box Checking,
in J. Wu et al. (eds), Formal Methods for Protocol Engi-
neering and Distributed Systems, FORTE/PSTV, 225-240,
Beijing, 1999, Kluwer.

[Pnueli 1977] A. Pnueli, The temporal logic of programs. In 18th An-
nual Symposium on Foundations of Computer Science,
31 October-2 November, Providence, Rhode Island, USA,
pages 46-56. IEEE, 1977

[Raffelt et al. 2008] H. Raffelt , B. Steffen and T. Margaria, Dynamic Test-
ing Via Automata Learning, pp 136-152 in: Hardware and
Software: Verification and Testing, Lecture Notes in Com-
puter Science, Vol. 4899, Springer, 2008.

[Rivest and Schapire 1993] Ronald. L. Rivest and R. E. Schapire, Inference of fi-
nite automata using homing sequences. Information and
Computation, 103:299-347, 1993.

[Sommerville 2009] I. Sommerville, Software Engineering 9, Pearson Edu.
Addison-Wesley Publishers, 2009, Boston, , 9th Edition,
ISBN 13:978-0-13-705346-9.

[Trakhtenbrot and Barzdin 1973] B. A. Trakhtenbrot and J. M. Barzdin, Finite
automata: behaviour and synthesis. North-Holland, 1973.



BIBLIOGRAPHY 45

[Tretmans 1996] J. Tretmans, Conformance Testing with Labelled Transi-
tion Systems: Implementation Relations and Test Genera-
tion. Computer Networks and ISDN System, 29(1): 49-79,
1996. doi: 10.1016/S0169-7552(96)00017-7.

[Utting and Legeard 2006] M. Utting and B. Legeard, Practical Model-Based Test-
ing: A Tools Approach, Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA, 2006. ISBN 0123725011

[Walkinshaw et al. 2010] N. Walkinshaw,K. Bogdanov, J. Derrick & J. Paris, In-
creasing functional coverage by inductive testing: a case
study Proc. Twenty Second IFIP Int. Conf. on Testing Soft-
ware and Systems (ICTSS 2010), Springer, 2010, 126-141

[Wichmann et al. 1995] B. Wichmann, A. Canning, D. L Clutterbuck, L. A Wins-
borrow, N. J Ward, D. W. R Marsh, Industrial Perspective
on Static Analysis, Software Engineering Journal, March
1995.





Part II

Included Papers

47





Appendix A

Paper 1 (Correctness and
Performance of an Incremental
Learning Algorithm for Finite
Automata)

49



Correctness and Performance
of an Incremental Learning Algorithm for

Finite Automata

Karl Meinke, Muddassar Azam Sindhu

School of Computer Science and Communication,
Royal Institute of Technology, 100-44 Stockholm, Sweden,

karlm@nada.kth.se, sindhu@csc.kth.se

Abstract. We present a new algorithm IDS for incremental learning
of deterministic finite automata (DFA). This algorithm is based on the
concept of distinguishing sequences introduced in [Angluin 1981]. We
give a rigorous proof that two versions of this learning algorithm correctly
learn in the limit. Finally we present an empirical performance analysis
that compares these two algorithms, focussing on learning times and
different types of learning queries. We conclude that IDS is an efficient
algorithm for software engineering applications of automata learning,
such as testing and model inference.

1 Introduction

In recent years, automata learning algorithms (aka. regular inference algorithms)
have found new applications in software engineering such as formal verifica-
tion (e.g. [Peled et al. 1999], [Clarke et. al. 2002], [Luecker 2006]) software test-
ing (e.g. [Raffelt et al. 2008], [Meinke and Sindhu 2011]) and model inference
(e.g. [Bohlin and Jonsson 2008]). These applications mostly centre around learn-
ing an abstraction of a complex software system which can then be statically
analysed (e.g. by model checking) to determine behavioural correctness. Many
of these applications can be improved by the use of learning procedures that are
incremental.

An automata learning algorithm is incremental if: (i) it constructs a sequence
of hypothesis automata H0, H1, . . . from a sequence of observations o0, o1, . . .
about an unknown target automaton A, and this sequence of hypothesis au-
tomata finitely converges to A; and (ii) the construction of hypothesis Hi can
reuse aspects of the construction of the previous hypothesis Hi−1 (such as an
equivalence relation on states). The notion of convergence in the limit, as a model
of correct incremental learning originates in [Gold 1967].

Generally speaking, much of the literature on automata learning has focussed
on offline learning from a fixed pre-existing data set describing the target au-
tomaton. Other approaches, such as [Angluin 1981] and [Angluin 1987] have con-
sidered online learning, where the data set can be extended by constructing
and posing new queries. However, little attention has been paid to incremental
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learning algorithms, which can be seen as a subclass of online algorithms where
serial hypothesis construction using a sequence of increasing data sets is em-
phasized. The much smaller collection of known incremental algorithms includes
the RPNI2 algorithm of [Dupont 1996], the IID algorithm of [Parekh et al. 1998]
and the algorithm of [Porat, Feldman 1991]. However, the motivation for incre-
mental learning from a software engineering perspective is strong, and can be
summarised as follows:

(1) to analyse a large software system it may not be feasible (or even neces-
sary) to learn the entire automaton model, and

(2) the choice of each relevant observation oi about a large unknown software
system often needs to be iteratively guided by analysis of the previous hypothesis
model Hi−1 for efficiency reasons.

Our research into efficient learning-based testing (LBT) for software systems
(see e.g. [Meinke 2004], [Meinke, Niu 2010], [Meinke and Sindhu 2011]) has led
us to investigate the use of distinguishing sequences to design incremental learn-
ing algorithms for DFA. Distinguishing sequences offer a rather minimal and
flexible way to construct a state space partition, and hence a quotient automa-
ton that represents a hypothesis H about the target DFA to be learned. Distin-
guishing sequences were first applied to derive the ID online learning algorithm
for DFA in [Angluin 1981].

In this paper, we present a new algorithm incremental distinguishing se-
quences (IDS ), which uses the distinguishing sequence technique for incremental
learning of DFA. In [Meinke and Sindhu 2011] this algorithm has been success-
fully applied to learning based testing of reactive systems with demonstrated
error discovery rates up to 4000 times faster than using non-incremental learn-
ing. Since little seems to have been published about the empirical performance
of incremental learning algorithms, we consider this question too.

The structure of the paper is as follows. In Section 2, we review some essential
mathematical preliminaries, including a presentation of Angluin’s original ID
algorithm, which is necessary to understand the correctness proof for IDS . In
Section 3, we present two different versions of the IDS algorithm and prove their
correctness. These are called: (1) prefix free IDS , and (2) prefix closed IDS . In
Section 4, we compare the empirical performance of our two IDS algorithms
with each other. Finally, in Section 5, we present some conclusions and discuss
future directions for research.

1.1 Related Work

Distinguishing sequences were first applied to derive the ID online learning al-
gorithm for DFA in [Angluin 1981]. The ID algorithm is not incremental, since
only a single hypothesis automaton is ever produced. Later an incremental ver-
sion IID of this algorithm was presented in [Parekh et al. 1998]. Like the IID
algorithm, our IDS algorithm is incremental. However in contrast with IID, the
IDS algorithm, and its proof of correctness are much simpler, and some technical
errors in [Parekh et al. 1998] are also overcome.
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Distinguishing sequences can be contrasted with the complete consistent ta-
ble approach to partition construction as represented by the well known online
learning algorithm L* of [Angluin 1987]. Unlike L*, distinguishing sequences dis-
pose of the need for an equivalence oracle during learning. Instead, we can assume
that the observation set P contains a live complete set of input strings (see Sec-
tion 2.2 below for a technical definition). Furthermore, unlike L* distinguishing
sequences do not require a complete table of queries before building the partition
relation. In the context of software testing, both of these differences result in a
much more efficient learning algorithm. In particular there is greater scope for
using online queries that have been generated by other means (such as model
checking). Moreover, since LBT is a black-box approach to software testing, then
the use of an equivalence oracle contradicts the black-box methodology.

In [Dupont 1996], an incremental version RPNI2 of the RPNI offline learning
algorithm of [Oncina and Garcia 1992] and [Lang 1992] is presented. The RPNI2
algorithm is much more complex than IDS . It includes a recursive depth first
search of a lexicographically ordered state set with backtracking, and computa-
tion of a non-deterministic hypothesis automaton that is subsequently rendered
deterministic. These operations have no counterpart in IDS . Thus IDS is easier
to verify and can be quickly and easily implemented in practise.

The incremental learning algorithm introduced in [Porat, Feldman 1991] re-
quires a lexicographic ordering on the presentation of online queries, which is
less flexible than IDS , and indeed inappropriate for software engineering appli-
cations.

2 Preliminaries

2.1 Notation and Concepts for DFA

Let Σ be any set of symbols then Σ∗ denotes the set of all finite strings over Σ
including the empty string λ. The length of a string α ∈ Σ∗ is denoted by |α|
and |λ| = 0. For strings α, β ∈ Σ∗, αβ denotes their concatenation.

For α, β, γ ∈ Σ∗, if α = βγ then β is termed a prefix of α and γ is termed
a suffix of α. We let Pref (α) denote the prefix closure of α, i.e. the set of all
prefixes of α. We can also apply prefix closure pointwise to any set of strings.
The set difference operation between two sets U, V , denoted by U − V , is the
set of all elements of U which are not members of V . The symmetric difference
operation on pairs of sets is defined by U ⊕ V = (U − V ) ∪ (V − U).

A deterministic finite automaton (DFA) is a quintuple A =< Σ,Q, F, q0, δ >
where: Σ is the input alphabet, Q is the state set, F ⊆ Q is the accepting
state set and q0 ∈ Q is the starting state. The state transition function δ of A
is a mapping δ : Q × Σ → Q, and δ(qi, b) = qj means that when in state qi
given input b the automaton A will move to state qj in one step. We extend the
function δ to a mapping δ∗ : Q × Σ∗ → Q defined inductively by δ∗(q, λ) = q
and δ∗(q, b1, . . . bn+1) = δ(δ∗(q, b1, . . . bn), bn+1). The language L(A) accepted
by A is the set of all strings α ∈ Σ∗ such that δ∗(q0, α) ∈ F . As is well known,
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a language L ⊆ Σ∗ is accepted by a DFA if and only if, L is regular, i.e. L
can be defined by a regular grammar. A state q ∈ Q is said to be live if for
some string α ∈ Σ∗, δ∗(q, α) ∈ F , otherwise q is said to be dead. Given a
distinguished dead state d0 we define string concatenation modulo the dead state
d0, f : Σ∗ ∪ {d0} × Σ → Σ∗ ∪ {d0}, by f(d0, σ) = d0 and f(α, σ) = α . σ for
α ∈ Σ∗. This function is used for automaton learning in Section 3. Given any
DFA A there exists a unique minimum state DFA A′ such that L(A) = L(A′)
and this automaton is termed the canonical DFA for L(A). A canonical DFA
has at most one dead state.

2.2 The ID Algorithm

Our IDS algorithm is an incremental version of the ID learning algorithm for
DFA introduced in [Angluin 1981]. The ID algorithm is an online learning al-
gorithm for DFA that starts from a given live complete set P ⊆ Σ∗ of queries
about the target automaton, and generates new queries until a state space par-
tition can be constructed. Since the algorithmic ideas and proof of correctness
of IDS are based upon those of ID itself, it is useful to review the ID algorithm
here. Algorithm 1 presents the ID algorithm. Since this algorithm has been dis-
cussed at length in [Angluin 1981], our own presentation can be brief. A detailed
proof of the correctness of ID and an analysis of its complexity can be found in
[Angluin 1981].

A finite set P ⊆ Σ∗ of input strings is said to be live complete for a DFA A
if for every live state q ∈ Q there exists a string α ∈ P such that δ∗(q0, α) = q.
Given a live complete set P for a target automaton A, the essential idea of the
ID algorithm is to first construct the set T ′ = P ∪{f(α, b)|(α, b) ∈ P ×Σ}∪{d0}
of all one element extensions of strings in P as a set of state names for the
hypothesis automaton. The symbol d0 is added as a name for the canonical dead
state. This set of state names is then iteratively partitioned into sets Ei(α) ⊆ T ′
for i = 0, 1, . . . such that elements α, β of T ′ that denote the same state in A will
occur in the same partition set, i.e. Ei(α) = Ei(β). This partition refinement can
be proven to terminate and the resulting collection of sets forms a congruence
on T ′. Finally the ID algorithm constructs the hypothesis automaton as the
resulting quotient automaton. The method used to refine the partition set is to
iteratively construct a set V of distinguishing strings, such that no two distinct
states of A have the same behaviour on all of V .

We will present the ID and IDS algorithms so that similar variables share
the same names. This pedagogic device emphasises similarity in the behaviour
of both algorithms. However, there are also important differences in behaviour.
Thus, when analysing the behavioural properties of program variables we will
carefully distinguish their context as e.g. vIDn , E ID

n (α), . . ., and vIDS
n , E IDS

n (α), . . .
etc. Our proof of correctness for IDS will show how the learning behaviour of
IDS on a sequence of input strings s1, . . . sn ∈ Σ∗ can be simulated by the
behaviour of ID on the corresponding set of inputs { s1, . . . sn }. Once this is
established, one can apply the known correctness of ID to establish the correct-
ness of IDS . The IID algorithm of [Parekh et al. 1998] also presents a simulation
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Algorithm 1 ID Learning Algorithm
Input: A live complete set P ⊆ Σ∗ and a teacher DFA A to answer membership
queries α ∈ L(A)?
Output: A DFA M equivalent to the target DFA A.

1. begin
2. //Perform Initialization
3. i = 0, vi = λ, V = { vi },
4. P ′ = P ∪ { d0 }, T = P ∪ {f(α, b)|(α, b) ∈ P ×Σ}, T ′ = T ∪ { d0 }
5. Construct function E0 for v0 = λ,
6. E0(d0) = ∅
7. ∀α ∈ T
8. { pose the membership query “α ∈ L(A)?”
9. if the teacher’s response is yes

10. then E0(α) = {λ}
11. else E0(α) = ∅
12. end if
13. }
14. //Refine the partition of the set T ′

15. while (∃α, β ∈ P ′ and b ∈ Σ such that
Ei(α) = Ei(β) but Ei(f(α, b)) 66= Ei(f(β, b)))

16. do
17. Let γ ∈ Ei(f(α, b))⊕ Ei(f(β, b))
18. vi+1 = bγ
19. V = V ∪ {vi+1}, i = i+ 1
20. ∀α ∈ Tk pose the membership query ”αvi ∈ L(A)?”
21. {
22. if the teacher’s response is yes
23. then Ei(α) = Ei−1(α) ∪ {vi}
24. else Ei(α) = Ei−1(α)
25. end if
26. }
27. end while
28. //Construct the representation M of the target DFA A.
29. The states of M are the sets Ei(α), where α ∈ T
30. The initial state q0 is the set Ei(λ)
31. The accepting states are the sets Ei(α) where α ∈ T and λ ∈ Ei(α)
32. The transitions of M are defined as follows:
33. ∀α ∈ P ′
34. if Ei(α) = ∅
35. then add self loops on the state Ei(α) for all b ∈ Σ
36. else ∀b ∈ Σ set the transition δ(Ei(α), b) = Ei(f(α, b))
37. end if
38. end.
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method for ID. However, it is easily shown that IID does not satisfy Proposition
3.2 or Simulation Theorem 3.4 below, and thus the two algorithms have different
behaviour. The behavioural properties of ID that are needed to complete this
correctness proof can be stated as follows.

2.1. Theorem.
(i) Let P ⊆ Σ∗ be a live complete set for a target DFA A containing λ. Then
given P and A as input, the ID algorithm terminates and the automaton M
returned by ID is the canonical automaton for L(A).
(ii) Let l ∈ N be the maximum value of program variable iID given P and A.
For all 0 ≤ n ≤ l and for all α ∈ T ,

E ID
n (α) = { vIDj | 0 ≤ j ≤ n, αvIDj ∈ L(A) }.

Proof. (i) See [Angluin 1981] Theorem 3.
(ii) By induction on n.
Basis. Suppose n = 0. Then vID0 = λ. For any α ∈ T , if αvID0 ∈ L(A) then
α ∈ L(A) so E ID

0 (α) = { vID0 }. If αvID0 6∈ L(A) then α 6∈ L(A) so E ID
0 (α) = ∅.

Thus E ID
0 (α) = { vIDj | 0 ≤ j ≤ 0, αvIDj ∈ L(A) }.

Induction Step. Suppose l ≥ n > 0. Consider any α, β ∈ P ′ and b ∈ Σ such
that E ID

n−1(α) = E ID
n−1(β) but E ID

n−1(f(α, b)) 6= E ID
n−1(f(β, b)). Since n − 1 < l

then α, β and b exist. Then

E ID
n−1(f(α, b))⊕E ID

n−1(f(β, b)) 6= ∅.

Consider any γ ∈ E ID
n−1(f(α, b))⊕E ID

n−1(f(β, b)) and let vIDn = bγ. For any α ∈ T ,
if αvIDn ∈ L(A) then E ID

n (α) = E ID
n−1(α) ∪ { vIDn } and if αvIDn 6∈ L(A) then

E ID
n (α) = E ID

n−1(α). So by the induction hypothesis E ID
n (α) = { vIDj | 0 ≤ j ≤

n, αvIDj ∈ L(A) }.

3 Correctness of the IDS Algorithm

In this section we present our IDS incremental learning algorithm for DFA. In
fact, we consider two versions of this algorithm, with and without prefix closure
of the set of input strings. We then give a rigorous proof that both algorithms
correctly learn an unknown DFA in the limit in the sense of [Gold 1967]

In Algorithm 2 we present the main IDS algorithm, and in Algorithms 3 and 4
we give its auxiliary algorithms for iterative partition refinement and automaton
construction respectively.

The version of the IDS algorithm which appears in Algorithm 2 we term
the prefix free IDS algorithm, due to lines 22 and 25. Notice that lines 23 and
26 of Algorithm 2 have been commented out. When these latter two lines are
uncommented and instead lines 22 and 25 are commented out, we obtain a
version of the IDS algorithm that we term prefix closed IDS . We will prove that
both prefix closed and prefix free IDS learn correctly in the limit. However, in
Section 4 we will show that they have quite different performance characteristics
with respect to computation time and query types.
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Algorithm 2 IDS Learning Algorithm
Input: A file S = s1, . . . , sl of input strings si ∈ Σ∗ and a teacher DFA A to answer
membership queries α ∈ L(A)?
Output: A sequence of DFA Mt for t = 0, . . . , l as well as the total number of
membership queries and book keeping queries asked by the learner.

1. begin
2. //Perform Initialization
3. i = 0, k = 0, t = 0, vi = λ, V = { vi }
4. //Process the empty string
5. P0 = {λ}, P ′0 = P0 ∪ {d0}, T0 = P0 ∪Σ
6. E0(d0) = ∅
7. ∀α ∈ T0 {
8. pose the membership query “α ∈ L(A)?”, bquery = bquery + 1
9. if the teacher’s response is yes

10. then E0(α) = {λ}
11. else E0(α) = ∅
12. }
13. //Refine the partition of set T0 as described in Algorithm 3
14. //Construct the current representation M0 of the target DFA
15. //as described in Algorithm 4.
16.
17. //Process the file of examples.
18. while S 6= empty do
19. read( S, α )
20. mquery = mquery +1
21. k = k+1, t = t+1
22. Pk = Pk−1 ∪ {α}
23. // Pk = Pk−1 ∪ Pref(α) //prefix closure
24. P ′k = Pk ∪ {d0}
25. Tk = Tk−1 ∪ {α} ∪ {f(α, b) | b ∈ Σ}
26. // Tk = Pk ∪ {f(α, b) | α ∈ Pk − Pk−1, b ∈ Σ} //prefix closure
27. T ′k = Tk ∪ {d0}
28. ∀α ∈ Tk − Tk−1

29. {
30. // Fill in the values of Ei(α) using membership queries:
31. Ei(α) = {vj | 0 ≤ j ≤ i, αvj ∈ L(A)}
32. bquery = bquery + i
33. }
34. // Refine the partition of the set Tk

35. if α is consistent with Mt−1

36. then Mt =Mt−1

37. else construct Mt as described in Algorithm 4.
38. }
39. end.
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Algorithm 3 Refine Partition
1. while (∃α, β ∈ P ′k and b ∈ Σ such that Ei(α) = Ei(β) but Ei(f(α, b)) 66=

Ei(f(β, b)))
2. do
3. Let γ ∈ Ei(f(α, b))⊕ Ei(f(β, b))
4. vi+1 = bγ
5. V = V ∪ {vi+1}, i = i+ 1
6. ∀α ∈ Tk pose the membership query ”αvi ∈ L(A)?”
7. {
8. bquery = bquery + 1
9. if the teacher’s response is yes

10. then Ei(α) = Ei−1(α) ∪ {vi}
11. else Ei(α) = Ei−1(α)
12. end if
13. }
14. end while

Algorithm 4 Automata Construction
1. The states of Mt are the sets Ei(α), where α ∈ Tk

2. The initial state q0 is the set Ei(λ)
3. The accepting states are the sets Ei(α) where α ∈ Tk and λ ∈ Ei(α)
4. The transitions of Mt are defined as follows:
5. ∀α ∈ P ′k
6. if Ei(α) = ∅
7. then add self loops on the state Ei(α) for all b ∈ Σ
8. else ∀b ∈ Σ set the transition δ(Ei(α), b) = Ei(f(α, b))
9. end if

10. ∀β ∈ Tk − P ′k
11. if ∀α ∈ P ′k Ei(β) 6= Ei(α) and Ei(β) 6= ∅
12. then ∀b ∈ Σ set the transition δ(Ei(β), b) = ∅
13. end if
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We will prove the correctness of the prefix free IDS algorithm first, since
this proof is somewhat simpler, while the essential proof principles can also be
applied to verify the prefix closed IDS algorithm. We begin an analysis of the
correctness of prefix free IDS by confirming that the construction of hypothesis
automata carried out by Algorithm 4 is well defined.

3.1. Proposition. For each t ≥ 0 the hypothesis automaton Mt constructed by
the automaton construction Algorithm 4 after t input strings have been observed
is a well defined DFA.

Proof. We need to show that Mt is a well defined DFA < Σ,Q, F, q0, δ >. The
input alphabet Σ for Mt is the same as the input alphabet for the target A. The
state set Q is represented by the sets Ei(α), where α ∈ Tk. The accepting state
set F consists of all sets Ei(α), where λ ∈ Ei(α). By definition, q0 = Ei(λ) and
since Pk 6= ∅ then λ ∈ Tk.

Finally for δ to be well defined function δ : Σ ×Q→ Q it must be uniquely
defined for every state Ei(α), where α ∈ Tk. So consider any α ∈ Tk. By lines 8
and 12 of Algorithm 4, δ(Ei(α), b) is defined for every b ∈ Σ. We need to show
that δ(Ei(α), b) is uniquely defined. So suppose Ei(α) = Ei(β), we must show
that δ(Ei(α), b) = δ(Ei(β), b) for any b ∈ Σ.
(i) Suppose α ∈ P ′k and β ∈ P ′k then by lines 1 to 12 of Algorithm 3, Ei(f(α, b)) =
Ei(f(β, b)) for all b ∈ Σ. Therefore by line 8 of Algorithm 4, δ(Ei(α), b) =
δ(Ei(β), b).
(ii) Suppose α ∈ Tk−P ′k and β ∈ P ′k. If Ei(α) = Ei(β) then δ(Ei(α), b) is already
uniquely defined by (i) above.
(iii) Suppose α ∈ Tk − P ′k and Ei(α) 6= Ei(β) for any β ∈ P ′k then by line 12
in Algorithm 4, δ(Ei(α), b) = ∅, so the transition is defined. To show that it is
uniquely defined consider any β ∈ Tk−P ′k such that Ei(α) = Ei(β). Then again
by line 12 of Algorithm 4, δ(Ei(β), b) = ∅ = δ(Ei(α), b).

Hence the hypothesis automaton Mt is a well defined DFA.

Proposition 3.1 establishes that Algorithm 2 will generate a sequence of well
defined DFA. However, to show that this algorithm learns correctly, we must
prove that this sequence of automata converges to the target automaton A given
sufficient information about A. It will suffice to show that the behaviour of prefix
free IDS can be simulated by the behaviour of ID, since ID is known to learn
correctly given a live complete set of input strings (c.f. Theorem 2.1.(i)). The
first step in this proof is to show that the sequences of sets of state names P IDS

k

and T IDS
k generated by prefix free IDS converge to the sets PID and T ID of ID.

3.2. Proposition. Let S = s1, . . . , sl be any non-empty sequence of input
strings si ∈ Σ∗ for prefix free IDS and let PID = { λ, s1, . . . , sl } be the
corresponding input set for ID.

(i) For all 0 ≤ k ≤ l, P IDS
k = { λ, s1, . . . , sk } ⊆ PID.

(ii) For all 0 ≤ k ≤ l, T IDS
k = P IDS

k ∪ { f(α, b) | α ∈ P IDS
k , b ∈ Σ } ⊆ T ID .

(iii) P IDS
l = PID and T IDS

l = T ID .
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Proof. Clearly (iii) follows from (i) and (ii). We prove (i) and (ii) by induction
on k.
Basis. Suppose k = 0. (i) P IDS

0 = { λ } ⊆ PID. (ii) T IDS
0 = { λ }∪Σ ⊆ T ID .

Induction Step. Suppose k > 0. (i) By the induction hypothesis P IDS
k−1 =

{ λ, s1, . . . , sk−1 } ⊆ PID. So clearly

P IDS
k = P IDS

k−1 ∪ { sk } = { λ, s1, . . . , sk } ⊆ PID.

(ii) By Definition

T IDS
k = T IDS

k−1 ∪ { sk } ∪ { f(α, b) | α ∈ P IDS
k − P IDS

k−1 , b ∈ Σ }

= P IDS
k−1 ∪ { sk } ∪ { f(α, b) | α ∈ P IDS

k − P IDS
k−1 , b ∈ Σ }

∪{ f(α, b) | α ∈ P IDS
k−1 , b ∈ Σ }

by the induction hypothesis (ii)

= P IDS
k ∪ { f(α, b) | α ∈ P IDS

k , b ∈ Σ }.

Next we turn our attention to proving some fundamental loop invariants
for Algorithm 2. Since this algorithm in turn calls the partition refinement Al-
gorithm 3 then we have in effect a doubly nested loop structure to analyse.
Clearly the two indexing counters kIDS and iIDS (in the outer and inner loops
respectively) both increase on each iteration. However, the relationship between
these two variables is not easily defined. Nevertheless, since both variables in-
crease from an initial value of zero, we can assume the existence of a monotone
re-indexing function that captures their relationship.

3.3. Definition. Let S = s1, . . . , sl be any non-empty sequence of strings
si ∈ Σ∗. The re-indexing function KS : N→ N for prefix free IDS on input S is
the unique monotonically increasing function such that for each n ∈ N, KS(n)
is the least integer m such that program variable kIDS has value m while the
program variable iIDS has value n. Thus, for example, KS(0) = 0. When S is
clear from the context, we may write K for KS .

With the help of such re-indexing functions we can express important invari-
ant properties of the key program variables vIDS

j and E IDS
n (α), and via Propo-

sition 3.2 their relationship to vIDj and E ID
n (α). Corresponding to the doubly

nested loop structure of Algorithm 2, the proof of Simulation Theorem 3.4 below
makes use of a doubly nested induction argument.

3.4. Simulation Theorem. Let S = s1, . . . , sl be any non-empty sequence
of strings si ∈ Σ∗. For any execution of prefix free IDS on S there exists an
execution of ID on { λ, s1, . . . , sl } such that for all m ≥ 0:
(i) For all n ≥ 0 if K (n) = m then:

(a) for all 0 ≤ j ≤ n, vIDS
j = vIDj ,

(b) for all 0 ≤ j < n, vIDS
n 6= vIDS

j ,



11

(c) for all α ∈ T IDS
m , E IDS

n (α) = { vIDS
j | 0 ≤ j ≤ n, αvIDS

j ∈ L(A) }.
(ii) If m > 0 then let p ∈ N be the greatest integer such that K (p) = m − 1.
Then for all α ∈ T IDS

m , E IDS
p (α) = { vIDS

j | 0 ≤ j ≤ p, αvIDS
j ∈ L(A) }.

(iii) The mth partition refinement of IDS terminates.

Proof. By induction on m.
Basis. Suppose m = 0.
(i) We prove the result by subinduction on n.
Sub-basis. Suppose n = 0. Then K (n) = m.
(i.a) For ID and IDS, vIDS

0 = λ = vID0 .
(i.b) Holds vacuously since n = 0.
(i.c) Clearly T IDS

0 = { λ } ∪ Σ. Consider any α ∈ T IDS
0 . If αvIDS

0 ∈ L(A)
then α ∈ L(A) and E IDS

0 (α) = { vIDS
0 }. If αvIDS

0 6∈ L(A) then α 6∈ L(A) and
E IDS
0 (α) = ∅. So

E IDS
0 (α) = { vIDS

j | 0 ≤ j ≤ n, αvIDS
j ∈ L(A) }.

Sub-Induction Step. Suppose n > 0 and K (n) = m.
(i.a) Consider any α, β ∈ P ′IDS

0 and b ∈ Σ such that E IDS
n−1 (α) = E IDS

n−1 (β) but
E IDS
n−1 (f(α, b)) 6= E IDS

n−1 (f(β, b)).
By Proposition 3.2.(i) α, β ∈ P ′IDS , so by the sub-induction hypotheses (i.a)

and (i.c) and Theorem 2.1.(ii) (since K (n − 1) = m = 0), E ID
n−1(α) = E ID

n−1(β)
but E ID

n−1(f(α, b)) 6= E ID
n−1(f(β, b)). Also

E IDS
n−1 (f(α, b))⊕E IDS

n−1 (f(β, b)) = E ID
n−1(f(α, b))⊕E ID

n−1(f(β, b)) 6= ∅.

Let γ ∈ E IDS
n−1 (f(α, b))⊕E IDS

n−1 (f(β, b)), then we can choose the same α, β, b and
γ for an execution of ID so that vIDS

n = vIDn = bγ. So by the sub-induction
hypothesis (i.a) for all 0 ≤ j ≤ n, vIDS

j = vIDj .

(i.b) For α, β, b and γ as in (i.a) above either

γ ∈ E IDS
n−1 (f(α, b)) and γ 6∈ E IDS

n−1 (f(β, b)) (1)

or
γ 6∈ E IDS

n−1 (f(α, b)) and γ ∈ E IDS
n−1 (f(β, b)) (2).

Suppose (1) holds. Then γ ∈ E IDS
n−1 (f(α, b)). So by the sub-induction hypothesis

(i.c) for some 0 ≤ x ≤ n, γ = vIDS
x . Thus vIDS

n = bγ = bvIDS
x . Suppose for a

contradiction that for some 0 ≤ y < n, vIDS
n = vIDS

y . Since αbvIDS
x ∈ L(A) then

vIDS
y = bvIDS

x ∈ E IDS
n−1 (α) (3),

by sub-induction hypothesis (i.c). But by (1), γ 6∈ E IDS
n−1 (f(β, b)) so vIDS

x 6∈
E IDS
n−1 (f(β, b)) hence βbvIDS

x 6∈ L(A) by sub-induction hypothesis (i.c). Thus
βvIDS

y 6∈ L(A). So by sub-induction hypothesis (i.c),

vIDS
y 6∈ E IDS

n−1 (β) (4).
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So by (3) and (4) E IDS
n−1 (α) 6= E IDS

n−1 (β). But this contradicts E IDS
n−1 (α) = E IDS

n−1 (β).
By symmetry, if (2) holds a contradiction also arises. Thus for all 0 ≤ j < n,
vIDS
j 6= vIDS

n .

(i.c) Consider any α ∈ T IDS
0 . If αvIDS

n ∈ L(A) then E IDS
n (α) = E IDS

n−1 (α) ∪
{ vIDS

n } and if αvIDS
0 6∈ L(A) then E IDS

n (α) = E IDS
n−1 (α). So by the sub-

induction hypothesis (i.c) since K (n− 1) = 0 then

E IDS
n (α) = { vIDS

j | 0 ≤ j ≤ n, αvIDS
j ∈ L(A) }.

This completes the sub-induction proof of (i).

(ii) Holds trivially since m 6> 0.

(iii) Consider the 0-th refinement step in IDS . Clearly P ′IDS
0 is finite. For any

α, β ∈ P ′IDS
0 and b ∈ Σ and n ∈ N such that K (n) = 0 and E IDS

n−1 (α) = E IDS
n−1 (β)

but E IDS
n−1 (f(α, b)) 6= E IDS

n−1 (f(β, b)), then

E IDS
n−1 (f(α, b))⊕E IDS

n−1 (f(β, b)) 6= ∅.

So considering any γ ∈ E IDS
n−1 (f(α, b))⊕E IDS

n−1 (f(β, b)) either

γ ∈ E IDS
n−1 (f(α, b)) and γ 6∈ E IDS

n−1 (f(β, b)) (5)

or
γ 6∈ E IDS

n−1 (f(α, b)) and γ ∈ E IDS
n−1 (f(β, b)) (6).

Let
vIDn = bγ (7).

Suppose (5) holds. If αvIDS
n ∈ L(A) then by (7) αbγ ∈ L(A) and E IDS

n (α) =
E IDS
n−1 (α)∪{ vIDS

n }. But by (5) γ 6∈ E IDS
n−1 (f(β, b)) so βbγ 6∈ L(A). So E IDS

n (β) =
E IDS
n−1 (β). By (i.b) and (i.c) vIDS

n 6∈ E IDS
n−1 (α). So

E IDS
n (β) = E IDS

n−1 (β) = E IDS
n−1 (α) 6= E IDS

n (α).

By symmetry, the same result follows if (6) holds. Therefore on each iteration of
the 0-th partition refinement loop, the number of such triples α, β and b strictly
decreases. So the 0-th partition refinement loop must terminate.

Induction Step. Suppose m > 0.

(i) We prove the result by sub-induction on n.

Sub-basis. Suppose n = 0. Then K (n) 6= m so the result holds trivially.

Sub-induction Step. Suppose n > 0 and K (n) = m.

(i.a) Suppose that n is the least integer such thatK (n) = m, i.e.K (n−1) = m−1.
Consider any α, β ∈ P ′IDS

m and b ∈ Σ such that E IDS
n−1 (α) = E IDS

n−1 (β) but
E IDS
n−1 (f(α, b)) 6= E IDS

n−1 (f(β, b)). By Proposition 3.2.(i) α, β ∈ P ′IDS so by the
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induction hypotheses (ii), (i.a) and Theorem 2.1.(ii), E ID
n−1(α) = E ID

n−1(β) but
E ID
n−1(f(α, b)) 6= E ID

n−1(f(β, b)). Furthermore

E IDS
n−1 (f(α, b))⊕E IDS

n−1 (f(β, b)) = E ID
n−1(f(α, b))⊕E ID

n−1(f(β, b)) 6= ∅.

Let γ ∈ E IDS
n−1 (f(α, b))⊕E IDS

n−1 (f(β, b)) then we can choose the same α, β, b and
γ for an execution of ID so that

vIDS
n = bγ = vIDn .

By the sub-induction hypothesis (i.a) for all 0 ≤ j ≤ n, vIDS
j = vIDj .

Suppose that n is strictly greater than the least integer such that K (n) = m,
i.e. K (n − 1) = m. The proof is similar to above, but we use sub-induction
hypothesis (i.a) instead of induction hypothesis (ii).
(i.b) The proof is similar to the proof of (i.b) in the subinduction step of the
induction basis.

(i.c) For α, β, b and γ as in (i.a) above, suppose that n is the least integer such
that K (n) = m, i.e. K (n− 1) = m− 1.

Consider any α ∈ T IDS
m . If αvIDS

n ∈ L(A) then E IDS
n (α) = E IDS

n−1 (α) ∪
{ vIDS

n }, and if αvIDS
n 6∈ L(A) then E IDS

n (α) = E IDS
n−1 (α). So by the induc-

tion hypothesis (ii)

E IDS
n (α) = { vIDS

j | 0 ≤ j ≤ n, αvIDS
j ∈ L(A) }.

Suppose that n is greater than least integer such that K (n) = m, i.e. K (n−
1) = m. The proof is similar to above but we use sub-induction hypothesis (i.c)
instead of induction hypothesis (ii).

This completes the sub-induction proof of (i).
(ii) Let p ∈ N be the greatest integer such that K (p) = m− 1. By the induction
hypothesis (i.b) for all α ∈ T IDS

m−1

E IDS
p (α) = { vIDS

j | 0 ≤ j ≤ p, αvIDS
j ∈ L(A) }.

and by line 3 of IDS Algorithm 2, for all α ∈ T IDS
m − T IDS

m−1,

E IDS
p (α) = { vIDS

j | 0 ≤ j ≤ p, αvIDS
j ∈ L(A) }.

So for all α ∈ T IDS
m

E IDS
p (α) = { vIDS

j | 0 ≤ j ≤ p, αvIDS
j ∈ L(A) }.

(iii) Consider the m-th refinement step in prefix free IDS . The proof is similar
to the proof of (iii) in the subinduction step of the induction basis.

Notice that in the statement of Theorem 3.4 above, since both ID and IDS
are non-deterministic algorithms (due to the non-deterministic choice on line
17 of Algorithm 1 and line 3 of Algorithm 3), then we can only talk about the
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existence of some correct simulation. Clearly there are also simulations of IDS by
ID which are not correct, but this does not affect the basic correctness argument.

3.5. Corollary. Let S = s1, . . . , sl be any non-empty sequence of strings si ∈
Σ∗. Any execution of prefix free IDS on S terminates with the program variable
kIDS having value l.

Proof. Follows from Simulation Theorem 3.4.(iii) since clearly the while loop of
Algorithm 2 terminates when the input sequence S is empty.

Using the detailed analysis of the invariant properties of the program vari-
ables P IDS

k and T IDS
k in Proposition 3.2 and vIDS

j and E IDS
n (α) in Simulation

Theorem 3.4 it is now a simple matter to establish correctness of learning for
the prefix free IDS Algorithm.

3.6. Correctness Theorem. Let S = s1, . . . , sl be any non-empty sequence
of strings si ∈ Σ∗ such that { λ, s1, . . . , sl } is a live complete set for a target
DFA A. Then prefix free IDS terminates on S and the hypothesis automaton
M IDS

l is a canonical representation of A.

Proof. By Corollary 3.5, prefix free IDS terminates on S with the variable kIDS

having value l. By Simulation Theorem 3.4.(i) and Theorem 2.1.(ii), there exists
an execution of ID on { λ, s1, . . . , sl } such that E IDS

n (α) = E ID
n (α) for all

α ∈ T IDS
l and any n such that K (n) = l. By Proposition 3.2.(iii), T IDS

l =

T ID and P ′IDS
l = P ′IDS . So letting M ID be the canonical representation of A

constructed by ID using { λ, s1, . . . , sl } then M ID and M IDS
l have the same

state sets, initial states, accepting states and transitions.

Our next result confirms that the hypothesis automaton M IDS
t generated

after t input strings have been read is consistent with all currently known obser-
vations about the target automaton. This is quite straightforward in the light of
Simulation Theorem 3.4.

3.7. Compatibility Theorem. Let S = s1, . . . , sl be any non-empty sequence
of strings si ∈ Σ∗. For each 0 ≤ t ≤ l and each string s ∈ { λ, s1, . . . , st },
the hypothesis automaton M IDS

t accepts s if, and only if the target A does.

Proof. By definition, M IDS
t is compatible with A on { λ, s1, . . . , st } if, and

only if, for each 0 ≤ j ≤ t, sj ∈ L(A) ⇔ λ ∈ E IDS
it

(sj), where it is the greatest
integer such that K (it) = t and the sets E IDS

it
(α) for α ∈ T IDS

t are the states of
M IDS

t . Now vIDS
0 = λ. So by Simulation Theorem 3.4.(i).(c), if sj ∈ L(A) then

sjv
IDS
0 ∈ L(A) so vIDS

0 ∈ E IDS
it

(sj), i.e. λ ∈ E IDS
it

(sj), and if sj 6∈ L(A) then
sjv

IDS
0 6∈ L(A) so vIDS

0 6∈ E IDS
it

(sj), i.e. λ 6∈ E IDS
it

(sj).

Let us briefly consider the correctness of prefix closed IDS. We begin by
observing that the non-sequential ID Algorithm 1 does not compute any prefix
closure of input strings. Therefore, Proposition 3.2 does not hold for prefix closed
IDS . In order to obtain a simulation between prefix closed IDS and ID we modify
Proposition 3.2 to the following.
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3.8. Proposition. Let S = s1, . . . , sl be any non-empty sequence of input
strings si ∈ Σ∗ for prefix closed IDS and let PID = Pref ({ λ, s1, . . . , sl }) be
the corresponding input set for ID.

(i) For all 0 ≤ k ≤ l, P IDS
k = Pref ({ λ, s1, . . . , sk }) ⊆ PID.

(ii) For all 0 ≤ k ≤ l, T IDS
k = P IDS

k ∪ { f(α, b) | α ∈ P IDS
k , b ∈ Σ } ⊆ T ID .

(iii) P IDS
l = PID and T IDS

l = T ID .

Proof. Similar to the proof of Proposition 3.2.
We leave it to the reader, as an exercise, to make similar changes to Simu-

lation Theorem 3.4 and Corollary 3.5, with the help of which one can establish
the correctness of prefix closed IDS.

3.9. Correctness Theorem. Let S = s1, . . . , sl be any non-empty sequence
of strings si ∈ Σ∗ such that { λ, s1, . . . , sl } is a live complete set for a target
DFA A. Then prefix closed IDS terminates on S and the hypothesis automaton
M IDS

l is a canonical representation of A.

Proof. Exercise, following the proof of Theorem 3.6.

4 Empirical Performance Analysis

Little seems to have been published about the empirical performance and average
time complexity of incremental learning algorithms for DFA in the literature.
By the average time complexity of the algorithm we mean the average number
of queries needed to completely learn a DFA of a given state space size. This
question can be answered experimentally by randomly generating a large number
of DFA with a given state space size, and randomly generating a sequence of
query strings for each such DFA.

From the point of view of software engineering applications such as testing
and model inference, we have found that it is important to distinguish between
the two types of queries about the target automaton that are used by IDS during
the learning procedure. On the one, hand the algorithm uses internally gener-
ated queries (we call these book-keeping queries) and on the other hand it uses
queries that are supplied externally by the input file (we call these membership
queries). From a software engineering applications viewpoint it seems important
that the ratio of book-keeping to membership queries should be low. This allows
membership queries to have the maximum influence in steering the learning pro-
cess externally. The average query complexity of the IDS algorithm with respect
to the numbers of book-keeping and membership queries needed for complete
learning can also be measured by random generation of DFA and query strings.
To measure each query type, Algorithm 2 has been instrumented with two in-
teger variables bquery and mquery intended to track the total number of each
type of query used during learning (lines 8, 20 and 32).

Since two variants of the IDS algorithm were identified, with and without
prefix closure of input strings, it was interesting to compare the performance
of each of these two variants according to the above two average complexity
measures.
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4.1 Experimental Procedure

To empirically measure the average time and query complexity of our two IDS
algorithms, two experiments were set up. These measured:

(1) the average computation time needed to learn a randomly generated DFA
(of a given state space size) using randomly generated membership queries, and

(2) the total number of membership and book-keeping queries needed to
learn a randomly generated DFA (of a given state space size) using randomly
generated membership queries.

We chose randomly generated DFA with state space sizes varying between 5
and 50 states, and an equiprobable distribution of transitions between states. No
filtering was applied to remove dead states, so the average effective state space
size was therefore somewhat smaller than the nominal state space size.
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Fig. 1. Evaluation Framework

The experimental setup consisted of the following components:
(1) a random input string generator,
(2) a random DFA generator,
(3) an instance of the IDS Algorithm (prefix free or prefix closed) ,
(4) an automaton equivalence checker.

The architecture of our evaluation framework and the flow of data between
these components are illustrated in Figure 1.

The purpose of the equivalence checker was to terminate the learning proce-
dure as soon as the hypothesis automaton sequence had successfully converged
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to the target automaton. There are several well known equivalence checking al-
gorithms described in literature. These have runtime complexity ranging from
quadratic to nearly linear execution times. We chose an algorithm with nearly
linear time performance described in [Norton 2009]. This was to minimise the
overhead of equivalence checking in the overall computation time. The IDS algo-
rithms and the entire evaluation framework were implemented in Java. The per-
formance of the input string and DFA generators is dependent on Java’s Random
class which generates pseudorandom numbers that depend upon a specific seed.
To minimize the chance of generating the same pseudo random strings/automata
again the seed was set to the system clock.
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Fig. 2. Average Time Complexity

4.2 Results and Interpretation

The two graphs in Figure 2 illustrate the outcome of our experiments to mea-
sure the average time and average query complexity of both IDS algorithms, as
described in Section 4.1.

Figure 2.A presents the results of estimating the average learning time for
the prefix free and prefix closed IDS algorithms as a function of the state space
size of the target DFA. For large state space sizes n, the data sets of randomly
generated target DFA represent only a small fraction of all possible such DFA
of size n. Therefore the two data curves are not smooth for large state space
sizes. Nevertheless, there is sufficient data to identify some clear trends. The
average learning time for prefix free IDS learning is substantially greater than
corresponding time for prefix closed IDS , and this discrepancy increases with
state space size. The reason would appear to be that prefix free IDS throws
away data about the target DFA that must be regenerated randomly (since
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input string queries are generated at random). The average time complexity for
prefix free IDS learning seems to grow approximately quadratically, while the
average time complexity for prefix closed IDS learning appears to grow almost
linearly within the given data range. From this viewpoint, prefix-closed IDS
appears to be the superior algorithm.

Figure 2.B presents the results of estimating the average number of member-
ship queries and book-keeping queries as a function of the state space size of the
target DFA. Again, we have compared prefix-closed with prefix free IDS learn-
ing. Allowance must also be made for the small data set sizes for large state space
values. We can see that membership queries grow approximately linearly with
the increase in state space size, while book-keeping queries grow approximately
quadratically, at least within the data ranges that we considered. There appears
to be a small but significant decrease in the number of both book-keeping and
membership queries used by the prefix-closed IDS algorithm. The reason for this
appears to be similar to the issues identified for average time complexity. Prefix
closure seems to be an efficient way to gather data about the target DFA. From
the viewpoint of software engineering applications discussed in Section 1, now
prefix free IDS appears to be preferable. This is because the decreasing ratio
of book-keeping to membership queries improves the possibility to direct the
learning process using externally generated queries (e.g. from a model checker).

5 Conclusions

We have presented two versions of the IDS algorithm which is an incremen-
tal algorithm for learning DFA in polynomial time. We have given a rigorous
proof that both algorithms correctly learn in the limit. Finally we have pre-
sented the results of an empirical study of the average time and query complex-
ity of IDS . These empirical results suggest that IDS is well suited to applica-
tions in software engineering, where an incremental approach that allows exter-
nally generated online queries is needed. This conclusion is further supported in
[Meinke and Sindhu 2011], where we have evaluated the IDS algorithm for learn-
ing based testing of reactive systems, and shown that it leads to error discovery
up to 4000 times faster than using non-incremental learning.

We gratefully acknowledge financial support for this research from the Higher
Education Commission (HEC) of Pakistan, the Swedish Research Council (VR)
and the European Union under project HATS FP7-231620.
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Abstract. We show how the paradigm of learning-based testing (LBT)
can be applied to automate specification-based black-box testing of re-
active systems. Since reactive systems can be modeled as Kripke struc-
tures, we introduce an efficient incremental learning algorithm IKL for
such structures. We show how an implementation of this algorithm com-
bined with an efficient model checker such as NuSMV yields an effective
learning-based testing architecture for automated test case generation
(ATCG), execution and evaluation, starting from temporal logic require-
ments.

1 Introduction

A heuristic approach to automated test case generation (ATCG) from formal re-
quirements specifications known as learning-based testing (LBT) was introduced
in Meinke [9] and Meinke and Niu [11]. Learning-based testing is an iterative ap-
proach to automate specification-based black-box testing. It encompasses both
test case generation, execution and evaluation (the oracle step). The aim of this
approach is to automatically generate a large number of high-quality test cases
by combining a model checking algorithm with an optimised model inference
algorithm. For procedural programs, [11] has shown that LBT can significantly
outperform random testing in the speed with which it finds errors in a system
under test (SUT).

In this paper we consider how the LBT approach can be applied to a quite dif-
ferent class of SUTs, namely reactive systems. Conventionally, reactive systems
are modeled as Kripke structures and their requirements are usually specified
using a temporal logic (see e.g. [6]). To learn and test such models efficiently, we
therefore introduce a new learning algorithm IKL (Incremental Kripke Learning)
for Kripke structures. We show that combining the IKL algorithm for model in-
ference together with an efficient temporal logic model checker such as NuSMV
yields an effective LBT architecture for reactive systems. We evaluate the effec-
tiveness of this testing architecture by means of case studies.

In the remainder of Section 1 we discuss the general paradigm of LBT, and
specific requirements on learning. In Section 2 we review some essential mathe-
matical preliminaries. In Section 3, we consider the technique of bit-sliced learn-
ing of Kripke structures. In Section 4, we present a new incremental learning al-
gorithm IKL for Kripke structures that uses distinguishing sequences, bit-slicing,



and lazy partition refinement. In Section 5 we present a complete LBT architec-
ture for reactive systems testing. We evaluate this architecture by means of case
studies in Section 6. Finally, in Section 7 we draw some conclusions.

1.1 Learning-Based Testing

Several previous works, (for example Peled et al. [16], Groce et al. [8] and Raffelt
et al. [17]) have considered a combination of learning and model checking to
achieve testing and/or formal verification of reactive systems. Within the model
checking community the verification approach known as counterexample guided
abstraction refinement (CEGAR) also combines learning and model checking,
(see e.g. Clarke et al. [5]). The LBT approach can be distinguished from these
other approaches by: (i) an emphasis on testing rather than verification, and (ii)
use of incremental learning algorithms specifically chosen to make testing more
effective and scalable (c.f. Section 1.2).

The basic LBT paradigm requires three components:

(1) a (black-box) system under test (SUT) S,

(2) a formal requirements specification Req for S, and

(3) a learned model M of S.

Now (1) and (2) are common to all specification-based testing, and it is really
(3) that is distinctive. Learning-based approaches are heuristic iterative methods
to automatically generate a sequence of test cases. The heuristic approach is
based on learning a black-box system using tests as queries.

An LBT algorithm iterates the following four steps:

(Step 1) Suppose that n test case inputs i1, . . . , in have been executed on S
yielding the system outputs o1, . . . , on. The n input/output pairs (i1, o1), . . . ,
(in, on) are synthesized into a learned model Mn of S using an incremental
learning algorithm (see Section 1.2). This step involves generalization from the
given data, (which represents an incomplete description of S) to all possible
data. It gives the possibility to predict previously unseen errors in S during Step
2.

(Step 2) The system requirements Req are satisfiability checked against the
learned modelMn derived in Step 1 (aka. model checking). This process searches
for a counterexample in+1 to the requirements.

(Step 3) The counterexample in+1 is executed as the next test case on S, and
if S terminates then the output on+1 is obtained. If S fails this test case (i.e.
the pair (in+1, on+1) does not satisfy Req) then in+1 was a true negative and
we proceed to Step 4. Otherwise S passes the test case in+1 so the model Mn

was inaccurate, and in+1 was a false negative. In this latter case, the effort of
executing S on in+1 is not wasted. We return to Step 1 and apply the learning
algorithm once again to n+1 pairs (i1, o1), . . . , (in+1, on+1) to infer a refined
model Mn+1 of S.

(Step 4) We terminate with a true negative test case (in+1, on+1) for S.



Thus an LBT algorithm iterates Steps 1 . . . 3 until an SUT error is found
(Step 4) or execution is terminated. Possible criteria for termination include a
bound on the maximum testing time, or a bound on the maximum number of
test cases to be executed.

This iterative approach to TCG yields a sequence of increasingly accurate
models M0, M1, M2, . . ., of S. (We can take M0 to be a minimal or even empty
model.) So, with increasing values of n, it becomes more and more likely that
satisfiability checking in Step 2 will produce a true negative if one exists. If
Step 2 does not produce any counterexamples at all then to proceed with the
iteration, we must construct the next test case in+1 by some other method, e.g.
randomly.

1.2 Efficient Learning Algorithms

As has already been suggested in Step 1 of Section 1.1, for LBT to be effective
at finding errors, it is important to use the right kind of learning algorithm. A
good learning algorithm should maximise the opportunity of the satisfiability
algorithm in Step 2 to find a true counterexample in+1 to the requirements Req
as soon as possible.

An automata learning algorithm L is said to be incremental if it can produce
a sequence of hypothesis automata A0, A1, . . . which are approximations to an
unknown automata A, based on a sequence of information (queries and results)
about A. The sequence A0, A1, . . . must finitely converge to A, at least up to
behavioural equivalence. In addition, the computation of each new approxima-
tion Ai+1 by L should reuse as much information as possible about the previous
approximation Ai (e.g. equivalences between states). Incremental learning algo-
rithms are necessary for efficient learning-based testing of reactive systems for
two reasons.

(1) Real reactive systems may be too big to be completely learned and tested
within a feasible timescale. This is due to the typical complexity properties of
learning and satisfiability algorithms.

(2) Testing of specific requirements such as use cases may not require learning
and analysis of the entire reactive system, but only of a fragment that implements
the requirement Req .

For testing efficiency, we also need to consider the type of queries used during
learning. The overhead of SUT execution to answer a membership query during
learning can be large compared with the execution time of the learning algo-
rithm itself (see e.g. [3]). So membership queries should be seen as “expensive”.
Therefore, as many queries (i.e. test cases) as possible should be derived from
model checking the hypothesis automaton, since these are all based on checking
the requirements Req . Conversely as few queries as possible should be derived
for reasons of internal book-keeping by the learning algorithm (e.g. for achiev-
ing congruence closure prior to automaton construction). Book-keeping queries
make no reference to the requirements Req , and therefore can only uncover an
SUT error by accident. Ideally, every query would represent a relevant and in-
teresting requirements-based test case. In fact, if the percentage of internally



generated book-keeping queries is too high then model checking becomes almost
redundant. In this case we might think that LBT becomes equivalent to ran-
dom testing. However [18] shows that this is not the case. Even without model
checking, LBT achieves better functional coverage than random testing.

In practise, most of the well-known classical regular inference algorithms
such as L* (Angluin [2]) or ID (Angluin [1]) are designed for complete rather
incremental learning. Among the much smaller number of known incremental
learning algorithms, we can mention the RPNII algorithm (Dupont [7]) and the
IID algorithm (Parekh et al. [15]) which learn Moore automata, and the CGE
algorithm (Meinke [10]) which learns Mealy automata. To our knowledge, no
incremental algorithm for learning Kripke structures has yet been published in
the literature. Thus the IKL algorithm, and its application to testing represent
novel contributions of our paper.

2 Mathematical Preliminaries and Notation

Let Σ be any set of symbols then Σ∗ denotes the set of all finite strings over Σ
including the empty string ε. The length of a string α ∈ Σ∗ is denoted by |α|
and |ε| = 0. For strings α, β ∈ Σ∗, α . β denotes their concatenation.

For α, β, γ ∈ Σ∗, if α = βγ then β is termed a prefix of α and γ is termed
a suffix of α. We let Pref (α) denote the prefix closure of α, i.e. the set of all
prefixes of α. We can also apply prefix closure pointwise to any set of strings.
The set difference operation between two sets U, V , denoted by U − V , is the
set of all elements of U which are not members of V . The symmetric difference
operation on pairs of sets is defined by U ⊕ V = (U − V ) ∪ (V − U).

A deterministic finite automaton (DFA) is a five-tuple A =< Σ,Q, F, q0, δ >
where: Σ is the input alphabet, Q is the state set, F ⊆ Q is the accepting
state set and q0 ∈ Q is the starting state. The state transition function of A is a
mapping δ : Q×Σ → Q with the usual meaning, and can be inductively extended
to a mapping δ∗ : Q × Σ∗ → Q where δ∗(q, ε) = q and δ∗(q, σ1, . . . σn+1) =
δ(δ∗(q, σ1, . . . σn), σn+1). Since input strings can be used to name states, given
a distinguished dead state d0 (from which no accepting state can be reached)
we define string concatenation modulo the dead state d0, f : Σ∗ ∪ {d0} × Σ →
Σ∗ ∪ {d0}, by f(d0, σ) = d0 and f(α, σ) = α . σ for α ∈ Σ∗. This function is
used for automaton learning in Section 4. The language L(A) accepted by A is
the set of all strings α ∈ Σ∗ such that δ∗(q0, α) ∈ F . A language L ⊆ Σ∗ is
accepted by a DFA if and only if, L is regular, i.e. L can be defined by a regular
grammar.

A generalisation of DFA to multi-bit outputs on states is given by determin-
istic Kripke structures.

2.1. Definition. Let Σ = { σ1, . . . , σn } be a finite input alphabet. By a
k-bit deterministic Kripke structure A we mean a five-tuple

A = ( QA, Σ, δA : QA ×Σ → QA, q
0
A, λA : QA → Bk )



where QA is a state set, δA is the state transition function, q0A is the initial state
and λA is the output function. As before we let δ∗A : QA ×Σ∗ → QA denote the
iterated state transition function, where δ∗A(q, ε) = q and δ∗A(q, σ1, . . . , σi+1) =
δA(δ

∗
A(q, σ1, . . . , σi), σi+1). Also we let λ∗A : Σ∗ → Bk denote the iterated

output function λ∗A(σ1, . . . , σi) = λA(δ
∗
A(q

0
A, σ1, . . . , σi)).

If A is a Kripke structure then the minimal subalgebra Min(A) of A is the
unique subalgebra of A which has no proper subalgebra. (We implicitly assume
that all input symbols σ ∈ Σ are constants of A so thatMin(A) has a non-trivial
state set.) Note that a 1-bit deterministic Kripke structure A is isomorphic to
the DFA A′ = ( QA, Σ, δA : QA × Σ → QA, q

0
A, FA′ ), where FA′ ⊆ QA and

λA(q) = true if, and only if q ∈ FA′ .

3 Bit-Sliced Learning of Kripke Structures

We will establish a precise basis for learning k-bit Kripke structures using regular
inference algorithms for DFA. The approach we take is to bit-slice the output of
a k-bit Kripke structure A into k individual 1-bit Kripke structures A1, . . . , Ak,
which are learned in parallel as DFA by some regular inference algorithm. The
k inferred DFA B1, . . . , Bk are then recombined using a subdirect product
construction to obtain a Kripke structure that is behaviourally equivalent to A.

This approach has three advantages: (1) We can make use of any regular
inference algorithm to learn the individual 1-bit Kripke structures Ai. Thus we
have access to the wide range of known regular inference algorithms. (2) We
can reduce the total number of book-keeping queries by lazy book-keeping. This
technique maximises re-use of book-keeping queries among the 1-bit structures
Ai. In Section 4, we illustrate this technique in more detail. (3) We can learn
just those bits which are necessary to test a specific temporal logic requirement.
This abstraction technique improves the scalability of testing.

It usually suffices to learn automata up to behavioural equivalence.

3.1. Definition. Let A and B be k-bit Kripke structures over a finite input
alphabet Σ. We say that A and B are behaviourally equivalent, and write A ≡ B
if, and only if, for every finite input sequence σ1, . . . , σi ∈ Σ∗ we have

λ∗A( σ1, . . . , σi ) = λ∗B( σ1, . . . , σi ).

Clearly, by the isomorphism identified in Section 2 between 1-bit Kripke struc-
tures and DFA, for such structures we have A ≡ B if, and only if, L(A′) = L(B′).
Furthermore, if Min(A) is the minimal subalgebra of A then Min(A) ≡ A.

Let us make precise the concept of bit-slicing a Kripke structure.

3.2. Definition. Let A be a k-bit Kripke structure over a finite input alphabet
Σ,

A = ( QA, Σ, δA : QA ×Σ → QA, q
0
A, λA : QA → Bk ).



For each 1 ≤ i ≤ k define the i-th projection Ai of A to be the 1-bit Kripke
structure where

Ai = ( QA, Σ, δA : QA ×Σ → QA, q
0
A, λAi

: QA → B ),

and λAi(q) = λA(q)i, i.e. λAi(q) is the i-th bit of λA(q).

A family of k individual 1-bit Kripke structures can be combined into a
single k-bit Kripke structure using the following subdirect product construction.
(See e.g. [13] for a general definition of subdirect products and their universal
properties.)

3.3. Definition. Let A1, . . . , Ak be a family of 1-bit Kripke structures,

Ai = ( Qi, Σ, δi : Qi ×Σ → Qi, q
0
i , λi : Q→ B )

for i = 1, . . . , k. Define the product Kripke structure

k∏

i=1

Ai = ( Q, Σ, δ : Q×Σ → Q, q0, λ : Q→ Bk ),

where Q =
∏k

i=1Qi = Q1 × . . .×Qk and q0 = ( q01 , . . . , q
0
k ). Also

δ(q1, . . . , qk, σ) = ( δ1(q1, σ), . . . , δk(qk, σ) ),

λ(q1, . . . , qk) = ( λ1(q1), . . . , λk(qk) ).

Associated with the direct product
∏k

i=1Ai we have i-th projection mapping

proj i : Q1 × . . .×Qk → Qi, proj i(q1, . . . , qk) = qi, 1 ≤ i ≤ k

Let Min(
∏k

i=1Ai ) be the minimal subalgebra of
∏k

i=1Ai.

The reason for taking the minimal subalgebra of the direct product
∏k

i=1Ai

is to avoid the state space explosion due to a large number of unreachable states
in the direct product itself. The state space size of

∏k
i=1Ai grows exponentially

with k. On the other hand since most of these states are unreachable from the
initial state, then from the point of view of behavioural analysis these states are
irrelevant. Note that this minimal subalgebra can be computed in linear time
from its components Ai (w.r.t. state space size).

As is well known from universal algebra, the i-th projection mapping proj i
is a homomorphism.

3.4. Proposition. Let A1, . . . , Ak be any minimal 1-bit Kripke structures.
(i) For each 1 ≤ i ≤ k, proj i : Min(

∏k
i=1Ai ) → Ai is an epimorphism, and

hence Min(
∏k

i=1Ai ) is a subdirect product of the Ai.

(ii) Min(
∏k

i=1Ai ) ≡
∏k

i=1Ai.

Proof. (i) Immediate since the Ai are minimal. (ii) Follows from Min(A) ≡ A.



The following theorem justifies bit-sliced learning of k-bit Kripke structures
using conventional regular inference methods for DFA.

3.5. Theorem. Let A be a k-bit Kripke structure over a finite input alphabet
Σ. Let A1, . . . , Ak be the k individual 1-bit projections of A. For any 1-bit
Kripke structures B1, . . . , Bk, if, A1 ≡ B1 & . . .& Ak ≡ Bk then

A ≡ Min(

k∏

i=1

Bi ).

Proof. Use Proposition 3.4.

4 Incremental Learning for Kripke Structures

In this section we present a new algorithm for incremental learning of Kripke
structures. We will briefly discuss its correctness and termination properties, al-
though a full discussion of these is outside the scope of this paper and is presented
elsewhere in [12]. Our algorithm applies bit-slicing as presented in Section 3, and
uses distinguishing sequences and lazy partition refinement for regular inference
of the 1-bit Kripke structures. The architecture of the IKL algorithm consists of
a main learning algorithm and two sub-procedures for lazy partition refinement
and automata synthesis. Distinguishing sequences were introduced in Angluin
[1] as a method for learning DFA.

Algorithm 1 is the main algorithm for bit-sliced incremental learning. It learns
a sequenceM1, . . . , Ml of n-bit Kripke structures that successively approximate
a single n-bit Kripke structure A, which is given as the teacher. In LBT, the
teacher is always the SUT.

The basic idea of Algorithm 1 is to construct in parallel a family E1
i1
, . . . , En

in
of n different equivalence relations on the same set Tk of state names. For each
equivalence relation Ej

ij
, a set Vj of distinguishing strings is generated iteratively

to split pairs of equivalence classes in Ej
ij

until a congruence is achieved. Then
a quotient DFA M j can be constructed from the partition of Tk by Ej

ij
. The

congruences are constructed so that Ej
i ⊆ Ej

i+1 and thus the IKL algorithm is
incremental, and fully reuses information about previous approximations, which
is efficient.

Each n-bit Kripke structure Mt is constructed using synthesis algorithm 3,
as a subdirect product of n individual quotient DFA M1, . . . , Mn (viewed as
1-bit Kripke structures). When the IKL algorithm is applied to the problem of
LBT, the input strings si ∈ Σ∗ to IKL are generated as counterexamples to
correctness (i.e. test cases) by executing a model checker on the approximation
Mt−1 with respect to some requirements specification φ expressed in temporal
logic. If no counterexamples to φ can be found in Mt−1 then si is randomly
chosen, taking care to avoid all previously used input strings.

Algorithm 2 implements lazy partition refinement, to extend E1
i1
, . . . , En

in
from being equivalence relations on states to being a family of congruences with
respect to the state transition functions δ1, . . . , δn of M1, . . . , Mn.



Algorithm 1 IKL: Incremental Kripke Structure Learning Algorithm
Input: A file S = s1, . . . , sl of input strings si ∈ Σ∗ and a Kripke structure A with
n-bit output as teacher to answer queries λ∗A(si) = ?
Output: A sequence of Kripke structures Mt with n-bit output for t = 0, . . . , l.

1. begin
2. //Perform Initialization
3. for c = 1 to n do { ic = 0, vic = ε, Vc = {vic} }
4. k = 0, t = 0,
5. P0 = {ε}, P ′0 = P0 ∪ {d0}, T0 = P0 ∪Σ
6. //Build equivalence classes for the dead state d0
7. for c = 1 to n do { Ec

0(d0) = ∅ }
8. //Build equivalence classes for input strings of length zero and one
9. ∀α ∈ T0 {

10. (b1, . . . , bn) = λ∗A(α)
11. for c = 1 to n do
12. if bc then Ec

ic(α) = {vic} else Ec
ic(α) = ∅

13. }
14. //Refine the initial equivalence relations E1

0 , . . . , E
n
0

15. //into congruences using Algorithm 2
16.
17. //Synthesize an initial Kripke structure M0 approximating A
18. //using Algorithm 3.
19.
20. //Process the file of examples.
21. while S 6= empty do {
22. read( S, α )
23. k = k+1, t = t+1
24. Pk = Pk−1 ∪ Pref(α) //prefix closure
25. P ′k = Pk ∪ {d0}
26. Tk = Tk−1 ∪ Pref(α) ∪ {α . b | α ∈ Pk − Pk−1, b ∈ Σ} //for prefix closure
27. T ′k = Tk ∪ {d0}
28. ∀α ∈ Tk − Tk−1 {
29. for c = 1 to n do Ec

0(α) = ∅ //initialise new equivalence class Ec
0(α)

30. for j = 0 to ic do {
31. // Consider adding distinguishing string vj ∈ Vc

32. // to each new equivalence class Ec
j (α)

33. (b1, . . . , bn) = λ∗A(α . vj)
34. if bc then Ec

j (α) = Ec
j (α) ∪ { vj }

35. }
36. }
37. //Refine the current equivalence relations E1

i1 , . . . , E
n
in

38. // into congruences using Algorithm 2
39.
40. if α is consistent with Mt−1

41. then Mt =Mt−1

42. else synthesize Kripke structure Mt using Algorithm 3.
43. }
44. end.



Algorithm 2 Lazy Partition Refinement
1. while (∃ 1 ≤ c ≤ n,∃α, β ∈ P ′k and ∃σ ∈ Σ such that Ec

ic(α) = Ec
ic(β) but

Ec
ic(f(α, σ)) 66= Ec

ic(f(β, σ)) do {
2. //Equivalence relation Ec

ic is not a congruence w.r.t. δc
3. //so add a new distinguishing sequence.
4. Choose γ ∈ Ec

ic(f(α, σ))⊕ Ec
ic(f(β, σ))

5. v = σ . γ
6. ∀α ∈ Tk {
7. (b1, . . . , bn) = λ∗A(α . v)
8. for c = 1 to n do {
9. if Ec

ic(α) = Ec
ic(β) and E

c
ic(f(α, σ)) 66= Ec

ic(f(β, σ)) then {
10. // Lazy refinement of equivalence relation Ec

ic

11. ic = ic + 1, vic = v, Vc = Vc ∪ {vic}
12. if bc then Ec

ic(α) = Ec
ic−1(α) ∪ {vic} else Ec

ic(α) = Ec
ic−1(α)

13. }
14. }
15. }

Algorithm 3 Kripke Structure Synthesis
1. for c = 1 to n do {
2. // Synthesize the quotient DFA (1-bit Kripke structure) Mc

3. The states of Mc are the sets Ec
ic(α), where α ∈ Tk

4. Let qc0 = Ec
ic(ε)

5. The accepting states are the sets Ec
ic(α) where α ∈ Tk and ε ∈ Ec

ic(α)
6. The transition function δc of Mc is defined as follows:
7. ∀α ∈ P ′k {
8. if Ec

ic(α) = ∅ then ∀b ∈ Σ { let δc(Ec
ic(α), b) = Ec

ic(α) }
9. else ∀b ∈ Σ { δc(Ec

ic(α), b) = Ec
ic(α . b) }

10. }
11. ∀β ∈ Tk − P ′k {
12. if ∀α ∈ P ′k { Ec

ic(β) 6= Ec
ic(α) } and Ec

ic(β) 6= ∅ then
13. ∀b ∈ Σ { δc(Ec

ic(β), b) = ∅ }
14. }
15. // Compute Mt in linear time as a subdirect product of the Mc

16. Mt = Min(
∏n

c=1M
c )



Thus line 1 searches for congruence failure in any one of the equivalence
relations E1

i1
, . . . , En

in
. In lines 6-14 we apply lazy partition refinement. This

technique implies reusing the new distinguishing string v wherever possible to
refine each equivalence relation Ej

ij
that is not yet a congruence. On the other

hand, any equivalence relation Ej
ij

that is already a congruence is not refined,
even though the result bj of the new query α . v might add some new information
to M j . This helps minimise the total number of partition refinement queries (cf.
Section 1.2).

Algorithm 3 implements model synthesis. First, each of the n quotient DFA
M1, . . . , Mn are constructed. These, reinterpreted as 1-bit Kripke structures,
are then combined in linear time as a subdirect product to yield a new n-bit
approximation Mt to A (c.f. Section 3).

4.1 Correctness and Termination of the IKL algorithm.

The sequence M1, . . . , Ml of hypothesis Kripke structures which are incremen-
tally generated by IKL can be proven to finitely converge to A up to behavioural
equivalence, for sufficiently large l. The key to this observation lies in the fact
that we can identify a finite set of input strings such that the behavior of A is
completely determined by its behaviour on this finite set.

Recall that for a DFA A =< Σ,Q,F, q0, δ > a state q ∈ Q is said to be live
if for some string α ∈ Σ∗, δ∗(q, α) ∈ F . A finite set C ⊆ Σ∗ of input strings is
said to be live complete for A if for every reachable live state q ∈ Q there exists
a string α ∈ C such that δ∗(q0, α) = q. More generally, given a finite collection
A1, . . . , Ak of DFA, then C ⊆ Σ∗ is live complete for A1, . . . , Ak if, and only
if, for each 1 ≤ i ≤ k, C is a live complete set for Ai. Clearly, for every finite
collection of DFA there exists at least one live complete set of strings.

4.1.1. Theorem. Let A be a k-bit Kripke structure over a finite input al-
phabet Σ. Let A1, . . . , Ak be the k individual 1-bit projections of A. Let
C = { s1, . . . , sl } ⊆ Σ∗ be a live complete set for A1, . . . , Ak. The IKL
algorithm terminates on C and for the final hypothesis structure Ml we have

Ml ≡ A.

Proof. See [12].

5 A Learning-Based Testing Architecture using IKL.

Figure 1 depicts an architecture for learning-based testing of reactive systems by
combining the IKL algorithm of Section 4 with a model checker for Kripke stuc-
tures and an oracle. In this case we have chosen to use the NuSMV model checker
(see e.g. Cimatti et al. [4]), which supports the satisfiability analysis of Kripke
structures with respect to both linear temporal logic (LTL) and computation
tree logic (CTL) [6].



To understand this architecture, it is useful to recall the abstract description
of learning-based testing as an iterative process, given in Section 1.1. Following
the account of Section 1.1, we can assume that at any stage in the testing process
we have an inferred Kripke structure Mn produced by the IKL algorithm from
previous testing and learning. Test cases will have been produced as counterex-
amples to correctness by the model checker, and learning queries will have been
produced by the IKL algorithm during partition refinement. (Partition refine-
ment queries are an example of what we termed book-keeping queries in Section
1.2.)
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Fig. 1. A Learning-Based Testing Architecture using the IKL algorithm.

In Figure 1, the output Mn of the IKL algorithm is passed to an equiv-
alence checker. Since this architectural component is not normally part of an
LBT framework, we should explain its presence carefully. We are particularly
interested in benchmarking the performance of LBT systems, both to compare
their performance with other testing methodologies, and to make improvements
to existing LBT systems. (See Section 6.) In realistic testing situations, we do
not anticipate that an entire SUT can be learned in a feasible time (c.f. the dis-
cussion in Section 1.2). However, for benchmarking with the help of smaller case
studies (for which complete learning is feasible) it is useful to be able to infer
the earliest time at which we can say that testing is complete. Obviously testing
must be complete at time ttotal when we have learned the entire SUT (c.f. Sec-
tion 6). Therefore the equivalence checker allows us to compute the time ttotal

simply to conduct benchmarking studies. (Afterwards the equivalence checker
is removed.) The equivalence checker compares the current Kripke structure
Mn with the SUT. A positive result from this equivalence test stops all fur-
ther learning and testing after one final model check. The algorithm we use has



been adapted from the quasi-linear time algorithm for DFA equivalence checking
described in [14] and has been extended to deal with k-bit Kripke structures.

In Figure 1, the inferred model Mn is passed to a model checker, together
with a user requirement represented as a temporal logic formula φ. This formula
is constant during a particular testing experiment. The model checker attempts
to identify at least one counterexample to φ in Mn as an input sequence i. If φ
is a safety formula then this input sequence will usually be finite i = i1, . . . , ik.
If φ is a liveness formula then this input sequence i may be finite or infinite.
Recall that infinite counterexamples to liveness formulas can be represented as
infinite sequences of the form x yω. In the case that i = x yω then i is truncated
to a finite initial segment that would normally include the handle x and at least
one execution of the infinite loop yω, such as i = x y or i = x y y. Observing
the failure of an infinite test case is of course impossible. The LBT architecture
implements a compromise solution that runs the truncated sequence only, in
finite time, and issues a warning rather than a fail verdict.

Note that if the next input sequence i cannot be constructed either by par-
tition refinement or by model checking then in order to proceed with iterative
testing and learning, another way to generate imust be found. (See the discussion
in Section 1.1.) One simple solution, shown in Figure 1, is to use a random input
sequence generator for i, taking care to discard any previously used sequences.

Thus from one of three possible sources (partition refinement, model checking
or randomly) a new input sequence i = i1, . . . , ik is constructed. Figure 1
shows that if i is obtained by model checking then the current model Mn is
applied to i to compute a predicted output p = p1, . . . , pk for the SUT that
can be used for the oracle step. However, this is not possible if i is random or a
partition refinement since then we do not know whether i is a counterexample
to φ. Nevertheless, in all three cases, the input sequence i is passed to the SUT
and executed to yield an actual or observed output sequence o = o1, . . . , ok.

The final stage of this iterative testing architecture is the oracle step. Figure
1 shows that if a predicted output p exists (i.e. the input sequence i came from
model checking) then actual output o and the predicted output p are both passed
to an oracle component. This component implements the Boolean test o = p. If
this equality test returns true and the test case i = i1, . . . , ik was originally a
finite test case then we can conclude that the test case i is definitely failed, since
the behaviour p is by construction a counterexample to the correctness of φ. If
the equality test returns true and the test case i is finitely truncated from an
infinite test case (a counterexample to a liveness requirement) then the verdict is
weakened to a warning. This is because the most we can conclude is that we have
not yet seen any difference between the observed behaviour o and the incorrect
behaviour p. The system tester is thus encouraged to consider a potential SUT
error.

On the other hand if o 6= p, or if no output prediction p exists then it is quite
difficult to issue an immediate verdict. It may or may not be the case that the
observed output o is a counterexample to the correctness of φ. In some cases the
syntactic structure of φ is simple enough to semantically evaluate the formula



φ on the fly with its input and output variables bound to i and o respectively.
However, sometimes this is not possible since the semantic evaluation of φ also
refers to global properties of the automaton. Ultimately, this is not a problem for
our approach, since Mn+1 is automatically updated with the output behaviour
o. Model checking Mn+1 later on will confirm o as an error if this is the case.

5.1 Correctness and Termination of the LBT Architecture.

It is important to establish that the LBT architecture always terminates, at least
in principle. Furthermore, the SUT coverage obtained by this testing procedure
is complete, in the sense that if the SUT contains any counterexamples to cor-
rectness then a counterexample will be found by the testing architecture. When
the SUT is too large to be completely learned in a feasible amount of time, this
completeness property of the testing architecture still guarantees that there is no
bias in testing so that one could somehow never discover an SUT error. Failure
to find an error in this case is purely a consequence of insufficient testing time.

The termination and correctness properties of the LBT architecture depend
on the following correctness properties of its components:

(i) the IKL algorithm terminates and correctly learns the SUT given a finite
set C of input strings which is live complete (c.f. Theorem 4.1.1);

(ii) the model checking algorithm used by NuSMV is a terminating decision
procedure for the validity of LTL formulas;

(iii) each input string i ∈ Σ∗ is generated with non-zero probability by the
random input string generator.

5.1.1. Theorem. Let A be a k-bit Kripke structure over an input alphabet Σ.

(i) The LBT architecture (with equivalence checker) terminates with proba-
bility 1.0, and for the final hypothesis structure Ml we have

Ml ≡ A.

(ii) If there exists a (finite or infinite) input string i over Σ which witnesses
that an LTL requirement φ is not valid for A, then model checking will eventually
find such a string i and the LBT architecture will generate a test fail or test
warning message after executing i as a test case on A.

Proof. (i) Clearly by Theorem 4.1.1, the IKL algorithm will learn the SUT A up
to behavioural equivalence, given as input a live complete set C for the individual
1-bit projections A1, . . . , Ak of A. Now, we cannot be sure that the strings
generated by model checking counterexamples and partition refinement queries
alone constitute a live complete set C for A1, . . . , Ak. However, these sets of
queries are complemented by random queries. Since a live complete set is finite,
and every input string is randomly generated with non-zero probability, then
with probability 1.0 the IKL algorithm will eventually obtain a live complete set
and converge. At this point, equivalence checking the final hypothesis structure
Ml with the SUT will succeed and the LBT architecture will terminate.



(ii) Suppose there is at least one (finite or infinite) counterexample string
i over Σ to the validity of an LTL requirement φ for A. In the worst case, by
part (i), the LBT architecture will learn the entire structure of A. Since the
model checker implements a terminating decision procedure for validity of LTL
formulas, it will return a counterexample i from the final hypothesis structure
Ml, since by part (i),Ml ≡ A and A has a counterexample. For such i, comparing
the corresponding predicted output p from Ml and the observed output o from
A we must have p = o since Ml ≡ A. Hence the testing architecture will issue a
fail or warning message.

6 Case Studies and Performance Benchmarking

In order to evaluate the effectiveness of the LBT architecture described in Section
5, we conducted a number of testing experiments on two SUT case studies,
namely an 8 state cruise controller and a 38 state 3-floor elevator model1.

For each SUT case study we chose a collection of safety and liveness re-
quirements that could be expressed in linear temporal logic (LTL). For each
requirement we then injected an error into the SUT that violated this require-
ment and ran a testing experiment to discover the injected error. The injected
errors all consisted of transition mutations obtained by redirecting a transition
to a wrong state. This type of error seems quite common in our experience.

There are a variety of ways to measure the performance of a testing system
such as this. One simple measure that we chose to consider was to record the first
time tfirst at which an error was discovered in an SUT, and to compare this with
the total time ttotal required to completely learn the SUT. (So tfirst ≤ ttotal .)
This measure is relevant if we wish to estimate the benefit of using incremental
learning instead of complete learning.

Because some random queries are almost always present in each testing ex-
periment, the performance of the LBT architecture has a degree of variation.
Therefore, for the same correctness formula and injected error, we ran each ex-
periment ten times to try to average out these variations in performance. This
choice appeared adequate to obtain a representative average. Subsections 6.1
and 6.2 below set out the results obtained for each case study.

6.1 The Cruise Controller Model

The cruise controller model we chose as an SUT is an 8 state 5-bit Kripke
structure with an input alphabet of 5 symbols. Figure 2 shows its structure2.
The four requirements shown in Table 1 consist of: (1,2) two requirements on
speed maintenance against obstacles in cruise mode, and (3,4) disengaging cruise
mode by means of the brake and gas pedals. To gain insight into the LBT
1 Our testing platform was based on a PC with a 1.83 GHz Intel Core 2 duo processor
and 4GB of RAM running Windows Vista.

2 The following binary data type encoding is used. Modes: 00 = manual, 01 = cruise,
10 = disengaged. Speeds: 00 = 0, 01 = 1, 10 = 2.
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Fig. 2. The cruise controller SUT.

Req 1 G( mode = cruise & speed = 1 & in = dec -> X( speed = 1 ))
Req 2 G( mode = cruise & speed = 1 & in = acc -> X( speed = 1 ) )
Req 3 G( mode = cruise & in = brake -> X( mode = disengaged ) )
Req 4 G( mode = cruise & in = gas -> X( mode = disengaged ) )

Table 1. Cruise Controller Requirements as LTL formulas.

Requirement tfirst (sec) ttotal (sec) MCQfirst MCQtotal PQfirst PQtotal RQfirst RQtotal

Req 1 3.5 21.5 3.2 24.3 7383 30204 8.2 29.3
Req 2 2.3 5.7 5.5 18.2 8430 27384 10.4 23.1
Req 3 2.3 16.0 1.7 33.7 6127 34207 6.8 38.8
Req 4 2.9 6.1 4.7 20.9 7530 24566 10.4 20.9

Table 2. LBT performance for Cruise Controller Requirements.



architecture performance, Table 2 shows average figures at times tfirst and ttotal

for the numbers:

(i) MCQfirst and MCQtotal of model checker generated test cases,
(ii) PQfirst and PQtotal of partition refinement queries,
(iii) RQfirst and RQtotal of random queries.

In Table 2, columns 2 and 3 show that the times required to first discover an
error in the SUT are between 14% and 47% of the total time needed to completely
learn the SUT. The large query numbers in columns 6 and 7 show that partition
refinement queries dominate the total number of queries. Columns 8 and 9 show
that the number of random queries used is very low, of and of the same order
of magnitude as the number of model checking queries (columns 4 and 5). Thus
partition refinement queries and model checker generated test cases come quite
close to achieving a live complete set, although they do not completely suffice
for this (c.f. Section 4.1).

6.2 The Elevator Model

The elevator model we chose as an SUT is a 38 state 8-bit Kripke structure
with an input alphabet of 4 symbols. Figure 3 shows its condensed structure
as a hierarchical statechart. The six requirements shown in Table 3 consist of
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Fig. 3. The 3-floor elevator SUT (condensed Statechart ).

Req 1 G( Stop -> ( @1 | @2 | @3 ) )
Req 2 G( !Stop -> cl )
Req 3 G( Stop & X( !Stop ) -> X( !cl ) )
Req 4 G( Stop & @1 & cl & in=c1 & X( @1 ) -> X( !cl ) )
Req 5 G( Stop & @2 & cl & in=c2 & X( @2 ) -> X( !cl ) )
Req 6 G( Stop & @3 & cl & in=c3 & X( @3 ) -> X( !cl ) )

Table 3. Elevator Requirements as LTL formulas.



Requirement tfirst (sec) ttotal (sec) MCQfirst MCQtotal PQfirst PQtotal RQfirst RQtotal

Req 1 0.34 1301.3 1.9 81.7 1574 729570 1.9 89.5
Req 2 0.49 1146 3.9 99.6 2350 238311 2.9 98.6
Req 3 0.94 525 1.6 21.7 6475 172861 5.7 70.4
Req 4 0.052 1458 1.0 90.3 15 450233 0.0 91
Req 5 77.48 2275 1.2 78.3 79769 368721 20.5 100.3
Req 6 90.6 1301 2.0 60.9 129384 422462 26.1 85.4

Table 4. LBT performance for Elevator Requirements.

requirements that: (1) the elevator does not stop between floors, (2) doors are
closed when in motion, (3) doors open upon reaching a floor, and (4, 5, 6) closed
doors can be opened by pressing the same floor button when stationary at a
floor.

Table 4 shows the results of testing the requirements of Table 3. These results
confirm several trends seen in Table 2. However, they also show a significant
increase in the efficiency of using incremental learning, since the times required
to first discover an error in the SUT are now between 0.003% and 7% of the
total time needed to completely learn the SUT. These results are consistent
with observations of [12] that the convergence time of IKL grows quadratically
with state space size. Therefore incremental learning gives a more scalable testing
method than complete learning.

7 Conclusions

We have presented a novel incremental learning algorithm for Kripke structures,
and shown how this can be applied to learning-based testing of reactive sys-
tems. Using two case studies of reactive systems, we have confirmed our initial
hypothesis of Section 1.2, that incremental learning is a more scalable and ef-
ficient method of testing than complete learning. These results are consistent
with similar results for LBT applied to procedural systems in [11].

Further research could be carried out to improve the performance of the ar-
chitecture presented here. For example the performance of the oracle described
in Section 5 could be improved to yield a verdict even for random and parti-
tion queries, at least for certain kinds of LTL formulas. Further research into
scalable learning algorithms would be valuable for dealing with large hypothesis
automata. The question of learning-based coverage has been initially explored
in [18] but further research here is also needed.

We gratefully acknowledge financial support for this research from the Swedish
Research Council (VR), the Higher Education Commission (HEC) of Pakistan,
and the European Union under project HATS FP7-231620.
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