
Satisfying degree d equations over GF [2]n

Johan H̊astad
johanh@kth.se

Royal Institute of Technology
Stockholm, Sweden

April 14, 2011

Abstract

We study the problem where we are given a system of polynomial
equations defined by multivariate polynomials over GF [2] of fixed con-
stant degree d > 1 and the aim is to satisfy the maximal number of
equations. A random assignment approximates this problem within a
factor 2−d and we prove that for any ε > 0, it is NP-hard to obtain a
ratio 2−d + ε. When considering instances that are perfectly satisfiable we
give a probabilistic polynomial time algorithm that, with high probability,
satisfies a fraction 21−d − 21−2d and we prove that it is NP-hard to do
better by an arbitrarily small constant. The hardness results are proved
in the form of inapproximability results of Max-CSPs where the predicate
in question has the desired form and we give some immediate results on
approximation resistance of some predicates.

1 Introduction

The study of polynomial equations is a basic question of mathematics. In this
paper we study a problem we call Max-d-Eq where we are given a system of m
equations of degree d in n variables over GF [2]. As we consider the case of d
constant all polynomials are given in the dense representation. Many problems
can be coded as polynomial equations and in particular it is easy to code 3-Sat
as equations of degree 3 and thus determining whether we can simultaneously
satisfy all equations is NP-complete. It is hence natural to study the question
of satisfying the maximal number of equations and our interests turn to approx-
imation algorithms. We say that an algorithm is a C-approximation algorithm
if it always returns a solution which satisfies at least C ·OPT equations where
OPT is the number of equations satisfied by the optimal solution. The PCP-
theorem [2, 1] shows that it is NP-hard to approximate the Max-d-Eq within
some constant C < 1 and from the results of [6] it is not difficult to get an ex-
plicit constant of inapproximability. Given the importance of the problem it is,

1

however, natural to try to determine the exact approximability of the problem
and this is the purpose of this paper.

The result of [6] proves that the optimal approximability constant for linear
equations (d = 1) is 1

2 . This approximability is obtained by simply picking a
random assignment independently of the equations at hand. To prove tightness
it is established that for any ε > 0 it is NP-hard to approximate the answer
better than within a factor 1

2 + ε. This is proved by constructing a suitable
Probabilistic Checkable Proof (PCP). It turns out that these results extend
almost immediately to the higher degree case giving the optimal constant 2−d

for degree-d equations. We proceed to study the case when all equations can be
simultaneously satisfied.

In the case of linear equations, it follows by Gaussian elimination that once
it is possible to satisfy all equations one can efficiently find such a solution.
The situation for higher degree equations turns out to be more interesting. Any
implied affine condition can be used to eliminate a variable but this turns out
to be the limit of what can be achieved. To be more precise, from a characteri-
zation of low weight code words from Reed-Muller codes [7] it follows that any
equation satisfied by a fraction lower than 21−d − 21−2d must imply an affine
condition. This number turns out to be the sharp threshold of approximability
for satisfiable instances.

The upper bounds is obtained by using implied affine conditions and then
choosing an assignment at random. For d ≥ 3 we are not able to derandomize
this algorithm and thus in general this is a probabilistic algorithm.

The lower bound is proved by constructing a PCP very much inspired by
[6] and indeed nothing in the current paper uses facts not known at the time of
that paper. In particular, we prove standard NP-hardness results and do not
use any sophisticated results in harmonic analysis.

As a by-product of our proofs we make some observations in the area of max-
imum constraint satisfaction problems. Such a problem is given by a predicate
P of arity k and an instance is given by a sequence of k-tuples of literals. The
task is to find an assignment such that the maximal number of the resulting
k-tuples of bits satisfy P . We say that a predicate is approximation resistant
if it is NP-hard to get a better approximation ratio than is obtained by simply
picking a random assignment. An even stronger hardness property is to prove
that is NP-hard to get a better ratio even when considering instances where all
constraints can be satisfied simultaneously.

Given a predicate P of arity k we construct a predicate, PL, of arity 3k
by replacing each input by the exclusive-or of three bits. A straightforward
extension of our techniques show that for any P , the resulting predicate PL is
approximation resistant and if P does not imply an affine condition the result
also applies to satisfiable instances. As a curiosity we note that this way it
is possible to construct a predicate that is approximation resistant while for
satisfiable instances there is a better approximation ratio that is still strictly
smaller than one but larger than the ratio given by the random assignment.

An outline of the paper is as follows. In Section 2 we give some preliminaries
and the rather easy result for non-perfect completeness is given in Section 3.

2

The most technically interesting part of the paper is given in Section 4 where we
study systems of equations where all equations can be satisfied simultaneously.
Due to space limitations we postpone the proof of the hardness result to the
appendix. We make some observations on constraint satisfaction problems in
Section 5 and end with some final remarks in Section 6.

2 Preliminaries

We are interested in polynomials, not as formal polynomials, but rather as
functions mapping GF [2]n to GF [2]. In particular, we freely use that x2

i = xi

and thus any term in our polynomials can be taken to be multilinear. We start
with the following standard result which we, for completeness, even prove.

Theorem 2.1. Any multivariate polynomial P of degree d that is nonzero takes
the value 1 for at least a fraction 2−d of the inputs.

Proof. The proof is by induction over n and d, with the base case of d = 1 which
is true as each linear polynomial is unbiased.

For the induction step, suppose P (x) = P0(x) + x1P1(x) and let us consider
what happens for the two possible values of x1. If both P0 and P0 + P1 are
non-zero we are done by induction. If not, as P1 is of degree at most d− 1, the
polynomial of the two that is non-zero is of degree at most d − 1. Hence this
polynomial takes the value 1 for at least a fraction 21−d of its inputs. As the
set of inputs of this polynomial constitutes half of the inputs of P , the result
follows also in this case.

It is not difficult to see that this result is tight by considering P (x) =
∏d

i=1 xi,
or more generally, products of d independent affine forms. It is important for us
that these are the only cases of tightness. This follows from a characterization
by Kasami and Tokura [7] of all polynomials that are non-zero for at most
a fraction 21−d of the inputs. A consequence of their characterization is the
following theorem.

Theorem 2.2. Let P be a degree d polynomial over GF [2] which factors as

P (x) = Q(X)
r∏

i=1

Ai(x)

where Ai are linearly independent affine forms and Q does not contain any affine
factor. Then the fraction of points on which P (x) = 1 is at least

2−r(21−(d−r) − 21−2(d−r)),

if d 6= r and 2−d if d = r.

For completeness we prove Theorem 2.2 in the appendix.

3

As mentioned in the introduction in this paper we also obtain some results
for maximum constraint satisfaction problems (Max-CSPs). Let us for com-
pleteness state some definitions. For a predicate P let r(P) be the probability
that a random assignment satisfies P . Note that r(P) is the approximation ratio
achieved by the algorithm that simply picks a random assignment independent
of the instance under consideration. Let Max-P be the Max-CSP where each
constraint is given by the predicate P applied to a k-tuple of literals.

Definition 2.3. A predicate P is approximation resistant if, for any ε > 0, it
is NP-hard to approximate Max-P within r(P) + ε.

There is also a stronger notion of hardness.

Definition 2.4. A predicate P is approximation resistant on satisfiable in-
stances if, for any ε > 0, it is NP-hard to distinguish instances of Max-P where
all constraints can be satisfied simultaneously from those where only a fraction
r(P) + ε of the constraints can be satisfied simultaneously.

We make use of the Fourier transform and as we are dealing with polynomials
over GF [2] we let the inputs come from {0, 1}n while the output is a real number.
For any α ⊆ [n] we have the character χα defined by

χα(x) = (−1)
P

i∈α xi

and the Fourier expansion of a function f is given by

f(x) =
∑

α⊆[n]

f̂αχα(x).

Suppose that R ≤ L and we are given a projection π mapping [L] to [R]. We
define a related operator π2 acting on sets such that π2(β) = α for β ⊆ [L]
and α ⊆ [R] iff exactly the elements of α has an odd number of preimages
that belong to β. The reason this definition is useful is that if we have an
x ∈ {0, 1}R and interpret this as an element y ∈ {0, 1}L by setting yi = xπ(i)

then χβ(y) = χπ2(β)(x).
As is standard we use the long code introduced by Bellare et al [5]. If

v ∈ [L] then the corresponding long code is a function A : {0, 1}L → {−1, 1}
where A(x) = (−1)xv . We want our long codes to be folded, which means that
they only contain values for inputs with x1 = 1. The value when x1 = 0 is
defined to be −A(x̄). This ensures that the function is unbiased and that the
Fourier coefficient corresponding to the empty set is 0. Let us return to studying
systems of constant degree polynomials.

3 The case of non-perfect completeness

We start with the algorithm.

4

Theorem 3.1. Given a system of m polynomial equations of degree d over
GF [2], it is possible to, in polynomial time, to find an assignment that satisfies
at least m2−d equations.

Proof. In fact, by Theorem 2.1, a random assignment satisfies each equation
with probability 2−d and thus just picking a random assignment gives a ran-
domized algorithm fulfilling the claim of the theorem in expectation.

To get a deterministic algorithm we use the method of conditional expecta-
tions. We do not calculate the fraction of assignments that satisfies a particular
equation but rather use the lower bound that at least a fraction 2−d′ of the
inputs satisfies any nontrivial equation that is currently of degree d′.

The lower bound follows rather immediately from known results.

Theorem 3.2. For any ε > 0 it is NP-hard to approximate Max-d-Eq within
2−d + ε.

Proof. In [6] it is proved that it is NP-hard to distinguish systems of linear
equations where a fraction 1 − ε of the equations can be satisfied from those
where only a fraction 1

2 + ε can be satisfied. Suppose we are given an instance
of this problem with m equations which, possibly by adding one to both sides
of the equation, can be be assumed to be of the form

Ai(x) = 1.

Taking all d-wise products of such equations we end up with md equations, each
of the form

d∏
j=1

Aij (x) = 1,

which clearly is a polynomial equation of degree d. If the optimal solution
to the set of linear equations satisfies δm equations then the same solution is
optimal for the constructed system and satisfies δdmd equations. The theorem
now follows from the result of [6].

We remark that, by appealing to the results by Raz and Moshkovitz [8], we
can even obtain results for non-constant values of ε.

4 Completely satisfiable systems

When studying systems where it is possible to simultaneously satisfy all equa-
tions the situation changes. Suppose we are have an equation of the form
P (x) = 1 and suppose this equation implies the affine condition A(x) = 1.
Then, as the system is satisfiable, we can use this equation to eliminate one
variable from the system, preserving the degrees of all equations. This is done
by taking any variable xi that appears in A and replacing it by xi + A(x) + 1
(note that this function does not depend on xi as the two occurrences of this

5

variables cancel). This substitution preserves the satisfiability of the system
and the degrees of all equations and the process stops only when none of the
current equations implies an affine condition.

Using Theorem 2.2 we see that when this process ends each equation is
satisfied by at least a fraction 21−d − 21−2d of the inputs. It seems reasonable
to hope that for each perfectly satisfiable system we can efficiently find an
assignment that satisfies this fraction. There are two points in the outlined
argument that require closer inspection. The first is the question of how to
actually determine whether a polynomial equation implies an affine condition
and the second is to make sure that once the process of finding implied affine
conditions has ended we can indeed deterministically find a solution that satisfies
the expected number of equations. Let us first address the issue of determining
whether a given equation implies an affine condition.

Suppose P (x) = 1 implies implies A(x) = 1 for some unknown affine function
A. Let us assume that x1 appears in A with a nonzero coefficient. We may write

P (x) = P0(x) + P1(x)x1

where neither P0 nor P1 depends on x1. Consider

Q(x) = P (x) + A(x)P1(x). (1)

As x1 appears with coefficient one in A it follows that Q does not depend
on x1 and let us assume that Q is not identically 0. Choose any values for
x2, x3 . . . xn to make Q(x) = 1 and set x1 to make A(x) = 0. It follows from
(1) that P (x) = 1 and thus we have found a counterexample to the assumed
implication. We can hence conclude that we have

P (x) = A(x)P1(x).

We claim furthermore that this procedure is entirely efficient. Namely given
P and the identity of one variable occurring in A, P1 is uniquely defined. Once
P1 is uniquely defined the rest of the coefficients of A can easily be found by
solving a linear system of equations. As there are only n candidates for a variable
in A and solving a linear system of equations is polynomial time we conclude
that the entire process of finding possible implied affine conditions can be done
in polynomial time.

Once this process halts we need to implement the method of conditional ex-
pectations to find an assignment that satisfies the expected number of equations.
As opposed to the case of Theorem 3.1 where we could use the lower bound of
2−d′ for the fraction of inputs that satisfy any degree-d′ equation we here need
to find a more accurate bound to calculate the conditional expectation. We do
not know how to do this in deterministic polynomial time and hence the best we
can do is to pick a random assignment and see if it satisfies the target number
of equations. If it does not, we keep repicking random assignments until we are
successful. We get the following theorem.

6

Theorem 4.1. There is a probabilistic polynomial time algorithm that given a
system of m simultaneously satisfiable equations of degree d over GF [2] finds an
assignment that satisfies at least (21−d − 21−2d)m equations.

The proof of this theorem is essentially done and there is only one small detail
to discuss. We know that we get at least (21−d−21−2d)m on average and we need
to prove that we get this number with a some non-negligible probability. Let
us argue this slightly informally. It is not hard to see that an integer-valued,
positive random variable with maximum m and an integral mean attains its
average with probability at least 1/m. If the fractional part of the average is a
multiple of 1

t the this probability might reduce to 1/tm but not further.
Let us remark that for d = 2 it if possible to make the algorithm determin-

istic. This follows from the fact that we can transform a degree 2 polynomial
into a normal form from which we can read off the fraction of inputs for which
it is equal to 1. We omit the details and let us turn to the lower bound.

Theorem 4.2. For any ε it is NP-hard to distinguish satisfiable instances of
Max-d-Eq from those where the optimal solution satisfies a fraction 21−d −
21−2d + ε of the equations.

Proof. Consider the predicate, P , on 6d variables given by

P (x) =
d∏

i=1

Li(x) +
2d∏

i=d+1

Li(x), (2)

where Li(x) = x3i−2 +x3i +x3i, i.e. each Li is the exclusive or of three variables
and no variable appears in two linear forms. Theorem 4.2 now follows from
Theorem 4.3 below (which is proved in the appendix) as the probability that a
random assignment satisfies P is exactly 21−d − 21−2d.

Theorem 4.3. The predicate P defined by (2) is approximation resistant on
satisfiable instances.

5 Consequences for Max-CSPs

Let us draw some conclusions from the argument in the proof of Theorem 4.3.
In this section, let P be an arbitrary predicate of arity k. Define PL be the
predicate of arity 3k obtained by replacing each input bit of P by the exclusive-or
of three independent bits, similarly to constructing the predicate of the previous
section. We have the following theorem.

Theorem 5.1. For any predicate P that accepts at least one input, the predicate
PL is approximation resistant.

Proof. (Sketch) Let α ∈ {0, 1}k be an input accepted by P . Define a distri-
bution Dµ by setting µi = αi with probability 1 − ε and otherwise µi = αi,
independently for each i. Otherwise follow the protocol in the proof of Theo-
rem 4.3. The completeness of this protocol is at least 1 − ε, but as ε is a an

7

arbitrarily small constant and we only need almost-perfect completeness this is
not a problem. The soundness analysis of this verifier is now similar to that of
the analysis in the proof of Theorem 4.3 using∣∣∣∣∣E

[∏
i∈S

χβi(µi)

]∣∣∣∣∣ = (1− 2ε)
P

i∈S |βi|,

resulting in an almost identical argument but with different constants.

It is not difficult to see that for any P , PL supports a measure that is pairwise
independent. This implies that the results of Austrin and Mossel [4] would have
been sufficient to give resistance assuming the unique games conjecture. In our
case we get NP-hardness which is an advantage and it is also possible to get a
general theorem with perfect completeness.

Theorem 5.2. For any predicate P such that P−1(1) is not contained in a
(k−1)-dimensional affine subspace of {0, 1}k, the predicate PL is approximation
resistant for satisfiable instances.

Proof. (Sketch) We choose µ uniformly from the set of strings accepted by P .
As

∑
i µi is not constant, the equivalent of Lemma A.2 is true with the constant

1
2 replaced by some other constant strictly smaller than one. The rest of the
argument is unaffected.

It is tempting to guess that for any P that does imply an affine condition and
hence Theorem 5.2 does not apply, PL would not be approximation resistant on
satisfiable instances. This does not seem to be obviously true and let us outline
the problems.

It is true that PL is a polynomial of degree at most k and we can use the
implied affine conditions to eliminate some variables as we did in the proof of
Theorem 4.1. The final stage when we have no more implied affine constraints
is, however, more difficult to control. The resulting constraints are given by
linear constraints jointly with the original P . By the assumption on perfect
satisfiability we can conclude that the each equation is still satisfiable but not
much more.

If, however, our predicate is of limited degree when viewed as a polynomial
we have more information on the result. Clearly during the process of elimi-
nating affine constraints, the degree does not increase, and in fact it decreases
when we remove the known affine factor within each polynomial. We get the
following conclusion.

Theorem 5.3. Suppose predicate P of arity k is given by a polynomial of degree
d that contains r linearly independent affine factors. Then if P accepts less than
a fraction 21−(d−r) − 21−2(d−r) of the inputs, PL is approximation resistant but
not approximation resistant on satisfiable instances, unless NP ⊆ BPP .

Proof. The predicate is approximation resistant by Theorem 5.1. On perfectly
satisfiable instances we can run the algorithm of Theorem 4.1, and as we remove
affine constraints the resulting degree is at most d− r.

8

The simplest example of a predicate for which this theorem applies is the
predicate, P , given by the equation

x1(x2x3 + x4x5) = 1

which has d = 3 and is satisfied by only a fraction 3
16 of the inputs. For this

instantiation of P , PL is approximation resistant but not approximation resis-
tant for satisfiable instances. To get a hardness result for satisfiable constraints
we can use Theorem 4.3 for the predicate

x2x3 + x4x5 = 1

which is approximation resistant with factor 3
8 on satisfiable instances. We get

a matching algorithm as the affine factor can be removed and the equations that
remain are of degree 2.

Let us finally point out that all our approximation resistance results establish
the stronger property of “uselessness” introduced by Austrin and H̊astad [3].
This follows as we are able to bound arbitrary non-trivial characters and not
only the characters appearing in the considered predicates.

6 Final words

The current paper gives optimal approximability results for satisfying the max-
imal number of low degree equations over GF [2]. The methods used in the
proofs are more or less standard and thus the main contribution of this paper
is to obtain tight results for a natural problem. There is a provable difference
between perfectly satisfiable and almost-perfectly satisfiable systems in that we
can satisfy strictly more equations in the former case. The difference is not as
dramatic as in the linear case, but still striking.

For the case of Max-CSPs we obtained a few approximation resistance results
for, admittedly, non-standard predicates. We feel, however, that the examples
give, a not major but nonempty, contribution towards understanding the dif-
ference of approximation resistant predicates and those predicates that have
this property also on satisfiable instances. Our example of an approximation
resistant predicate which has another, nontrivial, approximation constant on
satisfiable instances is the first of its kind. Although not surprising this result
gives another piece in the puzzle to understand Max-CSPs.

Acknowledgement. I am grateful to Parikshit Gopalan for alerting me to the
paper [7] and providing me with an electronic version of that paper.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M.Szegedy. Proof verification
and intractability of approximation problems. Journal of the ACM, 45:501–
555, 1998.

9

[2] S. Arora and S. Safra. Probabilistic checking of proofs: a new characteriza-
tion of NP. Journal of the ACM, 45:70–122, 1998.

[3] P. Austrin and J. H̊astad. On the usefullness of predicates. Unpublished
manuscript, submitted to this conference, 2011.

[4] P. Austrin and E. Mossel. Approximation resistant predicates from pairwise
independence. Computational Complexity, 18:249–271, 2009.

[5] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-
approximability—towards tight results. SIAM Journal on Computing,
27:804–915, 1998.

[6] J. H̊astad. Some optimal inapproximability results. Journal of ACM, 48:798–
859, 2001.

[7] T. Kasami and N. Tokura. On the weight structure of Reed-Muller codes.
IEEE Transactions on Information Theory, 16:752–759, 1970.

[8] D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. Journal
of the ACM, 57, 2010.

A Proof of Theorem 4.3

We reduce the standard projecting label cover instance to Max-P for this pred-
icate P . This is the same starting point as in [6] but let us formulate it in more
modern terms.

We are given a bipartite graph with vertices U and V . Each vertex u ∈ U
should be given a label `(u) ∈ [L] and each vertex v ∈ V should be given a label
`(v) ∈ [R]. For each edge (u, v) there is a mapping πu,v and a labeling satisfies
this edge iff πu,v(`(u)) = `(v).

In [6] we used the fact that for any constant ε there are constant values for
L and R such that it is NP-hard to determine whether the optimal labeling
satisfies all constraints or only a fraction ε of the constraints, and this is all that
we need also here. Using [8] one can extend this to non-constant size domains,
but let us ignore this point.

As is standard, we transform the label cover instance into a PCP by long-
coding a good assignment, and for each vertex u we have a table gu(y) for
y ∈ {0, 1}L, and similarly we have a table fv(x) for x ∈ {0, 1}R for each v ∈ V .
As mentioned in the preliminaries we assume that these long codes are folded
and hence each table is unbiased.

Before we describe how the verifier checks this PCP we define an “error”
distribution, Dµ, on 2d bits (µi)2d

i=1. First pick a random bit b with uniform
probability and if b = 0 set µi = 1 for 1 ≤ i ≤ d and select values for the other
d bits uniformly from the 2d − 1 binary strings that contains at least one 0. If
b = 1 we do the symmetric assignment exchanging the two halves. We need two
simple facts about the distribution Dµ. The first is obvious from construction.

10

Lemma A.1. With probability one it is true that

d∏
i=1

µi +
2d∏

i=d+1

µi = 1.

Secondly we have.

Lemma A.2. For any nonempty set S and d ≥ 2, we have

|EDµ
[(−1)

P
i∈S µi]| ≤ 1

2
.

Proof. If S is contained in one of the two halves we observe that the distribution
on this half is obtained by picking a string from the uniform distribution with
probability 1

2 (1+(2d−1)−1) and otherwise picking the all one string. It follows
that in this case

|EDµ [(−1)
P

i∈S µi]| = 1
2
(1− (2d − 1)−1) <

1
2
.

If, on the other hand, S contains inputs from both halves then by condition-
ing on which half gets the all one assignment it is easy to see that

|EDµ [(−1)
P

i∈S µi]| ≤ (2d − 1)−1 <
1
2
.

Let us return to defining our PCP by the actions of the verifier. For read-
ability we drop the obvious subscripts on f , g and π.

1. Pick a edge (u, v) which comes with a projection constraint π : [L] 7→ [R].

2. Pick x(i) ∈ {0, 1}R and y(i) ∈ {0, 1}L uniformly at random, 1 ≤ i ≤ 2d.

3. For each j ∈ [L] pick an element µ(j) with the distribution Dµ and con-
struct z(i) by setting z

(i)
j = x

(i)
π(j) + y

(i)
j + µ

(j)
i mod 2.

4. Read the 6d bits1 corresponding to f(x(i)), g(y(i)), and g(z(i)). Accept if
these 6d bits satisfy P where the three bits fed into Li are f(x(i)), g(y(i)),
and g(z(i)).

We have first have the easy completeness lemma.

Lemma A.3. The verifier accepts a correct proof of a correct statement with
probability 1.

Proof. Suppose the proof gives labels `(u) to `(v) to u and v, respectively. Then

gu(y(i)) = (−1)y
(i)
`(u) , gu(z(i)) = (−1)z

(i)
`(u) , fv(x(i)) = (−1)x

(i)
`(v) . As π(`(u)) =

`(v) the exclusive-or (product in the ±1 notation) of these bits equal (−1)µ
`(u)
i .

The lemma now follows from Lemma A.1.
1We interpret −1 as the bit 1 and 1 as the bit 0.

11

We turn to soundness.

Lemma A.4. If the verifier accepts with probability at least 21−d − 21−2d + ε
then there is a labeling in the label cover problem that satisfies at least a fraction
cdε

2 of the conditions for some constant cd > 0 depending only on d.

Proof. Expand the predicate P by its multilinear expansion. Since the constant
term, P̂∅, is 21−d − 21−2d we conclude that given the assumption of the lemma
there are non-empty sets S1, S2 and S3 such that

|E[
∏
i∈S1

f(x(i))
∏
i∈S2

g(y(i))
∏
i∈S3

g(z(i))]| ≥ cdε, (3)

for some constant cd depending only on d. We warn the reader that we abuse
notation by allowing the constant cd to change during the argument but it
remains a strictly positive number depending only on d.

Not all terms of the form (3) appear in the expansion of P but as we can
bound any such term and we make some use of this fact in Section 5 we treat
an arbitrary term.

First note if S2 6= S3 the expectation in (3) is zero as for any i in the
symmetric difference we get a factor g(y(i)) or g(z(i)) that is independent of the
other factors and as g is folded the expectation of such a term is 0. To get a
non-zero value we also need S1 = S3 as otherwise negating x(i) in the symmetric
difference we get cancelling terms. Thus we need to study

E

[∏
i∈S

f(x(i))g(y(i))g(z(i))

]
. (4)

Expanding each function by the Fourier transform we get the expectation

E

∏
i∈S

 ∑
αi,βiγi

f̂αi ĝβi ĝγiχαi(x(i))χβi(y(i))χγi(z(i))

 . (5)

If we mentally expand this product of sums and look at the expectation of each
term we see, as y

(i)
j is independent of all other variables, that terms with γi 6= βi

give contribution 0. The same is true if π2(βi) 6= αi. Let µi denote the vector
(µ(j)

i)L
j=1 then

χπ2(βi)(x(i))χβi(y(i))χβi(z(i)) = χπ2(βi)(x(i))χβi(y(i))χβi(x(i)
π +y(i)+µi) = χβi(µi),

and thus (5) reduces to

E

∏
i∈S

∑
βi

f̂π2(βi)ĝ
2
βiχβi(µi)

 . (6)

12

We have ∏
i∈S

χβi(µi) =
∏

j∈∪iβi

(−1)
P

µ
(j)
i (7)

where the sum in the exponent is over the set of i such that j ∈ βi. By
Lemma A.2 it follows that the absolute value of the expectation of (7) is bounded
by

2−|∪iβ
i| ≤ 2−

P
i∈S |βi|/2d,

and hence we can conclude that it follows that from the assumption of the
lemma that

Eu,v

∏
i∈S

∑
βi

|f̂π2(βi)|ĝ2
βi2−|β

i|/2d

 ≥ cdε. (8)

As S is nonempty and any factor is bounded from above by one we conclude
that

Eu,v

∑
β

|f̂π2(β)|ĝ2
β2−|β|/2d

 ≥ cdε. (9)

Cauchy-Schwarz inequality implies that

∑
β

|f̂π2(β)|ĝ2
β2−|β|/2d ≤

∑
β

ĝ2
β

1/2 ∑
β

f̂2
π2(β)ĝ

2
β2−|β|/d

1/2

(10)

≤

∑
β

f̂2
π2(β)ĝ

2
β2−|β|/d

1/2

. (11)

And thus from (9), and E[X2] ≥ E[X]2 we can conclude that

Eu,v

∑
β

f̂2
π2(β)ĝ

2
β2−|β|/d

 ≥ c2
dε

2. (12)

We can now extract a probabilistic labeling using the standard procedure.
For each u we choose a set β with probability ĝ2

β and return a random element
in β. Similarly for each v we choose a set α with probability f̂2

α and return a
random element in α. The expected fraction of satisfied constraints is at least

Eu,v

∑
β

f̂2
π2(β)ĝ

2
β

1
|β|

 (13)

13

and as
1
x
≥ 1

d
2−x/d

for any x ≥ 1 we have that (13) is at least c2
d

d ε2 and, adjusting the value of cd

this completes the proof of Lemma A.4.

Theorem 4.3 now follows from Lemma A.4 and Lemma A.3 by the standard
way of transforming a PCP with an acceptance criteria given by a predicate P to
a hardness result for the corresponding constraint satisfaction problem Max-P .

B Proof of Theorem 2.2

The goal of the current section is the prove Theorem 2.2. We remind the reader
that this result follows from the characterization by Kasami and Tokura [7] of all
codewords of the Reed-Muller code that have weight at most twice the minimal
weight. We do not need their full characterization and as their proof is not very
easy to follow we include a proof here.

The bound of Theorem 2.2 is sharp as it is obtained by

xα(xβ + xγ)

where α, β, and γ are disjoint multi-indices where the size of α is r and the
sizes of β and γ both are d− r.

Proof. We prove the statement by induction and we establish d = 2 as the base
case below to avoid degenerate cases. The following easy observations are useful
for us.

• As d− r cannot equal 1, it follows that for any d-degree polynomial that
is not a product of affine factors, the number of ones is at least 3

22−d.

• The bound never exceeds 21−d, and thus this bound is always sufficient
(but not always possible).

The statement for general d and r follows from the case of d−r and 0 and hence
we may focus on the case of r = 0 (but of course use arbitrary r in the inductive
statements).

A fact that is important for us is that factorization is not unique. In partic-
ular if A and A′ are two affine factors of a polynomial P then so is 1 + A + A′

as
(1 + A + A′)A = A′A.

Thus if we have several affine factors we can construct new affine factors by
taking the sum of of an even number of such factors added with the constant 1
or the sum of an odd number of such factors.

14

Another useful fact is that A(x) is a factor of a polynomial P iff A(x) = 0
implies P (x) = 0 or equivalently if P (y) = 1 implies A(y) = 1. The non-
obvious direction of this statement follows from the discussion in the proof of
Theorem 4.1 of identifying implied affine constraints.

Let us address the case of d = 2, which can be established by the normal
form of degree two polynomials, but let us follow a different path to prepare for
the general proof. As stated above, the interesting case is when P has no affine
factor and let us write P (x) = P0(x) + x1P1(x).

Consider setting x1 to its two values and as P does not contain an affine
factor neither of the induced polynomials can be identically 0. Furthermore if
neither of these settings result in a polynomial with an affine factor we are done
by induction. Let us finally assume that x1 = 0 results in an affine factor, which
we by an affine change of coordinates can assume is x2. Thus we can assume
that

P (x) = x2A2(x) + x1A1(x),

for two affine functions A1 and A2 where we can assume that xi does not appear
in Ai(x) as it can be replaced by 1 giving the same result. The main case is that
the collection of x1, x2, A1(x), and A2(x) form independent affine functions and
in this case the fraction of inputs for which P is one is exactly 3/8 which is the
claimed bound. We have a number of cases to consider when the four functions
are not independent.

1. A1(x) ≡ 1. If A2(x) = x1 then x1 is a factor of P while if A2(x) = 1 + x1

then P is one with probability 3/4. Finally if A2(x) is independent of x1

this probability is 1/2.

2. A1(x) = x2 makes x2 a factor of P .

3. A1(x) = 1+x2 makes Pr[P (x) = 1] = 1/2 unless we have A2(x) ≡ 1 when
this probability is 3/4.

4. A1(x) is independent of x2 in which case, by an affine change of variables
we can assume that A1(x) = x3. Now since A2(x) does not contain x2, is
linearly dependent of x1 and x3 and is not a factor of x1x3 (ruling out also
(1 + x1 + x3)), A2(x) must equal one of the functions 1, 1 + x1 or 1 + x3.
In these cases it is easy to check that Pr[P (x) = 1] takes the values 3/4,
1/2 and 1/2, respectively.

This finishes the case d = 2 end we turn to the general case. Not surprisingly,
also here we end up analyzing a number of cases.

As in the case d = 2 we can assume that P has no affine factors but the
polynomial resulting when substituting x1 = 0 gives a polynomial with at least
one affine factor. Picking a full set of linearly independent factors and making
an affine transformation we can assume that

P (x) = x2x
βP2(x) + x1P1(x)

15

where β is a possible empty multi-index and P2 has no affine factors. First let
us consider affine factors in P1.

Let
∏r

i=1 Ai(x) be the affine factors that appear in P1. We have two cases
depending whether each Ai that might appear in the factorization, together
with affine forms that appear in the first product (i.e. the coordinate functions
given by x2 and the elements of β) are independent.

Suppose these functions are not independent and hence that we can choose
the factorization such that A1(x) only depends on x2 and the variables in β. Let
us look at the point x0 where x2 and all elements of β equals 1. If A1(x0) = 1
then A1(x) is a factor of P and this is a contradiction of the assumptions. If,
on the other hand A1(x0) = 0 then the sets of points where x2x

βP2(x) = 1 and
x1P1(x) = 1 are disjoint and as these sets are each of (relative) size at least 2−d

we get Pr[P (x) = 1] ≥ 21−d and the lemma follows also in this case.
Thus we can assume that the affine forms in P1 are independent of x2 and

the variables in β and by an affine transformation we can assume that

P (x) = x2x
βP2(x) + x1x

γP ′
1(x), (14)

where β and γ are disjoint multi-indices and no more affine factors can be pulled
out of P2 or P ′

1.
Let us analyze what happens for the four possible simultaneous assignments

of values of x1 and x2. When both are 0 we get a function that is identically
0 which is not good for us but in the other cases we get polynomials of degree
d− 1 and we now analyze the structure of these polynomials.

When x1 = 0 and x2 = 1 we get xβP2(x), when x1 = 1 and x2 = 0 we get
xγP ′

1(x), and in the final case we have

W (x) = xβP2(x) + xγP ′
1(x).

Note that W is not identically 0 as (x1 + x2) then would have been an affine
factor of P .

Suppose first that neither P2 nor P ′
1 is identically one (and thus we have

some non-affine factors in both these cases). Then Pr[P (x) = 1] is at least

1
4
(
3
2
21−d +

3
2
21−d + 21−d) = 21−d

proving the bound in this case. By symmetry we may thus assume that P2 ≡ 1.
If γ = ∅ or W does not contain any affine factor then Pr[P (x) = 1] is at least

1
4
(21−d + 21−d + 22−d − 23−2d),

which exactly equals the claimed bound. Thus we can assume that γ is non-
empty and W contains an affine factor A(x) and remember that

W (x) = xβ + xγP ′
1(x). (15)

Suppose A only depends on variables in β. If it is fixed to 1 by setting all
variables in β to one, then A(x) is a factor of xβ and hence also of W (x)+xβ =

16

xγP ′
1(x) and hence also of P (x), contradicting assumptions. If A(x) is forced to

0 by this assignment then setting any variable in γ (remember it is non-empty
and disjoint from β) to 0 and we get W (x) = 0 while xβ = 1 and xγP ′

1(x) = 0
contradicting (15). Thus we can assume that A(x) depends on some variable
outside β.

If we can fix some variable in γ to 0, the variables of β to one and A to zero
we get a contradiction to (15) as xβ = 1 while W (x) = 0 and xγ = 0. If the
size of γ is at least 2 or W contains at least two different affine factors we claim
that this must be possible. Suppose first that the size of γ is at least 2

As A(x) does not only depend on variables in β we can fix these variables to
one, and then pick a suitable variable in γ to fix to 0 without fixing the value
of A(x). We can then fix additional variables to make A(x) = 0 obtaining the
desired contradiction.

If we have one more affine factor A′ of W then one of A, A′ and 1+A+A′ is
a factor of W and does not depend on the first variable of γ (and some variable
outside β). It follows again that we can make xβ = 1, xγ = 0 and W (x) = 0.

The only remaining case is when γ is of size one and W has one affine factor.
In this case, by induction Pr[P (x) = 1] is at least

1
4
(21−d + 2 · 1

2
(23−d − 25−2d)).

For d at least 4 this is at least 21−d and we are done. Finally note that in the
case d = 3, P ′

1 as well as the co-factor of A in W are of degree at most one and
hence if they do not contain an additional factor they must be the constant 1
and the lemma follows also in this case.

17

