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Abstract. We show how the paradigm of learning-based testing (LBT)
can be applied to automate specification-based black-box testing of re-
active systems. Since reactive systems can be modeled as Kripke struc-
tures, we introduce an efficient incremental learning algorithm IKL for
such structures. We show how an implementation of this algorithm com-
bined with an efficient model checker such as NuSMV yields an effective
learning-based testing architecture for automated test case generation
(ATCG), execution and evaluation, starting from temporal logic require-
ments.

1 Introduction

A heuristic approach to automated test case generation (ATCG) from formal re-
quirements specifications known as learning-based testing (LBT) was introduced
in Meinke [9] and Meinke and Niu [11]. Learning-based testing is an iterative ap-
proach to automate specification-based black-box testing. It encompasses both
test case generation, execution and evaluation (the oracle step). The aim of this
approach is to automatically generate a large number of high-quality test cases
by combining a model checking algorithm with an optimised model inference
algorithm. For procedural programs, [11] has shown that LBT can significantly
outperform random testing in the speed with which it finds errors in a system
under test (SUT).

In this paper we consider how the LBT approach can be applied to a quite dif-
ferent class of SUTs, namely reactive systems. Conventionally, reactive systems
are modeled as Kripke structures and their requirements are usually specified
using a temporal logic (see e.g. [6]). To learn and test such models efficiently, we
therefore introduce a new learning algorithm IKL (Incremental Kripke Learning)
for Kripke structures. We show that combining the IKL algorithm for model in-
ference together with an efficient temporal logic model checker such as NuSMV
yields an effective LBT architecture for reactive systems. We evaluate the effec-
tiveness of this testing architecture by means of case studies.

In the remainder of Section 1 we discuss the general paradigm of LBT, and
specific requirements on learning. In Section 2 we review some essential mathe-
matical preliminaries. In Section 3, we consider the technique of bit-sliced learn-
ing of Kripke structures. In Section 4, we present a new incremental learning al-
gorithm IKL for Kripke structures that uses distinguishing sequences, bit-slicing,



and lazy partition refinement. In Section 5 we present a complete LBT architec-
ture for reactive systems testing. We evaluate this architecture by means of case
studies in Section 6. Finally, in Section 7 we draw some conclusions.

1.1 Learning-Based Testing

Several previous works, (for example Peled et al. [16], Groce et al. [8] and Raffelt
et al. [17]) have considered a combination of learning and model checking to
achieve testing and/or formal verification of reactive systems. Within the model
checking community the verification approach known as counterexample guided
abstraction refinement (CEGAR) also combines learning and model checking,
(see e.g. Clarke et al. [5]). The LBT approach can be distinguished from these
other approaches by: (i) an emphasis on testing rather than verification, and (ii)
use of incremental learning algorithms specifically chosen to make testing more
effective and scalable (c.f. Section 1.2).

The basic LBT paradigm requires three components:

(1) a (black-box) system under test (SUT) S,

(2) a formal requirements specification Req for S, and

(3) a learned model M of S.

Now (1) and (2) are common to all specification-based testing, and it is really
(3) that is distinctive. Learning-based approaches are heuristic iterative methods
to automatically generate a sequence of test cases. The heuristic approach is
based on learning a black-box system using tests as queries.

An LBT algorithm iterates the following four steps:

(Step 1) Suppose that n test case inputs i1, . . . , in have been executed on S
yielding the system outputs o1, . . . , on. The n input/output pairs (i1, o1), . . . ,
(in, on) are synthesized into a learned model Mn of S using an incremental
learning algorithm (see Section 1.2). This step involves generalization from the
given data, (which represents an incomplete description of S) to all possible
data. It gives the possibility to predict previously unseen errors in S during Step
2.

(Step 2) The system requirements Req are satisfiability checked against the
learned modelMn derived in Step 1 (aka. model checking). This process searches
for a counterexample in+1 to the requirements.

(Step 3) The counterexample in+1 is executed as the next test case on S, and
if S terminates then the output on+1 is obtained. If S fails this test case (i.e.
the pair (in+1, on+1) does not satisfy Req) then in+1 was a true negative and
we proceed to Step 4. Otherwise S passes the test case in+1 so the model Mn

was inaccurate, and in+1 was a false negative. In this latter case, the effort of
executing S on in+1 is not wasted. We return to Step 1 and apply the learning
algorithm once again to n+1 pairs (i1, o1), . . . , (in+1, on+1) to infer a refined
model Mn+1 of S.

(Step 4) We terminate with a true negative test case (in+1, on+1) for S.



Thus an LBT algorithm iterates Steps 1 . . . 3 until an SUT error is found
(Step 4) or execution is terminated. Possible criteria for termination include a
bound on the maximum testing time, or a bound on the maximum number of
test cases to be executed.

This iterative approach to TCG yields a sequence of increasingly accurate
models M0, M1, M2, . . ., of S. (We can take M0 to be a minimal or even empty
model.) So, with increasing values of n, it becomes more and more likely that
satisfiability checking in Step 2 will produce a true negative if one exists. If
Step 2 does not produce any counterexamples at all then to proceed with the
iteration, we must construct the next test case in+1 by some other method, e.g.
randomly.

1.2 Efficient Learning Algorithms

As has already been suggested in Step 1 of Section 1.1, for LBT to be effective
at finding errors, it is important to use the right kind of learning algorithm. A
good learning algorithm should maximise the opportunity of the satisfiability
algorithm in Step 2 to find a true counterexample in+1 to the requirements Req
as soon as possible.

An automata learning algorithm L is said to be incremental if it can produce
a sequence of hypothesis automata A0, A1, . . . which are approximations to an
unknown automata A, based on a sequence of information (queries and results)
about A. The sequence A0, A1, . . . must finitely converge to A, at least up to
behavioural equivalence. In addition, the computation of each new approxima-
tion Ai+1 by L should reuse as much information as possible about the previous
approximation Ai (e.g. equivalences between states). Incremental learning algo-
rithms are necessary for efficient learning-based testing of reactive systems for
two reasons.

(1) Real reactive systems may be too big to be completely learned and tested
within a feasible timescale. This is due to the typical complexity properties of
learning and satisfiability algorithms.

(2) Testing of specific requirements such as use cases may not require learning
and analysis of the entire reactive system, but only of a fragment that implements
the requirement Req .

For testing efficiency, we also need to consider the type of queries used during
learning. The overhead of SUT execution to answer a membership query during
learning can be large compared with the execution time of the learning algo-
rithm itself (see e.g. [3]). So membership queries should be seen as “expensive”.
Therefore, as many queries (i.e. test cases) as possible should be derived from
model checking the hypothesis automaton, since these are all based on checking
the requirements Req . Conversely as few queries as possible should be derived
for reasons of internal book-keeping by the learning algorithm (e.g. for achiev-
ing congruence closure prior to automaton construction). Book-keeping queries
make no reference to the requirements Req , and therefore can only uncover an
SUT error by accident. Ideally, every query would represent a relevant and in-
teresting requirements-based test case. In fact, if the percentage of internally



generated book-keeping queries is too high then model checking becomes almost
redundant. In this case we might think that LBT becomes equivalent to ran-
dom testing. However [18] shows that this is not the case. Even without model
checking, LBT achieves better functional coverage than random testing.

In practise, most of the well-known classical regular inference algorithms
such as L* (Angluin [2]) or ID (Angluin [1]) are designed for complete rather
incremental learning. Among the much smaller number of known incremental
learning algorithms, we can mention the RPNII algorithm (Dupont [7]) and the
IID algorithm (Parekh et al. [15]) which learn Moore automata, and the CGE
algorithm (Meinke [10]) which learns Mealy automata. To our knowledge, no
incremental algorithm for learning Kripke structures has yet been published in
the literature. Thus the IKL algorithm, and its application to testing represent
novel contributions of our paper.

2 Mathematical Preliminaries and Notation

Let Σ be any set of symbols then Σ∗ denotes the set of all finite strings over Σ
including the empty string ε. The length of a string α ∈ Σ∗ is denoted by |α|
and |ε| = 0. For strings α, β ∈ Σ∗, α . β denotes their concatenation.

For α, β, γ ∈ Σ∗, if α = βγ then β is termed a prefix of α and γ is termed
a suffix of α. We let Pref (α) denote the prefix closure of α, i.e. the set of all
prefixes of α. We can also apply prefix closure pointwise to any set of strings.
The set difference operation between two sets U, V , denoted by U − V , is the
set of all elements of U which are not members of V . The symmetric difference
operation on pairs of sets is defined by U ⊕ V = (U − V ) ∪ (V − U).

A deterministic finite automaton (DFA) is a five-tuple A =< Σ,Q, F, q0, δ >
where: Σ is the input alphabet, Q is the state set, F ⊆ Q is the accepting
state set and q0 ∈ Q is the starting state. The state transition function of A is a
mapping δ : Q×Σ → Q with the usual meaning, and can be inductively extended
to a mapping δ∗ : Q × Σ∗ → Q where δ∗(q, ε) = q and δ∗(q, σ1, . . . σn+1) =
δ(δ∗(q, σ1, . . . σn), σn+1). Since input strings can be used to name states, given
a distinguished dead state d0 (from which no accepting state can be reached)
we define string concatenation modulo the dead state d0, f : Σ∗ ∪ {d0} × Σ →
Σ∗ ∪ {d0}, by f(d0, σ) = d0 and f(α, σ) = α . σ for α ∈ Σ∗. This function is
used for automaton learning in Section 4. The language L(A) accepted by A is
the set of all strings α ∈ Σ∗ such that δ∗(q0, α) ∈ F . A language L ⊆ Σ∗ is
accepted by a DFA if and only if, L is regular, i.e. L can be defined by a regular
grammar.

A generalisation of DFA to multi-bit outputs on states is given by determin-
istic Kripke structures.

2.1. Definition. Let Σ = { σ1, . . . , σn } be a finite input alphabet. By a
k-bit deterministic Kripke structure A we mean a five-tuple

A = ( QA, Σ, δA : QA ×Σ → QA, q
0
A, λA : QA → Bk )



where QA is a state set, δA is the state transition function, q0A is the initial state
and λA is the output function. As before we let δ∗A : QA ×Σ∗ → QA denote the
iterated state transition function, where δ∗A(q, ε) = q and δ∗A(q, σ1, . . . , σi+1) =
δA(δ

∗
A(q, σ1, . . . , σi), σi+1). Also we let λ∗A : Σ∗ → Bk denote the iterated

output function λ∗A(σ1, . . . , σi) = λA(δ
∗
A(q

0
A, σ1, . . . , σi)).

If A is a Kripke structure then the minimal subalgebra Min(A) of A is the
unique subalgebra of A which has no proper subalgebra. (We implicitly assume
that all input symbols σ ∈ Σ are constants of A so thatMin(A) has a non-trivial
state set.) Note that a 1-bit deterministic Kripke structure A is isomorphic to
the DFA A′ = ( QA, Σ, δA : QA × Σ → QA, q

0
A, FA′ ), where FA′ ⊆ QA and

λA(q) = true if, and only if q ∈ FA′ .

3 Bit-Sliced Learning of Kripke Structures

We will establish a precise basis for learning k-bit Kripke structures using regular
inference algorithms for DFA. The approach we take is to bit-slice the output of
a k-bit Kripke structure A into k individual 1-bit Kripke structures A1, . . . , Ak,
which are learned in parallel as DFA by some regular inference algorithm. The
k inferred DFA B1, . . . , Bk are then recombined using a subdirect product
construction to obtain a Kripke structure that is behaviourally equivalent to A.

This approach has three advantages: (1) We can make use of any regular
inference algorithm to learn the individual 1-bit Kripke structures Ai. Thus we
have access to the wide range of known regular inference algorithms. (2) We
can reduce the total number of book-keeping queries by lazy book-keeping. This
technique maximises re-use of book-keeping queries among the 1-bit structures
Ai. In Section 4, we illustrate this technique in more detail. (3) We can learn
just those bits which are necessary to test a specific temporal logic requirement.
This abstraction technique improves the scalability of testing.

It usually suffices to learn automata up to behavioural equivalence.

3.1. Definition. Let A and B be k-bit Kripke structures over a finite input
alphabet Σ. We say that A and B are behaviourally equivalent, and write A ≡ B
if, and only if, for every finite input sequence σ1, . . . , σi ∈ Σ∗ we have

λ∗A( σ1, . . . , σi ) = λ∗B( σ1, . . . , σi ).

Clearly, by the isomorphism identified in Section 2 between 1-bit Kripke struc-
tures and DFA, for such structures we have A ≡ B if, and only if, L(A′) = L(B′).
Furthermore, if Min(A) is the minimal subalgebra of A then Min(A) ≡ A.

Let us make precise the concept of bit-slicing a Kripke structure.

3.2. Definition. Let A be a k-bit Kripke structure over a finite input alphabet
Σ,

A = ( QA, Σ, δA : QA ×Σ → QA, q
0
A, λA : QA → Bk ).



For each 1 ≤ i ≤ k define the i-th projection Ai of A to be the 1-bit Kripke
structure where

Ai = ( QA, Σ, δA : QA ×Σ → QA, q
0
A, λAi

: QA → B ),

and λAi(q) = λA(q)i, i.e. λAi(q) is the i-th bit of λA(q).

A family of k individual 1-bit Kripke structures can be combined into a
single k-bit Kripke structure using the following subdirect product construction.
(See e.g. [13] for a general definition of subdirect products and their universal
properties.)

3.3. Definition. Let A1, . . . , Ak be a family of 1-bit Kripke structures,

Ai = ( Qi, Σ, δi : Qi ×Σ → Qi, q
0
i , λi : Q→ B )

for i = 1, . . . , k. Define the product Kripke structure

k∏
i=1

Ai = ( Q, Σ, δ : Q×Σ → Q, q0, λ : Q→ Bk ),

where Q =
∏k

i=1Qi = Q1 × . . .×Qk and q0 = ( q01 , . . . , q
0
k ). Also

δ(q1, . . . , qk, σ) = ( δ1(q1, σ), . . . , δk(qk, σ) ),

λ(q1, . . . , qk) = ( λ1(q1), . . . , λk(qk) ).

Associated with the direct product
∏k

i=1Ai we have i-th projection mapping

proj i : Q1 × . . .×Qk → Qi, proj i(q1, . . . , qk) = qi, 1 ≤ i ≤ k

Let Min(
∏k

i=1Ai ) be the minimal subalgebra of
∏k

i=1Ai.

The reason for taking the minimal subalgebra of the direct product
∏k

i=1Ai

is to avoid the state space explosion due to a large number of unreachable states
in the direct product itself. The state space size of

∏k
i=1Ai grows exponentially

with k. On the other hand since most of these states are unreachable from the
initial state, then from the point of view of behavioural analysis these states are
irrelevant. Note that this minimal subalgebra can be computed in linear time
from its components Ai (w.r.t. state space size).

As is well known from universal algebra, the i-th projection mapping proj i
is a homomorphism.

3.4. Proposition. Let A1, . . . , Ak be any minimal 1-bit Kripke structures.
(i) For each 1 ≤ i ≤ k, proj i : Min(

∏k
i=1Ai ) → Ai is an epimorphism, and

hence Min(
∏k

i=1Ai ) is a subdirect product of the Ai.

(ii) Min(
∏k

i=1Ai ) ≡
∏k

i=1Ai.

Proof. (i) Immediate since the Ai are minimal. (ii) Follows from Min(A) ≡ A.



The following theorem justifies bit-sliced learning of k-bit Kripke structures
using conventional regular inference methods for DFA.

3.5. Theorem. Let A be a k-bit Kripke structure over a finite input alphabet
Σ. Let A1, . . . , Ak be the k individual 1-bit projections of A. For any 1-bit
Kripke structures B1, . . . , Bk, if, A1 ≡ B1 & . . .& Ak ≡ Bk then

A ≡ Min(

k∏
i=1

Bi ).

Proof. Use Proposition 3.4.

4 Incremental Learning for Kripke Structures

In this section we present a new algorithm for incremental learning of Kripke
structures. We will briefly discuss its correctness and termination properties, al-
though a full discussion of these is outside the scope of this paper and is presented
elsewhere in [12]. Our algorithm applies bit-slicing as presented in Section 3, and
uses distinguishing sequences and lazy partition refinement for regular inference
of the 1-bit Kripke structures. The architecture of the IKL algorithm consists of
a main learning algorithm and two sub-procedures for lazy partition refinement
and automata synthesis. Distinguishing sequences were introduced in Angluin
[1] as a method for learning DFA.

Algorithm 1 is the main algorithm for bit-sliced incremental learning. It learns
a sequenceM1, . . . , Ml of n-bit Kripke structures that successively approximate
a single n-bit Kripke structure A, which is given as the teacher. In LBT, the
teacher is always the SUT.

The basic idea of Algorithm 1 is to construct in parallel a family E1
i1
, . . . , En

in
of n different equivalence relations on the same set Tk of state names. For each
equivalence relation Ej

ij
, a set Vj of distinguishing strings is generated iteratively

to split pairs of equivalence classes in Ej
ij

until a congruence is achieved. Then
a quotient DFA M j can be constructed from the partition of Tk by Ej

ij
. The

congruences are constructed so that Ej
i ⊆ Ej

i+1 and thus the IKL algorithm is
incremental, and fully reuses information about previous approximations, which
is efficient.

Each n-bit Kripke structure Mt is constructed using synthesis algorithm 3,
as a subdirect product of n individual quotient DFA M1, . . . , Mn (viewed as
1-bit Kripke structures). When the IKL algorithm is applied to the problem of
LBT, the input strings si ∈ Σ∗ to IKL are generated as counterexamples to
correctness (i.e. test cases) by executing a model checker on the approximation
Mt−1 with respect to some requirements specification φ expressed in temporal
logic. If no counterexamples to φ can be found in Mt−1 then si is randomly
chosen, taking care to avoid all previously used input strings.

Algorithm 2 implements lazy partition refinement, to extend E1
i1
, . . . , En

in
from being equivalence relations on states to being a family of congruences with
respect to the state transition functions δ1, . . . , δn of M1, . . . , Mn.



Algorithm 1 IKL: Incremental Kripke Structure Learning Algorithm
Input: A file S = s1, . . . , sl of input strings si ∈ Σ∗ and a Kripke structure A with
n-bit output as teacher to answer queries λ∗A(si) = ?
Output: A sequence of Kripke structures Mt with n-bit output for t = 0, . . . , l.

1. begin
2. //Perform Initialization
3. for c = 1 to n do { ic = 0, vic = ε, Vc = {vic} }
4. k = 0, t = 0,
5. P0 = {ε}, P ′0 = P0 ∪ {d0}, T0 = P0 ∪Σ
6. //Build equivalence classes for the dead state d0
7. for c = 1 to n do { Ec

0(d0) = ∅ }
8. //Build equivalence classes for input strings of length zero and one
9. ∀α ∈ T0 {

10. (b1, . . . , bn) = λ∗A(α)
11. for c = 1 to n do
12. if bc then Ec

ic(α) = {vic} else Ec
ic(α) = ∅

13. }
14. //Refine the initial equivalence relations E1

0 , . . . , E
n
0

15. //into congruences using Algorithm 2
16.
17. //Synthesize an initial Kripke structure M0 approximating A
18. //using Algorithm 3.
19.
20. //Process the file of examples.
21. while S 6= empty do {
22. read( S, α )
23. k = k+1, t = t+1
24. Pk = Pk−1 ∪ Pref(α) //prefix closure
25. P ′k = Pk ∪ {d0}
26. Tk = Tk−1 ∪ Pref(α) ∪ {α . b | α ∈ Pk − Pk−1, b ∈ Σ} //for prefix closure
27. T ′k = Tk ∪ {d0}
28. ∀α ∈ Tk − Tk−1 {
29. for c = 1 to n do Ec

0(α) = ∅ //initialise new equivalence class Ec
0(α)

30. for j = 0 to ic do {
31. // Consider adding distinguishing string vj ∈ Vc

32. // to each new equivalence class Ec
j (α)

33. (b1, . . . , bn) = λ∗A(α . vj)
34. if bc then Ec

j (α) = Ec
j (α) ∪ { vj }

35. }
36. }
37. //Refine the current equivalence relations E1

i1 , . . . , E
n
in

38. // into congruences using Algorithm 2
39.
40. if α is consistent with Mt−1

41. then Mt =Mt−1

42. else synthesize Kripke structure Mt using Algorithm 3.
43. }
44. end.



Algorithm 2 Lazy Partition Refinement
1. while (∃ 1 ≤ c ≤ n,∃α, β ∈ P ′k and ∃σ ∈ Σ such that Ec

ic(α) = Ec
ic(β) but

Ec
ic(f(α, σ)) 66= Ec

ic(f(β, σ)) do {
2. //Equivalence relation Ec

ic is not a congruence w.r.t. δc
3. //so add a new distinguishing sequence.
4. Choose γ ∈ Ec

ic(f(α, σ))⊕ E
c
ic(f(β, σ))

5. v = σ . γ
6. ∀α ∈ Tk {
7. (b1, . . . , bn) = λ∗A(α . v)
8. for c = 1 to n do {
9. if Ec

ic(α) = Ec
ic(β) and E

c
ic(f(α, σ)) 66= Ec

ic(f(β, σ)) then {
10. // Lazy refinement of equivalence relation Ec

ic

11. ic = ic + 1, vic = v, Vc = Vc ∪ {vic}
12. if bc then Ec

ic(α) = Ec
ic−1(α) ∪ {vic} else Ec

ic(α) = Ec
ic−1(α)

13. }
14. }
15. }

Algorithm 3 Kripke Structure Synthesis
1. for c = 1 to n do {
2. // Synthesize the quotient DFA (1-bit Kripke structure) Mc

3. The states of Mc are the sets Ec
ic(α), where α ∈ Tk

4. Let qc0 = Ec
ic(ε)

5. The accepting states are the sets Ec
ic(α) where α ∈ Tk and ε ∈ Ec

ic(α)
6. The transition function δc of Mc is defined as follows:
7. ∀α ∈ P ′k {
8. if Ec

ic(α) = ∅ then ∀b ∈ Σ { let δc(Ec
ic(α), b) = Ec

ic(α) }
9. else ∀b ∈ Σ { δc(Ec

ic(α), b) = Ec
ic(α . b) }

10. }
11. ∀β ∈ Tk − P ′k {
12. if ∀α ∈ P ′k { Ec

ic(β) 6= Ec
ic(α) } and E

c
ic(β) 6= ∅ then

13. ∀b ∈ Σ { δc(Ec
ic(β), b) = ∅ }

14. }
15. // Compute Mt in linear time as a subdirect product of the Mc

16. Mt = Min(
∏n

c=1M
c )



Thus line 1 searches for congruence failure in any one of the equivalence
relations E1

i1
, . . . , En

in
. In lines 6-14 we apply lazy partition refinement. This

technique implies reusing the new distinguishing string v wherever possible to
refine each equivalence relation Ej

ij
that is not yet a congruence. On the other

hand, any equivalence relation Ej
ij

that is already a congruence is not refined,
even though the result bj of the new query α . v might add some new information
to M j . This helps minimise the total number of partition refinement queries (cf.
Section 1.2).

Algorithm 3 implements model synthesis. First, each of the n quotient DFA
M1, . . . , Mn are constructed. These, reinterpreted as 1-bit Kripke structures,
are then combined in linear time as a subdirect product to yield a new n-bit
approximation Mt to A (c.f. Section 3).

4.1 Correctness and Termination of the IKL algorithm.

The sequence M1, . . . , Ml of hypothesis Kripke structures which are incremen-
tally generated by IKL can be proven to finitely converge to A up to behavioural
equivalence, for sufficiently large l. The key to this observation lies in the fact
that we can identify a finite set of input strings such that the behavior of A is
completely determined by its behaviour on this finite set.

Recall that for a DFA A =< Σ,Q,F, q0, δ > a state q ∈ Q is said to be live
if for some string α ∈ Σ∗, δ∗(q, α) ∈ F . A finite set C ⊆ Σ∗ of input strings is
said to be live complete for A if for every reachable live state q ∈ Q there exists
a string α ∈ C such that δ∗(q0, α) = q. More generally, given a finite collection
A1, . . . , Ak of DFA, then C ⊆ Σ∗ is live complete for A1, . . . , Ak if, and only
if, for each 1 ≤ i ≤ k, C is a live complete set for Ai. Clearly, for every finite
collection of DFA there exists at least one live complete set of strings.

4.1.1. Theorem. Let A be a k-bit Kripke structure over a finite input al-
phabet Σ. Let A1, . . . , Ak be the k individual 1-bit projections of A. Let
C = { s1, . . . , sl } ⊆ Σ∗ be a live complete set for A1, . . . , Ak. The IKL
algorithm terminates on C and for the final hypothesis structure Ml we have

Ml ≡ A.

Proof. See [12].

5 A Learning-Based Testing Architecture using IKL.

Figure 1 depicts an architecture for learning-based testing of reactive systems by
combining the IKL algorithm of Section 4 with a model checker for Kripke stuc-
tures and an oracle. In this case we have chosen to use the NuSMV model checker
(see e.g. Cimatti et al. [4]), which supports the satisfiability analysis of Kripke
structures with respect to both linear temporal logic (LTL) and computation
tree logic (CTL) [6].



To understand this architecture, it is useful to recall the abstract description
of learning-based testing as an iterative process, given in Section 1.1. Following
the account of Section 1.1, we can assume that at any stage in the testing process
we have an inferred Kripke structure Mn produced by the IKL algorithm from
previous testing and learning. Test cases will have been produced as counterex-
amples to correctness by the model checker, and learning queries will have been
produced by the IKL algorithm during partition refinement. (Partition refine-
ment queries are an example of what we termed book-keeping queries in Section
1.2.)
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Fig. 1. A Learning-Based Testing Architecture using the IKL algorithm.

In Figure 1, the output Mn of the IKL algorithm is passed to an equiv-
alence checker. Since this architectural component is not normally part of an
LBT framework, we should explain its presence carefully. We are particularly
interested in benchmarking the performance of LBT systems, both to compare
their performance with other testing methodologies, and to make improvements
to existing LBT systems. (See Section 6.) In realistic testing situations, we do
not anticipate that an entire SUT can be learned in a feasible time (c.f. the dis-
cussion in Section 1.2). However, for benchmarking with the help of smaller case
studies (for which complete learning is feasible) it is useful to be able to infer
the earliest time at which we can say that testing is complete. Obviously testing
must be complete at time ttotal when we have learned the entire SUT (c.f. Sec-
tion 6). Therefore the equivalence checker allows us to compute the time ttotal

simply to conduct benchmarking studies. (Afterwards the equivalence checker
is removed.) The equivalence checker compares the current Kripke structure
Mn with the SUT. A positive result from this equivalence test stops all fur-
ther learning and testing after one final model check. The algorithm we use has



been adapted from the quasi-linear time algorithm for DFA equivalence checking
described in [14] and has been extended to deal with k-bit Kripke structures.

In Figure 1, the inferred model Mn is passed to a model checker, together
with a user requirement represented as a temporal logic formula φ. This formula
is constant during a particular testing experiment. The model checker attempts
to identify at least one counterexample to φ in Mn as an input sequence i. If φ
is a safety formula then this input sequence will usually be finite i = i1, . . . , ik.
If φ is a liveness formula then this input sequence i may be finite or infinite.
Recall that infinite counterexamples to liveness formulas can be represented as
infinite sequences of the form x yω. In the case that i = x yω then i is truncated
to a finite initial segment that would normally include the handle x and at least
one execution of the infinite loop yω, such as i = x y or i = x y y. Observing
the failure of an infinite test case is of course impossible. The LBT architecture
implements a compromise solution that runs the truncated sequence only, in
finite time, and issues a warning rather than a fail verdict.

Note that if the next input sequence i cannot be constructed either by par-
tition refinement or by model checking then in order to proceed with iterative
testing and learning, another way to generate imust be found. (See the discussion
in Section 1.1.) One simple solution, shown in Figure 1, is to use a random input
sequence generator for i, taking care to discard any previously used sequences.

Thus from one of three possible sources (partition refinement, model checking
or randomly) a new input sequence i = i1, . . . , ik is constructed. Figure 1
shows that if i is obtained by model checking then the current model Mn is
applied to i to compute a predicted output p = p1, . . . , pk for the SUT that
can be used for the oracle step. However, this is not possible if i is random or a
partition refinement since then we do not know whether i is a counterexample
to φ. Nevertheless, in all three cases, the input sequence i is passed to the SUT
and executed to yield an actual or observed output sequence o = o1, . . . , ok.

The final stage of this iterative testing architecture is the oracle step. Figure
1 shows that if a predicted output p exists (i.e. the input sequence i came from
model checking) then actual output o and the predicted output p are both passed
to an oracle component. This component implements the Boolean test o = p. If
this equality test returns true and the test case i = i1, . . . , ik was originally a
finite test case then we can conclude that the test case i is definitely failed, since
the behaviour p is by construction a counterexample to the correctness of φ. If
the equality test returns true and the test case i is finitely truncated from an
infinite test case (a counterexample to a liveness requirement) then the verdict is
weakened to a warning. This is because the most we can conclude is that we have
not yet seen any difference between the observed behaviour o and the incorrect
behaviour p. The system tester is thus encouraged to consider a potential SUT
error.

On the other hand if o 6= p, or if no output prediction p exists then it is quite
difficult to issue an immediate verdict. It may or may not be the case that the
observed output o is a counterexample to the correctness of φ. In some cases the
syntactic structure of φ is simple enough to semantically evaluate the formula



φ on the fly with its input and output variables bound to i and o respectively.
However, sometimes this is not possible since the semantic evaluation of φ also
refers to global properties of the automaton. Ultimately, this is not a problem for
our approach, since Mn+1 is automatically updated with the output behaviour
o. Model checking Mn+1 later on will confirm o as an error if this is the case.

5.1 Correctness and Termination of the LBT Architecture.

It is important to establish that the LBT architecture always terminates, at least
in principle. Furthermore, the SUT coverage obtained by this testing procedure
is complete, in the sense that if the SUT contains any counterexamples to cor-
rectness then a counterexample will be found by the testing architecture. When
the SUT is too large to be completely learned in a feasible amount of time, this
completeness property of the testing architecture still guarantees that there is no
bias in testing so that one could somehow never discover an SUT error. Failure
to find an error in this case is purely a consequence of insufficient testing time.

The termination and correctness properties of the LBT architecture depend
on the following correctness properties of its components:

(i) the IKL algorithm terminates and correctly learns the SUT given a finite
set C of input strings which is live complete (c.f. Theorem 4.1.1);

(ii) the model checking algorithm used by NuSMV is a terminating decision
procedure for the validity of LTL formulas;

(iii) each input string i ∈ Σ∗ is generated with non-zero probability by the
random input string generator.

5.1.1. Theorem. Let A be a k-bit Kripke structure over an input alphabet Σ.

(i) The LBT architecture (with equivalence checker) terminates with proba-
bility 1.0, and for the final hypothesis structure Ml we have

Ml ≡ A.

(ii) If there exists a (finite or infinite) input string i over Σ which witnesses
that an LTL requirement φ is not valid for A, then model checking will eventually
find such a string i and the LBT architecture will generate a test fail or test
warning message after executing i as a test case on A.

Proof. (i) Clearly by Theorem 4.1.1, the IKL algorithm will learn the SUT A up
to behavioural equivalence, given as input a live complete set C for the individual
1-bit projections A1, . . . , Ak of A. Now, we cannot be sure that the strings
generated by model checking counterexamples and partition refinement queries
alone constitute a live complete set C for A1, . . . , Ak. However, these sets of
queries are complemented by random queries. Since a live complete set is finite,
and every input string is randomly generated with non-zero probability, then
with probability 1.0 the IKL algorithm will eventually obtain a live complete set
and converge. At this point, equivalence checking the final hypothesis structure
Ml with the SUT will succeed and the LBT architecture will terminate.



(ii) Suppose there is at least one (finite or infinite) counterexample string
i over Σ to the validity of an LTL requirement φ for A. In the worst case, by
part (i), the LBT architecture will learn the entire structure of A. Since the
model checker implements a terminating decision procedure for validity of LTL
formulas, it will return a counterexample i from the final hypothesis structure
Ml, since by part (i),Ml ≡ A and A has a counterexample. For such i, comparing
the corresponding predicted output p from Ml and the observed output o from
A we must have p = o since Ml ≡ A. Hence the testing architecture will issue a
fail or warning message.

6 Case Studies and Performance Benchmarking

In order to evaluate the effectiveness of the LBT architecture described in Section
5, we conducted a number of testing experiments on two SUT case studies,
namely an 8 state cruise controller and a 38 state 3-floor elevator model1.

For each SUT case study we chose a collection of safety and liveness re-
quirements that could be expressed in linear temporal logic (LTL). For each
requirement we then injected an error into the SUT that violated this require-
ment and ran a testing experiment to discover the injected error. The injected
errors all consisted of transition mutations obtained by redirecting a transition
to a wrong state. This type of error seems quite common in our experience.

There are a variety of ways to measure the performance of a testing system
such as this. One simple measure that we chose to consider was to record the first
time tfirst at which an error was discovered in an SUT, and to compare this with
the total time ttotal required to completely learn the SUT. (So tfirst ≤ ttotal .)
This measure is relevant if we wish to estimate the benefit of using incremental
learning instead of complete learning.

Because some random queries are almost always present in each testing ex-
periment, the performance of the LBT architecture has a degree of variation.
Therefore, for the same correctness formula and injected error, we ran each ex-
periment ten times to try to average out these variations in performance. This
choice appeared adequate to obtain a representative average. Subsections 6.1
and 6.2 below set out the results obtained for each case study.

6.1 The Cruise Controller Model

The cruise controller model we chose as an SUT is an 8 state 5-bit Kripke
structure with an input alphabet of 5 symbols. Figure 2 shows its structure2.
The four requirements shown in Table 1 consist of: (1,2) two requirements on
speed maintenance against obstacles in cruise mode, and (3,4) disengaging cruise
mode by means of the brake and gas pedals. To gain insight into the LBT
1 Our testing platform was based on a PC with a 1.83 GHz Intel Core 2 duo processor
and 4GB of RAM running Windows Vista.

2 The following binary data type encoding is used. Modes: 00 = manual, 01 = cruise,
10 = disengaged. Speeds: 00 = 0, 01 = 1, 10 = 2.
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Fig. 2. The cruise controller SUT.

Req 1 G( mode = cruise & speed = 1 & in = dec -> X( speed = 1 ))
Req 2 G( mode = cruise & speed = 1 & in = acc -> X( speed = 1 ) )
Req 3 G( mode = cruise & in = brake -> X( mode = disengaged ) )
Req 4 G( mode = cruise & in = gas -> X( mode = disengaged ) )

Table 1. Cruise Controller Requirements as LTL formulas.

Requirement tfirst (sec) ttotal (sec) MCQfirst MCQtotal PQfirst PQtotal RQfirst RQtotal

Req 1 3.5 21.5 3.2 24.3 7383 30204 8.2 29.3
Req 2 2.3 5.7 5.5 18.2 8430 27384 10.4 23.1
Req 3 2.3 16.0 1.7 33.7 6127 34207 6.8 38.8
Req 4 2.9 6.1 4.7 20.9 7530 24566 10.4 20.9

Table 2. LBT performance for Cruise Controller Requirements.



architecture performance, Table 2 shows average figures at times tfirst and ttotal

for the numbers:

(i) MCQfirst and MCQtotal of model checker generated test cases,
(ii) PQfirst and PQtotal of partition refinement queries,
(iii) RQfirst and RQtotal of random queries.

In Table 2, columns 2 and 3 show that the times required to first discover an
error in the SUT are between 14% and 47% of the total time needed to completely
learn the SUT. The large query numbers in columns 6 and 7 show that partition
refinement queries dominate the total number of queries. Columns 8 and 9 show
that the number of random queries used is very low, of and of the same order
of magnitude as the number of model checking queries (columns 4 and 5). Thus
partition refinement queries and model checker generated test cases come quite
close to achieving a live complete set, although they do not completely suffice
for this (c.f. Section 4.1).

6.2 The Elevator Model

The elevator model we chose as an SUT is a 38 state 8-bit Kripke structure
with an input alphabet of 4 symbols. Figure 3 shows its condensed structure
as a hierarchical statechart. The six requirements shown in Table 3 consist of
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Fig. 3. The 3-floor elevator SUT (condensed Statechart ).

Req 1 G( Stop -> ( @1 | @2 | @3 ) )
Req 2 G( !Stop -> cl )
Req 3 G( Stop & X( !Stop ) -> X( !cl ) )
Req 4 G( Stop & @1 & cl & in=c1 & X( @1 ) -> X( !cl ) )
Req 5 G( Stop & @2 & cl & in=c2 & X( @2 ) -> X( !cl ) )
Req 6 G( Stop & @3 & cl & in=c3 & X( @3 ) -> X( !cl ) )

Table 3. Elevator Requirements as LTL formulas.



Requirement tfirst (sec) ttotal (sec) MCQfirst MCQtotal PQfirst PQtotal RQfirst RQtotal

Req 1 0.34 1301.3 1.9 81.7 1574 729570 1.9 89.5
Req 2 0.49 1146 3.9 99.6 2350 238311 2.9 98.6
Req 3 0.94 525 1.6 21.7 6475 172861 5.7 70.4
Req 4 0.052 1458 1.0 90.3 15 450233 0.0 91
Req 5 77.48 2275 1.2 78.3 79769 368721 20.5 100.3
Req 6 90.6 1301 2.0 60.9 129384 422462 26.1 85.4

Table 4. LBT performance for Elevator Requirements.

requirements that: (1) the elevator does not stop between floors, (2) doors are
closed when in motion, (3) doors open upon reaching a floor, and (4, 5, 6) closed
doors can be opened by pressing the same floor button when stationary at a
floor.

Table 4 shows the results of testing the requirements of Table 3. These results
confirm several trends seen in Table 2. However, they also show a significant
increase in the efficiency of using incremental learning, since the times required
to first discover an error in the SUT are now between 0.003% and 7% of the
total time needed to completely learn the SUT. These results are consistent
with observations of [12] that the convergence time of IKL grows quadratically
with state space size. Therefore incremental learning gives a more scalable testing
method than complete learning.

7 Conclusions

We have presented a novel incremental learning algorithm for Kripke structures,
and shown how this can be applied to learning-based testing of reactive sys-
tems. Using two case studies of reactive systems, we have confirmed our initial
hypothesis of Section 1.2, that incremental learning is a more scalable and ef-
ficient method of testing than complete learning. These results are consistent
with similar results for LBT applied to procedural systems in [11].

Further research could be carried out to improve the performance of the ar-
chitecture presented here. For example the performance of the oracle described
in Section 5 could be improved to yield a verdict even for random and parti-
tion queries, at least for certain kinds of LTL formulas. Further research into
scalable learning algorithms would be valuable for dealing with large hypothesis
automata. The question of learning-based coverage has been initially explored
in [18] but further research here is also needed.

We gratefully acknowledge financial support for this research from the Swedish
Research Council (VR), the Higher Education Commission (HEC) of Pakistan,
and the European Union under project HATS FP7-231620.
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