
NLC2-DECOMPOSITION IN POLYNOMIAL TIME

ÖJVIND JOHANSSON∗

Department of Numerical Analysis and Computing Science,
Royal Institute of Technology, SE-100 44 Stockholm, Sweden

ABSTRACT

NLCk is a family of algebras on vertex-labeled graphs introduced by Wanke. An
NLC-decomposition of a graph is a derivation of this graph from single vertices using
the operations in question. The width of the decomposition is the number of labels used,
and the NLC-width of the graph is the smallest width among its NLC-decompositions.
Many difficult graph problems can be solved efficiently with dynamic programming if
an NLC-decomposition of low width is given for the input graph. It is unknown though
whether arbitrary graphs of NLC-width at most k can be decomposed with k labels in
polynomial time. So far this has been possible only for k = 1, which corresponds to
cographs. In this paper, an algorithm is presented that works for k = 2. It runs in
O(n4 log n) time and uses O(n2) space. Related concepts: clique-decomposition, clique-
width.

Keywords: Graph algebra; graph decomposition; NLC-width; clique-width; cograph.

1 Introduction

In [15] Wanke introduces an algebra for a class of vertex-labeled graphs called
NLCk. This class consists of all graphs that can be obtained from single vertices
with labels in [k] = {1, . . . , k} using the two operations of the algebra, union and
relabeling, defined as follows: Union requires two disjoint graphs, and permits edges
to be drawn between these. More precisely, all such edges will be added that match
a set of ordered label pairs accompanying the union operator. Relabeling requires
just one graph, and changes its labels according to a likewise specified mapping from
[k] to [k]. With k = 1, one obtains the class already known as cographs, described
in [2] for example. (In such a comparison, we are referring to edge-structure only,
since cographs are unlabeled.)

A similar algebra has been defined in [6]. The main difference is that in the latter,
no edges can be added when two graphs are united; edge-drawing is a separate unary
operator.

∗ojvind@nada.kth.se

1

By a decomposition of a graph with respect to one of these algebras, we mean
a derivation of this graph from single vertices using the operations in question.
Specifically, the terms NLC-decomposition and clique-decomposition refer to the
two algebras discussed above. The width of a decomposition is the number of
distinct labels actually used, and the NLC-width and clique-width of a graph are
the smallest widths among all its NLC-decompositions and clique-decompositions
respectively.

The relationship between these algebras has been studied in [10]. It was found
that a clique-decomposition can be transformed into an NLC-decomposition of the
same graph and vice versa. In the first direction, no additional labels are needed. In
the second direction, at most a doubling of the label set may be necessary. Thus, the
NLC-width of a graph is bounded by the clique-width, which in turn is bounded by
two times the NLC-width. NLC-width 1 (cographs) corresponds exactly to clique-
width 1 and 2. Less clear is the relationship between the classes with NLC-width
2 and clique-width 3 for example. They may intersect properly. An indication for
this is given by the fact that neither of the two bounds above can be improved by
a constant multiplicative factor.

NLC-decompositions and clique-decompositions have a binary tree structure.
What makes them important is that decomposing a graph can be an excellent first
step in solving more particular problems on it. Many problems which are hard
for arbitrary graphs can be solved with dynamic programming in polynomial or
even linear time on graphs which can be decomposed using a bounded number of
labels, assuming that the graph is given in such a decomposed form. For example,
decision, optimization, and enumeration problems expressible in MS1 logic, such as
3-Colorability, MaxClique and #MaxClique, can be solved in linear time on graphs
given as clique-decompositions of width at most k [4, 5]. And P -recognizable prob-
lems, such as Hamiltonian Circuit (which is not MS1-expressible [4]), can be solved
in polynomial time on graphs given as NLC-decompositions of width at most k [15].
Note here that in theory it does not really matter which decomposition we have.
For the transformations between NLC-decompositions and clique-decompositions
mentioned above can in fact be carried out in linear time.

However, these transformations do not necessarily preserve minimality of width.
Since the time complexities of the dynamic programming algorithms in question
grow quickly with increasing k, it is of practical interest to use “first-hand” decom-
positions for that algebra which best captures a particular graph problem. It is by
no means clear though that the problems of finding NLC-decompositions and clique-
decompositions of minimal width are equally hard. In fact, it is unknown whether
arbitrary graphs of NLC-width (clique-width) at most k can be NLC-decomposed
(clique-decomposed) with k labels in polynomial time. For cographs, algorithms
follow easily from [3], for example. A more recent result concerns certain families
of graphs with restrictions on the number of induced P4s [11]. (A P4 is shown in
Fig. 3.)

With the algorithm in this paper, it is now possible to NLC-decompose, using
a minimum number of labels, all graphs of NLC-width at most 2 in polynomial

2

time. Concerning these, one can note that although cographs are equivalent with
P4-free graphs [2], a graph with NLC-width 2 — as well as one with clique-width
3 — can have an exponential number of induced P4s. (Consider for example those
fourpartite graphs whose edges we can define by letting each vertex part correspond
to one of the vertices in a P4.)

It was pointed out in [6] that clique-decomposition can refine the modular decom-
position of a graph. This refinement idea works equally well for NLC-decomposition.
In either case, a minimum-width decomposition of a graph G can be obtained from
minimum-width decompositions of the quotient graphs in the modular decomposi-
tion of G. Accordingly, the algorithm presented in this paper uses modular decom-
position as a first step. Thus, in Section 4 we define modular decomposition for
labeled graphs, and we investigate the properties of the resulting quotient graphs.
In Section 5 we then show how to NLC-decompose these quotient graphs, as long
as their NLC-width is at most 2. We indeed exploit some observations particular
to NLC-width 2, and no generalization to higher width seems readily obtainable.

2 Preliminaries

Unless stated otherwise, a graph G is assumed to be undirected, but it may be
either labeled (see below) or unlabeled. V(G) and E(G) denote the vertex and edge
sets of G, and (V, E) denotes the unlabeled graph with vertex and edge sets V and
E.

With a labeled graph G we mean the graph (V(G), E(G)), also denoted unlab(G),
together with a labeling function, labG, mapping each vertex in V(G) to a positive
integer. G may be denoted by (V(G), E(G), labG). L(G) denotes the set of all labels
in G, that is, {labG(v) : v ∈ V(G)}. Often we will require that L(G) ⊆ {1, . . . , k}.
We denote this set by [k]. If all vertices in a set V ⊆ V(G) have (that is, are mapped
to) the same label (by labG), we say that V is uniformly labeled (in G). If this holds
for V = V(G), G is uniformly labeled.

Two graphs G1 and G2 are disjoint when V(G1) ∩ V(G2) = ∅. Then, if G1 and
G2 are both unlabeled or both labeled, their disjoint union G is defined as follows:
In either case, V(G) = V(G1)∪V(G2) and E(G) = E(G1)∪E(G2). In case G1 and
G2 are both unlabeled, so is G. In case G1 and G2 are both labeled, G is labeled
too, with labG(u) = labG1(u) for all u ∈ V(G1), and labG(u) = labG2(u) for all
u ∈ V(G2). The disjoint union of three or more graphs is defined analogously.

For a set of vertices V in a graph G, G|V denotes the subgraph of G induced by
V . The usual definition for unlabeled graphs is extended to labeled graphs in the
obvious way.

3 NLC-Decomposition

In this section we give basic definitions and lemmas related to NLC-
decomposition. We begin with the two fundamental graph operations.
Definition 1 (Union [15]) Let G1 and G2 be disjoint graphs labeled with num-
bers in [k], and let S ⊆ [k]2 (that is, S is a set of ordered label pairs). Then

3

×S (G1, G2) is defined as the graph obtained by forming the disjoint union of G1

and G2, and adding to that all edges {u, v} satisfying u ∈ V(G1), v ∈ V(G2), and
(labG1(u), labG2(v)) ∈ S. See Fig. 1.
Definition 2 (Relabeling [15]) Let G be a graph labeled with numbers in [k],
and let R be a mapping from [k] to [k]. Then ◦R (G) is the labeled graph G′ defined
by V(G′) = V(G), E(G′) = E(G), and labG′(u) = R(labG(u)) for all u ∈ V(G′). See
Fig. 1.

1 2

G1

1 2

G2

1 2 1 2

G3

1 1 1 1

G4

Fig. 1. Union and relabeling. G3 = ×{(2,1)} (G1, G2) and G4 =
◦{(1,1),(2,1)} (G3).

We continue with a formal definition of graph-producing expressions based on
the above operations. We call these expressions NLCk-terms, and the graph pro-
duced by such a term D will be denoted G(D). We also define L(D) to be the set
of all labels in graphs produced by subexpressions of D, including D itself.
Definition 3 (NLCk-term) D is an NLCk-term if it satisfies one of the follow-
ing:

• D has the form λi(x), where i ∈ [k], and where x is either the name of a
vertex, or a bullet symbol, •, representing an unnamed vertex. In either case,
G(D) is this vertex labeled with i, and L(D) = {i}. (Each occurrence of a
bullet symbol represents a vertex distinct from all other vertices.)
• D has the form ×S (D1, D2), where S ⊆ [k]2, and where D1 and D2

are NLCk-terms such that G(D1) and G(D2) are disjoint. Then G(D) =
×S (G(D1), G(D2)), and L(D) = L(D1) ∪ L(D2).
• D has the form ◦R (D′), where D′ is an NLCk-term, and where R is a map-
ping from [k] to [k]. Then G(D) = ◦R (G(D′)), and L(D) = L(G(D))∪L(D′).

Example 1 Let D = ×{(2,1)}
(×{(1,2)} (λ1(•), λ2(•)) ,×{(1,2)} (λ1(•), λ2(•))

)
.

Then D is an NLC2-term, and L(D) = {1, 2}. D produces the graph G3 in Fig. 1.
It is often convenient to view NLCk-terms as rooted ordered binary trees. See

Fig. 2.

λ1(•) λ2(•)

×{(1,2)}

λ1(•) λ2(•)

×{(1,2)}

×{(2,1)}

Fig. 2. The NLC2-term in Example 1 expressed with a binary tree.

We are now prepared to define the class NLCk, as well as what will be our most
frequently used concepts.

4

Definition 4 (NLCk [15]) NLCk is the class of all (labeled) graphs produced by
NLCk-terms.
Definition 5 (NLCk-decomposition, NLC-decomposition [10]) An NLCk-
decomposition of a graph G is an NLCk-term D such that G = G(D) if G is
labeled, and such that G = unlab(G(D)) if G is unlabeled. If D exists, G is said to
be NLCk-decomposable. An NLC-decomposition of G is an NLCk-decomposition
of G for some unspecified value of k. Note that G always is “NLC-decomposable”.
Definition 6 (Width) The width of an NLCk-term D is |L(D)|.
Definition 7 (NLC-width [10]) The NLC-width of a graph G, widthNLC(G), is
the smallest width among all NLC-decompositions of G.
The NLCk-decomposition problem. A graph G is given, unlabeled or labeled
with numbers in [k]. The task is to find an NLCk-decomposition of G, if that exists.
Example 2 The NLC2-term D in Example 1 is an NLC2-decomposition of G3 in
Fig. 1, as well as of its unlabeled variant called P4, shown in Fig. 3. D has width 2.
The reader is invited to show that there is no NLC-decomposition of P4 with width
1. Thus P4 has NLC-width 2.

Fig. 3. The graph P4.

Finally, we reproduce some fundamental observations by Wanke.
Definition 8 (Restriction) Let D be an NLCk-term, and let V ⊆ V(G(D)).
Then D|V denotes the restriction of D to V , the expression obtained by deleting
the terms for vertices not in V , and removing superfluous operations in the obvious
way. Evidently, G(D|V) = G(D)|V .

Since restricting a decomposition does not increase its width, we immediately
have:
Lemma 1 If H is an induced subgraph of G, then widthNLC(H) ≤ widthNLC(G),
and H is NLCk-decomposable if G is.
Definition 9 (Complement) Let D be an NLCk-term. Then D denotes the edge-
complement of D, the expression obtained by exchanging each union operator ×S

for ×S , where S = [k]2 \ S. Evidently, G(D) = G(D).
Since D is an NLCk-term if D is, we have:

Lemma 2 ([15]) G ∈ NLCk if and only if G ∈ NLCk.

4 Modular Decomposition

Modular decomposition has been defined a number of times for various kinds
of structures. It is called substitution decomposition in [13, 14], where an abstract
analysis is presented and applied to relations (such as graphs), set systems, and
boolean functions. The kind of generalized graphs called 2-structures [8] are also
well-suited for modular decomposition, as shown in [7, 8, 9, 12]. The reader is
referred to [7, 12, 13, 14] for further references.

5

In this section we define modular decomposition for labeled graphs. We indicate
its connection with NLC-decomposition, and we formulate some properties which
we will use later. Finally, we describe how the modular decomposition of a labeled
graph can be computed with an existing algorithm for modular decomposition of
2-structures.

4.1 Substitution

In general, the modular decomposition of a structure S is a derivation of S

with the implicit or explicit help of a substitution operation. Let us first look at
how substitution normally works for unlabeled graphs, and how we can extend the
operation to produce labeled graphs as well.
Definition 10 (Substitution of graphs) Let G′ be a graph and let the graphs
Gv, v ∈ V(G′), be unlabeled and disjoint.

• If G′ is unlabeled, G′[Gv, v ∈ V(G′)] is defined as the unlabeled graph ob-
tained from the disjoint union of Gv, v ∈ V(G′), by adding, for each edge
{u, v} in G′, all possible edges between V(Gu) and V(Gv). See Fig. 4.
• If G′ is labeled, G′[Gv, v ∈ V(G′)] is defined as the labeled graph G obtained
by proceeding first as in the unlabeled case, and then assigning the labels, so
that for each vertex v in G′, we have labG(u) = labG′(v) for all u ∈ V(Gv).
See Fig. 4.

Associated with the composition G = G′[Gv, v ∈ V(G′)] is a natural mapping
from V(G) to V(G′): If X ⊆ V(G), the image of X in V(G′), denoted Im(X), is
the set {v : v ∈ V(G′) and V(Gv) ∩X 6= ∅}. And if Y ⊆ V(G′), the inverse image
of Y in V(G), denoted Im−1(Y), is the set

⋃
v∈Y V(Gv). See Fig. 4.

u v

w

G′

α

Gu

β γ δ ε

Gw

ζ

Gv

α ζ

β γ δ ε

G

Fig. 4. Graph substitution. G = G′[Gu, Gv, Gw]. As G′ is unlabeled, so is G.
If G′ were labeled, let us say with 1 for u and v, and 2 for w, then G would be
labeled too, with 1 for α and ζ, and 2 for β, γ, δ, and ε. The image of β in G′
is {w}. The inverse image of w in G is {β, γ, δ, ε}.

The importance of the substitution operation in connection with NLC-
decomposition is evident from the following:
Proposition 1 Suppose that G = G′[Gv, v ∈ V(G′)]. Then the NLC-width of
G equals the highest NLC-width among G′ and Gv, v ∈ V(G′), and an NLC-
decomposition of G with this width can be obtained from NLC-decompositions of
G′ and Gv, v ∈ V(G′).

Proof. Let k be the highest NLC-width among G′ and Gv, v ∈ V(G′). Without
loss of generality, we assume that if G is labeled, the labels belong to [k]. Let

6

D′ be an NLCk-decomposition of G′, and for each v ∈ V(G′), let lv be the initial
label of v in this decomposition. Finally, for each v ∈ V(G′), let Dv be an NLCk-
decomposition of Gv. Then we get an NLCk-decomposition of G′[Gv, v ∈ V(G′)] by
replacing in D′, for each vertex v ∈ V(G′), the (innermost) term for v by ◦Rv (Dv),
where Rv maps each element of [k] to lv. It follows that the NLC-width of G is at
most k. See Fig. 5.

On the other hand, G′ and Gv, v ∈ V(G′), are all induced subgraphs of G =
G′[Gv, v ∈ V(G′)]. True, this statement is a bit informal. For G′ we should actu-
ally speak of an isomorphism. And Gv, v ∈ V(G′), are all unlabeled, whereas the
corresponding induced subgraphs of G may be uniformly labeled. Nevertheless, by
Lemma 1 it is clear that the NLC-width of G cannot be less than k. 2

λ1(u) λ1(v)

×{(1,1)} λ1(w)

×{(1,1)}

D′

λ1(α)

Du

λ1(ζ)

Dv

λ1(β) λ2(γ)

×{(1,2)}

λ1(δ) λ2(ε)

×{(1,2)}

×{(2,1)}

Dw

λ1(α) λ1(ζ)

×{(1,1)}

λ1(β) λ2(γ)

×{(1,2)}

λ1(δ) λ2(ε)

×{(1,2)}

×{(2,1)}

◦{(1,1),(2,1)}

×{(1,1)}

D

Fig. 5. Substitution of decompositions. How an NLC-decomposition D of
G = G′[Gu, Gv, Gw] (see Fig. 4) can be obtained from NLC-decompositions
D′, Du, Dv, and Dw of G′, Gu, Gv, and Gw.

7

4.2 Modules

Let G be a labeled or unlabeled graph. If it can be written as G′[Gv, v ∈ V(G′)]
the partition π = {V(Gv), v ∈ V(G′)} of the vertices of G is called a congruence
partition of G. Although not unique, the graph G′ is often called the quotient of G

modulo π.
We shall now define what is meant by a module of G. First, if M ⊆ V(G)

is a class of some congruence partition of G, then M is a module of G. Second,
M = V(G) is always a module of G. Essentially, this is the approach in [13] (where
modules are called autonomous sets though), adjusted for the fact that {V(G)}
is not necessarily a congruence partition of G when G is labeled. It follows from
Definition 10 that if G is labeled, M ⊆ V(G) is a module of G if and only if

(i) M is nonempty;
(ii) for each vertex v ∈ V(G) −M , v has edges, either to all vertices in M , or to

none of them; and
(iii) either M is uniformly labeled, or M = V(G);

whereas if G is unlabeled, M ⊆ V(G) is a module of G if and only if (i) and (ii)
hold.
Example 3 The modules of the graph G in Fig. 4 are {α}, {β}, {γ}, {δ}, {ε}, {ζ},
{α, ζ}, {β, γ, δ, ε}, {α, β, γ, δ, ε}, {β, γ, δ, ε, ζ}, and {α, β, γ, δ, ε, ζ}.

We denote the set of modules of G by M(G). Recall that for a set of vertices
V in a graph G, G|V denotes the subgraph of G induced by V . Let us also define
that two sets A and B overlap if A \ B, A ∩ B, and B \ A are all nonempty. It is
now a straightforward task to check that module properties (A1) through (A4) in
[13], restated below for a graph G, apply not only if G is unlabeled, but also if it is
labeled.

(A1) V(G) ∈ M(G), and {v} ∈ M(G) for each v ∈ V(G). (These are the trivial
modules of G. If G has no other modules, it is called prime.)

(A2) If A, B ∈ M(G) overlap, then A\B, A∩B, B \A, and A∪B are also modules
of G.

(A3) If A ∈ M(G), then M(G|A) = {V ∈ M(G) : V ⊆ A}.
(A4) For G = G′[Gv, v ∈ V(G′)] we have:

• If X ∈ M(G), then Im(X) ∈ M(G′).
• If Y ∈ M(G′), then Im−1(Y) ∈ M(G).

4.3 Strong Modules and the Decomposition Tree

It should be no surprise that given a graph G, any partition π of its vertices
into two or more modules is a congruence partition of G, that is, π corresponds
to a substitution composition G = G′[Gv, v ∈ V(G′)]. Of course, this holds for
the graphs Gv, v ∈ V(G′), as well. Consequently, by recursively partitioning mod-
ules into smaller modules, we can find a derivation of G based on the substitution
composition.

It was shown in [13] that for any structure S whose modules satisfy (A1) through

8

(A4) (in their general forms), there is one recursive partitioning — the modular
decomposition of S — which has particularly nice properties. It is defined there
in terms of two decomposition principles. Here we shall instead base the definition
on the characterization in [12]. A module of a graph G is called strong if it does
not overlap any other module. The strong module tree of G, TSM(G), is defined as
follows: The nodes of TSM(G) are the strong modules of G. The root is V(G), and a
node M1 is a descendent of another node M2 if and only if M1 ⊂ M2. Consequently,
the leaves of TSM(G) are the singleton subsets of V(G). One can notice that every
module of G is a union of siblings in TSM(G). See Fig. 6.

{α}

{β} {γ} {δ} {ε}

{β, γ, δ, ε} {ζ}

{α, β, γ, δ, ε, ζ}

Fig. 6. The strong module tree of the graph G in Fig. 4.

The strong module tree of a graph G recursively partitions the vertices of G. By
inspection of Proposition 3.1 and Theorem 3.5 in [13], it is clear that the modular
decomposition, as defined in that article, exactly corresponds to the partitioning
given by the strong module tree. (To see this, and to appreciate it, one must keep
(A3) in mind.) Thus, with the definition below, we are actually following [13].
Definition 11 (Modular decomposition) The modular decomposition of a la-
beled or unlabeled graph G is that recursive derivation of G (using the substitution
operation in Definition 10) which corresponds to the strong module tree of G. We
denote it DM(G). See Fig. 7.

Gu = α

Gβ = β Gγ = γ Gδ = δ Gε = ε

Gw Gv = ζ

G′

Fig. 7. The modular decomposition of the graph G in Fig. 4, described with a
tree. Internal nodes correspond to substitution operations and are marked with
their quotient graphs. Leaf nodes designate single-vertex graphs. Compare
with Fig. 6.

It is now easy to formulate the properties of the modular decomposition of a
graph G. By the results in [13], every internal node M of TSM(G) is one of the
following:

• Degenerate. Every union of children of M is a module of M .
• Linear. There is a linear order on the children of M , such that the union of

some children is a module of M if and only if these children are consecutive

9

with respect to this order.
• Prime. The only proper union of children of M which is a module of M is M

itself.

Of course, a node with just two children will satisfy all these cases. But if M has
three or more children — a situation which we call “proper” (or “properly . . . ”) —
then exactly one case will apply.
Example 4 In the strong module tree in Fig. 6, the top node, {α, β, γ, δ, ε, ζ}, is
degenerate, whereas its child {β, γ, δ, ε} is prime. Compare with Example 3.

By (A4) there is a completely analogous characterization of the quotient graph
Q associated with the partition of M into its children, that is, satisfying G|M =
Q[(G|Mv), v ∈ V(Q)], where Mv, v ∈ V(Q), are the children of M. Thus, Q is either
degenerate, linear, or prime, and the meaning of this is given by the definitions
above, when “M” is replaced by “Q”, and “children” is replaced by “vertices”.
Example 5 In the modular decomposition in Fig. 7, G′ is degenerate, whereas Gw

is prime.
The linear and degenerate cases can be characterized further. It is not hard to

see that if an unlabeled undirected graph G is semi-linear, meaning that there is
a linear order on the vertices of G such that any set of consecutive vertices form
a module of G, then G is either complete (having all possible edges) or discrete
(having no edges at all). Thus, G is in fact degenerate. The proper linear case
appears only in directed graphs.

The introduction of vertex labels does not change any of this. For if a labeled
graph is properly semi-linear, clearly it must be uniformly labeled.

So a quotient graph Q in a modular decomposition satisfies one of the follow-
ing:

• Q has two vertices.
• Q is properly degenerate, implying that it is complete or discrete, and either

unlabeled or uniformly labeled.
• Q is properly prime.

We finish our discussion about the properties of modular decomposition with a
lemma that we will need for the analysis of the NLC2-decomposition algorithm.
Lemma 3 The total number of vertices in the quotient graphs of the modular de-
composition of a graph G is bounded by 2|V(G)|.

Proof. Let us view the modular decomposition of G, DM(G), as a tree, T . The
leaf nodes of T correspond to the vertices of G, and the nonleaf nodes correspond
to the quotient graphs in DM(G). Each nonleaf node has as many children as there
are vertices in its quotient graph. Thus, the total number of vertices in the quotient
graphs equals the number of nodes in T , minus one corresponding to the root.
Clearly, this is less than twice the number of leaf nodes. 2

4.4 Computing the Modular Decomposition

We are now going to show that the modular decomposition of a labeled or
unlabeled graph G can be computed in O(n2) time. To avoid any lengthy discussion,

10

we shall simply make use of an existing algorithm for modular decomposition of 2-
structures. As shown in [9], the latter can express a wide variety of graphs.

For a set V , a 2-edge over V is an ordered pair (u, v), where u, v ∈ V and u 6= v.
E2(V) denotes the set of all 2-edges over V . A 2-structure S = (V, R) is the set
V (usually called the domain of S) and an equivalence relation R on E2(V). It
is sometimes convenient to express R with a labeling function labS on E2(V) such
that e1Re2 if and only if labS(e1) = labS(e2). We then write S = (V, labS).

When relations are represented by labeling functions, one can define substitution
of 2-structures in the same way that substitution is defined for graphs. And as
for graphs, there is an accompanying module concept. A module of a 2-structure
S = (V, R) is a set M ⊆ V such that for all x, y ∈ M and all z ∈ V −M , we have
(x, z)R(y, z) and (z, x)R(z, y). In contrast to [8, 9] (where modules are called clans)
and [12], we do not consider the empty set to be a module. We denote all modules
of S by M(S). It can be seen in [8] that analogues of (A1) through (A4) are valid
for 2-structures. This implies the existence of modular decomposition, in the sense
we already know it.

It is easy to express an unlabeled graph G = (V, E) as a 2-structure S =
(V, labS) by defining, for each {u, v}, labS(u, v) = labS(v, u) = 1 if {u, v} ∈ E,
and labS(u, v) = labS(v, u) = 0 otherwise. What is worth noticing is that G and S

have the same modules. Of course, this means that they also have the same strong
modules and strong module trees, and that we can get the modular decomposition
of G by computing the modular decomposition of S.

This approach can be used for labeled graphs also. Given G = (V, E, labG),
we construct the 2-structure S = (V, labS) by defining, for each 2-edge
(u, v), labS(u, v) = (1, labG(u), labG(v)) if {u, v} ∈ E, and labS(u, v) =
(0, labG(u), labG(v)) otherwise. It is not difficult to see that G and S have the
same modules.

Thus we can get the modular decomposition of a graph G, labeled or not, by
computing the modular decomposition of a derived 2-structure S = (V, labS), where
V = V(G). With the algorithm in [12], this takes O(|V(G)|2) time and space.

5 NLC2-Decomposition in Polynomial Time

In this section we solve the NLCk-decomposition problem for k = 2. But before
we restrict our choice of k, let us draw the full conclusion of our previous discussion
about modular decomposition. By applying Proposition 1 to the modular decom-
position of a graph, we find:
Proposition 2 Let G be a graph with more than one vertex. Then the NLC-width
of G equals the highest NLC-width among the quotient graphs in the modular de-
composition of G, and an NLC-decomposition of G with this width can be obtained
from NLC-decompositions of these quotient graphs.

So let Q be a quotient graph in the modular decomposition of a graph G. Q

may be labeled or unlabeled. (If Q is the top-level quotient, then Q is labeled if
G is. Otherwise, Q is unlabeled.) If Q has two vertices, its NLC-width is at most

11

2, and if Q is properly degenerate, its NLC-width is 1. In each of these cases, it is
trivial to find an NLC-decomposition of Q with minimal width in linear time.

From here on, we study the remaining case — Q is properly prime — and we
restrict our discussion to NLC2-decomposition. Thus, Q will be unlabeled or labeled
with numbers in {1, 2}.

Assume that there exists an NLC2-decomposition D of Q. We shall look at the
presence of relabeling operations in D, and argue that none is needed, except for one
at the outermost level if Q is uniformly labeled. Consider the relabeling operator,
◦R. In an NLC2-decomposition, the mapping R may be one of the following:

(i) {(1, 1), (2, 2)}; (ii) {(1, 2), (2, 1)}; (iii) {(1, 1), (2, 1)}; or (iv) {(1, 2), (2, 2)}.
We may rule out relabelings using mapping (i), since they do not do anything. We
may also rule out those using mapping (ii), since for this mapping, a subexpression
of D on the form ◦R (D′) can always be replaced by D′′, obtained from D′ by
changing each 1 to a 2 and vice versa. (This turns each (iii)-relabeling in D′ into
a (iv)-relabeling in D′′, and (iv)-relabelings in D′ become (iii)-relabelings in D′′,
but no other relabelings are affected.) Finally, we may rule out relabelings using
mappings (iii) and (iv), except possibly for the outermost operation of D. For
naturally, we do not need to relabel single vertices, since we can give them any
label to begin with. And if a subexpression ◦R (D′) of D produces a graph with two
or more vertices, but fewer than Q = G(D) has, then R may not be the mapping
(iii) or (iv). This follows from Lemma 4 below, since Q is assumed to be prime.
Lemma 4 Let D be an NLC-decomposition of a graph G. If a subexpression of D

produces a uniformly labeled graph, then this graph is a module of G.
We summarize:

Proposition 3 Let the properly prime graph Q be NLC2-decomposable.

• If Q is nonuniformly labeled (meaning that L(Q) = {1, 2}), then it has a
relabeling-free NLC2-decomposition.
• If Q is unlabeled, it likewise has a relabeling-free NLC2-decomposition, pro-
ducing a nonuniformly labeled version of Q.
• If Q is uniformly labeled, then it has an NLC2-decomposition on the form
◦R (D′), where D′ is relabeling-free, and where R is the mapping (iii) or (iv)
above.

This leads immediately to the procedure we will use:
Algorithm for properly prime graphs. To NLC2-decompose, if possible, a
properly prime graph Q, we shall do as follows:

• If Q is nonuniformly labeled, then we use Algorithm 1 (below), which searches
for a relabeling-free NLC2-decomposition of Q.
• If Q is unlabeled, then we use Algorithm 2. It searches for a nonuniform la-
beling of Q that permits a relabeling-free NLC2-decomposition, as determined
by Algorithm 1.
• If Q is uniformly labeled, then we use Algorithm 2 to search for an NLC2-
decomposition D′ of unlab(Q). If we find D′, we can easily construct an
NLC2-decomposition ◦R (D′) of Q.

12

We now turn to the details of Algorithms 1 and 2. Algorithm 1 is rather sim-
ple, but Algorithm 2 is structured in cases of iterations of stages involving more
iterations and cases, and the reader is warned that the motivations become quite
long. After that, we finish with a concluding analysis, which also serves as a brief
summary of the whole decomposition process.

5.1 Algorithm 1

The input to this algorithm is a graph G labeled with numbers in {1, 2}. The
output is a relabeling-free NLC2-decomposition D of G, if such a decomposition
exists.

The algorithm constructs the decomposition in a top-down fashion, by succes-
sively partitioning the vertices of G. We know that if D exists, it has the form
×S (D1, D2), where S is one of the 16 subsets of {(1, 1), (1, 2), (2, 1), (2, 2)}. More
interesting, as soon as we find a partition {V1, V2} of the vertices of G such that
G = ×S (G1, G2) for G1 = G|V1, G2 = G|V2, and S among the 16 possibilities
above, we know that G has a relabeling-free NLC2-decomposition if and only if
G1 and G2 do. For if D is a relabeling-free NLC2-decomposition of G, then the
restrictions D|V1 and D|V2 are relabeling-free NLC2-decompositions of G1 and G2.
And conversely, if D1 and D2 are relabeling-free NLC2-decompositions of G1 and
G2, then ×S (D1, D2) is a relabeling-free NLC2-decomposition of G.

To find, if possible, a partition {V1, V2} such that G = ×S (G1, G2), where
G1 = G|V1 and G2 = G|V2, we are going to try each S, if needed. But first, we
select any vertex u in G and specify that u shall belong to V2. This will be no
restriction, since ×S (G1, G2) = ×S′ (G2, G1), where S′ is obtained by reversing
each pair in S. We now try each relation S as follows: First, we let V2 = {u}. For
each vertex v in V1 = V(G) \ u, we check if u has an edge to v if and only if it
should, according to S. If not, we move v from V1 to V2. Each time we move a
vertex to V2, we check this vertex with respect to those left in V1; we compare with
S, and move more vertices if needed. Continuing like this, we end up either with a
valid partition, or with an empty V1.

If a partition is found, we continue to partition V1 and V2, and so on, until
all obtained sets have size one. This means n − 1 partitions all in all (where n =
|V(G)|). Each partition step can be carried out in O(n2) time, so the total time for
Algorithm 1 is O(n3). Besides the input, only O(n) space is needed.

5.2 Algorithm 2

The input to this algorithm is a properly prime unlabeled graph G. The output
is a relabeling-free NLC2-decomposition D of G, if such a decomposition exists.

As before, if D exists, it has the form ×S (D1, D2), where S is a subset of
{(1, 1), (1, 2), (2, 1), (2, 2)}. However, G is now unlabeled, and the number of inter-
esting possibilities for S is then smaller. Firstly, D produces a labeled graph such
that G = unlab(G(D)). Our freedom in choosing the labeling makes many possibil-
ities for S equivalent. For example, if ×S (D1, D2) is an NLC2-decomposition of G,

13

so is ×S′ (D1, D
′
2), where S′ is obtained by changing each 1 to a 2 and vice versa

in the second position of each pair in S, and where D′
2 is likewise obtained from

D2 by switching all 1s and 2s. Secondly, many values of S would make G contain
modules. These values can be excluded.

We shall now characterize each subset S of {(1, 1), (1, 2), (2, 1), (2, 2)} with re-
spect to the expression G = unlab(×S (G1, G2)). Let V1 and V2 denote V(G1) and
V(G2) respectively. We have to observe that one of these may be a single vertex.
We will treat that case later. Under the assumption that both G1 and G2 have
several vertices, the feasibility of the subsets S of {(1, 1), (1, 2), (2, 1), (2, 2)} is as
follows:

• ∅ is not possible. Both V1 and V2 would be modules of G.
• {(1, 1)}, {(1, 2)}, {(2, 1)}, and {(2, 2)} are possible and equivalent.
• {(1, 1), (1, 2)} and {(2, 1), (2, 2)} would make V2 a module of G. And
{(1, 1), (2, 1)} and {(1, 2), (2, 2)} would make V1 a module of G. All four
are thus impossible.

• {(1, 1), (2, 2)} and {(1, 2), (2, 1)} are possible and equivalent.
• There are four possible and equivalent subsets containing three pairs.
• {(1, 1), (1, 2), (2, 1), (2, 2)} is impossible, just as ∅ is.

Thus, if both G1 and G2 are to have several vertices, there are three cases
that we have to try for S. We represent them as {(1, 1)}, {(1, 1), (2, 2)}, and
{(1, 2), (2, 1), (2, 2)}. Of course, both G1 and G2 must be nonuniformly labeled
— otherwise we again have a forbidden module of G.

There remains the case that one of G1 and G2, let us say the former, has only
one vertex. We may then assume that this vertex is labeled with 1. The alternatives
for S that we have to consider are then ∅, {(1, 1)}, {(1, 2)}, and {(1, 1), (1, 2)}. As
before, ∅ and {(1, 1), (1, 2)} would make V2 a module of G, whereas {(1, 1)} and
{(1, 2)} are possible and equivalent. Thus we can cover the case that one of G1 and
G2 has just one vertex by trying S = {(1, 1)}.

Below, we describe how to search for an NLC2-decomposition D of G on the
form ×S (D1, D2), where S is {(1, 1)}, {(1, 1), (2, 2)}, or {(1, 2), (2, 1), (2, 2)}.

5.2.1 The case S = {(1, 1)}
Let S = {(1, 1)}. To find a decomposition of G on the form ×S (D1, D2), we

may go through all edges {v1, v2} in G, and determine for each the satisfiability of
G = unlab(×S (G1, G2)), where G1 and G2 are required to be NLC2-decomposable
and to contain v1 and v2 respectively, both of which must then be labeled with 1.
We will later on develop this idea a little further, in order to reduce the number of
edges {v1, v2} that we have to go through.

We assume from now on that v1 and v2 have been fixed like this. The fact that
S = {(1, 1)} then implies that as soon as we place any other vertex v in G1 or G2,
we know what its label must be. For example, if v is placed in G1, its label must
be 1 if it has an edge to v2, and 2 otherwise. Therefore, given a subset V of V(G)
containing v1 possibly, but not v2, let Gleft (V) denote the graph on V whose edges

14

are induced by G, and in which a vertex is labeled with 1 if it has an edge to v2,
and 2 otherwise. Similarly, given a subset V of V(G) containing v2 possibly, but
not v1, let Gright (V) denote the graph on V whose edges are induced by G, and in
which a vertex is labeled with 1 if it has an edge to v1, and 2 otherwise.

The fixation of v1 and v2 not only helps us to label the vertices in V ∗ =
V(G) \ {v1, v2} once they have been placed in G1 or G2, but it also creates a useful
dependency among these vertices with respect to their placement. For i, j ∈ {1, 2},
let an i–j-vertex — a vertex of type i–j — be a vertex in V ∗ which will be labeled
with i if placed in G1, and with j if placed in G2. Notice that each vertex in V ∗

is an i–j-vertex for some i and j. As an example of the dependency, let us look at
two 1–1-vertices u and v. If there is no edge between u and v, then they must be
placed together, either in G1 or in G2, since ×S (G1, G2) produces edges between
1-labeled vertices in G1 and 1-labeled vertices in G2.

We use a directed graph, Gdep , to reflect this dependency. Gdep is unlabeled,
has vertex set V ∗, and there is an edge from u to v in Gdep , also written u → v,
whenever the existence or not of an edge between u and v does not match S when
u is placed in G2 and v is placed in G1. So if u → v, then u cannot be placed in G2

without v being placed there too. We let u ↔ v mean that both u → v and v → u

hold, and we let u | v mean that neither u → v nor v → u holds. Finally, we define
. to be the reflexive and transitive closure of the relation →.

A partition {V ∗
1 , V ∗

2 } of V ∗ is said to respect . if u . v does not hold for
any vertices v ∈ V ∗

1 and u ∈ V ∗
2 . Notice that given a partition {V ∗

1 , V ∗
2 } of V ∗

(where we allow one of V ∗
1 and V ∗

2 to be empty), G = unlab(×S (G1, G2)) is true for
G1 = Gleft(v1∪V ∗

1) and G2 = Gright (v2∪V ∗
2) if and only if {V ∗

1 , V ∗
2 } respects .. As

soon as this is the case, we can use Algorithm 1 to search for NLC2-decompositions
D1 and D2 of G1 and G2. If they exist, D = ×S (D1, D2) is an NLC2-decomposition
of G, and {V ∗

1 , V ∗
2 } is said to be a successful partition. If D1 and D2 do not both

exist, we can try another partition of V ∗. Below we show that if we choose these
partitions carefully, we only need to try O(log(|V(G)|)) of them. If we have not
found D after that, we can conclude that that we have to continue with a new
fixation of v1 and v2.

To bound the number of partitions we have to consider, we first collect vertices
into clusters. If C is a strongly connected component in Gdep , then all vertices of
C must be placed together, either in G1 or in G2. We then say that C is a cluster
of V ∗. For clusters C1 and C2, we may write C1 . C2 if u . v for some u ∈ C1 and
v ∈ C2. However, unless stated otherwise, clusters will be assumed distinct, and
we will write C1 < C2 instead of C1 . C2. (To have both C1 . C2 and C2 . C1 is
then not possible.) If neither C1 < C2 nor C2 < C1 holds, we write C1 ‖ C2.

In agreement with previous notation, we also write C1 → C2 if u → v for some
u ∈ C1 and v ∈ C2, and we write C1 | C2 if neither C1 → C2 nor C2 → C1

holds. Of course, we never have “C1 ↔ C2”. Note that C1 → C2 implies C1 < C2.
Conversely, C1 ‖ C2 implies C1 | C2.

We can get a deeper understanding of clusters by looking at → for specific pairs
of vertex types:

15

• Let u be a 1–1-vertex and v a 1–2-vertex. If there is an edge (in G) between
u and v, then v → u. (Since (1, 2) /∈ S, we cannot place v in G2 and u in G1.)
On the other hand, if there is no edge between u and v, then u → v. (Since
(1, 1) ∈ S, we cannot place u in G2 and v in G1.)

• Let u be a 1–1-vertex and v a 2–1-vertex. If there is an edge between u and
v, then u → v. On the other hand, if there is no edge between u and v, then
v → u.

• Let u be a 1–2-vertex and v a 2–1-vertex. If there is an edge between u and
v, then u → v. If there is no edge between u and v, then v → u.

As a consequence, if C1 and C2 are two different clusters, one containing a 1–1-
vertex and the other a 1–2-vertex, or one containing a 1–1-vertex and the other a
2–1-vertex, or one containing a 1–2-vertex and the other a 2–1-vertex, then we have
either C1 < C2 or C2 < C1.

We should also look at 2–2-vertices. Let u be a 2–2-vertex and v any other
vertex in V ∗. If there is an edge between u and v, then u ↔ v, so u and v must
belong to the same cluster. If there is no edge between u and v, then u | v.

Using the first observation in the previous paragraph, we can show that no
cluster may consist of only 2–2-vertices: Since G is properly prime, it is connected.
Therefore, from a 2–2-vertex u, there is a path (in G) to the fixed vertex v1 for
example. Let v be the first vertex on this path which is not a 2–2-vertex. Certainly
v exists and belongs to V ∗, for a 2–2-vertex cannot have an edge to either v1 or v2.
By the previous paragraph, all vertices from u to v belong to the same cluster.

Three pairs of vertex types remain. Let us come to them via a quick backward
look. We found above that if u is a 2–2-vertex and v any other vertex in V ∗, then
either u ↔ v or u | v — in other words, if u and v are in different clusters, then
u | v. It is not hard to see that the same is true if u and v are both 1–1-vertices,
both 1–2-vertices, or both 2–1-vertices.

To summarize our findings, we call the vertex types 1–1, 1–2, and 2–1, deter-
mining. We have:

• Each cluster contains one or more vertices of at least one determining type.
• If t is a determining type in a cluster C1, and a cluster C2 contains a vertex

of some other determining type, then C1 → C2 or C2 → C1.
• If two clusters, C1 and C2, contain exactly one and the same determining

type, then C1 | C2.

The most interesting thing comes next. Let C1 and C2 be clusters satisfying
C1 ‖ C2 — let t be their only determining type — and let C be another cluster.
Suppose that C < C1. Then there is a cluster C′, identical to C possibly (but
distinct from C1), such that C . C ′ → C1. We can conclude that C′ contains a
determining type t′ 6= t, and that C ′ < C2 or C2 < C′. The latter would imply that
C2 < C1, though, contradicting our initial assumptions. So, it follows that C < C2.
Analogously, we find that if C1 < C, then C2 < C also.

It is now easy to see that we can group (in a unique way) clusters into boxes, so
that we satisfy the following box structure properties:

16

• There is a linear order, <, on the boxes.
• Each box contains at least one cluster.
• If B1 and B2 are boxes with B1 < B2, then C1 < C2 for any clusters C1 ∈ B1

and C2 ∈ B2.
• If C1 and C2 are clusters in the same box, then C1 ‖ C2.

We define boxes like this, and for simplicity, we let each box denote the union
of its clusters. We can observe that a partition {V ∗

1 , V ∗
2 } of V ∗ respects . if and

only if the following monotonicity conditions are satisfied:

• When V ∗
1 contains a box B1, it also contains each box B < B1.

• When V ∗
2 contains a box B2, it also contains each box B such that B2 < B.

• At most one box is split by the partition — that is, has some clusters in V ∗
1

and some in V ∗
2 .

Thereby we are ready to discuss the partitioning procedure. We will use a
somewhat informal language — the boxes are assumed to be ordered from left to
right, so that if B1 < B2, we can formulate this as “B1 is to the left of B2”.

We first try to partition in between boxes. We describe this by extending the
total order to include separator elements between the boxes, and at the ends. Given
a separator s, we partition V ∗ as {V ∗

1 , V ∗
2 }, where V ∗

1 is the union of all boxes to the
left of s, and V ∗

2 is the union of all boxes to the right of s. As described previously,
we then define G1 = Gleft (v1∪V ∗

1) and G2 = Gright (v2∪V ∗
2). From what we already

know about partitions respecting ., we note, with the help of Lemma 1:

• If G1 is not NLC2-decomposable, any successful partition {V ′
1 , V ′

2}, must sat-
isfy V ′

1 ⊂ V ∗
1 .

• If G2 is not NLC2-decomposable, any successful partition {V ′
1 , V ′

2}, must sat-
isfy V ′

2 ⊂ V ∗
2 .

We can therefore use binary search among separators with one of the following
results:

• We find a successful partition.
• We find a partition such that neither G1 nor G2 is NLC2-decomposable. We

can conclude that there is no successful partition for the current fixation of
v1 and v2.

• We find separators sl and sr immediately to the left and to the right of some
box, B, such that, when sl is used, G1 is NLC2-decomposable but G2 is
not, and when sr is used, G2 is NLC2-decomposable but G1 is not. We can
conclude that if there exists a successful partition, it must split B.

In the last case, we must examine B more closely. As we shall see, we only
need to try one more partition, and we can find it as follows: First, for each cluster
C in B, we use Algorithm 1 to search for NLC2-decompositions of Gleft (C) and
Gright (C). If only one of these is decomposable, there is no doubt about in what
part of a successful partition that C must be placed. (If neither Gleft (C) nor
Gright (C) is decomposable, the conclusion is of course simple.) We may now be left
with a number of clusters for whose placement we have not yet seen any restrictions.
Let us call them remaining clusters. Fortunately, all of them can safely be placed

17

together. It is the one determining type in B that matters: When B contains 1–2-
vertices, the remaining clusters can be placed in V ∗

1 . When B contains 2–1-vertices,
the remaining clusters can be placed in V ∗

2 . And when B contains 1–1-vertices, the
remaining clusters can be placed anywhere. The detailed arguments are as follows:
Case 1. B consists of 1–2-vertices, and 2–2-vertices possibly. Let C be a cluster in B

such that Gleft (C) and Gright (C) are both NLC2-decomposable, and let {V ∗
1 , V ∗

2 } be
a successful partition of V ∗ in which C ⊆ V ∗

2 . Thus, V ∗
1 contains all boxes to the left

of B, and V ∗
2 contains all boxes to the right of B, so {V ∗

1 ∪C, V ∗
2 \C} respects .. We

now show that this partition also is successful. Since {V ∗
1 , V ∗

2 } is successful, G1 =
Gleft (v1∪V ∗

1) and G2 = Gright (v2∪V ∗
2) are both NLC2-decomposable. By Lemma 1,

so is G′
2 = Gright (v2 ∪ V ∗

2 \ C). It remains to show that G′
1 = Gleft (v1 ∪ V ∗

1 ∪ C)
is NLC2-decomposable. But Gright (C) has all vertices labeled with 2, so there are
no edges from C to v1 ∪ V ∗

1 , and we have G′
1 = ×∅ (G1, Gleft(C)). It follows that

{V ∗
1 ∪ C, V ∗

2 \ C} is successful.
Case 2. B consists of 2–1-vertices, and 2–2-vertices possibly. Let C be a cluster in
B such that Gleft (C) and Gright (C) are both NLC2-decomposable, and let {V ∗

1 , V ∗
2 }

be a successful partition of V ∗ in which C ⊆ V ∗
1 . This situation is symmetric to

that in the previous case. It follows that {V ∗
1 \ C, V ∗

2 ∪C} is a successful partition
of V ∗.
Case 3. B consists of 1–1-vertices, and 2–2-vertices possibly. Let C be a cluster
in B. In this case, Gleft (C) and Gright (C) are identical. Let them be NLC2-
decomposable, and let {V ∗

1 , V ∗
2 } be a successful partition of V ∗ in which C ⊆ V ∗

2 .
As before, the assumptions imply that {V ∗

1 ∪C, V ∗
2 \C} respects .. We now show

that it also is successful. Since {V ∗
1 , V ∗

2 } is successful, G1 = Gleft (v1 ∪ V ∗
1) and

G2 = Gright (v2 ∪ V ∗
2) are both NLC2-decomposable. By Lemma 1, so is G′

2 =
Gright (v2 ∪ V ∗

2 \ C). It remains to show that G′
1 = Gleft (v1 ∪ V ∗

1 ∪ C) is NLC2-
decomposable. But Gleft(C) = Gright (C), so G′

1 = ×{(1,1)} (G1, Gleft (C)). It follows
that {V ∗

1 ∪ C, V ∗
2 \ C} is successful. By symmetry, it conversely follows that if

{V ∗
1 , V ∗

2 } is a successful partition of V ∗ in which C ⊆ V ∗
1 , then {V ∗

1 \C, V ∗
2 ∪C} is

successful too.
Let us now summarize: To determine the satisfiability of G =

unlab(×S (G1, G2)), where S = {(1, 1)}, and where G1 and G2 are required to
be NLC2-decomposable and to contain v1 and v2 respectively, we first group the
vertices in V ∗ = V(G) \ {v1, v2} into clusters by computing the strongly connected
components of Gdep — the dependency graph with respect to v1 and v2. This can
be done with two depth-first searches, as described in [1]. The time needed is linear
in the size of Gdep , which is O(n2), where n = |V(G)|. We assume here that Gdep

is stored explicitly.
We thereafter compute the box structure. This we do by inserting one cluster

C at a time. Either C fits in an existing box, or it must be placed in a new one.
This new box will appear either between two unaffected old boxes (or at an end),
or between the divided contents of an old box. The arrangement of all clusters can
easily be computed in O(n2) time.

We are now set to search for a successful partition of V ∗. The binary search

18

phase involves O(log n) partitions, each of which takes O(n3) time to check with
Algorithm 1. If needed, we continue with the “box-splitting” phase. We then call
Algorithm 1 twice for each cluster in the box in question. The total time for this
sums to O(n3). The final partition can then be checked, again in O(n3) time. All
in all, we use O(n3 log n) time and O(n2) temporary space for each fixation of v1

and v2.
To find out if G has an NLC2-decomposition on the form ×S (D1, D2), we can

now repeat the above procedure for each edge {v1, v2}. However, without making
things more than marginally more complicated, we can get by with only n− 1 such
repetitions. By the symmetry of S, we can take any vertex u ∈ V(G) and require
that it shall belong to G2 = G(D2). First, we let v2 = u, and we let each neighbor
of u play the role of v1. If this does not lead us to a successful partition, we know
that u must be labeled with 2. This in turn brings all neighbors of u to G2. Next,
we let one of these neighbors, u′, play the role of v2, and we let each neighbor of u′

that is not already in G2 play the role of v1.
The new thing here is that not only v1 and v2 are fixed, but other vertices are

fixed too — some to G2, and some of these even to the label 2. However, the latter
have all their neighbors in G2, so the label 2 is automatically compatible with the
choice of v1. For the previously described procedure, the extra requirement that
some vertices (and thus clusters) must be placed in G2 poses no problem. In the
binary search phase, it means that some boxes will be predestined for G2, and this
only shortens this search. In the box-splitting phase, an extra requirement on a
cluster C can be handled just as the requirements caused by indecomposability of
Gleft (C) and/or Gright (C).

Thus we can advance as indicated above. If we find no successful partition for
v2 = u′, we know that u′ also must be labeled with 2, and that all its neighbors must
go to G2. Again, the role of v2 can be assigned to one of the vertices that have been
restricted to G2, but not yet to the label 2. Particularly, we follow the described
procedure by repeatedly letting v2 and v1 be parent and child in a breadth-first
search through G, starting from u. This means n− 1 edges {v1, v2}, and it follows
that for S = {(1, 1)}, we can find a possible NLC2-decomposition of G on the form
×S (D1, D2) in O(n4 log n) time and O(n2) space.

5.2.2 The case S = {(1, 1), (2, 2)}
Let S = {(1, 1), (2, 2)}. As for S = {(1, 1)}, we shall discuss first how to deter-

mine the satisfiability of G = unlab(×S (G1, G2)), where G1 and G2 are required to
be NLC2-decomposable and to contain v1 and v2 respectively, both labeled with 1.
Our algorithm for this will be similar to that for S = {(1, 1)}.

Like in that case, we find that when v1 and v2 have been fixed, we know what
label any other vertex v must have when it is placed in either G1 or G2. In fact, the
description of this for S = {(1, 1)} is still valid, including the definitions of Gleft ()
and Gright (). This is quite typical. In the following therefore, we will leave out
much of what would be mere repetitions, and concentrate instead on those things
that are — or might have been — different. We assume the previous presentation

19

to be fresh in the reader’s mind.
Once again, there will be a dependency between the vertices in V ∗ = V(G) \

{v1, v2}, which leads us to form clusters. We will use previous notation, but the
relationship between clusters must be characterized anew. We look at → for specific
pairs of vertex types:

• Let u be a 1–1-vertex and v a 1–2-vertex. If there is an edge (in G) between
u and v, then v → u. If there is no edge between u and v, then u → v.

• Let u be a 1–1-vertex and v a 2–1-vertex. If there is an edge between u and
v, then u → v. If there is no edge between u and v, then v → u.

Thus, if C1 and C2 are two different clusters, C1 containing a 1–1-vertex and C2

containing a 1–2-vertex or a 2–1-vertex, then we have either C1 < C2 or C2 < C1.
By the symmetry of S, the same holds if C1 contains instead a 2–2-vertex.

The remaining vertex type pairs are covered next:

• Let u be a 1–1-vertex and v a 2–2-vertex. If there is an edge between u and
v, then u ↔ v. If there is no edge between u and v, then u | v.

• Let u be a 1–2-vertex and v a 2–1-vertex. If there is an edge between u and
v, then u | v. If there is no edge between u and v, then u ↔ v.

• Let u and v be two vertices of the same type. Then either u ↔ v or u | v.

Motivated by our new findings, we will speak of two type categories. 1–1 and
2–2 form one of these, and 1–2 and 2–1 the other. We can note that if two clusters,
C1 and C2, together contain vertices of both categories, then C1 → C2 or C2 → C1.
If instead they (together) contain vertices of only one category, then C1 | C2.

As before, we can now show that if C1 and C2 are clusters satisfying C1 ‖ C2, and
if C is a third cluster, then C < C1 implies C < C2, and C1 < C implies C2 < C.
Let us provide the argument in the first case: C < C1. There is then a cluster C′,
identical to C possibly (but distinct from C1), such that C . C ′ → C1. We can
conclude that C ′ contains a vertex type in the category which is not represented
in C1 and C2. This means that either C′ < C2 or C2 < C′. The latter would
imply that C2 < C1 though, contradicting our initial assumptions, so we must have
C < C2.

It follows that we can group (in a unique way) clusters into boxes, so that we
satisfy the previously formulated box structure properties. This means that we are
“back on track”. For example, a partition {V ∗

1 , V ∗
2 } of V ∗ respects . if and only if

the monotonicity conditions are satisfied. This gives us the opportunity to use, as
before, binary search among separators. We repeat: For a separator s, we partition
V ∗ as {V ∗

1 , V ∗
2 }, where V ∗

1 is the union of all boxes to the left of s, and V ∗
2 is

the union of all boxes to the right of s. We then define G1 = Gleft (v1 ∪ V ∗
1) and

G2 = Gright (v2 ∪ V ∗
2), and we use Algorithm 1 to check whether G1 and G2 are

NLC2-decomposable.
It was argued for S = {(1, 1)} that binary search among separators ends in one

of the following ways:

• We find a successful partition.
• We find a partition such that neither G1 nor G2 is NLC2-decomposable. We

20

can conclude that there is no successful partition for the current fixation of
v1 and v2.

• We find separators sl and sr immediately to the left and right of some box,
B, such that when sl is used, G1 is NLC2-decomposable but G2 is not, and
such that when sr is used, G2 is NLC2-decomposable but G1 is not. We can
conclude that if there exists a successful partition, it must split B.

The argument is still correct, but when S = {(1, 1), (2, 2)}, the third case is no
longer possible. If a successful partition splits a box B, we can re-split it any way.
In particular, both the separator to the left of B and the one to the right will
produce successful partitions. The arguments for this are as follows:
Case 1. B consists of 1–1-vertices and/or 2–2-vertices. Let C be a cluster in
B. Note that Gleft(C) and Gright (C) are identical. Let {V ∗

1 , V ∗
2 } be a successful

partition of V ∗ in which C ⊆ V ∗
2 . Thus, V ∗

1 contains all boxes to the left of B, and
V ∗

2 contains all boxes to the right of B, so {V ∗
1 ∪ C, V ∗

2 \ C} respects .. We now
show that it also is successful. Since {V ∗

1 , V ∗
2 } is successful, G1 = Gleft (v1 ∪ V ∗

1)
and G2 = Gright (v2 ∪ V ∗

2) are both NLC2-decomposable. By Lemma 1, so is G′
2 =

Gright (v2 ∪ V ∗
2 \ C). It remains to show that G′

1 = Gleft (v1 ∪ V ∗
1 ∪ C) is NLC2-

decomposable. But Gleft (C) = Gright (C), so G′
1 = ×{(1,1),(2,2)} (G1, Gleft (C)). It

follows that {V ∗
1 ∪C, V ∗

2 \C} is successful. By symmetry, it conversely follows that
if {V ∗

1 , V ∗
2 } is a successful partition of V ∗ in which C ⊆ V ∗

1 , then {V ∗
1 \C, V ∗

2 ∪C}
is successful too.
Case 2. B consists of 1–2-vertices and/or 2–1-vertices. Let C be a cluster in B.
Note that Gleft (C) and Gright (C) are complementary in their labeling, so if one
of them is NLC2-decomposable, the other is too. Let {V ∗

1 , V ∗
2 } be a successful

partition of V ∗ in which C ⊆ V ∗
2 . Thus, {V ∗

1 ∪ C, V ∗
2 \ C} respects .. We now

show that it also is successful. Since {V ∗
1 , V ∗

2 } is successful, G1 = Gleft (v1 ∪ V ∗
1)

and G2 = Gright (v2 ∪ V ∗
2) are both NLC2-decomposable. By Lemma 1, so is G′

2 =
Gright (v2 ∪ V ∗

2 \ C). It remains to show that G′
1 = Gleft (v1 ∪ V ∗

1 ∪ C) is NLC2-
decomposable. But since Gleft (C) can be obtained from Gright (C) by switching
the roles of 1 and 2, we have G′

1 = ×{(1,2),(2,1)} (G1, Gleft (C)). It follows that
{V ∗

1 ∪C, V ∗
2 \C} is successful. By symmetry, it conversely follows that if {V ∗

1 , V ∗
2 }

is a successful partition of V ∗ in which C ⊆ V ∗
1 , then {V ∗

1 \C, V ∗
2 ∪C} is successful

too.
Let us then summarize: To determine the satisfiability of G =

unlab(×S (G1, G2)), where S = {(1, 1), (2, 2)}, and where G1 and G2 are required
to be NLC2-decomposable and to contain v1 and v2 respectively, both labeled with
one, we group the vertices in V ∗ = V(G) \ {v1, v2} into clusters, and we continue
by computing the box structure. We then use binary search among box separators
and check each generated partition with Algorithm 1. As already argued, we can
do this in O(n3 log n) time and O(n2) temporary space.

Once again, to find out if G has an NLC2-decomposition on the form
×S (D1, D2), we can repeat the above procedure for each edge {v1, v2}. As before
however, we can get by with n− 1 such repetitions. This time S is symmetric with
respect to labels also. We can therefore take any vertex u ∈ V(G) and require that

21

it shall belong to G2 = G(D2) and have label 1 there. So, we let v2 = u, and we let
each neighbor of u play the role of v1. It follows that for S = {(1, 1), (2, 2)}, we can
find a possible NLC2-decomposition of G on the form ×S (D1, D2) in O(n4 log n)
time and O(n2) space.

5.2.3 The case S = {(1, 2), (2, 1), (2, 2)}
The final case, S = {(1, 2), (2, 1), (2, 2)}, can easily be reduced to the first, S =

{(1, 1)}. Letting S denote [2]2 \S, we note: ×S (D1, D2) is an NLC2-decomposition
of G if and only if ×S

(
D1, D2

)
is an NLC2-decomposition of G.

5.3 Summary and Concluding Analysis

To NLC2-decompose a graph G that is unlabeled or labeled with numbers in
{1, 2}, we first compute the modular decomposition of G, DM(G), as defined in
Section 4. With the method described in Section 4.4, this takes O(n2) time, where
n = |V(G)|.

We then try to NLC2-decompose each quotient graph Q in DM(G). When
Q is properly prime, we use the algorithm described in Section 5, running in
O(nQ

4 log nQ) time (where nQ = |V(Q)|). When Q is not properly prime, its
vertices can be combined in any order, and we can surely construct a decompo-
sition in linear time. By Lemma 3, the total time for decomposition of quotient
graphs becomes O(n4 log n). The space used never exceeds O(n2).

If we now have an NLC2-decomposition of each quotient graph in DM(G), then
we piece together these decompositions into an NLC2-decomposition of G, as de-
scribed in the proof of Proposition 1. Only linear time is needed for this last step.
In total, we have used O(n4 log n) time and O(n2) space.

Acknowledgments

I am grateful to Stefan Arnborg for his advice and comments.

References

1. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms (MIT
Press, Cambridge, 1990).

2. D. G. Corneil, H. Lerchs and L. S. Burlingham, “Complement reducible graphs,”
Discrete Appl. Math. 3 (1981) 163–174.

3. D. G. Corneil, Y. Perl and L. K. Stewart, “A linear recognition algorithm for
cographs,” SIAM J. Comput. 14 (1985) 926–934.

4. B. Courcelle, J. A. Makowsky and U. Rotics, “On the fixed parameter complexity of
graph enumeration problems definable in monadic second order logic.” To appear
in Discrete Appl. Math.

5. B. Courcelle, J. A. Makowsky and U. Rotics, “Linear time solvable optimization
problems on graphs of bounded clique width,” in Proc. 24th Int. Workshop on
Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science
1517 (Springer, Berlin, 1998) pp. 1–16.

22

6. B. Courcelle and S. Olariu, “Clique-width: A graph complexity measure—
preliminary results and open problems,” in Proc. 5th Int. Workshop on Graph
Grammars and Their Application to Computer Science, Williamsburg, VA, Novem-
ber 1994, pp. 263–270.

7. A. Ehrenfeucht, H. N. Gabow, R. M. McConnell and S. J. Sullivan, “An O(n2)
divide-and-conquer algorithm for the prime tree decomposition of two-structures
and modular decomposition of graphs,” J. Algorithms 16 (1994) 283–294.

8. A. Ehrenfeucht and G. Rozenberg, “Theory of 2-structures, part I: Clans, basic
subclasses, and morphisms,” Theoret. Comput. Sci. 70 (1990) 277–303.

9. A. Ehrenfeucht and G. Rozenberg, “Theory of 2-structures, part II: Representation
through labeled tree families,” Theoret. Comput. Sci. 70 (1990) 305–342.

10. Ö. Johansson, “Clique-decomposition, NLC-decomposition, and modular decompo-
sition — relationships and results for random graphs,” Congr. Numer. 132 (1998)
39–60.

11. J. A. Makowsky and U. Rotics, “On the clique-width of graphs with few P4’s.” To
appear in Internat. J. Found. Comput. Sci.

12. R. M. McConnell, “An O(n2) incremental algorithm for modular decomposition of
graphs and 2-structures,” Algorithmica 14 (1995) 229–248.

13. R. H. Möhring, “Algorithmic aspects of the substitution decomposition in optimiza-
tion over relations, set systems and boolean functions,” Ann. Oper. Res. 4 (1985/6)
195–225.

14. R. H. Möhring and F. J. Radermacher, “Substitution decomposition for discrete
structures and connections with combinatorial optimization,” Ann. Discrete Math.
19 (1984) 257–356.

15. E. Wanke, “k-NLC graphs and polynomial algorithms,” Discrete Appl. Math. 54
(1994) 251–266.

23

