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1 General research area

The goal of complexity theory is to study the amount of computational resources
that are needed to solve a particular computational problem. The most studied re-
source is computer time and here “time” is used to mean the number of elementary
operations getting a theory that is independent of technology.

Clearly it is more difficult to solve large instances of a problem and thus one
studies the running time as a function of the input length. A definition that has
turned out to be useful is to say that a problem can be solved efficiently if the
running time increases polynomially in the size of the input. This class of problems
is denoted by P and another central complexity class is NP; problems where a
found solution can be verified in polynomial time. The question whether these
two complexity classes are equal is the most famous open problem in complexity
theory. It is almost universally believed that the two classes are not equal but it
seems like our understanding of computation is far from the point where this can
be proved. The common approach, also adopted in this proposal, to get interesting
results is to assume that NP�= P and derive consequences of this assumption.

A family of hard problems is given by the NP-complete problems defined orig-
inally by Cook [11]. Many basic problems fall into this class, some famous exam-
ples being graph colorability, the traveling salesman problem and satisfiability of
Boolean formulas.
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In graph colorability we are given a graph and we are asked, using a minimal
number of distinct colors, to color the nodes in such a way that no two connected
nodes have the same color. Classical NP-completeness tells us that it is hard to find
the optimal number of colors and it is even hard to determine whether it is possible
to use exactly three colors. Research in later years have focused on more fine-tuned
questions given by various forms of approximation. A problem being NP-complete
means that we cannot find the optimal answer but maybe we can find a reasonably
good answer? One common interpretation of “reasonably good” would be here to
look at the quotient of the objective function value of the obtained solution to that
of the optimal solution.

In this quotient measure the approximability of colorability is rather well un-
derstood. Ifn is the number of nodes in the graph then it is possible to approximate
the minimal number of colors within a factor ofO(n(log logn)2/(logn)3) [18], but
hard to approximate this number withinO(n1−ε) for any constantε > 0 [15], and
if we are willing to make a slightly non-standard assumptionε can be made to tend
to zero withn [26]. The finer question of how many colors are needed to color
a graph that is guaranteed to be 3-colorable is more open. The best upper bound
on the number of colors that is needed isO(nc) for c ≈ .2072 [9] while the best
hardness result, if you are only willing to assume that NP�= P is 5 [25] and if you
are willing to make stronger, slightly nonstandard, assumptions this bound can be
increased to any constant [12].

Graph-colorability is just one basic computational problem and there are many
other problems for which similar questions can be asked. The general question is
that given an instance of an NP-hard optimization problem and a guarantee that the
optimal solution is of a given quality, what is the best quality of a solution that can
be found by an efficient algorithm?

An important subclass of optimization problems is given by constraint satisfac-
tion problems, or simply CSPs, where we are given a number of constraints over
variables from a given domain and the task is to satisfy as many constraints as pos-
sible. Some CSPs are very resistant to approximation and even in the case when we
can satisfy all constraints for a given instance it is impossible to efficiently find an
assignment that does significantly better than a random assignment. Satisfiability
of clauses of length at least three belongs to this category [21].

Some simpler CSPs show a much richer behavior and a prime example here
would be Max-Cut where essentially the picture is now complete [33]. Max-Cut,
formulated as a CSP, is an extremely simple problem in that it only specifies equal-
ities between two bits. To what extent we can more fully understand more compli-
cated CSPs remains to be seen.

Studying approximability of NP-hard optimization problems is naturally di-
vided into two, rather disjoint but still closely connected, types of result.

2



On the one hand we want to derive positive results, showing that a certain
problem does allow an efficient approximation algorithm producing outputs of a
certain quality. This is done by designing and analyzing an efficient algorithm.
Such results are also called “upper bounds on approximability”.

On the other hand one wants to derive negative results in the form of showing
that a certain problem does not allow an approximation of a given quality. As
essentially all studied problem belong to the class NP they can be solved perfectly
if NP=P and thus some complexity assumption is needed to prove a negative result,
the most standard (and minimal) being NP�=P. Suchlower bound results are usually
proved through reductions as elaborated below.

1.1 Techniques for upper bounds

The key technique used for obtaining good approximation algorithms is semi-
definite programming. It is true that in some cases linear programming is suffi-
cient and purely combinatorial algorithms can sometimes give good bounds but as
a single tool semidefinite programming has no rival for the title as king of approx-
imation algorithms.

The basic primitive of semidefinite programming is to optimize a linear func-
tion of a matrix, subject to linear constraints and the constraint that the matrix is
positive semidefinite. The entries of this matrix can many times be thought of
as inner products of pairs of vectors. These vectors are in their turn usually of
unit length and should be seen as generalizations of Boolean variables which can
be seen as one-dimensional vectors of unit length. This basic technique was in-
troduced to give the famous algorithm for Max-Cut by Goemans and Williamson
[17].

Let us point out that unit length vectors can model elements from sets larger
than two in a natural way and a standard way to modeld values is to use the corners
of a regular simplex ind − 1 dimensions or some closely related construction.
This has proved useful both in graph-colorability [24, 1] and constraint satisfaction
problems over domain sizes larger than 2 [22].

1.2 Techniques for lower bounds

In principle one can start with any NP-complete problem and make a reduction to
a problem of interest. If this reduction has the property that positive instances of
the original problem yield new instances with optimal objective value at leastc and
negative instances yield new instances with optimal objective value at mosts then
we can conclude that it is NP-hard to approximate our problem within a factorc/s.
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This can be achieved in a purely combinatorial way but the key tool used is
that of a Probabilistically Checkable Proof (or more simply a PCP). In a PCP a
probabilistic verifier is given a proof of an NP-statement and wants to verify the
truth of this statement by doing probabilistic spot-checks of the proof.

In a standard PCP the verifier reads a constant number of bits in the proof, i.e.
independently of the size of the NP-statement or its proof, always accepts a correct
proof for a correct statement, and rejects any proof of an incorrect statement with
probability at least one half. The amazing PCP-theorem of Arora et al. [2] states
that any NP-statement admits such a PCP.

From the PCP-theorem one can derive inapproximability results by methods
similar to those used to prove NP-completeness of various problems during the last
35 years. To get tight results, significant care is needed to both design a special
purpose PCP and to very carefully analyze the connection between the PCP and
the targeted optimization problem.

Looking abstractly a proof is given by a sequence of bits. A PCP is no different
and a key component in the analysis of PCPs has been to analyze properties of
Boolean valued functions on the hypercube. One essential tool to use is harmonic
analysis. Some results, typically the early ones, [21] is a good example, depend on
very simple properties of the Fourier transform such as Parseval’s identity. Later
results use harmonic analysis of increasing sophistication, one key tool being the
Bonami-Beckner [8, 6] hyper-contractive inequality.

1.2.1 The unique games conjecture

By using the PCP-theorem one has obtained very strong NP-completeness and NP-
hardness results, proving many variants of basic problems to be difficult. One basic
problem is the label cover problem where we have a graph and each node should
be given a label from a finite set. For each edge in the graph there is a constraint
on the pair of labels given to the two end point of this edge. Khot [27] proposed to
study instances when these constraint are in the form a one-to-one constraint, i.e.
given that one of the end points is given a specific label there is a unique label that
need to be given to the other endpoint.

The hardness of approximating the optimization problem of satisfying as many
constraints as possible in such a unique label cover problem turns out to be of
unexpected importance. The key question is whether it is difficult to decide, for
an arbitrarily smallε > 0, whether it is possible to satisfy a fraction 1− ε of the
constraints or whether the best label assignment satisfies only a fractionε of the
constraints.

The conjecture that this problem is NP-hard for anyε > 0, once the labels
are from a sufficiently large but constant size domain, has become known as the
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“unique games conjecture” (UGC). A number of hardness results, one prime ex-
ample being the hardness for vertex cover [30] but there are many more, have been
proven based on this conjecture. Thus establishing this conjecture would bring
many consequences and would be a great step forward. On the other hand falsify-
ing the conjecture might, depending on exactly how this is done, bring even greater
rewards in the form of new understanding.

2 Proposed research

We will continue our efforts in exploring the approximability of NP-hard optimiza-
tion problems. This is a very active area of research world wide and the plan is that
Stockholm will be a center of activity that can play a leading role in these exciting
developments.

This is mathematical research and it is difficult to guess what results might be
obtained as it is far from certain which conjectures are true, but let us discuss a few
possibilities.

In the past we have seen upper bounds based on semi-definite programming
matched by lower bounds which assume the unique games conjecture. One pos-
sible conclusion of this is that the unique games conjecture is true and we have
found the best performance of a polynomial time algorithm. A more optimistic
view is that the unique games conjecture captures the power of semi-definite pro-
gramming1 and that there is a new algorithmic technique around the corner which
will wipe out both the UGC and the derived lower bounds. We feel that this is un-
likely but the rewards of this being true are such that we feel this possibility should
be explored.

Naturally working on the other side, proving the unique games conjecture is
another top priority.

We consider many questions within approximability as possible to attack, both
of the fine-tuned questions studying the quality of the efficiently obtainable solu-
tion as a function of the quality of the optimal solution but also basic questions of
the simple approximation factor.

A specific problem that will be addressed is the asymmetric Traveling Sales-
man Problem where the distance fromu to v is different from the distance fromv to
u, but where we do have the triangle inequality. Here it is unknown whether there
exist an efficient algorithm that always finds the optimal tour within a factor which
does not depend onn, the number of cities to visit as the smallest ratio obtainable

1It seems clear that semi-definite programming is not strong enough to disprove the unique games
conjecture.
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by efficient approximation algorithm is currentlyΩ(logn). For this problem there
seems to be no general consensus in the research community of the true answer.
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Section 2, Research Proposal

i. State-of-the-art and objectives:

1 Specific Goals

The proposed project aims to create a center of excellence that aims at under-
standing the approximability of NP-hard optimization problems. In particular, for
central problems like vertex cover, coloring of graphs, and various constraint satis-
faction problems we want to study upper and lower bounds on how well they can
be approximated in polynomial time.

Many existing strong results are based on what is known as the Unique Games
Conjecture (UGC) and a significant part of the project will be devoted to studying
this conjecture.

We expect that a major step needed to be taken in this process is to further
develop the understanding of Boolean functions on the Boolean hypercube. We
anticipate that the tools needed for this will come in the form of harmonic analysis
which in its turn will rely on the corresponding results in the analysis of functions
over the domain of real numbers.

2 Field overview, high level

The main question in complexity theory is to determine how hard it is to solve cer-
tain given problems. The definition of “hard” in this context varies from application
to application, but a common definition is to estimate the amount of computation
time needed to solve the problem. It has been widely accepted that a running time
that can be bounded by a function that is a polynomial in the input length gives a
robust definition of “reasonable running time” and the class of all problems that
can be solved in polynomial time is denoted by P. There also exists a large class of
decision problems with the property that an affirmative answer can beverified in
polynomial time with the aid of a proof; this class is denoted by NP.

Consider the following problem: Given a Boolean formula onn variables, de-
termine whether it is satisfiable or not, i.e., is there a truth assignment to the vari-
ables such that the formula evaluates to true. Clearly, a satisfying assignment to
the variables is a proof of the fact that the formula is satisfiable. Such a proof can
be verified in polynomial time by direct substitution in the formula. It is, how-
ever, not known how tofind a proof in polynomial time. We can solve the above
problem bytrying all possible proofs but that takes time exponential inn. The
above problem is in fact contained in a subset of NP, consisting of the so called
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NP-complete problems. These problems are equally hard in the sense that if one
of them can be solved in polynomial time, then all of them can and furthermore so
can any other problem in NP. It would be extremely surprising if the NP-complete
problems turned out to be solvable in polynomial time for at least two reasons. On
the structural level it would be strange that for any problem where a solution can be
verified quickly this solution can also be found quickly. On a more down to earth
level it seems reasonable to expect that if polynomial time algorithms existed for
all NP-complete problems, someone should have discovered one such algorithm
for one of the many hundred well-studied NP-complete problems. In view of this
we make the common assumption that solving NP-complete problems is difficult
and in particular that NP�=P.

While optimization problems strictly speaking cannot belong to NP since they
are not decision problems, they can often be shown to be at least as hard as some
NP-complete problem. In that case they are called NP-hard and cannot be solved
optimally in polynomial time if P�= NP. This leads to investigations how well
the optimal value of such difficult approximation problem can be approximated in
polynomial time.

In 1990 Feige et al. [14] found a fundamental connection between the area of
probabilistic checkable proofs (PCP) and efficient approximability of these NP-
hard optimization problems. The constructions were improved leading to the fa-
mous PCP theorem by Arora et al. [2, 3] which showed that the class NP can be
characterized using a very limited probabilistic interactive proof system. This char-
acterization gives approximation hardness results for the important optimization
problems Maximum 3-Satisfiability and Maximum Clique. The techniques used
to construct such probabilistic interactive proof system have been refined over the
years and we have a very long sequence of results with some highlights given in
[7, 20, 21, 13]. A main tool, introduced in this area by Håstad in [20] is harmonic
analysis of Boolean functions. While the first paper only used very simple proper-
ties from harmonic analysis, some later papers use known tools from real analysis
such as the Bonami-Beckner [8, 6] hypercontractive inequalities and some other
use an known translation from the Boolean domain to the domain of real numbers
[32, 4, 5].

For the upper bounds of approximation the development has been almost equally
fast. Goemans and Williamson showed that semidefinite programming, a general-
ization of linear programming that is efficiently solvable, can be used in approxima-
tion algorithms for problems such as Maximum Satisfiability and Maximum Cut
[17]. This method improved the upper bounds for these problems considerably,
and has since been used for approximating many other problems such as coloring
[24, 9] and constrain satisfaction problems [22, 11, 35].

The two directions of research—improved approximation hardness results and
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improved approximation algorithms—are very dependent on each other. Together
they have given us a much more complete picture of the approximability of NP
problems than anyone could imagine was possible fifteen years ago. It is also clear
that there is much to do before we get a complete understanding of approximability.

3 Some previous results in the area

Let us discuss some previous results in the area. For natural reason the discussion
is focused on areas close to our interests.

3.1 Approximation resistance

One main branch of research on approximability of NP-hard optimization problems
concerns approximate solutions to constraint satisfaction problems more succinctly
called CSPs. An instance of such a problem is given as a collection of constraints,
i.e., functions from some domain to{0,1}, and the objective is to satisfy as many
constraints as possible. An approximate solution of a constraint satisfaction pro-
gram is simply an assignment that satisfies roughly as many constraints as possi-
ble. For each such CSP, there exists a very naive algorithm that approximates the
optimum within a constant factor: The algorithm that just guesses a solution at ran-
dom. Håstad [21] proved the very surprising fact that this algorithm is essentially
the best possible efficient algorithm for several constraint satisfaction problems,
unless P= NP.

We call predicates for which no efficient algorithm can do substantially better
than picking a random assignment “approximation resistant”. To be approximation
resistant is a much stronger property of a predicate than the corresponding decision
problem being NP-complete as here efficient computation does not seem to be able
to do anything useful. A natural and profound question to ask is: What is it that
makes a CSP approximation resistant?

The situation for constraints that depend on only two variables is now re-
solved. When these variables are Boolean, the celebrated Goemans-Williamson
algorithm [17] imply that every Boolean 2-CSP has a non-trivial approximation
algorithm. This was extended to more and more classes of constraints and finally
Håstad [22] proved that any constraint satisfaction problem over any fixed size do-
main where each constraint involves at most two variables does allow a non-trivial
efficient approximation algorithm.

In the case of constraints that act over more than two variables, the most in-
teresting results deal with Boolean variables. Zwick [37] classified all such con-
straints acting over three variables and here the results are strikingly simple and a
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constraint is approximation resistant iff it is implied by a parity constraint on its
inputs.

The situation with constraints that depend on four Boolean variables has been
studied extensively by Hast [19] and about 90 % of these have been classified as
either approximation resistant or non-trivially approximable. Here the situation
seems to be less structured and no clear pattern has emerged. For instance from
the results on three variables one could have hoped that if a predicateP implies a
predicateQ andP is approximation resistant then so isQ. Hast showed in his thesis
that this statement is false.

For constraints that depend on more variables the results are sporadic and it is
quite possible that the set of approximation resistant predicates form a very com-
plicated set, that cannot be easily described. It could also be the case that there is
a beautiful characterization to be found and only more research in the area can tell
us which is the case.

3.2 Optimal algorithms and the unique games conjecture

The ultimate goal in approximability of NP-hard problems is to know, for each
basic optimization problem, exactly which is the best approximation ratio that can
be obtained in polynomial time.

As discussed above this ratio is known for some problems and essentially in
all early cases where we know its exact value, either the upper bound or the lower
bound is straightforward. This situation seems to be changing.

The algorithm of Goemans and Williamson [17] gave an approximation ratio
for Max-Cut which is roughly .878 but it is exactly

min
θ

2θ
π(1−cosθ)

which is probably a transcendental number. In a surprising result Khot et. al [28]
showed, modulo the truth of two conjectures, that this is indeed the correct con-
stant. One of these conjectures has later been established [32] by a very elegant
method using harmonic analysis to move the question from the Boolean domain to
the real domain. The remaining conjecture to be established is the “Unique Games
Conjecture”(UGC) of Khot [27]. This is a conjecture that has played a central role
in the research area in the last couple of years, and let us discuss this conjecture
in more detail. We formulate the underlying problem of UGC as a label cover
question.

We have a graphG and the goal is to assign a label from[L] to each node of the
graph. For each edgee = (u,v) there is a permutationπe and the edge is satisfied
if πe(�u) = �v where�u and�v are the labels of the verticesu andv. The conjecture
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is now that for any constantsε,δ > 0 there is a sizeL for the label set such that it
is NP-hard to distinguish label cover instances where the best assignment satisfies
an(1− ε)-fraction of the edges from instances where the best assignment satisfies
only aδ-fraction of the edges.

The term “unique games” comes from the fact that whenG is bipartite the
problem can be formulated as a very efficient two prover game where, for each
answer from one prover, there is a unique answer from the other prover that makes
the verifier accept.

Put differently, the UGC says that the optimization problem to determine the
maximal number of simultaneously satisfied edges in a unique label cover instance
is very difficult to approximate. This turns out to be a very strong assumption which
can be used to derive many other inapproximability results. One good example is
the result by Khot and Regev [30] proving that for anyε > 0, Vertex Cover cannot
be approximated better than 2− ε in polynomial time, which matches the easy
upper bound.

Austrin [4, 5], extending previous work [28, 32], has used the UGC to take a
closer look at constraint satisfaction problems with two variables in each constraint
and he has discovered a very close connection between approximability results
using semidefinite programming and inapproximability results. In a semidefinite
programming approach to CSPs a vector valued solution is first found which is
modified to a Boolean solution by “rounding”. The approximation factor is then
decided by how well the worst vector configuration is rounded. This rounding has
been studied systematically [31] and the best approximation ratio for Max-2-Sat is
approximately2 .94017 and is obtained by a very non-obvious rounding procedure.

Austrin has shown [4] that, assuming the UGC, the constant obtained by Lewin
et al. is in fact optimal. To do this he takes the vector configurations that are
hard to round and uses these to define a probabilistically checkable proof. The
method turns out to be quite general and in a follow up paper Austrin [5] shows that
for any CSP on two variables it is possible to take (a probability space of) vector
configurations that are (simultaneously) hard to round and construct a PCP. If the
vector configurations fulfill a certain technical condition this gives matching upper
and lower bounds for the approximability of the problem at hand. The technical
condition is non-trivial but in some sense natural and the bad configurations of
Max-Cut and Max-2-Sat do satisfy it. An interesting corollary to his results is that,
assuming the UGC, the hardest to approximate instances of Max-2-Sat can be very
unbalanced with each variable appearing about twice as often in the positive form
as negated. Similar methods have also been used by O’Donnell and Wu [33] to
give us a very detailed understanding of the approximability of Max-Cut, again

2This has only been proven numerically, but there is little doubt that it is correct.
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assuming the UGC.
The UGC can also be used to study CSPs of greater width and in particular

Håstad [23] has used it show that for sufficiently largek, a random predicate that
depends onk Boolean variables is, with high probability, approximation resistant.
This result sheds some light on the structure of approximation resistant predicates
discussed in the previous section. Håstad’s result builds on a result by Samorod-
nitsky and Trevisan [36] that shows (assuming UGC) that ifk is on the form 2t −1
there are predicates of widthk acceptingk + 1 inputs which are approximation
resistant.

As discussed above there has been a close connection between approxima-
tion algorithms based on semidefinite programming and matching hardness results
based on UGC. Very recently this has been strengthened further by Raghavendra
[35] showing that integrality gaps for semidefinite programming can be translated
to UGC-based hardness results in great generality. This very close connection can
be interpreted in different ways. One could say that the UGC is true and semidef-
inite programming is the ultimate technique for getting efficient algorithms with
good approximation ratios and all that remains is to prove the UGC. Being more
optimistic, if one believes in the power of algorithms, one could argue that semidef-
inite programming is the best we know and it is not very efficient against the in-
stances for label cover on which UGC is based and hence should not be applicable
to problems obtained from UGC by reduction. There might be more powerful
methods around the corner wiping out the UGC and violating our believed inap-
proximability results. This line of reasoning is, in my ears, more speculative but as
the consequences of this being the correct state of affairs are so great that this line
of research cannot be disregarded.

Another possibility is that we have finally found a natural decision problem
which is neither solvable in polynomial time nor NP-complete. In other words the
UGC would be false but any result derived from it remains true if we reduce “NP-
hard” to “not solvable in polynomial time”. We do think, however, that it would
be premature to conjecture that this is the case, but it is a possibility to be kept in
mind.

In any case, resolving the status of the UGC is extremely important for the
research area, and we will work towards this end keeping our eyes open for all
possibilities.

3.3 Traveling Salesman Problems

The traveling salesman problem is possibly the most famous combinatorial opti-
mization problems. It can be formalized as follows: Given a complete directed
graph with n nodesc1, . . . ,cn and the edges marked with nonnegative integers
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d(ci,c j), find a permutationπof the nodes that minimizesd(cπ(n),cπ(1))+∑n−1
i=1 d(cπ(i),cπ(i+1)).

Note that the distance functiond may, in general, be asymmetric, i.e., it may hold
that d(ci,c j) �= d(c j,ci), but we assume thatd it obeys the triangle inequality as
this is the interesting case from an approximability perspective.

There is an approximation algorithm due to Frieze et al. [16] that always deliv-
ers a solution with cost within a factor log2 n from the optimum and this remains, up
to a constant factor the best known bound. We remark that the reader may be more
familiar with thesymmetric TSP with triangle inequality, for which Christofides’
classical approximation algorithm [10] gives a solution with cost within a factor
3/2 of the optimum. As for approximation hardness, the currently strongest result
is that it is, in the asymmetric case, NP-hard to compute a solution that is within
factor 117/116 of the optimum [34]. Closing this gap is a major open question in
the field.

4 Possible areas of focus

It is very difficult to predict where research will take us during a period as long
as 5 years. It is impossible to say which unproven theorems are true, which are
within reach and which require genuinely new ideas and to which extent these can
be found within our group.

Let us however, give at least and indication of the problems we will attack at
the beginning of this period.

The first direction of research is to resolve whether the asymmetric TSP with
triangle inequality can be approximated within a factor significantly better than
logn, a question that has been open for more than twenty years. The ultimate result
here is of course to get a tight answer but any progress narrowing the gap between
the upper (O(logn)) and lower bounds (117/116) would be good progress.

The second direction is to obtain a better understanding of approximability of
constraint satisfaction problems. We will here both investigate which predicates are
approximation resistant and to further investigate the approximability of Boolean
constraints on two and three variables. In the future a complete approximability
result might not be given by a number but rather by a functionAP(x). The signif-
icance of this function would be that if the optimal solution satisfies a fractionx
of the constrains then the approximation algorithm is guaranteed to find a solution
that satisfies a fractionAP(x) of the constraints. Most papers so far have only stud-
ied functions of the formAP(x) = Cx but there are some exceptions, i.e., [29, 33]
and we agree that this is the correct way to go.

The third direction is to study UGC, the unique games conjecture. The ultimate
goal would of course be to prove or disprove it.
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A fourth direction is to study classical problems such as Vertex Cover or col-
oring problems. In particular proving that there is a constantδ such that coloring
a 3-coloring graph withnδ colors is hard would be a fantastic result. There has
been a chain of improved upper bounds of this form with the strongest obtained by
Chlamtal [9]. Lower bounds for this problem are weak and it is only known that it
is, assuming strengthened variants of the UGC, hard to color a 3-colorable graph
with any constant number of colors [12].

A fifth direction is to study Boolean functions on Boolean hypercube using
harmonic analysis. We expect that most concrete questions will here come from
the analysis of concrete PCPs, but for the long term success it is important to study
this area also with the approach of classical pure mathematics. We need to explore
this subject for its own sake to understand it more fully.
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