
E�cient generation and ranking ofspelling error correctionsMikael Tillenius
NADA report TRITA-NA-E9621, 1996

ii

AbstractAn e�cient method for generating and ranking spelling error corrections is described.This method can be used with dictionaries with only one operation|check if a givenword is in the dictionary or not. The method is intended for Swedish, but can easily bemodi�ed for other languages. Given a misspelled word, i.e., a word not in the dictionary,the corrections are generated by applying editing operations on the word. An e�cientalgorithm to generate corrections for compound words is also described. The correctionsare the ranked using a combination of edit distances and word frequencies.E�ektiv generering och rangordningav r�attstavningsf�orslagSammanfattningEn e�ektiv metod f�or att generera och rangordna r�attstavningsf�orslag presenteras. Meto-den kan anv�andas f�or ordlistor med endast en operation { �nns ett givet ord i ordlis-tan eller inte. Metoden �ar avsedd f�or svenska men kan l�att modi�eras f�or andra spr�ak.R�attstavningsf�orslagen f�or ett felstavat ord, dvs. ett ord som inte �nns i ordlistan, gener-eras genom editering av det felstavade ordet. En e�ektiv algoritm f�or att generera f�orslagf�or sammansatta ord beskrivs ocks�a. F�orslagen rangordnas med en kombination av editer-ingsavst�and och ordfrekvenser.

iii

AcknowledgmentsThis report is my master's thesis, and was done at the Department of Numerical Analysisand Computing Science (NADA) at Royal Institute of Technology (KTH).First of all I would like to thank my supervisor, Viggo Kann, for his encouragement,good suggestions and help with practical details.I would also like to thank some people and organizations who made my work easierby giving their software away for free.Free Software Foundation for GCC, their excellent compiler, for the editor GNUEmacs, one of the few editors I know that can handle lists of several hundred thousandwords, and for gawk, an awk clone, and many other programs I use almost every day.Donald E. Knuth for TEXwhich was used to typeset this report.Linus Torvalds and many more who made Linux, a free Unix clone, and thereforemade it possible for me to make much of the work at home on my PC.Many others whose software we use everyday without thinking of it. Mikael Tillenius

iv

Contents1 Introduction : 11.1 Some Terminology : 11.2 Spelling Error Correction :11.2.1 Spelling Errors : 11.2.2 Dictionaries : 21.2.3 Isolated Word Correction : 21.2.4 Context Sensitive Correction :31.3 Stava : 32 Analysis of Methods : 52.1 Isolated Word Methods : 52.1.1 Edit Distance : 52.1.2 Similarity Keys :52.1.3 Rule-based Methods : 62.1.4 N -grams : 62.1.5 Statistical Methods : 62.1.6 Neural Networks :62.2 Context-dependent Methods :62.2.1 Natural Language Processing : 72.2.2 Word N -grams : 72.3 Evaluation of Methods : 72.4 Implementation : 92.4.1 Implementation of Edit Distance :92.4.2 Implementation of Word Frequencies :102.4.3 Speed Optimizations : 102.5 Performance : 113 Conclusions :12Bibliography : 13A Source Code :15A.1 rattstava.h :15A.2 rattstava.c : 15
v

vi

1 IntroductionThis report describes a method for generating and ranking spelling error corrections. Itis intended as an addition to the program Stava, which was developed by Joachim Holl-man and Viggo Kann at the Department of Numerical Analysis and Computing Science(NADA) at the Royal Institute of Technology (KTH).Stava is a program to �nd spelling errors and give error correction suggestion and isprimarily intended for Swedish text. Stava uses a method called Bloom �lters to storeits dictionary. A Bloom �lter has only two operations, checking if a word is already init and adding a new word. This gives some restrictions on how to �nd error correctionsuggestions. Stava is described in more detail later in this report.The goal of my work was to �nd a fast method to generate all probable spellingcorrections and then rank them in order of probability.Some of the material in this report is speci�c to spelling error correction in Swedish,but most of it is language independent.1.1 Some TerminologyI would �rst like to introduce some terminology which will be used in the rest of thisreport. A dictionary is a set of words (or strings) which are considered to be correct.Error detection is the process of �nding misspelled words. Error correction is theprocess of generating one or more suggestions of correct words given a misspelled word.These suggestions can be ranked in order of probability. When a misspelling of one wordresults in another correct word (e.g. form ! from), we will call it a real word error. Anautomatic spelling corrector would correct any error without any human interaction butan interactive spelling corrector will leave the real decision to the user of the spellingcorrector. An n-gram is a sequence of n characters (or words). Usually n-grams areused are used to represent all possible sequences of characters (or words) that occur in alanguage. If n is 1, 2 or 3 they are called unigrams, bigrams or trigrams respectively.1.2 Spelling Error CorrectionDetection and correction of spelling errors is an old problem. Much research has beendone in this area over the years, and more has to be done. The existing tools are veryuseful, but they do not entirely replace manual proofreading. I will try to give a quickoverview to the subject here. For more details, see [Kukich 1992].Most of the research has been done for English (and in fact, many spelling correctorsfor Swedish are only modi�ed versions of the original English version). The results fromthis research are not always valid for Swedish.There are two main di�erences between Swedish and English that I would like tomention. First, in Swedish it is possible to construct new compound words in an al-most unlimited way. (E.g. F�orstamajdemonstrationstalarstolsaggb�ararf�orman is, strictlyspeaking, a correct word, even though it might be considered bad style to use such longwords.) Secondly there is a stronger relationship between spelling and pronounciation inSwedish than in English. This makes it possible to handle many phonetic errors in thesame way as typographic errors.1.2.1 Spelling Errors 1

To make a good spelling corrector it is essential that one knows what kinds of spellingerrors there are and how often they occur. For typed text the errors can be divided intotwo categories:1 typographic errors which occur because the typist accidentally presses the wrongkey, presses two keys, presses the keys in the wrong order etc. (e.g. the ! teh).2 phonetic errors where the misspelling is pronounced the same as the intended wordbut the spelling is wrong (e.g. two ! to).For typographic errors the keyboard is important. It is much more usual to accidentallysubstitute a key for another if they are placed near each other on the keyboard. The typesand frequencies of typographical errors di�er much for di�erent writers and also for thesame writer in di�erent situations.For other input devices than keyboards the typographic errors are replaced by othertypes of errors. Optical character recognition (OCR) for example might substitute an Ofor a D or might report a character as unrecognizable.1.2.2 DictionariesA dictionary is a list of words that are assumed to be correct. Dictionaries can be repre-sented in many ways, each with their own characteristics like speed and storage require-ments.At �rst one might think that the more words a dictionary contains the better it is.But when more words are added to the dictionary the risk for real word errors increases.This is mostly a problem for short words; long words generally di�er more than shortwords. A good substitute for a large dictionary might be a dictionary with most commonword combined with a set of additional dictionaries for speci�c topics such as computerscience or economy.A big dictionary also uses more space and may take longer time to search.1.2.3 Isolated Word CorrectionIsolated word correction is the oldest technique. It is much simpler than context dependentcorrection. To �nd all misspelled words, one only has to check all words to see if theybelong to the dictionary or not. Those words that do not are misspelled. The problemwith this is that it is impossible to �nd real word errors i.e. misspellings that result inanother correct word.Once a misspelled word is found, one has to generate corrections for it. This canbe viewed as de�ning a distance measure between words. The corrections are then thewords in the dictionary with the smallest distance to the misspelling. Thus the distancemeasure should be chosen so that the distance between a misspelling and the intendedword is small. There are several ways to de�ne this measure. Traditionally, this measurehas been chosen so that the correction suggestions are easy to generate. This has also putsome restrictions on how the dictionary is represented. For example, it might be requiredthat the dictionary is sorted alphabetically and partitioned into multiple dictionaries afterword length.It would be nice to de�ne an optimal distance measure, and then compare otherdistance measures with this optimal distance measure. The distance between a misspellingm and a word w in the dictionary could be de�ned asD(m;w) = 1� P (m is a misspelling of w):This would maximize the number correct corrections. It would still be impossible to alwaysdo the right correction of a misspelled word, and we would still have the problem of realword errors. It would be possible to handle some real word errors by de�ning the distancemeasure as2

D(m;w) = 1� P (m was written when w was intended)and treat every word where the distance between the word and itself is greater than thedistance between the word and any other word in the dictionary. This would make itpossible to include many unusual words in the dictionary without increasing the risk forreal word errors too much.It should be noted that this measure is very dependent on the input text. If the inputtext comes from an OCR device there is a high probability that a D is replaced by an O,but this should be very uncommon for typed text since D and O are placed far from eachother on a normal keyboard. There are also big di�erences between di�erent typists anddi�erent situations.It is easier to correct long words than short words, since there are fewer long wordsthan short words that spell almost the same way as another. With long words I meansimple words, not compound words. Compound words are an even bigger problem sincethey are built by shorter words and we don't know the word boundaries. Allowing almostunbounded compounding of words (which might be useful for a language like Swedish),increases both the number of real word errors and the number of words spelled similar toanother.Isolated word correction can be useful in an interactive spelling corrector since itcatches many errors that might otherwise be uncorrected. In most cases it is also able tosuggest the right word, especially if it is a long word. It can only be a complement tomanual proofreading since it doesn't catch real word errors. Neither can it be automaticsince it sometimes makes wrong corrections.1.2.4 Context Sensitive CorrectionContext sensitive correction is much harder, but also has more capacity than isolated wordcorrection. By using the context in which a word appears it makes better guesses. It canalso be used to detect real word errors and to detect grammatical errors.The amount of context information used may vary very much, from simple word-pairstatistics to programs that try to understand the text.1.3 StavaStava uses a Bloom �lter to code its dictionary. A Bloom �lter is a vector of booleanvalues and a number of hash functions. To store a word in the dictionary you calculateeach hash function for the word and set the vector entries corresponding to the calculatedvalues to true. To �nd out if a word belongs to the dictionary, you calculate the the hashvalues for that word and look in the vector. If all entries corresponding to the values aretrue, the word belongs to the dictionary, otherwise it doesn't.The good thing about Bloom �lters is that they are compact and that the time requiredto �nd out if a word belongs to the dictionary or not is independent of the size of thedictionary. The bad things are that it is hard to store any information (such as whichpart of speech the word belongs to) together with the word and that some words mightbe reported as belonging to the dictionary even though they never were added to it. Theprobability for this can be lowered by increasing the size of the vector or increasing thenumber of hash functions.Bloom �lters also have another advantage|it is impossible to recreate the originaldictionary from the Bloom �lter. The only way to �nd out what words are stored in thedictionary, is to generate all possible letter combinations and test if they belong to thedictionary or not. The problem is not to generate all letter combinations because by limit-ing the word length and using n-grams it is possible to limit the number of combinations.3

Instead the problem is that too many incorrect words will be accepted by the dictionary.The reconstructed dictionary will contain too many false words.Stava really uses three dictionaries, the exception list, the last part list and the �rstpart list. The last part list contains words that may be an independent word or the lastpart of a compound word. A word in the �rst part list can be the �rst or middle part ofa compound word. A word in the exception list cannot be part of a compound word. Bychecking if a word is composed of one or more words from the �rst part dictionary and aword from the last part dictionary, compounded words can be handled.Stava also has a heuristics for generating inections. This consists of rules on theform: �orna �a;�an;�orThis rules says that if docka (doll), dockan (the doll) and dockor (dolls) all belong tothe dictionary, then dockorna (the dolls) also is a valid word. Thus not all inections haveto be stored in the dictionary. These rules have to be selected carefully so that no invalidword can be generated.For more information about Stava, see [Domeij et al. 1995].

4

2 Analysis of MethodsTo design a spelling corrector one has to consider several factors. First it should do a goodjob selecting and ranking corrections. Secondly it should be e�cient in terms of memoryrequirements and computational power.The �rst requirement is maybe the most challenging. The �rst observation one shouldmake is that isolated word correction might not be enough. For example, should thecorrection of ater be after, later, ate or alter? Many short words are so similar that severalof them are likely to be misspelled to the same word. Furthermore, a misspelling of oneword may result in another correct word (e.g. from ! form).Using context information it is possible to achieve much better error detection andcorrection. The question is: How do we use the context information? This is an areawhere more research needs to be done.I will make a short survey over correction techniques that have been used by others.The techniques are evaluated with their usability in Stava in mind. For a more generaldescription, see [Kukich 1992].2.1 Isolated Word MethodsThe isolated word methods I will describe are: edit distance, similarity keys, rule-basedtechniques, n-grams, probabilistic techniques and neural nets. All of these methods canbe thought of as calculating a distance between the misspelled word and each word in thedictionary, as described in the previous chapter. The shorter the distance the higher thedictionary word is ranked.2.1.1 Edit DistanceEdit distance is a simple technique. The distance between two words is the number ofediting operations required to transform one of the words into the other. The allowedediting operations are: remove one character, insert one character, replace one characterwith another or transpose two adjacent characters.Edit distance is useful for correcting errors resulting from keyboard input, since theseare often of the same kind as the allowed edit operations. If we remove the possibilityto transpose characters, it is usable for OCR also. It is not quite as good for correctingphonetic spelling errors, especially if the di�erence between spelling and pronunciation isbig as in English or French. It works better for some common Swedish misspellings.A variation on edit distance is to assign di�erent distances for di�erent editing opera-tions and the letters involved in these operations. This leads to a �ner distinction betweencommon and uncommon typographic errors.2.1.2 Similarity KeysSimilarity keys are based on some method to transform a word into a similarity key. Thiskey should reect the characteristics of the word. The most important characteristicsare placed �rst in the key. All words in the dictionary are transformed and sorted afterthe similarity key. A misspelled word is then also transformed and similar keys can bee�ciently searched for in the sorted list. 5

This technique gives a linear ordering of all words. Words that are close to eachother in this ordering are considered similar. With a good transformation algorithm thismethod can handle both keyboard errors and phonetic errors. The problem is to designthis algorithm. See [Pollock & Zamora 1984] for an example of a good algorithm forEnglish.Similarity keys are not very useful in Stava since we cannot use the fast searching ifwe are using Bloom �lters. In fact it will be di�cult to do any e�cient searching at all.2.1.3 Rule-based MethodsRule-based methods are interesting. They work by having a set of rules that capturecommon spelling and typographic errors and applying these rules to the misspelled word.Intuitively these rules are the \inverses" of common errors. Each correct word generated bythis process is taken as a correction suggestion. The rules also have probabilities, makingit possible to rank the suggestions by accumulating the probabilities for the applied rules.Edit distance can be viewed as a special case of a rule-based method with limitation onthe possible rules.Rules-based methods could be used in Stava, but for several reasons described in thenext section I decided not to.2.1.4 N -gramsN -grams can be used in two ways, either without a dictionary or together with a dictionary.Used without a dictionary, n-grams are used to �nd in which position in the misspelledword the error occurs. If there is a unique way to change the misspelled word so that itcontains only valid n-grams, this is taken as the correction. The performance of thismethod is limited. Its main virtue is that it is simple and does not require any dictionary.Used together with a dictionary, n-grams are used to de�ne the distance betweenwords, but the words are always checked against the dictionary. This can be done inseveral ways, for example check how many n-grams the misspelled word and a dictionaryword have in common, weighted by the length of the words.N -grams are used in Stava, not to �nd or rank error correction suggestions, but tolimit the number of false words accepted by the Bloom �lter and to increase the speed.2.1.5 Statistical MethodsStatistical methods are based on some statistical features of the language. Two commonmethods are transition probabilities and confusion probabilities.Transition probabilities are similar to n-grams. They give us the probability that agiven letter or sequence of letters is followed by another given letter. Transition probabil-ities are not very useful when we have access to a dictionary.Confusion probabilities give us the probability that a given letter was has been sub-stituted for another letter.2.1.6 Neural NetworksNeural networks is also an interesting and promising technique, but it seems like it has tomature a bit more before it can be used in a general purpose spelling corrector like Stava.The current methods are based on back-propagation networks, using one output node foreach word in the dictionary and an input node for every possible n-gram in every positionof the word, where n usually is one or two. Normally only one of the outputs should beactive, indicating which dictionary word the network suggests as a correction.This method works for small (< 1000 words) dictionaries, but it doesn't scale well.The time requirements are to big on traditional hardware, especially in the learning phase.6

2.2 Context-dependent MethodsContext-dependent methods could make it possible to correct some real-word errorsand could be used to make a better ranking of the suggestions, possibly good enough tomake it automatic. There are two main approaches to use the context information, tryingto parse text according to some grammatical rules and word n-grams.2.2.1 Natural Language ProcessingBy trying to match the given text against a grammar for the language it is possible to�nd and correct both spelling errors and grammatical errors. If we �nd that some worddoesn't match the grammar rules we can assume that the word is incorrect. We can thenapply some isolated word method to generate corrections and if one of those match thegrammar rules we have found a possible correction. This is not as easy as it might sound.I decided not to try this method since it seemed to be far too much work for a master'sdegree.2.2.2 Word N -gramsUsing statistics about word n-grams frequencies seems to be a simple method to catchat least some context-information. The biggest problem is the large number of words.Unigrams and bigrams can be handled by a normal personal computer today but trigramswould need some clever compression technique to �t in the memory. Another problem isthe huge amount of text that is needed to collect the statistics.One way to solve this problem would be to use part-of-speech n-grams instead. Thisdecreases the memory requirement, but it is also a much cruder measurement. Since it ishard to save part-of-speech information in an e�cient way using Bloom �lters I did notconsider this method.2.3 Evaluation of MethodsAfter considering the methods described above, I decided to try a combination of someisolated word method and word bigrams. It was tempting to use some general rule-basedtechnique, since it is very powerful. The problem is to make it fast enough and to �nd therules it should use. Instead of using general rules, I chose to use a variant of minimum editdistance. In normal edit distance measure, each of the operations insert, remove, replaceand transpose are counted equal. By modifying the algorithm so that di�erent operationsgive di�erent penalties, I hoped to increase its usability. The penalties are dependent bothof the edit operation and the letters surrounding the place of the operation.For insertion the penalty is dependent on the letter inserted and the letter followingit. For deletion the penalty is dependent on the letter deleted and the letter following it.For replacement the penalty is dependent on the new letter and the letter it replaces. Fortransposing the penalty is dependent on the two letters that are transposed.It should also be an extra penalty for changing the �rst letter in a word since it isuncommon for the �rst letter to be wrong. These rules can correct all of the normal key-board typing errors and make it possible to code their probabilities (e.g. an a is more oftenmistyped as a s than as a p on a normal keyboard). The rules are also powerful enough tocorrect some phonetic errors. Since, as mentioned before, the correlation between spellingand pronunciation is high in Swedish, these rules work quite well for most common Swedishphonetic errors. They probably work less well for English or French. The phonetic errorsthey are able to correct include doubling and undoubling of consonants (e.g. spel$ spell,tik $ tick).The penalties can be generated rather easy by collecting statistics of real spelling andtyping errors. 7

By removing the possibility of transposition (for example by setting a very high penaltyfor transpositions) the rules can also be used for OCR text, but another set of rules(allowing corrections of framing errors such as ri ! n or m ! iii) would probably workmuch better.To increase the precision of the ranking of the generated correction suggestions it isalso possible to use word frequency information. It is more probable that a misspelling isa misspelling of a common word than of an uncommon word. Therefore common wordsshould be ranked higher than uncommon words.To test the correction accuracy of the algorithm I collected a list of misspellings fromtwo di�erent sources. The �rst source was unedited news articles. By checking the spellingin these articles with Stava I could extract a list of misspelled words. I then removed mostnames, abbreviations and foreign words from this list. Then a list of corrections of thesewords could be made by �nding the misspellings in the original text and use the contextto �nd the correct word.The second source was a collection of student essays, which was already marked withcorrections. By �ltering out the errors and their corresponding corrections and thenremoving those errors that were grammatical errors, rather than spelling errors, a list ofmisspellings and corrections was found. This list also contained real word errors.These two lists were then combined into one list with 729 misspellings and theircorresponding corrections.The methods edit distance and word frequencies were then tested against this list. Theresults were that edit distance and word frequencies performed rather well by themselves,and even better together (see table 1). Word bigram frequencies did not perform very well(see table 2). It was tested on a set of 50 sentences, both alone and together with oneor both of edit distance and word frequencies. The reason for the bad performance wassimple, most of the word pairs in the text was not part of my list of 200 000 word pairs.Word bigrams might work better on texts with a smaller vocabulary or it might be usedto correct simple grammatical errors. For spelling correction of texts on any subject, amuch larger list of bigrams seems to be necessary.Table 1. Performance with di�erent methods. 729 words. Thecolumns 1, 2 and 3 tell whether the correct word was the �rst,second or third suggestion. None means no ranking was per-formed, the suggestions were presented in the order they weregenerated.method 1 2 3none 204 (28%) 71 (10%) 16 (2%)word freq. 356 (49%) 42 (6%) 26 (4%)edit dist. 388 (53%) 55 (8%) 16 (2%)edit dist.+word freq. 440 (60%) 28 (4%) 10 (1%)Table 2. Performance of bigrams. 50 sentences. Thecolumns 1, 2 and 3 tell whether the correct word wasthe �rst, second or third suggestion.method 1 2 3none 16 (32%) 4 (8%) 0 (0%)word bigrams 17 (34%) 4 (8%) 0 (0%)word freq. 31 (62%) 2 (4%) 0 (0%)edit dist. 20 (40%) 7 (14%) 5 (10%)With these results in mind I decided to use a combination of edit distance and wordfrequencies and not use word bigrams. Using more general rules than editing operation8

would have corrected a few more phonetic errors, but considering the problems mentionedat the beginning of this sections and the fact that the simple editing operations performedwell enough, I decided not to use them.2.4 ImplementationA spelling corrector must give good correction suggestions but it also has to be fast andeasy to use. These aspects must be weighted against each other. I decided to �rst testhow good the selected methods could be and then optimize them for speed if they weregood enough.The distance between a misspelling and a given correction suggestion is the sum ofthe penalties given to the suggestion as described below. The suggestions are sorted andpresented with increasing distance.2.4.1 Implementation of Edit DistanceFirst I collected statistics over errors in the test set that could be corrected by a singleediting operation. The statistics that was collected was the number of times (where a andb are any letter in the Swedish alphabet):(1) a was deleted when it appeared directly before b(2) a was deleted when it appeared directly after b(3) a was directly inserted before b(4) a was inserted directly after b(5) a and b were transposed when a appeared directly before b(6) a was replaced by b.The number of times each editing operation resulted in a correction was then weightedagainst the number of times the editing operation was possible.Both (1) and (2) showed that doubling of consonants was a very common error. Oth-erwise, (2) gave very little information. In the same way (3) and (4) showed that it wasvery common not to double a consonant when it should be. Transpositions (5) were veryuncommon. No information about the letters involved could be extracted. Finally, (6)showed that letters pronounced in the same or a similar way were often confused. We cansee that most errors were phonetic rather than typographic.Using this statistics I de�ned the distance for the di�erent editing operations. Since(1) and (2) contained primarily the same information, and likewise with (3) and (4), only(1), (3), (5) and (6) were used. The distances were de�ned more or less ad hoc. Thenthey were slightly adjusted by testing how well they performed.This resulted in the following rules: Deletion, transposition and replacement normallygive a penalty of 10, while insertions normally give a penalty of 7. In addition to thesegeneral rules, some special cases are handled. Deleting an occurrence of any of the char-acters b, d, f, g, j, l, m, n, p, r, s, t or v before another occurrence of the same character,or a c before a k, give a penalty of 6. In the same way, inserting one of the characters inthe list above before another occurrence of the same character, or inserting a c before ak gives a penalty of 3. These rules handle common cases of doubling and undoubling ofconsonants. I also noted that it was slightly more common to replace a vowel whit anothervowel rather than by a consonant so replacing a vowel with another vowel gives a penaltyof 9 instead of 10. In addition to this, a few pairs of characters were replaced more oftenthan others (e.g. an �a was replaced by an e, a g was replaced by a j). These cases give apenalty of 6 or 8.There is also an extra penalty of 10 for any insertion, deletion or replacement in the�rst position of a word.The penalties for each edit operation can be stored in a two-dimensional vector indexedby the two characters involved. This requires very little memory compared to the memory9

required by the dictionaries.Since a dictionary based on Bloom �lter may accept words that were never insertedinto the dictionary, each word generated by the editing operations is also checked againsta list of those 4-grams that appear in the words inserted into the dictionary. This list canbe coded by a 4-dimensional vector of booleans.2.4.2 Implementation of Word FrequenciesThe word frequencies were then tested. Three questions were interesting, �rst howshould the frequency of a word map to a penalty, how much should word frequencies a�ectthe ranking compared with edit distance, and how should the frequencies be stored. Aftersome testing I decided to divide the words into classes after a logarithmic scale (e.g., allwords occurring between 10 and 100 times are in one class, all words occurring between100 and 1000 times in another and so on). After testing some di�erent numbers of classesI saw that about 10 classes was optimal. Fewer classes resulted in worse performance,more classes didn't increase the performance.When using both edit distance and word frequencies together, word frequencies shouldbe more important than edit distance. In Stava, an unusual editing operation results ina penalty of 10. A word in the most common class gives no penalty and a word in themost uncommon class gives a penalty of 18. If the word does not appear in the list ofword frequencies, a penalty of 25 is given. A list of about 50 000 words and correspondingfrequencies was used.The word frequencies were stored in another dictionary, also coded by a Bloom �lter,by concatenating each word with a letter representing the class the word belongs to andthen storing it in the dictionary. E.g., the word och which belongs to the most commonclass is concatenated with an A resulting in ochA and then stored in the dictionary. Thenit is possible to �nd out which class a given word belongs to by probing the dictionaryfor the word concatenated with the letter representing each class . E.g., to �nd out whichclass och belongs to, probe for ochA, ochB and so on until the word is found or all classeshave been probed for.Since the word frequency dictionary is only used to rank the spelling error suggestionsgenerated by the edit distance method, it is possible to use a Bloom �lter with compar-atively high error probability which means it can be faster and/or require less memorythan the other dictionaries.2.4.3 Speed OptimizationsGenerating corrections by applying all possible editing operations to the misspelledword takes too long time. Since the number of editing operations (an thus the timerequirements) grows linearly with the length of the word (59l+28 if we have 29 charactersin the alphabet and l is the length of the word), long words is a problem. Allowing morethan one editing operation per word would take even longer time (roughly proportional tothe number of operations possible with only one operation per word to the power of thenumber of operations per word). This is mostly a problem for compounded words sincenon-compounded words normally tend to be short.By using the table of 4-grams present in the words stored in the dictionary, it is oftenpossible to �nd one or more positions in the misspelled word where 4-grams don't match.Then the editing operations doesn't have to be performed for all possible positions, butonly for positions where they might correct the 4-gram. When allowing more than oneedit operation per word, the �rst edit operations must be applied at or before the �rst4-gram mismatch, since the second edit operation is always done at a position after the�rst one.10

By setting an upper limit for the length of a non-compound word and another limitfor the length of each part of a compound word, it is possible to limit the time required.If these limits are set to the length of the longest word in the dictionary it does nota�ect the result. In practice, they can be set slightly lower, so that only a few wordsin the dictionary are longer than this limit without a�ecting the results noticeably, butdecreasing the time required a lot. I use a limit of 22 characters per word in both cases. Ifa misspelling is longer than this limit or if none of the editing operations results in a validword, the misspelling is assumed to be a misspelling of a compounded word. In that casethe misspelling is divided into parts, and each part is edited by itself and searched for inthe dictionary. The division can be made at several places which are all tested. By editingthe parts by themselves it is possible to allow two editing operations per compoundedword, with only a small addition in time compared with only one editing operation. Sincethe word parts are limited in length it is even possible have two editing operations inone part, but this increases the time with a factor of about ten without increasing thecorrection very much.The default in Stava is to allow one editing operation per non-compounded word andtwo operations in compounded words (but only one in each part). With an option in ispossible to have two editing operations per word or part of word, but this might be toslow for most purposes.2.5 PerformanceThe performance of the �nal version was tested on the same set of 729 misspelled words asbefore but this time inections were allowed too, so only 632 of the words were consideredmisspelled and were corrected. The test was done both allowing and disallowing generationof compounded words and allowing and disallowing two errors per word part. The timewas measured on a Sun SparcStation 5 running SunOS 4.1.3. The average length of thewords was 8.6 characters. For only 571 of the 632 misspelled words did the correct wordexist in the dictionary. Using this we can see that if we allow generation of compoundedwords, about 77% of the misspellings were correctly corrected when allowing compoundedwords. In 84% of the cases the right word appeared as on of the �rst three words. Ifwe do not allow compounded words, about 62% were correctly corrected. Allowing twoedit operations did hardly a�ect the correction rate, but increased the time by a factor ofabout 40. Two editing operations can still be useful in some cases, for example to �nd thecorrect spelling of a single word. See table 3.Table 3. Performance based on 632 misspelling words. The columns 1, 2 and 3 tellwhether the correct word was the �rst, second or third suggestion. Not found meansthat Stava didn't �nd any suggestion for that word.method time (s) not found 1 2 3no compund words 7.2 188 (30%) 352 (56%) 20 (3%) 7 (1%)2 edit oper. 285 146 (23%) 362 (57%) 20 (3%) 7 (1%)compund words 20.7 16 (3%) 440 (67%) 28 (4%) 10 (2%)compund + 2 edit 521 13 (2%) 444 (70%) 24 (4%) 10 (2%)
11

3 ConclusionsThe spelling error correction method described in this report generates spelling correctionsuggestions by transforming the misspelled word with the editing operations insertion,deletion, transposition and replacement. These operations match typographic errors aswell as some phonetic errors common in Swedish. Each possible transformation is thensearched for in the dictionary. If a transformation is found in the dictionary it is acceptedas a correction suggestion. Any number of editing operations may be performed on amisspelling but it is not practical to use more than one per word or maybe two for longerwords (if you have a fast computer).With an option, compound words can also be generated. This is done by dividingthe misspelled word into all possible parts. These parts are then transformed and checkedagainst the dictionary. In fact three di�erent dictionaries are used, one for words that canonly appear by themselves, one for words that may appear by themselves or as the lastpart of a compound word and a list of words that only may appear as part of compoundword and not as the last part.I tested three di�erent methods to rank spelling corrections, modi�ed edit distance,word frequencies and word bigram frequencies. The edit distance method was modi�edso that editing operations had di�erent weight depending both on the kind of operationand on the letters near the edit operation. For insertion the weight depends on the letterfollowing the insertion and on the letter inserted. For deletion the weight depends one theletter after the one deleted and on the letter deleted. Transpositions depends on the twotransposed letters. The weight for replacements depends on the letter replaced and theletter that replaces it.Word bigrams did hardly a�ect the ranking at all. The reason for the bad performancewas that most of the word pairs in my test set did not appear in the list of 200 000 bigrams.Bigrams might be more useful if the list of bigrams is longer or for other types of text.Modi�ed edit distance and word frequencies gave a good ranking, both by them self andused together. When used together, the correct word was ranked highest for 77% of themisspellings in my test set (counting only words where the correct word appeared in thedictionary, about 7% of the words did not appear in the dictionary). In 5% of the cases,the correct word was ranked as the second highest and 2% as the third highest word.I believe this is near the optimal performance for a general purpose spelling correctorbased only on isolated words. Further improvements would probably need to use contextinformation.
12

Bibliography[Domeij et al. 1995] Domeij, Rickard, Hollman, Joachim and Kann, Viggo. Detection ofspelling errors in Swedish not using a word list en clair, Journal of Quantitative Linguistics,Vol 1(3), 1995[Kukich 1992] Kukich, Karen. Techniques for Automatically Correcting Words in Text,ACM Computing Surveys, Vol 24(4) Dec. 1992, pp. 377-439[Pollock & Zamora 1984] Pollock, Joseph J., and Zamora, Antonio. Automatic SpellingCorrection in Scienti�c and Scholary Text, Communications of the ACM, Vol 27(4) April1984, pp. 358-368

13

14

Appendix A Source CodeA.1 rattstava.h/* R�attstavningsprogram. Version 2.1 1995-11-29Copyright (C) 1990-1996Joachim Hollman och Viggo Kannjoachim@nada.kth.se viggo@nada.kth.se*//* rattstava.h - gr�anssnitt till rattstava.c */extern void GenereraAlternativaOrd(char *ord);extern void OppnaRattstavaFil(void);extern int Finns2Petig(char *ord, int fyrKoll);/* LagraFyrgrafer ser till att ett ords alla fyrgrafer �ar till�atna */INLINE extern void LagraFyrgrafer(char *ord);/* FyrKollaHela kollar om ett ords alla fyrgrafer �ar till�atna */INLINE extern int FyrKollaHela(char *ord);extern void SkrivForslag(char *ordin);A.2 rattstava.c/* R�attstavningsprogram. Version 2.1 1995-11-29Copyright (C) 1990-1996Joachim Hollman och Viggo Kannjoachim@nada.kth.se viggo@nada.kth.se*//* rattstava.c - modul f�or r�attstavningsfunktioner */#include <stdio.h>#include <stdlib.h>#include <string.h>#define SVENSKA#ifdef SVENSKA#include "stava.h"#endif#ifdef ENGELSKA#define ISO8BITAR#include "spell.h"#endif#include "rattstava.h"#include "suffix.h"typedef unsigned char uchar;extern int xAndelser, xSammansatta, xContext, xMaxOneError;extern INLINE void SkrivOrd(unsigned char *s);#define MAXSUGGESTIONS 20#define CHECK_EL 1#define CHECK_FL 2#define CHECK_IL 4 15

#define DELPVAL 10#define SWAPVAL 10#define REPPVAL 10#define INSPVAL 7#define FIRSTP 10#define DELP(a, b) delap[(uchar)(a)][(uchar)(b)]#define INSP(a, b) insap[(uchar)(a)][(uchar)(b)]#define SWAP(a, b) swapp[(uchar)(a)][(uchar)(b)]#define REPP(a, b) replp[(uchar)(a)][(uchar)(b)]static signed char delap[128][128];static signed char insap[128][128];static signed char swapp[128][128];static signed char replp[128][128];static unsigned char fyrtabell[FGRAMSIZE];static FILE *fyrf;static char **fyrOrd;static int fyrAntalOrd = 0, fyrMaxAntalOrd = 0;static char **delOrd[2*MAXORDDELAR];static int delAntalOrd[2*MAXORDDELAR], delMaxAntalOrd[2*MAXORDDELAR];static int addedWord;static INLINE void *xmalloc(size_t s){ void *p = malloc(s);if (!p) {fprintf(stderr, "Out of memory\n");exit(1);}return p;}static INLINE void *xrealloc(void *p, size_t s){ p = realloc(p, s);if (!p) {fprintf(stderr, "Out of memory\n");exit(1);}return p;}/* Calculate points for word frequencies */INLINE static int WordFreq(char *word){ int len, i;char buf[LANGD+1];static int p[] = { 0, 2, 4, 6, 8, 10, 12, 14, };strcpy(buf, word);len = strlen(buf);buf[len+1] = '\0';for (i=0; i<8; i++) {buf[len] = 'A' + i;if (InXL(buf))return p[i];}return 25;}16

/* FyrKollaHela kollar om ett ords alla fyrgrafer �ar till�atna */int FyrKollaHela(char *ord){ static char buf[LANGD+4];char *s;long l;int plats;sprintf(buf, "-%s-", ord);for (s = buf; *s; s++)if (*s >= 'a' && *s <= '}') *s -= 'a'; elseif (*s >= 'A' && *s <= ']') *s -= 'A'; else*s = 29;for (plats = 3; buf[plats]; plats++) {l = ((buf[plats - 3] * 30 + buf[plats - 2]) * 30 + buf[plats - 1]) * 30 +buf[plats];if (!(fyrtabell[l >> 3] & (1 << ((int) l & 7)))) return(plats);}return(0);}/* LagraFyrgrafer ser till att ett ords alla fyrgrafer �ar till�atna */void LagraFyrgrafer(char *ord){ static char buf[LANGD+4];char *s;long l;int plats;sprintf(buf, "-%s-", ord);for (s = buf; *s; s++)if (*s >= 'a' && *s <= '}') *s -= 'a'; elseif (*s >= 'A' && *s <= ']') *s -= 'A'; else*s = 29;for (plats = 3; buf[plats]; plats++) {l = ((buf[plats - 3] * 30 + buf[plats - 2]) * 30 + buf[plats - 1]) * 30 +buf[plats];fyrtabell[l >> 3] |= (1 << ((int) l & 7));}}/* FyrKoll kollar om ett ords fyrgrafer �ar till�atna, plats anger index iord f�or en �andring. Om plats �ar negativt kollas hela ordet.extra �ar antalet extra positioner som �ar �andrade */static INLINE int FyrKoll(char *ord, int plats, int extra){ char buf[LANGD+4];char *s;long l;s = buf;*s++ = 29;for (; *ord; s++, ord++)if (*ord >= 'a' && *ord <= '}') *s = *ord - 'a'; elseif (*ord >= 'A' && *ord <= ']') *s = *ord - 'A'; else*s = 29;*s++ = 29;*s = '/';if (plats >= 2) {plats++;buf[plats + 4 + extra] = '/';} else {if (plats >= 0) buf[plats + 5 + extra] = '/';plats = 3;}while (buf[plats] != '/') {l = ((buf[plats - 3] * 30 + buf[plats - 2]) * 30 + buf[plats - 1]) * 30 + 17

buf[plats];#ifdef DEBUGprintf("%c%c%c%c - %d\n", buf[plats - 3]+'A', buf[plats - 2]+'A',buf[plats - 1]+'A', buf[plats]+'A',(fyrtabell[l >> 3] & (1 << ((int) l & 7))) != 0);#endifif (!(fyrtabell[l >> 3] & (1 << ((int) l & 7)))) return(0);plats++;}return(1);}static void FyrAdderaOrd(char *ord, int point){ int i;if (strlen(ord) <= 1) return; /* Strunta i enbokstavsord */if (fyrMaxAntalOrd == 0) {fyrMaxAntalOrd = 20;fyrOrd = (char **) malloc(sizeof(char *) * fyrMaxAntalOrd);i = 0;}for (i = 0; i < fyrAntalOrd; i++) {if (!strcmp(ord, fyrOrd[i]+1))if (fyrOrd[i][0] > point)goto overwrite;elsereturn;if (!strcmp(ord + 1, fyrOrd[i] + 2)) {if (abs(*ord - *(fyrOrd[i])+1) == 'a' - 'A')if (fyrOrd[i][0] > point)goto overwrite;elsereturn;}}if (fyrAntalOrd >= fyrMaxAntalOrd) {fyrMaxAntalOrd += 20;fyrOrd = (char **) realloc(fyrOrd, sizeof(char *) * fyrMaxAntalOrd);}fyrAntalOrd++;addedWord = 1;overwrite:fyrOrd[i] = (char *) malloc(strlen(ord)+2);fyrOrd[i][0] = point;strcpy(fyrOrd[i]+1, ord);}static void FyrSudda(void){ int i;for (i = 0; i < fyrAntalOrd; i++) free(fyrOrd[i]);fyrAntalOrd = 0;}static void Concat(char *to, char *word, int point, int part, int lastpart){ int len, i;if (part == lastpart) {strcat(to, word);FyrAdderaOrd(to, point+WordFreq(to));} else {18

for (i=0; i<delAntalOrd[part]; i++) {len =strlen(to);strcat(to, delOrd[part][i]+1);Concat(to, word, point+delOrd[part][i][0], part+1, lastpart);to[len] = 0;}}}/* S�att ihop de olika orddelarna i alla kombinationer och stopa in ilistan �over ordf�orslag */static void ConcatParts(char *word, int point, int part){ char buf[LANGD];addedWord = 1;buf[0] = 0;Concat(buf, word, point, 0, part);}/* L�agg till en ny orddel */static void AddPart(char *ord, int point, int part){ int i;if (strlen(ord) <= 1) return; /* Strunta i enbokstavsord */if (delMaxAntalOrd[part] == 0) {delMaxAntalOrd[part] = 20;delOrd[part] = (char **) xmalloc(sizeof(char *) * delMaxAntalOrd[part]);i = 0;}for (i = 0; i < delAntalOrd[part]; i++) {if (!strcmp(ord, delOrd[part][i]+1))if (delOrd[part][i][0] > point)goto overwrite;elsereturn;if (!strcmp(ord + 1, delOrd[part][i] + 2)) {if (abs(*ord - *(delOrd[part][i])+1) == 'a' - 'A')if (delOrd[part][i][0] > point)goto overwrite;elsereturn;}}if (delAntalOrd[part] >= delMaxAntalOrd[part]) {delMaxAntalOrd[part] += 20;delOrd[part] = (char **) xrealloc(delOrd[part], sizeof(char *) *delMaxAntalOrd[part]);}delAntalOrd[part]++;addedWord = 1;overwrite:delOrd[part][i] = (char *) malloc(strlen(ord)+2);delOrd[part][i][0] = point;strcpy(delOrd[part][i]+1, ord);}/* rensa listan med orddelar */static void PartClear(int part){ int i;for (i = 0; i < delAntalOrd[part]; i++) free(delOrd[part][i]); 19

delAntalOrd[part] = 0;}/* Kolla om word finns i ordlistan. check styr vilka av ordlistorna EL, ILoch FL som ska anv�andas */INLINE void Check(char *word, int point, int part, int check){ /*fprintf(stderr, "(check %s %d %d %d)", word, point, part, check);*/if (check & CHECK_IL) {if (InIL(word)) {FyrAdderaOrd(word, point+WordFreq(word));return;}}if ((check & CHECK_EL)) {if (InEL(word) || (xAndelser && CheckSuffix(word))) {ConcatParts(word, point, part);return;}}if (check & CHECK_FL) {if (InFL(word, strlen(word))) {AddPart(word, point, part);return;}}return;}void Generera1(char *word, int from, int errors, int point, int part, int check){ int i, j, len, left, right, first, last, onlyswap;long l;char tmp1;char fyrbuf[LANGD+2], word2[LANGD];char *s;len = strlen(word);if (len < 2)return;sprintf(fyrbuf, "-%s-", word);for (s = fyrbuf; *s; s++) {if (*s >='a' && *s <= 'z'+3)*s-= 'a';else if (*s >='A' && *s <= 'Z'+3)*s -= 'A';else*s = 29;}last = -1;first = -1;for (i=0; i<len-1; i++) {l = ((fyrbuf[i] * 30 + fyrbuf[i+1]) * 30 + fyrbuf[i+2]) * 30 +fyrbuf[i+3];if (!(fyrtabell[l>>3] & (1 << (l&7)))) {last = i;if (first == -1)first = i;}}onlyswap = 0;20

if (errors == 1) {if (last == -1) { /* ingen felaktig fyrgraf */left = from;right = len;} else if (last-first > 4) { /* minst 2 fel */return;} else if (last-first == 4) {onlyswap = 0;left = last-1;right = first+3;} else { /* m�ojliga positioner f�or felet */left = last-1;right = first+3;}} else { /* se till att alltid fixa f�orsta felaktiga fyrgrafen */left = from;if (first == -1 || first+3 > len)right = len;elseright = first+3;}if (left < from)left = from;/*fprintf(stderr, "[%s %d %d %d %d]", word, first, last, left, right);*/if (last == -1)Check(word, point, part, check);if (errors == 0)return;/* swap two chars */for (i=left-1; i<right; i++) {if (i<0)continue;tmp1 = word[i];word[i] = word[i+1];word[i+1] = tmp1;if (errors == 1) {if (FyrKoll(word, i, 1))Check(word, point+SWAP(word[i+1], word[i]), part, check);} else {Generera1(word, i+1, errors-1,point+SWAP(word[i+2], word[i]), part, check);}tmp1 = word[i];word[i] = word[i+1];word[i+1] = tmp1;}if (onlyswap)return;/* remove char */tmp1 = word[left];strcpy(word2, word);for (i=left; i<right; i++) {strcpy(word2+i, word+i+1);if (errors == 1) {if (FyrKoll(word2, i, 0))Check(word2, point+DELP(word[i], word2[i])+((i==0)?FIRSTP:0), 21

part, check);} else {Generera1(word2, i+1, errors-1,point+DELP(word[i], word2[i])+((i==0)?FIRSTP:0), part,check);}word2[i] = word[i];}/* replace char */for (i=left; i<right; i++) {tmp1 = word[i];for (j='a'; j<='z'+3; j++) {if (j != tmp1) {word[i] = j;if (errors == 1) {if (FyrKoll(word, i, 0))Check(word, point+REPP(tmp1, j)+((i==0)?FIRSTP:0),part, check);} else {Generera1(word, i+1, errors-1,point+REPP(tmp1, j)+((i==0)?FIRSTP:0), part,check);}}}word[i] = tmp1;}/* insert char */strcpy(word2, word);strcpy(word2+left+1, word+left);for (i=left; i<right+1; i++) {for (j='a'; j<='z'+3; j++) {word2[i] = j;if (errors == 1) {if (FyrKoll(word2, i, 0))Check(word2, INSP(word2[i], word2[i+1])+((i==0)?FIRSTP:0),part, check);} else {Generera1(word2, i+1, errors-1,INSP(word2[i], word2[i+1])+((i==0)?FIRSTP:0), part,check);}}word2[i] = word2[i+1];}word2[len] = '\0';}/* Generera r�attstavningsf�orslag f�or word. H�ogst errors fel f�ar f�orekomma */static int Generera(char *word, int errors, int point, int part, int check){ int len, i;len = strlen(word);if (len > DELORDMAX)return -1;if (errors > 2)errors = 2;22

if (errors > 1 && (len <= 6 || xMaxOneError))errors = 1;for (i=0; i<=errors; i++) {addedWord = 0;/*fprintf(stderr, "{Gen %s %d %d}", word, i, errors);*/if (i == 0)Check(word, 0, part, check);elseGenerera1(word, 0, i, point, part, check);if (addedWord) {/*fprintf(stderr, "Found\n");*/return i;}}return -1;}/* Kolla om word �ar sammansatt som FL* EL. Om xTillatSIFogars�a till�at 's' i all fogar utom mellan 1:a och 2:a delen.Om xTillatSIAllaFogar s�a till�at 's' i alla fogar. */INLINE static void CompoundEdit(char *word, int offset, int part, int errors){ int end, tmp, len, before, res;len = strlen(word);AddPart("s", 0, part);if (offset == 0) {if (Generera(word, errors, 0, part, CHECK_EL | CHECK_IL) != -1)return;} else {if (Generera(word, errors, 0, part, CHECK_EL) != -1)return;}if (!xGenereraSammansatta || part+1 >= MAXORDDELAR)return;for (end=DELORDMIN; end<=len-DELORDMIN; end++) {tmp = word[end];word[end] = 0;before = fyrAntalOrd;PartClear(part);res = Generera(word, errors, 0, part, CHECK_FL);if (res != -1) {errors -= res;word[end] = tmp;CompoundEdit(word+end, offset+end, part+1, errors);if (((xTillatSIFogar && offset) || xTillatSIAllaFogar) &&word[end] == 's' &&bindebokstav[(unsigned char)word[end-1]] == 's') {PartClear(part+1);AddPart("s", 0, part+1);CompoundEdit(word+end+1, offset+end+1, part+2, errors);}#if 0 23

/* Hantera tex toppolitiker som topp|politiker */if (word[end-1] == word[end-2]) {CompoundEdit(word+end-1, offset+end-1, part+1, errors);}#endiferrors += res;}word[end] = tmp;}}void GenereraAlternativaOrd(char *wordin){ int len;len = strlen(wordin);if (len < 2)return;if (len < 7)CompoundEdit(wordin, 0, 0, 1);elseCompoundEdit(wordin, 0, 0, 2);}void OppnaRattstavaFil(void){ int i, j;char slask;char dub[] = "bdfgjlmnprstv";char vov[] = "aeiouy{|}";if (!(fyrf = fopen(XFYRGRAFER, "r"))) {#ifdef ISO8BITARfprintf(stderr,"Kan inte �oppna filen %s\n", XFYRGRAFER);#elsefprintf(stderr,"Kan inte |ppna filen %s\n", XFYRGRAFER);#endifexit(1);}if (fread(fyrtabell, sizeof(unsigned char), FGRAMSIZE, fyrf) !=FGRAMSIZE || fread(&slask, sizeof(char), 1, fyrf) == 1) {#ifdef ISO8BITARfprintf(stderr, "%s har fel format f�or att vara en fyrgraffil\n",XFYRGRAFER);#elsefprintf(stderr, "%s har fel format f|r att vara en fyrgraffil\n",XFYRGRAFER);#endiffclose(fyrf);exit(1);}fclose(fyrf);for (i=0; i<128; i++) {for (j=0; j<128; j++) {delap[i][j] = DELPVAL;insap[i][j] = INSPVAL;swapp[i][j] = SWAPVAL;replp[i][j] = REPPVAL;}}for (i=0; i<sizeof(dub); i++)24

insap[(int)dub[i]][(int)dub[i]] -= 4;insap[(int)'c'][(int)'k']--;for (i=0; i<sizeof(dub); i++)delap[(int)dub[i]][(int)dub[i]] -= 4;delap[(int)'c'][(int)'k']--;for (i=0; i<sizeof(vov); i++)for (j=0; j<sizeof(vov); j++)replp[(int)vov[i]][(int)vov[i]]--;replp[(int)'e'][(int)'a'] = REPPVAL-4;replp[(int)'a'][(int)'e'] = REPPVAL-4;replp[(int)'e'][(int)'i'] = REPPVAL-4;replp[(int)'i'][(int)'e'] = REPPVAL-4;replp[(int)'n'][(int)'m'] = REPPVAL-4;replp[(int)'m'][(int)'n'] = REPPVAL-4;replp[(int)'{'][(int)'e'] = REPPVAL-4;replp[(int)'e'][(int)'{'] = REPPVAL-4;replp[(int)'}'][(int)'o'] = REPPVAL-4;replp[(int)'o'][(int)'}'] = REPPVAL-4;replp[(int)'s'][(int)'c'] = REPPVAL-4;replp[(int)'g'][(int)'j'] = REPPVAL-4;replp[(int)'j'][(int)'g'] = REPPVAL-4;replp[(int)'v'][(int)'w'] = REPPVAL-2;replp[(int)'w'][(int)'v'] = REPPVAL-2;replp[(int)'c'][(int)'k'] = REPPVAL-2;}void SkrivForslag(char *ordin){ char ord2[LANGD + 3], Ord[LANGD + 3];int i, swapped;char *tmp;FyrSudda();GenereraAlternativaOrd(ordin);if (fyrAntalOrd == 0) {VersalerGemena(ordin, ord2, Ord);if (*ord2) GenereraAlternativaOrd(ord2);}if (fyrAntalOrd > 0) {/* bublesort the list */do {swapped = 0;for (i=0; i<fyrAntalOrd-1; i++) {if (fyrOrd[i][0] > fyrOrd[i+1][0]) {tmp = fyrOrd[i];fyrOrd[i] = fyrOrd[i+1];fyrOrd[i+1] = tmp;swapped = 1;}}} while (swapped);/* display the list */for (i = 0; i < fyrAntalOrd; i++) {/*printf("%d ", fyrOrd[i][0]);*/SkrivOrd(fyrOrd[i]+1);putchar(' ');if (i > MAXSUGGESTIONS) 25

break;}putchar('\n');} else printf("? hittar inga liknande ord\n");}

26

