
An object-oriented rule language for high-level text processing

Ola Knutsson, Johan Carlberger and Viggo Kann
Department of Numerical Analysis and Computer Science

Royal Institute of Technology
SE-100 44 Stockholm, Sweden

{knutsson, jfc, viggo}@nada.kth.se
www.nada.kth.se/theory/projects/granska/

Background
An object-oriented rule language was developed for the
application of a grammar-checker for Swedish, Granska
(Domeij et al, 2000). However, during the development of
the rule language, it has evolved to a more general rule
language for high-level text processing. There were several
objectives for the development process; but the main
was to design a rule language which is easy to use
and powerful and that is still robust and efficient. In
addition, maybe the most important objective: we wanted
to design and implement our own rule language for full
control and possibilities of extensions and experiments.

Object-orientation and linguistic
power
The rule language is object-oriented and has a syntax resem-
bling Java or C++. The linguistic expressive power is
influenced by Constraint Grammar (Karlsson, 1995) and lan-
guages for Finite State parsing (see for example Karttunen et
al, 1996). However, the rule language differs in its possibili-
ties for higher linguistic abstraction given by phrase structure
rules with features and values.

Rules for surface syntax analysis
Rules for grammar-checking have already been presented in
(Domeij et al, 2000; Knutsson, 2001) and therefore more
general parts of the rule language are presented. The rules
for general analysis are called help rules and can be used
as subroutines from other rules. A help rule that detects
Swedish noun phrases like en bil, den röda bilen and några
bilar is shown in Rule 1 below. The rule is on the form NP
--> Determiner (Adjective) Noun with internal agreement in
gender, number and species.
Rule 1:
NPmin@ {

X(wordcl=dt),
Y(wordcl=jj & gender=X.gender & num=X.num &
spec=X.spec)*,
Z(wordcl=nn & gender=X.gender & num=X.num &
spec=X.spec)

-->

action(help) }

Rule 1 has two parts separated with -->. The first part is
a matching condition and contains the head of the rule,
NPmin, and the rule body given by the variables X, Y
and Z. X contains the determiner and Z specifies that
the determiner should be followed by a noun (possibly
preceded by one or more (*) adjectives), which agrees in
gender (gender=X.gender), number (num=X.num) and spe-
cies (spec=X.spec). It is also possible to define recursive
rules, which is necessary for an efficient implementation of
for example Swedish noun phrases.
With the operator ; which means logical or between rules,
it is possible to define a union of rules, for example several

Rule 2:
NP@ {
(Npmin) () --> action(help);
…;
(NpwPP) () --> action(help)

}

The rule language has first of all been applied to grammar-
checking, but also with some success to the following areas:

• Tag correction, rules for correction of wrong part-of-
speech tagging. Tag correction can be done directly with
help rules, which reassign words, with a new correct tag.
• Clause boundary detection, rules for detection of clause
boundaries, see example below.
• Noun phrase recognition, rules for recognition of Swed-
ish noun phrases. Some examples of the NP-recognition
will be presented below.
• Transformations, rules for inflection and transformation
of words, phrases and clauses. This has only been tried
out experimentally, and will be further explored in the near
future.
• Syntactic functions, when we are satisfied with the flat
phrase structure analysis in Granska, we will start work
with syntactic functions.

These five applications will improve the grammar-checking
in Granska and will in the near future be used in the area of
text summarization.
The rule language is carefully implemented using yacc, flex
and C++. The rule syntax can easily be extended and new
methods can be implemented without much effort. The rule
matcher is optimized with statistical means.
The whole Granska system (with about 20 rule categories
and 250 error rules) processes about 3 500 words per
second on a SUN Sparc station Ultra 5, tagging included.
The numbers are hard to compare, but we believe
that we have achieved a comparably high performance.

Clause boundary rules
Clause boundaries are important for all kind of syntactic
analysis. One of the clause boundary recognition rules, is like
the following below: it states that there is a clause boundary
if a conjunction (Y) is preceded and followed by a pronoun,
noun, proper noun or an adverb. The rule is inspired by
Ejerhed’s algorithm for finite state segmentation of discourse
into clauses (Ejerhed, 1999). The rule is context-sensitive
which means that only the conjunction is matched as
a clause boundary delimiter by other rules. In this
way, words or sequences of words can be assigned
with new labels like for example clause boundary
delimiters, syntactic functions or conjunction types.

cl_del@ {
V(sed!=sen),
X((wordcl=pn & pnf=sub)|
(wordcl=pm & case=nom) |
(wordcl=nn & case=nom) |
wordcl=ab),
ENDLEFTCONTEXT,
Y(wordcl=kn),
BEGINRIGHTCONTEXT,
Y2(((wordcl=pn & pnf=sub) |
(wordcl=pm & case=nom) |
(wordcl=nn & case=nom) |
wordcl=ab) & wordcl=X.wordcl),
Z(wordcl=vb & (vbf=prs | vbf=prt | vbf=imp))
-->
action(help, text:=Y.text,wordcl:=Y.wordcl)

}

Example output from Granska’s rule
matcher
All NPs, PPs and other constructions that Granska recognizes
will not be presented here; instead, the analysis of two simple
sentences will presented with output from Granska’s rule
matcher. The morfosyntactic values of a word or a phrase
are given in column 3. Column 4 presents the regent rule
that has been applied. Many rules need other help rules for
detection; however, the help rules are only applied if neces-
sary. The sentence examples below are taken from Källgren
(1992). The output format from the rule matcher is “work in
progress”.
The first example shows that only the ”best” NP-candidates
are presented. These choices are mainly done with heuristics
and longest matchings.

Input: Hunden eller katten äter fisken och köttet.
(The dog or the car eats the fish and the meat)
Output:
0 $ <sen clb> (clbegin)
1-3 Hunden eller katten <nn utr sin def nom> (np_comp)
4 äter <vb prs akt> (vbchain4)
5-7 fisken och köttet <nn utr plu def nom> (np_comp)
8 . <mad cle> (clbegin)

The second example gives a problem of coordination. The
conjunction can operate between NPs or between clauses.
The rules for clause boundary recognition (clbegin and clend)
detect that the conjunction och is coordinating two clause and
not the two NPs köttet and katten. All NPs in the sentence are
minimal and contain only a definite noun.

Input: Hunden äter köttet och katten äter fisken.
(The dog eats the meat and the cat eats the fish)
Output:
0 $ <sen clb> (clbegin)
1 Hunden <nn utr sin def nom> (np_min)
2 äter <vb prs akt> (vbchain4)
3 köttet <nn neu sin def nom> (np_min)
 <cle> (clend)
4 och <kn clb> (clbegin)
5 katten <nn utr sin def nom> (np_min)
6 äter <vb prs akt> (vbchain4)
7 fisken <nn utr sin def nom> (np_min)
8 . <mad cle> (clend)

References
Domeij, R., Knutsson, O., Carlberger, J. & Kann, V. (2000).
Granska – an efficient hybrid system for Swedish grammar
checking. I Proc. 12th Nordic Conference in Computational
Linguistics, Nodalida-99. Department of Linguistics, Norwe-
gian University of Science and Technology, Trondheim, pp.
49-56.

Ejerhed, E., Källgren, G., Wennstedt, O. & Åström M. (1992)
The Linguistic annotation system of the Stockholm-Umeå
Corpus project. Technical Report DGL-UUM-R-33, Depart-
ment of General Linguistics, University of Umeå, Umeå,
Sweden.

Ejerhed, E. (1999). Finite state segmentation of discourse into
clauses. I A. Kornai, editor, Extended Finite State Models
of Language. Cambridge University Press, chapter 13. Cam-
bridge.

Karlsson, F. (1995). The Formalism and Environment of
Constraint Grammar Parsing. In Karlsson, F. Voutilainen, A.
Heikkilä, J. & Anttila, A. (eds.). Constraint Grammar. A
Language Independent System for Parsing Unrestricted Text,
Mouton de Gruyter, Berlin, Germany.

Karttunen, L. Chanod, J.P. Grefenstette, G. Schiller, A. (1996)
Regular Expressions for Language Engineering, in Natural
Language Engineering 2 (4) pp. 305-328.

Knutsson, O. (2001) Automatisk språkgranskning av svensk
text. Licentiatavhandling, TRITA-NA-01-5, ISBN 91-7283-
052-2, Institutionen för numerisk analys och datalogi, Kun-
gliga Tekniska Högskolan, Stockholm.

Källgren, G. (1992). Making maximal use of morphology in
large-scale parsing: the MorP parser. PILUS 60, Department
of Linguistics, Stockholm University, Stockholm.

By this construction, it is possible to add increasingly lin-
guistic information with only minor changes in the rule code.
This is important for the development process and helps
the grammarian to keep control over the rule collection.

