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Abstract

We study constraint satisfaction problems on the domain {−1, 1}, where the given constraints
are homogeneous linear threshold predicates. That is, predicates of the form sgn(w1x1 + · · · +
wnxn) for some positive integer weights w1, . . . , wn. Despite their simplicity, current techniques
fall short of providing a classification of these predicates in terms of approximability. In fact,
it is not easy to guess whether there exists a homogeneous linear threshold predicate that is
approximation resistant or not.

The focus of this paper is to identify and study the approximation curve of a class of threshold
predicates that allow for non-trivial approximation. Arguably the simplest such predicate is the
majority predicate sgn(x1 + · · ·+xn), for which we obtain an almost complete understanding of
the asymptotic approximation curve, assuming the Unique Games Conjecture. Our techniques
extend to a more general class of “majority-like” predicates and we obtain parallel results for
them. In order to classify these predicates, we introduce the notion of Chow-robustness that
might be of independent interest.

1 Introduction

Constraint satisfaction problems or more succinctly CSPs are at the heart of theoretical computer
science. In a CSP we are given a set of constraints, each putting some restriction on a constant
size set of variables. The variables can take values in many different domains but in this paper we
focus on the case of variables taking Boolean values. This is the most fundamental case and it has
also attracted the most attention over the years. We also focus on the case where each condition
is given by the same predicate, P , applied to a sequence of literals. The role of this predicate P is
key in this paper and as it is more important for us than the number of variables, we reserve the
letter n for the arity of this predicate while using N to be the number of variables in the instance.
We also reserve m to denote the number of constraints.

Traditionally we ask for an assignment that satisfies all constraints and in this case it turns out
that all Boolean CSPs are either NP-complete or belong to P and this classification was completed
already in 1978 by Schaefer [15]. In this paper we study Max-CSPs which are optimization problems
where we want to satisfy as many constraints as possible. Almost all Max-CSPs of interest turn
out to be NP-hard and the main focus is that of efficient approximability.

The standard measure of approximability is given by a single number C and an algorithm is
a C-approximation algorithm if it, on each input, finds an assignment with an objective value
that is at least C times the optimal value. Here we might allow randomization and be content if
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the assignment found satisfies these many constraints on average. A more refined question is to
study the approximation curve where for each constant c, assuming that the optimal assignment
satisfies cm constraints, we want to determine the maximal number of constraints that we can
satisfy efficiently.

To get a starting point to discuss the quality of approximation algorithms it is useful to first
consider the most simple algorithm that chooses the values of the variables randomly and uniformly
from all values in {0, 1}N . If the predicate P is satisfied by t inputs in {0, 1}n it is easy to see that
this algorithm, on the average, satisfies mt2−n constraints. By using the method of conditional
expectations it is also easy to deterministically find an assignment that satisfies this number of
constraints.

A very strong type of hardness result possible for a Max-CSP is to prove that, even for instances
where the optimal assignment satisfies all constraints, it is NP-hard to find an assignment that does
significantly better (by a constant factor independent of N) than the above trivial algorithm. We
call such a predicate “approximation resistant on satisfiable instances”. A somewhat weaker, but
still strong, negative result is to establish that the approximation ratio given by the trivial algorithm,
namely t2−n, is the best approximation ratio that can be obtained by an efficient algorithm. This
is equivalent to saying that we cannot satisfy significantly more than mt2−n constraints when given
an almost satisfiable instance. We call such a predicate “approximation resistant”. It is a basic fact
that, unless P=NP, Max-3-Sat (i.e. when P is the disjunction of the three literals) is approximation
resistant on satisfiable instances and Max-3-Lin (i.e. when P is the exclusive-or of three literals) is
approximation resistant [8].

When it comes to positive results on approximability the most powerful technique is semi-
definite programming introduced in this context in the classical paper by Goemans and Williamson
[6] studying the approximability of Max-Cut, establishing the approximability constant αGW ≈
.878. In particular, this result implies that Max-Cut is not approximation resistant. Somewhat
surprisingly as proved by Khot et al. [12], this constant has turned out, assuming the Unique Games
Conjecture, to be best possible. We note that these results have been extended in great generality
and O’Donnell and Wu [14] determined the complete approximation curve of Max-Cut.

The general problem of determining which predicates are approximation resistant is still not
resolved but as this is not the main theme of this paper let us cut this discussion short by mentioning
a general result by Austrin and Mossel [2]. This paper relies on the Unique Games Conjecture by
Khot [11] and proves that, under this conjecture, any predicate such that the set P−1(1) supports
a pairwise independent measure is approximation resistant.

On the algorithmic side there is a general result by Hast, [7], that is somewhat complementary
to the result of Austrin and Mossel. Hast considers the real valued function P≤2 which is the sum
of the linear and quadratic parts of the Fourier expansion of P . Oversimplifying slightly, the result
by Hast says that if P≤2 is positive on all inputs accepted by P then we can derive a non-trivial
approximation algorithm and hence P is not approximation resistant.

To see the relationship between the results of Austrin and Mossel, and Hast, note that the
condition of Austrin and Mossel is equivalent to saying that there is a probability distribution on
inputs accepted by P such that the average of any quadratic function1 is 0. In contrast, Hast needs
that a particular quadratic function is positive on all inputs accepted by P . It is not difficult to
come up with predicates that satisfies neither of these two conditions and hence we do not have
a complete classification, even if we are willing to assume the Unique Games Conjecture. The
combination of the two results, however, points to the class of predicates that can be written on

1Throughout this work, we find it more convenient to represent Boolean values by {-1,+1} rather than {0,1}.
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the form
P (x) = sgn(Q(x))

for a quadratic function Q as an interesting class of predicates to study and this finally brings us
to the topic of this paper. We study this scenario in the simplest form by assuming that Q is in
fact a linear function, L, without a constant term in the case when our Boolean variables take the
values ±1. In other words we have

P (x) = sgn(L(x)) = sgn

(
n∑

i=1

wixi

)
,

for some, without loss of generality, positive integral weights (wi)n
i=1. Note that if we allow a

constant term in L the situations is drastically different as for instance 3-SAT is the sign of linear
form if we allow a non-zero constant term. One key difference is that a probability distribution
supported on the set “L(x) > 0” cannot have even unbiased variables in the case when L is without
constant term and thus hardness results such as the result by Austrin and Mossel do not apply.

To make life even simpler we make sure that L never takes the value 0 and as L(−x) = −L(x),
P accepts precisely half of the inputs and thus the number of constraints satisfied by a random
assignment is, on the average, m/2.

The simplest such predicate is majority of an odd number of inputs. For this predicate it easy
to see that Hast’s condition is fulfilled and hence, for any odd value of n, his results imply that
majority is not approximation resistant. This result generalizes to “majority-like” functions as
follows. For a linear threshold functions, the Chow parameters, ~P = (P̂ (i))n

i=0, [3] are for, i > 0,
defined to be the correlations between the output of the function and inputs xi. We have that
P̂ (0) is the bias of the function and thus in our case this parameter is always equal to 0 and hence
ignored.

Now if we order the weights (wi)n
i=1 in nondecreasing order then also the P̂ (i)’s are nondecreasing

but in general quite different from the weights. It is well known that the Chow parameters determine
the threshold function uniquely [3] but the computational problem of given ~P , how to recover the
weights, or even to compute P efficiently is an interesting problem and several heuristics have been
proposed [10, 17, 9, 4] together with an empirical study that compares various methods [18]. More
recently, the problem of finding an approximation of P given the Chow parameters has received
increased attention, see e.g. [13] and [5]. The most naive method is to use ~P as weights. This
does not work very well in general but this is a case of special interest to us as it is precisely when
this method gives us back the original function that we can apply Hast’s results directly. We call
such a threshold function “Chow-robust” and we have not been able to find the characterization
of this class of function in the literature. If we ignore some error terms and technical conditions a
sufficient condition to be Chow-robust is roughly that

n∑
i=1

(w3
i − wi) ≤ 3

n∑
i=1

w2
i (1)

and thus it applies to functions with rather modest weights. We believe that this condition is not
very far from necessary but we have not investigated this in detail.

Having established non-approximation resistance for such predicates we turn to study the full
curve of approximability and, in asymptotic sense as a function of n, we get almost tight answers
establishing both approximability results and hardness results. Our results do apply with degrading
constants to more general threshold functions as our predicate P but let us here state them for
majority. We have the following theorem.
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Theorem 1.1. (Informal) Given an instance of Max-Maj-n with n odd and m constraints, assume
that the optimal assignment satisfies (1 − δ

n+1)m, for δ < 1. Then it is possible to efficiently find

an assignment that satisfies
(

1
2 + Ω

(
(1−δ)3/2

n1/2

)
−O

(
log4 n
n5/6

))
m constraints.

Thus for large n we need almost satisfiable instances to get above the threshold 1
2 obtained

by a a random assignment. This might seem weak but we prove that this is probably the correct
threshold.

Theorem 1.2. (Informal) Assume the Unique Games Conjecture and let ε > 0 be arbitrary. Then
it is NP-hard to distinguish instances of Max-Maj-n where the optimal value is (1 − 1

n+1 − ε)m,
from those where the optimal value is (1

2 + ε)m.

This proves that the range of instances to which Theorem 1.1 applies is essentially the correct
one. A drawback of this theorem is that the error term in Theorem 1.1 dominates the systematic
contribution of (1− δ)3/2n−1/2 for δ very close to 1 and hence the threshold is not sharp. We are,
however, able to sharply locate the threshold where something nontrivial can be done by combining
our result with the general results by Hast. For details, see Section 3.

To see that the advantage obtained by the algorithm is also the correct order of magnitude we
have the following theorem.

Theorem 1.3. (Informal) Assume the Unique Games Conjecture and let ε > 0 be arbitrary. Then
there is an absolute constant c such that it is NP-hard to distinguish instances of Max-Maj-n where
the optimal value is (1− ε)m, from those where the optimal value is (1

2 + c√
n

+ ε)m.

In summary, we get an almost complete understanding of the approximability curve of majority,
at least in an asymptotic sense as a function of n. This complements the results for majority on
three variables, for which there is a 2/3-approximation algorithm [19] and it is NP-hard to do
substantially better [8].

The idea of the algorithm behind Theorem 1.1 is quite straightforward while its analysis gets
rather involved. We set up a natural linear program which we solve and then use the obtained
solution as biases in a randomized rounding. The key problem that arises is to carefully analyze
the probability that a sum of biased Boolean variables is positive. In the case of majority-like
variables we have the additional complication of the different weights. This problem is handled by
writing the probability in question as a complex integral and then estimating this integral by the
saddle-point method.

The hardness results given in Theorem 1.2 and Theorem 1.3 resort to the techniques of Austrin
and Mossel [2]. The key to these results is to find suitable pairwise independent distributions
relating to our predicate. In the case of majority it is easy to find such distributions explicitly,
while in the case of more general weights the construction gets more involved.

In particular, we need to answer the following question: What is the minimal value of Pr[L(x) <
0] when x is chosen according to a pairwise independent distribution. This again is a nice combi-
natorial question of independent interest.

An outline of the paper is as follows. In Section 2, we present notations and conventions used
throught the paper, and also prove a result on weighted sums of balanced Bernoulli random variables
that is used in the following sections. This is followed by the adaptation of Hast’s algorithm for odd
Chow-robust predicates and the proof that (essentially) the condition

∑n
j=1 w3

j−wj ≤ 3
∑n

j=1 w2
j on

the weights is sufficient for a predicate to be Chow-robust. In Section 4, we present and analyze our
main algorithm for Chow-robust predicates (Theorem 1.1 for the special case of majority). These
positive results are then complemented in Section 5 where we show essentially tight hardness results
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assuming the increasingly prevalent Unique Games Conjecture. Finally, we discuss the obtained
results together with interesting future directions (Section 6).

2 Preliminaries and Basic Technical Tools

In this section we introduce some notation and recall some results in computational analysis.

2.1 Notation

We consider the optimization problem Max-CSP(P ) for homogeneous linear threshold predicates
P : {−1, 1}n → {−1, 1} of the form P (x) = sgn(w1x1 + · · · + wnxn), where we assume that the
weights are non-decreasing positive integers 1 ≤ w1 ≤ . . . ≤ wn such that

∑n
j=1 wj is odd and

wmax := maxj wj = wn. The special case of equal weights, which requires n to be odd, is denoted
by Majn, and we also write Max-Maj-n for Max-CSP(Majn). Using Fourier expansion, any such
function can be written uniquely as

P (x) =
∑

S⊆[n]

P̂ (S)
∏
j∈S

xj .

The Fourier coefficients are given by

P̂ (S) = E[P (X)
∏
j∈S

Xj ],

where X is uniform on {−1, 1}n. Since all homogeneous linear threshold predicates are odd we
have P̂ (S) = 0 when |S| is even. We also write P̂ (j) = P̂ ({j}) for the first level Fourier coefficients
(i.e. the Chow parameters) and let P−1(1) denote the set of assignments that satisfy P , i.e.
P−1(1) = {x : P (x) = 1}.

For an instance I = (m,N, l, s) of Max-CSP(P ) consisting of m constraints, N variables and
matrices l ∈ Nm×n, s ∈ {−1, 1}m×n, the objective is to maximize the number of satisfied constraints
or, equivalently, the average advantage

Adv(x) :=
1
m

m∑
i=1

P (si,1xli,1 , . . . , si,nxli,n)

subject to x ∈ {−1, 1}N .

2.2 Complex analysis background

We frequently use complex analysis to compute coefficients in series represented by generating
functions. Recall that any complex function f which is analytic in a neighborhood, 0 < |z| < r0,
of z = 0 can be represented as a Laurent series:

f(z) =
n=∞∑

n=−∞
anzn , 0 < |z| < r0.

The residue of f at z = 0,
Res
z=0

f(z) = a−1,

can then be computed using Cauchy’s Residue Theorem, which we state in a simplified form here:
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Theorem 2.1 (Cauchy). Let C be a positively oriented simple closed contour containing the origin.
If f is analytic inside and on C except at z = 0, then

Res
z=0

f(z) =
1

2πi

∮
C

f(z)dz

Thus, in order to compute the n’th coefficient bn in a generating function

∞∑
n=0

bnzn = g(z) , |z| < r0

we may apply Cauchy’s theorem to g(z)z−(n+1) with a suitably selected contour.

2.3 Common Lemmas

We now present a technical lemma that is used in our calculations to bound integrands on the unit
circle when we are not close to the point z = 1.

Lemma 2.2. Suppose we are given real numbers pj, 1
4 ≤ pj ≤ 3

4 , 1 ≤ j ≤ n and positive integers
(wj)n

j=1 such that
∑n

j=1 w3
j < 100n. Furthermore suppose that for at least t different values of j we

have wj = 1. Let qj = 1− pj, then for any ϕ, 0 ≤ ϕ ≤ π we have

|
n∏

j=1

(qj + pje
wjiϕ)| ≤ e−0.01 min(t,ϕ2n).

Proof. By multiplying by the conjugate we see that

|qj + pje
wjiϕ|2 = p2

j + q2
j + 2pjqj cos(wjϕ) = 1 + 2pjqj(cos(wjϕ)− 1). (2)

Observe that for any ϕ, π/8 ≤ ϕ ≤ π/2 we have

1 + 2pjqj(cos(ϕ)− 1) ≤ 1 + 2 · 3
16

(cos(π/8)− 1),

which can be seen to be at most e−0.02. As we have wj = 1 for t different values of j, the product
of the lemma is bounded by e−t/100 for this range of ϕ and we turn to values 0 ≤ ϕ ≤ π/8.

We claim that for any x, 0 ≤ x ≤ π/2 we have cos(x) ≤ 1 − 4x2

π2 . To see this note that for
g(x) = 1 − cos(x) − 4x2

π2 we have g(0) = g(π/2) = 0, g′(0) = 0, g′′(0) > 0 and g′′′(x) ≤ 0 in the
entire interval. It follows that each of g′′(x) and g′(x) has a unique 0 in the interval 0 < x ≤ π/2
and g is unimodal.

As pj + qj = 1 and each of these numbers is at least 1/4 it follows that (2), for wj ≤ 4 and the
set of ϕ we are considering, is bounded by

1− 3
8
·
4w2

j ϕ
2

π2
≤ e−ϕ2/20.

By the condition on the sum of cubes we have at least n/5 different j with wj ≤ 4 and thus the
lemma follows also in this case.

To evaluate an integral with integrand ϕke−aϕ2
, we use the following well known results.
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Lemma 2.3 (Standard Integral). For k > −1 and a > 0,∫ ∞

0
ϕke−aϕ2

dϕ =
1
2
Γ
(

k + 1
2

)
a−

k+1
2 .

Lemma 2.4 (Tail bound). For k > −1, and sequences a(n) ≥ 0 and ϕ0(n) ≥ 0 such that a(n) =
Ω(1) and ϕ0(n) = O(1), ∫ ∞

ϕ0(n)
ϕke−a(n)ϕ2

dϕ = O(e−a(n)ϕ2
0(n))

Proof. To ease notation we drop the explicit dependence on n. By a change of variables, and using
(x + y)k ≤ (2x)k + (2y)k,∫ ∞

ϕ0

ϕke−aϕ2
dϕ =

∫ ∞

0
(ϕ + ϕ0)ke−a(ϕ+ϕ0)2 dϕ ≤

∫ ∞

0
[(2ϕ)k +O(1)]e−aϕ2−aϕ2

0 dϕ

= e−aϕ2
0

∫ ∞

0
(2kϕk +O(1))e−aϕ2

dϕ = e−aϕ2
0O(1)

where the last inequality follows from Lemma 2.3.

2.3.1 Balanced Bernoulli Random Variables

We say that a random variable X is a balanced Bernoulli random variable if Pr[X = 1] = Pr[X =
0] = 1/2. Here, we present two lemmas that are useful in Sections 3 and 5, where we analyze
weighted sums of balanced Bernoulli random variables.

Lemma 2.5. Suppose we are given n balanced Bernoulli random variables Y1, Y2, . . . , Yn and posi-
tive integers (wj)n

j=1 such that
∑n

j=1 w3
j < 100n. Furthermore, suppose that for at least 400 log n−2

different values of j we have wj = 1. Then for any ϕ0 ≥ 1
10

log n√
n

and any integer t such that∑n
j=1 wj + t = 0 mod 2,

Pr

 n∑
j=1

wjYj =

∑n
j=1 wj + t

2

 =
1
π

∫ ϕ0

0
cos(ϕt/2)

n∏
j=1

cos(wjϕ/2) +O
(

1
n4

)
.

Proof. Let Y =
∑n

j=1 wjYj . The probability generating function of Y is

g(z) =
n∏

j=1

1 + zwj

2
.

Letting W =
∑n

j=1 wj and

f(z) =
g(z)

z(W+t)/2+1

Cauchy’s Residue Theorem gives

Pr

 n∑
j=1

wjYj =

∑n
j=1 wj + t

2

 =
1

2πi

∮
C

f(z)dz,

where we take C to be the unit circle,

C : z = eiϕ 0 ≤ ϕ ≤ 2π.
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As f(z) = f(z),

1
2πi

∮
C

f(z)dz =
1
π

∫ π

0
Re[eiϕf(eiϕ)]dϕ.

Expanding f(eiϕ) give us that

eiϕf(eiϕ) = g(eiϕ)e−iϕ(W+t)/2

=

 n∏
j=1

1 + eiwjϕ

2

 e−iϕ(W+t)/2

By Lemma 2.2,
∣∣∣∏n

j=1
1+eiwjϕ

2

∣∣∣ = O(e−4 log n+2) = O(n−4) whenever ϕ ≥ ϕ0. Hence

∫ π

ϕ0

 n∏
j=1

1 + eiwjϕ

2

 e−iϕ(W+t)/2dϕ = O
(

1
n4

)

and we have thus that 1
2πi

∮
C f(z)dz = 1

π

∫ ϕ0

0 Re[eiϕf(eiϕ)dϕ] + O
(

1
n4

)
. Multiplying each factor

1+eiwjϕ

2 of g(eiϕ)) by e−iϕwj/2 gives that

eiϕf(eiϕ) =

 n∏
j=1

1 + eiwjϕ

2

 e−iϕ(W+t)/2

=

 n∏
j=1

e−iwjϕ/2 + eiwjϕ/2

2

 e−iϕt/2.

The real part of this can thus be written as n∏
j=1

cos(wjϕ/2)

 cos (ϕt/2) ,

which completes the proof of the lemma.

Lemma 2.6. Suppose we are given positive integers (wj)n
j=1 such that

∑n
j=1 w3

j = O(n). Then for
any ϕ0 : 10 log n√

n
≥ ϕ0 ≥ 1

10
log n√

n
and any k : −1 < k ≤ 10

∫ ϕ0

0
ϕk

n∏
j=1

cos(ϕwj/2)dϕ =
(
1 +O

(wmax

n

)) 1
2
Γ
(

k + 1
2

)(
W (2)

8

)− k+1
2

,

where wmax = maxj wj and W (2) =
∑n

j=1 w2
j .

Proof. Let h(ϕ) =
∏n

j=1 cos(ϕwj/2). We may use Taylor expansion to write

cos(wjϕ/2) = 1−
w2

j

8
ϕ2 + w4

jO(ϕ4) = e−
w2

j
8

ϕ2+w4
jO(ϕ4)

and hence
h(ϕ) = e−

W (2)

8
ϕ2+W (4)O(ϕ4) = e−

W (2)

8
ϕ2
(
1 + W (4)O(ϕ4)

)
,
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where W (2) =
∑n

j=1 w2
j and W (4) =

∑n
j=1 w4

j . As W (2) · ϕ2
0 = ω(log n), Lemma 2.4 gives that∫ ∞

ϕ0

ϕke−
W (2)

8
ϕ2
(
1 + W (4)O(ϕ4)

)
dϕ = e−ω(log n)

and thus∫ ϕ0

0
ϕke−

W (2)

8
ϕ2
(
1 + W (4)O(ϕ4)

)
dϕ =

∫ ∞

0
ϕke−

W (2)

8
ϕ2
(
1 + W (4)O(ϕ4)

)
dϕ + e−ω(log n).

Further, by Lemma 2.3

∫ ∞

0
ϕke−

W (2)

8
ϕ2
(
1 + W (4)O(ϕ4)

)
dϕ =

1
2
Γ
(

k + 1
2

)(
W (2)

8

)− k+1
2

+O(W (4))
(
W (2)

)− k+5
2

.

As W (4) ≤ wmax
∑n

j=1 w3
j = O(wmaxn) and W (2) = Ω(n), we have that O(W (4) · (W (2))−2) =

O
(

wmax
n

)
and the lemma follows.

3 Adaptation of the Algorithm by Hast

Using Fourier expansion we may write the advantage of an assignment to a Max-CSP(P ) instance
as

Adv(x) =
1
m

m∑
i=1

sgn

 n∑
j=1

wjsi,jxli,j

 =
∑

S⊆[N ]:|S|≤n

cS

∏
k∈S

xk. (3)

Hast [7] gives a general approximation algorithm for Max-CSP(P ) that achieves a non-trivial
approximation ratio whenever the linear part of the instance’s objective function is large enough.
We use his algorithm, but as our basic predicates are odd we have that cS = 0 for any S of even
size and we get slightly better bounds.

Theorem 3.1. For any δ > 0, there is a polynomial time algorithm which given an instance of
Max-CSP(P ) with objective function

Adv(x1, . . . , xN ) =
∑

S⊆[N ],|S|≤n

cS

∏
k∈S

xk

satisfying
∑N

k=1 |c{k}| ≥ δ and cS = 0 for any set S of even cardinality, achieves E[Adv(x)] ≥ δ3/2

8n3/4 .

Proof. Let ε > 0 be a parameter to be determined. We set each xi randomly and independently
to one with probability (1 + sgn(c{i})ε)/2. Clearly this implies that E[c{i}xi] = ε|c{i}| and that
|E[
∏

k∈S xk]| = ε|S|.
By Cauchy Schwarz inequality and Parseval’s identity we have that

∑
|T |=k

|P̂ (T )| ≤
(

n

k

)1/2
∑
|T |=k

P̂ 2(T )

1/2

≤
(

n

k

)1/2

and hence ∑
|S|=k

|cS | ≤
(

n

k

)1/2

. (4)
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We conclude that the advantage of the given algorithm is, given that cS = 0 for even cardinality
S, at least

ε

n∑
i=1

|ci| −
∑
|S|≥3

εk|cS | ≥ εδ −
n∑

k=3

εk

(
n

k

)1/2

. (5)

The sum in (5) is, provided ε ≤ (2
√

n)−1, and using Cauchy-Schwarz bounded by(
n∑

k=3

(
1
n

)k (n

k

))1/2( n∑
k=3

(ε2n)k

)1/2

≤
(

1 +
1
n

)n/2

(2ε6n3)1/2 ≤ 3ε3n3/2,

where we used
∑n

k=0

(
1
n

)k (n
k

)
=
(
1 + 1

n

)n and
∑n

k=3(ε
2n)k ≤ ε6n3

∑∞
k=0

1
2k for the first inequality.

Setting ε = δ1/2(2n3/4)−1, which is at most (2
√

n)−1 by (4), we see that the advantage of the
algorithm is εδ − 3ε3n3/2 = δ3/2

8n3/4 and the proof is complete.

Let us see how to apply Theorem 3.1 in the case when P is majority of n variables. Suppose
we are given an instance that is 1− δ

n+1 satisfiable and let us consider

N∑
i=1

c{i}αi (6)

where xi = αi is the optimal solution and prove that this is large. Any lower bound for this is
clearly a lower bound for

∑N
i=1 |c{i}|.

Let P̂1 be the value of any Fourier coefficient of a unit size set. Then any satisfied constraint
contributes at least P̂1 to (6) while any other constraint contributes at least −nP̂1. We conclude
that (6) is at least (

1− δ

n + 1

)
P̂1 −

δ

n + 1
nP̂1 = (1− δ)P̂1.

Using Theorem 3.1 and the fact that P̂1 = Θ(n−1/2) we get the following corollary.

Theorem 3.2. Suppose we are given an instance of Max-Maj-n which is (1 − δ
n+1)-satisfiable.

Then it is possible, in probabilistic polynomial time, to find an assignment that satisfies a fraction
1
2 + Ω((1− δ)3/2n−3/2) of the constraints.

Let us sketch how to generalize this theorem to predicates other than majority. Clearly the
key property is to establish that the sum (6) is large when most constraints can be simultaneously
satisfied. In order to have any possibility for this to be true it must be that whenever a constraint
is satisfied, then the contribution to (6) is positive and this is exactly being “Chow-robust” as
discussed in the introduction. Furthermore, to get a quantitative result we must also make sure
that it is positive by some fixed amount. Let us turn to a formal definition.

Recall that the Chow parameters of a predicate P is its degree-0 and degree-1 Fourier coeffi-
cients, i.e., P̂ (0), P̂ (1), . . . , P̂ (n) for i = 1, 2, . . . , n. As we are here dealing with an odd predicate,
P̂ (0) = 0. If it holds for all x ∈ {−1, 1}n that P (x) = sgn(P̂ (1)x1 + P̂ (2)x2 + · · ·+ P̂ (n)xn), we say
that the predicate is Chow-robust and it is γ-Chow-robust iff

0 < γ ≤ min
x:P (x)=1

 n∑
j=1

P̂ (j)xj

 .

Let us state our extension of Theorem 3.2 in the present context.
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Theorem 3.3. Let P (x) = sgn(w1x1 + w2x2 + · · · + wnxn) be a γ-Chow-robust predicate and
suppose that I is a 1− δγ

γ+
Pn

j=1 P̂ (j)
satisfiable instance of Max-CSP(P ) where δ < 1. Then there is

a polynomial time algorithm that achieves E[Adv(x)] = (1−δ)3/2γ3/2

8n3/4 .

Proof. The linear part of the advantage of an assignment can be written as

N∑
k=1

c{k}xk =
1
m

m∑
i=1

n∑
j=1

P̂ (j)si,jxli,j .

For any assignment x we have thus

N∑
k=1

|c{k}| ≥
1
m

m∑
i=1

n∑
j=1

P̂ (j)si,jxli,j .

Now since I is 1 − δγ

γ+
Pn

j=1 P̂ (j)
satisfiable there is an assignment x such that for at least a 1 −

δγ

γ+
Pn

j=1 P̂ (j)
fraction of the constraints

P (si,1x`i,1
, . . . , si,nx`i,n

) = 1 and thus
n∑

j=1

P̂ (j)si,jx`i,j
≥ γ

using that P is γ-Chow-robust. As the linear part of the remaining constraints is greater than
−
∑n

j=1 P̂ (j), we have that

N∑
k=1

|c{k}| ≥ 1
m

m∑
i=1

n∑
j=1

P̂ (j)si,jxli,j

≥

(
1− δγ

γ +
∑n

j=1 P̂ (j)

)
γ − δγ

γ +
∑n

j=1 P̂ (j)

n∑
j=1

P̂ (j)

= (1− δ)γ.

Theorem 3.1 now gives the result.

Given Theorem 3.3 it is interesting to discuss sufficient conditions for P to be Chow-robust and
we have the following theorem.

Theorem 3.4. Suppose we are given positive integers (wj)n
j=1 such that

β(w) := 1−
∑n

j=1(w
3
j − wj)

3
∑n

j=1 w2
j

> 0. (7)

Further, suppose that for at least 400 log n different values of j, say 1, 2, . . . , n1, we have wj = 1.
Then the predicate P (x) = sgn(x1 + · · · + xn1 + wn1+1xn1+1 + · · · + wnxn) is γ-Chow-robust with
γ =

(
β(w)−O

(
w2

max
n

))
P̂ (1), provided that n is large enough so that this is positive.

Before presenting the proof of the above theorem, let us comment on the condition on the
Ω(log n) weights that we require to be one. This should be viewed as a technical condition and
we could have chosen other similar conditions. In particular, we have made no effort to optimize
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the constant 400. In our calculations this condition is used to bound the integrand of a complex
integral on the unit circle when we are not close to the point z = 1 and this could be done in many
ways. We would like to point out that although there are choices for the technical condition, some
condition is needed. The condition should imply some mathematical form of “when z on the unit
circle is far from 1 then many numbers of the form zwj are not close to 1”. Sets of weights violating
such conditions are cases when almost all weights have a common factor. An interesting example is
the function which, for odd n, has n− 4 weights equal to 3 and 4 weights equal to 1. This function
is not Chow-robust for any value of n. The above example shows that there are functions with
weights of at most 3 that are not Chow-robust. This is a tight bound as the techniques used in
the proof of Theorem 3.4 can be used to show that a function with all weights equal to 1 or 2 is
Chow-robust.

Proof of Theorem 3.4

Let us start with a lemma that can be used to bound higher moments of the weights when β(w) > 0.

Lemma 3.5. Let w = (w1, . . . , wn) be positive integers such that β(w) > 0. Then
∑n

j=1 w3
j ≤ 64n

and wmax ≤ 4n1/3.

Proof. Since β(w) > 0 we have
∑n

j=1(w
3
j − wj) < 3

∑n
j=1 w2

j . Hence, by Hölder’s inequality,

n∑
j=1

w3
j ≤ 3

n∑
j=1

w2
j +

n∑
j=1

wj ≤ 4
n∑

j=1

w2
j ≤ 4

 n∑
j=1

w3
j

2/3 n∑
j=1

1

1/3

and the bounds
∑n

j=1 w3
j ≤ 64n and wmax ≤ 4n1/3 follow.

We proceed by analyzing the linear threshold predicate where the linear Fourier coefficients are
used as weights. Let PC(x) = sgn(P̂ (1)x1 + P̂ (2)x2 + · · · + P̂ (n)xn). Since P̂ (1) = P̂ (2) = · · · =
P̂ (n1),

PC(x) = sgn

(
x1 + · · ·+ xn1 +

P̂ (n1 + 1)
P̂ (1)

xn1+1 + · · ·+ P̂ (n)
P̂ (1)

xn

)
.

A sufficient condition for P to be γ-Chow-robust is then

n∑
j=n1+1

∣∣∣∣∣ P̂ (j)
P̂ (1)

− wj

∣∣∣∣∣ < 1− γ

P̂ (1)
. (8)

To see this, consider an x such that P (x) = 1 and hence
∑n

j=1 wjxj ≥ 1. The above condition

implies that
∑n

j=1
P̂ (j)

P̂ (1)
xj =

∑n
j=1

(
P̂ (j)

P̂ (1)
− wj

)
xj +

∑n
j=1 wjxj ≥ γ

P̂ (1)
and we have as required that∑n

j=1 P̂ (j)xj ≥ γ.

We continue by analyzing the quotient P̂ (j0)

P̂ (1)
for a fixed j0 : n1 +1 ≤ j0 ≤ n. As P is a monotone

function, a degree-1 Fourier coefficient equals that coordinates influence, i.e.,

P̂ (j0) = Infj0(P ) = Pr
x

[P (x1, . . . , xj0 , . . . , xk) 6= P (x1, . . . ,−xj0 , . . . , xk)]

= Pr[
W + 1

2
− wj0 ≤ X(j0) ≤ W + 1

2
− 1],
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where W =
∑n

j=1 wj and X(j0) =
∑n

j=1,j 6=j0
wjXj is a weighted sum of n−1 balanced independent

Bernoulli random variables. By Lemma 2.5, we have

Pr
x

[
X(j0) =

W + 1− 2t

2

]
=
∫ ϕ0

0
cos
(

ϕ
wj0 + 1− 2t

2

) n∏
j=1,j 6=j0

cos(wjϕ/2)dϕ +O
(

1
n4

)
,

where ϕ0 = log n√
n

. We can thus write P̂ (j0) as

∫ ϕ0

0

wj0∑
k=1

cos
(

ϕ
wj0 + 1− 2k

2

) n∏
j=1,j 6=j0

cos(wjϕ/2) dϕ +O
(

1
n4

)
.

Similarly, we can write P̂ (1) as∫ ϕ0

0

w1∑
k=1

cos
(

ϕ
w1 + 1− 2k

2

) n∏
j=2

cos(wjϕ/2) dϕ +O
(

1
n4

)
,

which equals (since w1 = 1) ∫ ϕ0

0

n∏
j=2

cos(wjϕ/2) dϕ +O
(

1
n4

)
,

Letting h(ϕ) =
∏n

j=2,j 6=j0
cos(wjϕ/2),

P̂ (j0)
P̂ (1)

=

∫ ϕ0

0

∑wj0
k=1 cos(ϕ/2) cos

(
ϕ

wj0
+1−2k

2

)
h(ϕ) dϕ +O

(
1
n4

)∫ ϕ0

0 cos(wj0ϕ/2)h(ϕ) dϕ +O
(

1
n4

) (9)

Using Taylor expansion we may write

cos(ϕwj0/2) = 1−
w2

j0

8
ϕ2 + w4

j0O(ϕ4)

and
wj0∑
k=1

cos(ϕ/2) cos
(

ϕ
wj0 + 1− 2k

2

)
=

wj0∑
k=1

(
1− 1 + (wj0 + 1− 2k)2

8
ϕ2 + w4

j0O(ϕ4)
)

= wj0 −
2wj0 + w3

j0

24
ϕ2 + w5

j0O(ϕ4),

where the last equality follows from the identities
∑wj0

k=1 k = wj0(wj0+1)/2 and
∑wj0

k=1 k2 = wj0(wj0+
1)(2wj0 + 1)/6. By the above calculations, the numerator of (9) equals

wj0

∫ ϕ0

0

(
1−

2 + w2
j0

24
ϕ2 + w4

j0O(ϕ4)

)
h(ϕ) dϕ +O

(
1
n4

)
and its denominator equals∫ ϕ0

0

(
1−

w2
j0

8
ϕ2 + w4

j0O(ϕ4)

)
h(ϕ) dϕ +O

(
1
n4

)
.
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Simplifications then give us that

P̂ (j0)
P̂ (1)

− wj0 =
wj0

∫ ϕ0

0

(
w2

j0
−1

12 ϕ2 + w4
j0
O(ϕ4)

)
h(ϕ) dϕ +O

(
1
n4

)
∫ ϕ0

0

(
1−

w2
j0
8 ϕ2 + w4

j0
O(ϕ4)

)
h(ϕ) dϕ +O

(
1
n4

) (10)

To estimate this expression we will use Lemma 2.6. Letting S2 =
∑n

j=2,j 6=j0
w2

j , the numerator
of (10) then equals(

1 +O
(wmax

n

))(w3
j0
− wj0

12

√
π

4

(
S2

8

)− 3
2

+O(w5
j0)
(

S2

8

)− 5
2

)
,

which can be simplified, by using that S2 = Ω(n) and 2 ≤ wj0 ≤ wmax ≤ 4n1/3, to(
1 +O

(
w2

max

n

))
w3

j0
− wj0

12

√
π

4

(
S2

8

)− 3
2

.

Similarly, by Lemma 2.6, (10)’s denominator can be written as(
1 +O

(wmax

n

))(√π

2

(
S2

8

)− 1
2

+O(w2
j0)
(

S2

8

)− 3
2

)
and simplified to (

1 +O
(

w2
max

n

)) √
π

2

(
S2

8

)− 1
2

Substituting in these evaluations, we obtain that

P̂ (j0)
P̂ (1)

− wj0 =
w3

j0
− wj0

24

(
S2

8

)−1(
1 +O

(
w2

max

n

))
=

w3
j0
− wj0

3
∑n

j=2,j 6=j0
w2

j

(
1 +O

(
w2

max

n

))
=

w3
j0
− wj0

3
∑n

j=1 w2
j

(
1 +O

(
w2

max

n

))
,

where we used that
∑n

j=2,j 6=j0
w2

j =
(
1 +O

(
w2

max
n

))∑n
j=1 w2

j for the last equality.
We now conclude the proof of the theorem by observing that the sufficient condition (8) for P

to be γ-Chow-robust is satisfied if(
1 +O

(
w2

max

n

)) n∑
j=1

(w3
j − wj) <

(
1− γ

P̂ (1)

)
3

n∑
j=1

w2
j .

Indeed, then
n∑

j=n1+1

∣∣∣∣∣ P̂ (j)
P̂ (1)

− wj

∣∣∣∣∣ ≤
(

1 +O
(

w2
max

n

)) ∑n
j=1 w3

j − wj

3
∑n

j=1 w2
j

≤ 1− γ

P̂ (1)
.

The statement now follows from observing that we can select γ to be(
1−

(
1 +O

(
w2

max

n

)) ∑n
j=1 w3

j − wj

3
∑n

j=1 w2
j

)
P̂ (1) =

(
β(w) +O

(
w2

max

n

))
P̂ (1),

where we used that
∑n

j=1 w2
j = Ω(n) and

∑n
j=1 w3

j = O(n).

14



4 Our Main Algorithm

We now give an improved algorithm for Max-CSP(P ) for homogeneous linear threshold predicates.
Recall that we write the i’th constraint as P (si,1xli,1 , . . . , si,nxli,n) = sgn(Li(x)),where Li(x) =∑n

j=1 wjsi,jxli,j , and let W :=
∑n

j=1 wj . The algorithm which is parametrized by a noise parameter
0 < ε < 1 is described as follows:

Algorithm ALP,ε

1. Let x∗,∆∗ be the optimal solution to the following linear program

maximize 1
m

∑m
i=1 ∆i

subject to Li(x) ≥ ∆i,∀i ∈ [m]
x ∈ [−1, 1]N ,∆ ∈ [−W, 1]m

2. Pick X1, . . . , XN ∈ {−1, 1} independently with bias E[Xi] = εx∗i and return this assign-
ment.

As in Theorem 3.4, we now define β(w) for a set of weights w = (w1, . . . , wn) as

β(w) = 1−
∑n

j=1(w
3
j − wj)

3
∑n

j=1 w2
j

.

Note that β ≤ 1 for any set of weights, while for majority β = 1. Further, if β(w) > 0, then
Theorem 3.4 showed that P is γ-Chow-robust provided that n is large enough.

In Section 4.1 we show that on 1− δ
1+W satisfiable instances, where δ < β, the above algorithm

achieves an advantage of Ω( 1√
n
) for large enough n. In particular, we will prove the following

theorem:

Theorem 4.1. Fix any homogeneous threshold predicate P (x) = sgn(w1x1 + · · · + wnxn) having
wj = 1 for at least 200 log n different values of j and satisfying β := β(w) > 0. Then, for any
1− δ

1+W satisfiable instance I of Max-CSP(P), where δ < β, we have

E[Adv(ALP,ε(I))] = (β − δ)3/2 Ω
(

1√
n

)
−O

(
log4 n

n5/6

)
, (11)

where ε = (β − δ)1/2ε0 and ε0 > 0 is an absolute constant.

Thus, for δ bounded away from β, and large enough n, this algorithm is an improvement over
the algorithm of Theorem 3.3. We may also note that both the algorithm ALP,ε and the algorithm
of Theorem 3.3 can be de-randomized using the method of conditional expectation.

4.1 Analysis of the Algorithm (Proof of Theorem 4.1)

The crucial point for Theorem 4.1 is that on 1 − δ
1+W satisfiable instances, ∆̄∗ := 1

m

∑m
i=1 ∆∗

i ≥
1− δ > 1−β. Too see this, take any assignment x ∈ {−1, 1}N which satisfies a 1− δ

1+W fraction of
all constraints. Let ∆i = 1 on all satisfied constraints and ∆i = −W on the constraints which are
not satisfied. This is a feasible solution to the linear program since clearly Li(x) ≥ ∆i, ∀i. Hence,

∆̄∗ =
1
m

m∑
i=1

∆∗
i ≥

1
m

m∑
i=1

∆i =
(

1− δ

1 + W

)
+

δ

1 + W
(−W ) = 1− δ. (12)
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The next lemma shows that for large enough n we can use this advantage whenever no |∆i(x∗)|
is too large, provided that we pick ε small enough.

Lemma 4.2. Fix 0 < ε < 1/2 and let X = w1X1 + · · · + wnXn be a sum of n independent
Bernoulli random variables where w1, . . . , wn are positive integer weights such that wj = 1 for at
least 200 log n different j’s and β := β(w) > 0 given by (7). Further, let Pr(Xj = 1) = 1+εxj

2 where
−1 ≤ xj ≤ 1, and let σ2 = Var X and ∆ =

∑n
j=1 wjxj. Then, if |∆| ≤ n1/3,

Pr
(

X ≥ W + 1
2

)
≥ 1

2
+

ε(∆− 1 + β)
σ
√

8π
+ ε3O

(
1√
n

)
+O

(
log4 n

n5/6

)
.

Proof. As before we let εj = εxj , pj = 1+εj

2 and qj = 1− pj . Further, we let W (t) =
∑n

j=1 wt
j and

wmax = maxj wj while noting that by Lemma 3.5 the assumption β > 0 implies W (3) ≤ 64n and
wmax ≤ 4n1/3. Hence we also have W (4) = O(n4/3) and W (5) = O(n5/3).

Now, X has the probability generating function

g(z) =
n∑

j=0

Pr(X = j)zj =
n∏

j=1

[qj + pjz
wj ].

Hence, the series (Pr(X ≤ i))∞i=0 has the generating function g(z)
1−z . Letting

f(z) =
g(z)

(1− z)z(W+1)/2
,

Cauchy’s Residue Theorem gives

Pr
(

X ≤ W − 1
2

)
=

1
2πi

∮
C

f(z)dz =
1

2πi

∫
C1

f(z)dz +
1

2πi

∫
C2

f(z)dz,

where the contour C is the concatenation of the following two arcs, enclosing the pole z = 0 but
not z = 1 (see Figure 1),

C1 : z = eiϕ, 2a ≤ ϕ ≤ 2π − 2a
C2 : z = 1 + re−iϕ, π/2 + a ≤ ϕ ≤ 3π/2− a

where a(r) = arcsin( r
2) and r > 0 is a small parameter that we will later let go to 0.

Figure 1: The contour
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The second integral is

1
2πi

∫
C2

f(z)dz =
−1
2π

∫ 3π/2−a

π/2+a
re−iϕf(1 + re−iϕ)dϕ =

=
1
2π

∫ 3π/2−a

π/2+a

∏n
j=1[qj + pj(1 + re−iϕ)wj ]

(1 + re−iϕ)(W+1)/2
dϕ → 1

2
as r → 0,

since the integrand converges uniformly to 1. Let us now concentrate on the first integral. As
f(z) = f(z),

1
2πi

∫
C1

f(z)dz =
1
π

∫ π

2a
Re[eiϕf(eiϕ)]dϕ. (13)

Expanding f(eiϕ) gives us that

eiϕf(eiϕ) = eiϕ/2

∏n
j=1[qj + pje

iwjϕ]

(1− eiϕ)eiϕW/2
=

∏n
j=1[qj + pje

iwjϕ]e−iϕW/2

−2i sin(ϕ/2)
=

=

∏n
j=1[qje

−iwjpjϕ + pje
iwjqjϕ]

−2i sin(ϕ/2)
eiϕε∆/2,

where the last equality follows from W/2 + ε∆/2 =
∑n

j=1 wjpj .
To analyze the integral as r → 0 (and thus a → 0), we first use Lemma 2.2 to argue that the

integral between ϕ0 := log n√
n

and π is small. Indeed, since we have at least 200 log n weights which

are 1, Lemma 2.2 together with the bound sin(x) ≥ 2
πx for 0 ≤ x ≤ π

2 implies that∣∣∣∣ 1π
∫ π

ϕ0

Re[eiϕf(eiϕ)]dϕ

∣∣∣∣ ≤ 1
2π sin(ϕ0/2)

∫ π

ϕ0

n∏
j=1

∣∣qj + pje
iwjϕ

∣∣ dϕ ≤
√

n

2 log n
O
(

1
n2

)
= O

(
1
n

)
.

We now consider the integral between 0 and ϕ0. We start with the following identity of the
integrand.

Claim 4.3. For 0 ≤ ϕ < ϕ0, we have

Re[eiϕf(eiϕ)] = e−σ2 ϕ2

2

(
−ε∆

2
− S3

ϕ2

6
+ ε3O(nϕ2) +O(n5/3ϕ4)

)(
1 +O

(
log4 n

n2/3

))
,

where S3 =
∑n

j=1 w3
j qjpj(p2

j − q2
j ).

Proof of Claim. Using Taylor expansion we may write

qje
−iwjpjϕ + pje

iwjqjϕ = 1− w2
j qjpj

ϕ2

2
+ iw3

j qjpj(p2
j − q2

j )
ϕ3

6
+ w4

jO(ϕ4) + iw5
jO(ϕ5),

where we have separated the real and complex errors. Letting Log z = log |z|+ iArg z denote the
principal logarithm (−π < Arg z ≤ π) which is analytic except on the non-positive part of the real
axis, we can use another Taylor expansion to write (note that Re(qje

−iwjpjϕ + pje
iwjqjϕ) > 0 for

ϕ < ϕ0 when n is large enough, since wj ≤ 4n1/3)

qje
−iwjpjϕ + pje

iwjqjϕ = eLog(qje−iwjpjϕ+pjeiwjqjϕ)

= e−w2
j qjpj

ϕ2

2
+iw3

j qjpj(p
2
j−q2

j )ϕ3

6
+w4

jO(ϕ4)+iw5
jO(ϕ5).
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Using σ2 =
∑n

j=1 w2
j qjpj and the expression for S3 stated in the claim we have

eiϕf(eiϕ) = e−σ2 ϕ2

2
eiϕε∆

2
+iS3

ϕ3

6
+W (4)O(ϕ4)+iW (5)O(ϕ5)

−2i sin(ϕ/2)
.

Since W (4) = O(n4/3) and W (5) = O(n5/3), we may write the real part of this as

Re[eiϕf(eiϕ)] = −e−σ2 ϕ2

2
sin(h(ϕ))

ϕ

ϕ/2
sin(ϕ/2)

eO(n4/3ϕ4),

where

h(ϕ) = ε
∆
2

ϕ + S3
ϕ3

6
+O(n5/3ϕ5). (14)

Taylor expansions of ex, sin(x) and x
sin(x) = 1

1+O(x2)
= 1 +O(x2) gives

Re[eiϕf(eiϕ)] = e−σ2 ϕ2

2
h(ϕ) +O([h(ϕ)]3)

ϕ
(1 +O(ϕ2))(1 +O(n4/3ϕ4)).

The product of the last two factors is 1 +O
(

log4 n
n2/3

)
since ϕ ≤ log(n)/

√
n. For the second factor,

first note that since |S3| = O(n) we have h(ϕ) = ε∆
2 ϕ + O(nϕ3) and thus, since |∆| ≤ n1/3 and

ϕ ≤ log(n)/
√

n,

[h(ϕ)]3 =
ε3∆3

8
ϕ3 + ∆2nO(ϕ5) + ∆n2O(ϕ7) + n3O(ϕ9) = ε3nO(ϕ3) + n5/3O(ϕ5). (15)

Combining (14) and (15), the second factor becomes

h(ϕ) +O([h(ϕ)]3)
ϕ

= ε
∆
2

+ S3
ϕ2

6
+ ε3O(nϕ2) +O(n5/3ϕ4),

proving the claim.

We now compute the part of the integral (13) from ϕ = 0 to ϕ0:

Claim 4.4. We have that

I2 :=
1
π

∫ ϕ0

0
Re[eiϕf(eiϕ)]dϕ ≤ −ε(∆− 1 + β)

σ
√

8π
+ ε3O

(
1√
n

)
+O

(
log4 n

n5/6

)
.

Proof of Claim. By the previous claim,

I2 =
1
π

∫ ϕ0

0
e−σ2 ϕ2

2

(
−ε∆

2
− S3

ϕ2

6
+ ε3O(nϕ2) +O(n5/3ϕ4)

)(
1 +O

(
log4 n

n2/3

))
dϕ.

Using Lemma 2.3 and 2.4 and noting that e−
σ2

2
ϕ2

0 = e−Ω(log2(n)) = 1
nΩ(log n) since σ2 = Θ(n), this is

I2 =

(
− ε∆

2σ
√

2π
− S3

6σ3
√

2π
+

ε3O(n)
σ3

+
O(n5/3)

σ5

)(
1 +O

(
log4 n

n2/3

))
+

1
nΩ(log n)

.

18



Now,

|S3| =

∣∣∣∣∣∣
n∑

j=1

w3
j qjpj(p2

j − q2
j )

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

w3
j

1− ε2j
4

εj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

w3
j εj

4
−

n∑
j=1

w3
j ε

3
j

4

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
n∑

j=1

w3
j εj

4

∣∣∣∣∣∣+ ε3O(n) =

∣∣∣∣∣∣
n∑

j=1

(w3
j − wj)εj + ε∆

4

∣∣∣∣∣∣+ ε3O(n) ≤ ε

n∑
j=1

w3
j − wj

4
+
∣∣∣∣ε∆4

∣∣∣∣+ ε3O(n).

Recall that 1−β =
Pn

j=1(w3
j−wj)

3
Pn

j=1 w2
j

. Together with the bound σ2 =
∑n

j=1 w2
j

1−ε2j
4 ≥ 1−ε2

4

∑n
j=1 w2

j this
gives

ε

n∑
j=1

w3
j − wj

4
= ε(1− β)

3
4

n∑
j=1

w2
j ≤ 3ε(1− β)

σ2

1− ε2
= 3ε(1− β)σ2 + ε3O(n).

Thus |S3| ≤ 3ε(1− β)σ2 +
∣∣ ε∆

4

∣∣+ ε3O(n), which together with σ2 = Θ(n) implies that

I2 ≤ −ε(∆− 1 + β)
σ
√

8π

(
1 +O

(
log4 n

n2/3

))
+ ε3O

(
1√
n

)
+O

(
1

n5/6

)
.

The claim now follows from |∆| ≤ n1/3, which gives

ε(∆− 1 + β)
σ
√

8π
O
(

log4 n

n2/3

)
= O

(
n1/3 log4 n

n1/2n2/3

)
= O

(
log4 n

n5/6

)

Letting a → 0 and summing all integrals we get

Pr
(

X ≤ n− 1
2

)
≤ 1

2
+O

(
1
n

)
− ε(∆− 1 + β)

σ
√

8π
+ ε3O

(
1√
n

)
+O

(
log4 n

n5/6

)
=

1
2
− ε(∆− 1 + β)

σ
√

8π
+ ε3O

(
1√
n

)
+O

(
log4 n

n5/6

)
.

In order to extend this bound to larger (negative) ∆’s we use the central limit theorem with
explicit error bounds:

Theorem 4.5 (Berry-Esseen). Let Y = Y1 + · · · + Yn be a sum of independent random variables

satisfying E[Yi] = 0 for all i,
√∑

E[Y 2
i ] = σ, and

∑
E[|Yi|3] = ρ3. Then

sup
x
|Pr[Y ≤ x]− Φ(x/σ)| ≤ Cρ3/σ3,

where Φ is the cdf of a standard Gaussian random variable, and C is an absolute constant. It has
been shown that one can take C = 0.7915 [16].

Lemma 4.6. Fix 0 < ε < 1. Let X = w1X1 + · · · + wnXn be a sum of n independent Bernoulli
random variables with positive integer weights of total sum W =

∑n
j=1 wj, and suppose Pr(Xj =

1) = 1+εxj

2 where −1 ≤ xj ≤ 1. Further, let σ2 = Var X and ∆ =
∑n

j=1 wjxj. Then, if ∆ ≤ 0,

Pr
(

X ≥ W + 1
2

)
≥ 1

2
+

ε∆
σ
√

8π
− C

(1− ε2)3/2

∑n
j=1 w3

j

n3/2
.
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Proof. As before we let εj = εxj , pj = 1+εj

2 and qj = 1 − pj . Now, let Yj = wj(Xj − pj) and
Y = Y1 + · · ·+ Yn. Then E[Yj ] = 0,

n∑
j=1

E[Y 2
j ] = σ2 =

n∑
j=1

w2
j VarXj =

n∑
j=1

w2
j

1− ε2j
4

≥ n
1− ε2

4

and
n∑

j=1

E[|Yj |3] =
n∑

j=1

w3
j (pjq

3
j + qjp

3
j ) =

n∑
j=1

w3
j

1− ε4j
8

≤
n∑

j=1

w3
j

8
.

Further, we have

Pr
(

X ≤ W

2

)
= Pr

Y ≤ W

2
−

n∑
j=1

wjpj

 = Pr
(

Y ≤ −ε∆
2

)
.

Applying Berry-Esseen and using Φ(x) ≤ 1
2 + x√

2π
for x ≥ 0 this is at most

Φ
(
−ε∆
2σ

)
+

C

(1− ε2)3/2

∑n
j=1 w3

j

n3/2
≤ 1

2
+

−ε∆
σ
√

8π
+

C

(1− ε2)3/2

∑n
j=1 w3

j

n3/2
.

We are now ready to prove Theorem 4.1 by combining the bounds for small and large ∆.

Proof of Theorem 4.1. Let x∗ be the optimal solution to the linear program in ALP,ε for some
ε > 0 that we will specify later. By Lemma 4.2 and 4.6 we have the following lower bounds on the
probability that the i’th constraint sgn(Li(X)) with bias E(Li(X)) = εLi(x∗) ≥ ε∆∗

i is satisfied:
1
2 + ε(∆∗

i−1+β)

σ
√

8π
+ ε3O

(
1√
n

)
+O

(
log4 n
n5/6

)
, if |∆∗

i | ≤ n1/3

1
2 + ε∆∗

i

σ
√

8π
− C

(1−ε2)3/2

Pn
j=1 w3

j

n3/2 , if ∆∗
i ≤ 0

Here we have used the fact that having a larger expected value of the linear form Li(x∗) than its
lower bound ∆∗

i can only increase the probability of a constraint being satisfied. Since by (12),
∆̄∗ ≥ 1 − δ > 0, and further ∆∗

i ≤ 1 for all i, we must have ∆∗
i ≥ −n1/3 for at least a fraction

1− 1
n1/3 of the constraints. Thus, the expected fraction of satisfied constraints is

E
[
Adv(ALP,ε(I)) + 1

2

]
≥ 1

2
+

ε(∆̄∗ − 1 + β)
σ
√

8π
+ ε3O

(
1√
n

)
+O

(
log4 n

n5/6

)
− 1

n1/3

C

(1− ε2)3/2

∑n
j=1 w3

j

n3/2
,

where we used that β ≤ 1. Now, by Lemma 3.5, we have
∑n

j=1 w3
j ≤ 64n and also σ = Θ(

√
n).

This together with ∆̄∗ ≥ 1− δ implies that

E[Adv(ALP,ε(I))] ≥ ε(β − δ)Ω
(

1√
n

)
+ ε3O

(
1√
n

)
+O

(
log4 n

n5/6

)
.

Now, letting ε = (β− δ)1/2ε0 for some absolute constant ε0 > 0 small enough so that the first term
dominates the second by a constant factor for any n, we have

E[Adv(ALP,ε(I))] ≥ (β − δ)3/2Ω
(

1√
n

)
+O

(
log4 n

n5/6

)
.
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4.2 Application to Majority

As β = 1 for Majn the following result follows directly from Theorem 3.3 (by also adjusting the
hidden constants in (11) so that this expression becomes non-positive when 200 log n > n):

Corollary 4.7. (Formal statement of Theorem 1.1) For all 1 − δ
n+1 satisfiable instances I of

Max-Maj-n, where δ < 1, we have

E[Adv(ALP,ε(I))] = (1− δ)3/2Ω
(

1√
n

)
−O

(
log4 n

n5/6

)
,

where ε = (1− δ)1/2ε0 and ε0 > 0 is an absolute constant.

5 Unique Games Hardness

In this section, we show hardness of approximation results for majority-like predicates under the
Unique Games Conjecture. This complements our algorithmic results obtained in Sections 3 and 4.

5.1 The Basic Tool

The hardness results in this section are under the increasingly prevalent assumption that the Unique
Games Conjecture (UGC) holds (see Appendix A for a definition). The basic tool that we use
is the result by Austrin and Mossel [2], which states that the UGC implies that a predicate is
approximation resistant if it supports a uniform pairwise independent distribution, and hard to
approximate if it “almost” supports a uniform pairwise independent distribution. We now state
their result in a simplified form tailored for the application at hand:

Theorem 5.1 ([2]). Let P : {−1, 1}n → {−1, 1} be a n-ary predicate and let µ be a balanced
pairwise independent distribution over {−1, 1}n. Then, for any ε > 0, the UGC implies that it is
NP-hard to distinguish between those instances of Max-CSP(P )

• that have an assignment satisfying at least a fraction Prx∈({−1,1}n,µ)[P (x) = 1] − ε of the
constraints;

• and those for which any assignment satisfies at most a fraction |P−1(1)|/2n + ε of the con-
straints.

5.2 Application to the Majority Predicate

We now give a fairly easy application of Theorem 5.1 to the predicate Majn. Later, we generalize
this approach to more general homogeneous linear threshold predicates.

Theorem 5.2. (Formal statement of Theorem 1.2) For any ε > 0 the UGC implies that it is
NP-hard to distinguish between those instances of Max-Maj-n

• that have an assignment satisfying at least a fraction 1− 1
n+1 − ε of the constraints;

• and those for which any assignment satisfies at most a fraction 1/2 + ε of the constraints.

Proof. Consider the following distribution µ over {−1,+1}n: with probability 1
n+1 , all the bits in µ

are fixed to -1, and with probability n
n+1 , µ samples a vector with (n+1)/2 ones, chosen uniformly

at random among all possibilities. To see that this gives a pairwise independent distribution
let X = (X1, . . . , Xn) be drawn from µ. Then E [

∑n
i=1 Xi] = 1

n+1 · (−n) + n
n+1 · 1 = 0 and
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E
[∑n

i,j=1
i6=j

XiXj

]
= E

[
(
∑n

i=1 Xi)
2
]
− n = 1

n+1 · (n
2) + n

n+1 · 1 − n = 0. Because of the symmetry

of the coordinates, it follows that for all i, E[Xi] = 0 and for every i 6= j, E[XiXj ] = 0. Therefore,
the distribution µ is balanced pairwise independent. Theorem 5.1 now gives the result.

For predicate Majn, we can also obtain a hardness result for almost satisfiable instances:

Theorem 5.3. (Formal statement of Theorem 1.3) For any ε > 0 the UGC implies that it is
NP-hard to distinguish between those instances of Max-Maj-n

• that have an assignment satisfying at least a fraction 1− ε of the constraints;
• and those for which any assignment satisfies at most a fraction 1

2 +cn
1√
n
+ε of the constraints,

where

cn =
√

n

2n−2

(
n− 2
n−1

2

)
≈
√

2
π

.

Proof. Let k = n−2 and consider the predicate P : {−1, 1}k → {−1, 1} defined as P (x) = sgn(x1 +
· · · + xk + 2). Our interest in P stems from the fact that Max-Maj-n is at least as hard to
approximate as Max-CSP(P ). Indeed, given an instance of Max-CSP(P ), we can construct an
instance of Max-Maj-n by letting each constraint P (l1, . . . lk) equal Majn(y1, y2, l1, . . . , lk) for two
new variables y1 and y2, that are the same in all constraints and always appear in the positive form.
As any good solution to the instance of Max-Maj-n sets both y1 and y2 to one, we can conclude
that any optimal assignments to the two instances satisfy the same fraction of constraints.

Now consider the following distribution µ over {−1, 1}k: with probability 1
k+1 , all the bits in µ

are fixed to ones, and with probability k
k+1 , µ samples a vector with (k + 1)/2 minus ones, chosen

uniformly at random among all possibilities. The same argument as in the proof of Theorem 5.2
shows that the distribution µ is uniform and pairwise independent. Theorem 5.1 now gives that for
any ε > 0 the UGC implies that it is NP-hard to distinguish between those instances of Max-CSP(P )
that have an assignment satisfying a fraction 1 − ε of the constraints; and those for which any
assignment satisfies at most a fraction

|P−1(1)|
2k

+ ε =
1
2k

k+1
2∑

j=0

(
k

j

)
+ ε =

1
2

+

( k
k+1
2

)
2k

+ ε =
1
2

+

√
2
πk

+ o(1/k) + ε.

The result now follows from the observation above that we can construct an instance of Max-Maj-n
from an instance of Max-CSP(P ) such that optimal assignments to the two instances satisfy the
same fraction of the constraints.

Taking the convex combination of the results in Theorems 5.2 and 5.3 yields:

Corollary 5.4. For any δ : 0 ≤ δ ≤ 1 and any ε > 0, the UGC implies that it is NP-hard to find
an assignment x to a given 1− δ

n+1 − ε satisfiable instance of Max-Maj-n achieving

Adv(x) ≥ (1− δ)cn
1√
n

+ ε,

where cn is the constant defined in Theorem 5.3.
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5.3 Hardness for More General Predicates

We will now prove hardness of approximation for more general predicates than majority. Let us first
recall the main idea for proving hardness of Majn. Since all weights are one, we have wmax = 1. One
can now observe that the constructed balanced pairwise independent distribution µ over {−1, 1}n

in Theorem 5.2 can be defined as follows. With probability 1
n+1 sample a vector where the jth bit

is set to 1 with probability 0 =
1−

wj
wmax
2 independent of the other bits, and with probability 1− 1

n+1
sample a vector X such that

∑n
j=1 Xj = 1, or equivalently

∑n
j=1 wjXj = wmax, chosen uniformly

at random among all possibilities.
We will prove (in Theorem 5.6) that a distribution µ essentially defined as above is an almost

balanced pairwise distribution for homogeneous linear threshold predicates of the form sgn(w1x1 +
w2x2 + · · · + wnxn) with 400 log n unit weights and

∑n
j=1 w3

j < 100n. We then, using a general
result show that such a distribution can be slightly adjusted to obtain a perfect balanced pairwise
distribution. These two results are then combined, in Theorem 5.5 below (proved in Section 5.3.3),
to obtain the desired hardness results.

Theorem 5.5. Suppose we are given positive integers (wj)n
j=1 such that

∑n
j=1 w3

j < 100n and∑n
j=1 wj is odd. Further, suppose that for at least 400 log n different values of j we have wj = 1.

Let P (x) = sgn(w1x1 + · · · + wnxn), then, for any ε > 0, the UGC implies that it is NP-hard to
distinguish between those instances of Max-CSP(P )

• that have an assignment satisfying at least a fraction 1−O
(

w4
max
n

)
− ε of the constraints;

• and those for which any assignment satisfies at most a fraction 1/2 + ε of the constraints.

5.3.1 Almost Balanced Pairwise Distribution

In this section we prove the following:

Theorem 5.6. Suppose we are given positive integers (wj)n
j=1 such that

∑n
j=1 w3

j < 100n and
wj = 1 for at least 400 log n different values of j. Then there is a distribution µ over {−1, 1}n

satisfying

Pr[
∑n

j=1 wjXj > 0] = 1−O
(

w2
max
n

)
E[Xi] = 0 for i = 1, . . . , n

E[XiXj ] = O
(

w4
max
n2

)
for i, j : 1 ≤ i < j ≤ n.

The technical part of proving this theorem is captured by the following lemma.

Lemma 5.7. Suppose we are given positive integers (wj)n
j=1 satisfying the conditions of Theo-

rem 5.6. Let w̃max be the smallest integer such that w̃max ≥ maxj wj and
∑n

j=1 wj + w̃max = 0
mod 2, then there is a distribution ν over {−1, 1}n with support {x :

∑n
j=1 wjxj = w̃max} satisfying

E[Xj ] = wj
w̃max

W (2) +O
(

w̃4
max
n2

)
for j = 1, . . . , n

E[XiXj ] = −wiwj

W (2) +O
(

w̃4
max
n2

)
for 1 ≤ i < j ≤ n,

where W (2) =
∑n

j=1 w2
j .
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Before giving the proof, let us see how this lemma implies Theorem 5.6. The Distribution ν is
such that E[Xj ] = wj

w̃maxPn
j=1 w2

j
+ βj where βj = O( w̃4

max
n2 ) for j = 1, . . . , n. Let βmax = maxj |βj | and

let T = w̃2
max + (1 + βmax)W (2). Now define the distribution µ over {−1, 1}n as follows:

with probability w̃2
max
T : sample a vector where the j:th bit is set to 1 with probability

1−
wj

w̃max
2

independent of the other bits;

with probability W (2)

T : sample a vector from ν; and

with probability W (2)βmax

T : sample a vector where the j:th bit is set to 1 with probability
1−

βj
βmax
2 .

To verify that µ satisfies E[Xj ] = 0 and E[XiXj ] = O(w4
max
n2 ) is now an easy task and left to the

reader. Furthermore, µ satisfies (as required)

Pr

 n∑
j=1

wjXj > 0

 ≥ W (2)

T
=

W (2)

w̃2
max + (1 + βmax)W (2)

= 1− βmaxW
(2) + w̃2

max

w̃2
max + (1 + βmax)W (2)

=

= 1 +O
(

w̃2
max

n

)
= 1 +O

(
w2

max

n

)
,

where we used that w̃max ≤ wmax + 1. Let us remark that the O(·) terms of Lemma 5.7 arise
when we estimate probabilities using complex integrals. If we omit those terms then the distri-
bution µ, defined as above with βmax = 0, would be balanced pairwise independent and satisfy
Pr[
∑n

j=1 wjXj ] ≥ W (2)

T = 1− w2
max

w2
max+

Pn
j=1 w2

j
, i.e., essentially matching the bound of Theorem 5.10.

We proceed with the proof of Lemma 5.7.

Proof. That the set {X :
∑n

j=1 wjXj = w̃max} is non-empty follows from that
∑n

j=1 wj + w̃max = 0
mod 2 and that the assumptions on the weights (wj)n

j=1 imply that wmax < 5n1/3, wj < 5 for at
least n/5 different values of j, and wj = 1 for at least 400 log n different values of j. Now let ν be
the distribution over {−1, 1}n that samples uniformly at random among all possibilities a vector in
{X :

∑n
j=1 wjXj = w̃max}.

By definition, we have that the support of ν is {x :
∑n

j=1 wjxj = w̃max}. We proceed by
analyzing the expectation of Xj0 with respect to ν for a fixed j0 : 1 ≤ j0 ≤ n. Let W =

∑n
j=1 wj

and let Y =
∑n

j=1,j 6=j0
wjYj be the weighted sum of n − 1 balanced Bernoulli random variables.

Further, let A and B be the events that Y = W+w̃max−2wj0
2 and Y = W+w̃max

2 , respectively. With
this notation, the expectation E[Xj0 ] can be written as

Pr[A]− Pr[B]
Pr[A] + Pr[B]

.

Applying Lemma 2.5 and letting ϕ0 = log n√
n

,

Pr[A] =
∫ ϕ0

0
cos
(

ϕ
w̃max − wj0

2

)
h(ϕ) dϕ +O

(
1
n4

)
and

Pr[B] =
∫ ϕ0

0
cos
(

ϕ
w̃max + wj0

2

)
h(ϕ) dϕ +O

(
1
n4

)
,
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where h(ϕ) =
∏n

j=1,j 6=j0
cos(wjϕ/2). Using Taylor expansion, we may write

cos
(

ϕ
w̃max − wj0

2

)
+ cos

(
ϕ

w̃max + wj0

2

)
= 2 +O(w̃2

maxϕ
2)

and

cos
(

ϕ
w̃max − wj0

2

)
− cos

(
ϕ

w̃max + wj0

2

)
= w̃maxwj0ϕ

2/2 +O(w̃3
maxwj0ϕ

4).

Substituting in these expansions give us that

E[Xj0 ] =

∫ ϕ0

0 h(ϕ)( w̃maxwj0
2 ϕ2 +O(w̃3

maxwj0ϕ
4))dϕ +O

(
1
n4

)∫ ϕ0

0 h(ϕ)(2 +O(ϕ2w̃2
max))dϕ +O

(
1
n4

)
We now use Lemma 2.6 to evaluate this expression. Letting S2 =

∑n
j=1,j 6=j0

w2
j , we can thus write

E[Xj0 ] as

√
π

8 w̃maxwj0

(
S2
8

)−3/2
+O(w̃3

maxwj0)
(

S2
8

)−5/2

√
π
(

S2
8

)−1/2
+O(w̃2

max)
(

S2
8

)−3/2
(1 +O(

w̃max

n
)).

As S2 = Ω(n) and wmax = O(n1/3), this can be simplified to

(1 +O( w̃2
max
n ))

√
π

8 w̃maxwj0

(
S2
8

)−1

(1 +O( w̃2
max
n ))

√
π

(1 +O(
w̃max

n
)) =

w̃maxwj0

S2
(1 +O(

w̃2
max

n
)),

which in turn (since
∑n

j=1 w2
j = (1 +O( w̃2

max
n ))

∑n
j=1,j 6=j0

w2
j ) equals

w̃maxwj0∑n
j=1 w2

j

(1 +O(
w̃2

max

n
)) =

w̃maxwj0∑n
j=1 w2

j

+O(
w̃4

max

n2
).

We complete the proof by analyzing the expectation of Xi0Xj0 with respect to ν for fixed i0, j0 :
1 ≤ i0 < j0 ≤ n. The arguments are similar to the ones used above for E[Xj ] and sketched in the
following. Let now Y =

∑n
j=1,j 6∈{i0,j0} wjYj be the weighted sum of n−2 balanced Bernoulli random

variables. Further, let A,B, C, and D be the events that Y = W+w̃max−2wi0
−2wj0

2 ,Y = W+w̃max
2 ,

Y = W+w̃max−2wi0
2 , and Y = W+w̃max−2wj0

2 , respectively. With this notation, the expectation
E[Xi0Xj0 ] can be written as

Pr[A] + Pr[B]− Pr[C]− Pr[D]
Pr[A] + Pr[B] + Pr[C] + Pr[D]

.

Applying Lemma 2.5, we obtain for E ∈ {A,B, C, D}

Pr[E] =
∫ ϕ0

0
cos
(

ϕ
w̃max + g(E)

2

)
h(ϕ) dϕ +O

(
1
n4

)
where h(ϕ) now is

∏n
j=1,j 6∈{i0,j0} cos(wjϕ/2) and g(A) = −(wi0 + wj0), g(B) = wi0 + wj0 , g(C) =

−(wi0 − wj0), and g(D) = wi0 − wj0 . Similar to before, we use Taylor expansions to obtain

E[Xi0Xj0 ] = −
∫ ϕ0

0 h(ϕ)(wi0wj0ϕ
2 +O(w̃2

maxwi0wj0ϕ
4))dϕ +O

(
1
n4

)∫ ϕ0

0 h(ϕ)(4 +O(ϕ2w̃2
max))dϕ +O

(
1
n4

)
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and then evaluate the expression using Lemma 2.6 to get that this equals

−

√
π

4 wi0wj0

(
S2
8

)−3/2
+O(w̃2

maxwi0wj0)
(

S2
8

)−5/2

2
√

π
(

S2
8

)−1/2
+O(w̃2

max)
(

S2
8

)−3/2
(1 +O(

w̃max

n
),

where S2 =
∑n

j=1,j 6∈{i0,j0} w2
j . Similar simplifications as before now yields the desired result.

In the next section we discuss how to find a distribution with a prescribed set of correlations. We
later use this to make our almost pairwise independent distribution perfectly pairwise independent.

5.3.2 Existance of Correlated Random Bits

Given a matrix α ∈ Rn×n, a necessary and sufficient condition for the existance of a random real
vector with covariance matrix α is that α is symmetric and positive semidefinite. For sufficiency it
is enough to consider a (possibly degenerate) normal distribution. However, for a random vector
of bits X ∈ {−1, 1}n this is not sufficient even if we require αi,i = 1 for all i. An example is n = 3
and αi,j = −1

2 for i 6= j. Although α is positive semidefinite no such distribution on bits exist since
for bits |X1 + X2 + X3| ≥ 1, but such an α we imply

E[(X1 + X2 + X3)2] =
∑
i,j

αi,j = 3− 6
2

= 0

We will give a sufficient condition for random bits, but first we start with a classical lemma:

Lemma 5.8. Let Z1, Z2 ∼ Norm(0, 1) be standard normals with covariance E[Z1Z2] = ρ. Then
Pr(sgn(Z1) 6= sgn(Z2)) = arccos(ρ)

π .

Proof. Let Y ∼ Norm(0, 1) be a standard normal variable independent of Z1 and Z2, and let

Z ′
2 = ρZ1 +

√
1− ρ2Y = cos(ϕ)Z1 + sin(ϕ)Y

where ϕ = arccos(ρ). Then (Z1, Z2) and (Z1, Z
′
2) are identically distributed. Further Z ′

2 is the
first coordinate of the random vector (Z1, Y ) rotated by an angle ϕ. But since the distribution
of (Z1, Y ) is rotationally symmetric, the probability that the sign of the first coordinate changes
under such a rotation is ϕ

π , i.e.

Pr(sgn(Z1) 6= sgn(Z2)) = Pr(sgn(Z1) 6= sgn(Z ′
2)) =

ϕ

π
=

arccos(ρ)
π

.

Using this lemma we now show that for the existance of random bits it is sufficient to have
pairwise covariance bounded by 2

πn .

Lemma 5.9. Let α ∈ Rn×n be a symmetric matrix with αi,i = 1 and |αi,j | ≤ 2
πn for all i 6= j. Then

there exist a distribution on random bits X1, . . . , Xn taking values in {−1, 1} such that E[Xi] = 0
and E[XiXj ] = αi,j, for all i, j ∈ [n].

Proof. Let S ∈ Rn×n be defined by

Si,j = sin
(π

2
αi,j

)
= cos

(π

2
(1− αi,j)

)
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and note that Si,i = 1 while |Si,j | ≤ π
2 |αi,j | ≤ 1

n for all i 6= j. Furthermore, S is positive semidefinite
since for any x ∈ Rn \ {0} we have

xT Sx ≥
n∑

i=1

x2
i −

∑
i,j∈[n]:i6=j

1
n

xixj ≥
n∑

i=1

x2
i −

n∑
i=1

1√
n
|xi|

n∑
j=1

1√
n
|xj | ≥ 0,

where the last inequality follows from Cauchy-Schwarz. Since S is positive semidefinite we can
let Z ∼ Norm(0, S) be a (possibly degenerate) n-dimensional normal with mean 0 and covariance
matrix S. We will take Xi = sgn(Zi), for i = 1 . . . n. Clearly E[Xi] = 0, and further for any i, j we
have

E[XiXj ] = 1− 2 Pr(sgn(Zi) 6= sgn(Zj)) = 1− 2
arccos(Si,j)

π
= αi,j ,

where we have used Lemma 5.8.

5.3.3 Proof of Theorem 5.5

By Theorem 5.6, there is a distribution µ over {−1, 1}n satisfying Pr[P (X) = 1] = 1 +O
(

w2
max
n

)
,

E[Xi] = 0 and E[XiXj ] = βij , where βij = O
(

w4
max
n2

)
. Let βmax = maxi,j |βi,j | and let αi,j =

− βij

βmax

2
πn for all i 6= j. Let now ν denote the distribution over {−1, 1}n satisfying E[Xi] = 0 and

E[XiXj ] = αi,j . Such a distribution is guaranteed to exist by the sufficient condition shown in
Lemma 5.9 (since |αi,j | ≤ 2

πn for all i 6= j). Let p = 2
βmaxπn+2 and consider the distribution D: with

probability p sample from µ and with probability 1 − p sample from ν. It is easy to see that this
distribution is balanced pairwise independent. Furthermore,

Pr
X∈({−1,1}n,D)

[P (X) = 1] ≥ p Pr
X∈({−1,1}n,µ)

[P (X) = 1]

=
(

1− βmaxπn

βmaxπn + 2

)(
1 +O

(
w2

max

n

))
=

(
1 +O

(
w4

max

n

))(
1 +O

(
w2

max

n

))
= 1 +O

(
w4

max

n

)
.

Theorem 5.1 now gives the result.

5.4 A Limitation of Our Technique

Finally, we give a limitation on the technique of proving hardness by constructing balanced pairwise
distributions.

Theorem 5.10. Let P (x) = sgn(w1x1 + · · ·+ wnxn) be a homogeneous linear threshold predicate.
For any balanced pairwise independent distribution µ over {−1, 1}n,

Pr
x∈({−1,1}n,µ)

[P (x) = 1] ≤ 1− 1
4

w2
max∑n

j=1 w2
j

,

where wmax = maxj wj.

27



Proof. Let X =
∑n

j=1 wjXj and let µ be a pairwise independent distribution over {−1, 1}n.
Throughout the proof all expectations and probabilities are taken with respect to the distribu-
tion µ. Since µ is balanced and pairwise independent

Var[X] = E[X2] =
n∑

j=1

w2
j .

Now let p = Pr[X ≤ 0|Xn = −1]. By pairwise independence E[X|Xn = −1] = −wn = −wmax.
Hence,

E[X|X ≤ 0, Xn = −1] ≤ −wmax

p
and E[X2|X ≤ 0, Xn = −1] ≥ w2

max

p2
.

To summarize, we have that

n∑
j=1

w2
j = E[X2] ≥ p

2
w2

max

p2
=

w2
max

2p

and since Pr[X ≤ 0] ≥ p/2 the statement follows.

By the above theorem, a homogeneous linear threshold precidate can only partially support any
balanced pairwise independent distribution, and the gap shown by the theorem directly affects the
degree of satisfiability that one can expect from the almost satisfiable instances in Theorem 5.5.

6 Conclusions

We have studied, and obtained rather tight bounds for the approximability curve of “majority-like”
predicates. There are still many questions to be addressed and let us mention a few.

This work has been in the context of predicates given by Chow-robust threshold functions.
Within this class we already knew, by the results of Hast [7], that no such predicate can be approx-
imation resistant and our contribution is to obtain sharp bounds on the nature of how approximable
these predicates are. It is a very nice open question whether there are any approximation resistant
predicates given as thresholds of balanced linear functions. It is not easy to guess the answer to
this question.

Looking at our results from a different angle one has to agree that the approximation algorithm
we obtain is rather weak. For large values of n we only manage to do something useful on almost
satisfiable instances and in this case we beat the random assignment by a rather slim margin. On
the other hand we also prove that this is the best we can do. One could ask the question whether
there is any other predicate that genuinely depends on n variables, accepts about half the inputs
and which is easier to approximate than majority. It is not easy to guess what such a predicate
would be but there is also very little information to support the guess that majority is the easiest
predicate to approximate.

Using the results of Austrin and Mossel, Austrin and H̊astad [1] proved that almost all predicates
are approximation resistant. One way to interpret the results of this paper is that it indicates that
the following statement might be true. For the few predicates of large arity where we can get some
nontrivial approximation, we should not hope for too strong positive results.
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A The Unique Games Conjecture

Although we do not directly use the Unique Games Conjecture (UGC), we define it here for the
sake of completeness. An instance of Unique Games L = (G(V,W,E), [L], {πv,w}(v,w)) consists of
a regular bipartite graph G(V,W,E) and a set [L] of labels. For each edge (v, w) ∈ E there is a
constraint specified by a permutation πv,w : [L] 7→ [L]. The goal is to find a labeling ` : (V ∪W ) 7→
[L] so as to maximize val(`) := Pre∈E [` satisfies e], where a labeling ` is said to satisfy an edge e =
(v, w) if `(v) = πv,w(`(w)). For a Unique Game instance L, we let OPT (L) = max`:V ∪W 7→[L] val(`).
The now famous UGC that has been extensively used to prove strong hardness of approximation
results can be stated as follows.

Conjecture A.1 ([11]). For any constants ζ, γ > 0, there is a sufficiently large constant L =
L(ζ, γ) such that, for Unique Game instances L with label set [L], it is NP-hard to distinguish
between OPT (L) ≥ 1− ζ and OPT (L) ≤ γ.

30


	Introduction
	Preliminaries and Basic Technical Tools
	Notation
	Complex analysis background
	Common Lemmas
	Balanced Bernoulli Random Variables


	Adaptation of the Algorithm by Hast
	Our Main Algorithm
	Analysis of the Algorithm (Proof of Theorem 4.1)
	Application to Majority

	Unique Games Hardness
	The Basic Tool
	Application to the Majority Predicate
	Hardness for More General Predicates
	Almost Balanced Pairwise Distribution
	Existance of Correlated Random Bits
	Proof of Theorem 5.5

	A Limitation of Our Technique

	Conclusions
	The Unique Games Conjecture

