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Abstract. A predicate is approximation resistant if no probabilistic
polynomial time approximation algorithm can do significantly better
then the naive algorithm that picks an assignment uniformly at ran-
dom. Assuming that the Unique Games Conjecture is true we prove that
most Boolean predicates are approximation resistant.

1 Introduction

We consider constraint satisfaction problems (CSPs) over the Boolean domain.
In our model a problem is defined by a k-ary predicate P and an instance is given
by a list of k-tuples of literals. The task is to find an assignment to the variables
such that all the k-bit strings resulting from the list of k-tuples of literals under
the assignment satisfy the predicate P . In this paper we focus on Max-CSPs
which are optimization problems where we try to satisfy as many constraints as
possible.

The most famous such problem is probably Max-3-Sat where k = 3 and
P is simply the disjunction of the three bits. Another problem that (almost)
falls into this category is Max-Cut, in which k = 2 and P is non-equality. In
traditional Max-Cut we do not allow negations among the literals and if we do
allow negation the problem becomes Max-E2-Lin-2, linear equations modulo 2
with exactly two variables in each equation.

It is a classical result that most Boolean CSPs are NP-complete. Already
in 1978 Schaefer [12] gave a complete characterization giving only 5 classes for
which the problem is in P while establishing NP-completeness in the other cases.

Of course if a CSP is NP-complete, the corresponding Max-CSP is NP-hard.
The converse is false and several of Schaefer’s easy satisfiability problems are
in fact NP-hard as optimization problems. We turn to study approximation
algorithms. An algorithm is here considered to be a C-approximation if it, on
each input, finds an assignment with an objective value that is within a factor
C of the optimal solution. We allow randomized approximation algorithms and
in such a case it is sufficient that the expected value, over the random choices of
the algorithm, of the objective value satisfies the desired bound.

To define what is non-trivial is a matter of taste but hopefully there is some
consensus that the following algorithm is trivial: Without looking at the instance
pick a random value for each variable. We say that an approximation ratio is
non-trivial if it gives a value of C that is better than the value obtained by this



trivial algorithm. We call a predicate approximation resistant if it is NP-hard to
achieve a non-trivial approximation ratio.

It is perhaps surprising but many CSPs are approximation resistant and
one basic example is Max-3-Sat [6]. The famous algorithm of Goemans and
Williamson [1] shows that Max-Cut is not approximation resistant and this result
can be extended in great generality and no predicate that depends on two inputs
from an arbitrary finite domain can be approximation resistant [7].

Zwick [14] established approximability results for predicates that depend on
three Boolean inputs and from this it follows that the only predicates on three
inputs that are approximation resistant are those that are implied by parity or
its negation. A predicate P is implied by a predicate Q iff whenever Q(x) is true
so is P (x) and as an example the negation of parity implies disjunction as if we
know that an odd number of variables are true they cannot all be false.

Many scattered results on (families of) wider predicates do exist [4, 10] and in
particular Hast [5] made an extensive classification of predicates on four inputs.
Predicates that can be made equal by permuting the inputs or negating one or
more inputs behave the same with respect to approximation resistance and with
this notion of equivalence there are 400 different non-constant predicates on 4
Boolean inputs. Hast proved that 79 of these are approximation resistant, estab-
lished 275 to be non-trivially approximable leaving the status of 46 predicates
open. Zwick [13] has obtained numerical evidence suggesting that most of the
latter predicates are in fact non-trivially approximable.

The main result of this paper is to give evidence that a random predicate
for a large value of k is approximation resistant. The result is only evidence in
that it relies on the Unique Games Conjecture (UGC) of Khot [8] but on the
other hand we establish that a vast majority of the predicates are approximation
resistant under this assumption.

We base our proof on the recent result by Samorodnitsky and Trevisan [11]
that establishes that if d is the smallest integer such that 2d − 1 ≥ k then there
is a predicate of width k that accepts only 2d of the 2k possible k-bit strings and
which, based on the UGC, is approximation resistant. We extend their proof to
establish that any predicate implied by their predicate is approximation resis-
tant.

To establish our main result we proceed to prove that a random predicate is
implied by some predicate which is equivalent to the predicate of Samorodnit-
sky and Trevisan. This is established by a second moment method. A standard
random predicate on k bits is constructed by, for each of the 2k inputs, flipping
an unbiased coin to determine whether that input is accepted. It turns out that
our results apply to other spaces of random predicates. In fact, if we construct a
random predicate by accepting each input with probability k−c for some c > 0
we still, with high probability for sufficiently large k, get an approximation re-
sistant predicate. Here c is a number in the range [1/2, 1] that depends on how
close k is to the smallest number of the form 2d − 1 larger than k.

We make the proof more self contained by reproving one main technical
lemma of [11] relating to Gowers uniformity norms and influences of functions.



Our proof is similar in spirit to the original proof but significantly shorter and
we hence believe it is of independent interest.

Of course the contribution of this paper heavily depends on how one views
the Unique Games Conjecture, UGC. At the least one can conclude that it will
be difficult to give a non-trivial approximation algorithm for a random predicate.
Our results also point to the ever increasing need to settle the UGC.

An outline of the paper is as follows. We start by establishing some notation
and giving some definitions in Section 2. We prove the lemmas relating to Gowers
uniformity in Section 3 and proceed to establish that any predicate implied by
the predicate used by Samorodnitsky and Trevisan is approximation resistant in
Section 4. We then present our applications of this theorem by first establishing
that a random predicate is approximation resistant in Section 5 and that all
very dense predicates are approximation resistant in Section 6. We end with
some concluding remarks in Section 7.

2 Preliminaries

We consider functions mapping {−1, 1}n into the real numbers and usually into
the interval [−1, 1]. In this paper we use {−1, 1} as the value set of Boolean
variables but still call the values “bits”. For x, x′ ∈ {−1, 1}n we let x · x′ denote
the coordinate-wise product. In {0, 1}n-notation this is the simply the exclusive-
or of vectors.

For any α ⊆ [n] we have the character χα defined by

χα(x) =
∏
i∈α

xi

and the Fourier expansion is given by

f(x) =
∑

α⊆[n]

f̂αχα(x).

We are interested in long codes coding v ∈ [L]. This is a function {−1, 1}L →
{−1, 1} and if A is the long code of v then A(x) = xv. We want our long codes to
be folded, which means that they only contain values for inputs with x0 = 1. The
value when x0 = −1 is defined to be −A(−x). This ensures that the function is
unbiased and that the Fourier coefficient corresponding to the empty set is 0.

For two sets α and β we let α∆β be the symmetric difference of the two sets.
The influence infif is the expected variance of f when all variables except xi

are picked randomly and uniformly. It is well known that

infi =
∑
i∈α

f̂2
α.

The following lemma from [10] is useful.



Lemma 2.1. Let (fj)kj=1, {−1, 1}n → [−1, 1] be k functions, and

f(x) =
k∏

j=1

fj(x).

Then, for every i ∈ [n], infi(f) ≤ k
∑k

j=1 infi(fj).

The pairwise cross influence of a set of functions (fj)kj=1 is defined to be the
maximal simultaneous influence in any two of the functions or more formally

cinfi(fj)kj=1 = max
j1 �=j2

min(infi(fj1), infi(fj2)).

Let P be a predicate on k Boolean inputs. An instance of the problem Max-
CSP(P ) is given by a list of k-tuples of literals. The task is to find the assignment
to the variables that maximizes the number of k-tuples that satisfy P .

An algorithm is a C-approximation if it, for any instance I of this problem,
produces an assignment which satisfies at least C · Opt(I) constraints where
Opt(I) is the number of constraints satisfied by an optimal solution.

Let d(P ) be the fraction of k-bit strings accepted by P . The trivial algorithm
that just picks a random assignment satisfies, on the average, a d(P )-fraction
of the constraints and as an optimal solution cannot satisfy more than all the
constraints this yields a (randomized) d(P )-approximation algorithm. We have
the following definition.

Definition 2.1. A predicate P is approximation resistant if, for any ε > 0, it
is NP-hard to approximate Max-CSP(P ) within d(P ) + ε.

Some predicates have an even stronger property.

Definition 2.2. A predicate P is hereditary approximation resistant if any
predicate Q implied by P is approximation resistant.

3 Gowers Uniformity and Influence

Gowers [2, 3] introduced the notion of dimension-d uniformity norm Ud(f) which
was used in an essential way by Samorodnitsky and Trevisan [11]. Their result
says that if a function does not have an influential variable and is unbiased then
the dimension-d uniformity norm is small. More importantly for their applica-
tion, [11] also proved that if a set of functions has small cross influences and
at least one function is unbiased then the corresponding product is small. We
slightly extend their result by allowing a small bias of the involved functions.
Allowing this extension makes it possible to give a short, direct proof.

We want to emphasize that the results obtained by Samorodnitsky and Tre-
visan are sufficient for us but we include the results of this section since we
believe that our proofs are simpler and that the extension might be interesting
on its own and possibly useful in some other context.



Theorem 3.1. Let f : {−1, 1}n → [−1, 1] be a function with maxi infi(f) ≤ ε
and |E[f ]| ≤ δ, then∣∣∣∣∣∣Ex1,...xd


 ∏

S⊆[d]

f

(∏
i∈S

xi

)

∣∣∣∣∣∣ ≤ δ + (2d−1 − 1)

√
ε.

Proof. We prove the theorem by induction over d. Clearly it is true for d = 1 as
the quantity to estimate equals |f(1n)E[f ]|.

For the induction step let gxd

(x) = f(x)f(x · xd). Then, by Lemma 2.1,
maxi infigxd ≤ 4ε. Furthermore

Ex[gxd

] = 2−n
∑

x

f(x)f(x · xd) = f ∗ f(xd)

and let us for notational simplicity denote this function by h(xd). As convolution
turns into product on the Fourier transform side we have ĥα = f̂2

α. For any α 
= ∅
we have f̂2

α ≤ maxi infi(f) ≤ ε and hence

‖h‖2
2 =

∑
α

ĥ2
α =

∑
α

f̂4
α ≤ f̂4

∅ + ε
∑
α�=∅

f̂2
α ≤ δ4 + ε.

This implies, using the Cauchy-Schwartz inequality, that

Exd [|Ex[gxd

(x)]|] ≤
√
δ4 + ε ≤ δ2 +

√
ε ≤ δ +

√
ε. (1)

Now∣∣∣∣∣∣Ex1,...xd


 ∏

S⊆[d]

f

(∏
i∈S

xi

)

∣∣∣∣∣∣ ≤ Exd

∣∣∣∣∣∣Ex1,...xd−1


 ∏

S⊆[d−1]

gxd

(∏
i∈S

xi

)

∣∣∣∣∣∣ ,

which, by induction, is bounded by

Exd

[
|Ex[gxd

]|+ (2d−2 − 1)
√
4ε
]
≤ δ + (2d−1 − 1)

√
ε.

Note that by doing some more calculations we can get a better bound as a
function of δ by not doing the wasteful replacement of δ2 by δ in (1). We proceed
to allow the functions to be different and require the pairwise cross influence to
be small.

Theorem 3.2. Let (fS)S⊆[d] be a set of functions {−1, 1}n → [−1, 1],with maxi cinfi(fS) ≤
ε and minS �=∅ |E[fS ]| ≤ δ, then∣∣∣∣∣∣Ex1,...xd


 ∏

S⊆[d]

fS(
∏
i∈S

xi)



∣∣∣∣∣∣ ≤ δ + (2d − 2)

√
ε.



Proof. We use induction over d. The base case d = 1 is straightforward and let
us do the induction step.

By a change of variables we can assume that |E[f[d]]| ≤ δ. Now define a new
set of functions by

gxd

S (x) = fS(x)fS∪{d}(x · xd),

for any S ⊆ [d−1]. The cross influence of this set of functions is, by Lemma 2.1,
bounded by 4ε. Let h(xd) be the average of gxd

[d−1]. Then h = f[d−1] ∗ f[d] and

ĥα = f̂[d−1],αf̂[d],α which yields

‖h‖2
2 =

∑
α

ĥ2
α = f̂2

[d−1],∅f̂
2
[d],∅ +

∑
α�=∅

f̂2
[d−1],αf̂

2
[d],α ≤

δ2+
∑
α�=∅

min(f̂2
[d−1],α, f̂

2
[d],α)(f̂

2
[d−1],α+f̂

2
[d],α) ≤ δ2+

∑
α�=∅

ε(f̂2
[d−1],α+f̂

2
[d],α) ≤ δ2+2ε.

Using induction we get∣∣∣∣∣∣Ex1,...xd


 ∏

S⊆[d]

fS

(∏
i∈S

xi

)

∣∣∣∣∣∣ ≤ Exd

∣∣∣∣∣∣Ex1,...xd−1


 ∏

S⊆[d−1]

gS

(∏
i∈S

xi

)

∣∣∣∣∣∣ ≤

Exd

[
|E[gxd

[d−1]]|+ (2d−1 − 2)
√
4ε
]
≤ δ + 2

√
ε+ (2d − 4)

√
ε ≤ δ + (2d − 2)

√
ε.

4 The ST-predicate

Assume that 2d−1 ≤ k ≤ 2d − 1. For any integer i with 1 ≤ i ≤ 2d − 1 let î ⊆ [d]
be the set whose characteristic vector is equal to the binary expansion of i. We
define PST (x), a predicate on k-bit strings, to be true if for all triplets i1, i2, and
i3 such that î1∆î2 = î3 we have xi1xi2 = xi3 . Of course the predicate depends
on k but as k (and d) remains fixed we suppress this dependence.

It is not difficult to see that the accepted strings form a linear space of
dimension d. In fact the following procedure for picking a random string accepted
by PST is a good way to visualize the predicate. For each i that is a power of
two set xi to a random bit. For other values of i set

xi =
∏
j∈î

x2j .

Now consider Max-CSP(PST ) and the following theorem is from [11].

Theorem 4.1. Assuming the UGC, for any ε > 0, it is NP-hard to approximate
Max-CSP(PST ) within 2d−k + ε.

Equivalently, the theorem says that PST , assuming UGC, is approximation
resistant, but we need more.



Theorem 4.2. Assuming UGC, PST is hereditary approximation resistant.

It is satisfying to note that for k = 3 the predicate PST is simply parity and
hence this instance of the theorem was proved in [6] without using the UGC.

Proof. LetQ be any predicate of arity k implied by PST . Our proof is very similar
to the proof of [11] but we use a slightly different terminology. We assume that
the reader is familiar with Probabilistically Checkable Proofs (PCPs) and their
relation to inapproximability result for Max-CSPs. Details of the connection can
be found in many places, one possible place being [6]. The short summary is
that for any γ > 0 we need to define a PCP where the acceptance condition is
given by the predicate Q and such that it is hard to distinguish the case when
the maximal acceptance probability is 1 − γ and the case when the maximal
acceptance probability is d(Q)+γ. It is also needed that the verifier uses O(log n)
random bits when checking proofs of statements of size n. The latter property
implies that the proof is of polynomial size.

As in [11] we use a form of the UGC which, using the terminology of [11],
is called the k-ary unique games. We have variables (vi)ni=1 taking values in a
finite domain of size L, which we assume to be [L]. A constraint is given by
a k-tuple, (vij )

k
j=1 of variables and k permutations (πj)kj=1. An assignment V

strongly satisfies the constraint iff the k elements πj(V (vij )) are all the same and
the assignment weakly satisfies the constraint if these values are not all distinct.
The following result, originally by Khot and Regev [9] is stated in [11].

Theorem 4.3. If the UGC is true then for every k and ε there is a L = L(k, ε)
such that, given a k-ary unique game problem with alphabet size L, it is NP-hard
to distinguish the case in which there is an assignment that strongly satisfies at
least a (1 − ε)-fraction of the constraints from the case where every assignment
weakly satisfies at most a fraction ε of the constraints.

We proceed to construct a PCP based on the k-ary unique game problem.
The test is as described in [11] but slightly reformulated.

The written proof is supposed to be coding of an assignment which satisfies
a (1 − ε)-fraction of the constraints. For each vi the proof contains the long
code Ai of V (vi). We access these long codes in a folded way as described in
the preliminaries. This folding gives rise to negations in the resulting instance
of Max-CSP(Q). We let permutations act on vectors by π(x)j = xπ(j).

As in many PCPs we use noise vectors µ ∈ {−1, 1}L which has the property
that µv is picked randomly and independently and for each v ∈ [L] it equals 1
with probability 1− δ and −1 with probability δ, where δ is a parameter to be
determined. It is an important parameter of the test and hence we include it
explicitly. The verifier of the PCP works as follows.

Q-test(δ).

1. Pick a random k-ary constraint, given by variables (vij )kj=1, and permuta-
tions (πj)kj=1.



2. Pick d independent random unbiased unbiased xi ∈ {−1, 1}L and k inde-
pendent noise functions µj ∈ {−1, 1}L.

3. Let yj =
∏

i∈ĵ x
i and bj = Aij (πj(yj) · µj).

4. Accept if Q(b) = Q(b1, b2, . . . bk) is true.

We first address completeness.

Lemma 4.1. For any γ > 0 there exists δ > 0, ε > 0 such that if there is an
assignment that strongly satisfies a fraction 1− ε of the constraints in the k-ary
unique game problem then the verifier in Q-test(δ) can be made to accept with
probability 1− γ.

Proof. Assume that each Aj is the correct long code of the value V (vj) for an
assignment V that satisfies at least a (1 − ε)-fraction of the constraints. Then
assuming that µj

V (vij
) = 1 and πj(V (vij )) = v for all j we have

bj = yj
πj(V (vij

)) · µj
V (vij

) = yj
v =

∏
i∈ĵ

xi
v.

Recalling the description of the accepted inputs of PST it follows that b satisfies
PST and hence also Q. The completeness is hence at least 1−ε−kδ and choosing
ε and δ sufficiently small this is at least 1− γ.

Let us turn to the more challenging task of analyzing the soundness.

Lemma 4.2. For any γ > 0, δ > 0 there exist ε = ε(k, δ, γ) > 0 such that if
the verifier in Q-test(δ) accepts with probability at least d(Q) + γ there exists
an assignment that weakly satisfies at least a fraction ε of the constraints in the
k-ary unique game problem.

Proof. We assume that the verifier accepts with probability d(Q) + γ and turn
to define a (randomized) assignment that weakly satisfies a fraction of the con-
straints that only depends on k, δ and γ.

We use the multilinear representation of Q (which is in fact identical to the
Fourier transform)

Q(b) =
∑

β

Q̂β

∏
j∈β

bj .

Note that the constant term Q̂∅ is exactly d(Q) and hence if the verifier accepts
with probability d(Q) + γ there must be some nonempty β such that

|E[
∏
j∈β

bj]| ≥ 2−kγ, (2)

where the expectation is taken over a random constraint of the k-ary unique
game and random choices of xi and µj .

Let us first study expectation over the noise vectors and towards this end let



Bj(y) = Eµ[Aj(y · µ)],
which gives Eµj (bj) = Bij (πj(yj)). It is a standard fact (for a proof see [6]) that

B̂j,β = (1− 2δ)|β|Âj,β

and hence ∑
|β|≥t

B̂2
j,β ≤ (1− 2δ)2t (3)

for any t. Now set Γ = 2−2(d+k+2)γ2 and let t = O(δ−1 logΓ−1) be such that

(1− 2δ)2t ≤ Γ/2,

and define
Tj = {i |infiBj ≥ Γ}.

As

infiBj =
∑
i∈β

B̂2
j,β , (4)

by (3) and the definition of t, if i ∈ Tj then we must have at least a contribution
of Γ/2 from sets of size at most t in (4). Using this it follows that |Tj | ≤ 2t/Γ
for any j.

Consider the probabilistic assignment that for each vj chooses a random
element of Tj . If Tj is empty we choose an arbitrary value for vj .

By (2) we know that for at least a fraction 2−kγ/2 of the constraints we have∣∣∣∣∣∣Exi,µj


∏

j∈β

bj



∣∣∣∣∣∣ ≥ 2−kγ/2. (5)

Fix any such constraint and define the following family of functions.
For any j 
∈ β or k < j ≤ 2d − 1 set hĵ to be identically one while if j ∈ β

we define hĵ by
hĵ(y) = Bij (πj(y)).

These definitions imply that

Eµ


∏

j∈β

bi


 =

∏
S⊆[d]

hS

(∏
i∈S

xi

)
(6)

and hence we are in a position to apply Theorem 3.2. Note first that, by folding,
each h that is non-constant is in fact unbiased and hence, as β is non-empty, the
minimum bias of the set of functions is 0.



We now claim that the maximal cross influence of the function set hS is at
least Γ . Indeed suppose that this is not the case. Then, by Theorem 3.2, the
expectation of (6), over the choice of vectors xi, is at most

(2d − 2)
√
Γ < 2d2−(d+k+2)γ ≤ 2−kγ/2

contradicting (5).
Thus we have j1, j2 ∈ β and an i such that infihĵ1

≥ Γ and infihĵ2
≥ Γ .

Now, by definition, infihĵ1
is the same as infπ−1

j1
(i)(Bij1

). We conclude that there

is a common element in πj1(Tij1
) and πj2(Tij2

) and our probabilistic assignment
weakly satisfies the constraint with probability at least

1
|Tij1

| ·
1

|Tij2
| ≥

Γ 2

4t2
.

As this happens for at least a fraction 2−kγ/2 of the constraints our probabilistic
assignment weakly satisfies, on the average, a fraction at least

2−kγΓ 2

8t2

of the constraints. Clearly there exists a standard, deterministic assignment
that satisfies the same fraction of the constraints. This finishes the proof of
Lemma 4.2.

As stated before Lemma 4.1 and Lemma 4.2 together with the fact that the
acceptance criteria of Q-test(δ) is given by Q is sufficient to prove Theorem 4.2.
Note that the randomness used by the verifier is bounded by O(log n) and most
of the randomness is used to choose a random constraints as all other random
choices only require O(1) random bits.

We do not give the details of these standard parts of the proof here. In short,
an approximation algorithm for Max-CSP-(Q) can be used to solve the problem
established to be hard in Theorem 4.3.

5 Random Predicates

Remember that we allow negation of inputs and permutation of input variables
and hence two predicates that can be obtained from each other by such opera-
tions are equivalent. Thus Theorem 4.2 does not only apply to PST but also to
any predicate which is equivalent to it.

Consider the following space of random predicates.

Definition 5.1. Let Qp,k be the probability space of predicates in k variables
where each input is accepted with probability p.

A uniformly random predicate corresponds to a predicate from Q1/2,k but
we will consider also smaller values of p. Whenever needed in calculations we
assume p ≤ 1/2.



We want to analyze the probability that a random predicate from Qp,k is
implied by a negated and/or permuted variant of PST and let us just check that
it is reasonable to believe that this is the case.

We have k! permutations of the inputs and 2k possible ways to negate the
inputs. Thus the expected number of PST -equivalent predicates that imply a
random predicate from Qp,d is

p2d

2kk!.

There is hope if this number is at least one, which, ignoring low order terms,
happens as soon as

p ≥ k−k2−d

.

This lower bound is between k−1 and k−1/2 and in particular it is smaller than
any constant. In fact this rough estimate turns out to be rather close to the truth
and the proof is an application of the second moment method. A problem to be
overcome is that some pairs of PST -equivalent predicate have large intersection
of their accepted sets. To address this problem we pick a large subset of the
PST -equivalent predicates with bounded size intersections.

Theorem 5.1. Assuming UGC and 2d−1 ≤ k ≤ 2d − 1 then, there is a value c
of the form c = k2−d(1 − o(1)), such that, with probability 1 − o(1), a random
predicate chosen according to Q(p, k) with p = k−c is approximation resistant.

Proof. In view of Theorem 4.2 we need only prove that a random predicate from
Qp,k with high probability is implied by some predicate which can be obtained
from PST by negations and/or permutations of inputs.

Let us denote the set accepted by PST by L. It is a linear space of dimen-
sion d. Negating one or more inputs gives an affine space that is either L or
completely disjoint from L. We get 2k−d disjoint affine spaces denoted by L+α
where α ranges over a suitable set of cardinality 2k−d. We can also permute the
coordinates and this gives a total of k!2k−t sets

π(L+ α)

Consider
π(L + α) ∩ π′(L+ β).

It is an affine space which is either empty or of dimension of the linear space

π(L) ∩ π′(L)

The below lemma is useful towards this end. Due to space limitations the proof
of the lemma will only appear in the full version.

Lemma 5.1. Let d0 and k0 be sufficiently large constants and let r be a number
such that 2d−r ≥ d0 and assume that k ≥ k0. Then, if π and π′ are two random
permutations we have

Pr[dim(π(L) ∩ π′(L)) ≥ r] ≤ 2(2−r)k.



Set R = 2k(r−2) and let us see how to use Lemma 5.1 to choose R different
permutations πi such that

dim(πi(L) ∩ πj(L)) ≤ r

for any i 
= j. First pick 2R random permutations. The expected number of pairs
(i, j), i < j, with

dim(πi(L) ∩ πj(L)) > r

is bounded by 2R22(1−r)k ≤ R and hence there is a choice of 2R permutations
such that the number of such pairs is bounded by R. Erase one of the two
permutations in each such pair and we have the desired set. Let us fix this set
(πi)Ri=1 once and for all.

Let Xi,α be the indicator variable for the event a random predicate from Qk,p

is identically one on the set
πi(L+ α).

Set
X =

∑
i,α

Xi,α.

The probability of the event that the random predicate is not identically one on
any πi(L+ α) is now exactly Pr[X = 0] and we estimate the probability of this
event. Clearly

E[X ] = p2d

2k−dR. (7)

The variance of X equals

E


 ∑

i1,i2,α1,α2

(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)


 . (8)

We have the following lemma.

Lemma 5.2. We have E[(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)] = 0 if πi1 (L + α1) and
πi2(L+α2) are disjoint while if the size of the intersection is K it is bounded by

p2d+1−K .

Proof. In fact

E[(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)] = E[Xi1,α1Xi2,α2 ]− p2d+1
= p2d+1−K − p2d+1

.

Let us now estimate (8). Terms with i1 = i2 are easy as the corresponding
sets either have full intersection or are disjoint. These give a contribution that
is upper bounded by E[X ]. Now for i1 
= i2 let us fix α1 and consider∑

α2

E
[
(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)
]
. (9)



It is the case that for some r′ ≤ r we have 2d−r′
terms with set intersection size

2r′
while all other intersections are empty leading to the upper estimate

2d−r′
p2d+1−2r′ ≤ 2d−rp2d+1−2r

(using the assumption p ≤ 1/2) for the sum (9). Summing over all i1, i2 and α1

we get

σ2(X) ≤ E[X ] +R22k−d2d−rp2d+1−2r

= E[X ] +R22k−rp2d+1−2r

. (10)

We have

Pr[X = 0] ≤ σ2(X)
E[X ]2

≤ 1
E[X ]

+
R22k−rp2d+1−2r

R222(k−d)p2d+1 ≤ 1
E[X ]

+ 22d−(k+r)p−2r

.(11)

We need to choose p and r to make this probability o(1). Set p = k−c for some
c ≤ 1. Then provided

2r log k < (k + r) − 2d− ω(1)

the second term of (11) is small. This is possible to achieve with r = d−Θ(log d).
Note that this choice also ensures d− r ∈ ω(1) as required by Lemma 5.1.

Fixing this value of r the first term of (11) is o(1) provided that

p2d ≥ 2(2−r)k

which with, p = k−c, is equivalent to

c ≤ k2−d · r − 2
log k

. (12)

As the second factor of the bound in (12) is (1 − o(1)) we have proved Theo-
rem 5.1.

Apart from adjustments of the error terms this is the best that can be ob-
tained by the current methods. Namely setting p = k−(k2−d+ε) for ε > 0 the
probability of a random predicate being implied by some PST -equivalent predi-
cate goes to 0 as can be seen from calculating the expected value of the number
of such predicates.

One can always wonder about reasonable values for p for small values of k.
Particularly good values for k are numbers of the form 2d − 1 as this gives an
unusually sparse predicate PST . Numerical simulations suggests that a random
predicate on 7 bits that accepts M of the 128 inputs has a probability at least
1/2 of being implied by a PST -equivalent predicate iff M ≥ 60. Thus it seems
like the asymptotic bound of density essentially k−1 is approached slowly.



6 Very Dense Predicates

As PST only accepts 2d inputs we can derive approximation resistance of many
predicates but let us here give only one immediate application.

Theorem 6.1. Let 2d−1 ≤ k ≤ 2d − 1 and P be any predicate that accepts at
least 2k+1−2k−d inputs, then, assuming the UGC, P is approximation resistant.

Proof. We use the same notation as used in the proof of Theorem 5.1.
We need to prove that any such predicate is implied by a PST -equivalent

predicate. This time we need only apply negations and look at L + α for all
the 2k−d different representatives α. As P only rejects 2k−d − 1 different inputs
and the sets L + α are disjoint, one such set is included in the accepted inputs
of P . The corresponding suitable negated form of PST hence implies P and
Theorem 6.1 follows from Theorem 4.2.

It is an interesting question how dense a non-trivially approximable predicate
can be. Let dk be the maximum value of d(P ) for all predicates on k variables
which are not approximation resistant. We have d2 = d3 = 3/4 and Hast [5]
proved that d4 = 13

16 and, as we can always ignore any input, dk is an increasing
function of k. It is not obvious whether dk tends to one as k tends to infinity.

Our results show that dense predicates which can be non-trivially approxi-
mated need to be extremely structured as they cannot be implied by any PST -
equivalent predicate.

7 Concluding Remarks

The key result in the current paper is to prove that PST is hereditary approxi-
mation resistant. This is another result indicating that the more inputs accepted
by the predicate P , the more likely it is to be approximation resistant. One could
be tempted to conclude that all approximation resistant predicates are in fact
hereditary approximation resistant. We would like to point that this is false and
Hast [5] has an example of two predicates P and Q where P is approximation
resistant, P implies Q and Q is not approximation resistant.

That a predicate is approximation resistant is almost the ultimate hardness.
There is a stronger notion; approximation resistance on satisfiable instances. In
such a case no efficient algorithm is able to do significantly better than picking
a random assignment even in the case when the instance is satisfiable.

An example of a predicate which is approximation resistant but not ap-
proximation resistant on satisfiable instances is Max-E3-Lin-2, linear equations
modulo 2 with three variables in each equation. In this case, for a satisfiable in-
stance, it is easy to find an assignment that satisfies all constraints by Gaussian
elimination.

In most cases, however, approximation resistant predicates have turned out
to be approximation resistant also on satisfiable instances and it would seem rea-
sonable to conjecture that a random predicate is indeed approximation resistant



on satisfiable instances. If true it seems hard to prove this fact using the Unique
Games Conjecture in that the non-perfect completeness of UGC would tend to
produce instances of the CSP which are not satisfiable. There are variants of the
unique games conjecture [8] which postulate hardness of label cover problems
with perfect completeness but it would be much nicer to take a different route
not relying on any conjectures.

Another open problem is of course to establish approximation resistance in
absolute terms and not to rely on the UGC or, more ambitiously, to prove the
UGC.
Acknowledgment: I am grateful to Per Austrin for useful comments on the
current manuscript.
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