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Abstract

Boundary integral equation techniques are useful in the numerical simulation of
scattering problems for wave equations. Their advantage over methods based on
partial differential equations comes from the lack of phase errors in the wave prop-
agation and from the fact that only the boundary of the scattering object needs to
be discretized. Boundary integral techniques are often applied in frequency domain
but recently several time domain integral equation methods are being developed.

We study time domain integral equation methods for the scalar wave equation
with a Galerkin discretization of two different integral formulations for a Dirichlet
scatterer. The first method uses the Kirchhoff formula for the solution of the scalar
wave equation. The method is prone to get unstable modes and the method is
stabilized using an averaging filter on the solution. The second method uses the
integral formulations for the Helmholtz equation in frequency domain, and this
method is stable. The Galerkin formulation for a Neumann scatterer arising from
Helmholtz equation is implemented, but is unstable.

In the discretizations, integrals are evaluated over triangles, sectors, segments
and circles. Integrals are evaluated analytically and in some cases numerically.
Singular integrands are made finite, using the Duffy transform.

The Galerkin discretizations uses constant basis functions in time and nodal
linear elements in space. Numerical computations verify that the Dirichlet methods
are stable, first order accurate in time and second order accurate in space. Tests are
performed with a point source illuminating a plate and a plane wave illuminating
a sphere.

We investigate the On Surface Radiation Condition, which can be used as a
medium to high frequency approximation of the Kirchhoff formula, for both Dirich-
let and Neumann scatterers. Numerical computations are done for a Dirichlet
scatterer.
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Chapter 1

Introduction

Scattering problems arise in many applications, for example in acoustics and elec-
tromagnetics. In a scattering problem, an external field uinc illuminates a scatterer
and creates a potential on the surface Γ of the scatterer and the potential depends
on the characteristics of the scatterer. The potential determines the scattered field
usc in the exterior of the scatterer. We want to find the total field in the exterior
of the scatterer consisting both of the incoming field and the scattered field.

uinc

usc

Ω

Ω′

Γ

Figure 1.1. Scattering problem.

One way of solving acoustic scattering problems is to solve the wave equation
in time domain (TD), for the scattered field,

∇2usc − 1
c2

∂2usc

∂t2
= −g(r, t), (1.1)

usc(r, t) = 0, t ≤ 0, (1.2)

1



2 Chapter 1. Introduction

with boundary conditions on the surface Γ with normal n,

uinc + usc = 0, for a Dirichlet surface (1.3)
∂uinc

∂n
+

∂usc

∂n
= 0, for a Neumann surface. (1.4)

There are many ways of solving these equations, e.g. finite difference, finite
elements, finite volumes, etc. A drawback with these methods is that the whole
space around a scatterer needs to be discretized.

The scattering problem may alternatively be solved in frequency domain (FD),
where the solution is a time harmonic wave satisfying

u(r, t) = û(r)eikt. (1.5)

The ansatz (1.5) solves the scalar Helmholtz equation [20],

∇2û+ kû = 0, (1.6)

with boundary conditions (1.3) and (1.4).
Electromagnetic scattering problems are solved with vector Helmholtz equations

[21]. The classical way of solving the Helmholtz equation is to use the method of
moments (MM), [13]. Only the surface of the scatterer needs to be discretized in
order to obtain the potential on the scatterer. The potential determines the scat-
tered field in all exterior points. In acoustics, we consider Dirichlet (or sound soft)
as well as Neumann (or sound hard) scatterers. The acoustic scattering problem
for a Dirichlet scatterer is to find the time harmonic potential Φ that solves

−ûinc(r) =
∫
Γ

eikR

4πR
Φ̂(r′)dΓ′, ∀r ∈ Γ. (1.7)

If we want to get a solution for a broad band of frequencies, for example tran-
sients, the method of moments becomes expensive. We want to solve for all fre-
quencies at the same time, without discretizing the whole space around the scat-
terer. This can be done with the Time Domain Integral Equations (TDIE). For the
Dirichlet scatterer, we obtain the retarded potential integral equation (RPIE)

−uinc(r, t) =
∫
Γ

Φ(r′, t−R/c)
4πR

dΓ′, ∀r ∈ Γ. (1.8)

When the integrals are discretized, it is possible to get a matrix scheme, in which
we can step forward in time. This scheme is called Marching On in Time (MOT).
Another application of TDIE is when we want to solve a scattering problem in
the scatterer resonance region, where the method of moments is known to break
down. TDIE origins from the early sixties, back to Friedman and Shaw [11] and
has increased in popularity in recent years. The reason why they have been less
popular in the past is that the TDIE has problems with instabilities. In a work
by Isabelle Terrasse [23], it is shown in which spaces the solution of Maxwell’s
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equations lives in, in the case of a PEC-scatterer. Numerical schemes based on
the Marching On in Time method often suffers from instabilitites. Michielssen [25]
claims that the instabilities comes from that high frequencies that are not resolved
by the numerical schemes. Michielssen [25] has proposed to use bandlimited basis
functions in time (BLIFs), developed by Knab [17]. The BLIFs filters out the high
frequencies, which are the reason for the instabilities. One drawback with the BLIF
basis functions is that they are several timesteps wide. This means that marching
scheme becomes implicit. To make the scheme explicit, one can use a predictor-
corrector scheme, which predicts the future solution to get the present solution.
Another approach is to solve for all times, using an iterative solver. In analogy
with the frequency domain solvers, the bottleneck of the marching method is a
matrix-vector multiplication. The complexity of the matrix-vector multiplication
can be reduced using a plane wave expansion of the field, which is done in the
PWTD method, developed by Michielssen et.al. [10].

1.1 Dirichlet surface

In the Dirichlet case one can derive a Fredholm integral equation of the first kind,
from the Kirchhoff representation of the scattered field. This approach leads to
a stepping scheme with an eigenvalue close to -1. A problem with stability arises
as the eigenvalues leaves the unit circle at -1. The stability properties has been
studied by Davies [5] in case of the second type of Fredholm integral equation. For
the case of the Fredholm IE of the first kind, there exists averaging techniques to
make the method more stable, see [24], [6]. In order to avoid those instabilities for
the Dirichlet case, we use variational formulations proposed by Bamberger and Ha
Duong in [1]. The integral equations in frequency domain has a well known behavior
[20]. Bamberger and Ha Duong gives a variational formulation in frequency domain
that is continuous and coersive. By taking the inverse Laplace transform, they get
a retarded potential formulation, where these properties are preserved. Therefore
we expect a discretization of their variational formulations to be stable. Our con-
tribution is an implementation of a marching method for a Dirichlet scatterer in
acoustics, for two different variational formulations. In the Kirchhoff approach, we
use stabilization techniques to avoid numerical instabilities. In the computation
of the integral kernels, integral evaluations are needed over four different shapes;
triangles, circle sectors, circle segments and circles. Most of those integrals are
computed analytically. Some of the integrals are computed numerically with high
order adaptive methods. Both variational formulations yields a solution which is
first order in time and second order in space. The order is verified by numerical
computations.
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1.2 Neumann surface

In the case of a Neumann boundary, there exists formulations that resemble a
Fredholm integral equation of the second kind, [3], [7], which is known to have good
convergence properties. These methods are not true Fredholm integral equations
of the second kind, because the integral kernel contains time derivatives. They can
also be considered as Volterra types of integral equations. We therefore cannot
expect the equations to have the nice properties of the Fredholm equation of the
second kind. We use the variational formulations proposed by Bamberger and Ha
Duong in [2]. Their variational equation is both coersive and continuous as in
the Dirichlet case. Recently, Ha Duong, Ludwig and Terrasse, published a review
article on an Acoustic Marching On in Time solver, see [12]. The implementation
of a Neumann scatterer using formulations in [2] is presented but the scheme is
unstable. One possible reason for the instability is that we use less regular basis
functions in time, than what is proposed in the variational formulation, but this
causes no problem in the Dirichlet case. Another possibility is that an error is
introduced when the integration order is changed.

1.3 Outline

In chapter 2, we derive the classical integral representations of the acoustic and
electromagnetic scattering problems, using the Kirchhoff formula. A variational
formulation is obtained for a Dirichlet scatterer in acoustics.

In chapter 3, we use variational formulations arising from the Helmholtz equa-
tion in frequency domain. By taking the inverse Laplace transform we obtain
variational formulations for Dirichlet and Neumann scatterers. We introduce basis
function in space and time and get the discretized variational formulations.

In chapter 4, we evaluate the necessary integrals over four different shapes,
triangle, sector, segment and circle. In the triangle case, integrals with singular
integrands are transformed with the Duffy transform. In the three other cases,
there are no problems with singularities.

In chapter 5, we discuss how to stabilize the Kirchhoff formulation for a Dirichlet
scatterer. This is done by filtering techniques, which moves the eigenvalues at -1
to origo.

In chapter 6, we explain the time stepping procedure and the assembly proce-
dure. An algorithm for the assembly process is given. We discuss how to find the
domain of integration which are the triangles, sectors etc. in chapter 4.

In chapter 7 we do numerical experiments on the Kirchhoff formulations. We
test the stabilizing filter for a Dirichlet scatterer. We conclude that the filter is
necessary in order to get a stable scheme. We verify that the method is first order
accurate in time and second order accurate in space, in the case of a point source
illuminating a plate. We also perform tests with a plane wave illuminating a sphere.
The solution is compared with an analytical solution.
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In chapter 8 we do numerical experiments on the variational formulation for a
Dirichlet scatterer arising from formulations in frequency domain. We examine a
parameter ω that appears in the variational formulations and conclude that the best
choice is ω = 0. This choice is stable in long time calculations. Furthermore, most
integrals has an analytic expression, which make the assembly process faster. The
largest eigenvalue of the corresponding one-step method is a multiple eigenvalue 1
(up to 14 digits). We run the method 10000 time steps and there are no sign of
instability. We perform the same tests as in chapter 7, to check the order, point
source solution and plane wave solution.

In chapter 9 we look at On Surface Radiation Condition (OSRC), which can be
used as a high frequency approximation of the MOT method. A numerical test with
low frequency is performed, with the solution to the MOT method as a reference
solution. The OSRC solution resembles the MOT solution.
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Chapter 2

Integral equations using
Kirchoff formula

In this chapter we will explain how to get an integral representation of the scattered
field for the Acoustic equation as well as for the Maxwell equation. In section 2.1,
the Kirchhoff formula is introduced for the solution of the scalar wave equation.
The Kirchhoff formula is used to get an integral representation that couples the
incoming and the scattered field on the boundary of the scatterer. The coupling
depends on the material properties of the scatterer. When we have a sound soft
scatterer, then we obtain a Dirichlet boundary condition. If we have a sound hard
scatterer, then we get a Neumann boundary condition. One can also think of
objects that are neither sound soft nor hard, but something in between. We then
get a Robin boundary condition. The integral formulation is given for these three
cases. In the following chapters we will only consider the Dirichlet and Neumann
cases. In section 2.2, we show how an integral formulation can be derived for the
Maxwell’s equations. The electric and magnetic fields are written as a combination
of potentials. These potentials are solutions to the inhomogeneous wave equation
and can be represented by the Kirchhoff integrals.

2.1 The scalar wave equation

Consider the 3D wave equation for the pressure u and sound speed c,

∇2u− 1
c2

∂2u

∂t2
= −g(r, t), (2.1)

u(r, t) = 0, t ≤ 0, (2.2)

where r = (x, y, z) is the spatial coordinate Let Ω be a closed domain bounded
by a regular surface Γ and let Ω′ = R

3\Ω be the exterior domain. Suppose that

7
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uinc

usc

Ω

Ω′

Γ

Figure 2.1. Computational domain

u is scalar function which has two continuous derivatives in Ω and Γ. Using the
fundamental solution of the wave equation yields the Kirchhoff formula [22]

4πu(r, t) =
∫
Ω

1
R
g∗dv′ +

∫
Γ

{
1
R

∂u∗

∂n
− ∂R−1

∂n
u∗ +

1
cR

∂R

∂n

∂u∗

∂t

}
dΓ′ (2.3)

where

g∗(r′, t) = g(r′, t−R/c), R = |r− r′|, (2.4)

and n is the outwards normal.
The field can be divided into an incoming part uinc and a scattered part usc.

The total field utot is the sum of the two parts. For a given incoming field uinc(r, t),
we want to compute the scattered field in Ω′ × R

+.

∇2uinc − 1
c2

∂2uinc

∂t2
= −g(r, t), in R

3 × R
+, (2.5)

∇2usc − 1
c2

∂2usc

∂t2
= 0, in Ω′ × R

+. (2.6)

Define the function ũ(r, t) in R
3 × R

ũ =
{ −uinc, in Ω× R

+,
usc, in Ω′ × R

+.
(2.7)
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The equation for ũ away from Γ are

ũ =
1
4π

∫
Γ

{
1
R

[
∂ũ∗

∂n

]
− ∂

∂n

(
1
R

)
[ũ∗] +

1
cR

∂R

∂n

∂

∂t
[ũ∗]
}
dΓ′, (2.8)

where [ũ] = ũint − ũext and ũint, ũext are the solutions to the interior and exterior
problem respectively. To get a unique solution to this problem, we need a bound-
ary condition on Γ. There are at least three possible boundary conditions, namely
Dirichlet, Neumann and Robin boundary condition. The Dirichlet and Neumann
boundary condition corresponds to a sound-soft and sound-hard object, respec-
tively. The Robin boundary condition corresponds to an object that is neither
sound-soft or sound-hard, but something in between.

2.1.1 Dirichlet problem

Consider a Dirichlet problem, that has utot = 0 on the boundary. This is equivalent
to [ũ] = 0 on the boundary and the integral equation can be written

ũ = PD

([
∂ũ

∂n

])
� 1

4π

∫
Γ

1
R

[
∂ũ∗

∂n

]
dΓ′, (2.9)

or equivalently, with J =
[
∂ũ
∂n

]
,

−uinc(r, t) = PD (J) (r, t), ∀(r, t) ∈ Γ× R (2.10)
usc(r, t) = PD (J) (r, t), ∀(r, t) ∈ Ω′ × R. (2.11)

A solution of the Dirichlet problem consists of two steps. We want to find a solution
of equation (2.10). This can be done by multiplying with test functions J t and solve
to get the potential J . Let V 1(r) be the space of linear functions in space andW 0(t)
be the space of constant functions in time. We obtain the variational formulation
1.

Variational formulation 1 (Dirichlet). Find J ∈ V 1(r) ×W 0(t) such that

−
∫∫

uincJ tdΓdt =
∫∫

PD(J)J tdΓdt, ∀J t ∈ V 1(r)×W 0(t). (2.12)

The potential can then be used to compute the scattered field usc outside the
scatterer in equation (2.11).
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2.1.2 Neumann problem

Consider a Neumann problem, that has ∂utot

∂n = 0 on the boundary. This is equiv-
alent to [ ∂ũ∂n ] = 0 on the boundary and the integral equation can be written

ũ = PN ([ũ]) � 1
4π

∫
Γ

− ∂

∂n

(
1
R

)
[ũ∗] +

1
cR

∂R

∂n

∂

∂t
[ũ∗]dΓ′, (2.13)

or equivalently

−uinc(r, t) = PN ([ũ]) (r, t), ∀(r, t) ∈ Γ× R (2.14)
usc(r, t) = PN ([ũ]) (r, t), ∀(r, t) ∈ Ω′ × R. (2.15)

A solution of the Neumann problem consists of two steps. The solution of equation
(2.14) yields [ũ]. A variational formulation of the Neumann problem can be found
in [7]. This can be used to compute the scattered field usc outside the scatterer in
equation (2.15).

2.1.3 Robin problem

In the case when the scatterer surface is neither Dirichlet nor Neumann, we can
have a Robin boundary condition on Γ. For a given α,

∂utot

∂n
+ αutot = −f, on Γ. (2.16)

If J =
[
∂ũ
∂n

]
and M = [ũ], then the general problem can be written

ũ = PD(J) + PN (M), (2.17)
J + αM = f, on Γ. (2.18)

There is also an impedance formulation of the problem, which can be found in [12].

2.2 Maxwell’s equations

We will not implement a numerical algorithm for the Maxwell’s equations in this
paper, but we will comment on how to extend our method to solve electromagnetic
problems. Consider a closed object Ω with a boundary Γ, where the normal di-
rection is directed outwards. Suppose that the Maxwell’s equations are satisfied in
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both the interior Ω and in the exterior Ω′. This means that the electric field E and
the magnetic field H satisfies the Maxwell’s equations

∇×E+
∂B
∂t

= 0, (2.19)

∇×H− ∂D
∂t

= J, (2.20)

∇ ·B = 0, (2.21)
∇ ·D = ρe, (2.22)

where D = εE and B = µH. The electrical current is denoted J and the electric
charges is denoted ρe. It is also assumed that J|Ω = 0 and ρe|Ω = 0. Define the
incoming field Einc ∈ R

3 × R and the scattered field Esc = E − Einc ∈ Ω′ × R to
be the solutions of

∇×Einc +
∂Binc

∂t
= 0, (2.23)

∇×Hinc − ∂Dinc

∂t
= J, (2.24)

∇ ·Binc = 0, (2.25)
∇ ·Dinc = ρe (2.26)

and

∇×Esc +
∂Bsc

∂t
= 0, (2.27)

∇×Hsc − ∂Dsc

∂t
= 0, (2.28)

∇ ·Bsc = 0, (2.29)
∇ ·Dsc = 0, (2.30)

together with the initial data

Esc = Hsc = Bsc = Dsc = 0, when t ≤ 0 (2.31)

Define the distribution Ẽ as

Ẽ =
{

Esc, in Ω′ × R

−Einc, in Ω× R
(2.32)

Now consider the homogeneous Maxwell’s equations for both the interior and exte-
rior problem. Using distribution theory, the Maxwell’s equations in R

3×R become

∇× Ẽ+
∂B̃
∂t

= [n× Ẽ]δΓ, (2.33)

∇× H̃− ∂D̃
∂t

= [n× H̃]δΓ, (2.34)

∇ · B̃ = [n · B̃]δΓ, (2.35)
∇ · D̃ = [n · D̃]δΓ, (2.36)
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where [f ] = fe − f i and δΓ is the indicator function for the boundary Γ. We can
identify

−M̃ = [n× Ẽ], (2.37)
J̃ = [n× H̃], (2.38)

ρ̃m = [n · B̃], (2.39)
ρ̃e = [n · D̃], (2.40)

to obtain a more familiar form of Maxwell’s equations. The perfectly electric con-
ductor (PEC) boundary conditions are

[n× Ẽ] = 0 and [n · H̃] = 0, i.e. M̃ = 0 and ρ̃m = 0. (2.41)

In this case, the Maxwell’s equations in R
3 × R are

∇× Ẽ+
∂B̃
∂t

= 0, (2.42)

∇× H̃− ∂D̃
∂t

= J̃, (2.43)

∇ · B̃ = 0, (2.44)
∇ · D̃ = ρ̃e. (2.45)

2.2.1 The electromagnetic potentials

A solution to Maxwell’s equations can be divided into two parts, a perfect electric
conductor (PEC) where M̃ = 0, ρ̃e = 0 and a perfect magnetic conductor (PMC),
where J̃ = 0 and ρ̃e = 0. The total field is the sum of the two parts. Consider first
the PEC case where M̃ = 0 and ρ̃m = 0. Introduce the vector potential A (or A0)
by

B̃ = ∇×A = ∇×A0. (2.46)

A is unique up to the gradient of a scalar function,

A = A0 −∇Θ. (2.47)

Next let the scalar potential Φ (or Φ0) be defined by

∇Φ = −Ẽ− ∂A
∂t

, ∇Φ0 = −Ẽ− ∂A0

∂t
, (2.48)

where Φ = Φ0 + ∂Θ
∂t . To specify Θ, introduce the Lorenz gauge [14],[22],

∇ ·A+
1
c2

∂Φ
∂t

= 0. (2.49)
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This specifies Θ and we have reduced the Maxwell’s equations (2.42)-(2.45) to wave
equations,

∇2A− 1
c2

∂2A
∂t2

= −µJ̃, (2.50)

∇2Φ− 1
c2

∂2Φ
∂t2

= −1
ε
ρ̃e. (2.51)

Consider now the PMC case, where J̃ = 0 and ρ̃e = 0. Introduce the potentials F
and Ψ,

D̃ = −∇× F, ∇Ψ = −H̃− ∂F
∂t

, (2.52)

and the Lorenz gauge

∇ ·F+
1
c2

∂Ψ
∂t

= 0, (2.53)

to get

∇2F− 1
c2

∂2F
∂t2

= −εM̃, (2.54)

∇2Ψ− 1
c2

∂2Ψ
∂t2

= − 1
µ
ρ̃m. (2.55)

The fields can now be written as the sum of the PEC part and the PMC part, i.e.

Ẽ(r, t) = −∇Φ− ∂A
∂t

− 1
ε
∇× F, (2.56)

H̃(r, t) = −∇Ψ− ∂F
∂t

+
1
µ
∇×A. (2.57)

2.2.2 Integral representation of the potentials

The potentials are solutions to the wave equation, and the Kirchhoff formula yields
an integral representation

Φ(r, t) =
1
ε

∫
Γ

ρe(r′, t−R/c)
4πR

dΓ′, (2.58)

Ψ(r, t) =
1
µ

∫
Γ

ρm(r′, t−R/c)
4πR

dΓ′, (2.59)

A(r, t) = µ

∫
Γ

J(r′, t−R/c)
4πR

dΓ′, (2.60)

F(r, t) = ε

∫
Γ

M(r′, t−R/c)
4πR

dΓ′. (2.61)
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2.2.3 Integral representation of charges

Until now, we need to calculate both J̃ and ρ̃e (and M, ρm). We can express both
ρ̃e in J̃ and ρ̃m in M̃. Define

∇Γ · (n×Hi,e) = −n · (∇× H̃i,e)|Γ, (2.62)

where Hi is the interior field and He is the exterior field. Now one can show
conservation of charges on Γ

∇Γ · J̃+
∂ρ̃e
∂t

= 0, ∇Γ · M̃+
∂ρ̃m
∂t

= 0. (2.63)

Since Ẽ = H̃ = B̃ = D̃ = 0 when t ≤ 0, also J̃ = M̃ = 0, ρ̃e = ρ̃m = 0 when t ≤ 0,
so we can write

ρ̃e(r, t) = −
∫ t

0

∇Γ · J̃(r, τ)dτ, (2.64)

ρ̃m(r, t) = −
∫ t

0

∇Γ · M̃(r, τ)dτ. (2.65)

2.2.4 Integral representation of the fields

Our goal is to express the electric and magnetic field in the potentials on the
scatterer. We can write Φ and Ψ as

Φ(r, t) = −1
ε

∫
Γ

∫ t−R/c

0 ∇Γ · J̃(r′, τ)dτ
4πR

dΓ′, (2.66)

Ψ(r, t) = − 1
µ

∫
Γ

∫ t−R/c

0 ∇Γ · M̃(r′, τ)dτ
4πR

dΓ′. (2.67)

If we define P1(K) and P2(K) as

P1(K) =
1
ε
∇
∫
Γ

∫ t−R/c

0 ∇Γ ·K(r′, τ)dτ
4πR

dΓ′ − µ
∂

∂t

∫
Γ

K(r′, t−R/c)
4πR

dΓ′,(2.68)

P2(K) = −∇×
∫
Γ

K(r′, t−R/c)
4πR

dΓ′, (2.69)

the equations for Ẽ and H̃ can be written as

Ẽ = P1(J̃) +P2(M̃), (2.70)

H̃ =
ε

µ
P1(M̃)−P2(J̃). (2.71)

The equations (2.70) and (2.71) can be used to get a variational formulation similar
to (1).



Chapter 3

Variational formulations
from frequency domain

The variational formulations described in this chapter has been derived by Bam-
berger and Ha Duong in [1], [2]. They first derive the variational formulations for
Helmholtz equations for one frequency. This formulation is shown to yield a unique
solution for the corresponding Helmholtz problem. The formulations for the wave
equation are obtained by using Parsevals identity. We will give a short review of
the derivation of the variational formulation in the Dirichlet case. A more thorough
derivation is given in [1] for the Dirichlet case and in [2] for the Neumann case. In
section 3.1, we specify the necessary spaces, in order to understand the variational
formulations. In section 3.2, we explain which basis functions are used in time
and space. In sections 3.3 and 3.4 we discuss the variational formulations for the
Dirichlet and Neumann cases, respectively. In section 3.5 we introduce notation for
representing points on different planes. We define a K−gradient and show how it is
related to the “normal” gradient. In section 3.6 time is eliminated in our variational
formulations, by integration. In sections 3.7 and 3.8, we face the consequences of
eliminating the time dependence for the Dirichlet and Neumann case. In section
3.9, we derive integrals, which we evaluate over triangles, circle sectors, circles and
circle segments in chapter 4.

3.1 Functional analysis

In order to develop a variational formulation for the wave equation, we need to
specify spaces, in which the variational formulation is valid. To define Sobolev
spaces in R

2, we introduce the Fourier transform in R
2

û(ξ) =
1
2π

∫
R2

e−i(ξ·x)u(x)dx. (3.1)

15
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Let S(R2) be the space of indefinitely differentiable functions, that are rapidly de-
creasing at infinity. (Rapidly decreasing means that all partial derivatives decrease
more rapidly than any positive power of the variable). The dual space S′(R2) is
the space of slowly increasing distributions. The Sobolev space of the scatterer
boundary for s ∈ R can now be defined

Hs(R2) =
{
u ∈ S′(R2) :

∫
R2
(1 + |ξ|2)s|û(ξ)|2dξ

}
. (3.2)

Assuming that the scatterer boundary is infinitely differentiable, the space Hs(Γ)
is defined, by using a mapping from Γ to R

2. The assumption of the boundary can
be relaxed to a piecewise Lipschitz boundary, i.e. where the mapping is a Lipschitz
continuous function.

The space Hs
ω(R+, E) is defined as

f ∈ Hs
ω(R+, E) ⇐⇒

{
f̂ has an inverse Laplace transform and∫ +∞+iω

−∞+iω
|k|2s‖f̂(k)‖2Edk < ∞.

(3.3)

3.2 Basis functions in space and time

Our goal is to find a solution to the wave equation, that can be written in some
basis functions

J(r, t) =
∑
m,l

JmlΦm(r)Ψ̃l(t), (3.4)

where Φm(r) are spatial basis functions and Ψ̃l(t) are basis functions in time. The
scatterer Γ is triangulated. Introduce linear spatial nodal elements Φj(r) on the
triangulation. The spatial elements are defined as the piecewise linear function that
satisfies

Φj(r) =
{

1, r = rj ,
0, r = ri, i �= j.

(3.5)

For a certain triangle K, we have three local spatial basis function as we denote
ΦK
j , with local indices j = 1, 2, 3. Let rKj be the nodes of K. Then the point r ∈ K

can be parameterized

r(x, y) = rK1 + x(rK2 − rK1 ) + y(rK3 − rK1 ), x, y ≥ 0, x+ y ≤ 1. (3.6)

The local spatial basis functions are defined as

ΦK
1 (r(x, y)) = 1− x− y, (3.7)

ΦK
2 (r(x, y)) = x, (3.8)

ΦK
3 (r(x, y)) = y. (3.9)
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We define the space

V 1
h (r) = {Linear combinations of ΦK

j (r)}. (3.10)

When we have a physical coordinate r and want to calculate the spatial basis
function, we need to get x and y. This can be done by solving the system (with
rj = rKj and rij = ri − rj)(

rT21r21 rT31r21
rT21r31 rT31r31

)(
x
y

)
=
(

(r− r1) · r21
(r− r1) · r31

)
(3.11)

This system has a unique solution as long as the triangle edges are non parallel.
There are different ways of choosing the basis functions in time. In [25], Weile,

Shanker and Michielssen use BLIF basis functions. The BLIF functions are several
time steps wide which leads to to an implicit solver. For the Dirichlet problem, we
will use constant elements in time. The time basis function are defined as

Ψk(t) =
{

1, t ∈ [(k − 1)∆t, k∆t),
0, otherwise. (3.12)

For the Neumann problem, we need more regular basis functions, and we use the
basis functions

∫ t
−∞ Ψk(τ)dτ .

We define the finite dimensional spaces

W 0
h (t) = {Linear combinations of Ψk(t)}, (3.13)

W 1
h (t) = {Linear combinations of

∫ t

−∞
Ψk(τ)dτ}. (3.14)

3.3 Variational formulation, Dirichlet case

The variational formulation for the Dirichlet problem was proposed by Bamberger
and Ha Duong [1]. When deriving a variational formulation for the Dirichlet prob-
lem, we first consider the case of a single frequency k, with �k > 0. Define the
single layer potential

(Skφ)(r) =
1
4π

∫
Γ

eik|r−r′|

|r− r′| φ(r
′)dΓ′. (3.15)

The Dirichlet problem for a fixed frequency k is

Skφ = g, (3.16)

where φ is the jump of ∂u
∂n over the boundary and g = −uinc. In [1] it is shown

that the variational equation that admits a unique solution for the fixed frequency
k, with �k > 0 is:
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Variational formulation 2 (Dirichlet problem, Helmholtz equation). Sup-
pose that g ∈ H1/2(Γ). Then the variational formulation for the Helmholtz Dirichlet
problem is to find φ ∈ H−1/2(Γ) such that

< ψ,−ikSkφ >=< ψ,−ikg >, ∀ψ ∈ H−1/2(Γ). (3.17)

The corresponding retarded potential to the single layer potential (3.15) is

(Sφ)(t, r) =
1
4π

∫
Γ

φ(t−R/c, r′)
R

dΓ′. (3.18)

The Parseval identity yields the variational formulation for the time dependent
problem:

Variational formulation 3 (Dirichlet problem). Suppose that
uinc ∈ H

3/2
ω/2(R+, H

1/2(Γ)). The variational formulation for the Dirichlet problem
is to find J ∈ H1

ω/2(R+, H
−1/2(Γ)) such that∫∫∫

e−ωt
∂
∂tJ(t−R/c, r′)

4πR
dΓ′J t(t, r)dΓdt

= −
∫∫

e−ωt ∂

∂t
uinc(t, r)J t(t, r)dΓdt, ∀J t ∈ H1

ω/2(R+, H
−1/2(Γ)). (3.19)

We search for solutions in the finite dimensional space V 1
h (r)×W 0

∆t(t) and the
basis function representation

J(r, t) =
∑
m,l

JmlΦm(r)Ψl(t) ∈ V 1
h (r)×W 0

∆t(t), (3.20)

J t(r, t) = Φj(r)Ψk(t) ∈ V 1
h (r)×W 0

∆t(t), (3.21)

yields the discrete variational formulation

Variational formulation 4 (Dirichlet problem). Find the coefficients Jml of
J ∈ V 1

h ×W 0
∆t in (3.20) such that∑

m,l

Jml

∫∫
Φj(r)Ψm(r′)

4πR

∫
e−ωtΨk(t)

∂

∂t
Ψl(t−R/c, r′)dtdΓ′dΓ

= −
∫∫

e−ωt ∂

∂t
uinc(t, r)Φj(r)Ψk(t)dtdΓ, ∀Φj(r)Ψk(t) ∈ V 1

h ×W 0
∆t.(3.22)

3.4 Variational formulation, Neumann case

The variational formulation for the Neumann problem was proposed by Bamberger
and Ha Duong [2]. Following approximately the same procedure as for the Dirichlet
problem, we get the variational problem
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Variational formulation 5 (Neumann problem). Suppose that
∂uinc

∂n ∈ H3
ω/2(R+, H

−1/2(Γ)). The variational formulation for the Neumann prob-
lem is to find J ∈ H2

ω/2(R+, H
1/2(Γ)) such that∫∫∫

e−ωtn · n′

4πR
∂2

∂t2
J(t−R/c, r′)

∂

∂t
J t(t, r)

+e−ωtn
′ ×∇′J(t−R/c, r′) · n×∇ ∂

∂tJ
t(t, r)

4πR
dΓ′dΓdt

= −
∫∫

e−ωt ∂

∂n
uinc(t, r)

∂

∂t
J t(t, r)dΓdt,

∀J t ∈ H2
ω/2(R+, H

1/2(Γ)). (3.23)

This variational formulation require the time basis functions to be more regular.
Using the basis functions

J(r, t) =
∑
m,l

JmlΦm(r)
∫ t

−∞
Ψl(τ)dτ ∈ V 1

h (r)×W 1
∆t(t), (3.24)

J t(r, t) = Φj(r)
∫ t

−∞
Ψk(τ)dτ ∈ V 1

h (r)×W 1
∆t(t), (3.25)

yields the discrete variational formulation

Variational formulation 6 (Neumann problem). Find the coefficients Jml of
J ∈ V 1

h ×W 1
∆t in (3.24) such that∑
m,l

Jml

∫∫
n · n′Φj(r)Φm(r′)

4πR

∫
e−ωtΨk(t, r)

∂

∂t
Ψl(t−R/c, r′)dt

+
n×∇Φj(r)

4πR
·n′×∇′

(
Φm(r′)

∫
e−ωtΨk(t)

∫ t

−∞
Ψl(τ −R/c)dτdt

)
dΓ′dΓ

= −
∫∫

e−ωtuinc(t, r)Φj(r)Ψk(t)dtdΓ,

∀Φj(r)
∫ t

−∞
Ψk(τ)dτ ∈ V 1

h ×W 1
∆t. (3.26)

3.5 Point representation on triangle plane

In order to obtain a useful variational formulation for the discretized problems, we
need to find the domain of integration, which is a strip over a triangle. To express
points on the triangle plane, different basis for each triangle are used, such that the
third component of the point in the triangle plane is zero. We also need to evaluate
gradients on the triangles in the triangle plane basis.
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A point r at an arbitrary triangle K in 3D with nodes r1, r2 and r3 is parame-
terized according to

r = r1 + αr21 + βr31, α ∈ [0, 1], β ∈ [0, 1− α]. (3.27)

It is assumed that r21 = r2− r1 and r31 = r3 − r1 are non-parallel. A basis for this
triangle plane is

eK1 =
r21
|r21| , (3.28)

eK2 =
r31 − (r31 · eK1 )eK1
|r31 − (r31 · eK1 )eK1 | , (3.29)

eK3 = eK1 × eK2 . (3.30)

The triangles in the scatterer are numbered s.t. eK3 is equal to the outwards normal
n. We define the coordinate transformation:

Definition 1 (Coordinate transformation). The representation of a point in
the triangle plane basis is written as

(x1, x2, x3)K = x1eK1 + x2eK2 + x3eK3 . (3.31)

Definition 2 (K-plane). We say that a point r is in the K-plane iff

r = (x1, x2, 0)K , (3.32)

for some parameters x1 and x2.

The point r = r1 + αr21 + βr31 on the triangle can now be written as

r = r1 +
(
α|r21|+ β(r31 · eK1 ), β|r31 − (r31 · eK1 )eK1 |, 0)

K
. (3.33)

Now we define the K-gradient

Definition 3 (K-gradient). Suppose that r = r1 + (x1, x2, x3)K . Then the
K-gradient of Φ(r) is defined as

∇KΦ(r) =
(
∂Φ(r)
∂x1

,
∂Φ(r)
∂x2

,
∂Φ(r)
∂x3

)
K

. (3.34)

Lemma 1 (K-gradient in α and β). Suppose we have the triangle representation
r = r1 + αr21 + βr31, where r is in the K-plane. Then the K-gradient is

∇KΦ(r) =
(

1
|r21|

∂Φ
∂α

,
1

|r31 − (r31 · eK1 )eK1 |
(
∂Φ
∂β

− (r31 · eK1 )
|r21|

∂Φ
∂α

)
, 0
)
K

.(3.35)
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Proof. We use the chain rule

∇KΦ(r) =
(
∂Φ
∂α

∂α

∂x1
+

∂Φ
∂β

∂β

∂x1
,
∂Φ
∂α

∂α

∂x2
+

∂Φ
∂β

∂β

∂x2
, 0
)

K

. (3.36)

Rewriting the parameterization as

α =
1

|r21|
(
x1 − x2(r31 · eK1 )

|r31 − (r31 · eK1 )eK1 |
)

(3.37)

β =
x2

|r31 − (r31 · eK1 )eK1 | , (3.38)

yields the derivatives

∂α

∂x1
=

1
|r21| , (3.39)

∂β

∂x1
= 0, (3.40)

∂α

∂x2
=

−(r31 · eK1 )
|r21||r31 − (r31 · eK1 )eK1 | , (3.41)

∂β

∂x2
=

1
|r31 − (r31 · eK1 )eK1 | . (3.42)

By inserting the derivatives in the chain rule we obtain the lemma.
The cross product of the gradient can be written in K-plane coordinates

Lemma 2 (Cross product transformation). Suppose n = eK3 and nK = (0, 0, 1)K.
Then

n×∇Φ(r) = (nK ×∇KΦ(r))K .

We get the gradient expression

n×∇Φ(r) = (nK ×∇KΦ(r))K

=
(
− ∂Φ
∂x2

,
∂Φ
∂x1

, 0
)

K

=
(

1
|r31 − (r31 · eK1 )eK1 |

(
(r31 · eK1 )

|r21|
∂Φ
∂α

− ∂Φ
∂β

)
,

1
|r21|

∂Φ
∂α

, 0
)

K

(3.43)

where the coefficients in the expression can be precalculated. Observe that the
spatial basis is linear and therefore the gradient is constant. Thus we can move the
gradient of the basis functions outside the integral.
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3.6 Integrals over time

In the variational formulation of both the Dirichlet and Neumann cases, integrals
over time are obtained, for which we can find analytical expressions expressed in
R. Define the integrals

Iω1 (R, k − l) = ekω∆t

∫
e−ωtΨk(t)Ψl(t−R/c)dt, (3.44)

Iω2 (R, k − l) = ekω∆t

∫
e−ωtΨk(t)

∂

∂t
Ψl(t−R/c)dt, (3.45)

Iω3 (R, k − l) = ekω∆t

∫
e−ωtΨk(t)

∫ t

−∞
Ψl(τ −R/c)dτdt, (3.46)

where ω ≥ 0. Introduce the interval Ĩ(u1, u2) such that

R ∈ Ĩ(u1, u2) ⇐⇒ u1c∆t < R < u2c∆t. (3.47)

If constant elements in time are used, we obtain the following integrals over
time

Iω1 (R, u) =
1
ω


eω∆t − euω∆te−

ω
c R, R ∈ Ĩ(u− 1, u)

eω(u+1)∆te−
ω
c R − 1, R ∈ Ĩ(u, u+ 1)

0, otherwise,
(3.48)

Iω2 (R, u) =


−eωu∆te−

ω
c R, R ∈ Ĩ(u− 1, u)

eω(u+1)∆te−
ω
c R, R ∈ Ĩ(u, u+ 1)

0, otherwise,
(3.49)

Iω3 (R, u) =
1
ω2

·
ω∆t

(
eω∆t − 1

)
, R ∈ Ĩ(0, u− 1)

(ωu∆t+1)eω∆t − ω∆t− ω
c e

ω∆tR− eωu∆te−
ω
c R, R ∈ Ĩ(u− 1, u)

−ω∆t(u+ 1)− 1 + ω
cR+ eω(u+1)∆te−

ω
c R, R ∈ Ĩ(u, u+ 1)

0, otherwise,

(3.50)

where Ĩ is defined in (3.47).
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Taking the limit ω → 0 produces

I01 (R, u) =


(1− u)∆t+ R

c , R ∈ Ĩ(u− 1, u)
(1 + u)∆t− R

c , R ∈ Ĩ(u, u+ 1)
0, otherwise,

(3.51)

I02 (R, u) =


−1, R ∈ Ĩ(u − 1, u)
1, R ∈ Ĩ(u, u+ 1)
0, otherwise,

(3.52)

I03 (R, u) =


∆t2, R ∈ Ĩ(0, u− 1)(
1
2 + u− u2

2

)
∆t2 + (u− 1)R∆t

c − R2

2c2 , R ∈ Ĩ(u− 1, u)(
1
2 + u+ u2

2

)
∆t2 − (u+ 1)R∆t

c + R2

2c2 , R ∈ Ĩ(u, u+ 1)
0, otherwise,

(3.53)

where Ĩ is defined in (3.47).
The integrations over time produces strips in space with a radius that depends

on the difference in basis functions indices in time. Introduce δ such that

R = (u+ δ)c∆t. (3.54)

The integrals Iωp are functions of δ (up to a factor in ∆t and ω). In figure 3.1, the
integrals Iωp are presented as a function of δ. The functions Ip has been normalized
to have the maximum height 1. (For the case when ω = 0, this corresponds to
∆t = 1). Observe that Iω3 is nonzero for all negative δ. This corresponds to an
integration over all earlier potentials. It is interesting to see that for ω = 0, the
mass (or area) of I01 and I02 is symmetric and antisymmetric, respectively at δ = 0.
When ω is increased, the mass center moves to the left. This can be interpreted as
the method is becoming less implicit.

3.7 Dirichlet discretization

After discretizing the outer integral of variational problem 3 and introducing the
integrals Iωp , the Dirichlet integral equation becomes

Variational formulation 7 (Dirichlet problem). Find the coefficients Jml of
J ∈ V 1

h ×W 0
∆t in (3.20) such that

1
4π

∑
m,l,p

JmlwpΦj(rp)
∫

Φm(r′)
R

Iω2 (R, u)dΓ′

= −
∫∫

e−ωt ∂

∂t
uinc(t+ k∆t, r)Φj(r)Ψ(t)dtdΓ,

∀Φj(r)Ψk(t) ∈ V 1
h ×W 0

∆t. (3.55)
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Figure 3.1. Time integral contribution

where R = |r′ − rp|. In the assembly process, we need to evaluate the integral

Jω
2 =

∫
Φm(r′)

R
Iω2 (R, u)dS, (3.56)

where S is a triangle, circle sector, circle segment or a circle, lying on the triangle
K ′ ⊂ Γ′.

3.8 Neumann discretization

To obtain the discretized Neumann formulation, the following lemmas are needed
in order to write a useful discretization.

Lemma 3 (Gradient chain rule). Suppose that R = |r′ − r|. Then

∇′ (Φ(r′)Ψ(τ−R/c)) = ∇′ (Φ(r′)) Ψ(τ−R/c) +
∂

∂τ
Ψ(τ−R/c)

r− r′

cR
Φ(r′). (3.57)
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Proof. Let τ∗ = τ −R/c. Now we have the chain rule

∇′ (Φ(r′)Ψ(τ∗)) = ∇′ (Φ(r′))Ψ(τ∗) + Φ(r′)∇′ (Ψ(τ∗)) , (3.58)

where

∇′ (Ψ(τ∗)) =
∂Ψ(τ∗)

∂τ

∂τ

∂τ∗
∇′τ∗

=
∂Ψ(τ∗)

∂τ
· 1 · r− r′

cR
. (3.59)

Inserting (3.59) in (3.58) yields the lemma.

Lemma 4 (Derivative of integral). Suppose that Ψ(t) = 0 for t ≤ 0. Then

∂

∂t

∫ t

−∞
Ψ(τ −R/c)dτ = Ψ(t−R/c). (3.60)

Lemma 5 (Cross product simplification). Suppose that n′ is a normal to the
K ′−plane and that Pr is the projection of r onto the K’-plane. Let r′ ∈ K’-plane.
Then the following holds

n′ × (r− r′) = n′ × (Pr− r′). (3.61)

Proof. Since n′ and r− Pr are parallel it is true that

n′ × (r− r′) = n′ × (r− Pr+ Pr− r′) = 0 + n′ × (Pr− r′).

Lemma 6 (Combination of lemmas).

n′×∇′
(
Φ(r′)

∫ t

−∞
Ψ(τ −R/c)dτ

)
= n′×∇′ (Φ(r′))

∫ t

−∞
Ψ(τ −R/c)dτ

+n′×(Pr− r′)
Φ(r′)Ψ(t−R/c)

cR
. (3.62)

Using the lemmas and discretizing the outer integral, we get the integral equa-
tion for the Neumann integral equation

Variational formulation 8 (Neumann problem). Find the coefficients Jml of
J ∈ V 1

h ×W 1
∆t in (3.24) such that

1
4π

∑
m,l,p

Jmlwp

(
(n · n′)Φj(rp)

∫
Φm(r′)

R
Iω2 (R, k − l)dΓ′

+(n×∇Φj(rp)) · (n′ ×∇′Φm(r′))
∫

1
R
Iω3 (R, k − l)dΓ′

+(n×∇Φj(rp)) ·
∫

(n′ × (Pr− r′))
cR2

Φm(r′)Iω1 (R, k − l)dΓ′
)

= −
∫∫

∂

∂n
uinc(t, r)Φj(r)Ψk(t)dtdΓ,

∀Φj(r)
∫ t

−∞
Ψk(τ) ∈ V 1

h ×W 1
∆t. (3.63)
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where R = |r′ − rp|. Observe that n′ × ∇′Φm(r′) can be moved outside the
integral over Γ′, since Φm is linear.

In the assembly process, the following integrals

Jω
1 =

∫
(n′ × (Pr− r′))Φm(r′)

cR2
Iω1 (R, u)dS, (3.64)

Jω
2 =

∫
Φm(r′)

R
Iω2 (R, u)dS, (3.65)

Jω
3 =

∫
1
R
Iω3 (R, u)dS, (3.66)

has to be evaluated where S is either a triangle, circle sector, circle segment or a
circle, lying on the triangle K ′ ⊂ Γ′.

3.9 Integrals Jω
p

After discretizing the integrals over K and by using analytical evaluation of the
time integrals, we are left with the integrals Jω

p over K ′. In order to simplify the
integrals, we define points of integration

r = Pr+ (0, 0, ((r− Pr) · eK′
3 ))K′ , (3.67)

r′ = Pr+ (r′1, r
′
2, 0)K′ , (3.68)

where Pr is the projection of r onto the K ′-plane and

n′ × (Pr− r′) = (r′2,−r′1, 0)K′ , (3.69)

R =
√
|r− Pr|2 + |(r′1, r′2, 0)K′ |2 (3.70)

can now be computed.

3.9.1 Case when ω = 0

In the case when ω = 0, we obtain

J0
1 = d0

∫
(r′2,−r′1, 0)K′

cR2
Φm(r′)dS + d1

∫
(r′2,−r′1, 0)K′

cR
Φm(r′)dS, (3.71)

J0
2 = d0

∫
1
R
Φm(r′)dS, (3.72)

J0
3 = d0

∫
1
R
dS + d1

∫
dS + d2

∫
RdS, (3.73)

where dj , j = 0, 1, 2 matches the coefficients in I0p , p = 1, 2, 3. Since there are three
different basis functions Φm on each triangle, this is 18 different scalar integral
evaluations. (Twelve for J0

1 and three for J0
2 and J0

3 , respectively.) In the Dirichlet
case, only three different scalar integrals has to be evaluated. Most parts of these
integrals are computed analytically. Some parts of the integrals are computed
numerically. A detailed description of the integration is given in chapter 4.
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3.9.2 Case when ω > 0

When ω > 0, the following integrals are obtained:

Jω
1 = d0

∫
(r′2,−r′1, 0)K′

cR2
Φm(r′)dS + d2

∫
e−

ω
c R(r′2,−r′1, 0)K′

cR2
Φm(r′)dS, (3.74)

Jω
2 = d0

∫
e−

ω
c R

R
Φm(r′)dS, (3.75)

Jω
3 = d0

∫
1
R
dS + d1

∫
dS + d2

∫
e−

ω
c R

R
dS, (3.76)

where dj , j = 0, 1, 2 matches the coefficients in Iωp , p = 1, 2, 3. There are the same
number of scalar integral evaluations as in the case ω = 0. The terms containing
e−

ω
c R are evaluated numerically except for some special cases, which are explained

in chapter 4. The other terms appears also in the case when ω = 0.
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Chapter 4

Quadrature

4.1 Background

In chapter 3, we use the variational formulations proposed by Bamberger and Ha
Doung in [1], [2] for a Dirichlet and a Neumann scatterer. Those variational formu-
lations resulted in integrals Jω

p , p = 1, . . . , 3, see (3.64)- (3.66) after discretizing the
integral over the triangles K and integrating in time analytically. These integrals
also applies to the Kirchhoff variational formulation 1 of the Dirichlet problem. In
this chapter, we will show how the remaining integrals are evaluated over triangles,
circle sectors, circles and circle segments, lying in the K ′-plane.

4.2 Integration of a triangle

In section 4.2.1 the parameterization of a triangle K ′′ is given in local coordinates,
as well as the representation of the spatial basis function. The rest of section 4.2
treats the computation of the integrals Jp, in the two cases ω = 0 and ω > 0,
respectively. The integration is done in three steps. The first step is to compute
integrals analytically and in some cases also numerically. Some of the integrals
become infinite for certain locations of origo relative to the triangle. These locations
can be avoided by reordering the nodes in the triangle. In the second step the
computed integrals are combined to evaluate (4.35)-(4.37) when ω = 0. In the
third step, the integrals obtained in the second step is finally combined to get the
integrals J0

p . The case ω > 0 are also treated, in a similar manner.

4.2.1 Local coordinates on a triangle

Consider a triangleK ′′ with corners r4, r5 and r6, where r4 is closest to the point Pr
in the triangle plane ofK ′. K ′′ lye in the same plane as the triangleK ′ with corners
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r1, r2 and r3. Denote rij = ri − rj . The points r′′ on K ′′ are then parameterized
on both K ′ and K ′′ by

r′′ = r4 + αr54 + βr64, α, β ≥ 0, α+ β ≤ 1, (4.1)
r′′ = r1 + xr21 + yr31, (4.2)

where x and y depends on α and β. In the local variables α and β, a general integral
can be written as∫

f(r′′)dK ′′ = 2|K ′′|
∫ 1

0

∫ 1−α

0

f(r′′(α, β))dβdα. (4.3)

In the calculation of the spatial basis function, the parameters x and y needs to be
expressed in α and β. This produces the system(
rT21r21 rT31r21
rT21r31 rT31r31

)(
x
y

)
=
(
rT41r21
rT41r31

)
+ α

(
rT54r21
rT54r31

)
+ β

(
rT64r21
rT64r31

)
. (4.4)

Solving this system yields the local spatial basis functions

ΦK′′
j (r′′(α, β)) = a0 + a1α+ a2β. (4.5)

Observe that the a’s differ for the different j’s. The matrix inverse depends only on
the coordinates of triangle K and can be precalculated before the assembly process.

4.2.2 Case ω = 0

The goal is to evaluate the integrals J0
p , p = 1, 2, 3, introduced in (3.71)-(3.73).

To do this, we first need to compute some integrals analytically but also some
numerically, which are combined to obtain middle-step integrals. These middle-
step integrals are then combined to evaluate J0

p , p = 1, 2, 3.

Analytically evaluated integrals

We want to evaluate the integrals IR40, IR41, IR60, IR61, IR10 and IR11, defined as

IR4j =
∫ 1

0

αj
√
|r−Pr|2 + |r4 + αr54|2dα, (4.6)

IR6j =
∫ 1

0

αj
√
|r−Pr|2 + |r6 + αr56|2dα, (4.7)

IR1j =
∫ 1

0

αjR1(α)dα, (4.8)

where

R1(α) =
√
(|r−Pr|2 + |r4 + αr54|2)|r64|2 − ((r4 + αr54)T r64)2. (4.9)
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To do this, the integrals

IR(b0,b1, n) =
∫ 1

0

αn|b0 + αb1|dα, (4.10)

are required. In the case n = 0, 1, an analytical solution can be computed,

IR(b0,b1, 0) = A1 +A2 logA3, (4.11)
IR(b0,b1, 1) = B1 +B2 logB3, (4.12)

A1 =
|b0 + b1||b1|2 + bT

0 b1|b0 + b1| − bT
0 b1|b0|

2|b1|2 , (4.13)

A2 =
|b0|2|b1|2 − (bT

0 b1)2

2|b1|3 , (4.14)

A3 =
(b0 + b1)Tb1 + |b0 + b1||b1|

bT
0 b1 + |b0||b1| , (4.15)

B1 =
|b0 + b1|3 − |b0|3

3|b1|2 − bT
0 b1

|b1|2 A1, (4.16)

B2 = −b
T
0 b1

|b1|2 A2, (4.17)

B3 = A3, (4.18)

and

IR10 =
t3
2
+

t5(t3 − t2)
2t21

+
(t21(|r−Pr|2 + |r4|2) + t4rT4 r64 − t5rT4 r54)t6|r64|2

2t31
, (4.19)

IR11 =
t33 − t32
3t21

− t5
2t51

·
(
t31t3 + t1t5(t3 − t2)

+t6|r64|2((|r−Pr|2 + |r4|2)t21 + rT4 r64t4 − rT4 r54t5)
)

(4.20)

where the constants tj are defined as

t1 =
√
|r54|2|r64|2 − (rT54r64)2, (4.21)

t2 =
√
(|r−Pr|2 + |r4|2)|r64|2 − (rT4 r64)2, (4.22)

t3 =
√
(|r−Pr|2 + |r5|2)|r64|2 − (rT5 r64)2, (4.23)

t4 = rT4 r54 · rT54r64 − rT4 r64 · |r54|2, (4.24)
t5 = rT4 r54 · |r64|2 − rT4 r64 · rT54r64, (4.25)

t6 = log
(rT5 r54 · |r64|2 − rT5 r64 · rT54r64) + t1t3

t1t2 + t5
. (4.26)
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Next, define

I∗R(|b0|, |b1|, |b0 + b1|,bT
0 b1, (b0 + b1)Tb1, n) = IR(b0,b1, n), (4.27)

and evaluate

IR40 = I∗R(
√
|r−Pr|2 + |r4|2, |r54|,

√
|r−Pr|2 + |r5|2, rT4 r54, rT5 r54, 0), (4.28)

IR41 = I∗R(
√
|r−Pr|2 + |r4|2, |r54|,

√
|r−Pr|2 + |r5|2, rT4 r54, rT5 r54, 1), (4.29)

IR60 = I∗R(
√
|r−Pr|2 + |r6|2, |r56|,

√
|r−Pr|2 + |r5|2, rT6 r56, rT5 r56, 0), (4.30)

IR61 = I∗R(
√
|r−Pr|2 + |r6|2, |r56|,

√
|r−Pr|2 + |r5|2, rT6 r56, rT5 r56, 1). (4.31)

Numerical integrals

The integrals to be evaluated numerically are Ilog 1,j, j = 0, 1, 2, Ilog 2,j , j = 0, 1,
Iat,j , j = 0, 1, 2 defined as

Ilog 1,j =
1

|r64|2
∫ 1

0

αj log
(
(r6 + αr56)T r64 + |r6 + αr56||r64|
(r4 + αr54)T r64 + |r4 + αr54||r64|

)
dα, (4.32)

Ilog 2,j =
∫ 1

0

αj log
|r6 + αr56|2
|r4 + αr54|2 dα, (4.33)

Iat,j =
∫ 1

0

αj
arctan (r6+αr56)

T r64
R1(α)

− arctan (r4+αr54)
T r64

R1(α)

R1(α)
dα. (4.34)

These integrals are evaluated using numerical integration, where an adaptive Romberg
method is used. The integration method is described in algorithm 5, in the ap-
pendix.

Forbidden domains and node reordering

Some of the integrals becomes infinite when origo of the triangle plane is in the
wrong place. When |r−Pr| = 0, the integral IR4j becomes infinite if r4+θr54 = 0, for
θ ≥ 0. The same happens for IR6j when r6+ θr56 = 0, for θ ≥ 0. The integral Iat,j
is infinite whenever R1(α) = 0. This yields the forbidden strip r4+αr54+θr64 = 0,
α ∈ [0, 1] and θ ∈ R. All other forbidden points are covered by those three cases.
The forbidden strip and the two forbidden lines are indicated in figure 4.1.

In order to avoid the forbidden domains, the nodes in the triangle are reordered.
The goal is to order the nodes such that origo is to the left of the shaded strip in
figure 4.1. To find out how to order the nodes, we compute cross products sj , that
gives information about the angles between −rm and rj − rm, for j = 1, 2, 3. If two
angles φj1 and φj2 (or equivalently sj1and sj2) have different signs, then we know
that we are on one out of two domains restricted by two lines rj1 −rm and rj1 −rm.
To exclude the wrong domain, we take one more cross product, to see on which side
of rj2 − rj1 , the origo is. The last check depends on the node orientation, which
also is computed. A pseudo code is listed in algorithm 1.
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r4
r5

r6

Figure 4.1. Forbidden domain for a triangle.

Algorithm 1 Triangle node reordering
1: Compute rm = (r4 + r5 + r6)/3
2: Compute orient = r54 × r64
3: Compute s4 = (−rm)× (r4 − rm)
4: Compute s5 = (−rm)× (r5 − rm)
5: Compute s6 = (−rm)× (r6 − rm)
6: if s4s5 < 0 and orient·(−rm)× (r45) < 0 then
7: swap(r5, r6)
8: else if s5s6 < 0 and orient·(−rm)× (r56) < 0 then
9: swap(r4, r5)

10: end if

Middle step of integration, nonsingular case

Here we evaluate the integrals

Int1(n,m) =
∫ 1

0

∫ 1−α

0

αnβm

R
dβdα, (4.35)

Int2(n,m) =
∫ 1

0

∫ 1−α

0

αnβm

R2
dβdα, (4.36)

IntR =
∫ 1

0

∫ 1−α

0

Rdβdα. (4.37)

The interesting tuples (n,m) are (0, 0), (1, 0), (0, 1), (1, 1), (2, 0) and (0, 2). These
integrals can be computed using the analytical and numerical integrals evaluated
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previously.

Int1(0, 0) = Ilog 1,0, (4.38)
Int1(1, 0) = Ilog 1,1, (4.39)

Int1(0, 1) =
IR60 − IR40 − rT4 r64Ilog 1,0 − rT54r64Ilog 1,1

|r64|2 , (4.40)

Int1(1, 1) =
IR61 − IR41 − rT4 r64Ilog 1,1 − rT54r64Ilog 1,2

|r64|2 , (4.41)

Int1(2, 0) = Ilog 1,2, (4.42)

Int1(0, 2) =
1

2|r64|4
(
(3(rT54r64)

2 − |r54|2|r64|2) · Ilog 1,2
+(6(rT4 r64)(r

T
54r64)− 2rT4 r54|r64|2) · Ilog 1,1

+(3(rT4 r64)
2 − (|r−Pr|2 + |r4|2)|r64|2) · Ilog 1,0

+(rT6 r64 − 4rT4 r64) · IR60 + 3rT4 r64 · IR40

+(rT56r64 − 4rT54r64) · IR61 + 3rT54r64 · IR41

)
, (4.43)

Int2(0, 0) = Iat,0, (4.44)
Int2(1, 0) = Iat,0, (4.45)

Int2(0, 1) =
1
2Ilog 2,0 − rT4 r64 · Iat,0 − rT54r64 · Iat,1

|r64|2 , (4.46)

Int2(1, 1) =
1
2Ilog 2,1 − rT4 r64 · Iat,1 − rT54r64 · Iat,2

|r64|2 , (4.47)

Int2(2, 0) = Iat,0, (4.48)

Int2(0, 2) =
1

|r64|4 ·
(1
2
|r64|2 − rT4 r64 · Ilog 2,0 − rT54r64 · Ilog 2,1

−((|r−Pr|2 + |r4|2)|r64|2 − 2(rT4 r64)
2) · Iat,0

−(2rT4 r54|r64|2 − 4rT4 r64r
T
54r64) · Iat,1

−(|r54|2|r64|2 − 2(rT54r64)
2) · Iat,2

)
, (4.49)

IntR =
1

2|r64|2 ·
(
rT6 r64 · IR60 + rT56r64 · IR61

−rT4 r64 · IR40 − rT54r64 · IR41

+t22 · Iln10 + 2t5 · Iln11 + t21 · Iln12
)

(4.50)

The constants tj have been defined in (4.21)-(4.26).
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Middle step of integration, singular case

In the singular case, |r−Pr|2 + |r4|2 = 0. Also here we evaluate the integrals

Int1(n,m) =
∫ 1

0

∫ 1−α

0

αnβm

R
dβdα, (4.51)

Int2(n,m) =
∫ 1

0

∫ 1−α

0

αnβm

R2
dβdα, (4.52)

IntR =
∫ 1

0

∫ 1−α

0

Rdβdα, (4.53)

where R = |αr54 + βr64|. The integrands (4.51) and (4.52) become singular as
α, β → 0. The interesting tuples (n,m) are (0, 0), (1, 0), (0, 1), (1, 1), (2, 0) and
(0, 2). To get rid of the singularity, we perform a Duffy transform, α = ξ1ξ2 and
β = ξ1(1− ξ2). The Jacobian contribution is ξ1. Define Rs and we get

Rs(ξ2) = |r64 + ξ2r56|, (4.54)
R(α, β) = ξ1Rs(ξ2), (4.55)

R1s =
√
|r6|2|r56|2 − (rT6 r56)2. (4.56)

Consider

Intp(n,m) =
∫ 1

0

∫ 1−α

0

αnβm

Rp
dβdα

=
∫ 1

0

ξ1+n+m−p
1 dξ1 ·

∫ 1

0

ξn2 (1− ξ2)m

Rp
s(ξ2)

dξ2

=
1

2 + n+m− p

∫ 1

0

ξn2 (1− ξ2)m

Rp
s(ξ2)

dξ2. (4.57)

This is valid in the case 2 + n + m > p. Otherwise integral is improper. Hence,
Int2(0, 0) is an improper integral. This integral is not needed, as we will see in the
last step of integration. Define

Intsp(n) =
∫ 1

0

ξn2
Rp

s(ξ2)
dξ2, (4.58)
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which can be evaluated analytically,

Ints1(0) =
1

|r56| log
(
rT5 r56 + |r5||r56|
rT6 r56 + |r6||r56|

)
, (4.59)

Ints1(1) =
|r5| − |r6|
|r56|2 − rT6 r56

|r56|2 Int
s
1(0), (4.60)

Ints1(2) =
1

2|r56|4
(
(|r56|2 − 3rT6 r56)|r5|+ 3rT6 r56|r6|

+(3(rT6 r56)
2 − |r6|2|r56|2)Ints1(0)

)
, (4.61)

Ints2(0) =
arctan

(
rT
5 r56
R1s

)
− arctan

(
rT
6 r56
R1s

)
R1s

, (4.62)

Ints2(1) =
log (|r5|/|r6|)− rT6 r56 · Ints2(0)

|r56|2 , (4.63)

Ints2(2) =
1

|r56|4
(
|r56|2 − 2rT6 r56 log (|r5|/|r6|)

+(2(rT6 r56)
2 − |r6|2|r56|2)Ints2(0)

)
. (4.64)

The required integrals can be evaluated

Int1(0, 0) = Ints1(0), (4.65)

Int1(1, 0) =
1
2
Ints1(0), (4.66)

Int1(0, 1) =
1
2
(Ints1(0)− Ints1(1)), (4.67)

Int1(1, 1) =
1
3
(Ints1(1)− Ints1(2)), (4.68)

Int1(2, 0) =
1
3
Ints1(0), (4.69)

Int1(0, 2) =
1
3
(Ints1(0)− 2Ints1(1) + Ints1(2)), (4.70)

Int2(0, 0) = [Improper], (4.71)
Int2(1, 0) = Ints2(1), (4.72)
Int2(0, 1) = Ints2(0)− Ints2(1), (4.73)

Int2(1, 1) =
1
2
(Ints2(1)− Ints2(2)), (4.74)

Int2(2, 0) =
1
2
Ints2(2), (4.75)

Int2(0, 2) =
1
2
(Ints2(0)− 2Ints2(1) + Ints2(2)). (4.76)

The integral IntR is evaluated from

IntR = IR(r64, r56, 0), (4.77)
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with IR defined in the nonsingular case.

Last step of integration

The last step is to combine the integrals (4.35)-(4.37) in the middle step, in order
to evaluate the integrals J0

p . At this point, it does not matter if the integrand was
singular in the middle step of integration. When computing J0

1 we evaluate

J0
1 (p, j) =

∫
r′j
cRp

Φm(r′)dS, j = 1, 2, p = 1, 2, (4.78)

where

r′j = r4,j + αr54,j + βr64,j , (4.79)
Φm(r′) = a0 + a1α+ a2β. (4.80)

The integrals J0
1 (p, j) and J0

2 (p, j) are linear combinations of the integrals Intp(n,m)
computed for both the nonsingular and singular cases. It should be noted that in
the singular case r4,j = 0, and we get no contribution from Intp(0, 0), which is an
improper integral. The integral J0

3 is a linear combination of Intp(n,m) and IntR.

4.2.3 Case ω > 0

Our goal is to evaluate the integrals Jω
p , p = 1, 2, 3, introduced earlier in (3.74)-

(3.76). We focus on

∫
r′j
cR2

e−
ω
c RΦm(r′)dS,

∫
1
R
e−

ω
c RΦm(r′)dS

since the other integrals are either special cases of those above or evaluated in the
case when ω = 0. We have not found any analytical expressions for these integrals,
and numerical quadrature is used. As a first step we evaluate the integrals

∫ 1

0

∫ 1−α

0

{1, α, β, αβ, α2, β2}
R2

e−
ω
c Rdβdα,

∫ 1

0

∫ 1−α

0

{1, α, β}
R

e−
ω
c Rdβdα,

numerically, using an algorithm 6 in the appendix A.1.2. Those integrals are then
combined to get the required integrals, for different r′j and Φm(r′). In the singular
case, we perform the Duffy transform, α = ξ1ξ2 and β = ξ1(1 − ξ2). When ω > 0,
the integrals does not decouple, which leads to numerical integration over a square,
in appendix A.1.3. This is done by integrating over two triangles with the same
algorithm as in the nonsingular case.
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4.3 Integration of a circle sector

4.3.1 Local coordinates on a circle sector

We want to integrate over a circle sector in the K ′ triangle plane with center in Pr.
The circle sector has radius v2 and angles between φ1 and φ2 in the K ′ triangle
plane. We have the parameterization

r′(v, φ) = Pr+ v cosφeK
′

1 + v sinφeK
′

2 (4.81)

where

v ∈ [0, v2], φ ∈ [φ1, φ2], (4.82)

and eK
′

j are the basis functions for the K ′ triangle plane. The integral to be
computed is ∫

f(r′)dr′ =
∫ v2

0

∫ φ2

φ1

vf(r′(v, φ))dφdv. (4.83)

We need to express x and y that appears in ΦK′
j in α and β, by solving the system

(3.11), with r = r′(v, φ). The spatial basis function can then be computed

ΦK′
j (r′(v, φ)) = a0 + a1v cosφ+ a2v sinφ, (4.84)

following the same procedure as in the triangle case.

4.3.2 Elimination of φ

It should be observed that R =
√|r−Pr|2 + v2 is independent of φ. This means

that φ only appears in r′j and Φm(r′), when computing the integrals Jω
p . Let f(R)

be the part of Jω
p that is independent of φ and consider the integrals∫∫
vΦm(r′)f(R)dφdv =

∫ (∫
vΦm(r′)dφ

)
f(R)dv, (4.85)∫∫

vr′jΦm(r′)f(R)dφdv =
∫ (∫

vr′jΦm(r′)dφ
)
f(R)dv. (4.86)

From (4.85) we obtain the integral∫
vΦm(r′)dφ = b0v + b1v

2, (4.87)

where

b0 = (φ2 − φ1)a0, (4.88)
b1 = (sinφ2 − sinφ1)a1 − (cosφ2 − cosφ1)a2. (4.89)
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Since r′1 = v cosφ and r′2 = v sinφ, we obtain the integrals

∫
vr′1Φm(r′)dφ = b01v

2 + b11v
3, (4.90)∫

vr′2Φm(r′)dφ = b02v
2 + b12v

3, (4.91)

from (4.86) where

b01 = (sinφ2 − sinφ1)a0, (4.92)
b11 = (t1 + t2)a1 + t3a2, (4.93)
b02 = −(cosφ2 − cosφ1)a0, (4.94)
b12 = t3a1 + (t1 − t2)a2, (4.95)

t1 =
1
2
(φ2 − φ1), (4.96)

t2 =
1
2
(cosφ2 sinφ2 − cosφ1 sinφ1), (4.97)

t3 = −1
2
(cos2 φ2 − cos2 φ1). (4.98)

4.3.3 Case ω = 0

When the integral over φ has been eliminated, the integrals J0
p can be reduced to

the cases

Int1(p) =
∫ v2

0

vp√|r−Pr|2 + v2
dv, p = 1, 2, 3, (4.99)

Int2(p) =
∫ v2

0

vp

|r−Pr|2 + v2
dv, p = 2, 3, (4.100)

IntR =
∫ v2

0

v
√

|r−Pr|2 + v2dv, (4.101)

Int0 =
∫ v2

0

vdv. (4.102)
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These can be computed analytically and we obtain

Int1(1) =
v22√|r−Pr|2 + v22 +

√|r−Pr|2 , (4.103)

Int1(2) =
v2
2

√
|r−Pr|2 + v22 −

|r−Pr|2
2

log

(
v2 +

√|r−Pr|2 + v22
|r−Pr|

)
,(4.104)

Int1(3) =
v22
3

(√
|r−Pr|2 + v22 −

2|r−Pr|2
(
√|r−Pr|2 + v22 + |r−Pr|

)
, (4.105)

Int2(2) = v2 − |r−Pr| arctan
(
v2
d2

)
, (4.106)

Int2(3) =
v22
2

− |r−Pr|2 log
(√|r−Pr|2 + v22

|r−Pr|

)
, (4.107)

IntR =

(√
|r−Pr|2 + v22

)3
− |r−Pr|3

3
, (4.108)

Int0 =
v22
2
. (4.109)

In the singular case, when |r−Pr| = 0, the integrals are

Int1(1) = v2, (4.110)

Int1(2) =
v22
2
, (4.111)

Int1(3) =
v32
3
, (4.112)

Int2(2) = v2, (4.113)

Int2(3) =
v22
2
, (4.114)

IntR =
v32
3
, (4.115)

Int0 =
v22
2
. (4.116)

The integrals J0
p are linear combinations of the integrals above.

4.3.4 Case ω > 0

After eliminating the integral over φ, we focus on the integrals

Int1(p) =
∫ v2

0

vpe−
ω
c R

R
dv, p = 1, 2, (4.117)

Int2(p) =
∫ v2

0

vpe−
ω
c R

R2
dv, p = 2, 3. (4.118)
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All other integrals are evaluated for the case ω = 0. We can compute

Int1(1) = − c

ω

(
e−

ω
c

√
|r−Pr|2+v2

2 − e−
ω
c |r−Pr|

)
(4.119)

analytically. The other integrals are computed numerically, using an adaptive
Romberg method, described in algorithm 5 in appendix A.1.1.

4.4 Integration of a circle

This is a special case of the circle sector case with φ1 = 0 and φ2 = 2π. In the
elimination of the integral over φ, we get

b0 = 2πa0, b11 = πa1, b12 = πa2, b1 = b01 = b02 = 0.

Some of the integrals over the circle sector can therefore be omitted.

4.5 Integration of a circle segment

When the domain is a circle segment, we have two alternatives in evaluating the
integral. The first is to integrate the corresponding circle sector and subtract the
corresponding triangle. The other alternative is to evaluate the integrals numeri-
cally, using Gaussian quadrature. The second approach is good for small angles.
If the angle increases, then R is not approximately constant and the Gaussian
quadrature is no longer usable. Then we use the first approach.

If Gaussian quadrature is to be used, the integrand has to behave like a poly-
nomial, i.e. the distance term has to be close to constant. The worst case when
|r−Pr| = 0. If R is allowed to vary

|r′ − Pr| ∈ [(1− ε)v, v],

the maximum angle can be computed as

∆φ = 2 arccos(1− ε).

For small ε, 1/|r′′ − Pr| can be considered to be constant. For instance, if ε = 0.1,
angles up to 51.7◦ are allowed. Numerical experiments show that it is sufficient
to use 10 gauss points for α and 4 gauss points for β to evaluate the integrals to
machine precision, in the case when |r−Pr| = 0 and ∆φ = 45◦. When ∆φ = 22.5◦,
it suffices with 6 gauss points for α and 2 gauss points for β to get at least 14
digits accuracy. The rest of the chapter will treat the evaluation of the integral
numerically.
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4.5.1 Local coordinates on a circle segment

We want to integrate over a circle segment in the K ′ triangle plane with center in
Pr and radius v. Let r′c(α) denote a point on the circle between the angles φ1 and
φ2 and r′l(α) denote a point on the line between the same angles. Introducing the
notation

c(α) = (1 − α) cosφ1 + α cosφ2, (4.120)
s(α) = (1 − α) sinφ1 + α sinφ2, (4.121)
φ(α) = (1 − α)φ1 + αφ2, (4.122)

yields the parameterization

r′c(α) = Pr+ v cosφ(α)eK
′

1 + v sinφ(α)eK
′

2 , (4.123)

r′l(α) = Pr+ vc(α)eK
′

1 + vs(α)eK
′

2 (4.124)

where v is the radius of the circle. The points on the circle segment can be param-
eterized

r′(α, β) = (1− β)r′c(α) + βr′l(α). (4.125)

The integral to be computed is∫
f(r′)dr′ =

∫ 1

0

∫ 1

0

f(r′(α, β))
∣∣∣∣dr′(α, β)d(α, β)

∣∣∣∣ dαdβ. (4.126)

Integration over α and β yields a Jacobian contribution

dr′

d(α, β)
= v2(1 − β)(φ2 − φ1)[1− c(α) cosφ(α) − s(α) sinφ(α)] +

+v2β[(s2 − s1)(cosφ(α) − c(α)) − (c2 − c1)(sinφ(α) − s(α))], (4.127)

where cj = cos(φj) and sj = sin(φj).
For the case of a circle segment, the basis function can be written

ΦK′
j = a0 + a1β + a2αβ + a3 cosφ+ a4 sinφ+ a5β cosφ+ a6β sinφ, (4.128)

where ΦK′
j = ΦK′

j (r′(α, β)) and φ = φ(α). Using the two representations of r′, we
derive a matrix system, as in (3.11), where the solution are the parameters x and
y. The system is (

r21 · r21 r31 · r21
r21 · r31 r31 · r31

)(
x
y

)
=

(
b2
b3

)
, (4.129)
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where

cj0 = (−r1, rj1), (4.130)

cj1 = (e1, rj1), (4.131)

cj2 = (e2, rj1), (4.132)

bj = cj0 + v[cj1 cos(φ1) + cj2 sin(φ1)]β

+v[cj1(cos(φ2)− cos(φ1)) + cj2(sin(φ2)− sin(φ1))]αβ

+vcj1 cosφ(α) + vcj2 sinφ(α) − vcj1β cosφ(α) − vcj2β sinφ(α).(4.133)

Solving this system of equation for ap with seven different right hand sides,
yields the constants ap, p = 0, 1, . . . , 6, for the different spatial basis functions. The
computation of J0

p and Jω
p is now direct, using Gaussian quadrature.
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Chapter 5

Stabilization

5.1 Background

Our Marching On in Time method described in chapter 6 is on the form

A0Jn +A1Jn−1 + . . .+AkJn−k = bn, (5.1)
Jp = 0, p ≤ 0. (5.2)

where Ap ∈ R
N×N , Jp,bn ∈ R

N and N is the number of nodes on the scatterer
surface. Moreover we require bp = 0, for p ≤ 0. It is assumed that A0 is non-
singular, otherwise the solution does not exist or is non-unique. When we solve
the Dirichlet problem with the variational formulation 1 coming from the Kirch-
hoff formula, we have some eigenvalues close to −1. If those eigenvalues leaves the
unit circle due to numerical errors, the time marching scheme becomes unstable.
In [6], P.J. Davies and D.B. Duncan uses a time averaging scheme, with a filter
Jn → 1

4 (Jn+1 + 2Jn + Jn−1). The scheme is listed in algorithm 2.

Algorithm 2 Averaging scheme of Davies and Duncan

1: σn = bn −∑k
p=2ApJn−p

2: J∗n = A−1
0

(
σn −A1J∗∗n−1

)
3: Jn−1 = 1

4

(
J∗n + 2J∗∗n−1 + Jn−2

)
4: J∗∗n = A−1

0 (σn −A1Jn−1)

In algorithm 2, J∗n and J∗∗n are stored only temporarily. We will see that this
averaging scheme is a natural choice. To do this we define what we mean with
stability.
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Definition 4. The algorithm (5.1) is stable iff

‖Jn‖ ≤ C1

n∑
p=0

‖bp‖, (5.3)

where the constant C1 does not depend on n.

Two different problem types can be distinguished:

• Finite object, with fixed number of matrix blocks k (for given ∆t).

• Infinite object, with increasing matrix blocks k (for given ∆t).

Here we only consider the case of a finite object.

5.2 Stability analysis for a finite object

By writing (5.1) as a one step method, we can examine the stability.

J̃n = ÃkJ̃n−1 + b̃n, J̃0 = 0, (5.4)

Ãk =


−A−1

0 A1 . . . −A−1
0 Ak−1 −A−1

0 Ak

I
. . .

I

 , (5.5)

J̃Tn = (Jn, . . . ,Jn−k) , (5.6)

b̃T
n =

((
A−1

0 bn

)T
, 0, . . . , 0

)
. (5.7)

Lemma 7. If the eigenvalues of Ãk are strictly inside the unit circle, then the
algorithm (5.1) is stable.

Proof. Since J̃0 = 0, we have

J̃n =
n∑

p=0

Ãp
kb̃n−p

= [ Jordan decomposition Ãk = S̃K̃S̃−1 ]

=
n∑

p=0

S̃K̃pS̃−1b̃n−p (5.8)

If all eigenvalues of Ãk are strictly inside the unit circle, then ‖S̃K̃pS̃−1‖ ≤ C and
J̃n is bounded by

‖J̃n‖ ≤ C

n∑
p=0

‖b̃n−p‖. (5.9)
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The constant C depends on the largest eigenvalue and the size of the largest Jordan
block, which both are independent of n. For the original problem, this yields

‖Jn‖ ≤ C1

n∑
p=0

‖bp‖, C1 = ‖A−1
0 ‖C, (5.10)

i.e. the constant C1 does not depend on n.
A stabilizing filter should have at least two properties

• Sufficiently high order in time, not to destroy the time order

• Increase the stability region of the scheme

Such a filter is

J̃n → 1
4

(
J̃n+1 + 2J̃n + J̃n−1

)
. (5.11)

We can show the following

Lemma 1. The filter (5.11) applied on the scalar scheme yn = λyn−1 is second
order accurate in time and is stable for λ such that |λ+ 1| < 2.

Proof. The second order accuracy is shown by Taylor expansion of yn±1. Ap-
plying the filter, yields

yn → 1
4
(yn+1 + 2yn + yn−1) =

(
λ+ 1
2

)2

yn−1. (5.12)

This shows that the stability region is λ such that |λ+ 1| < 2.
Using the filter yields produces the following modified algorithm

J̃n =

(
Ãk + I

2

)2

J̃n−1 +
1
4

(
Ãkb̃n + 2b̃n + b̃n+1

)
, J̃−1 = 0. (5.13)

If we require b̃1 = 0, then we can have the same initial condition as in the non-
stabilized algorithm, i.e. J̃0 = 0. In the case of solving the wave equation, we can
delay the incident transient by ∆t, to force b̃1 = 0. Writing the filter on the k−step
form yields algorithm 3.
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Algorithm 3 New averaging scheme

1: σn+1 = bn+1 −
∑k

p=2ApJn+1−p,
2: J∗n+1 = A−1

0 (σn+1 −A1J∗∗n ),
3: Jn = 1

4

(
J∗n+1 + J∗∗n + Jn−1

)
,

4: Jn−1 = 1
4 (J

∗∗
n + 2Jn−1 + Jn−2),

5: Jn−p = 1
4 (Jn−p+1 + 2Jn−p + Jn−p−1) , p = 2, . . . , k − 1,

6: J∗∗n+1 = A−1
0 (σn+1 −A1Jn).

The algorithm updates the last k time-steps of J in each iteration. This means
that Jn−k has an k∆t2 error. I case of a wave propagation algorithm, k depends
on the size of the scatterer as k ∼ (Size of scatterer)/c∆t. The error of the filter
increases with the object size. If we ignore all but the first smoothing step, then
this scheme becomes identical to the scheme proposed by Davies and Duncan. This
will actually be the most stable choice. In the numerical experiments we will only
use one smoothing step.



Chapter 6

Marching On in Time
method

In this chapter we will discuss how to make an algorithm out of the different vari-
ational formulations obtained in the previous chapters. Variational formulations
containing retarded potentials has a coupling in space and time, where the solu-
tions at a time depends on solutions at other times. In the case of constant elements
in time, the solution only depends on solutions from the past. We can then step
forward in time in an explicit way. If we are using higher order elements, the so-
lution depends also on later time steps, which makes the scheme implicit. We will
only consider the case with an explicit scheme.

In section 6.1, the matrix structure in the method is discussed. The method
results in a lower triangular block matrix, which can be solved with forward sub-
stitution.

In section 6.2, the assembly procedure is explained. The integral over the spatial
test functions are evaluated using numerical quadrature. For each quadrature point
on each test triangle, a strip is obtained, with a radius depending on the difference
in basis function index in time. Those strips cover parts of some triangles, and
these triangle parts are detected.

6.1 Matrix structure in MOT

Solving the wave equation using one of the variational formulations discussed in
chapter 2 and 3 is done in two steps.

• Assembly of matrix

• Solving the system (or stepping in time)

49



50 Chapter 6. Marching On in Time method

For test functions J t
jk(r, t) = Φj(r)Ψ̃k(t), defined in section 3.2, we get the system∑

m,l

Aj,m,k−lJml = bjk.

For the constant time element case, when k < l in our variational formulations,
then Aj,m,k−l = 0. Ordering the vector Jl, bk and the matrix Au, with u = k − l
s.t.

(Jl)m = Jml, (bk)j = bjk, (Au)j,m = Aj,m,u,

the following block matrix system

A0

A1 A0

A2 A1 A0

A3 A2 A1
. . .

... A3 A2
. . .

... A3
. . .

...
. . .




J1
J2
J3
...

 =


b1
b2
b3
b4
...

 (6.1)

is obtained. The system is solved with forward substitution,

Jk = A−1
0

(
bk −

P∑
p=0

ApJk−p

)
, (6.2)

where Jq = 0, if q ≤ 0. The smallest sphere that includes the whole scatterer has
diameter � Pc∆t. This diameter determines the number of terms in the sum.

6.2 Assembly of matrix block Au

In the assembly process, we have to compute triple integrals, where two of the
integrals are over the scatterer and one integral is over time. The time integral is
computed analytically. The outer integration is done with a numerical integration
method, ∫∫

f(r, r′)dK ′dK =
∑
p

wp

∫
f(rp)dK ′,

where wp depends on the quadrature formula, e.g. Gaussian quadrature on a tri-
angle. For each triangle K, and for all the integration points rp, we get a strip over
some of the triangles K ′ in the inner integral. The integrals over those strips are
calculated and assembled into the matrix.
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Figure 6.1. Fix a point on triangle K (left) to get a strip over triangle K’ (right)

A pseudo code for the assembly process of the matrix blocks Au is

Algorithm 4 Assembly process of matrix blocks
1: for all triangles K do
2: for all quadpoints r on triangle K do
3: for all triangles K ′ do
4: First selection of admissible time basis differences u = k− l, p1 ≤ u ≤ q1
5: for u = p1 to q1 do
6: Find domain D ⊆ K ′ that interact with quadpoint r with current u.
7: if domain D �= ∅ then
8: Integrate over D.
9: Assemble the matrix with the integral value.

10: end if
11: end for
12: end for
13: end for
14: end for

6.2.1 First selection of admissible time differences

Since the basis functions have compact support, for fixed triangles K and K ′ and
time k∆t, we only get contribution from finite number of time steps at times l∆t.
When using constant time elements, we get a sharp condition for the admissible
time basis difference u = k − l,

min
r∈K,r′∈K′

|r− r′|
c∆t

− 1 ≤ u < max
r∈K,r′∈K′

|r− r′|
c∆t

+ 1,

where Ψk and Ψl are the interacting basis functions in time. Let the midpoint rKc
of a triangle K be the mean value of its corners. The triangle radius is defined as

rad(K) = max
j

|rKj − rKc |,
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where rKj are the nodes of the triangle K. To estimate the bounds on u, we can
use the midpoint and radius of the triangles. The first selection of admissible time
differences is u in the interval

|rKc − rK
′

c | − rad(K)− rad(K ′)
c∆t

− 1 ≤ u <
|rKc − rK

′
c |+ rad(K) + rad(K ′)

c∆t
+ 1.

The radiuses rad(K) can be precalculated before the assembly process.

6.2.2 Find domain on K′

Let K and u = k − l be given. A point r ∈ K interacts with points r′ lying within
two spherical shells vmin ≤ |r− r′| ≤ vmid and vmid ≤ |r− r′| ≤ vmax, s.t.

vmin = (u− 1)c∆t, (6.3)
vmid = uc∆t, (6.4)
vmax = (u+ 1)c∆t. (6.5)

We want to find the domain on triangle K ′ that intersects with this spherical
shell. The triangle plane of K ′ cuts out a circle from the sphere. The center is the
projection Pr of r onto the K ′-plane. The radius Pv of the circle is calculated by

Pv =
√

v2 − |r− Pr|2,

where v ∈ [vmin, vmax], see figure 6.2. If v2 − |r − Pr|2 is negative, the sphere has
not reached the triangle plane. We need the circles corresponding to vmin, vmid and
vmax.

v

r

Pv Pr

|r− Pr|

K

K ′

Figure 6.2. Triangle plane cuts out a circle of a sphere
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We get the integral of a strip over the triangle by calculating over two domains
as indicated in figure 6.3. Each triangle pair (K,K ′) and each time basis function
difference u requires three integrals where the domain is the intersection of a circle
and a triangle. Each of the three integral domains are subdivided into triangle,
circle, circle sector and circle segment domains, which can be computed, either
exact or with numerical integration. The integration is discussed in chapter 4.

−=

Figure 6.3. Integration of a strip over triangle K’

6.2.3 Circle intersecting a triangle

We want to calculate the intersections between a circle and a triangle. The only
time we can get an odd number of intersections is the case when the circle intersect
the triangle in a corner and the case when a triangle side is a tangent to the circle. If
we treat these as special cases, we can identify the intersected domain with number
of intersection points and number of triangle corners inside the circle. There are
two different cases, when the projection Pr of the point r ∈ K are inside or outside
the triangle K ′. Each of the cases can be divided in another eight different cases,
depending on the number of triangle corners that is inside the circle and the number
of intersections between the circle and triangle, see figure 6.4. All of the 16 cases
can be constructed from triangles, circles and circle segments. The integrals arising
in the different variational formulations in chapters 2 and 3 are treated in chapter
4.
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Figure 6.4. P r outside (inside) K′ to left (right).
#ni is the number of triangle nodes inside the circle.
#is is the number of intersection points.



Chapter 7

Numerical experiments on
Kirchhoff integral equation

In this section, we will perform numerical tests on the variational formulation 1 in
chapter 2. Two test cases are considered; a point source illuminating a plate and a
plane wave illuminating a sphere. Those two cases has an analytical solution.

In the case of a point source illuminating a plate, we use the analytic solution
from an infinite plane. In order to determine if the method in stable, we compute
eigenvalues of the system matrix in the one-step method (5.4). We conclude that
it is necessary to use the stabilization filter in algorithm 2. The stability of the
method is related to the number of numerical integration points in the integral over
the test functions in space. The method has first order of accuracy in time and
approximately second order in space in the computation of the potential on the
surface. The computed scattered fields are compared with analytical solutions.

In the case of a plane wave illuminating a sphere, the computed scattered fields
are compared with analytical solutions at three different observation points.

7.1 Test case with a plate

Consider a Dirichlet plate (x, y) ∈ [−5, 5]2, z = 0 as in figure 7.1. We want to com-
pute the potential JCFL(r, t) on the plate for a point source in rs = (0, 0, 2), for
different CFL-numbers, where CFL = c0∆t

h and h is the length of the largest edge
on the scatterer. The point source produce an incoming wave

uinc(r, t) =
f∞ ((t− |r− rs|/c0 − t0) /T )

|r− rs| (7.1)

f∞(x) =
{

e1−1/(1−|x|2), |x| < 1,
0, |x| ≥ 1

(7.2)

55
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where t0 is a time delay and T determines the width of the pulse. The velocity is
set to c0 = 1

2 . The potential can be used to compute the scattered field. In the
case of an infinite plate, we can compute the exact scattered field by the method
of images [14]. We compare the scattered field of our finite plate with the exact
scattered field of the infinite plate. The potential on a 17× 17 grid, where T = 20
and t0 = 30 is computed with a stabilized scheme and presented in figure 7.2. We
see that the effect of the boundary is marginal in the interior of the plate. The
scattered field at an observation point in (0, 0, 0.25) is computed with a stabilized
scheme and plotted in figure 7.3. From the leftmost subfigures (c) and (f) it is clear
that the scheme is stable, since the error rapidly decreases when the incoming pulse
has passed the plate.

Figure 7.1. Triangulated plate with 11× 11 nodes (left) and sphere with 92 nodes
(right).

7.2 Stability of Dirichlet plate

In order to determine if a scheme is stable or not, we compute the eigenvalues of the
corresponding one-step method given by (5.4). If the largest eigenvalues are outside
the unit circle, then the scheme is unstable. We consider a 9× 9 grid discretization
of the plate. We use a trapezoidal method for the outer integral (over the triangles
K), with 6 and 10 points. In table 7.1, we present the largest eigenvalues of the
one-step method. The table shows that we get a more stable scheme using 10
quadrature points than using 6 points for the integrals over K. This indicates that
the number of required quadrature points increases as the CFL number decreases.
When we use the stabilization filter the scheme becomes stable for smaller CFL
numbers.
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(a) t=22.1 s (b) t=33.1 s

(c) t=44.2 s (d) t=55.2 s

Figure 7.2. Potential at different times for 17× 17 plate, with CFL = 0.5.

7.3 Order of accuracy in time of Dirichlet plate

In order to get first order of accuracy in time, we need to resolve space sufficiently
good. Consider a Dirichlet plate (x, y) ∈ [−5, 5], z = 0. The plate is discretized
with 121 and 289 nodes. We compute the potential JCFL(r, t) on the plate for a
point source in rs = (0, 0, 2), for different CFL-numbers. The point source produces
an incoming wave as in (7.1), with t0 = 30 and T = 20. We use 10 quadrature
points for the integrals over K. The order of accuracy in time can be computed
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Figure 7.3. Scattered field for a 17 × 17 plate for CFL = 1 (top) and CFL = 0.5
(bottom). The scale is different for the first two columns.

numerically by

Order of accuracy in time ≈ log2
‖J4CFL − J2CFL‖L2((0,Tend),Γ)

‖J2CFL − JCFL‖L2((0,Tend),Γ)
. (7.3)

The potential is computed until t = Tend ≈ 44.19. This corresponds to 125 time
steps on the 11 × 11 grid and 200 time steps on the 17 × 17 grid. The order of
accuracy in time is computed and is presented in table 7.2 and we see that this is
a first order scheme in time.

CFL 6 pts, no stab. 10 pts, no stab. 6 pts, stab. 10 pts, stab.
1.000 -0.9988 -0.9994 0.6782 0.6752
0.500 -0.9992 -0.9991 0.8212 0.8194
0.250 −1.2189∗) −1.0618∗) 0.9062 0.9052
0.125 −1.4454± 1.6727i∗) −2.2671∗) −1.2997∗) 0.6597± 0.6885i

Table 7.1. Eigenvalues of the corresponding one-step method for different CFL-
numbers, with and without stabilization filter. ∗) indicates that the scheme is un-
stable.
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11× 11 plate 17× 17 plate
CFL ‖J2CFL − JCFL‖L2 Time order
1.000 0.2754

0.7309
0.500 0.1659

0.9503
0.250 0.0859

0.9948
0.125 0.0431

CFL ‖J2CFL − JCFL‖L2 Time order
1.000 0.1986

0.8872
0.500 0.1074

0.9841
0.250 0.0543

1.0045
0.125 0.0271

Table 7.2. Order of accuracy in time of Dirichlet 11× 11 plate (left) and a 17× 17
plate (right).

grid CFL ‖J2CFL − JCFL‖L2 Spatial order
9× 9 0.81

0.004249
13× 13 0.54 1.5104

0.002303
19× 19 0.36 2.0544

0.001001
28× 28 0.24

Table 7.3. Spatial order of Dirichlet plate.

7.4 Order of accuracy in space of Dirichlet plate

We want to do computations to show that the scheme has at least second order of
accuracy in space. We have already showed that the scheme is first order in time.
The error in the potential is

‖J(∆t, h)− J̃‖L2 = C1∆t+ C2h
p, (7.4)

where J̃ is the exact potential and h is the largest edge of all triangles on the
scatterer. In order to get at least second order in space, we compute

Spatial order ≥ log 1
q

‖J(∆t, h)− J(q2∆t, qh)‖L2

‖J(q2∆t, qh)− J(q4∆t, q2h)‖L2
, (7.5)

where q is the mesh refinement ratio. Normally q = 1
2 , but this yields a too small

CFL-number on the finest grid. In the computation, we use q = 2
3 . The conclusion

from the result presented in table 7.3, is that the scheme is second order accurate
in space. It would have been good to refine the mesh once more, but then the size
of the problem becomes too large.
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7.5 Test case with a Dirichlet sphere

As another test, we use a Dirichlet sphere with 92 nodes and 180 triangles, where
the incoming field is a plane wave. The speed of sound has been changed to c0 = 1.
The incoming field is

uinc =
{

sin(2πγ(r, t))f∞ ( t
10T − 1

)
, t < 10T,

sin(2πγ(r, t)), t ≥ 10T, (7.6)

γ(r, t) =
1
T

(
t− t0 − k̂ · r

c0

)
, (7.7)

where k̂ is the direction of the incoming wave, T = t0 = 40 and CFL = 1
4 . The

solution of this incoming wave is compared to the exact solution of a single fre-
quency, which can be found in [4]. The scattered field is presented in figure 7.4,
for three different observation points relative to the direction of the incoming field.
The solution matches the analytical solution for all observation points considered.
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(a) Backscattered field (Θ = 0◦).
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(b) Scattered field perpendicular to incoming field (Θ = 90◦).
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(c) Scattered field behind sphere, relative to incoming field (Θ = 180◦).

Figure 7.4. Scattered field for a Dirichlet sphere, with pulse width T = 40. The
dotted curves are the analytical solutions.
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Chapter 8

Numerical experiments on
variational formulation from
FD

In this section, we will perform numerical tests on the variational formulations 3
and 5 in chapter 3. Two test cases are considered; a point source illuminating a
plate and a plane wave illuminating a sphere. Those two cases has an analytical
solution.

The variational formulations has a non-negative parameter ω, which depends
on the incoming field. Numerical tests are made in the Dirichlet case that indicates
that it is sufficient to use ω = 0 in both test cases. The parameter ω = 0 yields a
stable scheme for the first 10000 time steps.

In the case of a point source illuminating a Dirichlet plate, the largest eigenvalues
are multiple eigevalues at 1. Long time calculations show no signs of instabilities.
The method has first order of accuracy in time in the computation of the potential
of the surface, but the spatial order of accuracy seems to be super quadratic.

In the case of a plane wave illuminating a Dirichlet sphere, the computed scat-
tered fields are compared with the analytical solutions at three different observation
points.

In the case of a plane wave illuminating a Neumann sphere, the method in
unstable. Some comments are made on the possible reasons for the instability.

8.1 Dirichlet plate, with various ω

Consider a 9 × 9 plate as in section 7.1, with the point source at rs = (0, 0, 2) in
(7.1). The parameters are c0 = 1, T = 20, t0 = 30. The continuous variational for-
mulations discussed in chapter 3 are continuous and coersive whenever a parameter
ω > 0, see [1]. In figure 8.1, the errors uscω − urefω and uscω − usc0 are presented for
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different ω. When ω increases, the difference uscω −usc0 increases. This indicates that
the error increases with ω and the conclusion is that we want to take as small ω as
possible. In addition, when ω > 0, many of the integrals are computed numerically.
This makes the computer program run much slower than in the case ω = 0, where
most integrals has an analytic expression. In practice, the method is only useful
for ω = 0. This restricts the incoming field, not to have exponential growth.
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Figure 8.1. Computation on a 9× 9 plate, for various ω.

8.2 Stability of Dirichlet plate, with ω = 0

Consider the test case as in (7.1), with a discretized plate with 9 × 9 nodes. The
integral over K is computed with Gaussian quadrature over the triangle, [8]. For
adjacent triangle pairs we use 7 Gauss points, for nonadjacent, we use 3 Gauss
points. This is not the same quadrature as for the numerical tests of Kirchhoff
integral equations. We do computations with CFL-number 1, 0.5, 0.25 and 0.125.
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CFL multiplicity of eigenvalue 1
1.000 ≥ 10
0.500 ≥ 10
0.250 4
0.125 6

Table 8.1. Multiplicity of eigenvalue 1 on 9× 9 plate for different CFL numbers.

The largest eigenvalue is a multiple eigenvalue of 1 (in 14 decimals). The multiplic-
ity of the eigenvalues are listed in table 8.1. The long time behavior, 10000 time
steps, of the error with CFL-number 0.5 is illustrated in figure 8.2. This corre-
sponds to a case with an eigenvalue 1 with multiplicity ≥ 10. There are no visible
growth in the error in the first 10000 time steps. The scheme seems to be long time
stable.
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Figure 8.2. Long time error of usc on test case with a plate with 9× 9 nodes and
CFL = 0.5.

8.3 Stability of Dirichlet sphere, with ω = 0

Consider a Dirichlet sphere with radius 5 and an incidence plane wave as in section
7.5. The parameters are set to T = t0 = 20, c0 = 1 and k̂ = (0, 0,−1). More-
over, CFL = 0.5. The corresponding one-step method given by (5.4) has a triple
eigenvalue at 1. In figure 8.3, we present the computed back scattered field after
10000 time steps. The dotted curve is the analytical solution, in [4]. The computed
scattered field match the analytical and there is no indication that the scheme is
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unstable. We conclude that for practical computations, ω = 0 is sufficient to get a
stable scheme.
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Figure 8.3. Scattered field after 10000 iterations on a test case with a sphere with
92 nodes and CFL = 0.5. The dotted curve is the analytical solution.

8.4 Time order of Dirichlet plate, with ω = 0

In order to obtain first order of accuracy in time, we need to resolve the space.
Consider a Dirichlet plate (x, y) ∈ [−5, 5], z = 0. The plate is discretized with both
121 and 289 nodes. We want to compute the potential, JCFL(r, t), on the plate
for a point source at rs = (0, 0, 2), using different CFL-numbers. The point source
produces an incoming wave as in (7.1), with t0 = 30 and T = 20.

I take 125 time steps on the 11 × 11 plate and 200 time steps on the 17 × 17
grid. This corresponds to Tend ≈ 44.19. The order of accuracy in time is computed
and is presented in table 8.2. This is a first order scheme in time.

8.5 Order of accuracy in space of Dirichlet plate,

with ω = 0

In previous section, we concluded that the scheme is first order accurate in time.
This is used to determine the order of accuracy in space. We proceed as in section
7.4. Results are presented in table 8.3 and the scheme appears to be more than
second order in space.
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11× 11 plate 17× 17 plate
CFL ‖J2CFL − JCFL‖L2 Time order
1.0000 0.8300

0.8951
0.5000 0.4463

0.9477
0.2500 0.2314

0.9736
0.1250 0.1178

0.9919
0.0625 0.0592

CFL ‖J2CFL − JCFL‖L2 Time order
1.0000 0.4341

0.9131
0.5000 0.2305

0.9564
0.2500 0.1188

0.9761
0.1250 0.0604

0.9912
0.0625 0.0304

Table 8.2. Order of accuracy in time of Dirichlet 11× 11 plate (left) and a 17× 17
plate (right).

grid CFL ‖J2CFL − JCFL‖L2 Spatial order
9× 9 0.81

0.010942
13× 13 0.54 2.2466

0.004400
19× 19 0.36 2.3148

0.001721
28× 28 0.24

Table 8.3. Order of accuracy in space of Dirichlet plate.
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8.6 Dirichlet sphere, with ω = 0

Here we consider a plane wave crossing a Dirichlet sphere with radius 5. The
incoming field is a sine wave with a smooth transition at t = 0,

uinc(r, t) =

 sin
(
2π t−t0−k̂·r/c0

T

)
f∞ ( t

10T

)
, t < 10T,

sin
(
2π t−t0−k̂·r/c0

T

)
, t ≥ 10T.

(8.1)

We compare the computed scattered field with the analytical solution in [4]. In
figure 8.4, we compare the back scattered field, the field that is perpendicular to
the incoming field and the field behind the sphere relative to the incoming field.
We use CFL = 0.25 and pulse width T = 40. In figure 8.5, we compare the
backscattered field for various CFL numbers for pulse width T = 5. The energy in
the scattered field decreases when CFL is chosen too large.

8.7 Instability of Neumann sphere, with ω = 0

Several test cases have been performed, to get a stable solution to the Neumann
sphere. One possible explanation of the instability is that the the spatial basis
functions are not sufficiently regular. According to the variational formulation 5
in chapter 3, the basis functions in time should have two continuous derivatives in
time. In our implementation, we only use basis functions with one continuous time
derivative. This problem can be avoided if we use linear elements in time. However,
this results in an implicit scheme.

Another possibility is that we get a problem when we change the order of in-
tegration when the integrand contains Dirac δ-functions. This is the case for the
integral Iω2 in section 3.6. However, this integral is also used for the stable Dirichlet
variational formulation.

A remark should be made, that if we remove the last term containing Iω1 in the
Neumann variational formulation 8 in chapter 3, then the scheme is stable, but the
computed potential does not match the analytical solution.
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(a) Backscattered field (Θ = 0◦).
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(b) Scattered field perpendicular to incoming field (Θ = 90◦).
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(c) Scattered field behind sphere, relative to incoming field (Θ = 180◦).

Figure 8.4. Scattered field for a Dirichlet sphere, with pulse width T = 40. The
dotted curves are the analytical solutions.
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(a) Scattered field (Θ = 180◦), when CFL = 0.4.
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(b) Scattered field (Θ = 180◦), when CFL = 0.2.
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(c) Scattered field (Θ = 180◦), when CFL = 0.1.

Figure 8.5. Scattered field for a Dirichlet sphere, with pulse width T = 5. The
dotted curves are the analytical solutions.



Chapter 9

On Surface Radiation
condition

When solving an integral formulation of the wave equation (9.1) with the Marching
On in Time method (MOT), described in chapter 6, the computational cost of the
k-step marching algorithm increases substantially with the size of the object (or
as the frequency increases). In other words, MOT is a low to moderate frequency
method. For high frequencies, the method is expensive to use. There are several
ways of improving the computational complexity. In frequency domain, we have
the fast multipole method. In time domain, Michielssen [10] has developed PWTD,
using plane waves to reduce the cost for the matrix-vector multiplications in MOT.
Existing high frequency approximations that are used in frequency domain are for
instance physical optics (PO), e.g. by Edlund [9] and general theory of diffraction
(GTD), by Keller [16]. These methods are only accurate approximations in the limit
of high frequencies. We want to develop a high frequency approximation for MOT,
by constructing a PDE for the scattered field on the surface of the scatterer. Then
we can use the boundary condition to replace the scattered field with the incoming
field on the surface. The goal is to express the scattered field as an integral of the
incoming field over the surface of the scatterer. This approach is called On Surface
Radiation Condition (OSRC). This has been done in frequency domain by G.A.
Kriegsmann [18] and D.S. Jones [15].

The OSRC method can be outlined as follows,

• Express scattered field usc in spherical coordinates and insert the field as a
solution in the wave equation.

• We obtain a relation that couples usc, ∂usc

∂t and ∂usc

∂n .

• Use the boundary condition of the scatterer to eliminate appropriate terms
in the relation.
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• Insert the relation in Kirchhoff formula for the scattered field, s.t. the scat-
tered field on the surface is eliminated or is easily computed.

The resulting integral formula contains no global coupling over the surface. Instead
we at most solve a local problem for each point on the surface.

9.1 On Surface Radiation Condition (OSRC)

We want to solve the scalar wave equation for the scattered field,

∇2usc − 1
c2

∂2

∂t2
usc = 0, with usc = 0, for t ≤ 0, (9.1)

in the exterior of a scatterer. Write the solution in spherical coordinates, [19]

usc(R0, θ, φ, t) =
∞∑
i=1

fi(t−R0/c, θ, φ)
Ri
0

, (9.2)

where R0 is the distance to the center of the scatterer. By inserting the expansion
in the wave equation (9.1), we get

∞∑
i=1

1
Ri+2
0

(
2i (fi+1)t

c
+ i(i− 1)fi +∇2

0fi

)
= 0. (9.3)

By truncation and letting R0 → ∞, the approximate relation

(fi+1)t = − c

2

(
(i− 1)fi +

1
i
∇2

0fi

)
, (9.4)

is solved (with fi(−∞, θ, φ) = 0)

fi+1(t, θ, φ) = − c

2

∫ t

−∞
(i− 1)fi(τ, θ, φ) +

1
i
∇2

0fi(τ, θ, φ)dτ. (9.5)

From (9.2), we derive the relation

∂usc

∂R0
= −1

c

∂usc

∂t
− usc

R0
− f2(t−R0/c, θ, φ)

R3
0

+O(R−4
0 )

= −1
c

∂usc

∂t
− usc

R0
+

c

2R3
0

∫ t−R0/c

−∞
∇2

0f1(τ, θ, φ)dτ +O(R−4
0 ). (9.6)

From (9.5), we express f1 in usc

f1(t−R0/c, θ, φ) = R0u
sc(R0, θ, φ, t) +O(R−1

0 ), (9.7)

which yields

∂usc

∂R0
= −1

c

∂usc

∂t
− usc

R0
+

c

2R2
0

∫ t

0

∇2
0u

sc(R0, θ, φ, τ)dτ +O(R−3
0 ). (9.8)

In order to compute the scattered field, we need to couple the incoming and scat-
tered field on the scatterer boundary. In the coupling, we need the normal derivative
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rather than the radial. By Jones, [15], we go to non-spherical coordinates by the
substitutions

∂usc

∂R0
→ ∂usc

∂n
, (9.9)

1
R0

→ H(r), (Curvature at r), (9.10)

1
R2
0

∇2
0u

sc → ∇2
Γu

sc, (9.11)

∂usc

∂n
(r, t) +

1
c

∂usc

∂t
(r, t) +H(r)usc(r, t) =

c

2

∫ t

0

∇2
Γu

sc(r, τ)dτ (9.12)

The condition (9.12) is used together with the Kirchhoff formula (2.3) to derive a
method to compute the scattered field for both a Dirichlet and a Neumann boundary
condition on the surface. A program is implemented for a Dirichlet sphere.

9.2 Dirichlet problem

For the Dirichlet problem, we have the boundary condition

uinc + usc = 0,
∂

∂t
(uinc + usc) = 0 (9.13)

on the boundary Γ. Together with the derived condition (9.12), we can write the
Kirchhoff formula (2.3) (with uinc∗ = uinc(r′, t−R/c))

usc(r, t) =
1
4π

∫
Γ

KD
1 (R)

∂uinc∗
∂t

+KD
2 (R, r′)uinc∗ +KD

3 [uinc](R)dΓ′, (9.14)

KD
1 (R) =

1
cR

(
1− ∂R

∂n

)
, (9.15)

KD
2 (R, r′) =

∂

∂n

(
1
R

)
+

1
R
H(r′), (9.16)

KD
3 [uinc](R) = − c

2R

∫ t−R/c

0

∇2
Γu

incdτ. (9.17)

We get a direct representation of the scattered field.

9.3 Neumann problem

For the Neumann problem, we have the boundary condition

∂

∂n
(uinc + usc) = 0, (9.18)
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on the boundary Γ. Together with the derived condition (9.12), the ODE

1
c

∂usc

∂t
(r, t) +H(r)usc(r, t)− c

2

∫ t

0

∇2
Γu

sc(r, τ)dτ =
∂uinc

∂n
(r, t) (9.19)

is derived. Solving this ODE for each point r ∈ Γ yields usc(r, t) on Γ. Next we
eliminate the time derivative

1
c

∂usc

∂t
(r, t) =

∂uinc

∂n
(r, t) −H(r)usc(r, t) +

c

2

∫ t

0

∇2
Γu

sc(r, τ)dτ (9.20)

which can be inserted in the Kirchhoff formula (2.3) and we get

usc(r, t) =
1
4π

∫
Γ

KN
1 (R)

∂uinc∗
∂n

+KN
2 (R, r′)usc∗ +KN

3 [usc](R)dΓ′, (9.21)

KN
1 (R) =

1
R

(
∂R

∂n
− 1
)
, (9.22)

KN
2 (R, r′) = −

(
∂

∂n

(
1
R

)
+

1
R

∂R

∂n
H(r′)

)
, (9.23)

KN
3 [usc](R) =

c

2R
∂R

∂n

∫ t−R/c

0

∇2
Γu

sc(r′, τ)dτ. (9.24)

A time stepping scheme is obtained, in which for each time step k

1. Solve the ODE in (9.19) to get usc(r, k∆t) on the scatterer Γ.

2. Compute KN
3 [usc](R).

3. Compute the scattered field in the exterior, in (9.21).

9.4 Dirichlet test case on sphere

As a simple test case, we have chosen a sphere with radius R0. The sphere Γ is
parameterized by

x = R0 cosφ sin θ, (9.25)
y = R0 sinφ sin θ, (9.26)
z = R0 cos θ, (9.27)

where φ ∈ [0, 2π] and θ ∈ [0, π]. The sphere is discretized with a uniform mesh in
θ and φ, with M∆θ = π, N∆φ = 2π and

θi = i∆θ, i = 1, . . . ,M − 1, (9.28)
φj = j∆φ, j = 1, . . . , N − 1. (9.29)
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The curvature is constant
H(r′) =

1
R0

and the surface Laplace-Beltrami-operator is

∇2
Γu

inc =
1
R2
0

∇2
0u

inc =
1
R2
0

(
1

sin θ
∂

∂θ

(
sin θ

∂uinc

∂θ

)
+

1
sin2 θ

∂2uinc

∂φ2

)
.(9.30)

For a sphere, we have

sin θ∇2
0u(R0, θ, φ) = 0, θ = 0, π. (9.31)

Moreover sin θ∇2
0u is 2π-periodic in φ. Let ui,j = u(θi, φj) and the operator 9.30

can be discretized as

sin θi∇2
0ui,j = D0,i sin θiD0,iui,j +

1
sin θi

D+,jD−,jui,j +O
(
∆θ2 +

∆φ2

sin θi

)
,

D0,i sin θiD0,iui,j =
sin θi+1/2ui+1,j − (sin θi+1/2 + sin θi−1/2)ui,j + sin θi−1/2ui−1,j

∆θ2
,

D+,jD−,jui,j =
ui,j+1 − 2ui,j + ui,j−1

∆φ2
.

The discretization error is large for θ close to 0 and π. But for those values of θ,
the expression sin θ∇2

0u(R0, θ, φ) is vanishing, and we can hope that the error does
not destroy the expected second order accuracy.

9.4.1 Numerical experiments

We use the incoming field as in equation (7.1), with T = 5, t0 = 10 and k̂ = (1, 0, 0).
The sphere with radius R0 = 5 is discretized with 21×21 points in φ and θ and use
∆t = 1

8 . As a reference solution, we use the solution obtained by the Dirichlet MOT
solver in chapter 3 with a sphere with 92 nodes and 180 triangles. The computed
solutions is presented in figure 9.1. The OSRC solution somewhat resembles the
solution obtained by the MOT solver.
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Figure 9.1. OSRC solution vs MOT solution of the scattered field for different
observation points r.
Upper left: r = (0,0,10), Upper right: r = (10,0,0),
Lower left: r = (0,10,0), Lower right: r = (-10,0,0)



Appendix A

Numerical Integration

A.1 Numerical integration

During the assembly process, we need to evaluate some integrals numerically. This
appendix, will discuss how to evaluate integrals over an interval, over a triangle
and over a square. When integrating over a square, the domain is divided into
two triangles, and the algorithm for a triangle is used. The goal is to develop high
order adaptive methods. The integral over a line uses a 6th order Romberg method.
The integral over a triangle uses a seven point Gaussian quadrature, proposed by
Dunavant in [8]. This is also a 6th order method.

A.1.1 Numerical integration over an interval

The goal is to integrate

If =
∫ 1

0

f(x)dx (A.1)

numerically, using a five point 6th order Romberg scheme∫ x4

x0

f(x)dx =
x4 − x0

90
(7f(x0) + 32f(x1) + 12f(x2) + 32f(x3) + 7f(x4)) , (A.2)

where xj are equidistant. In the adaptive Romberg method, we have a stack with
elements consisting of the five x-values, their function values and the integral over
the current segment. A stack consist of two operations:

• operation push adds an element to the top of the stack

• operation pop reads and removes an element from the top of the stack
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Initially we push the whole interval to be integrated. In the refinement step, we pop
an element and divide the current segment into two, with half the length. If the
integrals on the refined segments differ from the integral over the current segment,
then we push the two refined segments. If the integral over the segment is accurate
enough, we add the integral value to the result. The result is extrapolated one
time to get an eight order scheme. The procedure is repeated as long the stack is
nonempty.

Algorithm 5 Adaptive Romberg method
1: {Initialization part}
2: res = 0
3: w = 1

90 [7, 32, 12, 32, 7]
4: x = [0, 14 ,

1
2 ,

3
4 , 1]

5: fj = fun(xj), j = 0,. . .,4
6: int = w·f
7: push(x, f, int)
8: {Divide and Conquer part}
9: while stack nonempty do

10: [x, f, int] = pop
11: {First half of segment}
12: x11 = 1

2 (x0+x1), f11=fun(x11)
13: x31 = 1

2 (x1+x2), f31=fun(x31)
14: int1=(x2-x0)(w·[f0, f11, f1, f31, f2])
15: {Second half of segment}
16: x12 = 1

2 (x2+x3), f12=fun(x12)
17: x32 = 1

2 (x3+x4), f32=fun(x32)
18: int2=(x4-x2) (w·[f2, f12, f3, f32, f4])
19: if |int1+int2-int| >(x4-x0)·TOL·max{1, f2} then
20: {Further refinement needed, store results}
21: x = [x0, x11, x1, x31, x2]
22: f = [f0, f11, f1, f31, f2]
23: push(x, f, int1)
24: x = [x2, x12, x3, x32, x4]
25: f = [f2, f12, f3, f32, f4]
26: push(x, f, int2)
27: else
28: {Integrals are sufficiently accurate, add to result}
29: res = res + 1

63 (64·(int1 + int2) - int)
30: end if
31: end while
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A.1.2 Numerical integration over a triangle

The goal is to integrate

If =
∫ 1

0

∫ 1−α

0

f(α, β)dβdα (A.3)

numerically, using a seven point Gaussian quadrature, that is exact for polynomials
up to order 5, [8]. The idea of uur method is to divide the triangle into two parts
as indicated by figure A.1. The ordering of the nodes of the refined triangles are
important. If the node order is “wrong”, then we may divide the same side of
the triangle in all refinements and we obtain triangles that is only refined in one
dimension. Each subtriangle is integrated using the 7 point integration formula.
We map the local coordinates to the global by

α = a0 + a1α
l + a1β

l, (A.4)
β = b0 + b1α

l + b1β
l. (A.5)

r1 r2

r3

r4

αl

βl
αl
1 βl

1

αl
2

βl
2

Figure A.1. Parametrization of triangle

The refined domains has the local mapping

αl =
1
2
(1− αl

1 + βl
1), (A.6)

βl =
1
2
(1− αl

1 − βl
1), (A.7)

αl =
1
2
(1− αl

2 − βl
2), (A.8)

βl =
1
2
(1− αl

2 + βl
2). (A.9)
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Combining the two mappings yields the mapping of the refined to the global
coordinates,

a01 = a0 +
1
2
(a1 + a2), (A.10)

a11 = −1
2
(a1 + a2), (A.11)

a21 =
1
2
(a1 − a2), (A.12)

a02 = a0 +
1
2
(a1 + a2), (A.13)

a12 = −1
2
(a1 + a2), (A.14)

a22 = −1
2
(a1 − a2). (A.15)

The mapping for bij are exactly the same (up to the constants bj).
In the adaptive integration method, we need a stack with elements consisting of

these constants (aj and bj), the integral value and also the area of the triangle. The
algorithm works similar to the algorithm used for an interval. We don’t extrapolate
the result in the triangle case.

A.1.3 Numerical integration over a square

The goal is to integrate

If =
∫ 1

0

∫ 1

0

f(α, β)dαdβ (A.16)

numerically. To evaluate this, perform a variable substitution and gets two integrals
over a triangle,

If =
∫ 1

0

∫ 1−α

0

f(α, β)dβdα +
∫ 1

0

∫ 1−α

0

f(1− α, 1 − β)dβdα. (A.17)

In the initialization phase of the adaptive method for the triangle, we push two
elements with the constants

a1 = [0, 1, 0], (A.18)
b1 = [0, 0, 1], (A.19)
a2 = [1,−1, 0], (A.20)
b2 = [1, 0,−1], (A.21)

together with the area = 1 and the computed integral values.
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Algorithm 6 Adaptive method for the triangle
1: {Initialization part}
2: res = 0
3: area = 1/2
4: a = [0, 1, 0]
5: b = [0, 0, 1]
6: int = integrate(fun, a, b)
7: push(area, a, b, int)
8: {Divide and Conquer part}
9: while stack nonempty do

10: [area, a, b, int] = pop
11: {First half of segment}
12: area2 = area / 2
13: a01 = a0 + 1

2 (a1+a2)
14: a11 = - 12 (a1+a2)
15: a21 = 1

2 (a1-a2)
16: b01 = b0 + 1

2 (b1+b2)
17: b11 = - 12 (b1+b2)
18: b21 = 1

2 (b1-b2)
19: int1 = area2·integrate(fun, [a01, a11, a21], [b01, b11, b21])
20: {Second half of segment}
21: a:2 = [a01, a11, -a21]
22: b:2 = [b01, b11, -b21]
23: int2 = area2·integrate(fun, [a02, a12, a22], [b02, b12, b22])
24: if |int1+int2-int| >ar·TOL then
25: {Further refinement needed, store results}
26: push(area2, [a01, a11, a21], [b01, b11, b21], int1)
27: push(area2, [a02, a12, a22], [b02, b12, b22], int2)
28: else
29: {Integrals are sufficiently accurate, add to result}
30: res = res + int1 + int2
31: end if
32: end while
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A.1.4 L2-norm calculations using basis functions

In the Marching On in Time method with constant elements in time and linear
elements in space, we should get a solution that is first order in time and second
order in space. To verify this we need to specify a norm, to measure the order in.
Our choice is to use the L2 norm defined by

‖f‖2L2(Γ,(0,T )) =
∫
Γ

∫ T

0

f(r, t)2dtdΓ. (A.22)

Using linear basis functions in space, we have

f(r, t) =
∑
K

3∑
j=1

fK
j (t)ΦK

j (r), (A.23)

‖f‖2L2 =
∑
K

2|K|
12

(
gK11 + gK22 + gK33 + gK12 + gK13 + gK23

)
, (A.24)

where

gKjk =
∫ T

0

fK
j (t)fK

k (t)dt. (A.25)

The integrand in (A.25) is a piecewise constant function.
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