
Beating a Random Assignment

Approximating Constraint Satisfaction Problems

GUSTAV HAST

Doctoral Thesis
Stockholm, Sweden 2005

TRITA-NA-0513
ISSN 0348-2952
ISRN KTH/NA/R--05/13--SE
ISBN 91-7178-051-3

KTH Numerisk analys och datalogi
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen tisdagen den
14 juni 2005 klockan 14.15 i Sal E3, Kungl Tekniska högskolan, Osquars backe 14,
Stockholm.

c© Gustav Hast, juni 2005

Tryck: Universitetsservice US AB

iii

Abstract

An instance of a Boolean constraint satisfaction problem, CSP, consists of a set of
constraints acting over a set of Boolean variables. The objective is to find an assignment
to the variables that satisfies all the constraints. In the maximization version, Max CSP,
each constraint has a weight and the objective is to find an assignment such that the
weight of satisfied constraints is maximized. By specifying which types of constraints that
are allowed we create subproblems to Max CSP. For example, an instance of Max kCSP
only contains constraints that act over at most k different variables. Another problem is
Max CSP(P), where P is a predicate, i.e., a Boolean function. In such an instance P is
used to determine if a constraint is satisfied or not.

Both Max kCSP and Max CSP(P) are NP-hard to solve optimally for k ≥ 2 and
predicates P that depend on at least two input values. Therefore, we consider efficient
approximation algorithms for these two problems. A trivial algorithm is to assign all
variables a random value. Somewhat surprisingly, Håstad showed that using this random
assignment approach is essentially optimal for approximating Max CSP(P), for some
predicates P . We call such predicates approximation resistant. Goemans and Williamson
introduced an approximation method that relaxes problems into semidefinite programs.
Using this method they show that for predicates P of arity two, it is possible to outperform
a random assignment in approximating Max CSP(P). By extending this technique Zwick
characterized all predicates of arity three as either approximation resistant or not.

In this thesis we consider predicates of arity larger than three. We extend the work
of Håstad and the work of Samorodnitsky and Trevisan in order to show predicates to be
approximation resistant. We also use semidefinite relaxation algorithms in order to show
that predicates are not approximation resistant. In particular we show that predicates
with few non-accepting inputs are approximation resistant and that predicates with few
accepting inputs are not approximation resistant. We study predicates of arity four more
closely and characterize 354 out of 400 predicate types.

Max kCSP is 2−k-approximated by a random assignment and previously no al-
gorithms were known to outperform such an algorithm with more than a small constant
factor. In this thesis a probabilistic Ω(2−k+log k−log log k)-approximation for Max kCSP
is presented.

v

Sammanfattning

En instans av ett villkorssatisfieringsproblem, CSP, består av en mängd villkor som
agerar över en mängd binära variabler. Uppgiften består av att hitta en tilldelning till va-
riablerna så att alla villkor uppfylls. I maximeringsversionen, Max CSP, har alla villkor
en vikt och uppgiften består i att hitta en tilldelning så att vikten av uppfyllda villkor
maximeras. Genom att specificera vilka typer av villkor som är tillåtna skapar man delpro-
blem till Max CSP. Ett exempel är Max kCSP där endast villkor som agerar över som
mest k variabler är tillåtna. Ett annat problem är Max CSP(P), där P är ett predikat.
I en sådan instans så används P för att avgöra om ett villkor är uppfyllt eller ej.

Problemen Max kCSP och Max CSP(P) är NP-svåra att lösa optimalt om k ≥ 2
och predikatet P beror på åtminstone två indatavärden. De är därför meningsfullt att
betrakta approximationsalgoritmer för dessa problem. En trivial algoritm är att tilldela
varje variabel ett slumpmässigt valt värde. Håstad visade att en sådan slumptilldelning är
i praktiken det bästa man kan göra för att approximera Max CSP(P), för vissa predi-
kat P . Sådana predikat kallar vi för approximationsresistenta. Goemans och Williamson
introducerade en metod som bygger på semidefinit relaxering. Genom att använda denna
kunde de visa att för alla predikat P som tar två indata kan man skapa en approxima-
tionsalgoritm för Max CSP(P) som är bättre än en slumptilldelning. Genom att utvidga
denna metod kunde Zwick karaktärisera varje predikat, som maximalt tar tre indata, som
antingen approximationsresistent eller ej approximationsresistent.

I denna avhandling studerar vi predikat som tar fler än tre indata. Genom att ut-
vidga resultat av Håstad samt resultat av Samorodnitsky och Trevisan visar vi att ett
antal predikat är approximationsresistenta. Vi använder också algoritmer som bygger på
semidefinit relaxering för att visa att predikat inte är approximationsresistenta. Vi visar
att predikat med få icke-accepterande indata är approximationsresistenta och att predi-
kat med få accepterande indata inte är approximationsresistenta. Vi undersöker speciellt
predikat med fyra indata där vi karaktäriserar 354 av 400 predikattyper.

För Max CSP(P) försöker vi främst skapa algoritmer som är bättre än en slump-
tilldelning. Fokus ligger inte på att göra dem så bra som möjligt. För Max kCSP för-
söker vi däremot slå en slumptilldelning med en så stor faktor som möjligt. En slump-
tilldelning 2−k-approximerar Max kCSP. Vi ger en probabilistisk Ω(2−k+log k−log log k)-
approximationsalgoritm för Max kCSP som är den första som slår en slumptilldelning
med en faktor som ökar med större k.

Acknowledgments

First of all, I would like to express my deepest gratitude and appreciation to my
supervisor Johan Håstad. I have been extremely lucky in having Johan as a teacher
and guide. A visit at Johan’s office always results in new insights. The typical input
of such a visit is some hard to express ideas and the output is a much clearer view
of things. Despite a busy schedule, it is hard to remember a single time Johan has
not been able to make time for helping me.

During the first year of my studies, Johan was on leave. During this time,
Mikael Goldmann was my assistant supervisor. I thank Mikael for this and also
for discussing research related problems. Apart from Johan and Mikael, I have
had enlightening discussions relating to topics in this thesis with Lars Engebretsen,
Jonas Holmerin and Rafael Pass. I thank them for this.

During my time as a PhD student at the theoretical computer science group
at Nada I have been lucky to have had great room mates: Rafael Pass, Anna
Redz, Magnus Rosell and Mårten Trolin. A special thanks to Rafael for sharing his
enthusiasm and positive attitude towards science.

Per Austrin read a large part of this thesis and suggested several improvements.
Thanks Per!

Finally, I thank Åsa.

vii

Contents

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 P, NP and NP-Complete Problems 2
1.2 Approximation Algorithms . 2
1.3 Approximation Resistance . 4
1.4 Max kCSP . 5
1.5 Organization and Contributions of this Thesis 6

2 Background 9
2.1 Basic Notation . 9
2.2 Basic Inequalities . 10
2.3 Problem Definitions . 10
2.4 Arithmetizing Predicates . 11
2.5 Approximability . 12
2.6 Probabilistically Checkable Proofs 13
2.7 Semidefinite Relaxation Algorithms 15
2.8 Gadgets . 17

3 3XOR is Approximation Resistant 19
3.1 PCP Theorem . 20
3.2 Two-Prover Game . 20
3.3 The PCP Proof . 21
3.4 The PCP Verifier . 24
3.5 Putting the Pieces Together . 27

4 Non-Trivial Approximations of CSPs 29
4.1 Method . 29
4.2 Advantage on Linear and Bi-Linear Terms 31
4.3 Predicates of Arity k . 36
4.4 Generalizing the Method . 38

ix

x Contents

5 Approximation Resistant Predicates 43
5.1 The Samorodnitsky-Trevisan Predicate 43
5.2 Proof of Theorem 5.2 . 44
5.3 Predicates with Few Non-Accepting Inputs 48
5.4 Characterization of Hard Instances 51

6 Predicates of Arity Four 55
6.1 Approximation Resistant Predicates 56
6.2 Non-Trivially Approximable Predicates 64
6.3 Tables of All Predicate Types of Arity Four 67
6.4 A Final Remark . 68

7 Structure of Approximation Resistance 75
7.1 Approximation Resistance is Non-Monotone 75
7.2 Neighborhood Approximability . 76
7.3 Final Remarks . 81

8 Approximating Max kCSP 83
8.1 Background . 83
8.2 Our Method . 84
8.3 Algorithm Description . 85
8.4 Numerical Approximation Ratios . 92
8.5 Relation with PCP Classes . 94

9 Summary and Discussion 95
9.1 Approximation Resistant Predicates 95
9.2 Approximability of Max kCSP . 96

Bibliography 99

Chapter 1

Introduction

A central question in computer science is which problems we can hope to solve by
using a computer. An example of a real life problem is the following: “If Adam
has three $100 bills, four $20 bills, five $10 bills and eight $1 dollar bills, can he
use these to pay exactly $125?”. The answer is obviously “yes”, but a program that
simply outputs “yes” without looking at the problem cannot really be considered
to have solved it. Instead we consider the above to be an instance of a problem.
In order for a computer program, or an algorithm, to solve a problem we require it
to be able to compute the correct result for all possible instances of the problem.
The above question can for example be considered as an instance of the subset sum
problem: “Given an integer S and n objects whose values are positive integers a1,
a2, . . . an, is it possible to produce a subset of the objects which has total value
S?”.

The subset sum problem can be solved by an algorithm that calculates the value
of every possible subset of the n elements. It outputs “yes” if it finds a subset of
value S and otherwise outputs “no”. The subset sum problem is said to be solvable
as there exists an algorithm that outputs the correct answer for every instance.
Perhaps rather counterintuitively, there do exist problems that cannot be solved by
an algorithm. The most famous is the halting problem: “Given an algorithm, does
it ever halt?”. This was shown to be unsolvable by Turing [40] in the 1930s. But if a
problem is solvable, does it really mean that it is reasonable to expect that we can
find the answer using a computer? Adam has a total of 20 objects, thus there are
220 ≈ 1000000 different subsets that we have to consider. Using a modern computer,
this should not take much time. However, if an instance contains 80 objects, then
calculating the value of every possible subset takes millions of years for a modern
computer. We see that the distinction between solvable and unsolvable problems
is not a practical one. In this thesis we instead consider the distinction between
efficiently solvable problems and problems that cannot be solved efficiently.

1

2 Introduction

1.1 P, NP and NP-Complete Problems

Even though there exist plenty of natural problems that are considered hard to
solve, i.e., take long time, there do not always exist results that directly reflect this.
It has over time been proven that for many seemingly hard problems it is difficult
to produce results on the following form: “An algorithm that solves problem X has
to perform at least f(n) computations”, where n is the size of the instance and f
is some fast increasing function. A way to cope with this situation is to relate the
hardness of one problem with the hardness of other problems. This is what the
theory of NP-completeness enables us to do.

The class P contains all decision problems that can be solved in polynomial time.
A decision problem asks questions that can only be answered with “yes” or “no”. A
problem is said to be solved in polynomial time if there exists an algorithm that, on
every possible instance, produces the correct answer and the running time is upper
bounded by a polynomial p(n), where n is the size of the instance. In theoretical
computer science, an efficient algorithm is normally meant to be an algorithm with
a running time that is polynomially bounded. The class NP contains all decision
problems where a “yes”-instance can be verified in polynomial time. By this we
mean that there exists a proof that the “yes”-instance is indeed a “yes”-instance,
and that this proof can be verified in polynomial time. For example, subset sum is
in NP, where the proof simply specifies a subset of objects with the correct value.

Clearly P ⊆ NP, because if we can solve a problem, then we can also verify
“yes”-instances of the problem by simply solving the instance. We do not even
need a proof in such cases. The question whether P = NP is an open one, but
it is widely believed that there exists problems in NP that cannot be solved in
polynomial time. In the beginning of the 1970s, Cook [5] introduced the notion of
NP-complete problems, which are the hardest problems in NP. If any NP-complete
problem can be solved in polynomial time, then all problems in NP can be solved in
polynomial time, implying that P = NP. Since then, many problems, among these
subset sum, have been shown to be hard using the theory of NP-completeness. In
1979 Garey and Johnson [12] published a book containing a long list of NP-complete
problems.

1.2 Approximation Algorithms

The main problems we consider in this thesis are so-called constraint satisfaction
problems, CSPs. For a CSP, the objective is to satisfy a collection of constraints
by finding a good assignment. A natural decision problem is to ask if there exists
an assignment that satisfies all constraints. However, we instead consider the max-
imization version of the problem. In Max CSP each constraint has a weight and
the objective is to maximize the weight of satisfied constraints. By restricting what
types of constraints are allowed, different types of problems can be defined. Two
well-known examples are Max CUT and Max E3SAT.

1.2. Approximation Algorithms 3

A constraint in a Max CUT instance consists of two Boolean variables, xi and
xj , and it is satisfied if xi 6= xj . Constraints of Max E3SAT are disjunctions over
exactly three literals, where a literal is a variable or a negated variable. Both these
problems are NP-hard, meaning that if we can solve these problems efficiently,
then we can also solve NP-complete problems efficiently. Thus, we need to settle
for something less. We could, for example, relax the requirement that the algorithm
should work for all instances, and try to design an efficient algorithm that instead
works for most instances. However, we take another route here and relax the
requirement to solve the problem optimally. An algorithm is said to be an α-
approximation of a maximization problem if for every instance the expected value
of the produced solution is at least αwopt, where wopt is the value of an optimal
solution. This line of research was initiated by a paper in 1973 by David S. Johnson
[26].

A naive approximation algorithm for Max CUT and Max E3SAT, as well as
all Max CSPs, is simply assigning all variables a random value, without looking at
the constraints. Let us analyze the expected performance of this random assignment
algorithm. There are four different possible assignments of the variables xi and xj ,
and two of these satisfy the Max CUT constraint, xi 6= xj . The variables are
assigned uniformly random values and thus each assignment is equally probable.
The probability that a constraint is satisfied is thus 1/2. If wtot is the total weight
of all constraints in the instance, then the expected value of a random assignment
is wtot/2, where the value of an assignment is the sum of the weights of satisfied
constraints. There are eight possible assignments to three Boolean variables. A
disjunction over these three variables is satisfied by all but one of these assignments.
A Max E3SAT constraint is thus satisfied by a random assignment with probability
7/8 and the expected value of such a solution is 7wtot/8. We know that wopt ≤ wtot,
thus picking a random assignment is a 1/2-approximation of Max CUT and a 7/8-
approximation of Max E3SAT.

For a long time, no efficient algorithms that significantly outperformed the ran-
dom assignment algorithm were known to exist for Max CUT, Max E3SAT
and many other similar problems. Johnson considered Max E3SAT in his ori-
ginal paper on approximation algorithms and constructed a deterministic 7/8-
approximation. In 1976, Sahni and Gonzales [34] produced a deterministic 1/2-
approximation of Max CUT. A number of algorithms ameliorating low order terms
of the approximation ratio for Max CUT was then produced [16, 25, 32, 41]. How-
ever, no algorithm was a 1/2 + ε-approximation for any constant ε > 0. In 1994, a
major breakthrough was made when Goemans and Williamson [14] constructed an
efficient 0.878-approximation of Max CUT. The algorithm relaxes the Max CUT
instance into a semidefinite program which is solved using methods from math-
ematical programming. Afterwards, the relaxed solution is rounded into a Max
CUT solution. The work of Goemans and Williamson inspired many researchers
to construct approximation algorithms for other maximization problems based on
the same method. A far from complete list includes [10, 17, 27, 28, 31, 42, 44].

Some years before the paper of Goemans and Williamson another major break-

4 Introduction

through in approximation theory was taking place which ultimately would demon-
strate a major difference between the approximability of Max CUT and Max
E3SAT: While Max CUT can efficiently be approximated better than picking a
random assignment, it is NP-hard to 7/8 + ε-approximate Max E3SAT. In other
words, there is no efficient algorithm that significantly outperforms an algorithm
that just picks a random assignment, unless P = NP. The basis for this result,
and many other hardness of approximability results, is the PCP-theorem of Arora
et al. [2] that translates an arbitrary instance x of an NP problem L into a Max
E3SAT instance φ(x), such that if x is a “yes”-instance of L, then all constraints
in φ(x) can be satisfied and otherwise less than a fraction c < 1 of them can be
satisfied simultaneously. By choosing an NP-complete problem L, we see that the
PCP-theorem implies that Max E3SAT is NP-hard to c-approximate. This is
because we can decide if x is a “yes”-instance of L by c-approximating φ(x). By
using redundant encodings of φ(x), the gap between c and 1 can be amplified into
showing that it is NP-hard to 7/8+ε-approximate Max E3SAT [22]. Several other
combinatorial optimization problems have been shown hard to approximate using
the gap from the PCP theorem [3, 8, 9, 21].

Another way of showing hardness of approximation results for Max CSPs is
through the use of gadgets. A gadget transforms a constraint of one kind into a
set of constraints of another kind, thereby relating the approximability of the two
problems. Gadgets have been used for a long time but was explicitly defined by
Bellare et al. [3]. Trevisan et al. [39] then showed how to use linear programming
in order to find optimal gadgets. Using this technique it was shown that it is NP-
hard to 16/17 + ε-approximate Max CUT, for any ε > 0 [22, 39]. An exciting
recent result shows that the Goemans-Williamson algorithm for Max CUT is in
fact optimal, assuming the validity of two conjectures [30], one of which has later
been established.

1.3 Approximation Resistance

In the late 1970s, Schaefer [36] made a complete characterization of which types
of CSPs that admitted polynomial time algorithms for deciding if an instance is
satisfiable or not. This fundamental result was later extended by Creignou [6] and
Khanna et al. [29] for Max CSPs and they showed that almost all Max CSPs
are NP-hard to solve optimally, except for some very restrictive types. They also
showed that a Max CSP either is solvable or there exists a constant ε > 0 such
that it is NP-hard to 1 − ε-approximate the problem.

In one sense this solved the problem of characterizing the approximability of
Max CSPs: Some few problems are solvable and the rest are APX-complete.
However, both Max CUT and Max E3SAT are APX-complete but, as described
above, they exhibit very different properties regarding approximability. For Max
CUT there exist good approximation algorithms whereas for Max E3SAT we
essentially cannot do better than picking a random assignment.

1.4. Max kCSP 5

A subproblem of Max CSP is Max CSP(P), where P is a predicate mapping k
Boolean values onto {0, 1}. An instance of Max CSP(P) contains a set of weighted
constraints. Each constraint consists of k literals, where a literal is a variable that
may or may not be negated. A constraint is satisfied by an assignment if P maps its
literals onto 1. The objective is to maximize the weight of satisfied constraints. The
result of Creignou [6] and Khanna et al. [29] shows that Max CSP(P) is NP-hard
for all predicates that depend on at least two variables. The distinction we focus
on is whether Max CSP(P) can be approximated better than using a random
assignment. If it is NP-hard to substantially outperform a random assignment on
Max CSP(P), then P is said to be approximation resistant. In this thesis we
characterize many predicates as either being approximation resistant or not.

There are many reasons for studying approximation resistance. First and fore-
most, approximation resistance is a fundamental property of a predicate which
determines if anything non-trivial can be done in approximating its Max CSP
in polynomial time. It is thus an important structural question. We believe that
understanding this concept is a key to comprehending what it is that makes some
problems so hard to approximate. Approximation resistant predicates also play a
fundamental role in the design of efficient probabilistical proofs.

There are no predicates of arity two that are approximation resistant [14], even
if the input variables are non-Boolean [23]. Håstad [22] showed that if P depends
on three Boolean inputs and accepts all odd parity inputs or all even parity inputs,
then P is approximation resistant. Zwick [42] completed the characterization for
predicates of arity three by producing approximation algorithms for Max CSP(P),
for all other predicates P , that outperform a random assignment.

A striking observation is that predicates with many accepting inputs seem more
apt to be approximation resistant. Consider the two most extreme cases: predic-
ate kAND that only accepts one input and kOR that accepts all but one input.
Max CSP(kAND) corresponds to maximizing the number of satisfied conjunc-
tions, Max kConjSAT. Trevisan [37] devised an algorithm for this problem that
outperforms a random assignment with a factor of 2. Thus, kAND is never ap-
proximation resistant, regardless of its arity. In the second case, Håstad showed
that kOR is approximation resistant as long as k ≥ 3.

In order to produce efficient probabilistical checkable proofs, a number of predic-
ates with large arity and few accepting inputs have been shown to be approximation
resistant. Samorodnitsky and Trevisan [35] showed that there exist approximation
resistant predicates of arity 2s + s2 with only 22s accepting inputs. Engebretsen
and Holmerin [7] extended this line of work by showing approximation resistant
predicates of arity s+ s(s− 1)/2 with only 2s accepting inputs.

1.4 Max kCSP

Another Max CSP that we consider in this thesis is Max kCSP. This is a very
general type of CSP, where the only requirement on the constraints is that they

6 Introduction

act over at most k Boolean variables. Trevisan observed that the hardest case of
Max kCSP is if all constraints are conjunctions, Max kConjSAT. This is because
given an arbitrary constraint acting over k variables, it can be expressed as a set
of conjunctions such that if the original constraint is satisfied by an assignment,
then exactly one of the conjunctions is satisfied by the same assignment. However,
if the original constraint is not satisfied by an assignment, then no conjunctions
are satisfied by that same assignment. Using a linear relaxation approach, Trevisan
21−k-approximated Max kConjSAT [37]. Using the above observation this implies
that Max kCSP can be 21−k-approximated.

By combining good approximation algorithms for Max kConjSAT, where
k ≤ 4, with a method to shrink the size of large conjunctions, Hast [18] produced
a 21.54−k-approximation for Max kConjSAT and thereby also for Max kCSP. In
this thesis we give the first algorithm that is shown to outperform a random as-
signment with an increasing factor for larger k. Furthermore, this factor is almost
linear in k.

1.5 Organization and Contributions of this Thesis

In Chapter 2, we give some needed background, including notation, problem defin-
itions, algorithms and techniques that we use in the thesis. In Chapter 3 we show
how to prove that parity on three variables is approximation resistant. This is a
result from [22], but we include it because many of our original results are based
on the methods used here.

In Chapter 4, we introduce a general technique for approximating Max CSP
instances. Using this technique, we are able to show that many predicates are not
approximation resistant, e.g. all predicates on 2s variables with at most 2s + 1
accepting inputs are shown to be not approximation resistant.

We show in Chapter 5 that all predicates implied by a Samorodnitsky-Trevisan
predicate are approximation resistant. From this follows that predicates with few
non-accepting inputs are approximation resistant.

In Chapter 6, we try to characterize predicates of arity four as either approx-
imation resistant or not. This is primarily done by applying the methods in the
previous chapters. We succeed in characterizing 354 out of 400 different predicate
types.

Some observations on the structure of approximation resistant predicates are
made in Chapter 7. In particular, we show that every predicate has arbitrarily
“close” predicates that are approximation resistant. A natural conjecture would be
to assume that if a predicate P is implied by an approximation resistant predicate,
then P is also approximation resistant. This is true for all predicates of arity at
most three [42] as well as for all predicates implied by a Samorodnitsky-Trevisan
predicate. However, we combine earlier results and prove that this conjecture is
false.

1.5. Organization and Contributions of this Thesis 7

In Chapter 8, we describe an algorithm that Ω(2−k+log k−log log k)-approximates
Max kCSP. This constitutes a major progress compared with the previous best
algorithm [18]. Unlike earlier chapters we are here interested in with how much we
can beat a random assignment and not only that we can do it.

The material in Chapters 4, 5 and 6 is based on an unpublished paper [20]. The
larger part of the work in Chapter 7 is previously unpublished. The approximation
algorithm for Max kCSP in Chapter 8 is described in [19]. Theorem 6.8 is from
[18].

Chapter 2

Background

2.1 Basic Notation

A predicate P of arity k maps elements from {±1}k onto {0, 1}. For notational
convenience we let input bits have value −1, denoting true, and 1, denoting false.
If P accepts an input y, then P (y) = 1, otherwise P (y) = 0. Thus, the set of
accepting inputs to P is denoted by P−1(1).

Logical AND, OR and XOR between two variables x and y are denoted x∧ y,
x ∨ y and x⊕ y respectively. Logical equality between x and y is denoted x ≡ y.

For an integer k, we let the predicate kOR and kAND be Boolean OR and
AND over k variables respectively. Boolean XOR over k variables is expressed by
kXOR. If kXOR(x1, . . . xk) = 1 then (x1, . . . xk) is said to have odd parity, and
otherwise even parity. A literal is a Boolean variable or a negated Boolean variable.
The negation of a Boolean variable x is denoted x.

For a set U of variables we let {±1}U denote the set of all possible assignments
to these variables. Suppose U ⊆W and x ∈ {±1}W , then the restriction of x to the
variables occurring in U is denoted by x|U . For a set of assignments α ⊆ {±1}W ,
πU (α) is a set consisting of elements x ∈ {±1}U such that x = y|U for some y ∈ α.
Similarly, x ∈ πU

2 (α) if and only if α contains an odd number of elements y such
that x = y|U . We omit the superscript of π when the identity of U is evident from
the context.

Let α and β be sets. The symmetric difference, (α ∪ β) \ (α ∩ β), is denoted by
α∆β.

The probability of an event A is denoted Pr [A]. For a random variable X, E [X]
denotes the expected value of X. By [m] we denote the set {1, 2, . . .m}.

We use the following definition of the sign function sgn:

sgn(t) =
{

1 if t ≥ 0
0 if t < 0 .

9

10 Background

2.2 Basic Inequalities

Proposition 2.1 (The Cauchy-Schwartz inequality). For any real numbers (ai)n
i=1

and (bi)n
i=1, ∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣
2

≤
(

n∑
i=1

|ai|2
)(

n∑
i=1

|bi|2
)

.

Proposition 2.2 (Jensen’s inequality). If f is a convex function and
∑n

i=1 λi = 1,
where λi ≥ 0, then

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi) .

2.3 Problem Definitions

The main problem we consider in this thesis is Max CSP(P). In this problem we
are asked to try to maximize the weight of satisfied constraints, where the predicate
P is used to decide whether a constraint is satisfied or not.

Definition 2.3. Let P : {±1}k → {0, 1} be a predicate. An instance of Max
CSP(P) consists of m weighted constraints, each one acting over a k-tuple of
literals, (zi1, . . . zik), taken from the set {x1, . . . xn, x1, . . . xn}. All variables in such
a tuple are assumed to be distinct. A constraint is satisfied if and only if P accepts
its k-tuple. A solution is an assignment to {x1, . . . xn}. The value of a solution is∑m

i=1 wiP (zi1, . . . zik), where wi is the (non-negative) weight of the i:th constraint.
The objective is to maximize this value.

Remark 2.4. The definition above is somewhat different from Zwick’s definition
[42] in that it does not allow P to act over constants or multiple occurrences of the
same variable. We have changed the definition in order to ensure that the expected
value of a random assignment is a certain constant fraction of the total weight for
all possible instances of Max CSP(P).

We define the weight of an input for a solution to a Max CSP(P) instance.

Definition 2.5. The weight of an input y = (y1, . . . yk) for an assignment a to a
Max CSP(P) instance I is ∑

i:(zi1,...zik)=y

wi ,

where each constraint tuple (zi1, . . . zik) is evaluated on a.

Definition 2.6. Two predicates of arity k, P and P ′, are of the same type if and
only if there is a permutation π on [k] and a ∈ {±1}k such that P (x1, . . . xk) =
P ′(a1xπ(1), . . . akxπ(k)) for all x ∈ {±1}k.

2.4. Arithmetizing Predicates 11

If P and P ′ are of the same type, then a Max CSP(P) instance can be expressed
as a Max CSP(P ′) instance by permuting and applying a bitmask to the constraint
tuples, so clearly they are equivalent problems.

In Max kCSP we consider arbitrary constraints over at most k variables.

Definition 2.7. An instance of Max kCSP consists of a set {C1, . . . Cm} of con-
straints with associated non-negative weights {w1, . . . wm} and a set of Boolean
variables X = {x1, . . . xn}. Each constraint Ci consists of a Boolean function fi of
arity h ≤ k and a size h tuple of Boolean variables (xi1 , . . . , xih

) where xij
∈ X. A

solution is an assignment to X and the objective value of the solution is the sum
of the weights of the satisfied constraints. A constraint Ci = (fi, (xi1 , . . . , xih

)) is
satisfied if and only if fi(xi1 , . . . , xih

) is true.

We define some special cases of Max kCSP.

Definition 2.8. Max kSAT is a special type of Max kCSP. Each constraint is a
disjunction of at most k literals from X∪X, where X = {x : x ∈ X}. Furthermore,
Max EkSAT is a special type of Max kSAT where every constraint acts over
exactly k literals.

Definition 2.9. Max kConjSAT is a special type of Max kCSP. Each constraint
is a conjunction of at most k literals from X ∪X, where X = {x : x ∈ X}.
Definition 2.10. Max kAllEqual is a special type of Max kCSP. Each con-
straint is a tuple of at most k literals from X ∪ X, where X = {x : x ∈ X}. A
constraint is satisfied if and only if all literals have the same value.

We also need some definitions of formulas on conjunctive normal form, CNF.

Definition 2.11. A CNF-formula is a formula φ of n Boolean variables {xi}n
i=1

given by a conjunction of m clauses {Cj}m
j=1. A clause contains a number of literals

and it is true if at least one of the literals is true. The number of literals in a clause
is the length of the clause.

Definition 2.12. A CNF-formula is ρ-satisfiable if some assignment satisfies at
least ρm clauses.

Definition 2.13. A CNF-formula is an EkCNF-formula if each clause is of length
exactly k.

Definition 2.14. A EkCNF-formula is an EkCNF(l)-formula if all variables occur
in exactly l clauses.

2.4 Arithmetizing Predicates

A predicate can be seen as a sum of conjunctions, each conjunction corresponding to
an accepting input to P . If x, y ∈ {±1}k then

∑
S⊆[k]

∏
i∈S xiyi equals 2k if x = y

12 Background

and otherwise the sum is zero. Thus, a conjunction (x1 ≡ α1) ∧ . . . ∧ (xk ≡ αk),
where α ∈ {±1}k, can be arithmetized as

ψα(x1, . . . xk) = 2−k
∑

S⊆[k]

∏
i∈S

αixi =
{

1 if α = (x1, . . . xk)
0 otherwise . (2.1)

A predicate can thus be expressed as a multilinear expression

P (x1, . . . xk) =
∑

α∈P−1(1)

ψα(x1, . . . xk) . (2.2)

We let P (i) denote the sum of the i-degree terms of the multilinear expression P ,
and P (≥i) denotes the sum of the terms of at least degree i in P . Thus,

P (i)(x1, . . . xk) = 2−k
∑

α∈P−1(1)

∑
S⊆[k],|S|=i

∏
i∈S

αixi .

2.5 Approximability

The sum of all weights in an instance I,
∑m

i=1 wi, is denoted by wtot(I). We use
wopt(I) to refer to the value of an optimal solution to the instance I. Sometimes
we omit I, if the identity of the instance is evident from the context.

We use the following definition in order to determine the quality of an approx-
imation algorithm.

Definition 2.15. An algorithm A α-approximates a maximization problem if for
all instances I of the problem

w(A, I)/wopt(I) ≥ α ,

where w(A, I) is the value of the solution produced by A on input I and wopt(I) is
the value of an optimal solution to I. Equivalently, A is said to have an approxim-
ation ratio of α. For probabilistic algorithms w(A, I) is allowed to be an expected
value over the random choices made by A.

Definition 2.16. An instance I of a Max CSP is ρ-satisfiable if and only if
ρ ≤ wopt(I)/wtot(I). Furthermore, a solution to I is ρ-satisfying if it has value at
least ρwtot(I).

A predicate P is said to be approximation resistant if it is NP-hard to find a
solution to a Max CSP(P) instance that is significantly better than the expected
value of a random assignment. As a random assignment satisfies an arbitrary P -
constraint with probability 2−k|P−1(1)|, we have the following definition.

Definition 2.17. A predicate P : {±1}k → {0, 1} is approximation resistant if, for
every constant ε > 0, it is NP-hard to find a solution x to an instance I of Max
CSP(P), such that the value of x is at least (2−k|P−1(1)| + ε)wopt(I).

2.6. Probabilistically Checkable Proofs 13

If a predicate is not approximation resistant, we say that it is non-trivially
approximable.

Throughout this thesis we make the following assumption.

Assumption 2.18. A predicate P : {±1}k → {0, 1} is not approximation resistant
if, for some constant ε > 0, there exists a polynomial time algorithm that can
approximate Max CSP(P) within 2−k|P−1(1)| + ε.

We note that “approximate” in the above assumption refers to our definition
that allows probabilistical algorithms and Definition 2.17 only requires it to be
NP-hard to deterministically outperform a random assignment. However, if we can
2−k|P−1(1)| + ε-approximate Max CSP(P), then by running the algorithm 2/ε
times we know that the best solution found has an approximation ratio of at least
2−k|P−1(1)| + ε/2 with probability at least 1/2. Thus, if Assumption 2.18 is false,
then we can solve an NP-hard problem in randomized polynomial time.

We also define predicates that are hereditary approximation resistant.

Definition 2.19. A predicate P : {±1}k → {0, 1} is hereditary approximation
resistant if all predicates P ′ implied by P , i.e., (P (y) = 1) ⇒ (P ′(y) = 1) for all
inputs y, are approximation resistant.

We introduce the gain of an assignment in order to quantify how an assignment
compare to the expected value of a random assignment.

Definition 2.20. The gain δ of an assignment a on an instance I is

δ =
val(a, I) − wrand(I)

wtot(I)
,

where val(a, I) is the value of a on I and wrand(I) is the expected value of a random
assignment on I.

2.6 Probabilistically Checkable Proofs

We are concerned with the following question: How can a computational unbounded
prover convince us of the validity of a statement v ∈ L? As mentioned in the
introduction, if L is in the class NP, then we know that there exists a proof of the
statement v ∈ L that convinces us. In the case of subset sum, the proof specified
which subsets to choose and it was easy to verify the validity of the proof.

Here we consider a somewhat different setting where the verifier is probabilistic
and only looks at some bits of the proof. Such a proof is called a probabilistical
checkable proof, or simply a PCP. For a probabilistic verifier there are two vital
parameters, the completeness c and the soundness s. The completeness is a lower
bound on the probability that the verifier accepts a valid proof and the soundness
is an upper bound on the probability that the verifier accepts a proof of a false

14 Background

statement. Two other parameters associated with a verifier is the amount of random
bits it uses and the number of bits in the proof it looks at.

We say that a language L belongs to PCPc,s[r, q] if there exists a probabilistical
polynomial time verifier V that only looks at q bits in the proof, uses at most r
random bits and

1. for every x ∈ L, there exists a proof Π such that Pr [V accepts (Π, x)] ≥ c,

2. for every x 6∈ L and every proof Π, Pr [V accepts (Π, x)] < s.

In the above definition a verifier is allowed to first look at a bit in the proof and
then, depending on the value of that bit, choose another bit to look at. We call
such a verifier adaptive. A non-adaptive verifier has to choose which bits to look
at before actually looking at a bit.

There exists a close connection between hardness of approximation and PCPs.
This can be seen by regarding each bit in the proof as a variable and the problem of
finding a proof that maximizes the accept probability of the verifier is then reduced
to a Max CSP instance. The verifier inspects, for every possible outcome of its
internal coin flips, q bits and decides whether to accept or reject. For each such
outcome we introduce a constraint in a Max CSP instance, such that the constraint
is satisfied if and only if the verifier accepts. Theorem 2.22 and its proof makes this
connection between inapproximability and PCPs more explicit.

If a verifier in a PCP always uses a predicate P in order to decide whether to
accept or reject, then the resulting proof optimization problem is a Max CSP(P)
instance. We say that such verifiers have acceptance condition P .

Definition 2.21. A verifier with acceptance condition P , where P is a predicate
mapping elements from {±1}k onto {0, 1}, is a non-adaptive verifier that chooses
k bits to look at from the proof, and applies P on the, possibly negated, bits from
the proof. If P evaluates to 1, the verifier accepts and otherwise it rejects.

If we have an efficient PCP with acceptance condition P , then P is approxima-
tion resistance. By efficient we mean that the completeness can be made arbitrarily
close to 1 and the soundness can be made arbitrarily close to the acceptance prob-
ability of a random proof.

Theorem 2.22 (Folklore). Let P : {±1}k → {0, 1} be a predicate and L be an NP-
complete language. If, for every constant ε > 0, there exists a polynomial time PCP
verifier for L, with acceptance condition P and that uses logarithmic randomness
and has at least completeness 1− ε and at most soundness 2−k|P−1(1)|+ ε, then P
is approximation resistant.

Proof. It is NP-hard to decide if an arbitrary element v belongs to L. We show
that if we can find, given an instance I of Max CSP(P), a solution of value at least
(2−k|P−1(1)|+ γ)wopt(I), for an arbitrary constant γ > 0, then we can also decide
whether v belongs to L. This then implies that P is approximation resistant.

2.7. Semidefinite Relaxation Algorithms 15

We set ε to a value such that

2−k|P−1(1)| + ε

1 − ε
< 2−k|P−1(1)| + γ .

The verifier uses a logarithmic number of random bits, thus there are only a poly-
nomial number of possible outcomes. For each such outcome the verifier queries
k bits from the proof and test these by applying P . We add the corresponding
P -constraint to a Max CSP(P) instance I. We note that the probability that the
verifier accepts a proof Π is exactly the fraction of satisfied constraints in I by the
assignment defined by Π.

The soundness of the PCP implies that if v 6∈ L, then no assignment exists that
satisfies a 2−k|P−1(1)| + ε fraction of the constraints in I. On the other hand, if
v ∈ L then the completeness of the PCP implies that I is 1−ε-satisfiable. If v ∈ L,
then by 2−k|P−1(1)| + γ-approximating I we find a solution of value at least

(2−k|P−1(1)| + γ)wopt(I) ≥ (2−k|P−1(1)| + γ)(1 − ε)wtot(I)
> (2−k|P−1(1)| + ε)wtot(I) .

As this value is larger than the upper bound on wopt(I) in the case v 6∈ L we
conclude that we can decide whether v belongs to L or not.

2.7 Semidefinite Relaxation Algorithms

A successful approach in designing approximation algorithms for various problems
has been to use relaxations. By relaxing the problem, we allow a wider range of
solutions. Due to the extension of the solution space, the problem is then tractable
to solve. Generally an optimal solution to the relaxed problem is not an admiss-
ible solution to the original problem. Therefore, a method in order to transform a
relaxed solution into an admissible one is needed. A classical example of a relax-
ation is integer programming that is relaxed into linear programming by allowing
variables to be real numbers instead of integers.

After Goemans and Williamson introduced their approximation algorithm for
Max CUT, a long line of semidefinite relaxation algorithms have been proposed.
Many results in this thesis relies on that there exists a good algorithm for approx-
imating light instances of Max 2AllEqual. A light instance is an instance where
the value of an optimal solution is close to the expected value of a random solution.
For such instances it makes sense to approximate the gain instead. The algorithm
of Charikar and Wirth allows us to do this. Another semidefinite relaxation al-
gorithm that we use in this thesis is Zwick’s algorithm for almost satisfiable Max
2SAT instances.

16 Background

The Algorithm of Charikar and Wirth

We have the following quadratic programming problem, Max QP: Given a real
valued matrix A, with null diagonal entries, maximize

n∑
i=1

n∑
j=1

aijxixj , such that xi ∈ {±1} . (2.3)

We show that this is in fact a shifted case of Max 2AllEqual. Given a Max
2AllEqual instance I we can produce a Max QP instance by for every constraint
xi = xj with weight wij setting aij := wij and for every constraint xi = xj with
weight wij setting aij := −wij . All other elements in A are set to 0. Let the value
of a solution x to the Max QP instance be q(x) and the value of x to the Max
2AllEqual instance be c(x). If a constraint involving xi and xj is satisfied, then
aijxixj gives contribution wij to q(x) and if it is not satisfied, then aijxixj = −wij .
Therefore we have

q(x) = c(x) − (wtot(I) − c(x)) = 2c(x) − wtot(I) = 2δwtot(I) , (2.4)

where δ is the gain of x on I. An algorithm that α-approximates Max QP also
α-approximates the gain of Max 2AllEqual, since the gain is a constant multiple
of q(x).

Charikar and Wirth [4] created a semidefinite relaxation of Max QP. They used
the standard technique, introduced by Goemans and Williamson [14], where each
variable xi is relaxed into an n-dimensional vector vi of unit length. The product
xixj then becomes the inner product between vi and vj . The relaxation of (2.3) is
then

n∑
i=1

n∑
j=1

aijvi · vj , such that vi · vi = 1 for all i ∈ [n] and vi ∈ R
n . (2.5)

It is a relaxation as an arbitrary solution (xi)n
i=1 can be transformed into vectors

(vi)n
i=1, where vi = (xi, 0, . . . 0), such that the value of (xi)n

i=1 on (2.3) is the same
as the value of (vi)n

i=1 on (2.5). Maximizing (2.5) is an example of semidefinite
programming, which can be approximated efficiently within an arbitrary additive
constant, see [1].

A good relaxation is only the first part of a successful approximation algorithm.
By solving the semidefinite program we obtain a vector solution (vi)n

i=1 which
essentially is optimal. There now has to be a method of obtaining a solution
(xi)n

i=1 from this vector solution, such that if (vi)n
i=1 gives a large value to (2.5),

then (xi)n
i=1 should give a large value to (2.3).

In order to create the (xi)n
i=1 solution, a random vector r on the hypersphere in

R
n is chosen. The value of a variable xi is then decided by a flip of a biased coin,

where the bias is decided by the value of r · vi. Analyzing this rounding technique
give us the following lemma.

2.8. Gadgets 17

Lemma 2.23 (Charikar and Wirth [4]). If δ∗ is the optimum gain of a Max
2AllEqual instance, ApproxMaxQP returns a solution whose expected gain is at
least

ccw

(
δ∗

log(1/δ∗)

)
,

for a constant ccw > 0.

The proof of Lemma 2.23 shows that ccw = 1/64 is a valid value to the constant.
The algorithm ApproxMaxQP is a probabilistical polynomial time algorithm that
acts as described above. We note that the original lemma instead considers Max
CUT, however it works as well for the more general Max 2AllEqual problem.
The switch does not effect the analysis in any harmful way.

This algorithm works well for Max 2AllEqual instances where the value of
an optimal assignment is close to the expected value of a random assignment. We
note that Zwick [44] and Feige and Langberg [10] also have produced algorithms
for this problem which work in a very similar fashion.

Zwick’s Max 2SAT Algorithm for Almost Satisfiable Instances

The Charikar-Wirth algorithm works well for instances where the value of an op-
timal solution is not far from the expected value of a random solutions. If an optimal
solution instead satisfies almost all constraints for some instance, then we can use
specialized semidefinite relaxation algorithms in order to obtain a good solution.
This is true for Max 2AllEqual but also for Max 2SAT, as the following theorem
shows.

Theorem 2.24 (Zwick [43]). Given a (1 − ε)-satisfiable Max 2SAT instance a
(1 − 5ε1/3)-satisfying assignment can be found in probabilistical polynomial time.

2.8 Gadgets

A gadget is a way to transform a constraint of one type into a set of constraints
of another type. The notion of a gadget was defined by Bellare et al. [3] but
the method has been used for a long time. A well known example appears in the
reduction from 3SAT to Max 2SAT by Garey et al. [13].

In this work we consider gadgets from the parity check predicate 3XOR in order
to prove hardness of approximation results. A gadget from 3XOR to a predicate P :
{±1}k → {0, 1} consists of a set of valid weighted constraints {(wi, P (zi1, . . . zik))}
where the zij ’s are literals of the variables x1, x2, x3 or of the auxiliary Boolean
variables y1, . . ., yl. Furthermore, it is an α-gadget if and only if the following
holds:

1. If 3XOR(x1, x2, x3) = 1, then
∑
wiP (zi1, . . . zik) = α for some assignment to

y1, . . ., yl.

18 Background

2. If 3XOR(x1, x2, x3) = 0, then
∑
wiP (zi1, . . . zik) ≤ α − 1 for all assignment

to y1, . . ., yl.

For a more thorough look at gadgets, see [39].
Håstad showed that 3XOR is approximation resistant. A gadget from 3XOR

to a predicate P therefore implies a hardness of approximation result for Max
CSP(P). We have the following lemma.

Lemma 2.25 (Håstad [22]). If there exists an α-gadget from 3XOR to a predicate
P , then it is NP-hard, for any ε > 0, to approximate Max CSP(P) within 1 −
1/2α+ ε.

Chapter 3

3XOR is Approximation Resistant

In this chapter we show how to achieve a strong inapproximability result, namely
that parity on three variables, 3XOR, is approximation resistant. This result is due
to Håstad [22]. We describe how it is derived because our hardness of approximation
results in Chapters 5 and 6 are very much based on this work. Both by using similar
proof techniques and exploiting the fact that 3XOR is approximation resistant in
gadget constructions, i.e., applying Lemma 2.25.

In order to show that 3XOR is approximation resistant, we construct an efficient
PCP verifier for an arbitrary NP-complete language with acceptance condition
3XOR and apply Theorem 2.22. We give a summary how the PCP is created.

1. We are given an element v and a language L ∈ NP. The PCP theorem,
Theorem 3.1, gives a transformation φ, such that φ(v) is a E3CNF-formula
which is satisfiable if v ∈ L and otherwise it is not c-satisfiable, for a constant
c < 1.

2. We introduce a two-prover game between a verifier and two provers for verify-
ing that a E3CNF-formula is satisfiable. The probability that an unsatisfiable
E3CNF-formula is accepted by the verifier is called the soundness. In order
to reduce the soundness of the two-prover game we let the verifier ask parallel
questions.

3. We construct a PCP such that the proof Π should be encodings of answers
in the parallel two-prover game. The verifier uses at most a logarithmic (in
|v|) amount of random bits and decides to look at three bit positions in the
proof, i, j and k, and accepts if 3XOR(Πi,Πj ,Πk). The number of possible
3-tuples the verifier can choose is polynomial in |v|. If Π is an encoding of a
satisfying assignment to φ(v) then the verifier accepts with probability 1− ε.
We can set ε to an arbitrarily small positive constant.

4. If the accept probability in the PCP is at least (1+ δ)/2, where δ is an arbit-
rarily small positive constant, then we can create a strategy for the provers in

19

20 3XOR is Approximation Resistant

the above parallel two-prover game with a success probability that is larger
than the soundness of the game. Thus, in this case we know that φ(v) is
satisfiable and v ∈ L.

We have that 2−3|3XOR−1(1)| = 1/2, thus we can apply Theorem 2.22 and con-
clude that 3XOR is approximation resistant.

3.1 PCP Theorem

Most strong inapproximability results are based on the PCP theorem.

Theorem 3.1 (PCP Theorem, Arora et al. [2]). For a constant c < 1, there is
a polynomial transformation φ that given a language L ∈ NP and an element v
produces a E3CNF(5)-formula φ(v) such that:

• φ(v) is satisfiable if v ∈ L, and

• φ(v) is not c-satisfiable if v 6∈ L.

The version of the PCP theorem we use, where φ(v) is a E3CNF(5)-formula,
is due to Feige [8]. We note that the above is a PCP with perfect completeness
and soundness c where the proof contains an assignment to the variables in φ(v)
and the verifier picks a random clause and inspects its three variables. However,
we would like a PCP with much lower soundness and a verifier that looks at three
bits and decides to accept depending on the parity of these bits. In order to be able
to produce such a PCP we first need to define a two-prover game.

3.2 Two-Prover Game

In a two-prover game a verifier V interacts with two different provers, P1 and P2.
In Figure 3.1 a two-prover one round game is specified for deciding if a E3CNF-
formula is satisfiable. If φ is satisfiable, then there exist two provers P1 and P2 such
that Pr [V accepts] = 1. We say that the game has perfect completeness. If φ is not
c-satisfiable, then for all possible provers P1 and P2 we have that Pr [V accepts] <
(2 + c)/3. This is because the answers from P2 defines an assignment x to the
variables in φ. More than a 1 − c fraction of the clauses are not satisfied by this
assignment. If V chooses one of these clauses, then P1 has to give an answer that is
inconsistent with x by changing the value of at least one variable. With probability
at least 1/3, P1 changed the value of the variable that was sent to P2, and then
the verifier rejects. This happens with probability more than (1 − c)/3, thus it
accepts with probability less than (2 + c)/3. We say that the game has soundness
s = (2 + c)/3.

In order to make the probability that the verifier rejects not satisfiable formulas
higher we need to lower the soundness. This could be achieved by repeating the
game u times, thereby reducing the soundness to su. However, in order to make

3.3. The PCP Proof 21

Input: A E3CNF-formula, φ = C1 ∨ C2 . . . Cm.

1. V chooses k ∈ [m] uniformly at random.

2. V chooses a variable xj uniformly at random from the variables appearing
in Ck.

3. V sends k to P1 receiving an answer y ∈ {±1}3.

4. V sends j to P2 receiving an answer z ∈ {±1}.
5. V accepts if z is consistent with y and y 6= (1, 1, 1).

Figure 3.1: The two-prover game

the connection with a PCP we would like to have only one round in the two-prover
game. Therefore, we define a game where the verifier asks u parallel questions to
the provers. The game is defined in Figure 3.2.

Input: A E3CNF-formula, φ = C1 ∨ C2 . . . Cm.

1. V chooses for i = 1, . . . u: ki ∈ [m] uniformly at random.

2. V chooses for i = 1, . . . u: a variable xji
uniformly at random from the

variables appearing in Cki
.

3. V sends (ki)u
i=1 to P1 receiving answers yi ∈ {±1}3 for i = 1, . . . u.

4. V sends (ji)u
i=1 to P2 receiving answers zi ∈ {±1} for i = 1, . . . u.

5. V accepts if (zi)u
i=1 are consistent with (yi)u

i=1 and all yi 6= (1, 1, 1).

Figure 3.2: The parallel two-prover game

The soundness of the parallel game is not su, however due to Raz [33] we know
that the soundness decreases exponentially with u.

Theorem 3.2 (Raz [33]). Let φ be a E3CNF-formula which is at most c-satisfiable.
Then there exists a constant dc < 1, given by the value of c, such that du

c is an upper
bound for the probability that the verifier accepts in the u-parallel game defined in
Figure 3.2 with input φ.

3.3 The PCP Proof

By using the parallel two-prover game the soundness has been reduced at the cost
of long answers. The verifier should not have to inspect the whole answers, rather

22 3XOR is Approximation Resistant

it should only look at three bits. In order to make this possible, all answers to the
possible questions in the two-prover game are encoded using the long code. The
long code is a highly redundant code introduced by Bellare et al. [3]:

Definition 3.3. The long code of an assignment x ∈ {±1}t consists of the values
of f(x) for all functions f : {±1}t → {±1}.

The number of functions f : {±1}t → {±1} is 22t

, thus this is the length of an
assignment on t variables encoded with the long code. A standard written proof
should contain long code encodings of assignments to all sets of variables that the
verifier may ask for.

Definition 3.4. A Standard Written Proof with parameter u or SWP(u), contains
for each set V ⊂ [n] of size at most 3u a string of length 22|V |

which we interpret
as a long code of an assignment to the variables (xi)i∈V .

The parameter u corresponds to the number of parallel question that are made
in the two-prover game.

Definition 3.5. A SWP(u) is a correct proof for a formula φ of n variables if
there is an assignment x which satisfies φ such that AV is the long code of x|V for
any V of size at most 3u.

The proof in the PCP is thus a SWP(u). There is no guarantee that an actual
proof that the verifier checks, really is a correct proof and consists of long code
tables of satisfying assignments. However, there are two things that we can do to
limit the power of a cheating prover. We can fold the supposedly long code tables
over true and condition them.

Folding

A long code AV has the property that AV (−f) = −AV (f). Given an arbitrary table
A we can fold it over true thereby producing Atrue. This is done by for each pair of
functions (f,−f) we choose one and set Atrue(f) = A(f) and Atrue(−f) = −A(f)
if f was chosen. If the tables in the SWP(u) really are long codes, then they are
unaffected by the folding.

Conditioning

The other way to limit the power of a cheating prover is to condition the tables
upon a function h. The answer from prover P1 in the u-parallel two-prover game
should contain a satisfying assignment to u clauses. We let h be the function such
that h(x) is true if and only if x satisfies all u clauses. Given an arbitrary table
A we can condition upon h thereby producing Ah by setting for each function f ,
Ah(f) = A(f ∧ h). If A is a long code encoding of a satisfying assignment, then A
is uneffected by conditioning upon h.

3.3. The PCP Proof 23

Fourier Analysis of Tables

In order to analyze tables of supposedly long codes we use the discrete Fourier
transform. The basis functions are χα(f) =

∏
x∈α f(x) where α ⊆ {±1}t and

the inner product of two tables A and B are given by 2−2t ∑
A(f)B(f), where a

function f : {±1}t → {±1} acts as an index to a table. The Fourier coefficients are
now given by

Âα = 2−2t ∑
f

A(f)χα(f)

and we have

A(f) =
∑
α

Âαχα(f) .

We note that if A is a long code of an assignment x, then Â{x} = 1 and Âα = 0 for
all α 6= {x}. We also use that if A is folded over true, then

Â∅ = 2−2t ∑
f

A(f) = 0 . (3.1)

Parseval’s identity gives us the sum of all Fourier coefficients squared.∑
α

Â2
α = 2−2t ∑

f

(A(f))2 (3.2)

We mostly consider functions A that map elements to {±1} in which case the above
sum is equal to 1. From the definition of χα we have that

χα(fg) = χα(f)χα(g)

and

χα(f)χβ(f) = χα∆β(f) ,

where ∆ is the symmetric difference. If f only depends on variables in U ⊂W and
β ⊆ {±1}W , then we have that

χβ(f) =
∏
x∈β

f(x) =
∏

x∈πU
2 (β)

f(x) .

We also have the following lemma.

Lemma 3.6. For any non-empty α ⊆ {±1}t

Ef [χα(f)] = 0 ,

where the expectation is taken over randomly and uniformly chosen Boolean func-
tions f : {±1}t → {±1}.

24 3XOR is Approximation Resistant

Proof. Let x0 ∈ α. For every function f : {±1}t → {±1} such that f(x0) = 1 there
exists a single function f ′ such that f ′(x0) = −1, but f(x) = f ′(x) for all x 6= x0.
For such a pair of functions we have that

χα(f) + χα(f ′) = (f(x0) + f ′(x0))
∏

x∈α\{x0}
f(x) = 0 .

It is easy to see that the space of possible functions can be covered by non-
overlapping pairs of functions as specified above. The lemma then follows.

3.4 The PCP Verifier

In Figure 3.3 the actions of the verifier is described. We see that the accept criterion
for the verifier can be expressed as a 3XOR of bits in the proof. This is important
because each possible question the verifier may ask corresponds to a 3XOR con-
straint in the instance I we want to produce. First we show the completeness of

Input: A SWP(u).

1. The verifier chooses a set U of u variables and a random boolean function
f on U . Let A be the portion of the proof corresponding to U . A is folded
over true.

2. For each variable in U choose a random clause containing it. Let h be
the conjunction of the chosen clauses and let W be the set of variables
appearing in the chosen clauses. Choose g1 to be a random boolean
function on W . Let B be the portion of the proof corresponding to W .
B is folded over true and conditioned upon h.

3. Choose a function µ on W which, independently at each point takes the
value 1 with probability 1 − ε and −1 with probability ε. Set g2 = fg1µ,
i.e., define g2 by for each y ∈ {±1}W , g2(y) = f(y|U)g1(y)µ(y).

4. The verifier accepts if and only if

A(f)B(g1)B(g2) = 1 .

Figure 3.3: The PCP verifier

the PCP.

Lemma 3.7. The completeness of the PCP is at least 1 − ε.

Proof. Let the input be a correct proof produced from a satisfying assignment x.
Then A(f) = f(x|U), B(g1) = g1(x|W) and B(g2) = f(x|U)g1(x|W)µ(x|W). Thus,
if µ(x|W) = 1 then A(f)B(g1)B(g2) = 1. This happens with probability 1 − ε.

3.4. The PCP Verifier 25

Soundness of the Verifier

More care is needed to establish the soundness of the PCP. In this section we show
the following lemma.

Lemma 3.8. Assume

E [A(f)B(g1)B(g2)] = δ , (3.3)

where the expectation is taken over all coin tosses of the PCP verifier. Then there
is a strategy for the two provers in the two-prover game that convinces the verifier
with probability at least 4εδ2.

Proof. In order to prove the lemma we design randomized strategies for P1 and P2

that are based on the value of the Fourier coefficients of A and B. We start by
applying the Fourier inversion formula on A and B in (3.3).

Ef,g1,µ [A(f)B(g1)B(g2)]

= Ef,g1,µ

 ∑

α,β1,β2

ÂαB̂β1B̂β2χα(f)χβ1(g1)χβ2(g2)

=
∑

α,β1,β2

ÂαB̂β1B̂β2Ef,g1,µ [χα(f)χβ1(g1)χβ2(fg1µ)] (3.4)

We analyze the expected value in the above expression.

Ef,g1,µ [χα(f)χβ1(g1)χβ2(fg1µ)]
= Ef,g1,µ

[
χα(f)χπ2(β2)(f)χβ1(g1)χβ2(g1)χβ2(µ)

]
= Ef

[
χα∆π2(β2)(f)

]
Eg1 [χβ1∆β2(g1)]Eµ [χβ2(µ)]

By Lemma 3.6 we know that in order for Ef

[
χα∆π2(β2)(f)

]
and Eg1 [χβ1∆β2(g1)] to

be non-zero, then α = π2(β2) and β1 = β2. Finally we show that the expectation
of the last factor decreases exponentially with the size of β2:

Eµ [χβ2(µ)] = Eµ

∏

y∈β2

µ(y)

 =

∏
y∈β2

Eµ [µ(y)] = (1 − 2ε)|β2| .

Summing up, the only non-zero terms in (3.4) are the ones where β1 = β2 and
α = π2(β2) reducing it to a single sum.

Ef,g1,µ [A(f)B(g1)B(g2)] =
∑

β

Âπ2(β)B̂
2
β(1 − 2ε)|β|

The expectation in (3.3) is not only over the verifiers choice of f, g1 and µ, but also
over its choice of U , W and h. Thus, we have shown that

EU,W,h

∑

β

Âπ2(β)B̂
2
β(1 − 2ε)|β|

 = δ . (3.5)

26 3XOR is Approximation Resistant

We now define the strategies in the two-prover game.

P1: Receives W , and picks a β ⊆ {±1}W , such that each β is picked with prob-
ability B̂2

β . Then it returns a uniformly random y ∈ β.

P2: Receives U , and picks a α ⊆ {±1}U , such that each α is picked with probab-
ility Â2

α. Then it returns a uniformly random z ∈ α.

According to (3.1) we have that Â∅ = B̂∅ = 0, as A and B are folded over
true. Thus, we do not need to worry that either α or β are empty sets. Parseval’s
identity (3.2) ensures that the sum of all probabilities equals to one. We note that
if the proof is a correct SWP(u) for an assignment x, then Â{x|U} = B̂{x|W } = 1.
In that case P1 returns y = x|W and P2 returns z = x|U .

The verifier accepts if and only if the values of z and y are consistent with each
other. If α = π2(β), then this probability is at least |β|−1 because for every element
z ∈ α there has to exist at least one element y ∈ β such that z = y|U . Thus, the
probability that the verifier accepts in the two-prover game is at least∑

β

Â2
π2(β)B̂

2
β |β|−1 .

We use Cauchy-Schwartz’ inequality, Proposition 2.1, and Parseval’s identity (3.2)
in order to relate an expression similar to the one in (3.5) with the success probab-
ility in the two-prover game.

∑
β

Âπ2(β)B̂
2
β |β|−1/2 ≤

∑

β

Â2
π2(β)B̂

2
β |β|−1

1/2 (
B̂2

β

)1/2

=

∑

β

Â2
π2(β)B̂

2
β |β|−1

1/2

We use this inequality and the fact that for a random variable X, we have that
E
[
X2
] ≥ E [X]2:

EU,W,h

∑

β

Â2
π2(β)B̂

2
β |β|−1

 ≥ EU,W,h

∑

β

Âπ2(β)B̂
2
β |β|−1/2

2

≥

EU,W,h

∑

β

Âπ2(β)B̂
2
β |β|−1/2

2

. (3.6)

The final step in relating the success probability of the verifier and (3.5) is to relate
|β|−1/2 with (1 − 2ε). The following lemma helps us to do this.

3.5. Putting the Pieces Together 27

Lemma 3.9. For 1/2 > ε > 0 and β 6= ∅

|β|−1/2 ≥ 2
√
ε(1 − 2ε)|β| .

Proof. By the power series expansion of e we have that ex ≥ 1 + x for any real x.
We make use of this in the first and last inequality of the following calculations:

(4ε|β|)−1 ≥ 1
e4ε|β| − 1

≥ 1
e4ε|β|

=
(
e−2ε

)2|β|
≥ (1 − 2ε)2|β| .

Thus (4ε|β|)−1 ≥ (1 − 2ε)2|β|. Multiplying with 4ε and taking the square root of
both sides concludes the proof.

We apply Lemma 3.9 on the expression for the accept probability (3.6).

EU,W,h

∑

β

Â2
π2(β)B̂

2
β |β|−1

 ≥

EU,W,h

∑

β

Âπ2(β)B̂
2
β |β|−1/2

2

≥ 4ε

EU,W,h

∑

β

Âπ2(β)B̂
2
β(1 − 2ε)|β|

2

= 4εδ2

This concludes the proof of Lemma 3.8.

The assumption of Lemma 3.8,

E [A(f)B(g1)B(g2)] = δ ,

implies that the probability that the verifier accepts is (1 + δ)/2. From Theorem
3.2 we have that the soundness of the u-parallel two-prover game is du

c , for some
constant dc < 1. By Lemma 3.8 we have that the soundness of the PCP is (1 +√
du

c /4ε)/2. For every ε > 0 we can make the soundness of the PCP arbitrarily
close to 1/2 by choosing a large enough u.

3.5 Putting the Pieces Together

We are now ready to prove the main result of this chapter.

Theorem 3.10 (Håstad [22]). 3XOR is approximation resistant.

28 3XOR is Approximation Resistant

Proof. Given an arbitrary language L in NP, we have shown that for every ε > 0
we can create a PCP verifier for L with acceptance condition 3XOR which has
completeness 1 − ε and soundness 1/2 + ε. Furthermore, the verifier only uses
a logarithmic number of random bits. As 2−3|3XOR−1(1)| = 1/2 we can apply
Theorem 2.22 and conclude that 3XOR is approximation resistant.

Chapter 4

Non-Trivial Approximations of CSPs

In this chapter we describe a general technique for approximating Max CSP in-
stances. It works by finding a solution that gives a positive contribution on the
small degree terms of the Fourier spectra of the objective function, while seeing to
that the higher degree terms give a smaller positive or negative contribution. Our
focus is to outperform the random assignment algorithm if this is possible. By using
our method we are able to show that a large number of predicates are not approx-
imation resistant. For example, we show in Theorem 4.4 that if P is a predicate
of arity 2s and has at most 2s + 1 accepting inputs, then it is not approximation
resistant. The focus in this chapter is on Max CSP(P), however the method is
potentially applicable on instances of all kinds of Max CSPs.

4.1 Method

The objective function of a Max CSP(P) instance, I, is the weighted sum of the
indicator variables of the constraints. In Section 2.4 we saw that each such term
can be written as a multilinear expression. The whole sum can thus also be written
as a multilinear expression

I(x1, . . . xn) =
m∑

i=1

wiP (zi1, . . . zik) =
∑

S⊆[n],|S|≤k

cS
∏
i∈S

xi . (4.1)

In fact this is a Fourier spectra of the objective value function and the Fourier
coefficients are given by

cS = 2−n
∑

x∈{±1}n

I(x)
∏
i∈S

xi .

As all constraints in I depend on k variables we have that cS = 0 for sets S with
more than k elements. Thus in (4.1) we only sum over sets S where |S| ≤ k.

29

30 Non-Trivial Approximations of CSPs

A random assignment assigns each binary variable xi the value −1 or 1 randomly
and independently. Such an assignment gives every term of (4.1), that includes
at least one variable xi, an expected value of zero. The only term that gives a
contribution to the expectation is the constant term, c∅. In order to beat a random
assignment we want to produce an assignment with an expected weight of at least
c∅ + γwtot, for a constant γ > 0.

If there is a large weight on the linear terms of the Fourier spectra,
∑n

i=1 |c{i}| =
δwtot for a constant δ > 0, then it is easy to assign values to the variables such that
the linear terms give a contribution of δwtot. The problem is that there is no control
on the higher order terms which possibly could give a negative contribution that
cancel the contribution from the linear terms. In order to reduce the contribution of
the higher order terms, we therefore only give a small bias towards the solution that
maximize the linear terms. With probability ε, depending on k and δ, we assign
xi to sgn(c{i}), and otherwise assign xi a random value. The linear terms then
give an expected positive contribution of εδwtot at the same time as the absolute
contribution of each term of degree i is reduced with a factor of εi compared with
the solution that maximized the linear terms. By choosing an appropriately small
value on ε we can make the total absolute contribution of the higher degree terms
at most one third of the contribution of the linear terms. The algorithm then finds
an assignment with expected value of at least c∅ + 2εδwtot/3, and thereby it beats
a random assignment.

We can apply the same method on the bi-linear terms,
∑

i<j c{i,j}xixj . This
is a Max 2AllEqual instance and we can use the Charikar-Wirth algorithm in
order to find a good approximate solution, (ai)n

i=1. Negating the solution do not
change the value on the bi-linear terms, we can therefore make the sum of the linear
terms positive. We choose an appropriately small value on ε and for every variable
xi, with probability ε we assign it the same value as ai, and otherwise a random
unbiased value. By this procedure we ensure that the expected contribution of the
higher degree terms is small in comparison with the expected contribution from the
linear and bi-linear terms.

For some predicates P it is possible to show that an assignment that almost
satisfies an instance of Max CSP(P) has to give a non-negligible positive value on
either the linear or bi-linear terms of the Fourier spectra. In order to show that a
predicate is not approximation resistant, it is enough to create an approximation
algorithm that beats a random assignment on satisfiable and almost satisfiable in-
stances. This is because a random assignment achieves the same expected objective
value irrespective of the satisfiability of the instance. Thus, satisfiable and almost
satisfiable instances are the ones where a random assignment achieves the worst
approximation ratio. By combining the algorithm for almost satisfiable instances
with a random assignment, we then get a better approximation ratio than using a
random assignment alone. Thus, if an assignment that almost satisfies an instance
of Max CSP(P) has to give a non-negligible positive value on either the linear or
bi-linear terms this implies that the condition for our algorithm to outperform a
random assignment is satisfied, which in turn shows that P is not approximation

4.2. Advantage on Linear and Bi-Linear Terms 31

resistant.

4.2 Advantage on Linear and Bi-Linear Terms

As mentioned in the introduction, the objective function of a Max CSP(P) in-
stance can be described as a multilinear expression, see (4.1). In this section we
show that if there is an assignment that gives a non-negligible positive value to the
linear or bi-linear terms of this expression, then we can do better than just picking
a random assignment.

Linear Terms

Let us consider the linear terms of the objective value function, I(1)(x1, . . . xn) =∑n
i=1 c{i}xi. It is easy to see that the linear terms are maximized by assigning xi

to sgn(c{i}), giving the value
∑

i |c{i}|. However, in order to control the expected
value of higher degree terms Algorithm Lin picks an assignment that is ε-biased
towards this assignment. The expected value of the terms of degree i decrease their
value with a factor of εi. By choosing a small enough bias we ensure that the
expected value of the non-constant terms is dominated by the linear terms. The
following theorem quantifies the performance of Algorithm Lin.

Input: A Max CSP(P) instance I
For i := 1,. . . n do:

• with probability ε: assign xi :=
{

1 if c{i} ≥ 0
−1 otherwise ,

• or else assign xi according to an unbiased coin flip.

Figure 4.1: Algorithm Lin - for approximating Max CSP(P).

Theorem 4.1. Let I(x1, . . . xn) =
∑

S⊆[n],|S|≤k cS
∏

i∈S xi be the objective value
function for an instance of Max CSP(P), P : {±1}k → {0, 1}. Denote the sum
of all constraints’ weights wtot. If

∑
i |c{i}| ≥ δwtot, for a constant δ > 0, then

Algorithm Lin, with ε = δ/2k, produces a solution with expected weight of at least
c∅ + δ2

3kwtot.

Proof. The expected objective value is E [I] = E
[
I(0) + I(1) + I(≥2)

]
. In order to

get a lower bound on E [I], we first have

E
[
I(1)

]
= ε

n∑
i=1

|c{i}| ≥ εδwtot .

The following lemma will help in establishing a lower bound for E
[
I(≥2)

]
.

32 Non-Trivial Approximations of CSPs

Lemma 4.2. Let cS be as in Theorem 4.1 and j ≥ 1, then

∑
S⊆[n],|S|=j

|cS | ≤ wtot

2

(
k

j

)1/2

.

Proof. We know that I(x1, . . . xn) is a sum of weighted predicate indicator func-
tions,

∑
l wlP (zl1, . . . zlk). Let (clS)S⊆[n] be the Fourier coefficients of the l’th con-

straint,

P (zl1, . . . zlk) =
∑

S⊆[n],|S|≤k

clS
∏
i∈S

xi .

We see that cS =
∑

l wlc
l
S . Note that almost all clS are equal to zero. If for some

i ∈ S, xi does not appear as a part of the input (zl1, . . . zlk), then clS = 0. Thus,

if |S| = j there are at most
(
k

j

)
non-zero clS for a fixed value of l. The sum of

all Fourier coefficients of degree j terms is now bounded using Cauchy-Schwartz
inequality,

∑
S⊆[n],|S|=j

|clS | ≤

 ∑

S⊆[n]:cl
S 6=0,|S|=j

(
clS
)2

1/2
 ∑

S⊆[n]:cl
S 6=0,|S|=j

1

1/2

≤

 ∑

S⊆[n]:cl
S 6=0,S 6=∅

(
clS
)2

1/2(
k

j

)1/2

. (4.2)

We analyze the first factor in (4.2) by using Parseval’s identity and using the fact
that P and P − 1/2 have the same Fourier coefficients except for cl∅. We let c′∅ be
the Fourier coefficient for P − 1/2.

∑
S⊆[n]:cl

S 6=0,S 6=∅

(
clS
)2 ≤ (

c′∅
)2 +

∑
S⊆[n]:S 6=∅

(
clS
)2

= 2−n
∑

x∈{±1}n

(
P (zl1, . . . zlk) − 1

2

)2

=
1
4

Putting this in (4.2) we obtain the following bound:

∑
S⊆[n],|S|=j

|clS | ≤ 1
2

(
k

j

)1/2

.

4.2. Advantage on Linear and Bi-Linear Terms 33

By adding each constraint’s Fourier coefficients we complete the proof of the lemma:∑
S⊆[n],|S|=j

|cS | ≤
∑

l,S⊆[n],|S|=j

wl|clS |

≤
∑

l

wl
1
2

(
k

j

)1/2

=
wtot

2

(
k

j

)1/2

.

The expected value of a term of degree t is given by

E

 t∏

j=1

xij

 = εt

t∏
j=1

sgn(cij
) .

To see this, note that if any of the variables xi1 , . . . xit
is set according to an

unbiased coin flip, then the expected value of the product is zero. The probability
that none of the t variables is set to a random value is εt and in that case it is set
to
∏t

j=1 sgn(cij
). We can now give a lower bound of terms of degree ≥ 2:

E
[
I(≥2)

]
≥

k∑
j=2

−εjwtot

2

(
k

j

)1/2

≥ −wtot

2

k∑
j=2

εjkj/2 . (4.3)

We set ε = δ/2k. Setting j = 1 in Lemma 4.2 we get the upper bound δ ≤ √
k/2.

The geometric sum in (4.3) can now be analyzed by noting that ε
√
k ≤ 1/4.

k∑
j=2

εjkj/2 ≤ ε2k

k−2∑
j=0

(
1
4

)j

<
4
3
ε2k

=
δ2

3k
.

Substituting this in (4.3) we get

E
[
I(≥2)

]
≥ − δ2

6k
wtot .

34 Non-Trivial Approximations of CSPs

We note that I(0) = c∅. Thus, we have

E [I] = E
[
I(0)

]
+ E

[
I(1)

]
+ E

[
I(≥2)

]
≥ c∅ +

δ2

2k
wtot − δ2

6k
wtot

= c∅ +
δ2

3k
wtot ,

which concludes the proof.

Bi-Linear Terms

If there exists an assignment that makes the sum of the bi-linear terms non-
negligibly positive, then Algorithm BiLin, defined in Figure 4.2, outperforms a
random assignment.

Input: A Max CSP(P) instance I

1. Approximate the Max 2AllEqual instance, I(2), using the Charikar-
Wirth algorithm [4] as explained in Section 2.7. Let a1, . . . an be the
produced solution.

2. If I(1)(a1, . . . an) < 0 then do: ai := ai for i := 1,. . . n.

3. Set α = I(2)(a1, . . . an)/wtot, where wtot is the total weight in I. Set
ε = max(α/2k3/2, 0), where k is the arity of P .

4. For i := 1,. . . n do:

• with probability ε: assign xi := ai,

• or else assign xi according to an unbiased coin flip.

Figure 4.2: Algorithm BiLin - for approximating Max CSP(P).

Theorem 4.3. Let I(x1, . . . xn) =
∑

S⊆[n],|S|≤k cS
∏

i∈S xi be the objective value
function for an instance of Max CSP(P), P : {±1}k → {0, 1}. Denote the sum
of all constraints’ weights wtot. If there exists, for a constant δ > 0, an assignment
such that

∑
1≤i<j≤n c{i,j}xixj ≥ δwtot, then Algorithm BiLin produces a solution

with expected weight of at least c∅ + κwtot, where κ > 0 and only depends on
constants δ and k.

Proof. Maximizing I(2) is a Max 2AllEqual instance. As a first step of Algorithm
BiLin we run the Charikar-Wirth algorithm for Max 2AllEqual [4] trying to
maximize I(2). The algorithm returns a solution a1, . . . an. Let

I(2)(a1, . . . an) = αwtot .

4.2. Advantage on Linear and Bi-Linear Terms 35

By Lemma 4.2, with j = 2, we have the following upper bound on wbi-lin, the total
weight in the Max 2AllEqual instance I(2):

wbi-lin ≤ wtot

2

√
k(k − 1)

2
<

wtotk

2
.

The optimal gain on I(2) is thus at least 2δ/k. By Lemma 2.23 we have a lower
bound on the expected value of α over the random choices of the Charikar-Wirth
algorithm:

E [α] ≥ ccwδ/ log(2δ/k)−1 ,

where ccw is a positive constant from Lemma 2.23. If the linear terms give a negative
contribution, I(1)(a1, . . . an) < 0, then the solution a1, . . . an is negated which does
not effect I(2) but negates I(1), thus ensuring that the expected value of I(1) is
non-negative.

The expected value of the sum of the bi-linear terms can be calculated by
considering each term separately. Both variables in a term are set according to the
solution a1, . . . an with probability ε2. This gives a contribution of ε2αwtot. If any
of the variables instead are set according to a coin flip, then the expected value
is zero. Thus, we have E

[
I(2)

]
= ε2αwtot. The high degree terms can be lower

bounded by using a similar argument as in the proof of Theorem 4.1:

E
[
I(≥3)

]
≥ −

∑
S⊆[n],3≤|S|≤k

ε|S||cS |

≥ −
k∑

j=3

εjwtot

2

(
k

j

)1/2

≥ −wtot

2

k∑
j=3

εjkj/2

> −wtotε
3k3/2 ,

where the last inequality holds if ε is set to a value such that ε
√
k ≤ 1/2.

The expected objective value can now be bounded from below,

E [I] = c∅ + E
[
I(1) + I(2) + I(≥3)

]
≥ c∅ +

(
ε2α− ε3k3/2

)
wtot . (4.4)

If α > 0 we set ε = α/2k3/2, otherwise we set ε = 0. We need to ensure that
ε
√
k ≤ 1/2:

ε
√
k =

α

2k

≤ 1
8
,

36 Non-Trivial Approximations of CSPs

where we used that α ≤ k/4 according to Lemma 4.2 with j = 2. The lower bound
(4.4) ensures that E [I] is at least c∅+

(
α
2k

)3
wtot. Choosing κ =

(
α
2k

)3, the theorem
follows as the expected value of α is at least ccwδ/ log(2δ/k)−1 and

(
α
2k

)3 is a convex
function for non-negative α.

4.3 Predicates of Arity k

As previously mentioned, in order to show that a predicate is not approximation
resistant, it is sufficient to outperform a random assignment on satisfiable and
almost satisfiable instances. This is because picking a random assignment achieves
the worst approximation ratios for these instances. In this section, we show that for
some predicates P , satisfiable and almost satisfiable assignments to Max CSP(P)
instances must have some positive weight on either the linear or bi-linear terms
of the instance. By applying the theorems of the previous section we conclude
that such predicates are not approximation resistant. In particular, we show that
predicates with few accepting inputs are not approximation resistant.

Theorem 4.4. Let P : {±1}k → {0, 1}, k ≥ 3. If P has at most 2bk/2c + 1
accepting inputs, then P is not approximation resistant.

Remark 4.5. Engebretsen and Holmerin [7] designed an approximation resistant
predicate P : {±1}6 → {0, 1}, with only eight accepting inputs. The above theorem
is thus tight for the case k = 6 as it stipulates that if a predicate has at most seven
accepting inputs, then it is not approximation resistant.

In order to prove Theorem 4.4 we need two lemmas. Lemma 4.6 shows that if
P (1)(y)+P (2)(y) is positive for all accepting inputs y, then P is not approximation
resistant. Lemma 4.7 is used for obtaining lower bounds on P (1)(y) + P (2)(y).

Lemma 4.6. Let P : {±1}k → {0, 1} be a predicate. If P (1)(y) + P (2)(y) > 0 for
all y ∈ P−1(1), then P is not approximation resistant.

Proof. Let δ = miny∈P−1(1) P
(1)(y)+P (2)(y), where δ > 0 according to the assump-

tion in the lemma. Furthermore, define γ = miny∈{±1}k P (1)(y)+P (2)(y). We know
that γ < 0 as

∑
y∈{±1}k P (1)(y)+P (2)(y) = 0. Set ε = δ

2(δ−γ) . If there is no assign-
ment that satisfies weight of at least (1−ε)wtot, then a random assignment achieves
an approximation ratio larger than 2−k|P−1(1)|/(1 − ε) > (1 + ε)2−k|P−1(1)|.
Thus, the interesting case is if there is an assignment that satisfies weight at least
(1 − ε)wtot. Assume therefore that this is the case and calculate a lower bound on

4.3. Predicates of Arity k 37

the linear and bi-linear terms of the objective value function,

I(1)(x1, . . .) + I(2)(x1, . . .) =
m∑

i=1

wi

(
P (1)(zi1, . . . zik) + P (2)(zi1, . . . zik)

)

≥
((

1 − δ

2(δ − γ)

)
δ +

δ

2(δ − γ)
γ

)
wtot

=
(
δ +

γ − δ

2(δ − γ)
δ

)
wtot

=
δ

2
wtot .

Thus, we know that either I(1)(x1, . . .) ≥ δ
4wtot or I(2)(x1, . . .) ≥ δ

4wtot. In the first
case Theorem 4.1 implies that P is not approximation resistant and in the latter
case Theorem 4.3 implies that P is not approximation resistant.

Lemma 4.7. Let x, y ∈ {±1}k and d(x, y) be the Hamming distance between x and
y. Define t = d(x, y) − k/2. Then the following holds:

1. ψ(1)
x (y) = −2t · 2−k and

2. ψ(2)
x (y) = (2t2 − k/2)2−k,

where ψx(y) is defined in (2.1).

Proof. Let z ∈ {±1}k such that zi = xiyi. The number of −1 in z equals the
Hamming distance d(x, y). Thus,

2kψ(1)
x (y) =

k∑
i=1

xiyi =
k∑

i=1

zi = k − 2d(x, y) = −2t ,

establishing the first claim. The second claim is verified by simple calculation:

2kψ(2)
x (y) =

∑
1≤i<j≤k

zizj

=
∑

i : zi = 1
j : zj = 1
i < j

zizj +
∑

i : zi = −1
j : zj = −1

i < j

zizj +
∑

i : zi = 1
j : zj = −1

zizj

=
(
k/2 − t

2

)
+
(
k/2 + t

2

)
−
(
k

2
+ t

)(
k

2
− t

)

= 2t2 − k

2
.

38 Non-Trivial Approximations of CSPs

Proof of Theorem 4.4. We use (2.2) to express the linear and bi-linear terms of a
constraint P (y),

P (1)(y) + P (2)(y) =
∑

α∈P−1(1)

ψ(1)
α (y) + ψ(2)

α (y) .

Lemma 4.7 give the following lower bound for each term in the above expression,

ψ(1)
α (y) + ψ(2)

α (y) = (−2t+ 2t2 − k/2)2−k

≥
{ −k

22−k if k even
−k+1

2 2−k if k odd
, (4.5)

where t = d(x, y)−k/2, as defined in Lemma 4.7. In the above calculation we used
the fact that −2t+2t2 ≥ 0 if k is even (equality when t = 0, 1) and −2t+2t2 ≥ −1/2
if k is odd (equality when t = 1/2). If α = y, we have that ψ(1)

α (y) + ψ
(2)
α (y) =

(k+1)k
2 2−k. Thus, if y ∈ P−1(1), the following lower bound is derived by applying

(4.5)

P (1)(y) + P (2)(y) =
∑

α∈P−1(1)

ψ(1)
α (y) + ψ(2)

α (y)

≥
(

(k + 1)k
2

− (s− 1)
⌈
k

2

⌉)
2−k

≥ k

2
2−k

{
if s ≤ k + 1 and k even
if s ≤ k and k odd ,

where s is the number of accepting inputs to P . Applying Lemma 4.6 concludes
the proof of Theorem 4.4.

4.4 Generalizing the Method

In Lemma 4.6 we showed that if P (1)(y)+P (2)(y) is strictly positive for all accepting
inputs y to a predicate P , then P is not approximation resistant. In this section,
we show we can instead consider the sum C · P (1)(y) + P (2)(y), for an arbitrary
constant C, and also allow at most two accepting inputs that make the sum equal
to zero, instead of positive, and P can still be shown to not be approximation
resistant. This is expressed in Theorem 4.9. That theorem relies on the following
rather technical generalization of Lemma 4.6.

Lemma 4.8. Let P : {±1}k → {0, 1} be a predicate. An instance of Max CSP(P)
has the objective value function I(x1, . . . xn) =

∑m
i=1 wiP (zi1, . . . zik). For an as-

signment to x1, . . . xn, let uy be the weight on input y. For constants C and δ > 0,
there exist constants ε > 0 and κ > 0, such that if

∑
y∈P−1(1) uy(C · P (1)(y) +

P (2)(y)) ≥ δwtot, where wtot =
∑m

i=1 wi, then either the value of the assignment
is less than (1 − ε)wtot, or Algorithm Lin or Algorithm BiLin will achieve an
approximation ratio of at least 2−k|P−1(1)| + κ.

4.4. Generalizing the Method 39

Proof. Using the assumptions in the lemma we conclude that

C · I(1)(x1, . . .) + I(2)(x1, . . .) =
∑

y∈{±1}k

uy(C · P (1)(y) + P (2)(y))

≥ δwtot +
∑

y∈P−1(0)

uy(C · P (1)(y) + P (2)(y)) .

Negating an assignment negates the value of I(1) but does not effect I(2). Thus, if
C < 0, then the assignment can be negated and we set C := −C, ensuring that C
is non-negative. From now on we assume C to be non-negative. The terms of the
last expression are bounded from below using Lemma 4.7,

C · P (1)(y) + P (2)(y) = C ·
∑

α∈P−1(1)

ψ(1)
α (y) +

∑
α∈P−1(1)

ψ(2)
α (y)

≥ C
(−k2−k

) |P−1(1)| + (−(k/2)2−k
) |P−1(1)|

≥ −Ck − k/2
> −(C + 1)k .

By setting ε = δ
2(C+1)k , we ensure that the weight on non-accepting inputs is at

most δ
2(C+1)kwtot, implying that

C · I(1)(x1, . . .) + I(2)(x1, . . .) ≥ δwtot −
∑

y∈P−1(0)

uy(C + 1)k

≥ δ

2
wtot .

Thus, either I(1)(x1, . . .) ≥ δ
4Cwtot or I(2)(x1, . . .) ≥ δ

4wtot. Applying Theorems 4.1
and 4.3 concludes the proof.

Theorem 4.9. Let P : {±1}k → {0, 1} be a predicate. If for some constant C,
C ·P (1)(y) +P (2)(y) is zero for at most two y ∈ P−1(1) and strictly positive for all
other y ∈ P−1(1), then P is not approximation resistant.

Before we prove Theorem 4.9 we prove the following lemma which relies on
Zwick’s algorithm for almost satisfiable 2SAT instances [43].

Lemma 4.10. Let P be a predicate with exactly two accepting inputs. If there exists
a (1 − ε)-satisfying solution to a Max CSP(P) instance, then a (1 − O(ε1/3))-
satisfying solution can be produced in probabilistical polynomial time.

Proof. Assume that a = (a1, . . . ak), b = (b1, . . . bk) ∈ {±1}k are the two accepting
inputs to P . We show that there exists a set of 2SAT clauses such that only a and
b satisfy all of them. The set is simply the maximal set of clauses of size two that
satisfies both a and b. Let us call this set D.

40 Non-Trivial Approximations of CSPs

Claim 4.11. Only a and b satisfies all the 2SAT clauses in D.

Proof of Claim 4.11. Let c ∈ {±1}k such that c 6= a, c 6= b. We show that there
exists a clause in D that c does not satisfy. As a 6= b there exists an i ∈ [k] such
that ai 6= bi. Without loss of generality we assume that ci = ai. As a 6= c we also
know that aj 6= cj for some j ∈ [k]. The 2SAT clause over xi and xj that rejects c
accepts both a and b because aj 6= cj and bi 6= ci. This clause is therefore contained
in D.

Each constraint in the original instance is transformed into the above set of
2SAT clauses. If an assignment satisfies an original constraint then it also satisfies
all corresponding 2SAT clauses. However, if it does not satisfy an original con-
straint then at least one of the 2SAT clauses is not satisfied by that assignment.
According to the assumption in the lemma we have that an optimal solution to
the Max CSP(P) instance is at least (1 − ε)-satisfying. This implies that the
same assignment also satisfies at least a 1 − ε fraction of the total weight in the
resulting Max 2SAT instance. By using Zwick’s algorithm for almost satisfiable
2SAT instances, Theorem 2.24, we then find a 1−O(ε1/3) satisfying solution. Each
P -constraint is transformed into a constant number of 2SAT clauses, thus the solu-
tion also 1 −O(ε1/3) satisfies the original Max CSP(P) instance. This concludes
the proof of Lemma 4.10.

Proof of Theorem 4.9. Let I be an instance of Max CSP(P) with total weight wtot
and let y1 and y2 be the accepting inputs to P that make C ·P (1)(y)+P (2)(y) = 0.
If there is only one such input, let y1 be that input and y2 be an arbitrary accepting
input that is not equal to y1. If no accepting inputs to P make C ·P (1)(y)+P (2)(y) =
0, then let y1 and y2 be distinct arbitrary accepting inputs to P . For an optimal
assignment to I, let uy be the weight of an input y. For any constant value of ε > 0,
we define three non-exclusive cases:

• The value of an optimal solution is less than (1 − ε)wtot.

• The weight on y1 and y2 is large, namely uy1 + uy2 ≥ (1 − 2ε)wtot.

• For δ = εminy∈P−1(1)\{y1,y2}
{
C · P (1)(y) + P (2)(y)

}
,

∑
y∈P−1(1)

uy(C · P (1)(y) + P (2)(y)) ≥ δwtot .

We first show that every instance is covered by at least one of the above cases.
Then we show that in each case we can achieve an approximation ratio of at least
2−k|P−1(1)|+κ, for a constant κ > 0 as long as ε is small enough. This shows that
P is not approximation resistant.

We assume that none of the first two cases apply on an instance and show that
this implies that the last case is applicable. The first case implies that an optimal

4.4. Generalizing the Method 41

solution has value wopt =
∑

y∈P−1(1) uy ≥ (1 − ε)wtot. The second case implies
that uy1 + uy2 < (1 − 2ε)wtot. Thus we have∑

y∈P−1(1)\{y1,y2}
uy > εwtot .

We calculate a lower bound for the sum specified in the third case.∑
y∈P−1(1)

uy(C · P (1)(y) + P (2)(y)) ≥
∑

y∈P−1(1)\{y1,y2}
uy(C · P (1)(y) + P (2)(y))

≥
∑

y∈P−1(1)\{y1,y2}
uyδ/ε

> δwtot

This implies that the third case is applicable.
If an instance is in the first case, a random assignment approximates the instance

well enough with an approximation ratio of

2−k|P−1(1)|wtot

(1 − ε)wtot
> 2−k(1 + ε)|P−1(1)| .

If it is in the second case we apply Lemma 4.10 with the predicate that only accepts
y1 and y2. If it is in the third case we instead apply Lemma 4.8.

Chapter 5

Approximation Resistant Predicates

In this chapter we study approximation resistant predicates. First we extend a
result by Samorodnitsky and Trevisan [35] in order to show a large number of
predicates to be approximation resistant. A consequence of that result is that all
predicates with few non-accepting inputs are approximation resistant.

The method described in Chapter 4 gives interesting implications for optimal
solutions to hard instances of some Max CSPs. For example, Håstad produced
almost satisfiable and satisfiable instances of Max E3SAT such that it is NP-
hard to find a solution that is essentially better than the expected performance
of a random assignment. The proposed satisfying assignment made either one or
all three of the literals true for almost all constraints. We show that this is no
coincidence. In fact, if there is an almost satisfying assignment that on a constant
fraction of the constraints make exactly two literals true, then the instance can
be approximated better than using a random assignment. This gives us some new
interesting insights about the hardness of approximating Max E3SAT.

5.1 The Samorodnitsky-Trevisan Predicate

A Samorodnitsky-Trevisan predicate PST s,t : {±1}s+t+st → {0, 1} consists of st
different parity checks, each acting on three variables,

PST s,t(x1, . . . xs, x
′
1, . . . x

′
t, x

′′
1 , . . . x

′′
st) =

∧
1≤i≤s
1≤j≤t

xi ⊕ x′j ⊕ x′′(i−1)s+j .

It is easy to see that if an input x is accepted by PST s,t , then the first s + t bits
determine the other st bits in x. Thus, there are only 2s+t accepting inputs out of
a total of 2s+t+st inputs.

Samorodnitsky and Trevisan [35] exhibit a non-adaptive PCP for every language
in NP with completeness 1− ε, soundness 2−st + ε and q = s+ t+ st query bits, for
any constant ε > 0. Furthermore, the verifier uses PST s,t as acceptance condition.
We have that Theorem 2.22 implies the following theorem.

43

44 Approximation Resistant Predicates

Theorem 5.1 (Samorodnitsky-Trevisan [35]). PST s,t is approximation resistant.

A predicate P is said to be hereditary approximation resistant if all predicates
that are implied by P are approximation resistant. The following theorem states
that Samorodnitsky-Trevisan predicates are hereditary approximation resistant.

Theorem 5.2. Let P : {±1}s+t+st → {0, 1} be a predicate that is implied by PST s,t ,
i.e., P−1

ST s,t(1) ⊆ P−1(1). Then P is approximation resistant.

5.2 Proof of Theorem 5.2

We prove Theorem 5.2 by constructing an efficient PCP having a verifier with
acceptance condition P . We then apply Theorem 2.22 in order to conclude that
P is approximation resistant. This is basically the same method as was used in
Chapter 3 in order to show that 3XOR is approximation resistant. In this proof we
rely heavily on the soundness analysis of the Samorodnitsky-Trevisan PCP made
by Håstad and Wigderson [24].

The Verifier

The proof used is a standard written proof, SWP(u), the same as is used in Chapter
3. It consists of supposed long code encodings of possible answers in the parallel two-
prover game, which are subsets of an assignment x to a SAT formula φ. However,
the verifier checks the proof somewhat differently. The verifier inspects s + t + st
bits in the proof and decides whether or not to accept by applying the predicate P
on the (possibly negated) bits in the proof. The actions of the verifier are described
in Figure 5.1 and we call this Test STP .

A very similar verifier is defined in [24]. The only difference that we make is
in the accept criterion. Instead of using P it uses the Samorodnitsky-Trevisan
predicate PST s,t in order to decide whether to accept or reject. We call this Test
ST and it is shown in Figure 5.2.

The accept criterion of the verifier in Test ST can be seen as a conjunction of
st parity tests:

A(fi)Bj(gj)Bj(gij) = 1 , i ∈ [s], j ∈ [t] .

If the SWP(u) is a correct proof in the sense of Definition 3.5, then each such test
is passed with probability 1− ε. This is because A(fi)Bj(gj)Bj(gij) = µij(x|Wj

) as
A(fi) = fi(x|U), Bj(gj) = gj(x|Wj

) and Bj(gij) = fi(x|U)gj(x|Wj
)µij(x|Wj

). The
tests are independent and thus the completeness is (1 − ε)st. The completeness of
Test STP is at least as high as in Test ST , as the accept criterion is more accepting.
Thus the completeness of Test STP is at least (1 − ε)st.

5.2. Proof of Theorem 5.2 45

Input: A SWP(u).

1. The verifier chooses a set U of u variables and s random boolean functions
fi, i = 1, 2, . . . s on U . Let A be the portion of the proof corresponding
to U .

2. For j = 1, 2, . . . t the verifier repeats the following steps. For each variable
in U choose a random clause containing it. Let hj be the conjunction of
the chosen clauses and let Wj be the set of variables appearing in the
chosen clauses. Choose gj to be a random boolean function on Wj . Let
Bj be the portion of the proof corresponding to Wj , but folded over true
and conditioned upon hj .

3. For i = 1, 2, . . . s, j = 1, 2, . . . t choose a function µij on Wj which, inde-
pendently at each point takes the value 1 with probability 1 − ε and −1
with probability ε. Set gij = gifiµij , i.e., gij(y) = fi(y|U)gj(y)µij(y).

4. The verifier accepts if

P (−A(f1), . . .−A(fs), B1(g1), . . . Bt(gt), B1(g11), . . . Bt(gst)) ,

otherwise it rejects.

Figure 5.1: Test STP

Input: A SWP(u).
Steps 1 to 3 are performed as in Test STP .

4 The verifier accepts if

PST s,t (−A(f1), . . .−A(fs), B1(g1), . . . Bt(gt), B1(g11), . . . Bt(gst)) ,

otherwise it rejects.

Figure 5.2: Test ST

The Soundness of the PCP

A verifier with acceptance condition P accepts a completely random proof with
probability 2−(s+t+st)|P−1(1)|. This probability is thus a lower bound for the
soundness.

In Test ST , the verifier accepts if A(fi)Bj(gj)Bj(gij) = 1 for 1 ≤ i ≤ s and

46 Approximation Resistant Predicates

1 ≤ j ≤ t. Thus, the following expression is 1 if the verifier accepts and 0 otherwise.∏
1≤i≤s
1≤j≤t

1 +A(fi)Bj(gj)Bj(gij)
2

Calculating the above product we get the sum

2−st
∑

S⊆[s]×[t]

∏
(i,j)∈S

A(fi)Bj(gj)Bj(gij) .

If φ is at most c-satisfiable, then this expression is bounded by the following lemma
as the soundness of the u-parallel two-prover game can be made arbitrarily small
by choosing u large enough.

Lemma 5.3 (Håstad-Wigderson [24]). Suppose S ⊆ [s] × [t] and non-empty. Let

E

 ∏

(i,j)∈S

A(fi)Bj(gj)Bj(gij)

 = δ ,

where the expectation is taken over all coin tosses of the PCP verifier. Then there
is a strategy for the two provers in the parallel two-prover game that convinces the
verifier with probability at least 4εδ2.

The accept indicator function for Test STP is

∑
(a1,...b1,...b11,...)

∈P−1(1)

(
s∏

i=1

1 + aiA(fi)
2

) t∏
j=1

1 + bjBj(gj)
2

∏

i∈[s]
j∈[t]

1 + bijBj(gij)
2

 ,

(5.1)
We analyze (5.1) by showing that the terms which neither are constants or on the
form

∏
(i,j)∈S A(fi)Bj(gj)Bj(gij) have a zero expectation. Ignoring the sign, an

arbitrary term can be written on the following form

2−(s+t+st)
∏
i∈I

A(fi)
∏
j∈J

Bj(gj)
∏

(i,j)∈S

Bj(gij) ,

where I ⊆ [s], J ⊆ [t] and S ⊆ [s] × [t]. If we cannot use Lemma 5.3 in order
to bound a non-constant term, we know that there is an i0 (or a j0) such that if
i0 ∈ I (or j0 ∈ J) then there is an even number of elements in {(i0, j) ∈ S} (or in
{(i, j0) ∈ S}) and if i0 6∈ I (or j0 6∈ J) then there is an odd number of elements in
{(i0, j) ∈ S} (or in {(i, j0) ∈ S}). Assume for now that there is such an i0 and that
i0 ∈ I. The term can now be written as

A(fi0)
∏

(i0,j)∈S

Bj(gi0j)

C , (5.2)

5.2. Proof of Theorem 5.2 47

where the value of C is independent of the choices of fi0 , gi01, . . . gi0t. Let us fix
the choices of g1, . . . gt. It is equally probable for a verifier to choose a function
fi0 as it is to choose −fi0 . Thus the (partial) choice of the following functions
(fi0 , g1, . . . gt, gi01, . . . gi0t) is as frequent as (−fi0 , g1, . . . gt,−gi01, . . . − gi0t). Due
to folding of the long code tables we know that A(fi0) = −A(−fi0). Furthermore,
we know that the number of elements in {(i0, j) ∈ S} is even, thus∏

(i0,j)∈S

Bj(gi0j) =
∏

(i0,j)∈S

−Bj(−gi0j)

= (−1)|{(i0,j)∈S}| ∏
(i0,j)∈S

Bj(−gi0j)

=
∏

(i0,j)∈S

Bj(−gi0j) .

We conclude that

A(fi0)
∏

(i0,j)∈S

Bj(gi0j) = −A(−fi0)
∏

(i0,j)∈S

Bj(−gi0j) ,

and that the expectation of expression (5.2) must be zero. If i0 6∈ I or there is a j0
such that |{j ∈ J : j = j0}| does not have the same parity as |{(i, j) ∈ S : j = j0}|,
then the same line of reasoning shows that the expectation of the term is zero in
those cases as well.

The constant term in the accept probability (5.1) is 2−(s+t+st)|P−1(1)|, which
also is the value of the largest possible coefficient for a term in general. Theorem 3.2
ensures that the soundness in the u-parallel game is at most du

c , for some constant
dc < 1. The expected value of

∏
(i,j)∈S A(fi)Bj(gj)Bj(gij), for any set S ⊆ [s]× [t],

is upper bounded by
√
du

c /4ε. This is seen by combining Lemma 5.3 and Theorem
3.2. There are 2st −1 different nonempty sets S. All other terms in (5.1) have been
shown to have an expected value of 0. Thus the soundness of the PCP is upper
bounded by

2−(s+t+st)|P−1(1)| + (2st − 1)2−(s+t+st)|P−1(1)|
√
du

c /4ε ≤
2−(s+t+st)|P−1(1)| + 2−(s+t)|P−1(1)|

√
du

c /4ε .

For any constant ε′ > 0 we can, by choosing a large enough u in the parallel two
prover game, get a soundness for Test STP of 2−(s+t+st)|P−1(1)| + ε′.

P is Approximation Resistant

Theorem 3.1 gives a polynomial transformation φ that given a language L ∈ NP
and an element v produces a E3CNF(5)-formula φ(v) such that:

• φ(v) is satisfiable if v ∈ L, and

48 Approximation Resistant Predicates

• φ(v) is not c-satisfiable if v 6∈ L.

Our PCP distinguishes between these two cases. The proof is a standard written
proof of φ(v) and the verifier has acceptance condition P , uses logarithmic (in
|v|) number of random bits. Furthermore, for every constant δ, we can make the
soundness less than 2−(s+t+st)|P−1(1)| + δ by choosing a u large enough in the
standard written proof, and we can make the completeness at least 1− δ by setting
ε = δ/st. Thus, we have an efficient PCP construction for an arbitrary language
in NP. We apply Theorem 2.22 and conclude that P is approximation resistant.

5.3 Predicates with Few Non-Accepting Inputs

If a predicate P has few non-accepting inputs, then there exists at least one pre-
dicate of the same type as P , such that it is implied by a Samorodnitsky-Trevisan
predicate. Using Theorem 5.2, we then conclude that P is approximation resistant.

Theorem 5.4. Let k ≥ s + t + st and P : {±1}k → {0, 1} be a predicate with at
most 2st − 1 non-accepting inputs, then P is approximation resistant.

Proof. Our goal is to design st special parity relations such that no non-accepting
input satisfies all of them. Based on these parity relations and the predicate P ,
we construct the predicate P ′ which is implied by the Samorodnitsky-Trevisan
predicate PST s,t , and is of the same type as P . Using Theorem 5.2 we see that P ′

is approximation resistant and thus P is approximation resistant as well, because
P and P ′ are of the same type.

Let x ∈ {±1}k be a possible input to P , and parij(x), where i ∈ [s] and
j ∈ [t], is the parity check xixs+jxt+js+i. Initially, let T := P−1(0) be all non-
accepting inputs of P . For each (i, j) ∈ [s]× [t] we repeat the following: Construct
T−1 = {x ∈ T : parij(x) = −1} and T1 = {x ∈ T : parij(x) = 1}. If T−1 has fewer
elements than T1, set T := T−1 and bij := 1, otherwise set T := T1 and bij := −1.
After each iteration, T is at most half of its previous size. The assumption of the
theorem stipulates that T initially consists of at most 2st − 1 elements. Thus, after
st iterations T must be the empty set.

We get P ′ by applying a bitmask on st bits of the input to P :

P ′(x1, x2, . . . xk) = P (x1, . . . xs+t, b11xs+t+1, . . . bstxs+t+st, xs+t+st+1, . . . xk) ,

for all inputs (x1, . . . xk) ∈ {±1}k. As we have only negated some input bits on
certain positions it is clear that P and P ′ are of the same type and thus Max
CSP(P) and Max CSP(P ′) are equivalent problems. Furthermore, P ′ is implied
by PST s,t because of the construction of the bitmask values {bij}. Theorem 5.2
then shows that P ′ is approximation resistant, and thereby also P . We note that
if k > s + t + st, then PST s,t is considered to take inputs of length k but the last
k − (s+ t+ st) input bits will never effect the output of the predicate.

5.3. Predicates with Few Non-Accepting Inputs 49

In the proof of Theorem 5.4 we used the fact that a bitmask to the input does not
change the type of the predicate. Clearly we could also use the fact that permuting
the input bits does not change the type of the predicate either. Unfortunately,
this approach makes the analysis much more complex and it would not strengthen
Theorem 5.4 significantly. However, for predicates of arity five we are able to use
this approach in order to produce a tight result. Theorem 5.4, with s = 1 and t = 2,
lets us conclude that if a predicate P of arity five has at most three non-accepting
inputs, then P is approximation resistant. We better this by the following theorem.

Theorem 5.5. Let P be a predicate of arity 5 with at most 5 non-accepting inputs,
then P is approximation resistant.

Proof. Let P−1(0) = {s1, s2, s3, s4, s5} where sj ∈ {±1}5 for 1 ≤ j ≤ 5. With sj [i]
we denote the i’th bit in sj . We start by describing a sufficient condition for P
being approximation resistant.

Let a parity test {t, u, v} ⊂ [5] on s be defined as
∏

i∈{t,u,v} s[i]. A pair of
parity tests is admissible if the intersection of them contains a single element. The
result of an admissible pair of parity tests is in {±1}2, thus there are four possible
outcomes.

Claim 5.6. Assume there exists an admissible pair of parity tests such that there
is a possible outcome that do not occur if applied on all elements in P−1(0). Then
P is approximation resistant.

Proof of Claim 5.6. Let the admissible pair of parity checks be {t, u, v} and {t, w, z}
and the outcome that not occurs (b1, b2). Define P ′ such that

P (x1, x2, x3, x4, x5) = P ′(xt,−b1xu,−b2xw, xv, xz) .

P ′ is apparently of the same type as P . In addition P ′ is implied by PST 1,2 , as

PST 1,2(x1, x2, x3, x4, x5) = (x1 ⊕ x2 ⊕ x4) ∧ (x1 ⊕ x3 ⊕ x5) .

Theorem 5.2 shows that P ′ is approximation resistant and thus P is approximation
resistant as well.

To prove the theorem we assume that there do not exist any admissible pairs of
parity checks as specified in the claim, and show that this leads to a contradiction.
Therefore, assume that there exists P−1(0) = {s1, s2, s3, s4, s5} such that, for every
possible choice of admissible pair of parity checks, par1 and par2, for every possible
outcome (b1, b2) ∈ {±1}2 of par1 and par2, there is at least one element sj ∈ P−1(0)
such that (par1(sj), par2(sj)) = (b1, b2).

If not every single parity check on three variables will split {s1, s2, s3, s4, s5}
into sets of size two and three, then it is easy to see that the above assumption

50 Approximation Resistant Predicates

is false. Thus, we can assume that every parity check splits {s1, s2, s3, s4, s5} into
sets of sizes two and three. Now, w.l.o.g. we assume that

3∏
i=1

s1[i] =
3∏

i=1

s2[i] 6=
3∏

i=1

s3[i] =
3∏

i=1

s4[i] =
3∏

i=1

s5[i] , (5.3)

because we can rearrange the values of {si}. Let par1 be the parity check on
variables (1, 2, 3). Now there are three different possible parity checks for par2, on
variables (1, 4, 5), (2, 4, 5) or (3, 4, 5). Each possible choice of par2 will have to give
different output when applied on s1 and s2.

We know that s1[i] = s2[i] for some 1 ≤ i ≤ 3 because of the first parity check. It
can be seen that (s1[1], s1[2], s1[3]) = (s2[1], s2[2], s2[3]), because otherwise at least
one of the possible parity checks will give the same answer for both s1 and s2. To see
this, let s1[t] = s2[t] and s1[u] 6= s2[u] for t, u ∈ {1, 2, 3}. If s1[4]s1[5] = s2[4]s2[5],
then ∏

i∈{t,4,5}
s1[i] =

∏
i∈{t,4,5}

s2[i]

and else ∏
i∈{u,4,5}

s1[i] =
∏

i∈{u,4,5}
s2[i] .

Furthermore, s1[4] ⊕ s1[5] 6= s2[4] ⊕ s2[5] because otherwise any one of the parity
checks would yield the same result for s1 and s2. Thus, s1 and s2 only differ on
either the fourth or the fifth element. We assume w.l.o.g. that s1 and s2 differ only
on the last element.

We study what happens if we choose par1 differently. Instead of (1, 2, 3) we let
par1 check parity on variables (3, 4, 5). This check separates s1 from s2. We assume
w.l.o.g. that

5∏
i=3

s1[i] =
5∏

i=3

s3[i] 6=
5∏

i=3

s2[i] =
5∏

i=3

s4[i] =
5∏

i=3

s5[i] . (5.4)

Reapplying the same arguments as above we conclude that (s1[3], s1[4], s1[5]) =
(s3[3], s3[4], s3[5]) and that s1[1]s1[2] 6= s3[1]s3[2]. Assume w.l.o.g. that s1[1] 6=
s3[1] and s1[2] = s3[2].

Let par1 now act on the variables (2, 3, 4). All these bits are identical in s1, s2
and s3, thus

4∏
i=2

s4[i] =
4∏

i=2

s5[i] 6=
4∏

i=2

s1[i] =
4∏

i=2

s2[i] =
4∏

i=2

s3[i] .

Now we see that (s4[2], s4[3], s4[4]) = (s5[2], s5[3], s5[4]) and s4[1]s4[5] 6= s5[1]s5[5].
We conclude that either

∏3
i=1 s4[i] 6= ∏3

i=1 s5[i] or
∏5

i=3 s4[i] 6= ∏5
i=3 s5[i]. But

5.4. Characterization of Hard Instances 51

this contradicts (5.3) or (5.4). Thus the assumption of Claim 5.6 is satisfied and
we can conclude that P is approximation resistant which proves the theorem.

Obviously, if P has fewer than five accepting inputs, then an admissible pair of
parity checks exist as well and P is approximation resistant in this case as well.

Remark 5.7. In Chapter 6 we show that there are predicates of arity four, having
exactly three non-accepting inputs, which are not approximation resistant. This
implies that there are also predicates of arity five, having exactly six non-accepting
inputs, which are not approximation resistant. Thus, Theorem 5.5 is optimal in
this sense.

5.4 Characterization of Hard Instances

A hard Max CSP instance is an instance that is satisfiable or almost satisfiable
and for which it is NP-hard to approximate it significantly better than picking
a random assignment. In this section we characterize optimal and near-optimal
solutions to such instances by bounding the weight of particular inputs for such
solutions. Our main tool for this task is Lemma 4.8.

Zwick characterized all predicates of arity three [42]. From this work we know
that approximation resistant predicates of arity three are of the same type as either
3XOR which accepts if and only if the parity of the input bits is odd, 3NTW which
accepts if and only if not exactly two of the input bits are true, 3OXR(x1, x2, x3) =
x1 ∨ (x2 ⊕ x3), or 3OR(x1, x2, x3) = x1 ∨ x2 ∨ x3.

Theorem 5.8. Let P be 3NTW, 3OXR or 3OR, and let I be an instance of Max
CSP(P). For every γ > 0, there exist ε > 0 and κ > 0 such that if there exists
a (1− ε)-satisfying assignment with at least weight γwtot(I) on even parity inputs,
then I can be (s2−3 + κ)-approximated in probabilistical polynomial time, where s
is the number of accepting inputs to P .

Proof. The multilinear expression for odd parity is

3XOR(x1, x2, x3) =
4 − 4x1x2x3

8
.

For P , there are s − 4 accepting inputs with even parity. Using (2.2), it can
be concluded that P (0)(x1, x2, x3) = s

8 and P (3)(x1, x2, x3) = s−8
8 x1x2x3. If

(x1, x2, x3) has odd parity, then P (0)(x1, x2, x3)+P (3)(x1, x2, x3) = 1 implying that
P (1)(x1, x2, x3) + P (2)(x1, x2, x3) = 0. If (x1, x2, x3) ∈ P−1(1) but have even par-
ity, then P (0)(x1, x2, x3)+P (3)(x1, x2, x3) = 2s

8 −1 implying that P (1)(x1, x2, x3)+
P (2)(x1, x2, x3) = 2 − 2s

8 > 0. The theorem now follows from applying Lemma
4.8.

The theorem shows that it is no coincidence that the PCP verifier of Håstad
[22], that asks three questions, almost always accepts a correct proof due to parity.

52 Approximation Resistant Predicates

In fact, assume that a PCP verifier can express any language in NP by asking for
three bits and having almost completeness one and soundness only negligibly higher
than the acceptance probability of a random proof. Then Theorem 5.8 implies that
a correct proof will almost always be accepted due to the parity of the three bits
asked for.

There are some additional observations that can be made about 3OR. The
sums of the linear and bi-linear terms are for all 3OR’s accepting inputs listed in
Table 5.1.

Table 5.1: Values of sums of linear and bi-linear terms for the predicate 3OR.

x1 x2 x3 23 · 3OR(1) 23 · 3OR(2)

1 1 −1 −1 1
1 −1 1 −1 1
1 −1 −1 1 1
−1 1 1 −1 1
−1 1 −1 1 1
−1 −1 1 1 1
−1 −1 −1 3 −3

Instead of looking at the sum of the linear and bi-linear terms we can look at
only the bi-linear terms, or give more influence to the linear terms. By doing this
we can deduce that an optimal solution to a hard instance of Max CSP(3OR)
must have roughly 1/4 of the weight on input (−1,−1,−1). We have the following
theorem.

Theorem 5.9. Let I be an instance of Max CSP(3OR). For every γ > 0, there
exist ε > 0 and κ > 0 such that if there exists a (1 − ε)-satisfying assignment
with weight u(−1,−1,−1) on input (−1,−1,−1), and either u(−1,−1,−1) ≤ (1/4 −
γ)wtot(I) or u(−1,−1,−1) ≥ (1/4 + γ)wtot(I), then I can be (7/8 + κ)-approximated
in probabilistical polynomial time.

Proof. First we consider the case u(−1,−1,−1) ≤ (1/4 − γ)wtot(I). We use Lemma
4.8 with P = 3OR, C = 0 and δ = 3γ/8. We calculate the sum specified in Lemma
4.8 with C = 0:∑

y∈P−1(1)

uyP
(2)(y) = −3

8
u(−1,−1,−1) +

∑
y∈P−1(1)\{(−1,−1,−1)}

1
8
uy

≥ −3
8
(1/4 − γ)wtot(I) +

1
8
(3/4)wtot(I)

= (3γ/8)wtot(I) .

In the inequality we assume that ε ≤ γ and thus
∑

y∈P−1(1)\{(−1,−1,−1)} uy ≥ 3/4.
By Lemma 4.8 we know that there exist positive constants ε′ and κ such that

5.4. Characterization of Hard Instances 53

either the value of an optimal assignment is less than (1 − ε)wtot(I), or we can
(7/8 + κ)-approximate it. We set ε = min(ε′, γ).

For the second case, u(−1,−1,−1) ≥ (1/4 + γ)wtot(I), we use Lemma 4.8 with
P = 3OR, C = 2 and δ = γ/2. We calculate the sum specified in Lemma 4.8 with
C = 2:

∑
y∈P−1(1)

uy(2 · P (1)(y) + P (2)(y)) ≥ 3
8
u(−1,−1,−1) +

∑
y∈P−1(1)\{(−1,−1,−1)}

−1
8
uy

≥ 3
8
(1/4 + γ)wtot(I) − 1

8
(3/4 − γ)wtot(I)

= (γ/2)wtot(I)

By Lemma 4.8 we know that either the value of the assignment is less than (1 −
ε)wtot(I), or we can (7/8 + κ)-approximate it.

We can make similar observations about the GLST predicate which is defined
as

GLST(x1, x2, x3, x4) = (x1 ∧ (x2 ≡ x3)) ∨ (x1 ∧ (x2 ≡ x4)) . (5.5)

This predicate was shown to be approximation resistant in [15]. The sums of the
linear and bi-linear terms are for all accepting inputs listed in Table 5.2. Four of
them have a positive value on the bi-linear terms and the remaining four have value
zero.

Table 5.2: Values of sums of linear and bi-linear terms for the predicate GLST.

x1 x2 x3 x4 GLST(1) GLST(2)

1 1 1 1 0 1/2
1 1 1 −1 0 0
1 −1 −1 1 0 0
1 −1 −1 −1 0 1/2
−1 1 1 1 0 1/2
−1 1 −1 1 0 0
−1 −1 1 −1 0 0
−1 −1 −1 −1 0 1/2

Using Lemma 4.8 we can prove the following theorem implying that optimal
solutions to hard instances of Max CSP(GLST) have almost all weight on inputs
(1, 1, 1,−1), (1,−1,−1, 1), (−1, 1,−1, 1) and (−1,−1, 1,−1).

54 Approximation Resistant Predicates

Theorem 5.10. Let I be an instance of Max CSP(GLST). For every γ > 0,
there exist ε > 0 and κ > 0 such that if there exists a (1− ε)-satisfying assignment
with total weight γwtot(I) on inputs

{(1, 1, 1, 1), (1,−1,−1,−1), (−1, 1, 1, 1), (−1,−1,−1,−1)} ,

then I can be (1/2 + κ)-approximated in probabilistical polynomial time.

Proof. We use Lemma 4.8 with P = GLST, C = 0 and δ = γ/2. We calculate
the sum specified in Lemma 4.8 and use that GLST(2) equals 1/2 for the inputs
specified in the theorem. For all other satisfying inputs it is equal to 0.∑

y∈P−1(1)

uyP
(2)(y) = (γ/2)wtot(I)

By Lemma 4.8 we know that either the value of the assignment is less than (1 −
ε)wtot(I), or we can (1/2 + κ)-approximate it.

Chapter 6

Predicates of Arity Four

In this chapter we take a closer look at predicates of arity four. For each such
predicate we try to deduce whether it is approximation resistant or not. There
are 24 = 16 different inputs and thus there are 216 = 65536 different predicates
P : {±1}4 → {0, 1}. Many of these are of the same type and thus have the same
approximability. There are 24 bitmasks and 4! permutations that can be applied to
the input bits. The largest number of predicates of the same type is thus 4!·24 = 384.
By using a simple computer program we see that there exist 402 different predicate
types, including the two trivial types containing the constant predicates P = 0 and
P = 1 respectively.

Goemans and Williamson [14] showed that all predicates depending on exactly
two boolean variables are non-trivially approximable. Of course, this result also
applies to predicates of arity four as long as the predicate only depends on exactly
two of the input bits. Håstad [22] showed that if a predicate depends on three
binary inputs and accepts all odd parity inputs or all even parity inputs, then it is
approximation resistant. All other predicates, depending on three binary inputs,
were shown to be non-trivially approximable by Zwick [42]. The situation for
predicates of arity four is much less clear. Here we try to shed some light on the
approximability of these predicates.

We apply and extend the PCP-techniques of [22] in order to show predicates
to be approximation resistant. We also show non-trivial approximation algorithms
for a large number of predicates based on the method in Chapter 4. Of the 400
non-trivial predicate types of arity four we show that 79 of these are approximation
resistant while 275 are non-trivially approximable. In particular, all predicates with
at most six accepting inputs are not approximation resistant. For every number
of accepting inputs, the number of predicate types that have been characterized as
non-trivially approximable and approximation resistant, respectively, are shown in
Table 6.1. The chapter is concluded with tables showing, for each predicate type,
its status in our classification.

55

56 Predicates of Arity Four

Table 6.1: Approximability of Max CSP(P) for predicates of arity four.

accepting inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 all
non-trivially approx 1 4 6 19 27 50 50 52 27 26 9 3 1 0 0 275
approx resistant 0 0 0 0 0 0 0 16 6 22 11 15 4 4 1 79
unknown 0 0 0 0 0 0 6 6 23 2 7 1 1 0 0 46

6.1 Approximation Resistant Predicates

Håstad showed that if a predicate P of arity k accepts all inputs of even parity,
then P is approximation resistant as long as k ≥ 3.

Theorem 6.1 (Håstad [22]). Let P be a predicate on k bits where k ≥ 3 such that
P (x1, . . . xk) = 1 for any (xi)k

i=1 satisfying
∏k

i=1 xi = 1, then P is approximation
resistant.

Thus, all predicates implied by parity on four variables is approximation resist-
ant. In the following four theorems we extend the methods in [22] which enables
us to classify more predicates of arity four as approximation resistant.

Theorem 6.2. Let P be a predicate of arity four implied by parity on the first three
input bits, i.e., P (x1, x2, x3, x4) = 1 for any (xi)4i=1 satisfying 3XOR(x1, x2, x3) =
1. Then P is approximation resistant.

Proof. We show the theorem by producing a gadget that transforms a parity con-
straint 3XOR(x1, x2, x3) into eight P -constraints:

P (x1, x2, x3, y) P (x1, x2, x3, y)
P (x1, x2, x3, y) P (x1, x2, x3, y)
P (x1, x2, x3, y) P (x1, x2, x3, y)
P (x1, x2, x3, y) P (x1, x2, x3, y) ,

where y is an auxiliary variable. Let s be the number of accepting inputs to P .
Eight of these have odd parity on the first three bits and thus s−8 have even parity.
The first three input bits to all constraints in the gadget have the same parity and
all inputs are different. Thus, if 3XOR(x1, x2, x3) = 1, then all eight constraints
are satisfied and else s− 8 constraints are satisfied regardless of the value of y.

Let α = 8/(16−s) and assign each constraint in the gadget weight w = 1/(16−
s). If 3XOR(x1, x2, x3) = 1, then constraints of weight 8w = α are satisfied
and otherwise constraints of weight (s − 8)w = α − 1 are satisfied. Thus, the
above is an α-gadget. By applying Lemma 2.25 we conclude that it is NP-hard to
approximate Max CSP(P) within s/16+ε, for any ε > 0. Thus, P is approximation
resistant.

6.1. Approximation Resistant Predicates 57

Theorems 6.3 and 6.4 give sufficient conditions for a predicate to be approx-
imation resistant. As in the proof of Theorem 6.2, we construct gadgets in order
to prove Theorems 6.3 and 6.4. However, in these cases it does not work to do
a simple local analysis of the gadgets, but instead we need to consider the whole
instance constructed by the gadgets. Similar ideas about global analysis of gadgets
were used by Feige and Reichman [11].

Theorem 6.3. Let P be a predicate of arity four such that∑
(a1,a2,a3,a4)∈P−1(1)

a4 = 0

and {(a1, a2, a3, 1) : 3XOR(a1, a2, a3) = 1} ⊂ P−1(1). Then P is approximation
resistant.

Proof. We first construct a gadget that in conjunction with Lemma 2.25 would
show P to be approximation resistant. However, the gadget is non-valid in our
setting in that it uses constants so we need to construct a workaround.

We let s be the number of accepting inputs to P . Our non-valid gadget from
3XOR(x1, x2, x3) to P is the following:

P (x1, x2, x3, 1)
P (x1, x2, x3, 1)
P (x1, x2, x3, 1)
P (x1, x2, x3, 1) .

The above is a 8/(16− s)-gadget and by using Lemma 2.25 we could conclude that
P is approximation resistant as was done in the proof of the previous theorem.
However, the gadget is non-valid because in our setting we do not allow constants
in the P -constraints as this would potentially change the performance of a random
assignment.

We work around this problem by changing the constant 1 in the above gadget
to an auxiliary variable u that is shared among all applications of the gadget. The
crucial observation is now that there always exists an optimal solution to the Max
CSP(P) instance that assigns u = 1. This global observation ensures that we can
assume that u is set to 1 when making the local analysis of the gadget. However,
the details need to be sorted out. We essentially follow the proof of Lemma 2.25.

We make the following observation: For an assignment with u = −1, either
setting u = 1 or negating the whole assignment including u produces a solution
with at least the same objective value.

To see this, we let t be the number of accepting inputs (a1, a2, a3, a4) such
that 3XOR(a1, a2, a3) = 1 and a4 = −1. We know that s/2 − 4 ≤ t ≤ 4. The
condition of the theorem then give that there are s/2− t accepting inputs such that
3XOR(a1, a2, a3) = 0 and a4 = −1. We look at a the constraints generated from a

58 Predicates of Arity Four

gadget application on 3XOR(x1, x2, x3):

P (x1, x2, x3, u)
P (x1, x2, x3, u)
P (x1, x2, x3, u)
P (x1, x2, x3, u) .

If u is set to −1 and 3XOR(x1, x2, x3) = 1 for an assignment, then exactly t of the
four constraints are satisfied. If instead 3XOR(x1, x2, x3) = 0, then s/2 − t of the
constraints are satisfied. Let an assignment y to the original Max CSP(3XOR)
instance have value w, and the total weight of the instance be 1. If u is set to −1,
then this assignment satisfies weight

tw + (s/2 − t)(1 − w) (6.1)

in the corresponding Max CSP(P) instance where each constraint has the same
weight as the constraint it originates from. Consider the solution that sets u = 1
and if w < 1/2 negates y and otherwise uses y. That assignment satisfies weight of

4max(w, 1 − w) + (s/2 − 4)min(w, 1 − w) . (6.2)

As t ≤ 4 and s/2 − t ≤ 4 we see that (6.2) is at least as large as (6.1). Thus, we
conclude that there always exists an optimal solution to the Max CSP(P) instance
that assigns u = 1.

Assume that the total weight of a Max CSP(3XOR) instance is 1. A solution
that satisfies constraints of weight w then satisfies constraints of weight 4w+(s/2−
4)(1−w) in the transformed problem assuming u is set to 1 and each constraint in
the gadget has the same weight as the constraint it originates from. For any constant
δ > 0 it is NP-hard to distinguish between an instance with an optimal solution
satisfying constraints of weight w = 1− δ and an instance with an optimal solution
satisfying constraints of weight w = 1/2 + δ [22]. Using the above observation
that there always exists an optimal solution assigning u = 1, we conclude that it is
NP-hard to approximate Max CSP(P) better than

4(1/2 + δ) + (s/2 − 4)(1/2 − δ)
4(1 − δ) + (s/2 − 4)δ

.

For any constant ε > 0, we can choose a small enough δ such that the above
expression is less than s/16 + ε. Thus P is approximation resistant.

Theorem 6.4. Let P be a predicate of arity four such that∑
(a1,a2,a3,a4)∈P−1(1)

a1a4 = 0

and {(a1, a2, a3, a1) : 3XOR(a1, a2, a3) = 1} ⊂ P−1(1). Then P is approximation
resistant.

6.1. Approximation Resistant Predicates 59

Proof. We prove this theorem using the same technique as in the proof of Theorem
6.3. Once again we would like to use a non-valid gadget from 3XOR(x1, x2, x3) to
P :

P (x1, x2, x3, x1)
P (x1, x2, x3, x1)
P (x1, x2, x3, x1)
P (x1, x2, x3, x1) .

This time it is not allowed because a constraint may not act over the same variable
multiple times. We work around this problem in the following manner: For each
variable xj occurring at the first position in a constraint we introduce an auxiliary
variable x′j . If zi1 is xj or xj , then z′i1 denotes x′j or x′j respectively. For each
constraint 3XOR(zi1 , zi2 , zi3) in the Max CSP(3XOR) instance we introduce four
constraints:

P (zi1 , zi2 , zi3 , z
′
i1)

P (zi1 , zi2 , zi3 , z
′
i1)

P (zi1 , zi2 , zi3 , z
′
i1)

P (zi1 , zi2 , zi3 , z
′
i1) .

We apply this gadget to Håstad’s NP-hard Max CSP(3XOR) instances [22].
These instances have the property that all variables occurring at the first posi-
tion in a constraint, only occur at that position in all other constraints as well. It
is also, for any δ > 0, NP-hard to distinguish whether an instance either is 1 − δ
satisfiable or not even 1/2 + δ satisfiable. By setting x′j to the same value as xj is
assigned, we get a very similar analysis as in the proof of Theorem 6.3. We let s
be the number of accepting inputs to P . By using the conditions on P stipulated
by the theorem we see that if 3XOR(zi1 , zi2 , zi3) = 1 and zi1 = z′i1 , then all 4 of
the gadget’s constraints are satisfied while if 3XOR(zi1 , zi2 , zi3) = 0 and zi1 = z′i1
then s/2 − 4 constraints are satisfied. We let s/2 − 4 ≤ t ≤ 4 be the number
of accepting inputs (a1, a2, a3, a1) such that 3XOR(a1, a2, a3) = 1. If zi1 6= z′i1
and 3XOR(a1, a2, a3) = 1, then t of the gadget’s constraints are satisfied while if
zi1 6= z′i1 and 3XOR(a1, a2, a3) = 0, then s/2 − t constraints are satisfied.

Assume that the total weight of a Max CSP(3XOR) instance is 1. A solution
that satisfies constraints of weight w then satisfies constraints of weight 4w+(s/2−
4)(1 − w) in the transformed problem if x′j is set to the same value as xj for all
auxiliary variables. In order for the analysis in the proof of Theorem 6.3 to apply in
this case, we need to show that we can assume that x′j = xj in an optimal solution.

Given an arbitrary assignment to the Max CSP(P) instance we show that it is
possible to produce an assignment with at least the same value that assigns x′j = xj .
Assume that x′j 6= xj in an assignment to a Max CSP(P) instance generated from
gadget applications on one of Håstad’s NP-hard Max CSP(3XOR) instance. Let

60 Predicates of Arity Four

the total weight of 3XOR(zi1 , zi2 , zi3) constraints, where the literal zi1 contains the
variable xj , be 1. Furthermore, let w′ be the total weight of such constraints that
are satisfied by the assignment. The weight of the corresponding constraints in the
Max CSP(P) instance that are satisfied is then the same as in (6.1),

tw′ + (s/2 − t)(1 − w′) .

If w′ < 1/2 we negate the value of xj and otherwise we negate the value of x′j ,
ensuring that xj and x′j are assigned the same value. The weight of the constraints
that are satisfied is then the same as in (6.2),

4max(w′, 1 − w′) + (s/2 − 4)min(w′, 1 − w′) .

Thus, the value of the solution has not decreased by the negation.
We apply the same argument as in the proof of Theorem 6.3. Given one of

Håstad’s NP-hard Max CSP(3XOR) instances I with total weight 1 we apply the
gadget construction and get a Max CSP(P) instance I ′. If I is (1− δ) satisfiable,
then there exists a solution to I ′ with value 4(1 − δ) + (s/2 − 4)δ. If I is not
(1/2 + δ) satisfiable, then there does not exist a solution to I ′ with value at least
4(1/2 + δ) + (s/2 − 4)(1/2 − δ). Thus, for any constant δ > 0, it is NP-hard to
achieve the approximation ratio

4(1/2 + δ) + (s/2 − 4)(1/2 − δ)
4(1 − δ) + (s/2 − 4)δ

for Max CSP(P). For any ε > 0, we can choose a small enough δ such that the
above expression is less than s/16 + ε. Thus P is approximation resistant.

Theorem 6.5. Let P be a predicate such that∑
(a1,a2,a3,a4)∈P−1(1)

a3a4 ≤ 0

and {(1, 1, 1, 1), (1,−1,−1,−1), (−1, 1,−1,−1), (−1,−1, 1, 1)} ⊂ P−1(1). Then P
is approximation resistant.

Proof. The proof method is similar to the one used in proving Theorem 3.10. We
build a PCP verifier with acceptance condition P . The completeness of the PCP
is almost perfect and the soundness can be made arbitrarily close to the probability
that a random proof is accepted. Creating a proof to the PCP such that the
acceptance probability of the verifier is maximized can be considered as a Max
CSP(P) problem. This is utilized by Theorem 2.22 that lets us conclude that P is
approximation resistant. The actions of the PCP verifier is shown in Figure 6.1

A correct proof is a SWP(u) for some assignment x to a 3SAT formula. As

{(1, 1, 1, 1), (1,−1,−1,−1), (−1, 1,−1,−1), (−1,−1, 1, 1)} ⊂ P−1(1) ,

6.1. Approximation Resistant Predicates 61

Input: A SWP(u).

1. The verifier chooses a set U of u variables and a random boolean function
f on U . Let A be the portion of the proof corresponding to U . A is folded
over true.

2. For each variable in U choose a random clause containing it. Let h be
the conjunction of the chosen clauses and let W be the set of variables
appearing in the chosen clauses. Choose g1 to be a random boolean
function on W . Let B be the portion of the proof corresponding to W .
B is folded over true and conditioned upon h.

3. Choose two functions µ and µ′ on W by setting µ(y) = 1 with probability
1 − ε and µ(y) = −1 otherwise, independently for each y ∈ {±1}W .
Choose µ′ independently from the same distribution as µ.

4. Set g2 = fg1µ, i.e., define g2 by for each y ∈ {±1}W , g2(y) =
f(y|U)g1(y)µ(y). Set g3 = fg1µ

′.

5. The verifier accepts if and only if P (A(f), B(g1), B(g2), B(g3)).

Figure 6.1: A PCP verifier

we know that if A(f)B(g1)B(g2) = 1 and A(f)B(g1)B(g3) = 1, then the veri-
fier accepts. If A and B are correct long code tables of x|U and x|W , then
A(f) = f(x|U), B(g1) = g1(x|W), B(g2) = f(x|U)g1(x|W)µ(x|W) and B(g3) =
f(x|U)g1(x|W)µ′(x|W). This implies that A(f)B(g1)B(g2) = µ(x|W) and that
A(f)B(g1)B(g3) = µ′(x|W). The probability that µ(x|W) 6= 1 or that µ′(x|W) 6= 1
is equal to (1− ε)2. Thus, a verifier accepts a correct proof with probability at least
(1 − ε)2.

As in Lemma 3.8 we prove the soundness by relating it to the soundness of the
u-parallel two-prover game in Section 3.2.

Lemma 6.6. Assume

E [P (A(f), B(g1), B(g2), B(g3))] = c∅ + δ , (6.3)

where the expectation is taken over all coin tosses of the PCP verifier and c∅ is the
fraction of accepting inputs to P . Then there is a strategy for the two provers in
the two-prover game that convinces the verifier with probability at least 4εδ2.

Proof. We consider the multilinear expression for P :

P (x1, x2, x3, x4) =
∑

S⊆[4]

cS
∏
i∈S

xi ,

62 Predicates of Arity Four

where

cS = 2−4
∑

(x1,x2,x3,x4)∈{±1}4

P (x1, x2, x3, x4)
∏
i∈S

xi . (6.4)

The acceptance probability of the verifier is

Ef,g1,g2,g3 [P (A(f), B(g1), B(g2), B(g3))] =
c∅ + c{1}E [A(f)] + c{2}E [B(g1)] + . . .+ c{1,2,3,4}E [A(f)B(g1)B(g2)B(g3)] .

We start by showing that most of the terms in the above expression actually are
zero. A vital observation is that A and B are folded, thus A(f) = −A(−f) has to
be true for any proof.

The functions f , g1, g2 and g3 are chosen uniformly. Thus, the verifier chooses f
and −f with the same probability. Due to folding we then know that Ef [A(f)] = 0.
By the same argument we have that

Eg1 [B(g1)] = Eg2 [B(g2)] = Eg3 [B(g3)] = 0 .

Due to how the verifier chooses f , g1, g2 and g3, we know that (f, g1), (f, g2) and
(f, g3) are all independent pairs of functions. Because of folding we have that

E [A(f)B(g1)] = E [A(f)B(g2)] = E [A(f)B(g3)] = 0 .

The triples (f, g1, g2) and (−f, g1,−g2) are equally likely to be chosen by the verifier.
This is also true for (f, g1, g3) and (−f, g1,−g3) and thus

Eg1,g2 [B(g1)B(g2)] = Eg1,g3 [B(g1)B(g3)] = 0 .

As (f, g1, g2, g3) occurs with the same probability as (f,−g1,−g2,−g3) we can con-
clude that

E [A(f)B(g1)B(g2)B(g3)] = E [B(g1)B(g2)B(g3)] = 0 .

As (f, g2, g3) occurs with the same probability as (−f,−g2,−g3) we also know that

E [A(f)B(g2)B(g3)] = 0 .

Summing up, we have reduced the expression for the acceptance probability of the
verifier to

c∅ + c{3,4}Eg2,g3 [B(g2)B(g3)] + c{1,2,3}Ef,g1,g2 [A(f)B(g1)B(g2)] +
c{1,2,4}Ef,g1,g3 [A(f)B(g1)B(g3)] . (6.5)

The condition of Theorem 6.5 implies that c{3,4} ≤ 0. In order to get an upper
bound on the acceptance probability, we show that E [B(g2)B(g3)] ≥ 0. This is
easily seen by considering f and g1 as fixed functions. Then g2 and g3 are chosen

6.1. Approximation Resistant Predicates 63

independently from the same distribution and thus the expectation of their product
cannot be negative as Eg2,g3 [B(g2)B(g3)] = Eg2 [B(g2)]

2. We combine the condition
of Lemma 6.6 with (6.5) and apply the bound c{3,4}Eg2,g3 [B(g2)B(g3)] ≤ 0:

c{1,2,3}Ef,g1,g2 [A(f)B(g1)B(g2)] + c{1,2,4}Ef,g1,g3 [A(f)B(g1)B(g3)] ≥ δ .

However, (f, g1, g2) and (f, g1, g3) have the same distribution and thus we have

(c{1,2,3} + c{1,2,4})Ef,g1,g2 [A(f)B(g1)B(g2)] ≥ δ .

Using the following claim we can bound the value of |c{1,2,3} + c{1,2,4}|.

Claim 6.7. |cS | ≤ 1/2, for S 6= ∅.

Proof of Claim 6.7. By (6.4) we have that

|cS | = 2−4

∣∣∣∣∣∣
∑

(x1,x2,x3,x4)∈{±1}4

P (x1, x2, x3, x4)
∏
i∈S

xi

∣∣∣∣∣∣
≤ 2−4

∑
(x1,x2,x3,x4):Q

i∈S xi=1

∏
i∈S

xi

= 1/2 .

We conclude that

|Ef,g1,g2 [A(f)B(g1)B(g2)]| ≥ δ .

If the above expected value is negative, we can make it positive with the same
absolute value by negating all entries of the table A. We note that the verifier
chooses (f, g1, g2) in exactly the same way as the parity test verifier in Figure 3.3.
We can therefore use Lemma 3.8 and conclude that if the condition of Lemma 6.6
is true, then there is a strategy for the two provers in the two-prover game that
convinces the verifier with probability at least 4εδ2. This concludes the proof of
Lemma 6.6.

We have produced a PCP with almost perfect completeness and soundness
c∅+δ, for an arbitrary δ > 0, and where the verifier uses P as acceptance condition.
By Theorem 2.22 we conclude that P is approximation resistant.

64 Predicates of Arity Four

6.2 Non-Trivially Approximable Predicates

By applying Lemma 4.6 or Theorem 4.9 we can directly conclude that many predic-
ates of arity four can be approximated better than picking a random assignment.
In this section we present two other methods for showing some predicates to be
non-trivially approximable. Both are based on applications of Lemma 4.8. The
description of each method is accompanied by an example when it is applied on a
predicate of arity four.

Before describing the methods we give an approximation algorithm for Max
kConjSAT from [18]. The algorithm is based on the linear relaxation algorithm
by Trevisan [37] and it works well for instances with an optimal solution that has
a significantly larger value than half of the total weight. This algorithm is used by
the first method.

A Max kConjSAT Algorithm for (1 + ε)/2-Satisfiable Instances

Max kConjSAT is the problem of maximizing the weight of satisfied conjunc-
tions. Each conjunction contains at most k binary variables, which can both occur
positively or negated.

The linear program relaxation algorithm is identical to the one by Trevisan [37].
Each binary variable xi is relaxed to ti such that 0 ≤ ti ≤ 1. The constraint Cj

has an associated variable zj in the relaxation. If xi occurs positively in Cj , then
zj ≤ ti is a constraint in the relaxation, and if xi occurs negated then zj ≤ 1 − ti.
It is easy to see that an assignment to Max kConjSAT can be transformed into
a valid assignment for the linear program with the same objective value. This is
done by letting ti = xi.

The difference of this algorithm compared with the algorithm of Trevisan is
in how a solution to the linear program is transformed into an assignment of the
associated Max kConjSAT instance. In [37] the value of xi was decided by a
flip of an unbiased coin with probability (k − 1)/k and only in the remaining case
had the value of ti some impact on the value of xi. We instead make a threshold
rounding by setting xi = 1 if ti > 1/2 and xi = 0 otherwise. An analysis of this
rounding scheme gives the following theorem.

Theorem 6.8. A (1 + ε)/2-satisfiable instance of Max kConjSAT, where ε > 0,
can be approximated in polynomial time within 2ε/(1 + ε) of the optimal value.

Proof. Let wtot be the sum of all the weights of the constraints,
∑m

j=1 wj . Further-
more let ε′ be defined such that wtot(1 + ε′)/2 is the value of an optimal solution
to the Max kConjSAT instance. The value of an optimal solution, {z∗j }, to the
linear program,

∑m
j=1 wjz

∗
j , will be at least as large as wtot(1+ ε′)/2 because it is a

relaxation of the original problem. Let A = {j : z∗j ≤ 1/2} and B = {j : z∗j > 1/2}.
Furthermore we know that zj ≤ 1. We provide an upper bound of the optimal

6.2. Non-Trivially Approximable Predicates 65

value.

wtot(1 + ε′)
2

≤
m∑

j=1

wjz
∗
j

=
∑
j∈A

wjz
∗
j +

∑
j∈B

wjz
∗
j

≤ 1
2

∑
j∈A

wj +
∑
j∈B

wj

=
1
2

m∑
j=1

wj +
1
2

∑
j∈B

wj

Subtracting wtot/2 from the left and the right equation and multiplying with two
we get

∑
j∈B wj ≥ ε′wtot. The threshold rounding satisfy all the constraints that

have z∗j > 1/2, thus the value of the solution from the threshold rounding is at least∑
j∈B wj . The approximation ratio is thus at least∑

j∈B wj

wtot(1 + ε′)/2
≥ 2ε′wtot

wtot(1 + ε′)
=

2ε′

1 + ε′
≥ 2ε

1 + ε

where we in the last inequality used that ε′ ≥ ε > 0.

Method 1

The first step of this method is to show that all almost satisfiable instances of Max
CSP(P), that do not have optimal solutions with a large weight on a single input,
can be approximated non-trivially. After showing this, we use the Max kConjSAT
algorithm in order to approximate the remaining instances.

We study the linear and bi-linear terms of the predicate P separately. This
is accomplished by in Lemma 4.8 setting C = ∞ (linear) and C = 0 (bi-linear).
Formally, we set C to a value large enough in the linear case. For some P , we can
then conclude that there is an input y for which an optimal solution must have at
least a (1 + ε)/2 fraction of the total weight on, for some ε > 0. Otherwise, either
Algorithm Lin or Algorithm BiLin approximates the instance non-trivially.

We now consider the Max CSP(P) instance as a Max kConjSAT instance,
where each constraint only accepts the input y. There is a solution that satisfies at
least (1 + ε)/2 of the total weight, thus by applying Theorem 6.8 we conclude that
we can find a solution that satisfies at least ε of the total weight. If ε is larger than
the random assignment threshold for P , then P cannot be approximation resistant.

Example

In Table 6.2 the accepting inputs of a predicate P are listed along with the value
of the linear and bi-linear terms for each input. By only considering the linear

66 Predicates of Arity Four

Table 6.2: Linear and bi-linear terms for accepting inputs to the predicate P used
by Method 1.

x1 x2 x3 x4 24 · P (1) 24 · P (2)

1 −1 −1 1 0 6
1 −1 −1 −1 2 4
−1 1 1 −1 0 6
−1 1 −1 1 0 −2
−1 −1 1 1 4 −2
−1 −1 1 −1 6 4
−1 −1 −1 −1 8 −2

terms we conclude that in order for an instance to be hard to be non-trivially
approximated, an optimal solution has to have almost all weight on the inputs
(1,−1,−1, 1), (−1, 1, 1,−1) and (−1, 1,−1, 1). By looking at the bi-linear terms,
we see that these inputs have value 6, 6 and −2 respectively. If the instance should
not be non-trivially approximable, then the sum of the bi-linear terms should not
be (more than negligibly) positive. Thus we conclude that at least 3/4 − δ of the
total weight is on input (−1, 1,−1, 1), for any constant δ > 0.

By Theorem 6.8, with ε = 1/2− 2δ, we can find a solution with weight 1/2− 2δ
of the total weight. By choosing δ small enough, for example δ = 1/33, this is larger
than the random assignment threshold for P which is 7/16. Thus, P is non-trivially
approximable and cannot be approximation resistant.

Method 2

This method is similar to the method we used in order to prove Theorem 4.9. We
start by applying Lemma 4.8 with respect to the predicate P . For some predicates
P , the lemma guarantees that almost satisfiable instances of Max CSP(P), that
cannot be approximated non-trivially by Algorithms Lin or BiLin, have an optimal
solution with almost all weight on some special inputs y1, . . . yl. We produce a
maximal gadget to 2SAT such that the inputs y1, . . . yl satisfy all the 2SAT
constraints of the gadget. We then run Zwick’s algorithm for almost satisfying
Max 2SAT instances [43]. If the original instance is almost satisfiable, then the
gadget ensures that the Max 2SAT instance is almost satisfiable as well. Zwick’s
algorithm returns a solution that satisfies 1 − O(ε1/3) of the total weight if an
optimal solution satisfies 1 − ε of the total weight. If y1, . . . yl are the only inputs
that satisfy all the 2SAT constraints of the gadget, then the solution from Zwick’s
algorithm is an almost satisfying solution for the original instance. However, if
there exist other inputs that also satisfy the constraint of the gadget, then we need
to consider the possibility that the solution have significant weight on those inputs.
If the inputs in question are accepted by P , then there is no problem. If not, it
may be a good idea to consider the negation of the solution.

6.3. Tables of All Predicate Types of Arity Four 67

Table 6.3: Linear and bi-linear terms for accepting inputs to the predicate P used
by Method 2.

x1 x2 x3 x4 24 · P (1) 24 · P (2) 24 · (2P (1) + P (2))
1 −1 1 −1 −2 4 0
1 −1 −1 1 −2 4 0
−1 1 1 −1 2 4 8
−1 1 −1 1 2 4 8
−1 1 −1 −1 4 6 14
−1 −1 1 1 2 −4 0
−1 −1 −1 −1 6 −4 8

Example

The accepting inputs to P are listed in Table 6.3. Using Lemma 4.8 with C = 2
we can conclude that an almost satisfying solution has to have almost all weight
on inputs (1,−1, 1,−1), (1,−1,−1, 1) and (−1,−1, 1, 1) or either Algorithm Lin
or Algorithm BiLin approximates the instance non-trivially. Thus, we can assume
that the total weight on these inputs for an optimal solution is a 1 − δ fraction of
the total weight, for any constant δ > 0. These three inputs satisfy all constraints
of the following 2SAT gadget:

x2 x1 ∨ x3 x1 ∨ x4 x3 ∨ x4

However, the input (1,−1, 1, 1) satisfies the gadget as well. The predicate P does
not accept this input so this could be a potential problem. Using Zwick’s 2SAT
algorithm for almost satisfying instances, Theorem 2.24, we get a solution that has
at least a 1−5δ1/3 fraction of the total weight on inputs (1,−1, 1,−1), (1,−1,−1, 1),
(−1,−1, 1, 1) and (1,−1, 1, 1). We need to find a solution that satisfies at least a
7/16+ ε fraction of the total weight, for some small constant ε > 0. If the obtained
solution does not do this it is because at least a 1 − 5δ1/3 − (7/16 + ε) fraction
of the weight is on the non-accepting input (1,−1, 1, 1). In that case we negate
the solution and then get more than a 9/16 − 5δ1/3 − ε fraction of the weight
on input (−1, 1,−1,−1). By choosing δ and ε small enough we can ensure that
9/16 − 5δ1/3 − ε > 7/16 + ε. As (−1, 1,−1,−1) is an accepting input we have
obtained an approximation ratio larger than the random assignment threshold.

6.3 Tables of All Predicate Types of Arity Four

In this section we present our classification of predicates into approximation res-
istant and non-trivially approximable predicates. All predicates with between six
and fourteen accepting inputs are represented in Tables 6.4 to 6.12. Predicates
with fewer accepting inputs are all non-trivially approximable by Theorem 4.4.

68 Predicates of Arity Four

There is only one predicate type with fifteen accepting inputs. The corresponding
CSP is equivalent with the Max E4SAT problem which has been shown to be
approximation resistant [22].

Notation Used in the Tables

A predicate is expressed as a bitstring of length 16 corresponding to the truth table
of the predicate. Let P be represented by s0s1 . . . s15 ∈ {0, 1}16. Then P is defined
as

P (+1,+1,+1,+1) = s0

P (+1,+1,+1,−1) = s1

P (+1,+1,−1,+1) = s2

· · ·
P (−1,−1,−1,−1) = s15 .

A predicate type is represented by its predicate with the lexicographically smallest
string representation. The predicate types are listed in lexicographical order. To
the right of the predicate type either ’A’, ’R’ or ’?’ appears. ’A’ means that we
have shown the predicate type to be non-trivially approximable and ’R’ means
that it is approximation resistant. A ’?’ indicates that we have not been able to
classify the predicate type. In the next column there is a brief explanation of how
the classification was made. Either a theorem, lemma or a reference to a method
appears. Sometimes a value to C is specified, and this relates to Theorem 4.9 or
Method 2.

For many predicate types there are more than one way to show its classification.
If this is the case for a predicate, we apply the following priority order to decide
which method we account for (highest priority first):

• Showing approximation resistance:
Theorem 6.1, Theorem 6.2, Theorem 6.3, Theorem 6.4 and Theorem 6.5.

• Showing non-trivial approximation algorithms:
Lemma 4.6, Theorem 4.9, Method 1 and Method 2.

6.4 A Final Remark

In order to reduce the number of not classified predicates of arity four, we believe
that using Karloff and Zwick’s method of obtaining a semidefinite relaxation [28]
could be rewarding. It should also be possible to combine this method with the
method in this paper that produce conditions which optimal solutions must adhere
to.

6.4. A Final Remark 69

Table 6.4: Approximability of predicates with exactly 6 accepting inputs.

0000000000111111 A Lemma 4.6
0000000001101111 A Lemma 4.6
0000000001111110 A Lemma 4.6
0000000100011111 A Lemma 4.6
0000000100101111 A Lemma 4.6
0000000100111101 A Lemma 4.6
0000000100111110 A Thm 4.9, C = 1.0
0000000101101011 A Thm 4.9, C = 1.0
0000000101101110 A Thm 4.9, C = 1.0
0000000110001111 A Lemma 4.6
0000000110010111 A Lemma 4.6
0000000110011011 A Lemma 4.6
0000000110011110 A Thm 4.9, C = 1.0
0000000110101011 A Lemma 4.6
0000000110101101 A Lemma 4.6
0000000110101110 A Lemma 4.6
0000000110111100 A Lemma 4.6
0000000111101001 A Lemma 4.6
0000000111101010 A Lemma 4.6
0000001100111100 A Lemma 4.6
0000001101010110 A Lemma 4.6
0000001101011001 A Thm 4.9, C = 1.0
0000001101011010 A Lemma 4.6
0000001101101001 A Thm 4.9, C = 1.0
0000001101101010 A Lemma 4.6

0000001101101100 A Thm 4.9, C = 1.0
0000001111000011 A Lemma 4.6
0000001111000101 A Lemma 4.6
0000001111000110 A Lemma 4.6
0000001111010100 A Lemma 4.6
0000001111011000 A Lemma 4.6
0000011001100011 A Lemma 4.6
0000011001100110 A Lemma 4.6
0000011001101001 A Thm 4.9, C = 1.0
0000011001110010 A Lemma 4.6
0000011001111000 A Thm 4.9, C = 1.0
0000011010010011 A Thm 4.9, C = 1.0
0000011010010110 A Thm 4.9, C = 1.0
0000011010110001 A Thm 4.9, C = 1.0
0000011010110010 A Lemma 4.6
0000011010110100 A Thm 4.9, C = 1.0
0000011011110000 A Lemma 4.6
0000011110110000 A Lemma 4.6
0000011111100000 A Lemma 4.6
0001011001101000 A Lemma 4.6
0001011010000011 A Thm 4.9, C = 0.5
0001011010000110 A Thm 4.9, C = 1.0
0001011010001001 A Thm 4.9, C = 1.5
0001011010011000 A Thm 4.9, C = 1.0
0001011110000001 A Lemma 4.6

70 Predicates of Arity Four

Table 6.5: Approximability of predicates with exactly 7 accepting inputs.

0000000001111111 A Lemma 4.6
0000000100111111 A Lemma 4.6
0000000101101111 A Lemma 4.6
0000000101111110 A Method 1
0000000110011111 A Lemma 4.6
0000000110101111 A Lemma 4.6
0000000110111101 A Lemma 4.6
0000000110111110 A Lemma 4.6
0000000111101011 A Lemma 4.6
0000000111101110 A Lemma 4.6
0000001100111101 A Lemma 4.6
0000001101010111 A Lemma 4.6
0000001101011011 A Lemma 4.6
0000001101011110 A Lemma 4.6
0000001101101011 A Lemma 4.6
0000001101101101 A Method 1
0000001101101110 A Lemma 4.6
0000001101111100 A Lemma 4.6
0000001111000111 A Lemma 4.6
0000001111010101 A Lemma 4.6
0000001111010110 A Lemma 4.6
0000001111011001 A Lemma 4.6
0000001111011100 A Lemma 4.6
0000011001100111 A Lemma 4.6
0000011001101011 A Lemma 4.6
0000011001110011 A Lemma 4.6
0000011001110110 A Lemma 4.6
0000011001111001 A Method 2, C = 2.0

0000011001111010 A Lemma 4.6
0000011010010111 ?
0000011010110011 A Lemma 4.6
0000011010110101 A Thm 4.9, C = 0.0
0000011010110110 A Lemma 4.6
0000011010111001 ?
0000011011110001 A Lemma 4.6
0000011011110010 A Lemma 4.6
0000011101111000 A Method 1
0000011110110001 A Lemma 4.6
0000011110110100 A Lemma 4.6
0000011111100001 A Lemma 4.6
0000011111100010 A Lemma 4.6
0000011111110000 A Lemma 4.6
0001011001101001 A Thm 4.9, C = 1.5
0001011001101010 A Lemma 4.6
0001011010000111 A Method 2, C = 0.0
0001011010001011 ?
0001011010001110 A Lemma 4.6
0001011010010110 ?
0001011010011001 ?
0001011010011010 A Thm 4.9, C = 0.0
0001011010101001 A Method 2, C = 2.0
0001011010101100 ?
0001011110000011 A Lemma 4.6
0001011110001001 A Lemma 4.6
0001011110011000 A Lemma 4.6
0001100111100001 A Thm 4.9, C = 0.5

6.4. A Final Remark 71

Table 6.6: Approximability of predicates with exactly 8 accepting inputs.

0000000011111111 A Lemma 4.6
0000000101111111 A Thm 4.9, C = 1.0
0000000110111111 A Lemma 4.6
0000000111101111 A Lemma 4.6
0000000111111110 A Thm 4.9, C = 1.0
0000001100111111 A Lemma 4.6
0000001101011111 A Lemma 4.6
0000001101101111 A Thm 4.9, C = 1.0
0000001101111101 A Thm 4.9, C = 1.0
0000001101111110 A Thm 4.9, C = 1.0
0000001111001111 A Lemma 4.6
0000001111010111 A Lemma 4.6
0000001111011011 A Lemma 4.6
0000001111011101 A Lemma 4.6
0000001111011110 A Thm 4.9, C = 1.0
0000001111111100 A Lemma 4.6
0000011001101111 A Lemma 4.6
0000011001110111 A Lemma 4.6
0000011001111011 A Thm 4.9, C = 1.0
0000011001111110 A Lemma 4.6
0000011010011111 R Thm 6.4
0000011010110111 A Thm 4.9, C = 1.0
0000011010111011 A Thm 4.9, C = 1.0
0000011010111101 ?
0000011011110011 A Thm 4.9, C = 1.0
0000011011110110 A Lemma 4.6
0000011011111001 R Thm 6.3
0000011101110110 A Lemma 4.6
0000011101111001 ?
0000011101111010 A Thm 4.9, C = 1.0
0000011110110011 A Lemma 4.6
0000011110110101 A Thm 4.9, C = 1.0
0000011110110110 A Thm 4.9, C = 1.0
0000011110111100 A Thm 4.9, C = 1.0
0000011111100011 A Lemma 4.6
0000011111100110 A Lemma 4.6
0000011111101001 A Thm 4.9, C = 1.0

0000011111110001 A Lemma 4.6
0000011111110010 A Lemma 4.6
0000011111111000 A Thm 4.9, C = 1.0
0000111111110000 A Lemma 4.6
0001011001101011 R Thm 6.3
0001011001101110 A Thm 4.9, C = 1.0
0001011010001111 ?
0001011010010111 R Thm 6.4
0001011010011011 R Thm 6.4
0001011010011110 R Thm 6.4
0001011010101011 ?
0001011010101101 R Thm 6.3
0001011010101110 A Thm 4.9, C = 1.0
0001011010111100 ?
0001011011101001 R Thm 6.3
0001011011101010 A Thm 4.9, C = 1.0
0001011110000111 A Thm 4.9, C = 1.0
0001011110001011 A Thm 4.9, C = 1.0
0001011110001110 A Lemma 4.6
0001011110010110 R Thm 6.3
0001011110011001 A Thm 4.9, C = 1.0
0001011110011010 A Thm 4.9, C = 1.0
0001011110101001 A Thm 4.9, C = 1.0
0001011110101100 A Thm 4.9, C = 1.0
0001011111101000 A Lemma 4.6
0001100011100111 R Thm 6.4
0001100111100011 R Thm 6.4
0001100111100110 R Thm 6.3
0001100111101001 ?
0001100111101010 A Thm 4.9, C = 1.0
0001100111110001 A Thm 4.9, C = 1.0
0001100111111000 A Lemma 4.6
0001101111011000 A Lemma 4.6
0001101111100100 R Thm 6.4
0001111011100001 R Thm 6.3
0011110011000011 R Thm 6.2
0110100110010110 R Thm 6.1

72 Predicates of Arity Four

Table 6.7: Approximability of predicates with exactly 9 accepting inputs.

0000000111111111 A Lemma 4.6
0000001101111111 A Lemma 4.6
0000001111011111 A Lemma 4.6
0000001111111101 A Lemma 4.6
0000011001111111 A Lemma 4.6
0000011010111111 ?
0000011011110111 A Lemma 4.6
0000011011111011 ?
0000011101110111 A Lemma 4.6
0000011101111011 ?
0000011101111110 A Lemma 4.6
0000011110110111 A Lemma 4.6
0000011110111101 ?
0000011111100111 A Lemma 4.6
0000011111101011 A Lemma 4.6
0000011111110011 A Lemma 4.6
0000011111110110 A Lemma 4.6
0000011111111001 ?
0000011111111010 A Lemma 4.6
0000111111110001 A Lemma 4.6
0001011001101111 ?
0001011001111110 A Lemma 4.6
0001011010011111 R Thm 6.5
0001011010101111 ?
0001011010111101 ?
0001011010111110 ?
0001011011101011 ?
0001011011101110 A Thm 4.9, C = 0.0

0001011110001111 A Lemma 4.6
0001011110010111 A Thm 4.9, C = 0.6
0001011110011011 ?
0001011110011110 ?
0001011110101011 A Lemma 4.6
0001011110101101 ?
0001011110101110 A Lemma 4.6
0001011110111100 ?
0001011111101001 A Thm 4.9, C = 1.5
0001011111101010 A Lemma 4.6
0001100011101111 ?
0001100111100111 R Thm 6.5
0001100111101011 ?
0001100111101110 ?
0001100111110011 A Thm 4.9, C = 0.5
0001100111110110 ?
0001100111111001 A Lemma 4.6
0001100111111010 A Lemma 4.6
0001101111010110 ?
0001101111011001 A Lemma 4.6
0001101111100101 R Thm 6.5
0001101111101100 ?
0001111011100011 R Thm 6.5
0001111011100110 ?
0001111011101001 ?
0001111011110001 ?
0011110011000111 R Thm 6.2
0110100110010111 R Thm 6.1

6.4. A Final Remark 73

Table 6.8: Approximability of predicates with exactly 10 accepting inputs.

0000001111111111 A Lemma 4.6
0000011011111111 A Thm 4.9, C = 1.0
0000011101111111 A Thm 4.9, C = 1.0
0000011110111111 A Thm 4.9, C = 1.0
0000011111101111 A Lemma 4.6
0000011111110111 A Lemma 4.6
0000011111111011 A Thm 4.9, C = 1.0
0000011111111110 A Thm 4.9, C = 1.0
0000111111110011 A Lemma 4.6
0000111111110110 A Thm 4.9, C = 1.0
0001011001111111 A Thm 4.9, C = 0.8
0001011010111111 R Thm 6.4
0001011011101111 R Thm 6.3
0001011011111110 A Thm 4.9, C = 0.5
0001011101111110 A Lemma 4.6
0001011110011111 R Thm 6.4
0001011110101111 A Thm 4.9, C = 1.0
0001011110111101 ?
0001011110111110 A Thm 4.9, C = 1.5
0001011111101011 R Thm 6.3
0001011111101110 A Thm 4.9, C = 1.0
0001100011111111 A Thm 4.9, C = 1.0
0001100111101111 R Thm 6.4
0001100111110111 R Thm 6.3
0001100111111011 A Thm 4.9, C = 1.0

0001100111111110 R Thm 6.3
0001101111010111 ?
0001101111011011 A Lemma 4.6
0001101111011110 A Thm 4.9, C = 1.0
0001101111100111 R Thm 6.4
0001101111101101 R Thm 6.3
0001101111101110 R Thm 6.4
0001101111111100 A Thm 4.9, C = 1.0
0001111011100111 R Thm 6.3
0001111011101011 R Thm 6.3
0001111011101110 A Thm 4.9, C = 0.5
0001111011110011 R Thm 6.3
0001111011110110 R Thm 6.4
0001111011111001 R Thm 6.3
0001111011111010 A Thm 4.9, C = 1.0
0001111111110001 A Thm 4.9, C = 1.0
0001111111110010 A Thm 4.9, C = 1.0
0001111111111000 A Lemma 4.6
0011110011001111 R Thm 6.2
0011110011010111 R Thm 6.2
0011110011011011 R Thm 6.2
0011110111010110 R Thm 6.3
0011110111011010 R Thm 6.3
0110100110011111 R Thm 6.1
0110101111010110 R Thm 6.1

Table 6.9: Approximability of predicates with exactly 11 accepting inputs.

0000011111111111 A Lemma 4.6
0000111111110111 A Lemma 4.6
0001011011111111 ?
0001011101111111 A Lemma 4.6
0001011110111111 ?
0001011111101111 ?
0001011111111110 A Lemma 4.6
0001100111111111 A Method 2, C = 2/3
0001101111011111 A Lemma 4.6
0001101111101111 R Thm 6.5
0001101111111101 ?
0001111011101111 R Thm 6.5
0001111011110111 R Thm 6.5
0001111011111011 ?

0001111011111110 A Thm 4.9, C = 0.6
0001111111110011 ?
0001111111110110 ?
0001111111111001 A Thm 4.9, C = 1.5
0001111111111010 A Lemma 4.6
0011110011011111 R Thm 6.2
0011110111010111 R Thm 6.2
0011110111011011 R Thm 6.2
0011110111011110 R Thm 6.5
0011110111101101 R Thm 6.5
0110100110111111 R Thm 6.1
0110101110111101 R Thm 6.5
0110101111010111 R Thm 6.1

74 Predicates of Arity Four

Table 6.10: Approximability of predicates with exactly 12 accepting inputs.

0000111111111111 A Lemma 4.6
0001011111111111 A Thm 4.9, C = 0.8
0001101111111111 R Thm 6.4
0001111011111111 R Thm 6.3
0001111111110111 R Thm 6.4
0001111111111011 R Thm 6.3
0001111111111110 ?
0011110011111111 R Thm 6.2
0011110111011111 R Thm 6.2
0011110111101111 R Thm 6.2

0011110111111101 R Thm 6.4
0011110111111110 R Thm 6.3
0011111111111100 A Lemma 4.6
0110100111111111 R Thm 6.1
0110101110111111 R Thm 6.1
0110101111011111 R Thm 6.1
0110101111111101 R Thm 6.2
0110111111110110 R Thm 6.1
0110111111111001 R Thm 6.2

Table 6.11: Approximability of predicates with exactly 13 accepting inputs.

0001111111111111 ?
0011110111111111 R Thm 6.2
0011111111111101 A Thm 4.9, C = 1.5

0110101111111111 R Thm 6.1
0110111111110111 R Thm 6.1
0110111111111011 R Thm 6.2

Table 6.12: Approximability of predicates with exactly 14 accepting inputs.

0011111111111111 R Thm 6.2
0110111111111111 R Thm 6.1

0111111011111111 R Thm 6.2
0111111111111110 R Thm 6.1

Chapter 7

Structure of Approximation
Resistance

In the previous chapters we have seen some tendencies concerning which predicates
that are approximation resistant. The most striking one is that predicates with
many accepting inputs tend to be approximation resistant, while predicates with
few accepting inputs tend to be non-trivially approximable. In this chapter, we
take a closer look at this observation. A natural conjecture is that if a predicate
is implied by an approximation resistant predicate, then it is also approximation
resistant. We show that this conjecture is false. We also study the approximability
of predicates close to each other and how the approximability of a predicate changes
if we make small changes to it.

7.1 Approximation Resistance is Non-Monotone

For all approximation resistant predicates P of arity three, it is true that predicates
implied by P is approximation resistant as well. This is true for all Samorodnitsky-
Trevisan predicates as well. A natural guess could be that it is true in general.
However, this is not the case.

A predicate shown to be approximation resistant in [15] is the GLST predicate,
defined in (5.5). Zwick [42] showed that the not all equal predicate of arity three,
3NAE(x1, x2, x3) = (x1 ⊕ x2) ∨ (x1 ⊕ x3), is not approximation resistant. But
GLST(x1, x2, x3, x4) implies 3NAE(x2, x3, x4) which gives the following theorem
that falsifies the guess.

Theorem 7.1. Not all approximation resistant predicates are also hereditary ap-
proximation resistant.

75

76 Structure of Approximation Resistance

7.2 Neighborhood Approximability

In this section we study how the approximability of Max CSP(P) and Max
CSP(P ′) are related if P and P ′ are close predicates. In order to make the present-
ation clearer we make the following definitions.

Definition 7.2. By αA(P), we denote the approximation ratio of algorithm A on
Max CSP(P).

Definition 7.3. Let P be a predicate {±1}k → {0, 1}. By α(P), we denote the
maximal approximation ratio of any polynomial time algorithm on Max CSP(P),

α(P) = max
A polytime

αA(P) ,

and for a set of predicates P let

αmin(P) = min
P∈P

α(P)

and

αmax(P) = max
P∈P

α(P) .

A natural way to measure how much two predicates P and P ′ differ from each
other is to consider the fraction of inputs that make P and P ′ give different output,

Pr
x

[P (x) 6= P ′(x)] . (7.1)

The smallest change we can do to a predicate is to change the output for one value.
The probability in (7.1) then equals 2−k, where k is the arity of the predicate P . In
order to enable smaller changes we let Pt be predicate P but with arity t ≥ k. The
additional t− k input bits are simply ignored by Pt. We see that α(P) = α(Pt). In
some sense we can make arbitrarily small changes to P by enlarging its arity and
instead considering Pt for some large value of t. Below, we define the neighborhood
of a predicate P by considering predicates close to Pt. We make this definition
because we want to study how α(P) varies for predicates P close to each other.

Definition 7.4. Let P be a predicate {±1}k → {0, 1} and let Pt(b1, . . . , bt) =
P (b1, . . . , bk) for t ≥ k. The neighborhood Nt(P, q) contains the predicates that
can be created by changing the output of Pt on at most q inputs. The upper
neighborhood N+

t (P, q) contains the predicates that can be created by adding at
most q accepting inputs to Pt. The lower neighborhood N−

t (P, q) contains the
predicates that can be created by removing at most q accepting inputs from Pt.

We show that some predicates in the upper neighborhood of any predicate,
provided that the neighborhood is large enough, are approximation resistant.

7.2. Neighborhood Approximability 77

Theorem 7.5. Assume P 6= NP, then for any predicate P : {±1}k → {0, 1}

lim
t→∞αmin(N+

t (P, 24b√t+1c−2)) = αR(P) ,

where R is the random assignment algorithm.

The idea behind the proof is to take a Samorodnitsky-Trevisan predicate PST

and consider the predicate Pt ∨ PST . This predicate is in the upper neighborhood
of Pt, as PST has a small fraction of accepting inputs. Furthermore, it is also
approximation resistant due to Theorem 5.2.

Proof. Choose s as large as possible such that 2s+ s2 ≤ t. Thus, s = b√t+ 1c− 1.
We create a predicate P ′ that is implied by PST s,s acting on the first 2s+ s2 bits.
It is created by adding accepting inputs to Pt. The number of accepting inputs of
PST s,s is 22s. As the last t− (2s+ s2) bits in an input do not effect PST s,s , we have
to add 2t−(2s+s2) inputs to P for each accepting input of PST s,s . We know that
t < 2(s+ 1) + (s+ 1)2 = 2s+ 2 + s2 + 2s+ 1 and thus t− (2s+ s2) ≤ 2s+ 2. The
number of accepting inputs that need to be added in order to create P ′ from Pt is
at most 22s · 22s+2 = 24s+2 = 24b√t+1c−2.

As P ′ is implied by PST s,s and is contained in N+
t (P, 24b√t+1c−2) we know by

Theorem 5.2 that it is NP-hard to approximate Max CSP(P ′) within αR(P ′) + ε
for any constant ε > 0. The theorem follows by observing that limt→∞ αR(P ′) =
αR(P).

The predicates in the neighborhood used in the theorem may differ on 2O(
√

t)

inputs. Let us for a moment consider smaller sizes of the upper neighborhood for
the predicates 2AND and 2OR.

For a predicate P ∈ N+
t (2AND, 1) we have that αR(P) ≤ 0.25 + 2−t, where R

is the random assignment algorithm. The following theorem lets us conclude that
predicates in the upper neighborhood N+

t (2AND, 1), for t large enough, are not
approximation resistant.

Theorem 7.6. For t > 2,

αmin(N+
t (2AND, 1)) ≥ 0.274 .

Proof. Let P ∈ N+
t (2AND, 1) and I be an instance of Max CSP(P) such that the

value of an optimal solution is ρwtot, where wtot is the sum of all weights in I. P
can be expressed as 2ANDt∨ tConj, where 2ANDt takes and of the two first input
bits and ignores the rest, and tConj is a conjunction on t literals. If a constraint
in I is satisfied, it is either satisfied because of 2ANDt or tConj. We know that
an optimal solution to I satisfies constraints of weight ρwtot. Let ρ2ANDwtot and
ρtConjwtot be the total weight of the constraints that were satisfied due to the
respective predicates. We know that ρ = ρ2AND + ρtConj (we assume that 2AND
is not implied by tConj). We approximate I as a Max CSP(tConj) instance,

78 Structure of Approximation Resistance

i.e., a Max tConjSAT instance, using the linear relaxation algorithm defined
in Section 6.2. We also approximate I as a Max CSP(2ANDt) instance using
the 0.874-approximation algorithm for Max CSP(2AND) in [31]. In addition, a
random assignment algorithm is also performed on I. The best solution of the
three algorithms is used. By Theorem 6.8 we know that if ρtConj = (1 + ε)/2,
then the combined algorithm returns a solution of weight at least εwtot due to
the linear relaxation algorithm. Furthermore, the Max CSP(2AND) algorithm
produces a solution of weight at least 0.874ρ2ANDwtot and a random assignment
satisfies weight of 1/4 + 2−t. Thus, the returned solution will have at least weight
max(2ρtConj−1, 0.874ρ2AND, 1/4+2−t)wtot. The approximation ratio is minimized
if ρ = 0.911, ρ2AND = 0.286 and ρtConj = 0.625. In this case the approximation
ratio is at least 0.274.

Theorem 7.7. For t > 2,

αmax(N+
t (2OR, 1) \ {2ORt}) ≤ α(3OR) .

Proof. Let P ∈ N+
t (2OR, 1) and we assume that P 6= 2ORt. Given an instance I

of Max CSP(3OR), we show that we can produce an instance I ′ of Max CSP(P),
such that given a solution to I ′ with a certain weight it is easy to produce a solution
to I of at least the same weight, and vice versa.

Given a 3OR-constraint tuple (z1, z2, z3) in I, we put the following P -constraint
tuple in I ′, (z1, z2, bz3, y1, . . . yt−3). The variables y1, . . . yt−3 are auxiliary variables
that are identical in all constraints in I ′. The value of the negation mask b depends
on P , if P accepts no input that starts with (1, 1, 1), then b = 1 and otherwise
b = −1. A solution to I ′ will now also be a solution to I which will satisfy all
constraints in I corresponding to the ones satisfied in I ′. Thus, it cannot be easier
to approximate Max CSP(P) than Max CSP(3OR).

We have the following theorems for the approximability of Max CSP(2OR)
and Max CSP(3OR).

Theorem 7.8 (Lewin et al. [31]).

α(2OR) ≥ 0.940

Theorem 7.9 (Håstad [22]). Assume P 6= NP, then for any constant ε > 0

α(3OR) ≤ 0.875 + ε .

We combine these theorems with Theorem 7.7 and conclude that the achievable
approximation ratio for Max CSP(2OR) is strictly larger than if we consider Max
CSP(P), where P is 2ORt with one added accepting input.

Theorem 7.10. Assume P 6= NP, then for t > 2

αmax(N+
t (2OR, 1) \ {2ORt}) < 0.06 + α(2OR) .

7.2. Neighborhood Approximability 79

From this we can conclude that the smallest possible change to a predicate can
effect the approximability of the corresponding Max CSP. We express this by the
following corollary.

Corollary 7.11. For a predicate P , it is not generally true that

lim
t→∞αmax(N+

t (P, 1) \ {Pt}) = α(P) ,

unless P = NP.

Remark 7.12. Corollary 7.11 can also be shown by considering the unary pre-
dicate UN(x1) = x1. We have that all predicates in N+

2 (UN, 1), except for UN2

are of the same type as 2OR. As Max CSP(UN) can be solved exactly, we
have that α(UN) = 1. Furthermore, it is known that α(2OR) < 1. By apply-
ing the same technique as in the proof of Theorem 7.7 it is possible to show that
αmax(N+

t (UN, 1) \ {UN2}) ≤ α(2OR), for all t > 1.

Turning to the lower neighborhoods we show the following theorem.

Theorem 7.13. Let P : {±1}k → {0, 1} be a predicate, δ(t) ∈ o(t) and γ(t) ∈ o(2t).
Then

lim
t→∞αmin(N−

t (P, 2δ(t))) = lim
t→∞αmax(Nt(P, γ(t))) = α(P) .

Proof. First we show that an approximation algorithm A for Max CSP(P) im-
plies an algorithm A′ for Max CSP(P ′), where P ′ ∈ N−

t (P, 2δ(t)), with the same
approximation ratio when t → ∞. After this we conclude the proof by showing
that if Max CSP(P ′) can be approximated within β, for a P ′ ∈ Nt(P, γ(t)), then
Max CSP(P) can be approximated within β − ot(1).

Let A be a β-approximation algorithm for Max CSP(P), where P : {±1}k →
{0, 1}. Let P ′ ∈ N−

t (P, 2δ(t)). Consider the following algorithm A′ for Max
CSP(P ′): Truncate each constraint so it only contains the first k literals. Apply A
on the resulting instance (of truncated constraints). The assignment returned by A
is now perturbated by letting each variable change value with a small probability
ε(t) = max(δ(t)/t, t−1/2) ∈ ot(1) ∩ ω(t−1). If any variables in the instance were
eliminated by the truncation step, these are given random values.

The intuition of the algorithm is that the perturbation will most likely not effect
any of the first k literals, when t is large enough, but will most likely effect the rest
of the literals in such a way that every specific t-tuple has a very small probability
of being chosen.

Claim 7.14. Algorithm A′ approximates Max CSP(P ′) within a factor of β −
ot(1).

Proof. Let I ′ be the original Max CSP(P ′) instance, and I be the instance of Max
CSP(P) resulting from the truncation. The value of an assignment φ to I ′ is always

80 Structure of Approximation Resistance

smaller or equal to the value of φ to I. Thus, we have that wopt(I) ≥ wopt(I ′). The
value of the solution returned by A is at least βwopt(I) ≥ βwopt(I ′).

Look at an arbitrary constraint in I that was satisfied by A(I). When is the
corresponding constraint in I ′ satisfied after the perturbation step? Given that the
perturbation did not change value on any of the k first literals, the value of the
constraint tuple should not be in P−1

t (1) \ P ′−1(1). The probability that not any
of the k first literals were perturbated is (1− ε(t))k which is in 1− ot(1) because k
is a constant. We bound the probability that the value of the constraint tuple is in
P−1

t (1) \P ′−1(1) by calculating the probability for the most likely constraint tuple
(no literals were affected by the perturbation) and multiplying this with |P−1

t (1) \
P ′−1(1)|.

The probability that the perturbation did not change value on any of the literals
is

(1 − ε(t))t < e−tε(t) = min(e−δ(t), e−
√

t) .

The inequality is valid as 1− ε ≤ e−ε. By the condition of the theorem, the size of
P−1(1)\P ′−1(1) is at most 2δ(t). The probability that the tuple of literals is assigned
a value in this set is less than 2δ(t)e−tε(t) = min((2/e)δ(t), 2δ(t)e−

√
t) ∈ ot(1). Thus,

the probability that a constraint, which was satisfied in I, is not satisfied in I ′ is
ot(1) and thereby the claim has been shown.

Now, let us turn to the second part of the proof. Let P ′ belong to Nt(P, γ(t)).
Assume that there is an algorithm B′ that approximates Max CSP(P ′) within
β. We then show that there is an algorithm B that approximates Max CSP(P)
within β − ot(1).

Given an instance I of Max CSP(P), B does as follows. For each constraint
Cj in I, append all possible negation masks of t−k auxiliary variables, y1, . . . yt−k,
thereby creating 2t−k constraints with the same weight as Cj . These constraints
constitute an instance I ′ of Max CSP(P ′) which can be approximated by B′. B
runs B′ on I ′ and returns the solution returned by B′, but without the auxiliary
variables. The optimal solution of I, with value wopt, will yield value at least
wopt(2t−k − γ(t)) on I ′ (for an arbitrary assignment to the auxiliary variables).
Thus, B′ will produce a solution with at least value βwopt(2t−k − γ(t)).

Let us consider a constraint Cj in I with weight wj that was not satisfied by
algorithm B. Then, algorithm B′ will satisfy at most γ(t) of the corresponding
constraints in I ′. If Cj instead was satisfied by B, then B′ can possibly satisfy
all 2t−k corresponding constraints in I ′. Assume that the solution returned by B
satisfies constraints of total weight wB . Then

βwopt(2t−k − γ(t)) ≤ (wtot − wB)γ(t) + wB2t−k

= wtotγ(t) + wB(2t−k − γ(t)),

7.3. Final Remarks 81

where wtot is the total weight of constraints in I. Dividing the left and right
expression with (2t−k − γ(t)) we get

wB ≥ βwopt − wtot
γ(t)

2t−k − γ(t)
= βwopt − wtot · ot(1).

We know that β is at least the constant αR(P), and wopt is at least a constant
fraction of wtot, thus

wB ≥ (β − ot(1))wopt.

We conclude that B approximates Max CSP(P) within β − ot(1).

7.3 Final Remarks

In this chapter we have considered the structure of approximation resistant predic-
ates. We have shown that it is not true in general that if a predicate is implied
by an approximation resistant predicate, it is approximation resistant as well. We
have also shown that making very small adjustments to a predicate P , by in-
creasing the arity and removing accepting inputs, never makes it much harder to
approximate Max CSP(P). If instead some accepting inputs are added, we see
that predicates can be made approximation resistant. Thus, every predicate has
close neighbor predicates that are approximation resistant. This exhibits a quite
interesting asymmetry between the lower and upper neighborhood of a predicate.

Chapter 8

Approximating Max kCSP

In previous chapters we have either shown that we can or cannot beat a random
assignment. However, we have not really been interested in the exact approximation
ratio. In this chapter we focus on this and design an algorithm in order to achieve
a good approximation ratio for Max kCSP.

We start by giving some background information about Max kCSP. In Section
8.2 we present the underlying ideas of our algorithm. After that we give a formal
description of the algorithm along with an analysis of its approximation ratio. In
Section 8.4 we evaluate our algorithm numerically and give approximation ratios
for Max kCSP, k = 5 . . . 100. In the last section we identify a PCP class as a
subset of P.

8.1 Background

Trevisan [37] used a linear relaxation algorithm in order to 21−k-approximate Max
kCSP. He observed that the hardest instances consist of only conjunctions of
literals, where a literal is a variable or a negated variable. The problem Max
kConjSAT consists of such instances. Trevisan used a linear relaxation algorithm
in order to 21−k-approximate Max kConjSAT. We note that a random assign-
ment satisfies a single conjunction of length k with probability 2−k. This implies
that a random assignment 2−k-approximates Max kConjSAT and the Trevisan al-
gorithm therefore outperforms a random assignment with a factor of two. Recently,
Hast [18] produced a 21.54−k-approximation of Max kCSP by utilizing a semidef-
inite relaxation approach. Essentially, it combined already known algorithms for
Max 2ConjSAT, Max 3ConjSAT and Max 4ConjSAT with a technique to
reduce large conjunctions into smaller ones.

If a Max kCSP instance is known to be satisfiable, then it can be (k + 1)2−k-
approximated by using an algorithm by Trevisan [38]. The technique by Trevisan
reduces constraints, with at most k accepting inputs, into linear constraints. A
random assignment is then picked from the set of assignments that adhere to the

83

84 Approximating Max kCSP

produced linear constraints. This ensures that each constraint is accepted with
probability at least (k+1)2−k, and thus the algorithm is a (k+1)2−k-approximation.

In this chapter we show that it is possible to c0k(log k)−12−k-approximate Max
kCSP, for a constant c0 > 0, even if the instance is not satisfiable. Our algorithm is
the first that outperforms a random assignment with an increasing factor for larger
values of k. It is interesting to see that we can match, up to a logarithmic factor,
the approximation ratio of Trevisan for satisfiable instances, even though we use
very different methods.

Due to the connection between PCPs and approximability of Max CSPs we
have that the PCP of Samorodnitsky and Trevisan [35] and the enhancement of
Engebretsen and Holmerin [7] shows that it is NP-hard to approximate Max kCSP
within 2

√
2k−2+1/2−k. Our algorithm implies the following inclusion:

PCPc,s[log, k] ⊆ P, for any c/s >
log k
c0k

2k ,

where c is the completeness and s the soundness of a verifier that uses a logarithmic
number of random bits and asks k questions.

8.2 Our Method

An instance of Max kAllEqual consists of a collection of weighted constraints.
Each constraint is a k-tuple of literals and a constraint is satisfied if all its literals
have the same value, i.e., all are true or all are false. A simple reduction shows that
an r-approximation of Max kAllEqual can be turned into an r/2-approximation
of Max kConjSAT, and thus also into an r/2-approximation of Max kCSP. Here
we approximate Max kAllEqual in two steps. The first step is to produce an
unbalanced solution. For such a solution, constraints tend to either have many
literals that are true or many that are false. We find such an unbalanced solution
by using semidefinite relaxation techniques [4, 44]. In the second step we produce an
assignment that is biased towards this solution. This is done by, for some α ∈ [0, 1],
assigning a variable according to the unbalanced solution with probability (1+α)/2,
and negating the value with probability (1 − α)/2.

It can be shown that as long as α is chosen appropriately, such a biased random
assignment makes the value of all literals in a constraint equal with much higher
probability than if an unbiased random assignment is used. Too see why it is like
this we look at a constraint consisting of eight literals of which the first seven have
the same value but the last one has the opposite value according to the unbalanced
solution. A random assignment makes all literals equal with probability 2−7 ≈
0.0078. For a biased random assignment the constraint is satisfied if we assign
the first seven literals according to the unbalanced solution but the last literal is
negated. This happens with probability

(
1+α

2

)7 (1−α
2

)
. By choosing α = 3/4 this

probability is larger than 0.049 making it more than six times more probable to

8.3. Algorithm Description 85

satisfy the constraint using a biased random assignment compared with using an
unbiased random assignment.

Let us give an indication from where the approximation ratio of our Max
kAllEqual algorithm comes from. Assume that we have a Max kAllEqual
instance and let wtot be the total weight of its constraints and let wopt be the
value of an optimal solution to the instance. The expected value of a random as-
signment is 2−kwtot, thus if wopt ≤ wtot/k then a random assignment achieves an
approximation ratio of roughly k2−k. If wopt > wtot/k then the optimal solution
turns out to be unbalanced in our measure. If we pick an assignment that is biased
towards this solution we achieve an approximation ratio of k2−k. However, we do
not know the optimal solution and instead we find an unbalanced solution using
the approximation algorithm by Charikar and Wirth [4], described in Section 2.7.
In this process we loose a factor of log k and thus the approximation ratio gets to
be Ω

(
k(log k)−12−k

)
.

8.3 Algorithm Description

If some of the constraints of a Max kAllEqual are not of size k, then these
constraints are padded into size k using auxiliary variables, where each new variable
only appears once in the instance. This will not effect the satisfiability of the
instance. Thus, we can assume that all constraints are of length k. The algorithm
is shown in Figure 8.1.

Input: A set of Boolean variables {x1, . . . xn} and a set of all equal constraints
{C1, . . . Cm} with corresponding weights {w1, . . . wm}.

1. (2AllEqual-gadget) Each constraint Ci = zi1 ≡ zi2 . . . ≡ zik
is

transformed into k(k − 1)/2 equality constraints, zi1 ≡ zi2 , zi1 ≡ zi3 ,
. . . zik−1 ≡ zik

. Each constraint is given weight wi.

2. (Solve Max 2AllEqual) Use the Charikar and Wirth [4] algorithm
in order to satisfy as much weight of the equality constraints as possible.
Let bi be the value of variable xi in the produced solution.

3. (Biased random assignment) For i := 1,. . .,n: assign xi according to

xi :=
{
bi with probability (1 + α)/2
bi with probability (1 − α)/2

,

with α = 1/
√
k.

Figure 8.1: Algorithm AllEq: a Max kAllEqual algorithm.

86 Approximating Max kCSP

Algorithm Analysis

Theorem 8.1. There exists a constant c > 0 such that Max kAllEqual, for
k ≥ 2, can in probabilistical polynomial time be approximated within a factor of
ck(log k)−12−k.

The proof of Theorem 8.1 is based on Lemmas 8.2 and 8.3.
Given an assignment to a Max kAllEqual instance we call a constraint unbal-

anced if either many literals are true or many literals are false. Given an assignment
and a constraint Ci, γi is defined such that k/2 + γi literals are true and k/2 − γi

are false. Thus, γi is a function depending on an assignment but due to notational
convenience we do not make this dependency explicit. For a fixed assignment, we
let γ2

i be a measure of how unbalanced Ci is. The following lemma shows that if
there exists a good solution to a Max kAllEqual instance, then we are able to
find an assignment which makes constraints of large weight unbalanced. We do
this by first transforming the Max kAllEqual instance into a Max 2AllEqual
instance, and then solving it using the Charikar-Wirth algorithm.

Lemma 8.2. Let I be an instance of Max kAllEqual with total weight wtot and
let the normalized value of an optimal solution be ŵopt = wopt/wtot. Assume that
k · ŵopt ≥ 3. Let d = ccw(k · ŵopt − 1)/(4 log k), where ccw is the positive constant
in Theorem 2.23. Then a solution can be produced in polynomial time such that

dk ≤ E

 1
wtot

∑
i:|γi|>

√
k/2

wiγ
2
i

 , (8.1)

where the expectation is taken over the random choices of the Charikar-Wirth al-
gorithm.

Proof. Each constraint of k literals is transformed into k(k − 1)/2 equality con-
straints of arity two. If the original constraint is satisfied by an assignment, then
all new equality constraints are satisfied as well by the same assignment. If k/2+γ
literals are true and k/2− γ false, then the number of equality constraints that are
not satisfied is (k/2 + γ)(k/2 − γ) = k2/4 − γ2. Thus, at least k(k − 1)/2 − k2/4
constraints are satisfied for any assignment.

A Max kAllEqual instance is transformed into a Max 2AllEqual instance
according to the first step of Algorithm AllEq. An optimal solution that satisfies
weight wopt in the original Max kAllEqual instance then satisfies constraints of
weight at least

ŵopt

(
k

2

)
wtot + (1 − ŵopt)

((
k

2

)
− k2

4

)
wtot =

((
k

2

)
− k2

4
+ ŵopt

k2

4

)
wtot ,

in the Max 2AllEqual instance. A solution with value Weq(1/2 + δ) has gain δ,
where Weq = wtotk(k − 1)/2 is the total weight of the Max 2AllEqual instance.

8.3. Algorithm Description 87

The gain is a measure of how much better a solution is compared to a random
assignment. We let δ∗ denote the optimal gain. We then have

Weq

(
1
2

+ δ∗
)

≥
((

k

2

)
− k2

4
+ ŵopt

k2

4

)
wtot . (8.2)

We derive a lower bound for the optimal gain by first subtracting Weq/2 on both
sides of (8.2) and then dividing with wtot,

k(k − 1)
2

δ∗ ≥ k(k − 1)
2

− k2

4
+ ŵopt

k2

4
− k(k − 1)

4

= ŵopt
k2

4
− k

4
.

We divide with k(k − 1)/2 on both sides and get

δ∗ ≥ k · ŵopt − 1
2(k − 1)

.

This lower bound is used in order to obtain a performance guarantee of the Charikar-
Wirth algorithm from Lemma 2.23. We analyze the logarithmic factor, log(1/δ∗),
that is lost when using the Charikar-Wirth algorithm. The assumption from Lemma
8.2 implies that k · ŵopt − 1 ≥ 2, thus

log(1/δ∗) ≤ log
2(k − 1)

k · ŵopt − 1
< log k .

We run the algorithm of Charikar and Wirth. Lemma 2.23 implies that the expected
gain δ of the produced solution can be lower bounded

δ ≥ ccw
δ∗

log(1/δ∗)

> ccw
k · ŵopt − 1

2(k − 1) log k
. (8.3)

We let γi relate to this assignment, thus γi is the value such that k/2 + γi of the
literals in constraint Ci are true and k/2−γi are false according to the solution pro-
duced by the Charikar-Wirth algorithm. The weight of satisfied equality constraints
corresponding to constraint Ci is then((

k

2

)
−
(
k

2
+ γi

)(
k

2
− γi

))
wi =

(
k(k − 1)

4
+
(
γ2

i − k

4

))
wi .

We sum the contribution of each constraint in order to get the total weight of
satisfied equality constraints. Thus,

Weq

(
1
2

+ δ

)
= E

[
m∑

i=1

wi

(
k(k − 1)

4
+
(
γ2

i − k

4

))]

88 Approximating Max kCSP

which implies that

(
k

2

)
δwtot = E

[
m∑

i=1

wi

(
γ2

i − k

4

)]
. (8.4)

We derive from (8.3) a lower bound for the weighted sum of γ2
i which concludes the

proof of the lemma:

E

 1
wtot

∑
i:|γi|>

√
k/2

wiγ
2
i

 ≥ E

 1
wtot

∑
i:|γi|>

√
k/2

wi

(
γ2

i − k

4

)

≥ E

[
1
wtot

m∑
i=1

wi

(
γ2

i − k

4

)]

=
(
k

2

)
δ

≥ k(k − 1)
2

ccw
k · ŵopt − 1

2(k − 1) log k

≥ kccw(k · ŵopt − 1)
4 log k

,

where the equality follows from (8.4).

Lemma 8.2 shows that we can find an unbalanced solution. The following lemma
shows that we can produce a good solution from such an unbalanced solution.

Lemma 8.3. Let I be an instance of Max kAllEqual with total weight wtot and
{b1, . . . bn} is a solution such that

dk ≤ 1
wtot

∑
i:|γi|>

√
k/2

wiγ
2
i ,

for d ≥ 1. Then assigning

xi :=
{
bi with probability (1 + α)/2
bi with probability (1 − α)/2

,

with α = 1/
√
k, produces a solution with expected value of at least e2

√
d−1/22−kwtot.

Proof. Consider a constraint Ci that has |γi| >
√
k/2. Let AEi be the event that

8.3. Algorithm Description 89

all literals in Ci get the same value after the biased random assignment.

Pr [AEi] = Pr [all literals true] + Pr [all literals false]

=
(

1 + α

2

) k
2 +γi

(
1 − α

2

) k
2−γi

+
(

1 − α

2

) k
2 +γi

(
1 + α

2

) k
2−γi

> 2−k
(
(1 + α)

k
2 +|γi| (1 − α)

k
2−|γi|

)
= 2−k

(
(1 + α)2|γi| (1 − α2

) k
2−|γi|)

> 2−ke2α|γi|− k
2 α2

.

The following claim validates the last inequality.

Claim 8.4. For 1 ≥ α > 0 and 2|γi| ≥ kα,

(1 + α)2|γi| (1 − α2
) k

2−|γi|
> e2α|γi|− k

2 α2
.

Proof. We show that the logarithm of the left hand side, LH, is larger than the
logarithm of the right hand side, RH.

ln(LH) = 2|γi| ln(1 + α) +
(
k

2
− |γi|

)
ln
(
1 − α2

)
= 2|γi|

(
α− α2

2
+
α3

3
− α4

4
+ . . .

)
+(

k

2
− |γi|

)(
−α2 − α4

2
− α6

3
− . . .

)

= 2|γi|
(
α+

α3

3
+
α5

5
+ . . .

)
− k

2

(
α2 +

α4

2
+
α6

3
+ . . .

)

= 2α|γi| − k

2
α2 + 2|γi|

(
α3

3
+
α5

5
+ . . .

)
− kα

(
α3

4
+
α5

6
+ . . .

)

> 2α|γi| − k

2
α2 + (2|γi| − kα)

(
α3

3
+
α5

5
+ . . .

)

≥ 2α|γi| − k

2
α2

= ln(RH)

We calculate a lower bound on the expected weight of constraints that either
have all literals true or all literals false.∑

i:|γi|>
√

k/2

wiPr [AEi] > 2−k
∑

i:|γi|>
√

k/2

wie
2α|γi|− k

2 α2
(8.5)

90 Approximating Max kCSP

We let si = γ2
i and rewrite the above lower bound:

2−ke−
k
2 α2 ∑

i:
√

si>
√

k/2

wie
2α

√
si .

We consider the terms e2α
√

si as functions of si and calculate their second derivative:

∂

∂2si
e2α

√
si =

(
α− 1

2
√
si

)
αs−1

i e2α
√

si .

We see that the second derivative is positive as long as α > 1/2
√
si, thus e2α

√
si

is convex for all terms of the sum because
√
si >

√
k/2 and α = 1/

√
k. The

condition in the lemma gives a lower bound to
∑

i:
√

si>
√

k/2 wisi. Thus, using
Jensen’s inequality, Proposition 2.2, we conclude that (8.5) is minimized if all values
of |γi| over the threshold are equal.

We let W+ be the weight of all conjunctions meeting the threshold condition,
W+ =

∑
i:|γi|>

√
k/2 wi. We will see that the worst case happens if W+ = wtot, but

for now we are general and let W+ = xwtot where x is a value between 0 and 1.
In order to minimize (8.5), the value of all |γi| above the threshold should be equal
and by the assumption of the lemma at least

√
dk/x. We apply this to (8.5) and

get the expected weight of constraints that either have all literals true or all literals
false:

2−k
∑

i:|γi|>
√

k/2

wie
2|γi|√

k
− 1

2 ≥ 2−kxwtote
2
√

d/x−1/2 . (8.6)

We calculate its derivative in order to minimize the above expression with respect
to x:

∂

∂x
2−kxwtote

2
√

d/x−1/2 = (1 −
√
d/x)2−ke2

√
d/x−1/2wtot .

As d ≥ 1, we see that the derivative is non-positive for x ∈ (0, 1]. Thus, (8.6) is
minimized by setting x = 1 and then the expected weight of satisfied constraints is
at least 22

√
d−1/22−kwtot which concludes the proof of Lemma 8.3.

We are now ready to prove Theorem 8.1 by using Lemma 8.2 and Lemma 8.3.

Proof. Let I be an instance of Max kAllEqual with total weight wtot and where
ŵopt ·wtot is the value of an optimal solution. Set c = (c1/ccw + 1)−1, where c1 is a
positive constant yet to be defined. If ŵopt ≤ log k/(ck), then a random assignment
achieves the following approximation ratio:

2−kwtot

log k/(ck)wtot
=

ck

log k
2−k .

8.3. Algorithm Description 91

Thus, we only need to consider if ŵopt > log k/(ck). Therefore, assume that ŵopt =
r log k/(ck) for some r > 1. We note that k · ŵopt ≥ log k/c > 3 and apply Lemma
8.2 with

d = ccw
k · ŵopt − 1

4 log k
= ccw

r/c− 1
4

= ccw
r(c1/ccw + 1) − 1

4
> rc1/4 .

We can now apply Lemma 8.3 with an expected value of d = rc1/4. However,
if d < 1 then Lemma 8.3 does not give anything and thus the expected value of
the solution could be zero. The following function expresses a lower bound for the
expected value of the solution{

0 if 0 ≤ d < 1
e2

√
d−1/22−kwtot if d ≥ 1

. (8.7)

It is not convex and thus we cannot apply Jensen’s inequality. However, the fol-
lowing linear function is a lower bound for (8.7):

c2(d− 1)2−kwtot , where c2 = min
d>1

e2
√

d−1/2

d− 1
≈ 9.5 . (8.8)

By applying the lower bound (8.8) we get that wapp, the expected value of the
solution, is at least c2(rc1/4 − 1)2−kwtot. By setting c1 = 4/c2 + 4 we ensure that
wapp ≥ r2−kwtot and thus the approximation ratio is

wapp

wopt
≥ r2−kwtot

r log k/(ck)wtot
=

ck

log k
2−k ,

which concludes the proof of Theorem 8.1.

Consequences for Max kConjSAT and Max kCSP

By using a simple observation, we derive from Theorem 8.1 the following result on
the approximability of Max kConjSAT.

Theorem 8.5. There exists a constant c0 > 0 such that Max kConjSAT, for
k ≥ 2, can in probabilistical polynomial time be approximated within a factor of
c0k(log k)−12−k.

Proof. Assume that I is an Max kConjSAT instance with optimal value wopt.
In order to approximate I we regard it is a Max kAllEqual instance I ′ and
run Algorithm AllEq. As the optimal solution value of I ′ is at least as large
as wopt, the expected value of the solution is according to Theorem 8.1 at least
ck(log k)−12−kwopt. If the assignment satisfies constraints of more weight due to
that all literals are false rather than all literals are true, then the assignment is
negated. This does not effect the objective value but ensures that at least half the
weight of satisfied constraints are satisfied due to that all literals are true. Thus, the
proof is concluded by observing that the expected value of the assignment evaluated
on I is at least c0k(log k)−12−kwopt, where c0 = c/2.

92 Approximating Max kCSP

By using the observation of Trevisan [37], we conclude that an algorithm for
Max kConjSAT implies an approximation algorithm for Max kCSP with the
same approximation ratio. Thus, as a consequence of Theorem 8.5 we get our main
theorem:

Theorem 8.6. There exists a constant c0 > 0 such that Max kCSP, for k ≥ 2,
can in probabilistical polynomial time be c0k(log k)−12−k-approximated.

8.4 Numerical Approximation Ratios

In this section, we give approximation ratios for Max kCSP for values of 5 ≤ k ≤
100. The ratios are obtained using numerical methods and are presented in Figure
8.2. For k ≤ 4 there are known good approximation algorithms, which outperform
our algorithm with a broad margin [15, 31, 42].

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

k, clause length

ap
pr

ox
im

at
io

n
ra

tio
 *

 2
k

Figure 8.2: Approximation ratios on Max kCSP.

In this section we use an algorithm slightly different from Algorithm AllEq
which is presented in Figure 8.1. First we use Zwick’s outward rotation algorithm
[44] in order to approximate the Max 2AllEqual instance instead of the Charikar-
Wirth algorithm. This choice is made because an exact approximation ratio can
be calculated numerically from [44], as long as the optimal gain is known. In the

8.4. Numerical Approximation Ratios 93

last step of Algorithm AllEq, we use a somewhat different value of the bias α.
Given the solution of the Max 2AllEqual instance, it is possible to calculate the
optimal value of the parameter α. However, our calculation shows that by setting

α =

√
1
k

+
(

2 − 2
k

)
δ ,

where δ is the expected gain of the approximate solution, we obtain an approxim-
ation ratio very close to the ratio that would be obtained if we used the optimal
value of α. We choose this suboptimal value to ensure easier reproducibility of the
graph in Figure 8.2.

We can heuristically show why this value of α is suitable. It seems that the worst
case is if the solution makes all constraints equally unbalanced, thus the value of
|γi| is equal for all constraints. In the proof of Lemma 8.2 we saw that

(
k

2

)
δwtot = E

[
m∑

i=1

wi

(
γ2

i − k

4

)]
.

This implies that the worst case is if

|γi| =

√
k(k − 1)

2
δ +

k

4
.

In the proof of Lemma 8.3 we showed that the probability that all literals in
a constraint get the same value after a biased random assignment, is at least
2−ke2α|γi|− k

2 α2
. It is easy to show that this expression is maximized by setting

α = 2|γi|/k. Inserting the worst case value for |γi| in this expression, we see that α
is equal to the value we use.

For each value of k, we calculate the approximation ratio in the following way:
For each possible optimal gain, using a suitable discretization, we calculate the ex-
pected gain δ of the solution produced by the algorithm of Zwick. We then produce
a linear program where the objective value is equal to the expected normalized ob-
jective value of the solution produced by the biased random assignment. The linear
program has k + 1 variables y0, y1, . . . yk, where yi indicates the total normalized
weight of constraints with exactly i literals true. There are also constants d0, . . .
dk, where di = k(k−1)

2 − i(k− i) is the number of pair of literals that are equal in a
constraint with exactly i literals true. We let bi be the probability that a constraint
with exactly i literals true will be all equal after the biased random assignment.
This value depends on our choice of α.

min
k∑

i=0

biyi,

given
∑k

i=0 yi = 1∑k
i=0 diyi = k(k−1)

2

(
1
2 + δ

)

94 Approximating Max kCSP

By solving the linear program we get a numerical value of the approximation ratio
of the Max kAllEqual algorithm. By dividing this value with two, we get the
approximation ratio of the Max kCSP algorithm.

Our algorithm approximates Max 5CSP within 2.91·2−5. The general 21.54−k =
2.90 · 2−k approximation algorithm in [18] does better for small values of k and
actually 3.68 · 2−5 approximates Max 5CSP. However, for values of k ≥ 6 our
algorithm achieves the best known approximation ratio for Max kCSP.

8.5 Relation with PCP Classes

The complexity class PCPc,s[log, q] contains all languages that have a verifier with
completeness c, soundness s, which uses only a logarithmic number of random bits
and asks at most q (adaptive) questions. Trevisan showed that there is a close
connection between the power of PCPs asking k questions and the approximability
of Max kConjSAT.

Theorem 8.7 (Trevisan [37]). If, for some r ≤ 1, Max kConjSAT is determinist-
ically r-approximable in polynomial time then PCPc,s[log, k] ⊆ P for any c/s > 1/r.

Our Max kConjSAT algorithm is probabilistic, thus it is not immediate that
the above theorem can be applied. There are two steps in our algorithm that are
probabilistic: the rounding in the Charikar-Wirth algorithm and the biased random
assignment. However, in Theorem 8.7 we only need an algorithm that gives a lower
bound of the optimal value, not an approximate solution. We get such a lower
bound directly from the semidefinite program of the Charikar-Wirth algorithm.
Thus, we have the following theorem.

Theorem 8.8. PCPc,s[log, k] ⊆ P for any c/s > log k
c0k 2k, where c0 > 0 is the

constant in Theorem 8.5.

Chapter 9

Summary and Discussion

In this thesis, we have studied the approximability of Boolean constraint satis-
faction problems, Max CSPs. An instance of a Max CSP consists of a set of
weighted constraints acting over a set of Boolean variables. The objective is to
find an assignment to the variables such that the weight of satisfied constraints is
maximized. If all constraints act over at most k different variables, then it is a Max
kCSP instance. Another subproblem to Max CSP is Max CSP(P), where P is a
predicate. In such an instance, the predicate P is used to determine if a constraint
is satisfied or not.

9.1 Approximation Resistant Predicates

A very natural algorithm for many combinatorial optimization problems is choosing
a solution uniformly at random from the solution space. For Max CSP instances
this is done by assigning an unbiased and independent random value to each vari-
able. Despite its simplicity, such a random assignment is for some Max CSP
essentially the best possible efficient approximation algorithm. In this thesis we
investigate for which types of Max CSP this is the case. In particular, we study
for which predicates P it is NP-hard to outperform a random assignment on Max
CSP(P). We call such predicates approximation resistant.

We extend PCP techniques by Håstad [22] and Samorodnisky and Trevisan [35]
in order to characterize predicates as approximation resistant. We are able to show
that predicates with many accepting inputs are approximation resistant.

A central predicate for these techniques is the parity predicate 3XOR. Håstad
[22] and Zwick [42] established that the only predicates of arity three that are ap-
proximation resistant are predicates that only reject inputs of the same parity. We
strengthen this central role of the parity function by showing that if an instance
is hard, then an optimal solution makes almost all constraints have the same par-
ity. A hard instance is an almost satisfiable instance, for which it is NP-hard to
approximate it significantly better than picking a random assignment.

95

96 Summary and Discussion

The objective value function of a Max CSP(P) instance is a multilinear ex-
pression. By maximizing the sum of linear and bi-linear terms in this expression,
we are for some predicates P able to produce a solution that has a somewhat higher
value than the expected value of a random solution. A Max CSP(3XOR) instance
consists of only monomials of degree three. As 3XOR is approximation resistant,
it seems impossible to extend this algorithm in optimizing degree three terms as
well. A possible extension of the method is instead to use it in order to character-
ize almost satisfying solutions. Using the canonical relaxation of a Max CSP(P),
introduced by Karloff and Zwick [28], this information could potentially enable us
to make a better relaxation for approximating almost satisfiable instances.

We have both classified predicates as approximation resistant as well as being
not approximation resistant. However, some predicates cannot be characterized
using the methods in this thesis. The fraction of uncharacterized predicates grows
when we consider predicates of larger arity. Approximately 85% of the predicates
of arity four were characterized, but when the arity tends to infinity we are not
even able to characterize a constant fraction of the predicates.

9.2 Approximability of Max kCSP

Another contribution of this thesis is an algorithm for approximating Max kCSP.
Traditionally, approximating Max kCSP has been done by approximating Max
kConjSAT in conjunction with a reduction of Max kCSP to Max kConjSAT
[18, 37]. In Max kConjSAT all constraints are conjunctions of at most k liter-
als. We instead give an algorithm for approximating Max kAllEqual, where
every constraint consists of at most k literals and is satisfied if all literals have
the same value. An α-approximation for Max kAllEqual can easily be trans-
formed into an α/2-approximation for Max kConjSAT. Therefore, our Max
kAllEqual algorithm yields an algorithm for Max kCSP. The approximation
ratio of Ω(2−k+log k−log log k) is a substantial improvement to the previous best ra-
tio of 21.54−k [18].

Another approach to approximate Max kCSP is to try and apply the semi-
definite relaxation method more directly. The canonical semidefinite relaxation of
Karloff and Zwick [28] yields the strongest possible semidefinite relaxation from
a natural class of relaxations. A solution to the semidefinite program is a vector
configuration (vi)n

i=0, where each vector vi is a relaxation of a variable xi in the
original instance. A possible solution to the semidefinite program is a set of or-
thogonal vectors. If the original instance is a Max kConjSAT instance, it can
be shown that this solution has value (2d(k + 1)/2e)−1wtot, where wtot is the sum
of the weight of every constraint. However, such an orthogonal solution obviously
does not give any specific information about the original instance. If an optimal
solution of a Max kConjSAT instance has value less than (2d(k+ 1)/2e)−1wtot it
is thus hard to see how to use semidefinite relaxation techniques in order to obtain
useful information about the instance.

9.2. Approximability of Max kCSP 97

It seems that the above indicates a natural limit for semidefinite relaxation
methods for approximating Max kCSP. It is hard to see how such an approach
can achieve an approximation ratio of ω(2−k+log k). It has been shown that it is
NP-hard to 2−k+c

√
k-approximate Max kCSP, for a certain constant c [7, 35]. A

challenging open problem is to bridge the gap between the negative and the positive
results.

Bibliography

[1] Farid Alizadeh. Interior point methods in semidefinite programming with
applications to combinatorial optimization. SIAM Journal on Optimization,
5(1):13–51, 1995.

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and hardness of approximation problems. Journal
of the ACM, 45(3):501–555, 1998. Preliminary version appeared in FOCS 1992.

[3] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonap-
proximability - towards tight results. SIAM Journal on Computing, 27(3):804–
915, 1998.

[4] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Ex-
tending Grothendieck’s inequality. In Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 54–60, 2004.

[5] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, pages
151–158, 1971.

[6] Nadia Creignou. A dichotomy theorem for maximum generalized satisability
problems. Journal of Computer and System Sciences, 51(3):511–522, 1995.

[7] Lars Engebretsen and Jonas Holmerin. More efficient queries in PCPs for NP
and improved approximation hardness of maximum CSP. In Proceedings of
STACS 2005, Lecture Notes in Computer Science 3404, pages 194–205, 2005.

[8] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the
ACM, 45(4):634–652, 1998.

[9] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. In
IEEE Conference on Computational Complexity, pages 278–287, 1996.

[10] Uriel Feige and Michael Langberg. The RPR2 rounding technique for semidef-
inite programs. In Proceedings of ICALP, pages 213–224, 2001.

99

100 Bibliography

[11] Uriel Feige and Daniel Reichman. On systems of linear equations with two
variables per equation. In Proceedings of APPROX 2004, Lecture Notes in
Computer Science 3122, pages 117–127, 2004.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[13] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified
NP-complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976.

[14] Michel X. Goemans and David P. Williamson. Improved Approximation Al-
gorithms for Maximum Cut and Satisfiability Problems Using Semidefinite
Programming. Journal of the ACM, 42:1115–1145, 1995.

[15] Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca Trevisan. A
tight characterization of NP with 3 query PCPs. In Proceedings of the 39th
Annual IEEE Symposium on Foundations of Computer Science, pages 8–17,
1998.

[16] David J. Haglin and Shankar M. Venkatesan. Approximation and intractability
results for the maximum cut problem and its variants. IEEE Transactions on
Computers, 40(1):110–113, 1991.

[17] Eran Halperin and Uri Zwick. Approximation algorithms for MAX 4-SAT
and rounding procedures for semidefinite programs. Journal of Algorithms,
40:185–211, 2001.

[18] Gustav Hast. Approximating Max kCSP using random restrictions. In Pro-
ceedings of APPROX 2004, Lecture Notes in Computer Science 3122, pages
151–162, 2004.

[19] Gustav Hast. Approximating Max kCSP - outperforming a random assign-
ment with almost a linear factor. Accepted to ICALP 05, 2005.

[20] Gustav Hast. Beating a random assignment. Manuscript, 2005.

[21] Johan Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182:105–142, 1999.

[22] Johan Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001. Preliminary version appeared in STOC 1997.

[23] Johan Håstad. Every 2-CSP allows nontrivial approximation. Accepted to
STOC 2005, 2005.

[24] Johan Håstad and Avi Wigderson. Simple analysis of graph tests for linearity
and PCP. Random Structures and Algorithms, 22(2):139–160, 2003.

Bibliography 101

[25] Thomas Hofmeister and Hanno Lefmann. A combinatorial design approach to
MAXCUT. In Proceedings of STACS 1996, Lecture Notes in Computer Science
1046, pages 441–452, 1996.

[26] David S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9(3):256–278, 1974.

[27] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph color-
ing by semidefinite programming. Journal of the ACM, 45(2):246–265, 1998.

[28] Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for MAX
3SAT? In Proceedings of the 38th Annual IEEE Symposium on Foundations
of Computer Science, pages 406–415, 1997.

[29] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson.
The approximability of constraint satisfaction problems. SIAM Journal on
Computing, 30(6):1863–1920, 2000.

[30] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal
inapproximability results for MAX-CUT and other 2-variable CSPs? In Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 146–154, 2004.

[31] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for
the MAX 2-SAT and MAX DI-CUT problems. In Proceedings of 9th IPCO,
Lecture Notes in Computer Science 2337, pages 67–82, 2002.

[32] S. Poljak and D. Turzík. A polynomial algorithm for constructing a large
bipartite subgraph, with an application to a satisfiability problem. Canadian
Journal of Mathematics, 34:519–524, 1982.

[33] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing,
27(3):763–803, 1998.

[34] Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems.
Journal of the ACM, 23(3):555–565, 1976.

[35] Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with
optimal amortized query complexity. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, pages 191–199, 2000.

[36] Thomas Schaefer. The complexity of satisability problems. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, pages 216–226,
1978.

[37] Luca Trevisan. Parallel approximation algorithms by positive linear program-
ming. Algorithmica, 21(1):72–88, 1998.

102 Bibliography

[38] Luca Trevisan. Approximating satisfiable satisfiability problems. Algorithmica,
28(1):145–172, 2000.

[39] Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson.
Gadgets, approximation, and linear programming. SIAM Journal on Comput-
ing, 29:2074–2097, 2000.

[40] Alan M. Turing. On computable numbers with an application to the
entscheidungs problem. Proceedings of the London Mathematical Society,
42:23–265, 1936.

[41] P. M. Vitányi. How well can a graph be n-colored? Discrete Mathematics,
34:69–80, 1981.

[42] Uri Zwick. Approximation algorithms for constraint satisfaction problems in-
volving at most three variables per constraint. In Proceedings of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 201–210, 1998.

[43] Uri Zwick. Finding almost satisfying assignments. In Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, pages 551–560, 1998.

[44] Uri Zwick. Outward rotations: a tool for rounding solutions of semidefinite
programming relaxations, with applications to MAX CUT and other problems.
In Proceedings of the 31st Annual ACM Symposium on Theory of Computing,
pages 679–687, 1999.

