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Abstract

Speaker verification is the biometric task of authenticating a claimed identity by means of
analyzing a spoken sample of the claimant’s voice. The present thesis deals with various
topics related to automatic speaker verification (ASV) in the context of its commercial ap-
plications, characterized by co-operative users, user-friendly interfaces, and requirements
for small amounts of enrollment and test data.

A text-dependent system based on hidden Markov models (HMM) was developed and
used to conduct experiments, including a comparison between visual and aural strategies
for prompting claimants for randomized digit strings. It was found that aural prompts
lead to more errors in spoken responses and that visually prompted utterances performed
marginally better in ASV, given that enrollment data were visually prompted. High-
resolution flooring techniques were proposed for variance estimation in the HMMs, but
results showed no improvement over the standard method of using target-independent
variances copied from a background model. These experiments were performed on Gan-
dalf, a Swedish speaker verification telephone corpus with 86 client speakers.

A complete on-site application (PER), a physical access control system securing a
gate in a reverberant stairway, was implemented based on a combination of the HMM
and a Gaussian mixture model based system. Users were authenticated by saying their
proper name and a visually prompted, random sequence of digits after having enrolled by
speaking ten utterances of the same type. An evaluation was conducted with 54 out of
56 clients who succeeded to enroll. Semi-dedicated impostor attempts were also collected.
An equal error rate (EER) of 2.4% was found for this system based on a single attempt per
session and after retraining the system on PER-specific development data. On parallel
telephone data collected using a telephone version of PER, 3.5% EER was found with
landline and around 5% with mobile telephones. Impostor attempts in this case were
same-handset attempts. Results also indicate that the distribution of false reject and false
accept rates over target speakers are well described by beta distributions. A state-of-
the-art commercial system was also tested on PER data with similar performance as the
baseline research system.

Keywords: speaker recognition, speaker verification, speech technology, biometrics,
access control, speech corpus, variance estimation
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Chapter 1

Introduction

Speaker verification is the biometric task of authenticating a claimed identity by
means of analyzing a spoken sample of the claimant’s voice. It is a binary detection
problem where the claimant must be classified as the true speaker or as an impostor
(Atal, 1976; Doddington, 1985; Furui, 1997; Campbell, 1997). Thus, two kinds of
errors may occur: the false rejection of a genuine customer or the false acceptance
of an impostor.

There are several potential applications where automatic speaker verification
(ASV) could be used. Examples include telephone-based applications like voice
dialing, telephone banking, telephone shopping and password reset systems where
users access a service remotely from any location; and on-site applications like
access control, border control and service kiosks where users are physically present
at a point of entry.

On-site applications of speaker verification may offer much freedom in the choice
of data collection equipment, the design of user interfaces, and means of controlling
user behavior and the background environment. This facilitates the collection
of high-quality speech samples under controlled conditions to allow for accurate
speaker verification. But with physically present users, there are also other biomet-
ric technologies to choose from, such as finger print sensors, face detectors and iris
scanners (Jain et al., 1999).

With telephone-based applications, on the other hand, speaker verification has
the advantage over other biometric technologies in that a microphone and a speech
transmission channel are already available in every telephone, while using other
biometric traits than voice would require attaching additional sensor devices to
telephone instruments. But designers of speaker verification systems have little
possibility to influence what telephone instruments are used, resulting in varying
input signal characteristics between users and possibly even between calls by a
single user. They also have little possibility to control users or their acoustic en-
vironment, and user interfaces are often limited to speech, audio and button type
interfaces. Therefore, compared to on-site applications, telephone-based applica-
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4 Chapter 1. Introduction

tions of speaker verification generally need to deal with a wider range of inter-session
variability not directly related to speakers’ voice characteristics.

The present thesis deals with several different topics in automatic speaker veri-
fication. Much of the included work are related to a practical application of ASV
technology realized at KTH, Department of Speech, Music and Hearing: an access
control system that provides staff and students working at the Department on a
regular basis with a means to unlock the central gate to their workplace. The sys-
tem, called PER1, is an example of a text-dependent on-site application of ASV.
Chapter 3 describes the ASV-part of the system in detail, while Chapter 4 describes
a generic software framework on which the system was built. Chapter 5 then briefly
describes the PER system itself. In Chapter 10, experiments and results with the
system are presented. An important point here is a comparison between ASV per-
formance in the on-site application with performance in a corresponding telephone
application of ASV. This was made possible through a parallel data collection of
on-site and telephone data. This data is packaged as a speaker verification corpus
(the PER corpus) and presented in Chapter 6. Another assessment-related chapter
deals with error rate estimation methods and uses PER data as an evaluation corpus
(Chapter 7).

Other thesis topics not directly related to the PER system include work done
using a telephone speaker verification corpus, Gandalf, also described in Chapter 6.
This data was used in experiments around two widely different aspects of ASV
system design: password prompting strategies (Chapter 8) and variance estima-
tion in hidden Markov models with mixture Gaussian state-observation densities
(Chapter 9).

1.1 Outline

The thesis is divided into five parts consisting of one of more chapters.

Part I gives an introduction to and provides a background for the thesis.
Chapter 1 (this chapter) is the introduction.
Chapter 2 gives an overview of the field of speaker recognition with particular

emphasis on the speaker verification task. It describes the current state-of-the-
art in recognition methods as well as tools and methods for assessment of system
performance.

Part II includes work on the development of speaker verification systems and of
interactive systems where speaker verification is included as a component techno-
logy.

Chapter 3 describes a text-dependent speaker verification system. It also
describes a text-independent speaker verification system and a joint system based on
a combination of the text-dependent and the text-independent system subsequently

1pronounced as
� ��� ��� �	�
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used in the PER application. A generic software platform used to implement the
mentioned systems is also introduced.

Chapter 4 presents a software framework for building prototype speech tech-
nology based applications. Example applications built with the framework are
described shortly.

Chapter 5 describes various aspects of the on-site and telephone versions of
the PER system, including enrollment and access procedures.

Part III includes work on methods and tools for assessment of speaker verification
performance.

Chapter 6 presents in detail two corpora collected for the purpose of speaker
verification system development and evaluation. Work on experiment design related
to two other speaker verification corpora is also described.

Chapter 7 looks at estimation methods for verification error rate, in particu-
lar the use of parametric score distribution models and Bayesian methods for the
estimation of error rate in individual target speakers.

Part IV includes work on the evaluation of speaker verification technology.
Chapter 8 compares aural and visual strategies for prompting password strings

to subjects in terms of speaker verification error rate and the rate of generated
speaking-errors in subject responses.

Chapter 9 deals with variance estimation in the context of the text-dependent
HMM system presented in Chapter 3. In particular, several variance flooring meth-
ods are proposed and evaluated.

Chapter 10 presents and discusses results from practical use of a speaker veri-
fication system in the on-site and telephone versions of the PER application. The
importance of factors like appropriateness of development data, amounts of enroll-
ment and test data, and system fusion effects are investigated.

Part V concludes the thesis with a summary, a general discussion and suggestions
for future work.





Chapter 2

Speaker Recognition

Speaker recognition is a biometric technique for recognizing the identity of a person.
Biometric techniques in general make use of some observation of biological phenom-
ena in human beings. Such phenomena can usually be classified into physical traits
such as finger prints, retina patterns or hand shape, or behavioral patterns such
as handwriting signature or keyboard typing patterns. Physical traits are inherent
in humans, while behavioral patterns are mainly learned. Speech is the result of a
combination of physical traits and behavioral patterns. It is a behavioral pattern in
the sense that speaking is something we do. Children grow up learning to speak in
an environment influenced by many social and linguistic factors, including language,
dialect and social status, and this environment influences how we speak. But the
sound of a person’s speech is also strongly affected by physical characteristics such
as the size and shape of their vocal folds, vocal tract and nasal cavities, and these
factors also influence how we speak and how the speech sounds. Somewhat simpli-
fied we could say that physical factors are more important for segmental features in
the speech signal, such as voice quality and formant positions, while environmental
(learned) factors are more important for supra-segmental features, such as prosody
and word selection.

Whatever factors influence features of a person’s speech, in the surface form
they are all integrated into a one-dimensional time signal, the speech signal. Un-
less we have access to specialized measurement devices such as electropalatographs
or electroglottographs (which are clearly not viable collection devices in a biomet-
ric system), or video cameras (which clearly may be viable), all information from
the speech process must be extracted from a sampled version of the speech signal
captured through one or more microphone devices. It is not trivial to separate in-
formation from each specific source mentioned above from this signal, and therefore
it is tempting to treat the speech signal, or some tractable mathematical represent-
ation of it, such as a spectral representation, as a pattern to recognize. This may
also be a possible approach for speaker recognition, as long as one keeps in mind
that the speech signal hosts many types of variability and must be treated in a

7
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statistical sense rather than as a static image. Transferring the concept of a finger
print into a “voice print” lies near at hand, but may be misleading (Bonastre et al.,
2003a). In general, an important difference between physical traits and behavioral
patterns is that the latter involve a time dimension and thus usually can only be
captured through a sequence of observations, while a snapshot may be enough to
capture the former.

The success of speaker recognition for biometric purposes depends on whether
features of the speech signal, or the gross speech signal itself, can be measured and
modeled in such a way that the model can be used to discriminate sufficiently well
between individual speakers.

This chapter gives an overview of the field of automatic speaker recognition. It
establishes the current state-of-the-art in recognition methods as well as tools and
methods for assessment of system performance.

2.1 Task taxonomy

Speaker recognition as a task is usually divided into speaker verification and speaker
identification. Speaker verification is the two-class problem of determining if an
identity claim is true or false. Is the speaker (the claimant) who he claims to be
(the target), or an impostor? A speaker verification system can make two types
of error: a false reject error when a legitimate claim is rejected, or a false accept
error when an impostor is accepted. Speaker authentication and speaker detection
are equivalent terms for speaker verification. In conjunction with the term speaker
detection, the two types of error are usually called miss and false alarm (e.g. Martin
et al., 1997).

Speaker identification is the N -class orN+1-class problem of determining which
out of N known target speakers is the current speaker. The problem is N + 1-class
in the open set case, where “none of them” is a possible answer, i.e. there is a
rejection alternative.

Related tasks are speaker tracking, speaker change detection, speaker cluster-
ing and speaker diarization. Speaker tracking involves “following” a given target
speaker during a conversation (Martin and Przybocki, 2000), while speaker change
detection is to detect when the speaker changes during a conversation. Speaker
clustering is to group speakers according to similarity defined by some similarity
measure. Speaker diarization (Gravier et al., 2004; Ben et al., 2004) involves as-
signing a speaker label to every speaker turn in a conversation and to group turns
spoken by the same speaker. Speakers are not known beforehand.

Speaker verification or detection can also be formulated in a multi-speaker con-
text, where the problem is to detect if a target speaker is present in a conversation
(Martin and Przybocki, 2000).

For a speaker recognition system to be able to recognize the speech of a known
target speaker, the system must have prior access to a sample of speech from this
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speaker. The subtask of creating a target model from a sample of speech is called
speaker enrollment.

This thesis deals with speaker verification in a single-speaker context.

2.2 Text dependence

We use the term text dependence to describe the relation between enrollment and
test speech required by a speaker verification system. A system is text-dependent
if it requires the same text to be spoken during enrollment and test, and text-
independent if the same text does not need to be spoken. However, spoken text
includes phrases, words, syllables, phonemes, prosody, etc., and therefore text de-
pendence can be described using a more fine-grained scale going from most text-
dependent to most text-independent (Bimbot et al., 1994):

1. text-dependent using a fixed passphrase shared by all users (e.g. Furui, 1981):
all users speak the same passphrase during enrollment and test. Such a system
is not likely to be used in a real application, but it provides a way to test
speaker discriminability in a text-dependent system.

2. text-dependent using fixed user-dependent passphrases (e.g. Bernasconi, 1990;
Higgins and Bahler, 2001; BenZeghiba and Bourlard, 2002; Bonastre et al.,
2003b): a given user speaks the same phrase during enrollment and test.

3. vocabulary-dependent (e.g. Rosenberg et al., 1991; Schalk, 1991; Netsch and
Doddington, 1992): users enroll by speaking examples of all words in a given
vocabulary (e.g. digits 0 through 9, spelling-word sequences, or a small set of
arbitrary words fitting into a carrier phrase (e.g. Doddington, 1985)) while
test utterances are constructed from subsets of the vocabulary. Words do not
necessarily need to appear in the same order during enrollment and test.

4. event-dependent (e.g. Bonastre et al., 1991; Gupta and Savic, 1992; Reynolds
et al., 2003): the system models particular “events” in the speech signal, e.g.
particular phonemes; word or bigram use; or the occurrence of grammatical
errors. The text may be different during enrollment and test as long as the
modeled events occur in sufficient numbers.

5. text-independent, system-driven (e.g. Matsui and Furui, 1994): text does not
need to be the same during enrollment and test. However, the system prompts
what text users shall speak, thus, the system knows what text to expect.

6. text-independent, user-driven (e.g. Reynolds, 1994; Bimbot and Mathan, 1994):
the fully text-independent system, where users can say anything during en-
rollment or test.

Note that with this definition of text-dependence, a text-prompted ASV system,
where the system prompts claimants with a text to speak (Higgins et al., 1991),
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may be either vocabulary-dependent, event-dependent or text-independent with
system-prompted text. Also note that vocabulary-dependent and event-dependent
systems need not be used with text-prompting, since an ASV system could be set
up to rely on automatically spotting modeled words or events in text chosen and
spoken by claimants.

2.3 Inter-speaker and intra-speaker variability

It is apparent that the speech of most people sounds different. Also, one single
person’s speech is likely to sound a bit different from time to time. This is obvious
in the case of a person having a bad cold, for example. Inter-speaker variance is a
measure of the variation in voices between people, while intra-speaker variance is
a measure of the variation of one person’s voice from time to time.

To illustrate the terms inter-speaker and intra-speaker variance, we consider a
fictitious (two-dimensional) speech signal representation that spans a speaker space
in Figure 2.1. Four speakers S1–S4 have been sampled and samples been plotted
in the speaker space. Call the area including all the samples of a given speaker the
speaker’s spanned subspace. Loosely, intra-speaker variance for a given speaker is
the average squared distance between samples from this speaker and the center of
his subspace. Square roots of intra-speaker variances for speakers S1 and S2 are
illustrated in the figure as distances b1 and b2. The mean intra-speaker variance
in the speaker space is the average intra-speaker variance taken over all speakers
in the space. Inter-speaker variance is the average squared distance between each
speaker’s subspace center and the center of the speaker space. Distance a in the fig-
ure illustrates the square root of the inter-speaker variance in our fictitious speaker
space.

More precisely, inter-speaker variance for one-dimensional observations x(i)
n (ob-

servation n from speaker i) is the variance of speaker means

Vinter = Ei[(µi − µ̄)2)] (2.1)

where µi = En(x
(i)
n ) is the mean of observations from speaker i and µ̄ = Ei(µi)

is the overall mean value over all speakers. Define intra-speaker variance (for one-
dimensional observations) for a single speaker i as

V
(i)

intra = En[(x
(i)
n − µi)

2] (2.2)

and the average intra-speaker variance

Vintra = Ei(V
(i)

intra). (2.3)

Based on the terms inter-speaker and intra-speaker variance we can now discuss
some of the issues that are central to the speaker recognition problem.
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Figure 2.1: Four speakers (S1–S4) sampled in a fictitious two-dimensional speaker
space to illustrate (square roots of) inter-speaker variance (a) and intra-speaker
variance (b1, b2).

2.3.1 Speaker discriminability

To be able to discriminate between speakers, we need to measure and represent the
speech signal suitably. For a particular (one-dimensional) speech signal represent-
ation to be efficient for speaker recognition, we want measurements from speakers
in this representation to span small subspaces for each speaker, while subspaces for
all speakers are well separated. This is to say that we want a large inter-speaker
variance and a low intra-speaker variance, or a large F ratio (Wolf, 1972; Atal,
1976)

F = Vinter/Vintra. (2.4)

To deal with multi-dimensional observations, inter-speaker and intra-speaker vari-
ances need to be extended to include the effect of correlation between observations.
An extension of the F ratio into the multi-dimensional case is the Kullback diver-
gence defined on an inter-speaker covariance matrix and an intra-speaker covariance
matrix. See e.g. Atal (1976) for details. For our discussion of speaker recognition
concepts we will settle for the simpler (more intuitive) terms inter-speaker and
intra-speaker variance.

While the F ratio (divergence) is an overall measure for a group of speakers,
there will naturally be variations in speaker discriminability within the speaker
group. It is also well known that both false reject and false accept errors are
usually unevenly distributed among target speakers (and impostors) for a given
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speaker verification system and a group of speakers. The terms goat and sheep
are sometimes used to refer to target speakers that experience a high (goats) or
low (sheep) false reject rate. Similarly, the terms wolf and lamb can be used for
speakers that are often successful impostors (wolves) and target speakers that suffer
a high false accept rate (lambs) (Campbell, 1997; Doddington et al., 1998).

Several a priori factors can be used to predict smaller expected inter-speaker
distances between a given pair of speakers than between any two randomly chosen
speakers. For example, identical twins can be expected to be positioned closer
in the speaker space than a pair of random speakers (Cohen and Vaich, 1994; Ho-
mayounpour and Chollet, 1995; Dialogues Spotlight Consortium, 2000), and trained
impersonators may be able to alter their speech to move closer to a given target
in the speaker space (Luck, 1969; Ashour and Gath, 1999; Dialogues Spotlight
Consortium, 2000; Elenius, 2001; Zetterholm et al., 2004). Impostor attempts by
technical means (Lindberg and Blomberg, 1999; Genoud and Chollet, 1999; Pellom
and Hansen, 1999; Matrouf et al., 2006) may also reduce inter-speaker distances
between (virtual) impostors and a given target speaker. Speakers of the same lan-
guage origin as a target speaker are likely to be more successful impostors than
those with a different language background (Nordström et al., 1998), etc.

While better-than-average impostors may be predicted by a priori factors, it
is more difficult to predict which target speakers will suffer high false reject rates
due to large intra-speaker variability, maybe combined with low inter-speaker vari-
ability. Attempts have been made to predict such “goats” by means of automatic
measurements on enrollment speech and/or comparison with other target models
(Thompson and Mason, 1994; Koolwaaĳ et al., 2000; Gu et al., 2000).

2.3.2 Speaker variability

We usually want to be able to recognize speakers over long periods of time, and
not only just after they enrolled to a speaker verification system. However, the
human voice changes both long-term, mainly due to aging (Linville, 2001; Winkler
et al., 2003), and on shorter terms due to other factors such as health (respiratory
infections, head colds), speech effort level and speaking rate, emotional state (Mur-
ray and Arnott, 1993; Karlsson et al., 2000), vocal tiredness and user experience
(list inspired by (Doddington, 1998)). “Random” (in lack of better understanding)
inter-session effects can also be expected (Doddington, 1998). Thus, a desirable
property of a speech signal representation for speaker recognition is therefore long-
term stability, or robustness to variability in the speaker.

With our illustration of speaker subspaces in Figure 2.1 and in terms of intra-
speaker variance, this means that unless our signal representation is independent
of short and long-term variability in a speaker, this speaker’s subspace is not static
– it changes with time. Changes may be either translations of the subspace or
changes in the intra-speaker variance. Furui (1986) found that the intra-speaker
variation in a cepstrum representation of long-time average spectrum computed
from samples collected over increasing intervals of time and averaged over nine male
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speakers, increased monotonously for intervals up to three months and was nearly
constant for longer intervals. This can be interpreted in our graphical illustration
that speaker subspaces can be expected to “grow” during the first couple of months,
after which new samples will mainly fall within the already observed subspace.

2.3.3 Robustness

In addition to the speech waveform, a recorded signal may contain acoustical back-
ground noise and the effects of microphone characteristics and electrical transmis-
sion. Both noise and transmission effects may vary in amount and type both within
and between recording sessions. From a speaker recognition point of view, the res-
ulting effect is that the speech signal from a speaker is mixed with other variability
factors that (usually) don’t depend on the speaker. The main challenge here is
not so much the presence of noise and transmission effects (as long as they are not
too great relative to the speech signal itself), but that speaker-independent effects
may vary. With our graphical illustration (Figure 2.1), additive noise in our signal
representation has the effect of “blurring” subspaces and making them bigger. It
makes intra-speaker variance (as defined above on the observed signal rather than
on the embedded speech signal) larger and thus decreases the F ratio. A linear
channel transfer function that changes from one session to another, has the effect
of moving samples within the space, possibly making speakers’ subspaces larger.

Attempts at making speaker recognition robust against noise and transmission
effects usually follow one of the following approaches: selecting robust features or
modeling techniques, removing unwanted effects from the signal, normalizing the
signal, or adapting the speech models. Robustness methods can be applied to
different parts of a speaker recognition system, such as the speech signal itself, the
signal representation (feature domain), speech modeling, likelihood scores and the
decision logic. Some of the methods reported in the literature will be reviewed
below.

2.3.4 Modeling

A speaker recognition system needs to have some kind of model of each target
speaker to recognize. The model can be either similarity-based or discrimination-
based (or a combination). A similarity-based model represents how the speaker
sounds, while a discrimination-based model represents what is different between the
given speaker and other speakers. In the context of our illustration (Figure 2.1), the
former aims to describe a speaker’s subspace in the signal representation defining
our speaker space, while the latter aims to describe differences between a given
speaker’s subspace and other speakers’ subspaces.

In addition to target models, representing enrolled users, many similarity-based
speaker recognition systems also use one or more background models to repres-
ent other speakers, or groups of speakers. Discrimination-based systems often use
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speech from other speakers when computing the discrimination model rather than
using separate models of other speakers.

2.4 Methods

2.4.1 Feature extraction

Short-time spectral representations have been among the most popular speech fea-
ture types in experiments on automatic speaker recognition during the past two
decades. These are usually cepstral forms of the spectrum based on a linear pre-
diction model, a filter bank, or more sophisticated perceptually motivated models
of the speech signal. The same feature types are also frequently used in automatic
speech recognition. This may appear strange since speaker and speech recognition
systems have different goals in extracting information from a spoken utterance:
the former is looking for the speaker and the latter for the text message. But ob-
viously, the short-time spectrum carries information about both the speaker and
the message (along with other variabilities as stressed above). These feature types
may be suboptimal for the respective recognition tasks. While early research in
speaker recognition was directed at finding good features (e.g. Wolf, 1972; Atal,
1974; Sambur, 1975), focus has later shifted towards the use of statistical models.
By training statistical models on the entities we want to recognize, such as a word,
a word spoken by a particular speaker, or general speech from a particular per-
son, the models do much of the job of extracting speaker or text-specific features
“hidden” in the signal. The choice of low-level representation of the speech signal
is then less critical, as long as the statistical models can capture the speaker- or
text-specific variation present in them.

2.4.1.1 Linear prediction

In linear predictive coding (LPC), a segment of a speech waveform is represented
parametrically by a discrete linear all-pole filter (Atal, 1974). Specifically, para-
meters of the all-pole filter are fitted such that the filter’s transfer function matches
the spectral envelope of the speech signal. Several methods have been suggested
for fitting filter parameters to the signal, such as the covariance method, the auto-
correlation method and the lattice method (see e.g. Huang et al. (2001, chapter 6)
for details). The use of the LPC model in representing speech signals is motiv-
ated from a simplified speech production perspective, because of the all-pole filter’s
equivalence to electrical analogs of the vocal tract approximated as a series of short
lossless tubes with varying diameter (Fant, 1960).

Often a cepstrum representation of the linear prediction spectrum (linear predic-
tion cepstral coefficients, LPCC), which can be efficiently computed from prediction
coefficients through a recursive formula, is used (e.g. Furui, 1981). Various other
alternate forms related to the prediction parameters have also been used, such as
line spectral (pair) frequencies (LSF or LSP) (Liu et al., 1990; Bonifas et al., 1995;
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Campbell, 1997; Magrin-Chagnolleau et al., 2000), reflection coefficients (or partial
correlation coefficients (PARCOR)), and log-area ratios (Higgins et al., 1991).

2.4.1.2 Filter banks and auditory models

While the LPC model is motivated from a speech production point-of-view, filter
bank-based representations are motivated from a speech perception point-of-view,
because the operation of the basilar membrane in the human ear can be modeled
by a bank of band-pass filters.

A commonly used instance of a filter bank-based cepstral feature type is called
Mel Frequency Cepstral Coefficients, or MFCC (Davis and Mermelstein, 1980).
Here, center frequencies of band pass filters are equally spaced on a mel scale,
and cepstrum vectors are computed from filter log amplitudes through a cosine
transform. The filter bank is usually implemented through weighted sums of FFT
points. Many parameters in the computation of MFCC vectors can be varied,
such as the number and shape of filters and the number of cepstral coefficients.
One particular setup has been standardized by ETSI as a front-end for distributed
speech recognition1. This setup, including the VQ compression algorithm, was
tested for speaker recognition by Broun et al. (2001) on the YOHO corpus and
simulated GSM channels with good results.

The use of a filter bank and its frequency spacing according to the mel scale in
the MFCC can be motivated as approximations of a basic psychophysical function in
the human auditory system, namely the frequency resolution in the cochlea (critical
bands).

Other signal representations have been proposed based on more sophisticated
models of the auditory system. The perceptual linear prediction (PLP) represent-
ation (Hermansky, 1990) is the most well-known example. It simulates three con-
cepts from psychophysics: the critical-band spectral resolution, the equal-loudness
curve and the intensity-loudness power law. These concepts are implemented in
a filter bank to compute an auditory spectrum which is then approximated by an
all-pole filter like in the LPC case. PLP is often used in combination with RASTA
processing mentioned below.

Other auditory-based signal representations were tested by Quatieri et al. (2003).
Their work is based on two auditory models by Dau et al. (1996) and Dau et al.
(1997). The first model simulates low-level processing in the cochlea and have sim-
ilarities to MFCC and PLP processing. The second model simulates the processing
of amplitude modulation in the brain of signals from the cochlea and is implemen-
ted through filter banks applied to the output of each auditory channel output from
the first, low-level model. Improvements in speaker verification tasks were found
when features from the two auditory models were combined (through likelihood
score fusion) with MFCCs, compared to using the MFCCs alone.

1ETSI ES 201 108: “Speech Processing, Transmission and Quality Aspects (STQ); Dis-
tributed speech recognition; Front-end feature extraction algorithm; Compression algorithms”,
http://www.etsi.org

http://www.etsi.org
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Colombi et al. (1993) tested a biologically motivated model of the auditory
system, the Payton model (Payton, 1988). This model does not use a filter bank
to simulate auditory processing, but simulates the dynamics of the basilar mem-
brane. Its output is predicted neural firing responses for a number of points along
the basilar membrane. Speaker recognition results comparable to those with LPCC
features were found, however still with classifier techniques (VQ) and distance meas-
ures originally developed for cepstral features.

2.4.1.3 Other features and supplementary processing

Several other types of features have been tried in the context of automatic speaker
recognition, for example prosodic features, voice source features, articulatory fea-
tures and data-driven features. A number of feature post-processing methods have
also been proposed to deal with for example noise and between-session channel
variation.

Prosodic features have drawn much interest, mainly as a complement to short-
time spectral representations, though early research in ASV also considered for ex-
ample pitch as a stand-alone feature (Atal, 1972). Pitch have also been shown to be
important for human perception in discriminating between speakers (Furui, 1986),
and pitch and delta-pitch features have been successfully used in text-independent
automatic speaker recognition (Matsui and Furui, 1990; Carey et al., 1996; Sönmetz
et al., 1997). Duration and energy features have also been tested, for example by
Shriberg et al. (2005) who combined duration, energy and pitch features at the
syllable level through so called SNERFs (N-grams of Syllable-based Nonuniform
Extraction Region Features). In all cases, ASV error rates were reduced when
prosodic features were (somehow) combined with spectral features, compared to
spectral features alone.

Voice source feature approaches include using parameter values of proposed
voice source models that are automatically derived from the speech signal. For
example, Darsinos et al. (1995) and Plumpe et al. (1999) employ the Liljencrants-
Fant (LF) model (Fant, 1986), while Slyh et al. (2004) use a modified version of the
Fujisaki-Ljungqvist model (Fujisaki and Ljungqvist, 1986). Also the voice source
features were able to boost an ASV system based on spectral features. The LPC
residual (error prediction) signal, which can be seen as coarsely related to the voice
source, has also been tried for ASV purposes (Thévenaz and Hügli, 1995).

Articulatory features have recently been tried for ASV with promising results
(LcLaughlin et al., 2002; Leung et al., 2004, 2005).

Feature sets have also been derived using data-driven methods, where the basic
idea is to calculate optimal (in some sense) speech signal representations based on
a representative corpus of speech. Features have been constructed through linear
(Naik and Doddington, 1986; Olsen, 1998b) or non-linear (Konig et al., 1998; Chao
et al., 2005) transforms of some short-time spectral representation, or directly from
waveform samples (Chetouani et al., 2004). The resulting features can be target-
dependent or target-independent.
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In addition to basic feature types described thus far, several types of supple-
mentary processing of features have been tried.

Delta features (Furui, 1981; Soong and Rosenberg, 1986) are complementary to
static features and have been claimed to be more robust than static features to
between-session channel variation.

The well-known and often used Cepstral Mean Subtraction (CMS) (Atal, 1974;
Furui, 1981; Rosenberg et al., 1994) and RASTA (Hermansky et al., 1991; Morgan
and Hermansky, 1992) methods aim at removing the influence of between-session
channel variation and are often used with speech collected through telephone chan-
nels.

Feature Warping (FW) (Pelecanos and Sridharan, 2001) maps individual cep-
stral coefficients such that their distribution during a time window in the test
signal is mapped (warped) into a pre-determined target distribution, for example
a standardized normal distribution. This non-linear mapping technique gives more
importance to the relative value of a cepstral feature than to its absolute value.
The technique is claimed to be robust to linear channel effects and additive noise.
Short-time Gaussianization (Xiang et al., 2002) is proposed as a simplified case of
Gaussianization (Chen and Gopinath, 2001) and is equivalent to a linear transform
followed by the same type of transform used in FW.

Cepstral Mean and Variance Normalization (CMVN) (Koolwaaĳ and Boves,
2000) is an extension to CMS that in addition to translating cepstral features to
have zero mean also scales them to have a fixed variance. The main difference
between CMVN and FW is that in CMVN, the assumed type of distribution of a
feature in the test signal over a sliding window and the target distribution are fixed
(normal distributions), while FW, in principle, do not assume a specific shape of
the two distributions.

Feature Mapping (Reynolds, 2003) is a model-based feature transform that aims
to map feature vectors into an all-channel space. Mappings are computed on a
mixture-to-mixture basis from the top-scoring mixture term in a channel-dependent
GMM to the corresponding mixture term in an all-channel “root” GMM, where
channel-dependent models are MAP-adapted from the root GMM. The method
requires some kind of channel detection to identify the most suitable channel-
dependent GMM.

2.4.2 Classification

2.4.2.1 Similarity-based methods

Early speaker recognition experiments often used long-time averages of some speech
signal representation, and a suitable distance measure, to compare speech from a
known target speaker to an unknown sample. At that point the choice of repres-
entation was crucial for recognition performance.

Starting in the 1970s, dynamic programming techniques were employed in speech
science to compare sequences of observation vectors (templates), taking into account
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the dynamic and non-linear variation of speech in time (Sakoe and Chiba, 1978;
Rabiner et al., 1978). This technique, also known as dynamic time warping (DTW)
in the speech community, was also used successfully for speaker recognition pur-
poses (e.g. Naik and Doddington, 1986). DTW enabled text-dependent modeling
of speakers.

In the 1980s, vector quantization techniques were borrowed from the source
coding field for use in speaker modeling (Rosenberg and Soong, 1987; Burton, 1987).
A vector quantizer is defined by a number of centroid vectors (the codebook) and
a rule to assign observation vectors to centroids, using some distance measure to
compute the distance (distortion) between centroid vectors and observation vectors.
To use the quantizer for speaker recognition, a codebook is trained for each target
speaker by optimizing the location of the centroid vectors relative to the target’s
enrollment speech to minimize the over-all distortion. The test metric is the average
distortion introduced when using a target’s codebook to code a test utterance – the
smaller distortion, the more similarity between enrollment and test speech. The
introduction of VQ techniques improved modeling of speakers relative to the use
of long-time averages because the distribution of observation vectors in the speaker
space was captured in some way, not only the location of the distribution mean.
The VQ technique is inherently text-independent since the order of observation
vectors is not modeled.

A similar technique to VQ is Nearest Neighbor (NN) classification (Higgins
et al., 1993). While in VQ we represent speakers by clusters of their enrollment
data, with NN we use the unclustered enrollment data. Each vector in a test
utterance is compared to enrollment data by finding the nearest vector according
to some distance measure. The average distance is used as test metric.

While the DTW technique was able to model some of the time variations in
speech, it was poor at modeling spectral variation and higher-level variation, such
as pronunciation alternatives. The advent of hidden Markov models (HMM) in
speech recognition provided a better tool for the modeling of spectral dynamics,
because they use statistical models instead of template vectors to represent obser-
vation vectors in training data. HMMs were also tried for text-dependent speaker
modeling, where they were taken to model sub-word units (Rosenberg et al., 1990;
Matsui and Furui, 1993), whole words (Rosenberg et al., 1991) or entire passphrases.
For a detailed description of HMMs and historical remarks, see e.g. Huang et al.
(2001).

When used as target model in speaker recognition, an HMM is trained on repe-
titions of a chosen unit (sub-word, word or phrase) by the target speaker. During
training, the parameters of the HMM are chosen to optimize some criterion, e.g.
to maximize the likelihood that the model generated the seen training data. (An
overview of training methods and related problems and techniques is given below.)
The test metric is then usually the likelihood that the model generated an observed
sequence of observation vectors. Depending on the topology of the HMM, a model
can be either text-dependent (left-right HMMs (Naik et al., 1989; Rosenberg et al.,
1990)) or text-independent (ergodic HMMs (Poritz, 1982; Savic and Gupta, 1990)).
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In the special case of a single-state (continuous density) HMM, the model degen-
erates to being the probability density function (pdf) used for model observations
in that state. If the pdf is a multi-variate Gaussian mixture, the model is usually
called a Gaussian mixture model.

Gaussian mixture models (GMM) were introduced into the speaker recognition
field by Reynolds (1994, 1995). Like in the HMM case, the parameters of a (target)
GMM are trained to optimize some criterion defined on enrollment data from a
target speaker, and the test metric is the likelihood that a model generated some
observed test data. The GMM is inherently text-independent since it does not
model the order of observations.

The modeling techniques mentioned so far are all similarity-based, in the sense
that a speaker model is meant to describe how a target speaker “sounds”, or,
to be more precise, to describe how samples from the speaker are distributed in
the speaker space defined by a chosen signal representation. DTW, VQ and NN
modeling techniques are based on average distances between sample vectors, while
HMM and GMM techniques are based on likelihoods through the comparison of
sample vectors to statistical distributions. While the distance-based models, and
initially also HMM models, have been tried as self-contained classifiers by comparing
their test metric to a threshold, likelihood ratio-like detectors are today known to
give better results. In such detectors, some kind of complementary model of other
signal sources than the target speaker himself are used as a reference to compute a
relative measure, the ratio, that is used as the decision variable in classification.

Recall that speaker verification is a two-class classification problem. The task
is to determine if an unknown sample of speech originates from either the target
speaker or an impostor. Denote as ωt and ωi the two classes “target speaker” and
“impostor speaker”, respectively. Further denote as p(O|ωt) and p(O|ωi) the class-
conditional pdfs for speech represented by the random variable O, where O is an
outcome of O, i.e. an observed test utterance. When viewed as a function of ω
with O = O fixed, p(O|ω) is a likelihood function, often denoted as l(ω|O). The
log-likelihood ratio for a given O is then

log lr (O) = log l(ωt|O) − log l(ωi|O)

= log p(O|ωt) − log p(O|ωi) (2.5)

and the log-likelihood ratio detector decides on the target speaker if log lr(O) > θ
and an impostor speaker otherwise, where θ is a decision threshold. If the class-
conditional pdfs are known exactly, the (log-)likelihood ratio detector is known to
be an optimal classifier in the minimum probability of error sense (e.g. Huang et al.,
2001). In this case, the decision threshold can also be computed from the a priori
class probabilities (for minimum error probability classification) and error costs (for
minimum error cost classification). However, in practice pdfs are not known exactly
but have to be learned from enrollment data. Using one of our pdf-based models
(HMM or GMM) and some learning procedure, a straight-forward approximation
of the target class-dependent pdf can be implemented using a target model λt and
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a test metric function2 P (O|λt):

log p(O|ωt) ≈ logP (O|λt). (2.6)

An approximation of the impostor class-conditional pdf is not as obvious, since
the exact pdf involves all possible impostor speakers, and even all possible sound
sources, in the universe. The two initial approaches to likelihood ratio classification
in speaker verification used either a world model (Carey et al., 1991) or a cohort
model (Rosenberg et al., 1992) to approximate the impostor class-conditional pdf.
Essentially, the world model approach uses a single background model λworld trained
on a large number of speakers (assuming pdf-based models like the HMM or GMM)

log p(O|ωi) ≈ logP (O|λworld), (2.7)

while the cohort approach uses the sum over a target-dependent selection of N
single-speaker models λcn

log p(O|ωi) ≈
1

N

∑

n∈cohort

logP (O|λcn). (2.8)

(Several variants have been proposed, see (Rosenberg et al., 1992; Tran and Wagner,
2001) for an overview.) The so-called cohort speakers are selected by similarity to
the target speaker with the aim of creating a background model that is a good
approximation of the impostor class-conditional pdf in the neighborhood of the
target speaker’s subspace in the speaker space. Training data for the world or
cohort models must be selected with care to reduce approximation errors in (2.7)
and (2.8). This includes selecting speakers, recording conditions, text material, etc.
similar to those expected in the application in which the speaker verification system
is going to be used.

2.4.2.2 Discrimination-based methods

The Support Vector Machine (SVM) (Vapnik, 1995; Burges, 1998) is a class of
discrimination-based binary classifiers that model boundaries between two classes
of training data in some (usually high order dimension) feature space, with no
intermediate estimation of observation densities. An SVM is characterized mainly
by its kernel function.

SVMs seem to be the currently most popular type of discrimination-based
method in the ASV research community. They were initially explored in the speaker
recognition field by Schmidt and Gish (1996) for a speaker identification task using
a polynomial kernel function. Speaker verification experiments with SVMs and dif-
ferent types of kernels include Wan and Campbell (2000); Gu and Thomas (2001);

2We avoid referring to the test metric function as a pdf (and write P instead of p) to accom-
modate for cases where this function is not an exact pdf, such as when a Gaussian pre-selection
method is used to truncate a sum, like in Eq. (3.22) on p. 46.
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Wan and Renals (2002); Campbell (2002). The latter reference introduces general-
ized linear discriminant sequence kernels, with the key point of a sequence kernel
being to classify entire sequences of observation vectors rather than individual vec-
tors. In all these cases, the input to SVMs were short-time spectral representations
of speech.

Many approaches where SVMs are combined with similarity-based models have
also been suggested. Fine et al. (2001) use an SVM to perturb GMM scores on
frames where the GMM is indecisive. Kharroubi et al. (2001) use scores from
individual GMM terms in target and background models as input to an SVM that
replaces the traditional log-likelihood ratio computation. Wan and Renals (2002);
Moreno and Ho (2003, 2004) use GMMs as part of SVM kernels. Campbell et al.
(2004b) combine scores from GMMs and SVMs.

Methods for model-based channel compensation in SVMs have been also pro-
posed (Solomonoff et al., 2005).

SVM approaches with other types of features than short-time spectral features
include using prosodic features (Shriberg et al., 2005) and high-level features such
as word or bigram frequencies (Campbell et al., 2004a).

The Polynomial classifier (Campbell et al., 2002) is discrimination-based and
uses polynomial discriminant functions. It has been used successfully in text-
dependent speaker verification. The Polynomial classifier is similar to an SVM
with a polynomial kernel.

Earlier approaches to discrimination-based methods include artificial neural net-
works, such as multi-layer perceptrons (MLP), time delay neural networks (TDNN),
radial basis functions (RBF) and the neural tree network (NTN). For an overview
and references, see e.g. (Farrell et al., 1994). Recent attempts with new forms of
neural networks have also been made (e.g. Ganchev et al., 2004a).

2.4.2.3 Model estimation

This section gives an overview of estimation and adaptation techniques used for
creating HMM and GMM-based target speaker models. An estimation technique
is defined by an optimization criterion and an algorithm to find parameter values
(the model) that optimizes the criterion.

ML estimation Many estimation techniques are based on the Maximum Likeli-
hood (ML) principle. When applied to a target speaker model, the ML principle
amounts to finding the model λ̂ that maximizes the likelihood of enrollment data
O given the model

λ̂ = arg max
λ

P (O|λ). (2.9)

Usually, an iterative algorithm based on the Expectation-Maximization (EM) method
is used. Since the algorithm is iterative, a starting guess for model parameter values
is needed. The values of a speaker-independent background model is one possibility.
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The EM method is efficient and is guaranteed to lead to a locally optimal ML
solution. With good starting values, only a few iterations are usually required. One
problem with the original ML/EM technique is that, apart from the information
provided through the choice of starting values, all training is based on observed
training data. If training data is scarce relative to the target speaker’s “true” dis-
tribution with respect to his intra-speaker variability, the vocabulary used in the
application, etc., the training algorithm will focus on the available data, and there
is no fallback for regions of the (true) speaker space that are not represented in
training data. In particular, this is often a problem in estimating variance para-
meters, that require more training samples per parameter than mean parameters.
Modifications to remedy this problem have been suggested, including variance floor-
ing (Bimbot et al., 2000; Melin and Lindberg, 1999b)3 and fixed variances (Matsui
and Furui, 1993). With the former modification, the values of variance parameters
are not allowed to decrease below a given flooring value. With the latter, variance
parameters are not trained at all. Instead, speaker independent values are used,
which may for example be copied from a background model.

MAP estimation The Maximum A Posteriori (MAP) criterion provides a way to
handle scarce training data by relying on a priori information in regions where there
are few training data examples. With MAP, the model parameters are treated as
stochastic variables with an assumed known a priori distribution P (λ). The optim-
ization objective is to maximize the a posteriori probability of model parameters,
i.e. to find the most likely model λ̃ given training data

λ̃ = arg max
λ

P (λ|O) = argmax
λ

P (O|λ)P (λ). (2.10)

If output probability distributions in the model are for example Gaussian mixtures,
the EM algorithm can again be used to solve the optimization problem (Gauvain
and Lee, 1992; Lee and Gauvain, 1996). While the EM algorithm provides an iterat-
ive solution, often only a single update is used (e.g. Reynolds et al., 2000), especially
when the purpose is (conservative) adaptation of an existing model rather than cre-
ating a new target speaker model (Fredouille et al., 2000; Barras et al., 2004). The
EM update equations for model parameters have the intuitively appealing form of
weighted sums of prior and new information, where the weights are determined by
the amount of new data such that if there is much new data available to estimate a
given parameter, new data is given more weight; otherwise estimation relies more
heavily on prior data. Theoretically, this should allow also variance parameters to
be robustly estimated from scarce training data. However, ASV experiments have
shown that it may still be better to leave variances unadapted and only adapt mean
parameters (and possibly mixture term weights) (Carey et al., 1997; Reynolds et al.,
2000; Barras and Gauvain, 2003).

3see also Chapter 9
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Values for the prior distribution are in practice often determined from a speaker
independent background model (Lee and Gauvain, 1996; Reynolds et al., 2000),
though a more realistic prior distribution for speaker adaptation would probably
result from observing the distribution of model parameters in many single-speaker
models.

Discriminative training The decision rule of a likelihood ratio detector is to
maximize the a posteriori probability of the detected class given observed data,
which is known to minimize error rate if class-dependent pdfs are known exactly.
When the ML or MAP criteria are used to train the target and impostor class-
dependent pdfs (target and background models) separately for use in a likelihood
ratio detector, there is a mismatch between the decision rule and the training cri-
terion in the detector. A matching training criterion would optimize target and
impostor class-dependent pdfs jointly. Methods based on such criteria are called
discrimination-based methods, and when used in speaker verification aim at max-
imizing the acceptance of true speakers, while simultaneously minimizing the ac-
ceptance of impostors.

Several discriminative optimization criteria have been proposed for speaker re-
cognition such as Maximum Mutual Information (MMI) training (Li et al., 1995),
Minimum Error training (also referred to as Minimum Classification Error (MCE)
or Minimum Verification Error (MVE) training) (Liu et al., 1995; Rosenberg et al.,
1998), and Generalized Minimum Error Rate (GMER) training (Li and Juang,
2003). Li (2004) showed that these methods are related. For example, MMI is
equivalent to minimizing the error rate, while MCE are GMER are more general
and flexible. The two latter criteria can be made equivalent to minimum error rate
training with particular choices of parameter values in their definition.

If one of the mentioned discriminative training methods are used in a speaker
verification system in their original design, either all target models must be trained
together with the background model(s), or one separate (set of) background model(s)
must be trained together with each new target model. The first case poses a prob-
lem with enrolling new speakers into the system, since the background model and
all other target models need to be re-trained for optimal performance (Liu et al.,
1995). In the second case, determining a decision threshold may be an issue, and
the speaker-dependent background model(s) adds to model storage requirements.

Two other discriminative training criteria were suggested by Navrátil and Rama-
swamy (2002) and called DETAC by a common name. They are formulated to
translate and rotate the DET curve (Martin et al., 1997) to optimize it for a given
operating point by modifying score distributions through either a feature space
transform (fDETAC) or at the score level in score-level fusion of multiple classifiers
(pDETAC). Li et al. (2002) proposed a method called Figure of Merit (FOM) train-
ing that also operates on a specified region of the DET curve. They use a gradient
descent scheme to adjust target model GMM parameters to optimize false accept
and false reject rates, where the gradient is computed from a smoothed DET curve.
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Model transformation techniques Two interesting and recently proposed model
transformation techniques are reviewed here. The first technique aims at redu-
cing between-session handset and channel mismatch in speaker models, while the
purpose of the other is to increase modeling accuracy of Gaussian mixtures with
diagonal covariance matrices.

Speaker Model Synthesis (SMS) (Teunen et al., 2000) is a speaker-independent
transform of GMMs that aims at reducing channel mismatch between enrollment
and test. Like in the Feature Mapping method (p. 17), a root GMM is trained
on data from all available channels, and channel-dependent (background) GMMs
are created through MAP adaptation of the root model. A transform can then be
computed for each pair of corresponding mixture components from the (speaker-
independent) GMM for channel A to that for channel B. These transforms can be
applied to a target model trained on data from channel A to synthesize a model
matching channel B, assuming that the target model has been created through
MAP adaptation from the background model for channel A. This method requires
channel detection to identify the most suitable channel GMM.

Maximum Likelihood Linear Transform (MLLT) (Chaudhari et al., 2003) makes
use of a set of linear, mixture component-dependent feature-space transforms. The
transform for a particular Gaussian mixture component is derived to minimize the
loss of likelihood in the assumption of diagonal covariance in the mixture compon-
ent. Once computed, the MLLT transform is applied to both the (original) GMM
parameters and the (original) feature space, with the result that the model is eval-
uated in a feature space translated and scaled in different ways in different parts of
the original feature space.

2.4.3 Score normalization methods

This section gives a short overview of some of the normalization methods proposed
for use in speaker recognition. The purpose of normalization is usually to reduce
mismatch between enrollment and test conditions, and thereby add robustness to
various sorts of variability, such as channel, noise or text variability, or to make a
target-independent threshold more efficient. Methods can be grouped according to
in which part of an ASV system they operate, whether in the feature, model or score
domain. Some of the methods operating in the feature domain were reviewed in
the section on Feature extraction (p. 17), and two methods operating in the model
domain were described above. We will continue here with methods operating in the
score domain.

A collection of popular score normalization methods have in common that they
perform distribution scaling by translating and scaling the log-likelihood score of a
likelihood ratio detector to standardize its distribution according to some criterion.
Their purpose is to compensate for some structural mismatch between for example
target models or between enrollment and test data. Methods include Zero nor-
malization (Z-norm) (Reynolds, 1997a), its handset-dependent extension H-norm
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(Reynolds, 1997a), Test normalization (T-norm) (Auckenthaler et al., 2000; Navrátil
and Ramaswamy, 2003), and Distance normalization (D-norm) (Ben et al., 2002).

The world model (Carey et al., 1991) and cohort model (Rosenberg et al., 1992)
approaches to implementing the impostor class-conditional pdf in a likelihood ratio
detector, introduced on p. 20, can also be viewed as score normalization methods.

For good overviews and systematizations of score normalization methods for
text-independent speaker recognition, see (Auckenthaler et al., 2000; Mariethoz
and Bengio, 2005). (Barras and Gauvain, 2003) compared several feature and score
normalization methods (CMS, CMVN, Feature Warping, T-norm, Z-norm and the
cohort method) on text-independent cellular data (NIST 2002 evaluation data) in a
GMM-based system. The best performance was found for a combination of Feature
Warping and T-norm.

While most of the mentioned score normalization methods were originally pro-
posed for text-independent speaker verification, in principle, they can all be applied
also in text-dependent verification.

World and cohort modeling are standard techniques in text-dependent systems
using small vocabularies, for example vocabulary-dependent systems based on di-
gits. In the case of unrestricted vocabularies such as when a client is free to choose
his own passphrase, the problem of how to create good background models occurs.
Ideally, background models should have perfect lexical coverage, i.e. be trained on
the same phrase or at least the same vocabulary as target models. However, it
is not realistic to collect speech data for training phrase-dependent or even word-
dependent models for every selected passphrase in a large-scale system, so some
other solution is needed. A number of solutions have been proposed, for example
sub-word background models (Parthasarathy and Rosenberg, 1996), using a crude
model trained on the target’s enrollment data (Siohan et al., 1999), lexically biasing
a text-independent background model towards the target model (Hébert and Peters,
2000), or synthesizing background models by selecting individual observation dis-
tributions from a set of pseudo-impostor models (Isobe and Takahashi, 1999). A
similar problem occurs when applying T-norm in the text-dependent case (Hébert
and Boies, 2005).

2.5 Performance assessment

To assess the performance of a speaker verification system, error rates need to be
estimated. There are several issues related to error rate estimation. First, test trials
are needed to provide data for our estimation. A suitable speaker verification corpus
must be identified, or a field trial or corpus evaluation needs to be designed and
implemented to collect test trials. Second, relevant estimates of error rate from test
trial results must be computed. This involves formulating relevant quantities and
estimating them. The output is a list of measures of what we like to call technical
error rate. Third, the statistical uncertainty in estimated error rates should be
quantified. Fourth, technical error rates need to be interpreted with respect to
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some particular use of the speaker verification system – the target application. The
most critical element in this interpretation is to compare the evaluation factors,
i.e. conditions under which our data were collected, to the conditions that will
prevail in our target application. Are the two sets of conditions equivalent, or are
there differences that may affect error rate? Conditions such as the amount and
quality of enrollment and test data, channel and noise variability, inter- and intra-
speaker variability, speaker group homogeneity, impostor dedication, and impostors’
possibility of finding out secret passwords and account information may play a role
here. See also (Oglesby, 1995; Doddington, 1998) for good discussions on these
topics.

While error rate is usually the most important aspect of an ASV system, seen
as a component technology, other aspects may also be of interest for an overall
assessment of how “good” the system is. For example, it follows from the third
issue listed above that error rate figures do not make much sense if taken out of
context, and hence, evaluation factors like requirements on the amount and quality
of enrollment and test data, channel and noise variability, etc. must be taken into
account. Oglesby (1995) suggested the use of a performance profile, where a few
key numbers are used to present the performance of an ASV system, including
error rate, storage requirement for target models, speech quality, speech quantity
and speaker density.

Mansfield and Wayman (2002) is a good “best practices” document for assess-
ment of technical error rate in biometric systems in general.

When assessing an entire application where an ASV system is a component,
issues such as user interface design and user psychology (Ashbourn and Savastano,
2002) are also important.

2.5.1 Performance measures

The most commonly used error measures for an ASV system in a real application are
the average false reject rate (FRR) and the average false accept rate (FAR). These
measures assume an a priori decision threshold and are conventionally estimated
with Maximum Likelihood (ML) estimates















FRR =
number of false rejects

number of true-speaker tests

FAR =
number of false accepts

number of impostor tests
.

(2.11)

Other names for the false reject rate are miss rate or Type-I error rate, while
corresponding names for the false accept rate are false alarm rate or Type-II error
rate. The Detection Cost Function (DCF) (Martin and Przybocki, 2000) combines
the FRR and FAR into a single number

DCF = CFR · P (true speaker) · FRR + CFA · P (impostor) · FAR (2.12)
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where CFR and CFA are costs assigned to the two types of error and P (true speaker)
and P (impostor) are a priori probabilities. The Half Total Error Rate (HTER) is
a special case of the DCF

HTER =
1

2
(FRR + FAR). (2.13)

For cases where a decision threshold is not specified a priori, results are often
presented in terms of a Detection Error Trade-off (DET) curve (Martin et al.,
1997), where the trade-off between FRR and FAR for all possible (a posteriori)
threshold values are drawn as a curve, or in terms of the equal error rate (EER).
The EER is the error rate at an a posteriori threshold at which the FRR equals
the FAR.

The purpose of the DET curve is to show FRR/FAR trade-off over a range
of operating points (threshold selection criteria), to for example let application
developers choose the appropriate operating point and the corresponding threshold
suitable for their application. To a selected operating point on the DET curve
corresponds a pair of FRR/FAR that could be taken as a prediction of ASV error
rate in the application. However, the pair of FRR/FAR at a selected point is only a
good estimate of actual application performance if evaluation factors affecting the
choice of the decision threshold are really equivalent between a data set used to
compute the DET curve and application use. If there is a systematical difference,
there will be a threshold bias. The result is that the criterion for the selected
operating point, for example an EER criterion or a targeted FAR, will no longer be
met. One ASV system may be robust in the sense that the threshold bias is small,
while other ASV systems may be very sensitive in this respect. To assess such
robustness, separate data sets must be used: a development or validation set for
selecting a threshold and a test set for testing the threshold. Bengio and Mariéthoz
(2004a) suggested a procedure to implement this assessment and visualize the result,
still for a range of possible operating points. A resulting curve is called Expected
Performance Curve (EPC). An EPC shows what error rate is found on a test set,
given that the decision threshold was selected according to some criterion and a
validation data set.

2.5.2 Statistical significance

Performance figures estimated from an experiment are usually point estimates of
some underlying “true” performance parameter. For example, assume we want
to measure the overall FRR p of an ASV system. We let a test group make a
number of true-speaker attempts and then estimate a value p̂ for p as the fraction
of attempts that resulted in a reject decision. p̂ is then a point estimate of p on
our observations. This point estimate may have a bias and a random error. A bias
is a systematic error that may result for example from the test group not being
a representative sample of the intended user population, while random errors are
errors that result from chance. If the same experiment were to be repeated several
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times under identical conditions, the result would be different from time to time
due to random errors. The purpose of an interval estimate is to specify a lower and
an upper limit on the “true” value of the parameter given our experiment, thereby
quantifying the random error inherent in the measurement. If the limits are defined
such that they capture the “true” parameter value with a given probability, they are
called confidence limits, and the interval between the limits is a confidence interval.
Interval estimates in general, and confidence intervals in particular, can be useful in
determining the statistical significance of results from an experiment, or in testing
a hypothesis about the performance of an ASV system. In this section we discuss
how to determine confidence intervals in ASV experiments.

To derive confidence intervals for error rate performance measures in ASV we
first need a statistical model for how verification errors are generated. Assume
false reject errors by an ASV system for a given target speaker are generated at
random and without memory at a constant rate, i.e. assume each true-speaker test
is a Bernoulli trial with a constant error probability p. Define X as the random
variable for the number of errors observed in N = n independent trials4. X is then
binomially distributed with probability mass function

PX (x|p) =

(

N

x

)

px(1 − p)N−x (2.14)

with mean Np and variance Np(1−p), while the observed error rate x/N has mean
p and variance p(1 − p)/N . A 1 − α confidence interval5 for x is defined as an
interval [a1, a2] that satisfies6

a2
∑

x=a1

PX (x|p) ≥ 1 − α (2.15)

and indicates an interval within which a measurement x falls with probability 1−α.
In other words, if we make N independent true-speaker tests with a target speaker
and an ASV system with the “true” false reject error rate p for this target speaker,
we have at least a 1−α chance that the observed number of errors will be between
a1 and a2 inclusive, thus the observed error rate will be between a1/N and a2/N ,
inclusive. For example, assume p = 0.04 and N = 300. Then a 95% confidence
interval (α = 0.05) for the observed number of errors is 6 ≤ x ≤ 19 and the
corresponding interval for the observed error rate is 0.020 ≤ x/N ≤ 0.063. Call
this type of confidence interval a pre-trial confidence interval.

A confidence interval for the true error rate p given an observation of x in N
independent trials can be defined similarly. Note that in this case, the confidence

4Later in this section we will take n to denote the number of trials from a single speaker, and
N the total number of trials in a series of trials from multiple speakers.

5α is called the level of significance
6We formulate (2.15) as an inequality because the binomial distribution is discrete and it may

not be possible to find values for a1 and a2 that give an interval with probability exactly 1 − α.
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limits are functions of the random variable X , a1 = a1(X) and a2 = a2(X), and
the interval indicates a range that covers p with probability 1 − α. Call this type
of confidence interval a post-trial confidence interval.

A pre-trial confidence interval can be useful for example when planning a corpus
collection or a service trial since it can give an indication of the required number
of samples. A problem is that before the samples have been collected we have little
possibility to evaluate the assumptions our derivation of the significance interval
were based on, and we run a risk of under-estimating the required sample size.
Post-trial confidence intervals are used to present uncertainty in observation. Since
we in this case have access to the observation data, chances are better for making
a good interval estimate.

2.5.2.1 Dealing with invalid assumptions

To apply confidence intervals to real data, we are faced with the issue of judging
whether the above assumptions about false reject errors being generated at random
and without memory at a constant rate for a given target are valid. In particular,
are trials independent (“without memory”) and is the error rate constant?

The made assumptions are obviously not strictly valid. For example, mismatch-
ing input channels, background noise, learning effects and temporary voice changes
from head colds are likely to vary the error rate over time as they occur. Recent
experience of erroneous decisions may influence a claimant to alter his speaking,
causing attempts to be not strictly without “memory”. Thus, the model of true-
speaker tests as a series of Bernoulli trials with constant error probability is not
strictly valid, i.e. our model is flawed. Though some of the deviations from the
model may result in smaller variance, the gross effect of all deviations should be an
increased uncertainty in observations (increased variance in both X and X/N) and
thus a wider confidence interval than that resulting from the binomial distribution.
To incorporate the full effect of model mismatches and observation dependencies
into a mathematical model is hardly realistic. However, a first-order approximation
of an increased variance could be included in the calculations of the confidence in-
terval by multiplying variances by a factor k > 1, for an adjusted error rate variance

σ2
p :=

p(1 − p)k

N
. (2.16)

With a normal approximation of the resulting sample distribution, the multiplica-
tion of the variance by k results in a confidence interval

√
k times wider. If we still

want to use the binomial distribution, we can think of the modified variance under
(2.16) as resulting from an assumed number

N ′ = N/k (2.17)

of independent trials from the binomial model corresponding (in terms of variance
in observed error rate) to the N partially dependent trials from the real world.
N ′ would then be used in the calculation of the confidence interval together with
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a proportionally reduced number of observations x′ = x/k. Resulting confidence
limits on the number of observations will relate to x′, while in the limits on error rate
the scale factor will cancel out since x′/N ′ = x/N . With this simple approximation
of the effect of partial dependence between observations and flaws in our error
generation model, we assume observations x′ are still binomially distributed. In our
above example, assume the 300 trials are partially dependent and in a statistical
sense correspond to say 100 independent trials. The 95% confidence interval for
the observed error rate is then 0.010 ≤ x/N ≤ 0.080 instead.

But how do we determine the equivalent number of independent trials, and is the
binomial distribution still valid at all? For the determination of pre-trial confidence
intervals, these are open questions. With post-trial intervals, on the other hand,
one possibility may be to estimate the variance s2p̂ in observed error rate using a
resampling method7, such as the bootstrap (e.g. Politis, 1998), and then compute
a corresponding N ′ such that the variance from the binomial p̂(1 − p̂)/N ′ equals
the estimated variance, i.e.

N ′ =
p̂(1 − p̂)

ŝ2p̂
(2.18)

and subsequently

k =
N

N ′
=

Nŝ2p̂
p̂(1 − p̂)

. (2.19)

This still assumes the binomial distribution is valid.
Confidence intervals were defined above for the task of estimating FRR for

a single target speaker from n trials by this speaker. A more common task is to
estimate an overall FRR for a population of target speakers. Assuming a single trial
from each of M independent target speakers and a “true” fixed overall error rate p,
confidence intervals could be computed like above from the binomial distribution.
Here, practical issues are to judge if subjects are representative of the intended
population, and if trials from subjects are independent. Again we have a problem
with the model assumptions in that the error rate has been shown to depend on
the target (Doddington et al., 1998), and thus it is not constant over trials.

The situation becomes more complex if we want to use confidence intervals
with pooled true-speaker tests from several target speakers with multiple trials per
speaker, say M targets with n trials per target for a total of N = Mn trials8.
Using (2.17) we get N ′ = Mn/k. Schuckers (2003b) suggests the beta-binomial
distribution as a more appropriate model for this case than the binomial. With this
model, error rate for a given target speaker is described as being drawn from a beta
distribution, and the usual binomial distribution then describes the generation of
observations from that speaker. According to Schuckers, this leads to a variance in

7statistical resampling refers to a variety of methods based on repeated sampling of already
collected samples

8This is a cluster sampling technique, where each target corresponds to a sampling unit and
we take multiple samples from each sampling unit (Snedecor and Cochran, 1967)
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observed overall error rate the same as in (2.16) withN = Mn, and with k expressed
in the model parameters (α, β and the number of observations per speaker n), or,
even more interestingly, in (Schuckers et al., 2004) as9

k = 1 + (n− 1)ρ (2.20)

where ρ is said to represent the intra-speaker correlation and n is the number of
observations per speaker. Choices k = 1 (ρ = 0) and k = n (ρ = 1) correspond to
the two extremes in the assumption of partial dependence between observations.
The first case assumes that all tests in a test set are independent, while the second
case assumes that repeated true-speaker tests by a given target are dependent
(always give the same result) and thus the number of independent tests equals the
number of targets. The independence assumption in the first case is true in the
sense that tests are based on distinct recordings, but it is false in the sense that
recordings from a given target are dependent through the target. Basically, the
problem is that tests are dependent at (at least) two different levels10: two tests
from the same speaker are more dependent than tests from two different speakers.
Thus, relevant confidence intervals probably result from a choice of k somewhere
in between the two extreme cases, i.e. 1 < k < n (0 < ρ < 1).

For post-trial confidence intervals with n trials per target, the variance of the
estimate p̂ can be estimated from observed data. Snedecor and Cochran (1967);
Mansfield and Wayman (2002) provide formulas based on observed individual error
rates as

ŝ2p̂ =

∑

i(pi − p̂)2

M(M − 1)
(2.21)

where pi is the fraction of false reject errors (individual error rate) observed for tar-
get i. In the case of ni trials per target, the variance estimate can be approximated
as

ŝ2p̂ =

∑

i

{

(

ni
n̄

)2
(pi − p̂)2

}

M(M − 1)
(2.22)

where n̄ is the average number of attempts per target. Schuckers et al. (2004)
provide other formulas to estimate ŝ2p̂ based on the assumption of a beta-binomial
model, but they are also based on individual error rates as input. (Schuckers
et al. already drew the parallel between the methods and also claimed that the
two methods, when used to estimate confidence intervals, produce similar results,
at least for large M .)

Given an estimate of ŝ2p̂, (2.18) can be used to determine an estimate of an
equivalent (in terms of variance) total number of tests N ′ under the binomial.
With N = Mn (or N = Mn̄ in conjunction with (2.22)) a value for k can then
be calculated from (2.19). Mansfield and Wayman (2002) proposed this approach

9for the case of an equal number of tests per speaker
10within and between sampling units
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to computing post-trial confidence intervals, together with the use of a normal
approximation of the binomial distribution.

In both the mentioned approaches, confidence intervals are computed from a
normal approximation of the sample distribution, where the variance of the normal
distribution is calculated from data under assumptions of binomial or beta-binomial
distribution. However, the binomial is approximately normal only for large N and
not too small p, but in the case of ASV p may be quite small. Hence, in some
cases it may be better to compute confidence intervals from the binomial directly11

using the N ′ calculated from the estimated variance. A drawback with using the
binomial with N ′ < N is that there are fewer values on x′ than on x and confidence
limits are therefore quantized by larger steps between values on x′. Furthermore,
values x′/N ′ are “virtual” in that they don’t (necessarily) correspond to observable
error rates on x/N .

The approaches described above for determining confidence intervals are para-
metric since they are based on a binomial (or beta-binomial) model. Non-parametric
approaches have also been proposed, based on resampling techniques. Bolle et al.
(2004) compared three resampling (bootstrap) methods to the parametric binomial
method in terms of coverage12 on cluster sampled fingerprint data (multiple im-
pressions from each person and index finger) and concluded that subset bootstrap
methods performed better than the conventional “global” bootstrap and the bi-
nomial method. With the subset methods, the original cluster sampling strategy
is maintained in resampling, and Bolle et al. claim the advantage of the subset
methods is that they better capture dependencies within clusters (in this case per-
sons or fingers). Schuckers et al. (2004) compared these and additional methods
on simulated data from a correlated binary distribution, and found that in gen-
eral, a parametric Logit beta-binomial method (Schuckers, 2003a) worked best in
terms of coverage, except when the correlation between samples (ρ) is “large” and
the product Mp̂ is “small”, in which case a non-parametric resampling technique
called Balance Repeated Replicates (Michaels and Boult, 2001) was better.

Dass and Jain (2005) proposed a semi-parametric method to compute confidence
bands for DET curves.

See Dialogues Spotlight Consortium (2000, Appendix A) for further analysis of
issues in applying theoretical confidence intervals to real data, and (Bengio and
Mariéthoz, 2004b) for methods to compute confidence intervals for aggregate error
rate measures such as DCF and HTER.

2.6 Corpora

To develop and evaluate practical ASV systems, example speech data are usually
needed. For reproducible results, this speech data are preferably well documented
and packaged into a speech database, or a speech corpus, by which we mean a finite

11or rather a better approximation of the binomial with corrections for skewness
12coverage indicates how often a confidence interval covered the “true” parameter value
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collection of speech data in non-volatile storage. A speaker verification corpus is a
speech corpus suitable for experiments in speaker verification. The main difference
between a corpus suitable for speaker verification and one targeted for speech re-
cognition is the need for intra-speaker variability coverage. The recordings should
preferably be spread over time to capture both long-time changes and colds, sore
throats, mood, and other sources of short-time variation in speakers. Alternatively,
or in addition, other variations may be covered depending on the focus of research,
e.g. handset variation (Reynolds, 1997b).

Depending on the purpose of ASV experiments, there may exist a suitable pub-
lic corpus, or a dedicated corpus need to be collected. In general, the closer to
application deployment in a development process, the smaller chance there exists a
suitable corpus. Hence, generic research in algorithmic aspects of ASV can usually
be done with existing, more or less generic, corpora, while tuning of an ASV system
before application deployment must usually be done with bootstrap data collected
from (an initial version of) the application itself.

Many speaker verification corpora exist, covering many languages. Some of
the corpora are publicly available through the major corpus distribution agencies
LDC13 and ELRA14, or from elsewhere. See Melin (1999); Campbell and Reynolds
(1999); Ortega-Garcia and Bousono-Crespo (2005) for overviews of existing corpora.

13http://www.ldc.upenn.edu/
14http://www.elra.info/

http://www.ldc.upenn.edu/
http://www.elra.info/
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Chapter 3

The speaker verification systems

3.1 Introduction

This chapter describes the speaker verification research systems used in this thesis:
a text-dependent (sub-)system based on word-level hidden Markov models (HMM),
a text-independent (sub-)system based on Gaussian mixture models (GMM), and
a score level combination of the two. The HMM system, and variants of it, are
used stand-alone in Chapter 8 that compares different prompting strategies, and
Chapter 9 that looks at variance estimation techniques for HMMs. The combined
system is used as a component in the PER system and is used for experiments
in Chapter 7 on robust error estimation techniques, and Chapter 10 with various
results from the PER system and data collected with it.

All speaker verification research systems used in this thesis are built on GIVES,
a generic framework for speaker verification systems developed by the author at
KTH Center for Speech Technology (CTT). This framework is shortly described.

In addition to the research systems described in this chapter, a commercial
speaker verification system has also been used. Results for this system are included
in Chapters 7 and 10 in addition to results from the research systems. For reasons
of proprietary interests the design of this commercial system cannot be described
here, nor may the identity of the system be disclosed.

3.2 Notation and common features

The HMM and GMM subsystems share several features. These features are de-
scribed in this section together with some notation used later. In the following, the
letter ξ will be used to refer to a subsystem, with ξ = H for the HMM subsystem
and ξ = G for the GMM subsystem.

37
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3.2.1 Feature extraction

The input signal1 is pre-emphasized and divided into one 25.6 ms frame every 10 ms.
A Hamming window is applied to each frame. 12-element2 mel-frequency cepstral
coefficient (MFCC) vectors are then computed for each frame using a 24-channel,
FFT-based, mel-warped, log-amplitude filter bank between 300-3400 Hz followed by
a cosine transform and cepstral liftering. Both subsystems use these MFCC vectors,
while their use of energy terms, delta features and feature post-processing differ,
mainly as a result of the subsystems having been optimized rather independently
during separate threads of development (see also Section 10.2.1).

3.2.2 Classifier units

Classifiers in both subsystems share a basic classifier unit structure. Refer to a
classifier unit in subsystem ξ as ψ = ξu, where u is an index that uniquely identifies
the classifier unit within the subsystem. This classifier unit has one target model
and two gender-dependent background models. Target models represent the voices
of particular speakers (legitimate users of the system, or clients), while background
models represent the voices of universal groups of speakers, in this case male and
female speakers. Background models are used for two purposes: as seed models
during the training phase, and for score normalization during the verification test
phase.

Each classifier unit ψ defines one or more likelihood functions P ψ(O|λ) used to
evaluate the similarity between an observation sequence O and the model λ. In
the following, λψ will denote parameters of the target model for a particular target
speaker (the client whose identity is claimed during an enrollment or test session)
while λ

male
ψ and λ

female
ψ will denote parameters of the two background models in

classifier unit ψ.
The data and operation of classifier units within the system are independent

of each other during both the training and verification test phases: units share no
model parameters and the data processing within one unit takes no input from the
processing in other units. Units may operate on the same part of input speech,
though.

3.2.2.1 Training phase

Assume that all relevant word repetitions and their boundary locations in the en-
rollment speech are known from the output of an automatic speech recognizer3.

1at 8 kHz sampling rate (see Section 5.2 (p. 79) for particulars about the on-site PER system)
2does not include the 0’th cepstral coefficient
3cf. Section 5.6 (p. 85) for the procedure used in the PER system
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Denote all valid4 enrollment data from a given enrollee

O
enroll

=
⋃

w∈W

{Ow,1, . . . ,Ow,Rw}

where w is a word in the application vocabulary W
5, Ow,r = {o(w,r)

1 . . .o
(w,r)
Nw,r

}
is the observation sequence corresponding to the r’th valid repetition of word w
(a word segment), Nw,r is the length of that observation sequence, and Rw is the
number of valid repetitions of word w.

Since classifier units may be trained on different subsets of the data, introduce
O

enroll

ψ to denote the subset of O
enroll

used to train unit ψ. Rather than training
a target model directly from this data, an adaptation procedure is used. While the
actual adaptation method depends on the implementation of the classifier unit, the
first step in the adaptation procedure is the same for all classifier units. Based on
the enrollment data, one of the two background models is selected as a seed model

λ
gseed

ψ

ψ , using an automatic gender detector

gseed
ψ = arg max

g∈{male,female}

Pψ(O
enroll

ψ |λgψ). (3.1)

That is, if the male model fits better to the data, the male model is chosen, otherwise
the female model is chosen. Note that no a priori information about the gender of
the enrollee is used in this selection, and that gender selection in one classifier unit
is independent of other classifier units in the system.

The seed model is then used as a basis for target model adaptation as described
for each of the two subsystems below.

3.2.2.2 Verification test phase

To test a claim for a given target identity put forward by a claimant speaker,
a test utterance is first collected. Again assuming all relevant word repetitions
and their boundary locations are known from the output of an automatic speech
recognizer, a test utterance with L words is denoted O

test
= {O1 . . .OL}, where

Oi = {o(i)
1 . . .o

(i)
Ni
} is the vector sequence corresponding to the i’th word segment

in the utterance. Denote as w(i) the word spoken in segment i. The exact function
used by classifier units to score a test utterance given an identity claim varies
between units, but it always has the form

zψ = F
(

O
test|λψ, gψ(O

test
)
)

, (3.2)

4assuming the application somehow checks collected utterances for validity; see for example
Section 5.5 (p. 84) for the procedure used in the PER system

5for example W = {0, . . . , 9, name} as in the PER system
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where λψ is the model created for the target identity from the target’s enrollment
data, and

gψ(O
test

) = argmax
g∈{male,female}

Pψ(O
test|λgψ) (3.3)

is a gender detector like the one used in the training phase, but it uses test data
instead of enrollment data to make the gender selection.

This method of selecting a background model has been referred to as an uncon-
strained cohort by other authors (Ariyaeeinia and Sivakumaran, 1997). It differs
from the traditional cohort method (Higgins et al., 1991; Rosenberg et al., 1992) in
that the selection is based on similarity to a test segment rather than to enrollment
data. However, our method differs slightly from both the traditional cohort method
and the unconstrained cohort method in that the competing models are only two
and represent groups of speakers (genders) rather than individual speakers.

3.3 The text-dependent HMM system

The HMM subsystem is text-dependent and operates in a prompted mode with
digit string utterances only6. Except for how background models are selected dur-
ing the test phase, the system is the same as the baseline system described and
tested in (Melin et al., 1998) and (Melin and Lindberg, 1999b). In this section,
the design of the HMM subsystem is described relative to the common subsystem
features described in Section 3.2. The modified background model selection method
is described and evaluated.

3.3.1 Feature extraction

The basic 12-element MFCC vector (Section 3.2.1) is extended with the 0’th cepstral
coefficient (frame energy). Cepstral mean subtraction is applied to this 13-element
static feature vector, and first and second order deltas are appended. The total
vector dimension is 39.

3.3.2 Classifier units

The HMM subsystem contains ten classifier units ψ = H0 . . .H9, one classifier
unit per digit word. Models are continuous word-level left-to-right HMMs with
16 Gaussian terms per phoneme in the represented word distributed on two states
per phoneme7 with an eight-component Gaussian mixture observation probability
density function (pdf) per state. Gaussian components have diagonal covariance
matrices. The choice of 16 terms per phoneme is based on development experiments
on Gandalf data in preparation for previous work (Melin et al., 1998), while their
partitioning into two states with eight terms each is somewhat arbitrary as shown

6it ignores the name parts of enrollment and test data in the PER case
7Swedish digit words have between two and four phonemes per word.
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by Bimbot et al. (2000). Denote the target HMM in classifier unit Hw for a given
client as λHw = {cw,mw,σ

2
w,Aw} where cw, mw and σ

2
w are vectors of all mixture

weights, mean values and variance values, respectively, and Aw is the matrix of
transition probabilities.

3.3.2.1 Training phase

A target model λHw for the word w and a given client is trained on all Rw
valid examples of the word spoken during the client’s enrollment session8. That
is, training data O

enroll

Hw
for classifier unit Hw is a subset of O

enroll
such that

O
enroll

Hw
= {Ow,1, . . . ,Ow,Rw}, where observations are 39-dimensional feature vec-

tors as described in the previous section.
Given the training data, one of the gender-dependent background models is

first selected as a seed model using a gender detector (Eq. 3.1). The seed model is
then used as a basis for target model training: transition probabilities and variance
vectors are left as they are, while mean vectors and mixture weights are trained
from the data. Training is performed with the Expectation Maximization (EM)
algorithm to optimize the Maximum Likelihood (ML) criterion

(ĉw, m̂w) = arg max
(cw ,mw)

P (O
enroll

Hw
|cw,mw,σ

seed
w

2
,Aseed

w ), (3.4)

where σ
seed
w

2
and A

seed
w are the fixed variance and transition probabilities taken

verbatim from the seed model λ
gseed

Hw

Hw
. The seed means and mixture weights are

used as starting values in the first iteration of the EM algorithm (Rosenberg et al.,
1991).

Background models were trained with the EM-algorithm and the ML criterion.
After initializing models with a single Gaussian per state, Gaussians were split into
2 → 4 → 6 → 8 Gaussians per state and re-estimated with up to 20 EM iterations
after each splitting operation. A fixed variance floor of 0.01 was used, but only
0.1% of all variance parameters received a value less than twice the floor.

3.3.2.2 Verification test phase

The likelihood function implemented by the classifier unit (during the verification
test phase) is the Viterbi approximation of the probability of observation data given
a model, i.e. the probability of observations given the model and the most likely
path:

PHw (O|λ) = max
S∈Ω

P (O|λ,S) (3.5)

where S is a certain path through the HMM λ and Ω is the set of all possible paths.
The notation PHw (O|λ) is used to indicate this is the likelihood function used in
classifier unit ψ = Hw (cf. Section 3.2.2).

8in the PER-system, Rw = 5 (for digits)
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Given a target model and a test utterance, a classifier unit produces an output
score value sHw for each word segment i for which w(i) = w:

sHw (i) =
1

Ni

(

logPHw(Oi|λHw ) − logPHw (Oi|λgHw)
)

(3.6)

and for the entire test utterance

zHw =

{

1
LHw

∑

i:w(i)=w sHw(i), LHw > 0

0, LHw = 0
(3.7)

where
g = gHw

(

O
test

Hw

)

is the gender detected for the test utterance in the same classifier unit, Eq. (3.3), and
Ni is the number of observation vectors in word segment i. O

test

Hw
= {Oi : w(i) = w}

is the subset of the test utterance where word w is spoken, and LHw the number of
word segments in this subset (i.e. the number of repetitions of word w).

The score output value zH from the entire HMM subsystem for a test utterance
O

test

H =
{

Oi : w(i) ∈ {0 . . . 9}
}

(the subset of O
test

where a digit word is spoken) is

zH =
1

LH

9
∑

u=0

LHuzHu =
1

LH

∑

i:w(i)={0...9}

sHw(i), (3.8)

where LH is the number of word segments in O
test

H .

3.3.3 Background model selection

The background model selection method in this system is different from the one used
in our previous publications (Melin et al., 1998) and (Melin and Lindberg, 1999b),
where the background model was chosen based on similarity to enrollment data like
in the traditional cohort method. The purpose of selecting a background model
based on similarity to the test segment is to circumvent a well-known problem with
traditional cohorts and dissimilar impostors. If the background model is trained on
data “close” to the target speaker, then both the target model and the background
model will be poor models in regions of the sample space “far away” from the target
speaker. Hence, the likelihood ratio test will not be a good test for dissimilar
speakers, such as cross-sex impostors. By selecting the background model that
is closer to the test segment, the likelihood ratio test is more likely to reject a
dissimilar impostor. The advantage of the used method is evident from Figure 3.1,
where same-sex (on the left) and cross-sex (on the right) DET curves are shown
for both methods. These curves are from experiments on the Gandalf corpus with
identical enrollment and test sets as were used in (Melin and Lindberg, 1999b).
Results show that the unconstrained cohort method reduces cross-sex imposture
rate considerably, at no loss in same-sex imposture rate.
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Figure 3.1: DET plots for the HMM subsystem with two different methods for
selecting from one of two gender-dependent background models: by similarity to
enrollment data (traditional cohort) or by similarity to test data (unconstrained
cohort). Test data is from the Gandalf corpus with single-session, one-minute en-
rollment and two four-digit test utterances. DET curves are shown for both the
development (dev) and the evaluation (eva) sets. Curves in a) are based on same-
sex impostor attempts, while curves in b) are based on cross-sex impostor attempts.
True-speaker tests are the same in a) and b).

3.4 The text-independent GMM system

The GMM subsystem is inherently text-independent, though in this thesis it is used
in a prompted, text-dependent way in the sense that enrollment and test utterances
are always composed of words from the same vocabulary9. Background models are
still used text-independently, however. The GMM-specific modules for the GIVES
framework were initially developed as part of a student project (Neiberg, 2001), and
then extended by Neiberg in conjunction with CTT’s participation in the 1-speaker
detection cellular task in the NIST 2002 Speaker Recognition Evaluation (NIST,
2002). Experiments on a PER development set of Gandalf data (Section 10.2.1,
p. 193) were then used as the basis for selecting the particular configuration of
the GMM subsystem used in this work. This section describes the design and
configuration of the subsystem in detail. It is included for completeness since the
GMM system is used in the thesis and because not all parts of the description were
published elsewhere.

9proper name and digits in the PER case
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3.4.1 Feature extraction

The basic 12-element MFCC vectors (Section 3.2.1) are RASTA-filtered (Hermansky
et al., 1991) and first order deltas are appended. The total vector dimension is 24.

3.4.2 Classifier unit

The GMM subsystem contains a single classifier unit ψ = G0, where target and
background models are 512-component Gaussian mixture pdfs with diagonal co-
variance matrices, also known as GMMs (Rose and Reynolds, 1990; Reynolds,
1995). Denote the parameters of the target GMM in the classifier unit as λG0

=
{ck,mk,σ

2
k}Kk=1, where ck is the weight and mk and σ

2
k the vectors of mean and

variance values of mixture term k, and K = 512 is the number of terms10 in the
model

p(o|λG0
) =

K
∑

k=1

ckφ
(

o|mk,σ
2
k

)

. (3.9)

φ() denotes the multivariate normal density function.

3.4.2.1 Training phase

A target model λG0 for a given client is trained on all valid enrollment data from

the client, i.e. O
enroll

G0
= O

enroll
with observation vectors being 24-dimensional fea-

ture vectors as described above. Note that observation vectors from non-speech
segments are not included in training data (provided word boundaries are correctly
estimated).

Given the training data, one of the gender-dependent background models is first
selected as a seed model using a gender detector (Eq. 3.1). The target model is
then created from the seed model using the following maximum a posteriori (MAP)
like update formulas (Reynolds et al., 2000):

ck =
(

αkηk/N + (1 − αk)c
g
k

)

γ (3.10)

mk = αkEk(o) + (1 − αk)m
g
k (3.11)

σ
2
k = αkEk(o

2) + (1 − αk)
(

σ
g
k
2

+ m
g
k
2)−m

2
k (3.12)

where
αk =

ηk
ηk + r

(3.13)

is a data-dependent adaptation coefficient with relevance factor r = 16,

γ =
1

∑K
k=1 ck

(3.14)

10“term” and “component” are used interchangeably in this thesis when referring to the terms
of the sum in (3.9)
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assures target model weights sum to unity, and11

ηk =

N
∑

n=1

ηk,n (3.15)

Ek(o) =
1

ηk

N
∑

n=1

ηk,non (3.16)

Ek(o
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ηk

N
∑

n=1

ηk,no
2
n, (3.17)

where

ηk,n =
ckφ
(

on|mg
k,σ

g
k
2)

∑K
l=1 clφ

(

on|mg
l ,σ

g
l
2) (3.18)

is the a posteriori weight of mixture term k given an observation vector on and the
seed model. Training data O

enroll

G0
have here been viewed as a single vector sequence

O = {o1 . . .oN} with

N =
∑

w∈W

Rw
∑

r=1

Nw,r (3.19)

where Nw,r is the length of the observation sequence from the r’th valid repetition
of word w, and W is the vocabulary (cf. Section 3.2.2.1).

Background models were trained with the EM-algorithm and the ML criterion.
First a gender-independent “root” GMM was initialized from a VQ codebook and
then trained on pooled male and female data with eight EM iterations. Centroids
of the VQ codebook were initialized from 512 equidistant (in time) training vectors
and then trained with the generalized Lloyd algorithm (e.g. Gersho and Gray,
1992) using the Mahanalobis distance measure. The root GMM was then used as
the starting point for training a male GMM on male data and a female GMM on
female data with three iterations for each gender model.

3.4.2.2 Verification test phase

The classifier unit is tested on all available speech segments in a test utterance, i.e.
O

test

G0
= O

test
. Given a target model and a test utterance, a classifier unit produces

an output score value

zG0
=

1

N test
G0

(

logPG0

(

O
test

G0
|λG0

)

− logPG0,gps
(

O
test

G0
|λgG0

)

)

(3.20)

where N test
G0

is the number of observation vectors in the test utterance and

g = gG0

(

O
test

G0

)

11
o
2 is a shorthand for diag(oo

T) (from Reynolds et al. (2000))
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is the gender detected for the test utterance in the same classifier unit, Eq. (3.3).
zG0 is also used as the output score value of the GMM subsystem, i.e. zG = zG0 .

The likelihood function PG0
(

O
test

G0
|λG0

)

used with the target model is the prob-
ability of test data given the model, i.e.

logPG0

(

O
test

G0
|λG0

)

=
L
∑

i=1

Ni
∑

n=1

log

(

K
∑

k=1

ckφ
(

o
(i)
n |mk,σ

2
k

)

)

(3.21)

where o
(i)
n is an observation vector in the i’th word segment Oi in the test utterance

(cf. Section 3.2.2.2).
A modified likelihood function PG0,gps

(

O
test

G0
|λG0

)

is used with background
models in (3.20). It uses a Gaussian pre-selection (gps) method to reduce the
number of calculations relative to (3.21). Each time (3.21) is evaluated for an ob-
servation vector in segment Oi, the index k of the C = 6 top contributing mixture
terms for that observation vector is stored into an N by C matrix κ

(i), and the
likelihood for a background model is calculated as

logPG0,gps
(

O
test

G0
|λgG0

)

=

L
∑

i=1

Ni
∑

n=1

log





C
∑

j=1

cg
κ(i)(n,j)

φ

(

o
(i)
n |mg

κ(i)(n,j)
,σg

κ(i)(n,j)

2
)





(3.22)
where

λ
g
G0

=
{

cgk,m
g
k, σ

g
k
2
}K

k=1

are the parameters of the background model for gender g.
This gps-method is a modified version of a method suggested by Reynolds

(1997a) based on the assumption that a mixture term of an adapted GMM has
a relation to the corresponding term in the GMM it was adapted from (the par-
ent model), such that the two terms are “close” compared to other terms. Call
this a parent relation. While Reynolds evaluated all mixture terms of a (single)
background model and only selected terms in the target model, we used a variant
where all terms of the target model are evaluated and only selected terms of the
two background models. A similar variant was previously tested with a single back-
ground model by Navrátil et al. (2001), who showed that the modification results in
a clock-wise rotation of the DET curve relative to the original method, i.e. reduced
false accept rates at low false reject rates.

With our use of two background models in gender-detection during the test
phase (Eq. 3.3), evaluating all terms in the target model and only a few in back-
ground models is a logical choice, since more computations are saved compared to
fully evaluating both background models. To allow this, we create both background
models through the adaptation of a common (gender-independent) “root” model
as described above. Analogous to the mentioned parent relation, such background
models have a sibling relation. We assume that siblings have a similar kind of
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closeness relation as parent-child, though weaker in strength. The sibling relation
between background models is needed to use indexes of top-scoring mixture terms
in a target model to pick mixture terms for Eq. (3.22) with both background mod-
els, because the target model has a parent relation to (was adapted from) only one
of the background models (Eq. 3.1).

With our use of Gaussian pre-selection, the number of evaluated mixture terms
is K + 2C per observation vector compared to 3K for a full evaluation of target
model and both background models, a reduction of 66%.

3.5 The combined system

3.5.1 Score fusion

The HMM and GMM subsystems are fused at the score level. The system output
score value, or decision variable, z for a test utterance is a linear combination of
subsystem score values

z = ωHzH + ωGzG. (3.23)

Combination weights ωξ are computed as

ωξ =
1

∑

ζ∈{H,G}(1 − εζ)/σζ
· 1 − εξ

σξ
(3.24)

where εξ and σξ are determined empirically through a development experiment 12

with the individual subsystems, as their respective equal error rate and standard
deviation of observed values for zξ. The rationale for (3.24) is that scores from each
of the subsystems are first scaled to have unit variance (on development data) and
are then weighted such that the subsystem with lower EER gets a higher weight.

3.5.2 Classification

The actual classifier decision is taken by comparing the value of the decision variable
z to a speaker-independent threshold θ:

z

accept
>
≤

reject

θ. (3.25)

The value of the threshold is also determined empirically from a development ex-
periment12.

12cf. Section 10.2, p. 192 for the PER system
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3.6 The GIVES framework

GIVES (General Identity VErification System) is a C++ software package built for
research in automatic speaker verification. It has a general purpose kernel which
can be used both in simulations on speech corpora and in real-time demonstrators.
Tools for running off-line simulations on speech corpora are included in the package,
together with a server interface using SVAPI (cf. Section 4.2.2.5, p. 65).

The central part of GIVES is a platform with the aim of implementing as much
as possible of abstract functionality in a speaker verification system, for example:

• how pieces of the system interact

• how speech data are input to the system

• how multiple speaker models are trained or evaluated in parallel

• generic support for implementing different kinds of building blocks (modules).

Actual methods, such as an MFCC feature extractor or an HMM classifier, are
implemented as modules which can be put on the platform at runtime. Modules
can then easily be tested, combined and compared. Figure 3.2 illustrates the com-
position of the GIVES framework.

The speaker model is central to the construction of a speaker verification system
in GIVES. Six types of speaker model-related modules have been defined: stream
operator, speaker model element, score operator, normalization operator, decision
maker and threshold setter. By defining a speaker model configuration using im-
plementations of these module types, the entire ASV system is defined from an
algorithmic point of view. The configuration is specified in a speaker model tem-
plate file which is fed to GIVES tools to train and test speaker models on speech
data. Once a speaker model has been created for a particular target speaker, the
configuration of the ASV system is stored together with data. This solution is
ineffective in terms of storage requirements, but allows for flexible design of ASV
systems. For example, an ASV system configuration can be modified by editing
an already trained model, and different system configurations could be used for
different targets.

Each of the speaker model-related module types will now be shortly introduced.
Their typical use will then be exemplified through the description of how the above
speaker verification systems were constructed using the GIVES framework.

• stream operators are organized into a parameterization tree to compute
one or more speech feature streams. Speech waveform data, possibly together
with associated external segmentation information, are fed through the root
of the tree and each unique path of connected stream operators define a
speech feature type that can be read by a speaker model through a leaf in
the tree. Data passed between operators in the tree may be scalar values,
vectors or segment labels. Data is computed on-demand in the sense that
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Figure 3.2: Exploded view of the conceptual composition of the GIVES frame-
work. The platform is fixed in the sense that an ASV system designer cannot change
it at runtime. The kernel part of the platform is always used, while the interface
part is different with off-line simulation tools and with the server interface. An
ASV system is constructed at runtime by connecting a selection of kernel module
instances on the platform. Interface modules are selected to configure a database
tool or server towards input and output file formats, etc.
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only feature data requested by a speaker model element are computed by the
parameterization tree. The tree itself is also grown on-demand, given the list
of speech feature types specified by the set of loaded speaker models.

• speaker model elements are organized into hierarchical speaker models.
A speaker model may contain one or more subordinate elements, each of
those elements in turn may contain zero or more subordinate elements, etc.
A speaker model element both contains the actual model data (for example
the parameter values of a GMM) and defines the algorithms to train and
evaluate (score) the model on a speech feature data stream. Model elements
may specify two speech feature types from the parameterization tree13. One
is used as the model element’s data stream, and the other as its information
stream. The information stream must contain segment label data and may
be used by the model element to implement token-dependency, such that the
element is applied only to tokens in the data stream indicated by segment
labels in the info stream that match a given expression. Tokens may be for
example word or phoneme segments, and the token-dependency mechanism
be used to implement word- or phoneme-dependent models.

• score operators are associated with speaker model elements and are used
to compute score values from subordinate model elements within a speaker
model.

• normalization operators are also associated with speaker model elements.
Their purpose is to compute a normalized output score based on scores from
the model element itself and scores from model elements in other speaker
models, for example background models or pseudo-impostor models.

• decision makers make verification decisions based on the score values from
their associated speaker model elements, or from decisions from subordinate
model elements. Possible output of a decision maker is accept, reject or no
decision.

• threshold setters can be used to determine target-dependent thresholds, for
example by performing experiments on enrollment and/or pseudo-impostor
data.

In addition to the module types related to the speaker model, several system-
related module types have been defined, such as modules for reading audio waveform
files and for writing log and result files. While the mechanisms for reading audio
samples or sending logging and result information from and to such modules are
part of the generic GIVES platform, actual module implementations are selected
to support a particular audio waveform file or a logging file format.

13or name a pre-specified node in the tree
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The GIVES platform and the majority of the existing modules were developed
by the author during 1995-1999, and were used in research that resulted in several
papers and much of the work presented in this thesis. The framework has later
been used also by colleagues at KTH, Center for Speech Technology, within several
research and Master of Science (MSc) projects. Many projects involved developing
new modules for the framework (Neiberg, 2001; Garcia Torcelly, 2002; Thumer-
nicht, 2002; Olsson, 2002; Öhlin, 2004), while others were users of the framework
for speaker verification experiments (Armerén, 1999; Gustafsson, 2000; Ihse, 2000;
Elenius, 2001; Lindblom, 2003; Zetterholm et al., 2004).

Other efforts to create more or less generic software frameworks for speaker
verification include BECARS (Blouet et al., 2004) and ALIZE (Bonastre et al.,
2005). Independently of any of the mentioned generic platform initiatives, a fairly
simple ASV system was created within the framework of the European COST250
project to serve as a publicly available reference system (Melin et al., 1999). It
uses LPCC features and a VQ classifier and was implemented as building blocks
glued together using the Tcl14 scripting language. The system is distributed15

freely for research and education purposes under the title “The COST250 Speaker
Recognition Reference System”.

3.6.1 Examples

We will now shortly describe how GIVES was used to construct the speaker veri-
fication systems described in this chapter.

3.6.1.1 HMM-based system

The HMM-based system in Section 3.3 was realized in the following way. Eight
stream operators produce the stream of MFCC plus delta and acceleration feature
vectors at point A as illustrated in Figure 3.3. Word-level segment labels provided
by an external speech recognizer are simply forwarded to point C for use as an in-
formation stream. The information stream is used by the speaker model illustrated
in Figure 3.4 to implement word-dependent models. Ten word-dependent HMM
model elements (LRHMM) have one normalization operator each (COHORT), and
are held by a container model element (HMM_SUBMODEL). A score operator
(MEAN) associated with the container merges scores from each word-dependent
model element. A decision maker module (DECISION) completes the classifier.
Each of the three submodel elements shown in the figure are located in their own
speaker model top level containers (omitted in the figure).

14http://www.tcl.tk/
15http://www.speech.kth.se/cost250/

http://www.tcl.tk/
http://www.speech.kth.se/cost250/
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Figure 3.3: Example of a GIVES parameterization tree configuration: the config-
uration used with the research ASV systems. Data stream at points A and B are
used by the HMM and GMM systems respectively. Point C provides the informa-
tion stream for both subsystems. Numbers indicate sample dimension in nodes of
the tree.

3.6.1.2 GMM-based system

The GMM-based system in Section 3.4 is illustrated in Figure 3.5. Compared to
the structure of the HMM system, the GMM system has only one model element
in each of the target and background models and lacks the intermediate submodel
container level of the HMM system. Speech feature data is taken from point B
in the parameterization tree (Figure 3.3), but the information stream is the same
(point C). In the GMM system, models are made “speech-dependent” rather than
word-dependent by applying models to all segments but non-speech segments.

3.6.1.3 Combined system

The fused system used in the PER application, and described in Section 3.5, is a
combination of the HMM and GMM systems at the score level. A speaker model
top level container (SPMODEL) contains the submodels of the HMM and GMM
systems and a score operator (MEAN) to combine scores using weights specified as
parameters of the score operator. The combined system is illustrated in Figure 3.6.
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Figure 3.4: The GIVES setup of the HMM system. The three speaker model top
level containers are hidden in the figure to reduce cluttering. Points A and C are
connections to the parameterization tree, where A is used as data streams and C
as info streams.
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Figure 3.5: The GIVES setup of the GMM system. The three speaker model top
level containers are hidden in the figure to reduce cluttering. Points B and C are
connections to the parameterization tree, where B is used as data streams and C
as info streams.
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are not shown to reduce cluttering. Points A, B and C are connections to the
parameterization tree, where A and B are used as data streams and C as info
streams.





Chapter 4

Building prototype applications

4.1 Introduction

Human-machine interface design and usability issues are fundamental for the suc-
cess of speech technology, and a demonstration system can be useful in studies on
these topics. A demonstration system can also be useful in collecting speech data
to support evaluation of for instance speech recognition and speaker verification
systems.

With the growing commercial interest in speech technology based applications,
and an increasing demand on research labs to do industry relevant research, it
is also becoming more and more valuable to show practical examples of research
advances. This often means live demonstrations of the technology in useful applic-
ations. Demonstration systems typically include several speech technology com-
ponents, such as speech generation, text-to-speech synthesis, speech recognition,
speech understanding, speaker recognition, and dialog management. The compon-
ents require complex interaction with each other and with audio devices, and the
components are themselves complex. As a result, a demonstration system is often
a complex system. To prevent system building itself to take too much effort away
from the more research oriented tasks, such as improving basic speech technology
components, it is important to have an efficient framework for building demonstra-
tion systems. A framework can be defined by for instance a suitable programming
language, a good system architecture and reusable software components. It is im-
portant that such a framework is flexible enough to allow researchers to test new
ideas, and that it evolves with state-of-the-art in speech technology. This require-
ment is challenging, because it somewhat opposes the requirement for efficiency.
A framework that is efficient and easy to use when building small demonstration
applications may not be flexible enough when building for example state-of-the-art
conversant dialog systems.

Several publications have reported on efforts in creating frameworks for speech
technology applications. A well-known platform is Galaxy-II (Seneff et al., 1998).

57
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It was developed at MIT and has been used successfully in several applications
such as the Jupiter, Voyager and Orion systems. It has also been designated as the
first reference architecture for the DARPA Communicator Program (Bayer et al.,
2001), called Galaxy Communicator. Galaxy-II is a client-server architecture where
all interactions between servers are mediated by a programmable hub and managed
by a hub script. Galaxy Communicator and a collection of servers, wrappers and
application examples (The Open Source Toolkit (OSTK)) is available through an
open source project1.

Jaspis2 (Turunen and Hakulinen, 2000) is an agent based architecture designed
with special focus on multi-linguality and user and environment adaptivity. Sutton
et al. (1998) describe the OGI CSLU Toolkit3 that includes several ready to use
speech technology components and a Rapid Application Developer tool. Potami-
anos et al. (1999) review efforts in defining design principles and creating tools for
building dialog systems, including architectural issues.

Several commercial companies offer platforms for developing applications with
speech technology. Nuance provides SpeechObjects (Nuance, 2000) as “a set of
open, reusable components that encapsulate the best practices of voice interface
design”. Philips4 marketed5 SpeechPearl and SpeechMania as speech recognition
and speech understanding-centric product families. SpeechPearl included SpeechB-
locks, in concept very similar to Nuance’ SpeechObjects.

Related to the creation of generic platforms are also several standardization
activities. The World Wide Web consortium6 (W3C) specifies markup languages for
voice dialogs (VoiceXML), speech recognition grammars, speech synthesis markup,
reusable dialog components, etc. ECTF7 defines standards for interoperability in
the Computer Telephony (CT) industry.

4.2 The ATLAS framework

This section presents an effort to create a framework for multi-modal and multi-
lingual speech technology applications. The framework is called ATLAS and is
a Java software library that includes a set of application programming interfaces
(APIs) for speech technology components. The aim has been to code much of ap-
plication invariant, low-level functionality in ATLAS and to provide application
programmers with a powerful, easy-to-use speech technology API. ATLAS thereby
defines a multi-layered system architecture that encourages software reuse. The
framework is intended for building demonstration systems in a research environ-

1http://communicator.sourceforge.net/
2http://www.cs.uta.fi/research/hci/spi/Jaspis/
3http://cslu.cse.ogi.edu/toolkit
4http://www.speech.philips.com/
5In 2002, this part of Philips was acquired by ScanSoft, now Nuance Communications.
6http://www.w3.org/voice/
7http://www.ectf.org/

http://communicator.sourceforge.net/
http://www.cs.uta.fi/research/hci/spi/Jaspis/
http://cslu.cse.ogi.edu/toolkit
http://www.speech.philips.com/
http://www.w3.org/voice/
http://www.ectf.org/
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ment. A particular effort has been made on developing support for the use of
automatic speaker verification.

The ATLAS framework was mainly developed within the CTT-projects PER
and CTT-bank. PER is the automated entrance receptionist described in detail
in the next chapter, while CTT-bank is a demonstration of a speech controlled
telephone banking system (Ihse, 2000; Melin et al., 2001). The framework has then
been used when building applications within several other projects, most of them
Master of Science (MSc) student projects. Applications and projects include (in
chronological order):

• The Picasso Impostor Trainer – impostor training with presentation of tar-
gets’ authentic recordings and/or feedback of ASV scores. Developed through
a MSc project (Elenius, 2001) within the EU-funded PICASSO project and
used with “lay” impersonators. It has later also been used in several experi-
ments with professional impersonators, e.g. (Zetterholm et al., 2004).

• ReMember – a “code hotel” sales demonstration application developed at
JustDirect, one of CTT’s participating companies.

• The Hörstöd project – visualizing telephone speech through the output of
phoneme recognition (Johansson, 2002; Johansson et al., 2002; Angelidis,
2003) (MSc and BSc projects within the framework of a CTT project)

• Tilltalad – an application-independent speaker adaptation service (Söder-
quist, 2002) (MSc project)

• Simon – a voice interface for vehicle inspectors (Gyllensvärd, 2003) (MSc
project)

• MultiSense – voice-modality in multi-modal system for pre-operative planning
within orthopedic surgery; A MSc project initially developed a stand-alone
voice-only application (Svanfeldt, 2003) within the EU-funded MultiSense
project. ATLAS was then used in the core project to add the voice modality
to the multi-modal system (Testi et al., 2005).

• SesaME – interaction manager for personalized interfaces on top of ATLAS
(Pakucs, 2003) (PhD project)

• Metro times – telling when the next metro leaves from KTH; simple applic-
ation used to demonstrate the addition of a bridge to a commercial API for
text-to-speech components (Lundgren, 2003) (BSc project)

• Remote – remote control of home appliances by voice (Bjurling, 2004) (MSc
project)
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4.2.1 The system model

ATLAS has been designed with the layered system model shown in Figure 4.1 in
mind. The model has an application-dependent layer on top, a resource layer in
the bottom, and an application-independent layer, the middleware, in between. The
upper side of the middleware is a powerful speech technology application program-
ming interface (API), and the lower side (as seen from above) is a collection of APIs
to speech technology components in the resource layer.

The middleware is itself layered. Each layer adds more powerful functionality
and abstraction to the set of primitives that are offered in the component APIs.
For retained flexibility, the lower layers are always made available to the application
through the API.

ATLAS is first of all an implementation of the middleware illustrated in Fig-
ure 4.1, but it also contains foundation classes for the application layer.

4.2.1.1 Terminology and notation

When describing software structures in the following sections, we borrow terms
from the object-oriented programming paradigm as used with the Java program-
ming language. In this terminology, a class is a collection of data and methods
that operate on that data. A class is usually created to specify the contents and
capabilities of some kind of object. An object created from its class specification
is called an instance, or simply an object. A method is the object-oriented term
for what is sometimes called a procedure or a function. For example, a circle may
be defined by a radius, a location, and a color. What we would like to do with a
circle is perhaps to draw it, move it and calculate its area. With an object-oriented
programming language we can then define the class Circle with attributes (data)
radius, location and color, and methods draw, move and getArea. Once we have the
class Circle we can create instances of it, i.e. create circle objects. Each circle object
has its own radius, location and color, and can be drawn or moved individually.

In this chapter the word interface is used both in its general sense (for example:
a human-machine interface, an application programming interface (API)) and in
the object-orientation sense. In the latter case, an interface is a collection of meth-
ods and usually represent a certain aspect shared between classes. A class often
implements several interfaces. In our example, the Circle class would perhaps im-
plement interfaces Drawable, specifying the method draw, and Movable, specifying
the method move.

New concepts, especially method names, are set in italics when introduced in
the text.

4.2.2 The middleware

In this section we exemplify the contents of the various layers of the middleware as
implemented in ATLAS and illustrated in Figure 4.1. We start at the top with the
Dialog Components Layer and proceed towards the Components API Layer.
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Figure 4.1: The system model behind the ATLAS design. It is layered with
an application-dependent layer on top, a resource layer in the bottom, and an
application-independent layer in between. ATLAS is an implementation of the
middle layer, and provides some support for implementing the top layer.

4.2.2.1 Dialog components

A dialog component is meant to be a powerful object that can solve a specific task
within a dialog with the user. The task can be to make a secure user login, to
get the name of an existing bank account from the user, or to ask for a money
amount. To solve such a task, a dialog component must have some task-specific
domain knowledge, such as knowing which customers exist and what accounts they
have. The domain knowledge is often supported by an external database. Dialog
components should also be able to detect and recover from errors. An error may
be an invalid response from the user such as the name of a non-existing account. If
the user gives no response at all, or if he asks for help, the dialog component should
be able to provide useful help. As part of error recovery, the dialog component may
repeat or re-formulate a previously asked question.

The purpose of the Dialog Component Layer is to allow a dialog engine or the
application programmer to delegate a well-defined task to an existing component,
and allow the re-use of components within and between applications. If no suit-
able component exists for a given task, the programmer may modify an existing
component, create a new one, or choose to solve the problem in some other way.
In creating modified or new dialog components, the programmer has access to all
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the layers in ATLAS. Dialog components are in concept very similar to Nuance’
SpeechObjects (Nuance, 2000) and Philips’ SpeechBlocks. They also seem to be
similar to dialog agents in Jaspis (Turunen and Hakulinen, 2000).

ATLAS itself currently contains three types of dialog components: login proced-
ures, enrollment procedures and complex questions.

The task of a login procedure is to find out who the user claims to be, and then
make sure the claim is valid. A login procedure is built from a set of login operations,
each of which implements a part of the login procedure. The login procedure used
in a normal CTT-bank session, for example, contains two login operations. The
first is an identification operation that asks the user for his name and ID-number
and then looks for a matching customer identity in a database. The second is a
verification operation that prompts the user to utter a randomized passphrase and
checks the answer for the correct text and for the voice characteristics associated
with the claimed identity. The login procedure used in the registration call to
CTT-bank, on the other hand, contains a single login operation that performs both
the identification and the verification function. This operation asks the user for a
unique digit sequence issued to him when he was asked to make the registration
call.

While login operations implement the details of login, the login procedure itself
adds procedural aspects, such as giving the user a certain number of attempts at a
given operation. It also provides a single API to the dialog engine or the applica-
tion. An important point here is that it is easy for the application programmer to
exchange one login procedure for another: it is just a matter of selecting another
object for the task.

The task of an enrollment procedure is to elicit speech from a customer, build a
representation of the customer’s speech, and store the representation in a database.
In a CTT-bank registration call, a login procedure is first used to establish the
caller’s identity as a valid customer. An enrollment procedure is then used to
collect ten utterances from the customer. The procedure checks that each utterance
is spoken correctly and asks for a repetition if needed. When ten valid utterances
have been collected, the procedure trains a speaker model for the customer’s voice
and stores it in a database. The same enrollment procedure is re-used in the PER
system, only modified to exploit a graphical display for showing the user what
utterances to speak.

ComplexQuestion is the base class of question dialog components. It was ori-
ginally created in the CTT-bank application (Ihse, 2000) to implement dialog com-
ponents for tasks like getting a money amount, the name of a valid account, or the
answer to a yes/no-question. It was then generalized and moved into ATLAS to-
gether with the yes/no-question class. Classes for confirmation questions (deriving
from the yes/no-question) were then added, and a generic list selection question
class.
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4.2.2.2 High-level primitives

The High-Level Primitives Layer currently contains an ask method and a simplified
ask method. Both methods present an optional prompt from a given prompt text
and record and process the answer using a set of audio processors (defined in the
next section). They normally depend on methods in the Services Layer for their
implementation such as say and listen (also defined and described in the next
section). The simplified ask method returns the top-scoring text hypothesis for
the spoken answer, while the ordinary ask method gives access to the results of
all participating audio processors including multiple text hypotheses and speaker
information.

4.2.2.3 Services

The Services Layer provides speech and media input and output capabilities through
play, say and listen methods, plus specialized retrieval methods for speech techno-
logy components (resources) of pre-defined types.

Speech and media output The play method loads media data from file, sends
it to one or more media devices, and makes the media devices render it. The say
method takes a text argument and sends it to a text-to-speech (TTS) component to
generate a media stream. It then sends the generated media stream to one or more
media devices like the play method. Note that both the play and the say methods
can handle multi-modal media output devices, such as speech with face animation.
In this case the generated media stream contains two channels, an audio channel
and a channel with parameter data for face animation.

Speech and media input The listen method is more complex than the play
and say methods. Its task is to record a segment of audio from a media device
and process it. The processing is done by an optional speech detector and zero or
more audio processors. An audio processor is a speech recognizer, speaker verifier,
or any other object that inputs audio and outputs a result. The configuration of
speech detector and audio processors to be used by the listen method is defined
by a listener profile, central to the design of the speech input mechanism. The
listener profile can specify dependencies between audio processors, such that one
processor may wait for the output of another processor and use it as input to its own
processing. For example, a speaker verifier A may need the output of a particular
speech recognizer B to segment an utterance and another speech recognizer C for
deriving an identity claim (in the case when a single utterance is used both for
identification and verification of an identity). A’s dependencies on B and C are
then specified in the listener profile as A(B,C). In addition to being sent to audio
processors given by the listener profile, the recorded audio segment can be saved to
a file.
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The listen method is supported by three other methods: A preparatory method
sets up media streams and prepares audio processors for a new utterance accord-
ing to a listener profile. A call to the preparatory method is followed by a call to
the listen method itself, that triggers the start of the actual recording (the “listen-
ing”). A group of methods can then be used to retrieve results from one or more
of the audio processors. When asked for results from multiple audio processors,
these methods do some data fusion. Result retrieval methods normally block until
results from all audio processors are available. A maximum processing time can
be specified, however. After this time has elapsed, a method will return with the
results available at the time. When all the results have been retrieved, a clean-up
method should be called to release resources allocated for the listen operation.

Resource retrieval Specialized retrieval methods are provided for speech tech-
nology components (resources) of each pre-defined type. Pre-defined types are cur-
rently speech recognition engine, speaker verification engine, speech detector, text-
to-speech engine, sound coder, media stream player, media stream recorder, graph-
ical display, SQL database connection, database monitor and file-oriented database.
Additional and more specialized types of media stream players and recorders have
also been defined, including telephony device, desktop audio device, and audio-visual
agent. Each resource retrieval method comes in two versions: one to retrieve the
default resource of a given type and one to retrieve a named resource.

4.2.2.4 Component interaction

The Component Interaction Layer contains resource handling, media stream con-
nections, logging, and several structures for representing various types of informa-
tion.

In resource handling, all components attached to ATLAS via a component API
are abstracted to a resource, and are collected in a resource bundle. The life of
a resource starts when it is created and ends when it is closed. While alive, its
operation may be monitored to detect if the functionality is lost (the resource is
down). Whenever the application or an object within ATLAS needs access to
an attached component, it retrieves a handle to the component’s API through
the component’s resource interface. This layer handles all resource types in the
same way, while the Services Layer provides specialized retrieval methods for each
resource type.

A media stream consists of one or more TCP/IP-based media channels. The
end-point of a channel is a TCP socket. By convention, the media producer connects
to a server socket opened by the media consumer. When the connection has been
established, the producer starts transmitting data in a format specified by the
consumer. In most cases, the media stream has a single channel containing audio
data. The only current example of a multi-channel stream in ATLAS is the stream
from a text-to-speech synthesizer to an audio-visual agent, where a second channel
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contains parameter data for the face animation. Media streams are created on a
per-utterance basis.

Several types of information are passed between components, the ATLAS layers,
and the application. The Component Interaction Layer provides data structures
to hold such information. An example is the utterance information structure that
holds information about the contents of a spoken utterance. This may be the
output of a speech recognizer and may be used as input by the application itself
or by another audio processor, such as a speaker verifier or a parser. Currently
the utterance information structure supports scored text hypotheses, word timing
information, and speaker information, but could be extended to support for instance
syntactic and semantic information.

Calls and events in an ATLAS application can be logged and stored in XML log
files. The root node of a log file corresponds either to an application run or to the
life of a single session. Objects and methods in all layers add nodes and leaves to the
XML tree structure to log information such as start times, duration, input values
and results. A Document Type Definition (DTD) for ATLAS log files is included
in Appendix G. It specifies the structure of the XML log files and indicates what
information is logged.

4.2.2.5 Component APIs

A component API has been defined for each of the pre-defined resource types listed
above (Section 4.2.2.3). Some of the APIs are complex in that they are represen-
ted by several interfaces. The speech recognizer API, for instance, consists of a
recognizer factory, a recognizer engine and a recognizer utterance. They are re-
lated in such a way that a factory creates engines, and engines process utterances
(segments of audio data). Furthermore, the recognizer utterance interface uses
the utterance information structures defined in the Component Interaction Layer
to represent its recognition results. The recognizer engine interface also extends
the audio processor interface (described in Section 4.2.2.3). Similarly, the speaker
verification API includes a verifier engine and a verification utterance. These are
based on the SVAPI8 standard speaker verification API. Besides the functionality
covered by SVAPI, the speaker verification API in ATLAS has been extended to
handle ATLAS-type media streams, and to have the verifier engine extend the audio
processor interface.

The TTS API also contains a factory interface and an engine interface. Ut-
terances are handled with a method call in the TTS engine, rather than with a
dedicated utterance object. The synthesis method and language are specified when
a TTS engine is created and cannot be changed later. Voice properties for the selec-

8SVAPI was a result of collaborative efforts of many companies, including Novell, Dialogic,
IBM, Motorola and many others. Unfortunately, the SVAPI initiative was closed down. Motorola
CipherVOX claim to support SVAPI (Fette et al., 2000), but otherwise there are few or no products
that actually support SVAPI. BioAPI is an API that is currently being actively developed for more
biometric modalities than speech (http://www.bioapi.org).

http://www.bioapi.org
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Figure 4.2: Four examples of how a speech technology component, in this case
an automatic speech recognition (ASR) engine, can be connected to an ATLAS
component API.

ted synthesis method, such as pitch level, can be changed, however. An application
can change voice or language by creating multiple TTS engines and switch between
them.

4.2.3 The resource layer

As already mentioned, the resource layer refers to a collection of (speech techno-
logy) components used by an application. In this section we first elaborate on how
components can be connected to ATLAS, and then list what components are cur-
rently available. Let us emphasize that the components themselves are not part of
ATLAS, and that ATLAS is rather useless without a set of good components.

4.2.3.1 Component implementation

A component API, at the lower side of ATLAS, specifies how an application or an
ATLAS layer can interact with a component, while leaving a lot of freedom for how
the component is actually implemented. Since ATLAS is implemented in Java and
the component APIs are defined in terms of Java APIs, the component as such
must be a Java object. But what if we already have a speech recognizer engine
written in, for instance, C++? Then we can create a pseudo-implementation of the
engine in Java that uses the existing C++ code to do the actual work. Figure 4.2
illustrates four examples of how a speech recognition engine (labeled ASR in the
figure) can be connected to ATLAS through the component API.
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In the first example, the engine already has a Java implementation of the com-
ponent API. Either the engine is coded in Java or it is coded in a native language
(C/C++) but has a Java wrapper using the Java Native Interface, JNI.

In the second example, the engine supports another API than ATLAS’ com-
ponent API. This may be an industry standard API, such as Microsoft’s SAPI9 or
Sun’s JSAPI10, or an engine vendor-specific API. Provided the ATLAS API can be
mapped to the other API, a pseudo-implementation of the ATLAS API could be
created that operates as a bridge between the two APIs. Such a bridge can possibly
be used with other engines that support the same standard API.

In the previous two examples, the engine is likely to execute in the same process
as ATLAS itself, while in the remaining two examples the engine may be imple-
mented as a server in a separate process. The third example illustrates a plain
server implementation, where a small pseudo-implementation of the ATLAS API
communicates with the server through some inter-process communication (IPC)
mechanism, such as the Common Object Request Broker Architecture11 (CORBA),
Java Remote Method Invocation12 (RMI), or the CTT Broker (described in Sec-
tion 4.2.3.3).

The fourth and final example in Figure 4.2 indicates the possibility to interface
to an engine that is integrated into another speech technology system, such as the
Galaxy Communicator13. This could include interfacing several other Communic-
ator engines (text-to-speech engine, parser, etc.) at the same time through a single
bridging mechanism. Alternatively, each single engine could be attached directly,
like in examples two and three.

4.2.3.2 Available components

In this section we list the currently available components that implement an ATLAS
component API and thus can be used with ATLAS. We pay special attention to
how each component is connected to ATLAS and give references for the underlying
technology, but otherwise keep descriptions very brief. More detailed descriptions
for some of the components can be found in (Melin et al., 2001).

Five components are available as internal resources executing in the same virtual
machine as ATLAS (Figure 4.2, example 1):

• the Starlite speech recognizer (Ström, 1996); acoustic triphone models trained
on SpeechDat databases (Höge et al., 1997; Elenius, 2000) are available for
Swedish and English (Salvi, 1998; Lindberg et al., 2000)

• the ACE speech recognizer (Seward, 2000); the same acoustic models are
available as for Starlite

9http://www.microsoft.com/speech/
10http://java.sun.com/products/java-media/speech/
11http://www.corba.org/
12http://java.sun.com/products/jdk/rmi/
13http://communicator.sourceforge.net/

http://www.microsoft.com/speech/
http://java.sun.com/products/java-media/speech/
http://www.corba.org/
http://java.sun.com/products/jdk/rmi/
http://communicator.sourceforge.net/
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• an energy and zero-crossing rate based speech detector

• a sound coder; performs audio format conversion, speech parameterization for
speech recognizers and can fork audio streams.

• a file-oriented database.

(All components except the speech detector and the ACE recognizer are also avail-
able as CTT Broker servers, see below.)

One component uses a bridge to an industry standard API (Figure 4.2, example
2) to connect commercial TTS engines to ATLAS (Lundgren, 2003). Actually, two
standard APIs and two bridges are used. The first bridge maps the ATLAS TTS
engine API to JSAPI. A commercially available bridge, TalkingJava SDK from
CloudGarden14, then maps JSAPI to Microsoft’s SAPI. TalkingJava SDK features
are used to connect ATLAS media streams to the TTS engine. This component can
be used15 to connect to for example Acapela’s16 BrightSpeech TTS engine (using
non-uniform unit selection technology) and the Swedish voices Emma and Erik.

The remaining components are implemented using a server and some IPC mech-
anism to communicate with the server (Figure 4.2, example 3). The two first are
SQL database components that interface MySQL17 and Borland InterBase18 data-
bases, respectively. Since JDBC was chosen to be the component API for SQL
databases in ATLAS, these components simply use standard JDBC drivers to com-
municate with database servers. JDBC drivers implement their own (proprietary)
IPC mechanism. Note that these ATLAS components add very little on top of the
JDBC driver itself; they merely define the name of a driver and load the driver into
the virtual machine.

The remaining IPC-based components are implemented as clients to CTT Broker
servers. Available components are:

• a text-to-speech component using RULSYS (Carlson et al., 1982) for text-to-
phone conversion plus GLOVE (Carlson et al., 1991) or MBROLA (Dutoit
et al., 1996) synthesizers. Several Swedish and English voices are currently
available, including Lukas (Filipsson and Bruce, 1997) and the Acapela voices
Ingmar, Annmarie and Roger. It can generate media streams for multi-modal
output (face and voice) (Beskow, 1995).

• a Starlite speech recognizer (Ström, 1996); also available as an internal com-
ponent.

14http://www.cloudgarden.com/
15This component is still experimental and its source code is available on a development branch

of ATLAS only.
16http://www.acapela-group.com/
17http://www.mysql.com/
18http://www.borland.com/interbase/

http://www.cloudgarden.com/
http://www.acapela-group.com/
http://www.mysql.com/
http://www.borland.com/interbase/
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• a speaker verifier based on GIVES (Chapter 3). Text-dependent modes for
Swedish and English are available together with text-independent modes for
Swedish.

• a media device with animated agent output and audio-only input (half-duplex
mode) (Beskow, 1995; Gustafson et al., 1999).

• a media device, “digitizer”, with desktop (half-duplex) audio output and input
based on the Snack toolkit19 (Sjölander and Beskow, 2000). Includes an
optional WaveSurfer-based20 GUI.

• an ISDN media device with telephony call handling and (half-duplex) audio
output and input.

• a sound coder component; also available as an internal component.

• a file-oriented database; also available as an internal component.

In addition to the above CTT Broker-based components, a registry component
interfaces a registry in the Broker that keeps track of host-specific servers.

The text-to-speech, speech recognition, agent, digitizer, sound coder and file
database Broker servers were originally developed as part of other projects at CTT.
They were later improved and adapted to work well with ATLAS.

4.2.3.3 The CTT Broker

The CTT Broker21 created by Erland Lewin in 1997 is an architecture for inter-
process communication that is helpful when building modular and distributed sys-
tems. It was initially developed within the ENABL (Bickley and Hunnicutt, 2000)
and August (Gustafson et al., 1999) projects. The Broker can be used with AT-
LAS for communicating with several speech technology components implemented
as Broker servers, as indicated above. It has also been used recently in the AdApt
(Gustafson et al., 2000), Higgins (Edlund et al., 2004) and KTH Connector (Edlund
and Hjalmarsson, 2005) dialog systems. (In the latter three system, ATLAS was
not used.)

The primary function of the Broker is to pass message strings between serv-
ers through TCP ports. To manage this, it also keeps track of what servers are
connected. The basic, lightweight protocol uses a short header for the Broker’s
own use attached to the actual message string. The header includes a message
type indicator and address information, where message types exist to connect and
disconnect a server, to send procedure or function calls to a server, and to send a
return or error value in response to a function call. It is up to each server to define
syntax and semantics for the actual message strings - the Broker simply passes this

19http://www.speech.kth.se/snack
20http://www.speech.kth.se/wavesurfer
21http://www.speech.kth.se/broker/

http://www.speech.kth.se/snack
http://www.speech.kth.se/wavesurfer
http://www.speech.kth.se/broker/
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string from sender to receiver without interpreting or altering it. The string based
message protocol and the use of TCP port based connections make the operation
of the Broker platform-independent, in that servers can run in any programming
environment and operating system that supports TCP connections. The Broker
itself is implemented in Java and can therefore run on any platform that supports
Java.

A secondary function of the Broker is to start servers on demand, and to detect
when a server is closed. It uses a database of startable servers that defines what
servers can be started and how to start them.

To aid the creation of servers, software libraries have been created for sev-
eral programming languages, including Java, C, C++, Tcl, Perl, Prolog and Moz-
art/Oz22. With these libraries a server can register itself with the Broker and make
calls to a remote server using constructs in the used programming language, rather
than handling low-level TCP connections directly. For example, with the Java lib-
rary a server creates an instance of the BrokerClient class and calls the instance’s
connect method. It can then make remote calls to another server by calling a
method callFunc, giving the name of the remote server and the message string as
arguments. The callFunc method blocks until the Broker sends a reply and then
either returns a value or throws an exception.

In addition to the basic call functionality, some of the libraries (currently Java,
C++ and Tcl) provide a parser for the contents of a message string that can route
calls to classes, instances and attributes inside a server. Language constructs are
also available to represent classes and instances in the server. With this mechanism,
the concept of remote objects is supported. The remote object concept, the parser,
and the corresponding message structure are entirely optional, but are used by all
servers currently available through the ATLAS platform.

Using the remote objects concept, an event mechanism has been implemented
using a publication metaphor. A server creates a publication for publishing certain
information, and servers subscribing to the publication gets an update message
every time new information is published. This event mechanism is for instance
used by the Broker itself to make server connection status information available.
By subscribing to such a publication, an application can for instance know when
a server is lost. ATLAS uses this feature with all Broker-server based resources.
When a Broker-server based resource is created, ATLAS automatically subscribes to
status information for the corresponding server connection. ATLAS is then notified
if the server is lost, and can take measures to for instance re-create the resource.
The event mechanism is currently available in the Java and C++ libraries only.

The CTT Broker architecture has similarities with other inter-process commu-
nication architectures23. The Galaxy-II hub, for instance, also organizes servers in
a star topology where all server-to-server messages pass through the hub. The hub
has a programmable controller function, however, that the CTT Broker has not.

22http://www.mozart-oz.org
23URL references for CORBA, Java RMI and Galaxy-II were given on p. 67.

http://www.mozart-oz.org


4.2. The ATLAS framework 71

terminal 1

terminal 2

terminal N

application

session

resource bundle

control center 
gui

application 
info & control

resource 
info & control

Figure 4.3: Application structure implemented by ATLAS application support
classes. The application object creates sessions upon incoming calls from a terminal.
The Control Center GUI is optional and any application can run without it.

CORBA and Java RMI provides support for manipulating remote objects almost
as if they were local objects. Similar functionality can be achieved with the Broker
and its support libraries. It is left to the Broker server designer, however, to provide
client-side APIs that allow remote objects to be manipulated as if they were local
objects. Such client-side APIs (stubs) are generated automatically with CORBA
and Java RMI.

Audio and other binary streams are usually not sent through the CTT Broker.
Instead, servers communicate through the Broker to setup direct connections where
binary data is transmitted. This is the same as in Galaxy-II.

4.2.4 Applications

4.2.4.1 Application support

Apart from providing an implementation of the middleware illustrated in Figure 4.1,
ATLAS provides a set of support classes for the application-dependent layer of a
system. This includes interfaces and super classes for application, session and
terminal classes.

The provided super classes can be used to create applications with the structure
illustrated in Figure 4.3. The idea is that the application corresponds to an object
that is created once. The application can then create session objects whose lives
correspond to physical sessions of interaction with a user through a terminal. It is
usually the session object that does something interesting using the speech techno-
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logy API in ATLAS. The current implementation limits the number of concurrent
sessions to one, for reasons of simplicity. We believe this to be sufficient for most
research situations.

Each session object is connected to a single terminal. A terminal may be tele-
phony based, in which case the session naturally corresponds to a telephone call, or
desktop based. With a desktop-based terminal the session metaphor does not come
as naturally as with a telephony-based terminal. It is left to the implementation of
the terminal object to decide when a session should start, and to the terminal or the
session to decide when a session should be terminated. Common to all terminals
is that they provide a means for initiating a session with the application, and that
they are associated with an audio output and an audio input device. Optionally,
a terminal may also have a means to close a session and may be associated with a
display.

One of the key features of ATLAS and the arrangement illustrated in Figure 4.3
is that applications and sessions can interact with any type of terminal transparently
(as long as they do not require particular properties of specific terminals). In
CTT-bank, for example, a session normally interacts with the user via a telephony-
based terminal, but it can also use a desktop-based terminal. In fact, this was
often exploited during the development phase of the project. The desktop terminal
could even be extended with output through an audio-visual agent. To take full
advantage of multi-modal output, however, the session code needs to be modified
to send requests for animated gestures to the agent, to make the agent look more
alive. With such modifications the session would still run with a telephony-based
terminal, since gesture requests are simply discarded if the terminal cannot visualize
them.

Beside sending audio through the audio output device associated with the ter-
minal connected to a given session, the application or the session may choose to
add other output devices.

ATLAS has been internationalized24 with respect to the language spoken within
the application. That is, assuming the application-dependent part of an applica-
tion is also internationalized, the application can be localized25 to a new language.
Localization in this case involves translating text elements related to generating
system prompts and interpreting user responses, and adding resources for the new
language (or making sure the existing ones support the new language). All such
text elements within ATLAS, i.e. in its dialog components, have been localized to
Swedish and English, and both languages are supported among speech technology
components listed in Section 4.2.3.2. Basically, internationalization means separ-
ating text elements from program code. Text elements are stored in text files that
are read by the program at runtime. There is one or more text files per language,

24Internationalization is the process of designing an application so that it can be adapted to
various languages and regions without engineering changes.

25Localization is the process of adapting software for a specific region or language by adding
locale-specific components and translating text.
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and text elements are localized by creating a corresponding set of text files for the
new language.

An important additional advantage of separating text elements from program
code is that changing system prompts, and especially hand tuning prompts for
optimal synthesis output, requires no knowledge of the programming language used
to code the application. Having all prompt texts collected in one place also provides
for a good overview.

A graphical user interface (GUI) to the application and the resource bundle is
provided. It is called the Control Center and is entirely optional - any application
can run without it. The application part of the GUI provides a possibility to start
and stop the application and to view the current application or session log. It also
has a message pane that shows when the application was started or stopped, and
when sessions are created and ended. The resource bundle part of the GUI provides
possibilities to select the current language and to change default resources of each
type for each language. The latter facility enables the operator to, for instance,
select a TTS engine with another voice to be the default. This effectively changes
the voice of the application, given that the application is coded to use the default
TTS engine. The resource bundle GUI also has a message pane that logs resource
status information.

The application class supports recording of audio and video during sessions
through a video capable network camera26. This may be useful for example when
studying subject behavior during interaction with the application. In PER, a cam-
era was used to record who was actually talking to the system.

4.2.4.2 Examples

In this section we shortly describe four systems that use ATLAS, as examples of
how the platform can be used. For each system, we explain its task, what has been
coded in its application-dependent layer, which ATLAS layers are used, and what
speech technology components are included in the resource layer.

All four systems have in common that their application-dependent layer is coded
in Java and that it uses ATLAS application support classes to implement applica-
tion and session classes.

CTT-bank CTT-bank is a speech controlled telephone banking system (Ihse,
2000; Melin et al., 2001). Customers identify themselves to the system by say-
ing their name and a short digit sequence. The digit sequence is chosen by the
customer during registration, and is used to make the identification phrase unique.
After claiming an identity, he verifies the claim by repeating a four-digit passphrase
generated by the system. Once allowed access to the system, the user can check
account balance, list recent transactions, and transfer funds between accounts.

26Network cameras from Axis Communications are currently supported.
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The application-dependent layer defines several dialog components to imple-
ment the banking services and part of the registration dialog. Dialog components
use methods and objects in various ATLAS layers for their implementation. AT-
LAS dialog components for enrollment and login are extended and specialized, and
used to implement registration and user authentication dialogs. Specialization in-
cludes using an error-correcting code with a seven-digit registration number used
to authenticate the user during the registration call, and changing prompt texts to
fit the application.

The resource bundle contains a speaker verification engine, several speech recog-
nition engines, several text-to-speech engines, a speech detector, two ISDN termin-
als, a desktop-based terminal, a sound coder, a file-oriented database and a MySQL
database driver. The multitude of speech recognition engines is needed because the
used speech recognizer does not support on-line grammar modification. One engine
is therefore created for each specialized grammar used in the application (Melin
et al., 2001).

PER The PER system (described in detail in the next chapter) is installed at the
central entrance of the Department of Speech, Music and Hearing. The system is
basically a voice-operated lock: employees at the department may open the door
by saying their name followed by a random digit sequence displayed on a screen.
Speech recognition and speaker verification is used to authenticate the user, and an
animated agent gives the user feedback by greeting him or asking him to try again.
The physical installation includes a screen, a high-quality microphone, a relay to
unlock the door, and several sensor devices to detect the presence of a person.

Most of the current dialog is implemented by ATLAS dialog components for
enrollment and login. The current application has been localized to Swedish and
English. It is not a prioritized task, however, to keep system extensions, such as
more advanced language understanding and dialog control, bilingual.

The resource bundle contains one speaker verification engine, two speech re-
cognition engines, and several text-to-speech engines per supported language. It
also contains an animated agent, a graphical display, a speech detector, two ISDN
terminals, one terminal object per detector, a sound coder, a file-oriented database
and a MySQL database driver. Several of the resources were created especially for
this application, including the display that presents the random passphrase on the
screen, and detectors which signal state changes in physical sensor devices.

Regarding the session metaphor used in ATLAS application support classes,
each terminal object (except the telephone-based) uses a detector to decide when
to trigger the start of a new session in the application. It is then up to the session
logic to decide when the session has finished, i.e. when a user has left.

Picasso Impostor Trainer The Picasso Impostor Trainer system was developed
for a study on speakers’ ability to imitate other speakers (Elenius, 2001). A subject
calls the system while sitting in front of a computer. He speaks a list of digit
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sequences to provide a sample of his normal voice, and the system compares the
voice to a list of speaker models and selects two target speakers for imitation. The
subject can then interactively practice to imitate a target speaker under controlled
conditions: by listening to recordings of the target speaker, by watching a display
with scores from the speaker verification system for his own practice utterances
tested against the target speaker’s model, and combinations of the previous two.
After each training round, the subject speaks ten utterances without feedback to
test if he is able to alter his voice to get “closer” to the target speaker in the sense
of the speaker verification system.

The application-dependent layer uses no dialog components. Instead, the ap-
plication uses the listen method in the ATLAS Services Layer to input and process
utterances, and the play method to play back pre-recorded samples of target speak-
ers. It has an elaborate GUI for system feedback to the user and for mouse input.

The resource bundle contains a speaker verification engine, a speech recognition
engine, a speech detector, a sound coder, a media file database, and an ISDN
terminal.

Hörstöd This system was developed for investigating if a hearing impaired person
can be aided by transcriptions produced by a phoneme recognizer in understanding
speech during a telephone conversation (Johansson, 2002; Johansson et al., 2002;
Angelidis, 2003).

The application-dependent layer is fairly similar in content to the Picasso Im-
postor Trainer. It uses a telephony terminal for audio input and a GUI for graphical
output. It uses ATLAS High-Level Primitives Layer to input and process utter-
ances, and no dialog components are used. The resource bundle contains the same
resources as in Impostor Trainer, except that no speaker verifier or speech detector
are included.

4.2.5 Discussion

The main difficulty in creating a generic application platform is to make it both
efficient and flexible. For a given application, the platform should be efficient to
use to minimize development costs. But it should at the same time be flexible
enough to be efficient for another type of application, and to allow adaptation
to new types of applications. We believe that the layered structure employed in
ATLAS is powerful in this regard. By providing low-level APIs and structures,
where little is assumed about the overall application structure, we allow very diverse
applications to share at least the same speech technology components. In the
higher, more powerful layers, we assume more and more about application structure.
These layers are efficient to use with applications for which these assumptions are
valid, and may simply be ignored by applications for which they are not. To
develop the platform to provide powerful layers also to new and diverse applications,
we can either adapt the existing layer implementations and generalize them, or
we can create parallel implementations with other assumptions regarding system
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structure. As a development process, we suggest to first develop new applications
with whatever parts of ATLAS are useful, then to analyze the application-specific
code to see what is general and what is specific to the particular application, and
finally to successively move the general parts into ATLAS. This is how ATLAS can
evolve with research advances.

VoiceXML27,28 is a standard markup language for representing human-computer
dialogs. To relate ATLAS and VoiceXML to each other, we first try to describe
the latter in the context of the system model illustrated in Figure 4.1. The
VoiceXML standard primarily defines a specification for the interface between the
application-dependent layer and a voice browser. The application-dependent layer
in a VoiceXML application is very “thin” and is represented by a set of XML doc-
uments. The voice browser is an application-independent engine that implements
dialogs according to given VoiceXML documents. It thus includes the functionality
of the middle layer and the resource layer of Figure 4.1 (though it may have an
entirely different structure). We therefore suggest that VoiceXML corresponds to
the speech-technology API in ATLAS.

While ATLAS gives the application programmer access to all its internal layers
for retained flexibility, VoiceXML provides access to rather high-level functionality
in the voice browser, but not to low-level details. For instance, a VoiceXML applic-
ation can tell the browser to ask a multiple-choice question, but cannot manipulate
the voice browser’s speech recognizer directly (except possibly through a browser
vendor’s proprietary features). VoiceXML has been created based on some assump-
tions about system structure and capabilities, and as a standard it also imposes
corresponding constraints on what applications can be created. It is therefore effi-
cient for those kinds of applications. Because VoiceXML is a standard, a VoiceXML
application can also be executed in a standard-compliant voice browser from any
vendor29.

VoiceXML does not have (standard) support for biometric user authentication.
Rua et al. (2004) have suggested how support for identity verification tasks based
on multi-modal biometrics could be added.

Creating media streams on a per-utterance basis allows demands for real-time
performance in some parts of the system to be reduced, compared to if a continuous
(unbuffered) media stream on a central bus were used. This is an advantage in a
research system since it allows, for instance, an experimental speech recognizer to
take the time it needs to prepare for and process an utterance. A slow compon-
ent need not risk that other components involved in the processing of the same
utterance looses any samples. We also believe per-utterance streams make system
programming somewhat easier. It has a couple of disadvantages, however. Setting
up streams for every new dialog turn or utterance takes more time than simply
telling a device to start listening on an already connected media bus, possibly res-

27http://www.w3.org/voice/
28http://www.voicexml.org/
29Several vendors market voice browsers that implement VoiceXML, including Tellme, Mo-

torola, Nuance and Pipebeach (now HP).

http://www.w3.org/voice/
http://www.voicexml.org/
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ulting in a slower system. It may also make it more difficult to use full duplex
input/output streams, to implement barge-in, etc. Most standard APIs related to
audio and speech also tend to assume a central media bus. Thus we consider using
continuous, buffered media streams for the future.

For ATLAS component APIs we have in general not used public standard APIs
(the exceptions are JDBC for SQL database connections and SVAPI for the speaker
verification). This is because, first of all, for most current component implementa-
tions we use in-house technology developed before ATLAS was conceived, and we
chose to design APIs that match the abilities of the current technology. Implement-
ing a standard API, such as the Java Speech API (JSAPI), for the TTS for instance,
would have resulted in overhead work at this stage. Second, the main candidate
for a standard API for speech engines in ATLAS would be JSAPI, and there were
not (in year 2001) many engines available that supported JSAPI. Furthermore, JS-
API in its current state does not integrate well with the corresponding Java Sound
API and Java Telephony API that would enable us to maintain the audio device
independence of ATLAS. Third, as we outlined in Section 4.2.3.1, an ATLAS com-
ponent API can be mapped to a standard API via a bridge to enable the use of
engines with a standard API. Today there is at least one TTS engine that natively
supports JSAPI (FreeTTS30), and with the CloudGarden TalkingJAVA SDK to
bridge JSAPI to SAPI, many SAPI engines could be used as well.

A corresponding division between internal and standard APIs is seen in Jaspis
(Turunen and Hakulinen, 2000). In its input/output architecture, virtual devices
are abstract units that represent more concrete engines. Virtual devices serve as
the interface between engines (below) and agents and the communication manager
(above) and partly correspond to ATLAS component APIs. Below the virtual
device level in Jaspis are the client, server and engine levels, and standard APIs
are employed between the server and engine levels (cf. Figure 4.2, example 2).

4.2.6 Conclusions

ATLAS has been presented as a framework for building demonstration applications
with speech technology. So far it has proved useful for research in two EU-projects
and several CTT projects. The CTT-bank system has been used both in a usabil-
ity study and for collecting data for evaluation of speech recognition performance.
The Hörstöd system has likewise been used in a usability study and to test the per-
formance of a phoneme recognizer (Johansson et al., 2002). The Picasso Impostor
Trainer was used to test how speakers are able to imitate other people’s voices. The
PER system has been used to test speaker verification performance. ATLAS also
enabled one of CTT’s associated companies to build a demonstration application
(ReMember).

The high-level speech technology API and the application support classes in
ATLAS make application building easier compared to programming with speech

30http://freetts.sourceforge.net/

http://freetts.sourceforge.net/
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technology components directly. Eight of the current ATLAS applications were
created as part of student projects. The platform has thus proved to be useful also
for educational purposes.



Chapter 5

The PER system

5.1 Introduction

The PER (Prototype Entrance Receptionist) system is an application of speaker
verification created at KTH Department of Speech, Music and Hearing. Its primary,
on-site version is essentially a voice-actuated door lock that provides staff and
students working at the Department on a regular basis with a means to unlock the
central gate to their workplace. The speaker verification system is text-dependent.
Users are authenticated using a single repetition of their proper name and a visually
prompted, random sequence of digits. The automatic collection of enrollment and
test utterances is governed by the system through the use of speech recognition,
multi-modal speech synthesis and a graphical display.

In addition to the on-site version of PER, a telephone version was created to sup-
port the collection of parallel on-site and telephone data. The speaker verification
and speech recognition system components are the same for both system versions,
including background/acoustic models and the choice of feature representations.
They were initially developed using landline telephone data, and were expected to
perform better with landline telephone calls than with calls from mobile telephones
and in the on-site version of the system.

The first (on-site) version of PER was installed in 1999 as part of a student
project (Armerén, 1999), and the system and its components has since then been
improved successively until May 2003 when data collection for an evaluation started.
The corpus resulting from this collection is described in Section 6.3 (p. 101) and
results from the evaluation are presented in Chapter 10 (p. 191). This chapter
focuses on the description of the two versions of the PER system.

5.2 On-site version

The on-site version of the system, depicted in Figure 5.1, serves an entrance where
users are physically present. It uses a graphical display to prompt claimants visually
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Figure 5.1: The on-site version of PER from side and frontal views. Photos by
Botond Pakucs.

for five-digit passphrases. A new passphrase is generated every 10 seconds and the
display is updated correspondingly until the system detects the presence of a person.
Presence detection is implemented through a diffuse reflection type photoelectric
sensor (Diell MS6/00-1H). The sensor is mounted just below the microphone (cf.
Figure 5.1) and triggers the start of a session when an object is within approximately
20 cm from the microphone. To allow claimants to start speaking immediately upon
arriving at the microphone, the idle system is set in a stand-by mode where it is
continually recording audio into a one-second circular buffer. When the presence
of a person is detected, input processing starts from the first sample stored in the
buffer at that time.

Speech input is recorded with a Sennheiser MD441U directed microphone and
sampled at 16 kHz with 16 bits per sample via a SoundBlaster Live! sound card and
an external pre-amplifier (M-Audio AudioBuddy). This sample stream is stored to
file for future wide-band experiments, while it is decimated to 8 kHz and compressed
to 8 bits/sample using A-law coding for use in the on-line processing by system
components described below. The decimated and compressed sample stream is also
stored to file for off-line experiments. It was used for internal processing because
our available development data were telephone data, and both acoustic models for
speech recognition and speaker verification background models were trained on such
data (cf. Section 10.2.1, p. 193).
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Figure 5.2: Panorama view of the bar gate with the on-site version of PER. Photo
by Botond Pakucs.

A video camera (Axis 2120 Network Camera) is installed next to the microphone
to capture close-up images of claimants (cf. Figure 5.1). The purpose of the camera
is to help annotators decide if a claimant is the target speaker or not, to annotate
sessions from the same (unknown) impostor speaker with a single identity label,
and to speed up annotation work in general (cf. Section 6.3.3.1, p. 107). The
camera is not used for automatic face recognition, while this would have been an
obvious possibility for this on-site application. Figure A.3 (p. 259) shows examples
of images captured by the camera.

The gate where PER is installed1 is an iron-bar gate located in a spacious
stairwell just below the two floors housing the Department. The stairwell is a
reverberant room with stone floor and bare concrete walls. It spans three floors of
the building and contains several potential sources of transient background noise
such as doors and talking people. Figure 5.2 shows a picture of the stairwell with
the PER system to the right of the bar gate as seen from inside the Department.
Figure A.2 (p. 258) shows a closer picture of the gate and PER.

The reverberation time (T60) of the stairwell was measured by Nordqvist and
Leĳon (2004) to 2.4 s at 500 Hz and 2.1 s at 2000 Hz, while both corresponding
values for a typical office in the Department were measured to 0.7 s.

The PER system provided one of three possible ways for employees to unlock
the gate, the other two being a combination lock and a regular door lock.

5.3 Telephone version

The main differences introduced in the telephone version of the system with respect
to the on-site version are listed in Table 5.1. Except for the choice of authentication

1describes the location where evaluation data were collected; the Department (and PER) has
moved since then (Figure A.1 on p. 257 shows the new installation)
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method during enrollment explained in Section 5.5, differences are all motivated by
the limited number of available choices of output modalities in the telephone case, or
by the standardization in the telephony system. With (traditional) telephones the
speech and audio modality is the only available one, while for on-site applications,
any modality could be used. (However, in this work on-site output was limited to
the (multi-modal) speech and graphics modalities.)

As shown in the table, the prompting method differs between the two versions
of the system. In the on-site case the graphical display is used to prompt the
digit string visually. This has several advantages over aural prompting like in the
telephone case:

A. No aural prompt is needed to initiate the first attempt from the claimant,
allowing for a short time from session start to system decision.

B. Longer digit sequences can be used, allowing for reduced speaker verification
error rates. In a previous study (presented in Chapter 8) it was found that
using five digits with aural prompting introduced a lot more errors and dis-
fluencies in user responses compared to using only four digits, suggesting that
four digits is an upper limit for practical use with aural prompting. Prelim-
inary observations with PER indicated that visual prompts with five digits
caused no difficulties for users.

C. With visual prompts it is quite possible to collect the name and the digit
sequence in a single utterance, again allowing for a short time to system
decision. With aural prompts we believe this would be very difficult for users
because of an increased cognitive load and limitations in short-term memory
in users, so we chose to collect name and digits separately in a two-step
procedure.

5.4 Web interface

A web interface to an SQL database used by PER is provided through the De-
partment’s intranet server. The interface serve several purposes. The two first are
related to normal use of an access control system:

• Regular PER users (clients) visit their personal page to enable gate or tele-
phone enrollment, and to generate enrollment sheets for telephone enrollment.
They can also customize PER’s greetings to them.

• The system administrators use a privileged part of the interface to add new
users to the database, or delete users. Statistics on system use is also provided,
such as enrollment status of users, enrollment durations, the number of ses-
sions, access times, the number of attempts required for access and a list of
error messages.
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Table 5.1: Differences between the on-site and telephone versions of the system.

Property On-site Telephone

Transducer directed, high-quality
microphone

telephone instruments
(landline/cellular)

Sampling 16 kHz, 16 bits/sample,
then decimated to
8 kHz, 8 bits/sample
(A-law)

8 kHz, 8 bits/sample
(A-law)

Passphrase prompting
method

visual prompts aural prompts
(synthetic speech)

Number of digits 5 4

Collection of name and
digit sequence during
test

single utterance separate utterances

Turn-taking no system prompt
before first attempt;
graphical indication of
when system expects
user input

system prompt before
every expected user
utterance

Session start optical sensor telephone call

Authentication during
enrollment

30 minute time window
from activation via web
page

7-digit code and two
hour time window

Other purposes are related to the data collection for scientific purposes:

• Client and impostor subjects can see how many sessions are expected from
them and how many they have completed, together with statistics on recorded
sessions. Impostor subjects are provided with a list of possible target speakers.
For further encouragement subjects could also access group statistics of all
users (like that provided to system administrators).

• Data collection supervisors are given an overview on what subjects have not
yet completed their expected number of sessions, etc., in addition to all the
statistics provided to system administrators. This function was very useful
during data collection for issuing reminders to subjects. Statistics and results
of annotation is also given.
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Table 5.2: Digit sequences collected from each subject during enrollment.

Item Sequence Item Sequence
1 3 5 6 0 2 6 6 9 4 1 3
2 7 6 3 2 4 7 2 1 8 5 7
3 9 3 0 4 6 8 0 8 1 7 5
4 8 7 2 9 0 9 4 0 9 6 8
5 1 2 5 8 9 10 5 4 7 3 1

5.5 Enrollment

The use of speaker verification requires clients to enroll. During an enrollment
session, the PER system collects speech from the enrolling client (the enrollee) and
creates a target model for that client.

The system is set to collect one valid repetition of each of ten items per subject
with a proper name and five digits in each item. The digit sequences, listed in
Table 5.2, are the same across subjects. They were designed such that each digit
occur exactly five times; exactly once in every position within the sequence; and
never more than once in a given left-context or right-context. A repetition of an
item is deemed valid if the on-line speech recognition includes the expected name
and digits for that item in its N-best output. The system asks clients to repeat the
same item until a valid repetition is found and before moving on to the next item.

To avoid users being held up by repeating a particular item an unreasonable
number of times in the event that the speech recognizer repeatedly fails to produce
the correct hypothesis, they are offered to skip an item after every sixth attempt on
the same item. A user is allowed to skip up to two of the ten items in this way. This
skip-possibility was utilized by a few clients as presented in Section 10.3.1 (p. 195),
thus the number of collected items per client varied between eight and ten.

Before using PER for the first time, clients have to enable their enrollment
via the system’s web interface. By doing so, they are given a time window for
enrollment of 30 minutes for gate enrollment and 2 hours for telephone enrollment.
Access to the intranet is protected by standard user name plus password login that
constitutes the main mechanism for authenticating clients at enrollment. For the
gate version of the system, it is the only authentication mechanism. It was judged
as sufficient since the client also have to be physically present by the gate within
the allocated time window. To enroll with the telephone version of PER, clients
also have to enter a seven-digit authorization code at the beginning of the call. The
code is issued by the web interface and presented to the client on an enrollment
sheet that also includes the ten items to speak during enrollment. An enrollment
sheet is not needed with gate enrollment since enrollment items are presented on
the display.
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5.6 Speech recognition

The automatic speech recognition (ASR) component of the system is based on the
Starlite decoder (Ström, 1996) and acoustic models trained on the Swedish landline
FDB5000 SpeechDat database (Elenius, 2000).

Acoustic models are state-tied triphone models created using the COST249
reference recognizer framework (Lindberg et al., 2000). Each triphone is modeled
by three states and a mixture of eight Gaussian terms per state, with a total of
7623 states. The data set used for training the acoustic models is described in
Section 10.2.1.

Input features are specified by the reference recognizer framework. They are 12-
element MFCCs plus the 0’th cepstral coefficient and their first and second order
deltas. MFCCs are similar to those used in the speaker verification system except
that the filter bank has 26 filters spaced between 0-4000 Hz (cf. Section 3.2.1).
Energy normalization and cepstral mean subtraction are not used.

The decoder uses a two-pass search strategy: a Viterbi beam-search followed
by an A* stack-decoding search. A number of class-pair grammars are used to
simulate a dialog-state dependent finite-state grammar. Output is an N-best list
with up to 10 hypotheses, each specified by a word sequence and start and end
times of each word segment. The application selects one hypothesis per utterance
to be used as the segmentation of the utterance by the speaker verification system.
The hypothesis is selected based on the knowledge of what the claimant is supposed
to say, as the hypothesis with the highest score whose text matches the expected
text. If there is no hypothesis with the expected text, the dialog system rejects
the utterance and prompts the claimant for a new one. The system always knows
what digits to expect from the claimant, since during both enrollment and test,
digit sequences are prompted to the user.

5.7 Speaker verification

The speaker verification component of the PER system is a score-level combination
of an HMM-based subsystem and a GMM-based subsystem. The entire speaker
verification system was described in detail in Chapter 3.
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Chapter 6

Corpora

6.1 Introduction

This chapter describes two speaker verification corpora created by the author: the
Gandalf and the PER corpora. Descriptions include the presentation of design cri-
teria, recording procedures, text material and statistics on subjects and sessions.
Enrollment and test sets used in this thesis are defined. Some of the more detailed
information on the corpora, including additional enrollment and test sets of poten-
tial interest for future users, are presented in appendices and serve as documentation
of the corpora for future reference.

The author also contributed to the creation of the Polycost and the VeriVox
corpora. The scientifically interesting part of these contributions consisted in de-
fining data sets for speaker verification experiments, and running such experiments.
Some of this work is also summarized in this chapter. As a follow-up to our work
on the public Polycost corpus, an overview on published results world-wide where
this corpus has been used is given.

6.2 The Gandalf corpus

6.2.1 Introduction

The Gandalf corpus (Melin, 1996) was designed for research on speaker verification
in telephony applications in the Swedish language and was recorded during 1995-
1996. Before Gandalf, there was no large-scale speech corpus available that was
recorded in Swedish and was suitable for experiments in speaker verification. The
main ASV corpora publicly available1 were YOHO, KING and SPIDRE, and they
were all American English corpora.

The three main design criteria for Gandalf were

1available from the Linguistic Data Consortium, LDC, http://www.ldc.upenn.edu/
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1. to include both telephone line variation and intra-speaker variation,

2. to allow for a comparison between ASV-systems with different text depend-
ence, and

3. to enable an analysis of the significance of effects from different sources of
variation in the speech signal.

The motivation for these criteria will now be outlined.
Some ASV corpora have been designed to cover either (long-term) variations

in the speaker (e.g. YOHO (Campbell, 1995)) or telephone handset variation (e.g.
HTIMIT and LLHDB (Reynolds, 1997b)). Reasons for including only one of the
two are to isolate one source of variation in experiments performed on the data,
and to limit the size of the corpus. Other corpora have been designed to cover both
types of variation, e.g. a LIMSI/CNET corpus (Gauvain et al., 1995; Lamel and
Gauvain, 1998), the CSLU Speaker Recognition Corpus (Cole et al., 1998), and the
AHUMADA/Gaudi corpus (Ortega-Garcia et al., 2000).

The first half of Gandalf includes both types of variation, while the second half
focuses on long-term speaker variation. In order to enable a separation of variations
due to speaker and handset in the first half, subjects make half of the calls (every
second call) from a “favorite handset”, and the rest of the calls from different
handsets in different environments. In the second half of the corpus, all calls (with
some exceptions as detailed below) were made from the favorite handset.

Systems with different text dependency may differ in many aspects, such as user
acceptance, system complexity, resistance against impostor attempts with e.g. tape
recordings, and pure verification performance, where the last aspect is the main
target for experiments with a speech corpus. To enable a comparison between
these systems, the corpus should allow for testing of each system during equivalent
conditions, which is made easier if the respective kinds of text are available in each
call.

Most investigations on ASV-systems have been quantitative. The general char-
acteristics of a corpus are described and results are summarized in overall error
rates. Such experiments will not answer questions about what happens if a user
gets a cold, if he calls from a mobile phone, if there is significant background noise,
etc. In order to take the analysis further, a more detailed assessment of the ASV-
system is needed. Such an assessment is possible if more sources of variation are
documented in the corpus, and the results from system tests are correlated with this
information. An example of such detailed analysis is that made during the NIST
speaker recognition evaluations 1999, where results were correlated with pitch dif-
ferences between enrollment and test, same-line vs. different-line tests, and same
vs. different transducer type (Martin and Przybocki, 2001).

The Gandalf corpus has been used by the author in several papers (Melin, 1996;
Lindberg and Melin, 1997; Melin, 1998; Melin et al., 1998; Melin and Lindberg,
1999b) and in this thesis (mainly Chapters 8 and 9 and Section 10.2), by Jes-
per Olsen at Center for Personkommunication at Aalborg University in Denmark
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(Olsen, 1997, 1998a,b,c) and in a number of MSc thesis projects at KTH (Gustafs-
son, 2000; Neiberg, 2001; Elenius, 2001; Olsson, 2002; Lindblom, 2003).

6.2.2 Data collection

This section describes the recording procedure and provides statistics on subjects,
calls and texts included in the corpus. A description for an initial subset of the
corpus was previously published in (Melin, 1996). This section includes most of
that description, but covers the entire corpus and adds statistics on more aspects
of the content. Some additional, more detailed, statistics are presented separately
in Appendix B (p. 261).

All calls were recorded with an automatic procedure through an ISDN-line and
stored as one utterance per file in the format used in the Euro-ISDN network. Thus,
the sampling frequency is 8 kHz, samples are A-law coded and stored with 8 bits
per sample.

6.2.2.1 Subjects

Subjects in the corpus were recorded as either clients or non-clients. Clients made
multiple calls while non-clients made two calls each. Later in this chapter, when
defining test sets on Gandalf data, each non-client subject is assigned a function as
either impostor or background speaker.

The client subjects were mainly recruited among employees at KTH and Telia
Research AB, and from their friends and families. Subjects for the non-client part
were mainly recruited through the client subjects with the request that people with
some similarity be recruited, such as blood relatives or someone with the same
particular dialect.

The client part contains 86 subjects (48 male and 38 female) and the non-client
part 83 subjects (51 male and 32 female) with age distributions as displayed in
Figure 6.1. Age distributions within the two subject groups are similar to each
other, but they both clearly differ from that of the Swedish population, included in
the same figure. In particular, age intervals 21–30 and 46–50 are over-represented
in the corpus.

The dialect distribution among client subjects is heavily biased towards the
Stockholm region, with 52 of the subjects coming from Stockholm and 12 coming
from the nearby city of Eskilstuna. The remaining 22 subjects speak various dialects
as shown in Table 6.1.

Table 6.2 shows statistics on smoking habits in subjects as stated by subjects
themselves on a subject response sheet (at the beginning of the collection period).
Two client subjects (M045 and F074) and three non-client subjects (M145, M164 and
M191) indicated they smoked more than 10 times/day. Corresponding statistics for
the Swedish population, also included in the table, shows that daily smokers are
under-represented in the corpus.
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Figure 6.1: Age distribution, at the start of the recording period, among the 86
client subjects and 82 of the 83 non-client subjects (age information is missing for
one female non-client subject). Distribution for the Swedish population between
ages 11 to 80 is also included (Statistics Sweden (SCB), 2004). Note that the three
right-most age intervals span 10 years each while the others span 5 years per interval
(this is the resolution at which ages are known for Gandalf subjects).

Table 6.1: Dialectal distribution in the client subject group as judged by listening.
Most of the subjects lived in the Stockholm region by the time of the recording
period.

Region/dialect No. of subjects
Stockholm 52
Eskilstuna 12
Norrland 7
Småland 4
Finland-Swedish 4
Göteborg 3
Foreign accent 3
Skåne 1
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Table 6.2: Smoking habits among client and non-client subjects as indicated on
subject response sheets, together with the corresponding statistics for the Swedish
population year 2004 (ages 16–84; Statistics Sweden (SCB), Undersökningarna av
levnadsförhållanden (ULF)).

Smoking Subjects Swedish
client non-client population

No 81% 80% 73%
Occasionally 13% 12% 11%
Daily 5.8% 7.3% 16%

Table 6.3: Educational level among client and non-client subjects as indicated on
subject response sheets, together with the corresponding statistics for the Swedish
population year 2004 (Statistics Sweden (SCB)).

Education Subjects Swedish
client non-client population

Compulsory school 7.0% 2.4% 25%
+ upper secondary school (or similar) 12% 23% 46%
+ university (or similar) 81% 74% 29%

Table 6.3 shows statistics on the educational level among subjects together
with corresponding statistics on the Swedish population. A comparison shows that
persons with university-level education are heavily over-represented in the corpus.

Table 6.4 shows how many groups of subjects in the corpus are related by blood.
Table B.5 (p. 266) lists the exact relations in terms of subject numbers. To get an
idea of how subjects perceive their own and their relative’s voices, each subject
was asked “Do you think that your voices sound alike (for example, does someone
usually mistake you for the other when you talk on the phone)?” and had to respond
by checking one of “no”, “maybe a little” or “yes, a lot”. Subject groups where at
least one of the subjects responded by the third option have been underlined in the
Table B.5 and were counted separately in Table 6.4.

6.2.2.2 Client calls

Two types of calls were recorded: enrollment calls and test calls. Enrollment calls
were longer in order to collect enough speech material for enrollment into an ASV-
system. The duration of the entire call was about 7 minutes per enrollment call
and 2.5 minutes per test call.

The recording of client subjects were done in three parts.
Part 1 included three enrollment calls and 14 test calls; one call per week during

four months. The series of calls started with two enrollment calls (denoted as 1

and 2), one from the favorite handset and one from another handset. Then the
test calls (calls 3–16) were made with every second call from the favorite handset
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Table 6.4: Number of groups with various types of relation by blood among
subjects in the Gandalf corpus. In groups in the “alike” column, at least one of
the subject indicated they have similar voices. Table B.5 (p. 266) lists the exact
relations in terms of subject numbers.

Relation Subject groups
“alike” other

Identical twins 2 0
Siblings 5 9
Parent–child (same gender) 6 17
Parent–child (different gender) 0 9
Cousins (same gender) 0 8

2 4 6 8 10 12
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Figure 6.2: Histogram showing how many client subjects called from a certain
number of distinct handsets (including the favorite handset).

and the rest from other handsets. Finally, the third enrollment call (denoted as 99)
was made, approximately four months after the first enrollment call and again from
the favorite handset. Figure 6.2 shows statistics on the number of handsets used
by subjects, and Table 6.5 shows the distribution of those handsets over handset
type. As many as 82 of the subjects completed all the 17 calls (remaining subjects
completed 4, 7, 14, and 16 calls each). The total number of calls in Part 1 is 1435,
corresponding to approximately 30 hours of speech.

Part 2 included seven test calls (denoted as 17–23) from the favorite handset
with a one-month interval between the calls. 67 of the subjects from Part 1 volun-
teered to Part 2, and 59 of them (35 male and 24 female subjects) completed the
seven calls. With Part 2, intra-speaker variation during up to 12 months has been
included in the corpus. Part 2 contains 439 calls with 8 hours of speech.
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Table 6.5: The number of handsets of each type used by client and non-client
subjects, and the total number of calls made from a handset of the respective type
in the client non-favorite handset section and the non-client call section.

client calls non-client calls
favorite non-favorite enroll test

Type handsets handsets calls calls calls
Stationary, button 84 259 394 69 40
Stationary, dial 1 43 63 10 18
Cordless 1 27 44 1 10
Mobile, GSM 58 81 1 8
Mobile, NMT 17 25 4
Pay phone, card 59 61 1 2
Pay phone, coin 12 14
Speaker phone 6 7
ISDN-phone 6 7

Part 3 included five test calls (denoted as 24–28) also from the favorite handset
and with a one-month interval between the calls. 49 subjects volunteered to Part
3, and 42 of them (25 male and 17 female subjects) completed the five calls. With
Part 3, intra-speaker variation during up to 18 months has been included in the
corpus. Part 3 contains 232 calls.

While Part 1 included calls both from the favorite handset and from other
handsets to allow mixed studies of speaker and handset variability, Parts 2 and 3
focused on the speaker variability by including calls from the favorite handset only.
However, eleven subjects stopped using the handset designated as their favorite
handset during the collection of Parts 2 or 3 because it was no longer available to
them for some reason. Table B.6 (p. 266) lists those subjects and during which calls
they used another handset. The issue here is that these calls were not recorded from
the same handset used during subjects’ first enrollment call as they were meant to
be to focus on speaker variability rather than handset variability. A total of 70
calls were made from a different handset than the original favorite handset.

With all three parts taken together, the client part contains 256 enrollment and
1850 test calls, with a total of approximately 40 hours of speech. Figure B.1 (p. 267)
shows a complete histogram on how many client subjects recorded how many calls.

6.2.2.3 Non-client calls

Non-client subjects were recorded in two calls: one enrollment call and one test
call (denoted as 101 and 102 respectively). The two calls were made from two
distinct handsets and no specific time was requested for the interval between the
calls. Normally, a non-client subject would have to be recorded only once, and the
recording would be used only to make impostor attempts on the target identities
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of client subjects. However, recording one extra call per subject involves little
additional effort, gives the possibility of making limited true-speaker tests with the
non-client subjects, and allows each non-client subject to be recorded from two
different handsets. The 83 non-client subjects recorded 165 calls (female non-client
subject F157 only completed the enrollment call) with approximately 7 hours of
speech.

6.2.2.4 More call statistics

Appendix B presents additional, more detailed statistics on the Gandalf corpus,
including statistics on calling locations, international calls, illnesses, and (perceived)
background noise.

6.2.2.5 Texts and prompting methods

The recorded phrases include short sentences and digit strings of various length.
Some of the phrases are the same across calls while some are different. Some of the
phrases are read from a script (visual prompting) and some are given aurally to the
subjects by a voice prompt at recording time. In client calls 19–28, subjects were
also asked to speak freely for 15 seconds. Table 6.6 shows the exact composition of
phrases in each call. The scripted phrases are the same across subjects (except the
7-digit identification number).

Aural prompts were selected randomly at recording time from pools of pre-
fabricated prompts. Two pools with 20 candidates each were used with 4-digit
utterances, the first pool during client calls 3–18 and the second pool during client
calls 19–28. With 5-digit utterances, which were collected only during client calls
19–28, a single pool of 20 candidates was used.

The first aural sentence prompt (for file RS01) in each call was selected from
two pools of 20 “short” sentences each. Like with 4-digit utterances, the first pool
was used during client calls 3-18 and the second pool during later client calls. The
second sentence prompt (for file RL01) was selected from a pool of 20 “long” sen-
tences during client calls 3–18. During client calls 19–28 two such “long” sentences
were collected, now from a new pool.

All digit and sentence prompts except for the third prompted sentence of each
call (for file RL02), were created using a rule-based formant synthesis TTS system
(Carlson et al., 1982, 1991). Prompts for the third sentence were recordings of
a human voice from a male speaker. Hence, prompts for the second and third
sentences (RL01 and RL02) were created from the same sentence pool but with
different voices.

Prompts created with the synthetic voice for sentences in the “short” pools were
2.3 s on average and contained on average 5.4 words per sentence. Sentences in the
“long” pool were 2.6 s on average, with 6.6 words per sentence on average.

Non-client call 102 was designed to be as similar to early client calls as possible,
but to also include content added to later client calls. Therefore, 4-digit sequences
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Table 6.6: The number and types of phrases in different calls. PxR in a Call-ID column denotes R repetitions of P
phrases.

Presentation Call-ID
Phrase Taga TDb 1-2 3-16 99 17-18 19-23 24-28 101 102 Example

Visual prompt (manuscript)
7-digit id. ID x 1x2 2 1x5 1 1 1 1x5 1 0 8 8 0 3 2 5
call No. ID 1 1 1 1 1 1 1 1 det tredje
fixed sent. FS x 2x5 2 2x5 2 2 2 2x5 2 Öppna dörren innan jag

fryser ihjäl.
varied sent. VS 10 4 10 4 4 4 10 4 Filmen med badbilderna har

fastnat i tullen.
1-digit D1 50 2
3-digit seq. D3 x 6 6 6 6 6 6 5 8
4-digit seq. D4 x 4 4x5 4 4 4 4x5 4 7 9 4 1
5-digit seq. D5 x 25 25 25 1 4 4 7 2

Aural prompt
4-digit seq. R4 2 2 2 2 2 2 9 5 4
5-digit seq. R5 2c 2c 2c 3 4 0 8 9
“short” sent. RS 1 1 1 1 1 Affären gick med stor förlust.
“long” sent. RL 1 1 2d 2d 2d Han såg mannen på höjden

med kikaren.e

Free
free speech SP 1 1 1

Typef E T E T T T E T
Part Part 1 Part 2 Part 3

Subject Client Non-client

aThe tag indicates the first two letters in names of recorded files.
bAn x in this column indicates that the same text is used in every call, which allows for text-dependent tests.
cThe prompt is presented once for file R501 and twice for file R502.
dOne file (RL01) is prompted with a synthetic voice and the other (RL02) with a human voice.
eThis particular sentence (He saw the man on the hill with the binoculars) was included in four versions with different combinations of

word stress on the three nouns (mannen, höjden, kikaren).
fE and T denotes enrollment and test call, respectively.
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(R401 and R402), the “short” sentence (RS01) and the first “long” sentence (RL01)
were randomly selected from the corresponding first pools used with client calls.
The second “long” sentence (RL02) was then picked from the second pool of “long”
sentences while first 5-digit sequence (R501) was picked from the first 10 candidates
of the 5-digit sequence pool and the second 5-digit sequence (R502) from the next
10 candidates in the same pool.

We finally want to mention four points in the design of sentence pools for aural
prompting that have been useful, or may become useful in future experiments, for
studying how the prompting method influences speaker responses:

The first point is that the strings used for scripted 4-digit sequences (“7 9 4 1”,
“2 2 3 9”, “7 6 8 9”, and “0 3 5 1” recorded in files D401 through D404) were
included in the first pool for picking aural prompts for 4-digit sequences. This
allows for experimental studies comparing visual vs. aural prompting, such as these
presented in Chapter 8.

Second, since we believed that repeating five aurally prompted digits would be
more difficult than repeating four digits, and that playing 5-digit prompts twice
would (partly) compensate for this difficulty, we collected the first 5-digit sequence
(R501) with a single presentation of the prompt, and the second sequence (R502)
with the prompt played twice6. Hence, comparing the two sets of recorded files
shows whether our hypothesis was correct. One such comparison is made with
respect to rates of generated speaking and recording errors in Table 8.2 (p. 161).

Third, as was already mentioned above, sentences were collected from a single
pool using synthetic (RL01) and human (RL02) prompts. This design addresses
questions like: Are subjects more likely to be influenced by a human voice than a
synthetic voice? Does the reproducibility of a synthetic voice result in a normaliz-
ation of the subjects’ speech?

Fourth, the phrase “han såg mannen på höjden med kikaren” (he saw the man
on the hill with the binoculars) was included in the first pool of “long” sentences in
four versions with different word emphasis patterns. This addresses the question of
how much subjects replicate prosodic cues in aural prompts.

6.2.3 Meta information

Apart from audio files, the Gandalf corpus also contains a relational database (RD).
The primary function of the RD application is to store all the available information
about subjects and calls. It also has the potential for being used as a tool for
analyzing results from ASV tests, though this possibility has not been exploited in
practice.

6.2.3.1 Stored information

Information stored in the RD has been collected from the subjects through subject
response sheets, call response sheets and through post-processing of the recordings.

6The manuscript indicated where a prompt would be played once or twice.
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Subjects filled out one subject response sheet (SRS) plus one call response sheet
(CRS) for each call. The SRS had questions about fixed characteristics, such as
gender, age, dialect, smoking habits, and education, while the CRS had questions
about call-specific conditions, such as the handset, the room where the call was
made, background noise, and illness and other conditions that potentially could
affect the voice. (Statistics on most of this information were given above or in
Appendix B.) The response rate for the SRS was 100% for client subjects and 99%
for non-client subjects (one sheet missing). Response rates for the CRS relative to
the actually recorded calls were 99.5% (only 10 missing) for client calls and 99.4%
for non-client calls (1 missing).

The post-processing involved manually checking the recorded files for correctly
spoken phrases. Files where there is some deviation from a normal pronunciation
of the text were sorted out for further annotation. Examples of such deviations are:
repeated, extra, missing or mispronounced words.

6.2.3.2 Analysis tool

Given that many types of information about subjects and calls are stored in the
RD, the RD application could be used for automated, detailed analysis of results
from ASV simulations on the data. This possibility has not been exploited more
than in terms of preliminary experiments reported in (Melin, 1996). The basic
idea was to develop a report generator in the RD application that took as input
score values from an ASV simulation on a list of verification tests. Reports would
be based on correlations between information about subjects and calls on the one
hand, and the simulation results on the other, and would address questions like:
What happens to the false reject rate when a client always calls from his favorite
handset compared to when he uses different handsets? Is a system robust to a
particular type of background noise? How much larger is the probability of a false
rejection when the client has a cold? How does the false reject rate change with
time from enrollment? Is the probability of a successful impostor attempt greater
if the impostor is a close relative?

The statistical significance of the answers to questions like these will depend on
the number of occurrences of an investigated phenomenon and the number of errors
made by the system under test. Hence, different questions will have answers with
different statistical significance. For instance, the number of calls where a client
subject has a severe illness7 is low (51 calls, or 2.4% of client calls), and hence,
conclusions on the influence of a cold will be relatively weak.

6.2.4 Data sets

With respect to subjects, the corpus was split into three disjoint sets: a development
set, an evaluation set and a background set, by assigning each subject to one of

7see Appendix B, p. 264 for our definition
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Table 6.7: Test set sizes for the Gandalf corpus with subject-split according to
Division-1.

Development set Evaluation set
male female male female

Targets 22 18 24 18
Impostors 23 18 58 32
True-speaker tests 508 419 543 342
Impostor tests

same-sex 484 306 1368 558
cross-sexa 396 414 768 1044

amale-column shows number of cross-sex attempts against male targets, etc.

the three sets. This particular split is referred to as Division-1. Details on how the
assignment was made and lists of subjects in each group are given in Appendix B
(p. 261). Division-1 was used in (Melin, 1998) (background and development sets
only), (Melin et al., 1998; Melin and Lindberg, 1999b; Gustafsson, 2000; Neiberg,
2001; Olsson, 2002; Lindblom, 2003) and in the present thesis (development and
evaluation sets).

At the session level, one session per subject (the first test call; i.e. call 3) was
used for impostor tests against all other targets, and all available test calls from a
target were used for true-speaker tests. With one test drawn from each such session,
we get the number of tests shown in Table 6.7. While the test set specification
includes both same-sex and cross-sex impostor attempts, results should preferably
be presented for same-sex tests only like in (Melin et al., 1998; Melin and Lindberg,
1999b).

For enrollment, there are three sessions to work with. Call 1 is from the favorite
handset, call 2 from another handset, and call 99 is again from the favorite handset.
The latter call was nominally recorded after call 16, i.e. after several test sessions.
These sessions can be combined to form enrollment sets with various properties.
Call an enrollment set N sM h*t, where N sM h indicates the composition of the
enrollment data and t indicates the approximate amount of speech included in it,
in minutes. The composition is defined by the number of sessions (N ) from which
data are drawn, and the number of distinct handsets (M ) used in those sessions.
Each enrollment session includes 25 five-digit sequences, 10 varied sentences and 5
repetitions of two fixed sentences (see Table 6.6). The digits correspond to approx-
imately one minute of speech (0.5 s per digit) while the varied sentences correspond
to approximately half a minute (3 s per sentence). The three enrollment sessions
can hence be used to compose many enrollment sets. The sets used in this thesis
are listed Table 6.8, while Table B.2 (p. 263) lists all Division-1 enrollment sets
that have been defined.

At the file level, several test sets can be combined from the files included in each
test session (Table 6.6). Test sets used in this thesis are given in Tables 6.9. An
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Table 6.8: Gandalf enrollment sets used in this thesis. Sets are defined on five-
digit sequences (d5) and fixed sentence (fs0n, with n ∈ {1, 2}). Files are specified
on the format session/filename. Refer to Table B.2 (p. 263) for a complete list of
defined Division-1 enrollment sets.

Composition Phrase t Files Comment

1s1h d5 1 001/D5{01–25}

0.5 001/D5{01–12}

0.3 001/D5{01–07}

2s2h d5+fs0x 1 001/D5{01–05},
002/D5{06–10},
001/FS0n{01–05}),
002/FS0n{01–05})a

used for dedicated
PER development

an = 1 for half the targets and n = 2 for the other half

Table 6.9: Gandalf test sets used in this thesis. For an extensive list of test sets
defined for Division-1, refer to Tables B.3 and B.4 (p. 264).

Test set Text Prompt Files Comment

2d4 8 digits visual (D401, D402) or
(D402, D403) or
(D403, D404) or
(D404, D401)

the same digit sequences for a
given target across all calls

1fs+1r4-
fs0x

1 sent.,
4 digits

visual,
aural

(FS01, R401) or
(FS02, R402)

the same sentence across calls;
digit sequences are picked at
random; designed as
development set for PER
experiments

extensive list of test sets defined in Division-1 are given in appendix as Tables B.3
and B.4 (p. 264).

6.3 The PER corpus

6.3.1 Introduction

The PER corpus is the result of data collection during 2003–2004 from actual
use of a speaker verification system, namely that in the PER system described in
Chapter 5. It consists of recordings of proper names and digit sequences spoken in
Swedish and is suitable for experiments in text-dependent speaker verification.
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The main design criteria for the corpus were to support an evaluation of the
performance of ASV in the PER application, and to allow a fair comparison between
speaker verification in on-site vs. telephone use.

The first criterion followed from our goal to evaluate the PER system during
live use. New speech data were needed to this end because we had no suitable data
before. The Gandalf corpus contained only telephone data, while PER used a wide-
band microphone mounted in a reverberant room. It contained visually and aurally
prompted digits, but no proper names, and the available text-dependent non-digit
phrases were sentences shared by all subjects. Finally, Gandalf was recorded using
a tape-recorder metaphor, where subjects were speaking to a machine without any
feedback on how they were speaking, and we felt the difference to talking to a live
ASV system could be important.

The second criteria came from a wish to relate results from on-site use of ASV
to our previous research on its telephone use. Furthermore, we wanted to exper-
iment with cross-condition enrollment and testing, where a client is supposed to
enroll once, say by telephone, and then be ready to use his voice for authentication
anywhere, be it a telephone or on-site application.

To allow a fair comparison between speaker verification in on-site vs. telephone
use, the data collection was designed to include telephone data in parallel to on-site
data. The telephone version of PER was thus created and a part of the test group
was asked to make telephone calls in conjunction with their entry through the gate
protected by the on-site version. Differences introduced in the telephone version
with respect to the on-site version are motivated by the dissimilar prerequisites of
the two cases as outlined in Section 5.3.

To allow for even better comparison between on-site data and the rather broad
class of “telephone” data, and after noting that calling from a telephone rather than
talking to the system on site potentially involves a change of room in addition to the
recording transducer and channel, we decided to collect data in four separate condi-
tions : through the microphone at the gate in the hall (stairwell), through a mobile
telephone in the same hall, through the same mobile telephone from an office, and
through a landline telephone from the same office. In this way, there is a change
in one dimension at the time in a room–transducer space between the four condi-
tions, and it should be possible to determine whether a difference in ASV error rate
between any two conditions is mainly due to a change in the room (with associated
background noise) or to the transducer (and associated transmission effects). The
four conditions in the room–transducer space are labeled gate/hall, mobile/hall,
mobile/office and landline/office in this thesis, and sometimes abbreviated G88,
MH, MO and LO. They are illustrated in Figure 6.3.

While the PER system versions used for collecting data were not optimized for
this particular application and the respective condition, a set of separate speakers
were collected to serve as development data (background data) for creating optim-

8G8 for the downsampled 8 kHz version of gate data
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Figure 6.3: The four recording conditions in the PER corpus: gate/hall (G8),
mobile/hall (MH), mobile/office (MO) and landline/office (LO).

ized systems for later simulation experiments. The so called background speakers
were recorded in each of the four conditions.

6.3.2 Data collection

This section describes the recording procedure and provides statistics on subjects
and sessions in the corpus.

Given the two main design criteria for the corpus, two somewhat conflicting goals
were pursued in data collection: to collect as much data in the primary gate/hall
condition as possible, and to collect as many parallel data as possible from all four
conditions. To resolve this conflict, client subjects were divided into two groups,
where one of the groups provided data in the primary condition only, while the
other group provided data in all four conditions.

Subjects were interacting with the on-site or telephone versions of the fully auto-
mated PER system described in Chapter 5, that uses automatic speech recognition
and speaker verification to recognize the content of spoken utterances and to verify
users’ claimed identities. If an utterance (or pair of utterances in the telephone
case) was not found to contain a valid claim the system prompted the user to try
again. Each system session allowed up to three attempts, but there was no limit
on how many consecutive sessions a user was allowed to initiate. If a valid claim
was found, the on-site version of the system physically unlocked the gate, while the
telephone version did not. Both versions welcomed the user verbally. If no valid
claim was found after three attempts, the system informed the user of this verbally.

Audio data from the telephone version of PER were recorded through an ISDN-
line and stored as one utterance per file in the format used in the Euro-ISDN
network. Thus, the sampling rate is 8 kHz, samples are A-law coded and stored
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with 8 bits per sample, the same format used in the Gandalf corpus. Audio data
from the on-site version were recorded at 16 kHz sampling rate with 16 bits per
sample (linear amplitude scale) and stored as one utterance per file. The same data
was also decimated to 8 kHz sampling rate as described in Section 5.2 and stored
in the same format as telephone data.

6.3.2.1 Subjects

Subjects are divided into two disjoint groups: the test group and the background
speakers group. Those in the test group have been assigned one or both of the
functions client and impostor. As clients they are further divided into group L
(limited) and group E (extended) with respect to how much effort they were willing
to spend as subjects. The main difference between the tasks of client subjects in
the two groups is that group E provides data in all four conditions and group L
only in the gate/hall condition.

Out of 56 subjects who volunteered to the client group and attempted to enroll to
the system, 54 (16 female and 38 male) succeeded to enroll9. They were all students
or staff from the Department, with the age distribution shown in Figure 6.4 together
with the age distribution of the Swedish population. Like in the Gandalf corpus,
the age distribution in client subjects in the PER corpus has two pronounced peaks
at around 30 and 50 years of age. Among both male and female client subjects
(who succeeded to enroll), half had previously been assigned to group L and half
to group E.

Background speakers were recruited mainly from students and staff outside of
the Department. 51 male and 28 female background speakers were recorded. While
subjects in the test group used their own names, background speakers were assigned
alias names. Alias names were chosen through the following procedure with the
goal of including the most common Swedish names based on name statistics from
Statistics Sweden (SCB) as of December 2002.

Starting from a list of the 100 most common family names in Sweden, 21 redund-
ant names were removed. They were either homophones (e.g. Carlsson-Karlsson),
phonetically similar (e.g. Jonsson-Jansson, Peterson-Petterson, Jonasson-Johansson),
or substrings of other names (e.g. Ström-Strömberg). The order of the remaining
79 names was then randomized. The first 50 were then combined with a male first
name and the remaining 29 with a female first name as described below. The 79
family names cover 31% of the Swedish population.

First names were processed similarly to family names, except they were used in
frequency order. Starting from the 100 most common male (female) first names,
10 (13) were removed because they were homophones of other names in the list,
or phonetically similar. The frequency count of a removed name was added to the
frequency count of the similar name kept in the list. Names were then re-ordered
according to adjusted frequency counts and assigned to subjects in that order.

9for results related to the enrollment process, refer to Section 10.3.1 on p. 195
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Figure 6.4: Age distribution, at the start of the recording period, among the 54
client subjects together with the distribution for the Swedish population between
ages 11 to 80 (Statistics Sweden (SCB), 2004). Note that the three right-most
age intervals span 10 years each while the others span 5 years per interval (for
compatibility with the corresponding figure for the Gandalf database, Figure 6.1,
p. 92).

The 51 male names used by a background speaker and seven corresponding similar
names cover 51% of the Swedish male population, while the 28 female names plus
two similar names cover 30% of the female population. More male first names than
female first names were used since male subjects spoke only male first names, and
vice versa, and more male background speakers than female ones were collected.

6.3.2.2 Recording conditions

As introduced above and illustrated in Figure 6.3, speech data were collected in
four different conditions, referred to as gate/hall, landline/office, mobile/office and
mobile/hall.

The primary condition was gate/hall. It was also the most naturally occurring
condition of the four in that users had to pass through the gate to enter into
the Department, and the PER system provided one of the three possible ways for
employees to unlock the gate. The three telephone conditions were more artificial
because the telephone version of the system did not give access to anything.
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To allow comparison between the four conditions, parallel data were collected
in series of sessions. A series consists of one session per condition recorded within
a short time period with the same claimant speaker and the same claimed identity
(target speaker) in all sessions. Subjects were asked to record sessions in a series
as close as possible in time, preferably in immediate succession, and at the least
to record them within the same day. They were also asked to vary the order of
conditions between series.

In the gate/hall condition, every session by all claimants against any target is
recorded through the same channel, i.e. with a single microphone, fixed amplifier
gain, fixed recording level, etc. To establish a corresponding same-channel situation
for telephone conditions (a single channel per target, but different channels for
different targets), each client was asked always to use the same landline phone
and the same mobile phone, and impostors were instructed to use the exact same
telephone instruments as their target (to borrow phones from their target). These
instructions were also followed in practice, with the exception that some subjects
in the test group obtained a new mobile phone during the collection period and did
not keep the old one. In these cases impostor attempts were made with the new
telephone resulting in different channels between true-speaker and impostor tests,
since most impostor sessions were recorded after the corresponding true-speaker
sessions.

All telephone calls were made to a toll-free number to allow subjects to use their
own mobile phone without being billed for their calls.

To balance out a potential bias from learning effects during enrollment in com-
parison between the gate/hall and landline/office conditions, half of the subjects
within the test group and the background speakers group made their first enroll-
ment session in the gate/hall condition and the second in landline/office, while the
other half started with enrollment in landline/office. Enrollment in mobile condi-
tions was always made after the other two enrollment sessions, however, allowing for
a bias between mobile conditions on the one hand and gate/hall and landline/office
on the other.

6.3.2.3 Client sessions

Clients in group L provided enrollment and test sessions in the gate/hall condition,
plus an enrollment session in the landline/office condition. They were asked to
provide at least 20 test sessions in the gate/hall condition during at least 15 different
days. Clients in group E provided enrollment and test sessions in all four conditions.
They were asked to provide 30 series of one session per each of the four conditions
(for the definition of such series, see above) during at least 15 different days and
then continue with at least 20 gate/hall sessions during different days.

During an enrollment session, the PER system collected one valid repetition of
between eight and ten items per client and condition as described in Section 5.5
(p. 84). Each item consisted of the client’s name and a string of five digits.
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6.3.2.4 Impostor sessions

Since clients use their own name for verification, dedicated impostor sessions had
to be collected. Impostor sessions against targets in client group L were collected
in the gate/hall condition only, while impostor sessions against targets in client
group E were collected as series of sessions in all four conditions. Impostor subjects
were mostly the same people that also participated as clients. They knew most of
their targets and were allowed to imitate the target’s voice, though from listening
through the recordings during annotation work, it turned out not many imitations
were made in practice. Only same-sex impostor attempts were collected.

6.3.2.5 Background sessions

Background speakers made one complete enrollment session in each of the four
conditions using office telephones and mobile phones mostly not used by subjects
in the test group.

In each session they provided similar data as subjects in the test group (except
they spoke their assigned alias name instead of their own name), plus five sentence
items. The first sentence item was the same for all background subjects, “öppna
dörren innan jag fryser ihjäl” (open the door before I freeze to death), while the
remaining four were selected from a pool of 114 sentences such that one or two
subjects of the same gender spoke the same sentence. Each subject spoke the same
sentences in all four conditions. Sentences were 5 to 14 words long (average 7.4
words) and between 21 and 49 phonemes long using a prototypical transcription
(average 33 phonemes).

6.3.3 Annotation

Recorded data were manually annotated on session and file level, where a file is
intended to contain a single utterance. Annotations were made with a graphical
tool dedicated to this task. Wherever possible, the tool provided initial values for
annotation fields that the annotator could confirm or change to the appropriate
value. Initial values were taken from output saved by the PER system during data
collection into a relational database and XML session log files (cf. Appendix G for
a specification of log file contents).

6.3.3.1 Session level annotation

Sessions were annotated with claimant identity, claimed identity and session status.
Figure 6.5 shows an example screen shot of the graphical tool used for this purpose.

The claimant identity was determined by comparing audio and video data recor-
ded during the session to reference audio and video data for known identities. The
annotation tool provided an identity browser where the annotator could traverse a
list of known identities and inspect reference data for each of them, and a session
browser where the annotator could listen to recorded files and view recorded images
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from the selected session. The annotator could create new identity entries as new
subjects were encountered.

The claimed identity was determined by listening to one or more audio files for
the spoken name. An instance of the identity browser was used for this field too,
mainly to provide the annotator visual feedback on the currently selected identity.

The default value selected for both identity fields when the annotator loaded
a new session was the identity corresponding to the name recognized by the PER
system, a priori assuming the session was a true-speaker session. Since the annot-
ator tool showed three images simultaneously (one from the selected session, one for
the currently selected claimant identity and one for the currently selected claimed
identity) the annotator could very quickly verify current selections by comparing
the three images and listening to one or more audio files.

Session status is a categorization with the main categories “valid” and “invalid”.
Valid sessions were further sub-categorized as “complete” or “incomplete”. A ses-
sion is considered valid and complete if it contains at least one file (pair of files
for telephone sessions) with a name and the requested number of digits (five for
the gate/hall sessions and four for telephone sessions). Remaining sessions were
classified as valid but incomplete if a user was trying to make a (serious) attempt
but failed to record at least one complete attempt (e.g. user spoke very slowly and
the last words were truncated in the recording, or in a telephone session, the spoken
name was never recognized as the name of an enrolled client); or invalid if a person
was not judged by the annotator to make a serious attempt to use the system, if
an unregistered identity was claimed, or if there was no recorded speech (a session
was triggered by mistake).

6.3.3.2 File level annotation

Files were annotated with a graphical transcription and an optional free-text com-
ment. If the speaker in a file was different from that selected for the session-level
claimant identity (i.e. the speaker changed during the session), that file was also
annotated with a file-level claimant identity.

Graphical transcriptions were based on SpeechDat conventions for transcrip-
tion (Senia and van Velden, 1997). Standard conventions used were markers for
stationary noise ([sta]), intermittent noise ([int]), speaker noise ([spk]), mo-
bile phone-specific noise (%word), truncated signals (~word or word~), and mis-
pronounced or truncated words (*word). To these were added a weaker marker
for pronunciation errors used specifically with names (&name), and variants of in-
termittent noise for the particular noise occurring when the bar gate was opened
([igo]) or closed ([igc]). The &-marker was used with impostor attempts where
the impostor pronounced a target’s name in a different way than the target himself,
and the difference was distinct enough to be captured by a phonemic transcription
with word accent markers, but not so much different as to merit a *-marker for an
incorrect pronunciation. Words labeled with * or & in the graphical transcription
were transcribed phonemically in the comment field. The comment field was also
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Figure 6.5: The session annotation tool showing a true-speaker session. The “Session GUI” window contains the session
browser (upper half), the identity browser for selecting the claimed identity (lower left), and the identity browser for
selecting the actual identity of the claimant (lower right). The upper window holds a WaveSurfer widget for listening to
the audio file select in the session browser, or looking at some graphical representation of it.
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used to note cases of clearly altered voices in the speaker, such as a whispering or
high-pitched voice.

6.3.4 Data sets

This section describes the enrollment and test sets used in this thesis (some addi-
tional data sets not used in the thesis are defined in Appendix C). A data set is
defined by rules to select claimants, target speakers, sessions and files.

6.3.4.1 Notation

Data sets are denoted t ix_c, where parameter t is E for enrollment sets, T for true-
speaker test sets, I for impostor test sets and S for complete test sets (combined
true-speaker and impostor test sets). Parameter c indicates the recording condition
and takes values {G8,LO,MO,MH}. Parameter x indicates how files are selected
from a given session. It is referred to as “accepted text status” in the set definitions
below, and takes values {a,b} meaning

a: “accepted text status” means that both the target’s name and the prompted
digits were included in one of the hypotheses produced by the speech recognizer
during collection;

b: “accepted text status” means that both the target’s name and the displayed
digits were spoken, as indicated by a manually verified transcription. To be more
specific, the following conditions must be met by the transcription of a file (pair
of files in telephone conditions): the complete name is included, but no modifier-
labeled (~, *, %) repetitions of any part of the name; and the prompted digits
are included in the given order, without modifiers, and with no other words in
between. Note that names with the &-modifier are allowed, but not names with the
*-modifier. Noise markers are allowed anywhere in the transcription.

Parameter i is simply an index number.
The notation introduced here is more general than required to cover the data

sets actually used in this thesis. Specifically, we have always used text acceptance
rule a in enrollment sets, while b was used in all test sets, and we have only used
one single-condition test set and one condition-parallel test set per condition, all
with index number 2. We have chosen to keep this notation for consistency with
unpublished results and potential future experiments using other data sets. Other
data sets, not used in this thesis, are defined in Appendix C.

6.3.4.2 Client enrollment sets

Based on data collected during enrollment sessions, two enrollment sets per condi-
tion c were defined using text acceptance rule a:

• E1a_c: (half session) the first five items from the last recorded and complete
enrollment session from each client speaker under condition c; the first repe-
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tition of each item with accepted text status (approximately 15 seconds of
speech per speaker).

• E2a_c: (full session) all ten items from the last recorded and complete enroll-
ment session from each client speaker under condition c; the first repetition
of each item with accepted text status (approximately 30 seconds of speech
per speaker).

Sets E2a_c use the exact same data as was used during on-line enrollment into the
collection system, while sets E1a_c can be used to simulate enrollment with only
half of the speech data actually collected.

The G8 and LO client enrollment sets include 38 male and 16 female clients,
while the MO and MH sets include 19 male and 10 female clients.

Corresponding enrollment sets have been defined on background speaker data
as presented in Appendix C. Background enrollment sets also include sets with
pooled speakers for training multi-speaker background models.

6.3.4.3 Single-condition test sets

Separate true-speaker and impostor test sets T2b_c and I2b_c are first defined
for each recording condition c. Those are then combined condition-wise into the
complete test sets S2b_c. In this thesis only a single complete single-condition test
set per condition is used, and only for the gate/hall and landline/office conditions.

Common to both true-speaker and impostor test sets is that they contain no
more than one attempt from any given session, and only from login sessions an-
notated as valid and complete that contain at least one attempt whose file level
transcription meet the conditions of the b-criterion for “accepted text status”. The
true-speaker test sets include one attempt per session from all such true-speaker
login sessions (no limit on the number of sessions per day or per target speaker).
The impostor test sets include one attempt per combination of impostor speaker
and target where the impostor speaker has recorded at least one session where (s)he
claimed the given target identity. If there is more than one such session, the first
one is used. Only same-sex impostor tests are used.

In sessions where more than one attempt satisfies the b-criterion for “accep-
ted text status”, the first attempt is used. Note that this selection depends on
the manual transcription of recorded files only, and is independent of the results
of speech recognition and speaker verification in the automatic PER system that
collected the data. Table 6.11 below shows examples of files that were not included
in the S2b_G8 test set because they did not satisfy the file-level selection criteria
defined by the b-selection rule.

Table 6.10 shows the number of speakers and tests included in the PER test
sets, including condition-parallel test sets defined below, while Figure 6.6 shows
how tests are distributed over targets in the G8 true-speaker and impostor test
sets.
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Table 6.10: Test set sizes for the PER corpus. Number of subjects are specified as
number of male / number of female subjects. All impostor attempts are same-sex
attempts.

Test set S2b_G8 S2b_LO S2b_Q:c
Test group Targets 38 / 16 24a / 9b 19 / 8

Impostors 76 / 22 37 / 16 35 / 16
True-speaker tests 4643 1228 977
Impostor tests 1121 422 393

Background Speakers 51 / 28
speakers group

aThree of the 24 targets (M1014, M1023, M1101) have enrollment data but only a single true-
speaker test each, and no impostor attempts. Two additional targets (M1122, M1127) have 7 and
20 true-speaker tests each, but no impostor tests.

bTarget F1124 has 20 true-speaker tests but no impostor tests.
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Figure 6.6: Histograms showing how many targets have how many tests in the
gate/hall true-speaker and impostor test sets T2b_G8 and I2b_G8, and in the
condition-parallel test sets T2b_Q:c and I2b_Q:c (per condition).
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6.3.4.4 Condition-parallel test sets

To feature a comparison between conditions, a quadruple of condition-parallel test
sets have been defined, each denoted S2b_Q:c, where Q is a short-hand notation
for a list of the included conditions, Q={G8,LO,MO,MH}, and c is one of the four
conditions. A condition-parallel test set is constructed such that there is always
exactly one test from each of the listed conditions that correspond to each other
in the sense that they were recorded near each other in time. Such a group of
one test per condition is called “a series”, like it was during the data collection.
The file selection criterion specified in the single-condition test set is applied to
each condition individually. If there is no selectable file for one or more conditions,
no corresponding series is constructed. Sessions in the various conditions to be
grouped into a series should have been recorded as close as possible to each other
in time. They must at least have been recorded during the same day.

6.3.4.5 Test set statistics

Handset use Impostor subjects in the test group were asked to make calls in tele-
phone conditions from the same telephone instruments used by the target speakers
during their enrollment, and this request was well responded to. A comparison
between A-numbers in test calls included in the true-speaker-part of the condition
parallel test sets (S2b_Q:c) and the corresponding enrollment calls shows that 6.0%
of calls in the landline/office condition and only 0.1% of calls from each of the mobile
conditions were made from a different number. All but one of the different-number
calls in landline/office were made by two subjects who changed their number and
phone shortly after enrollment because they moved to other offices. M1151 changed
after the 8th of 31 calls and F1160 after the first of 27 calls. After the change they
consistently called from the same numbers, though the new numbers were differ-
ent from the enrollment numbers. The remaining different-number calls (one per
condition) were made by one female subject.

The corresponding proportions of impostor calls from a different number than
the enrollment number are 23.9% in landline/office, 24.9% in mobile/office and
25.4% in mobile/hall. Most of these calls were made from a different number
because either the target had left the Department before (four targets, 63% of
different-number calls) or at the end of (two targets, 8% of different-number calls)
the impostor data collection period, or because targets replaced their mobile phone
during the same period (five targets, 15% of landline/office and 25% of mobile
different-number calls). In all these cases, the enrollment mobile phone of the target
was not available. Impostor subjects were then instructed to use non-enrollment
phones in all telephone conditions. Moreover, in the landline/office condition, 9% of
the different-number calls were made against target F1160 from the same telephone
that the target herself used in most of her true-speaker attempts. The remaining
different-number calls (2-5 calls per condition) were made for other reasons, such
as by mistake or by curiosity from impostor subject.
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Note that a check for the same A-number in two calls doesn’t guarantee that
the same telephone instrument was used, and vice versa, but it is our belief there is
a very good correspondence between telephone number and telephone instrument
in our data.

Test file selection As an illustration of what definition b of “accepted text
status” means in practice, Table 6.11 shows a categorization of transcription pat-
terns for files that were skipped when selecting files for the S2b_G8 test set. The
categories show what mistakes made by system or user caused files to be omitted
from the test set. The majority of cases (62%) are omitted because one or more
of the expected words are missing from the recorded file. This may be due to a
speaker forgetting to say the digits (e.g. after the system responded to the previous
attempt that it didn’t perceive a name, then the subject often responded with only
the name), speakers saying only their first name instead of the full name, or the
system failed to record the entire (complete or incomplete) spoken utterance either
because the speech detector pre-maturely signaled the end of the utterance or a
programmed maximum recording time came to an end before the speaker finished
the utterance. In many of these cases, missing words are due to a combination of a
lacking capability in the system and unexpected behavior from the subject (e.g. a
speech detector unaware of grammatical constrains in combination with very slow
speech, a late start, or long pauses between words), and therefore the division
of cases between “user mistake, not repaired” and “system mistake” is somewhat
arbitrary.



6.3. The PER corpus 115

Table 6.11: A categorization of transcription patterns for files that were skipped
when selecting files for the S2b_G8 test set according to “accepted text status”
alternative b. The total number of cases is 142 from 131 different sessions. The
total number of sessions included in the S2b_G8 test set is 5764. Transcription
patterns are constructed by replacing the first and last names of the target speaker
with F and L, digits with D, markers for extralinguistic sounds with extral, and
other noise markers with noise. Patterns in the example column are delimited by
a comma.

Category Cases Fraction Example patterns

User mistake, not repaired

missing digits part (or
truncated signal)

26 18.3% F L

extra out-of-vocabulary
words

9 6.3% hallå F L D D D D D, ska man

trycka nånstans eller F~

wrong digits 6 4.2% F L D D D D D

wrong pronunciation of
name or different name
form

6 4.2% F *L D D D D D,
Alexander L D D D D D

(F=Alec)

digits spoken in other
language

3 2.1% F L zero four eight six

five

missing last name 3 2.1% F D D D D D

speaker gives up 3 2.1% noise *F extral

digits spoken as
numbers

2 1.4% F L noise DD DDD

mispronounced digit(s) 1 0.7% F L *D D D D D

User mistake, with repair

extra in-vocabulary
words or fragments
thereof

21 14.8% *L L D D D D D,
F L D *D D D D D,
F L D D D D D D,
F D D D F noise L D D D D D

System mistake (speech detection error or time-out)

truncated signal or
missing words

59 41.5% ~F L D D D D D,
noise F L D D D D~, noise F~,
F L D D

Other

other 3 2.1%
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Table 6.12: 95% pre-trial confidence intervals for an observed false reject error
rate on PER test sets given a “true” population error rate p = 3% or p = 1% and
N ′ = N∗/k = Mbn̄c∗/(1 + (bn̄c∗ − 1)ρ) independent tests for four choices of ρ.
Intervals with lower limit 0.0 are one-sided confidence intervals, while others are
two-sided confidence intervals.

95%a confidence interval (%)
test set Mb Nc bn̄c∗d N∗e ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 1
p = 3%
T2b_G8 54 4643 50 2700 2.3–3.7 1.5–4.6 1.2–5.2 0.0–7.4f

T2b_Q:c 27 977 36 972 1.9–4.1 0.9–5.6 0.0–5.8 0.0–7.4g

p = 1%
T2b_G8 54 4643 50 2700 0.6–1.4 0.2–2.0 0.0–2.0 0.0–3.7h

T2b_Q:c 27 977 36 972 0.4–1.7 0.0–2.3 0.0–2.5 0.0–3.7i

aDue to the discreteness of the binomial distribution, actual confidence levels for intervals in
the table vary between 95.4% and 98.3% (cf. Section 2.5.2).

bnumber of target speakers
ctotal number of tests in the set
daverage number of tests per target (floored) after truncating right tail in Figure 6.6a
eadjusted total number of tests in the set (N∗ = Mbn̄c∗)
fconfidence level 97.7%
gconfidence level 95.4%, i.e. same limit as with T2b_G8 but with lower confidence
hconfidence level 98.3%
iconfidence level 97.0%, i.e. same limit as with T2b_G8 but with lower confidence

6.3.4.6 Statistical significance

Table 6.12 shows 95% pre-trial confidence intervals10 for observed overall false reject
error rates for pooled target speakers on the single-condition gate/hall test set and
each of the condition-parallel test sets for assumed “true” population error rates
1% and 3%, respectively. Confidence intervals are based on the assumptions made
in Section 2.5.2 and four cases of choosing a value for the intra-speaker correlation
coefficient ρ in Eq. (2.20) (p. 31). Here we use

N ′ =
N∗

k
=

Mbn̄c∗
1 + (bn̄c∗ − 1)ρ

(6.1)

where M is the number of targets in the test set and n̄ is the average number of
tests per target. bn̄c∗ is the average number of tests per target rounded downwards
(b·c) and adjusted for the fact that a few targets have very many tests in T2b_G8
as shown by Figure 6.6a. We (somewhat subjectively) chose bn̄c∗ = 50 for this test
set and used the unadjusted bn̄c for the other test sets. Note that with (6.1), N ′

tends to M/ρ as bn̄c∗ → ∞.

10Confidence limits in the table were computed with the qbinom function in the R software
(http://www.r-project.org/).

http://www.r-project.org/
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Figure 6.7: Binomial distributions used to compute confidence intervals for ex-
periments on the T2b_G8 test set assuming “true” population false reject rate 3%
or 1% and four choices of ρ. The normal approximation to each binomial is shown
as a dotted line.

The first and the last case of choosing ρ in Table 6.12 are the two extremes in the
assumption of partial dependence between observations discussed in Section 2.5.2.1,
where we argued that the best choice of ρ should be somewhere in between the
two extremes. Table 6.12 therefore also includes the cases ρ = 0.1 and ρ = 0.2.
Unfortunately, we do not know at this point11 which of these cases best describes
reality. The table merely gives a perspective on the meaning of independence
assumptions in terms of their effect on the length of confidence intervals. Figure 6.7
plots the binomial distributions from which confidence intervals in Table 6.12 for
the T2b_G8 test set are computed, along with their normal approximations. Note
that there are only a few points within the interesting range of observed error rate
on the (discrete) binomial distributions with variances scaled according to ρ > 0,
and resulting confidence limits are quantized by these points.

Table 6.13 shows example pre-trial confidence intervals for observed false reject
rates for individual target speakers. It shows 95% confidence intervals for assumed
“true” error rates 1% and 3%, respectively, and for a range of n (number of tests
per target) spanning approximately (except for n = ∞) those values occurring for
target speakers in the T2b_G8 test set as shown in Figure 6.6a. To calculate k
of Eq. (2.17) we adopt (2.20) even though the latter was motivated by the beta-
binomial distribution in the context of estimating an overall false reject rate from

11In Section 10.5.1 (p. 204) values for ρ are computed for post-trial experiments on the PER
corpus, and Section 11.2.2 (p. 226) discusses the choice of ρ for pre-trial confidence intervals.
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Table 6.13: 95% pre-trial confidence intervals for an observed false reject error
rate for a single target speaker given a “true” error rate p = 3% or p = 1% for
combinations of N and ρ1. Intervals with lower limit 0.0 are one-sided confidence
intervals, while others are two-sided confidence intervals.

95%a confidence interval (%)
N = n ρ1 = 0 ρ1 = 0.005 ρ1 = 0.010 ρ1 = 0.020
p = 3%

∞ 1.0–5.5 (96.5) 0.0–6.0 (96.9) 0.0–8.0 (98.3)
300 1.3–5.0 (96.0) 0.0–5.8 (97.1) 0.0–6.7 (97.5) 0.0–7.1 (96.3)
200 1.0–5.5 (96.5) 0.0–6.0 (96.9) 0.0–6.1 (95.2) 0.0–7.5 (96.9)
100 0.0–6.0 (96.9) 0.0–6.1 (95.2) 0.0–8.0 (98.3) 0.0–9.1 (98.3)
50 0.0–8.0 (98.3) 0.0–7.5 (96.9) 0.0–9.1 (98.3) 0.0–8.0 (96.2)
20 0.0–10.0 (97.9) 0.0–11.1 (98.4) 0.0–12.5 (98.9) 0.0–14.3 (99.2)

p = 1%
∞ 0.0–2.5 (98.4) 0.0–3.0 (98.2) 0.0–4.0 (98.6)

300 0.0–2.0 (96.7) 0.0–2.5 (96.7) 0.0–2.7 (96.0) 0.0–4.8 (99.1)
200 0.0–2.5 (98.4) 0.0–3.0 (98.2) 0.0–3.0 (97.1) 0.0–5.0 (99.2)
100 0.0–3.0 (98.2) 0.0–3.0 (97.1) 0.0–4.0 (98.6) 0.0–3.0 (95.7)
50 0.0–4.0 (98.6) 0.0–5.0 (99.2) 0.0–3.0 (95.7) 0.0–4.0 (97.4)
20 0.0–5.0 (98.3) 0.0–5.6 (98.6) 0.0–6.3 (98.9) 0.0–7.2 (99.2)

aDue to the discreteness of the binomial distribution, actual confidence levels for intervals in
the table vary as shown by parentheses in each cell (cf. Section 2.5.2).

multiple speakers with multiple tests. In (2.20) the coefficient ρ balances the correl-
ation between speakers on the one hand and between trials from the same speaker
on the other. It also widens confidence intervals to compensate for the distribu-
tion of individual false reject rates among targets in the test set. In the case of
estimating a false reject rate for a single speaker, our ρ should correspond to cor-
relation between single-speaker trials only, and possibly widen intervals because of
inter-trial variation in the “true” underlying false reject rate, which we expect to
be less than the corresponding inter-speaker variation. Thus we expect appropriate
values for ρ in the single-speaker case to be smaller than in the multi-speaker case.
To emphasize this difference we denote ρ in the single-speaker case as ρ1. Thus, to
calculate an equivalent number of attempts from the binomial distribution we use

N ′ =
n

1 + (n− 1)ρ1
. (6.2)

Table 6.13 includes four choices of ρ1, where ρ1 = 0 corresponds to the case
where all tests from a given target are independent and that the assumptions behind
the error generation model motivating the use of the binomial distribution are as-
sumed true (these assumptions were discussed in Section 2.5.2.1). Figure 6.8 shows
plots of the binomial distribution (from which confidence intervals in Table 6.13
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Figure 6.8: Binomial distributions used to compute confidence intervals for exper-
iments on individual target speakers assuming “true” population false reject rate
3% or 1% and four choices of ρ1. The normal approximation to each binomial is
shown as a dotted line.

were computed) and their normal approximations for n = 300 and n = 100. Also
for this single-speaker case, we don’t know what values for ρ1 are appropriate.
Values for the table were selected through our prior belief and after studying dis-
tribution plots like those in Figure 6.8. Note that under our model (6.2), and
assuming ρ1 > 0, the width of confidence intervals is bounded from below by the
value of ρ1 no matter how many trials are observed for a target speaker, since N ′

tends to 1/ρ1 as n→ ∞. These bounds are shown in the table for n = ∞.
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6.4 Cross-fertilization

Subjects listed in Table 6.14 participated both in the Gandalf collection and in the
PER collection. The seven subjects listed above the dashed line have multiple (true-
speaker) calls recorded in both corpora. There is a possibility to use recordings from
those subjects for studying intra-speaker variation over very long time: more than
8 years. Both corpora contain aurally prompted 4-digit utterances, which could be
used for such comparisons. A comparison is complicated by the fact that favorite
handsets used by subjects in Gandalf were mostly not re-used in the landline/office
condition of the PER collection, so some channel compensation method would need
to be employed. The exceptions are Gandalf subjects M01412, M021 and F089 who
did re-use their Gandalf favorite handset during the PER collection.

6.5 The Polycost corpus and baseline experiments

Polycost (Hennebert et al., 2000; Melin, 1999) is a public17 telephone quality
speaker recognition corpus with 134 speakers and trans-European English and
mother tongue utterances in 17 languages18. It was created within the framework
of the European project COST250 during 1996-1999. The author’s main scientific
contribution to this corpus was in the definition of standard data sets for experi-
ments. The four so called baseline experiments (BE) were initially defined in 1996
(Melin and Lindberg, 1996) and revised in 1999 (Melin and Lindberg, 1999a)19

based on experience from using the initial formulation (Nordström et al., 1998).
Four baseline experiments were defined based on recordings from 110 subjects

used both as target and impostor speakers:

• BE1 text-dependent speaker verification using a fixed passphrase (“Joe took
father’s green shoe bench out”) shared by all targets and known to impostors.

• BE2 vocabulary-dependent speaker verification using sequences of 10 digits
spoken in English. A fixed digit sequence, shared by targets and impostors,
was used as test utterance. This particular digit sequence was not included
in enrollment data.

• BE3 text-independent speaker verification in target (and impostor’s) mother
tongue. Enrollment on unconstrained spontaneous speech and test on con-
strained utterances where subjects were asked to say their name, gender, town
and country.

• BE4 closed-set speaker identification task with the same enrollment and test
utterances used in BE3. All 110 target speakers are used.

12same handset but different room and telephone line
17available through ELRA http://www.elra.info/
18nine languages if counting only those with five or more speakers each in the corpus
19also available online http://www.speech.kth.se/cost250/

http://www.elra.info/
http://www.speech.kth.se/cost250/
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Table 6.14: Subjects who participated in both Gandalf and PER. The seven
subjects listed above the dashed line are those most likely to be useful for studying
voice variation over long time since they have many telephone calls recorded both
in Gandalf and PER.

Gandalf PER (landline/office condition)
id time spana callsb functionc id time spana callsd

T I
M010 9503–9608 26 dev[T,I] M1032 0305–0403 149 18
M012 9503–9609 26 dev[T,I] M1015 0305–0306 37 18
M014 9503–9609 26 dev[T,I] M1005 0305–0309 46 2
F016 9503–9610 26 dev[T,I] F1025 0305–0308 45 7
M021 9503–9608 26 dev[T,I] M1003e 0305–0307 56 18
M086 9503–9609 26 eval[T,I] M1010 0305–0310 42 18
F089 9503–9509 15 eval[T,I] F1051e 0305–0312 28 7
M015 9503–9610 26 dev[T,I] M1166 0403 0 1
F019 9503–9608 26 dev[T,I] F1009 0310–0312 0 7
F031 9503–9612 26 dev[T,I] F1031 0306 0 2
M033 9503–9607 25 dev[T,I] M1002 0309, 0402 0 6
F070 9503–9610 25 eval[T,I] F2034f 0403 0 0
M081 9504–9609 26 eval[T,I] M2077f 0403 0 0
M085 9503–9608 26 eval[T,I] M1044 0306 0 2
M087 9503–9608 26 eval[T,I] M1045 0402 0 3
M092 9503–9607 26 eval[T,I] M1016 0305 0 19
M177 9604 1 eval[I] M2016f 0403 0 0
M190 9605, 9606 1 eval[I] M1014 0306 1 2
F103 9601, 9604 1 bgr F1000 0306 0 8
M110 9601 1 bgr M1023 0305, 0312 1 4
M111 9602, 9608 1 bgr M1013 0306 0 2
M112 9601 1 bgr M1028g - 0 0
M128 9612 1 bgr M1034 0306 0 0
F192 9606 1 bgr F1007 0305 0 3

ainterval covered by recordings, denoted as yymm for start and end of interval, where yy is
year (19yy or 20yy) and mm is month

bnumber of recorded test sessions
chow calls are used in the data sets defined in Section 6.2.4; dev for development set, eval for

evaluation set, and bgr for background speaker set; T indicates subject is used in true-speaker
tests and I subject is used in impostor tests

dnumber of sessions used in true-speaker (T) or impostor (I) part of test set S2b_LO
eGandalf favorite handset is identical to handset used in PER landline/office true-speaker calls
fbackground speaker with enrollment sessions in all PER conditions
ggate/hall impostor subject only
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Across all (revised) BEs, two files were used for enrollment, one from the first
recorded session and one from the second session. Only same-sex and same-language
impostor attempts were used, where “same-language” in the case of the utterances
spoken in English by all subjects was defined as impostor and target having the
same mother tongue. BEs 1–3 all consist of 664 true-speaker tests and 824 impostor
tests, while only the true-speaker tests apply to BE4.

A set of 12 male and 10 female subjects uniformly selected from the major lan-
guages represented by target speaker were set aside for use as background speakers.

The differences in BE definitions between version 1 and 2 are in a reduction in
the amount of enrollment data per target, in the restriction of impostor attempts to
same-sex and same-language tests, and in the use of a target-independent threshold
(rather than speaker-dependent thresholds) in a posteriori error rate measures, such
as the EER. These changes were introduced to make the BEs more realistic.

Results from experiments on Polycost have been reported at COST250 meetings
(Olsen and Lindberg, 1999; Melin, 1999) and at major international conferences. An
overview of published results with the baseline experiments on speaker verification
(BE1–3) is shown in Table 6.15. It is clear from this table that the revised BE
definitions result in considerably higher error rates. Comparisons between results
on Polycost and other corpora (Melin and Lindberg (1999b) using version 2.0 and
Melin et al. (1998) using version 1.0; both compare Polycost results to results on
Gandalf and the Dutch SESP corpus using the same ASV system), suggest the
difficulty of at least the new BE2 is comparable to similar tasks on other corpora.

A large number of publications report results on speaker identification us-
ing variations of BE4 (Ambikairajah and Hassel, 1996; Altincay and Demirekler,
1999; Fatma and Cetin, 1999; Magrin-Chagnolleau and Durou, 1999, 2000; Magrin-
Chagnolleau et al., 2002; Altincay and Demirekler, 2002; Katz et al., 2006a,b). It
appears the definition of BE4 was ill-designed in the (too large) number of tar-
get speakers involved, since most users chose to use subsets of target speakers of
different size, resulting in incomparable results.

To make the list of Polycost users known to the author complete, we also cite
works where Polycost was used for speaker verification or identification experiments,
but with their own experiment design (no reference to baseline experiments): Durou
and Jauquet (1998); Ganchev et al. (2002); Mengusoglu (2003); Ganchev et al.
(2004a,b); Siafarkas et al. (2004); Anguita et al. (2005); Ejarque and Hernando
(2005). Finally, Ben-Yacoub et al. (1999) used Polycost for training background
models.

In conclusion, we find the creation of the Polycost corpus as a public database
a success in that it has been used at many sites by many researchers, and thus
is likely to have contributed to the advance of the knowledge-base in the speaker
recognition community. The small number of sites having implemented the baseline
experiments to their full extent is a disappointment, however.
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Table 6.15: Summary of Polycost results with baseline experiments.

BE publication EER (%) comment
globala individualb

SSc SSc GBSId

Baseline Experiments version 1.0
1 Nordström et al. (1998) 0.6 0.1 0.0 Nuance

Gagnon et al. (2001) e1.5
Nordström et al. (1998) 3.2 1.0 0.7 CAVE system
Hernando and Nadeu (1998) 2.5

2 Nordström et al. (1998) 0.4 0.1 0.1 GIVES (LPCC)
Nordström et al. (1998);
Melin et al. (1998)

1.5 0.3 0.2 GIVES (MFCC)f

Nordström et al. (1998) 2.2 0.1 0.1 Nuance
3 Nordström et al. (1998) 11.0 6.3 4.2 Nuance

Baseline Experiments version 2.0
1 Katz et al. (2006a) g2.2

Nordström et al. (1998) 2.4 Nuance
Melin et al. (1999) 12.8 COST250 refsys

2 Melin and Lindberg (1999b) 4.3 GIVES (MFCC)f

Nordström et al. (1998) 4.6 Nuance
Nordström et al. (1998) 5.1 GIVES (LPCC)
Melin et al. (1999) 11.0 COST250 refsys

3 Nordström et al. (1998) 15.5 Nuance
Melin et al. (1999) 15.7 COST250 refsys

atarget-independent a posteriori threshold
btarget-dependent a posteriori thresholds
csame-sex impostor attempts only
dcross-sex impostor attempts also included (exist in BE version 1.0 only); gender-balanced,

sex-independent weighting of errors (Bimbot and Chollet, 1997; Bimbot et al., 2000)
eon subset of 91 out of 110 targets due to imposed restrictions on enrollment data
fsame as the HMM system described in Section 3.3 but with background models trained on

Polycost background speakers
gused four repetitions for enrollment instead of two as specified for BE1 v2.0
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6.6 The VeriVox corpus

The VeriVox corpus (Karlsson et al., 2000, 1998) was recorded within a European
project with the same name. The purpose of the corpus was to compare enroll-
ment using neutral speech versus structured enrollment, where the latter refers to
enrollment using a structured mix of six automatically elicited, voluntary speaking
styles: Neutral, Weak, Strong, Slow, Fast and Denasalized. During a single session,
each subject was performing a number of tasks implemented in a game-like com-
puter environment. Between each task the subject was asked to read a list of digit
sequences in a specified manner, to collect voluntary speaking styles. Involuntary
speaking styles were collect during the tasks, for example while speaking in the
presence of noise, speaking from memory at an increased rate due to time pressure
and speaking while solving a task under high cognitive load (Karlsson et al., 2000).
Speech with involuntary speaking styles was then used as the primary test material
for speaker verification experiments. The contribution of the author in this project
was the design and definition of speaker verification experiments.



Chapter 7

Robust error rate estimation

7.1 Introduction

This chapter focuses on the mathematical side of the second issue related to error
estimation and introduced in Section 2.5: given a list of test trials, how do we
estimate (technical) error rates efficiently? By efficiency we here mean a good trade-
off between estimate quality and the number of trials needed for the estimation.
Loosely, an estimate is good (of high quality) if it is “close” to the “real” quantity
that we are trying to estimate.

The overall false reject rate (FRR) and the overall false accept rate (FAR)
are conventionally estimated with a Maximum Likelihood (ML) method, given an
a priori decision threshold, as defined by Eq. (2.11)1. For the purposes of this
chapter, we will refer to error rates computed this way as non-parametric FRR
and FAR, or FRRd and FARd with a suffix d (for data) to indicate that they are
computed directly from observed data.

The EER and points on a DET curve are usually also computed with ML
estimates directly from score data from test trials, though some interpolation may
be used to compute the EER if there is no pair of FRR and FAR where the two
are exactly equal. We will refer to an EER computed this way (from score data
directly) as the non-parametric EER, or EERd.

An alternative error rate estimation approach is to first estimate some statistical
models to represent score distributions for the true-speaker and impostor classes
and then compute error rates from those models (Elenius and Blomberg, 2002).
Assuming each of the underlying distributions can be appropriately described by a
parametric distribution and the family of such parametric distributions is known,
the advantage with this method is that the estimate of distribution parameters,
and eventually the verification error rates, can be based on all score points, and
not be biased by the score points around the estimate in question. A draw-back is
of course that it is usually difficult to show with certainty that a selected family of

1p. 26

125
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Table 7.1: Overview of error rates used in this chapter and how they are estimated.
Items within parentheses list estimator types.

data representation
observation type non-parametric parametric

score EERd (ML) EERp (ML)
FRRp (ML, MAP)
FARp (ML, MAP)

decision FRRd (ML, MAP)
FARd (ML, MAP)

parametric distributions is appropriate. We refer to this method as the parametric
score distribution method (or simply parametric method), an EER computed this
way as the parametric EER, or EERp, and correspondingly write FRRp and FARp
for the parametric false reject and false accept rates.

In this chapter we first look at the normal distribution as a possible paramet-
ric model of true-speaker and impostor score distributions from both theoretical
and empirical points of view. We then derive Bayesian MAP estimators for error
rates using both the non-parametric method and the parametric method under the
assumption that a MAP estimate is more efficient than an ML estimate because
it uses prior information about distributions of scores or error rates. Table 7.1
illustrates the different error rate measures and how they are computed in terms of
observation type (score or decision), data representation (non-parametric or para-
metric), and the optimization objective used in deriving estimators (ML or MAP).
We finally evaluate the Bayesian estimators on PER data (cf. Section 6.3) and com-
pare them to the conventional ML estimators. For the evaluation we focus on the
estimation of error rates for individual target speakers. In particular, we look at
how error rates are distributed over speakers in the test group and how individual
error rates change with time from enrollment.

For the empirical evaluation, three ASV systems are used. They are the same
systems used in Chapter 10: two instances of our research system described in
Chapter 3 (a baseline system and a retrained system, cf. Section 10.4) and a com-
mercial system (cf. Section 3.1, p. 37). Properties of the research system are also
used in our theoretical discussion of the appropriateness of the normal distribution
for approximating score distributions.

7.2 Score distribution

To develop error rate estimation techniques based on the approximation of empirical
score values by a statistical model, we first need to find an appropriate model, i.e.
a family of parametric distributions. The normal distribution have been proposed
in previous work (e.g. Lund and Lee, 1996; Surendran, 2001). Furthermore, DET
plots are constructed to show straight lines when impostor and true-speaker score
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distributions are normal (Martin et al., 1997), and they often show fairly straight
lines as long as plots are based on a sufficient number of test trials (e.g. Przybocki
and Martin, 2004). The normal distribution also lends itself to easy mathematical
handling. Hence, if the normal distribution is appropriate, it is a practical choice
for our score distribution model.

7.2.1 Normal approximation

The central limit theorem states the sum of a large number of independent, identic-
ally distributed random variables is normally distributed. More general forms of
the theorem also exist where variables are not required to be identically distrib-
uted, but other weaker conditions are required (Feller, 1968), for example that the
variables are uniformly bounded. The score z for a single test utterance in our
ASV system given by (3.23)2 is based on the sum of a large number of frame level
scores, in turn based on sums over log-likelihood ratio contributions from pairs of
Gaussian mixture terms (cf. Eq. (3.6) for the HMM subsystem and Eqs. (3.20–
3.22) for the GMM subsystem). Those frame scores are not identically distributed,
but they should be uniformly bounded provided speaker model variance parameters
are properly estimated (no very small variances). There is certainly a measure of
statistical dependency between observation vectors, due to repetitions of phonemes
within a test utterance, co-articulation effects, consecutive observation vectors ori-
ginating from the same phone realization, etc., but in practice dependency effects
can often be compensated for by counting a large number of dependent variables
as equivalent to a smaller number of independent variables. For example, consider
a typical PER test utterance “Håkan Melin 2 1 9 5 8” spoken as � �������	��

��� �������
� ��������� ����� ������� � ���!
"� #$�!� �&% without pauses between words3. The utterance contains
13 distinct phonemes and 23 phoneme realizations. It was spoken by the author in
1.75 seconds and was thus represented by 175 observation vectors. The utterance
score is based on a sum of 175 frame level scores, but the equivalent number of
statistically independent variables behind the 175 frame level scores is maybe as
low as 13, but more likely somewhere around three times that number. This may
well not be a large enough number with respect to the bound on our summation
terms to claim that the central limit theorem indeed applies to the utterance score
values, but we assume for now the normal distribution is a fair approximation. We
will present some empirical evidence to support this assumption below.

So far we discussed only the distribution of scores for a given pair of claimant
(possibly an impostor) and a claimed identity. The true-speaker and impostor score
distributions from which we estimate overall ASV system error rates are unions of
utterance level scores from groups of client and impostor speakers, respectively.
Such distributions are not necessarily normal, but should be well approximated by
GMMs. For our discussion on the use of non-parametric vs. parametric error rate

2p. 47
3spaces in the transcription are included only to mark word boundaries
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measures on groups of target speakers, we will still compare such score distributions
to their normal approximations below.

7.2.1.1 Individual targets

Turning to the data, we start by inspecting true-speaker and impostor score dis-
tributions for individual target speakers using the retrained system tested on the
S2b_G8 test set with target models trained on the E2a_G8 enrollment set (cf. the
solid curve in Figure 10.1a). Figure 7.1 shows normal quantile plots (or normal
QQ-plots) for the samples of true-speaker score values z in Eq. (3.23) for nine in-
dividual male target speakers. They are the nine targets with the largest number
of true-speaker tests in S2b_G8, and the number of tests among these nine targets
range from 305 tests for M1032 to 118 tests for M1047. Each graph plots sample
quantiles (ordinate axis) for a given target against quantiles of the normal distri-
bution estimated from the sample data from that target (abscissa axis). With a
perfect fit between normal distribution and data, all markers would appear along
the thin line, though in practice, minor deviations at the tails of the distribution
can be expected due to data scarcity. The plots show that score data follow nor-
mal distributions fairly well for each of the nine targets, with a tendency towards
longer tails for target M1020 indicated by the slightly curved shape of the plot.
Corresponding plots for the remaining targets also show little deviation from the
thin line, supporting our assumption that true-speaker score distributions are well
approximated by normal distributions. At least it seems clear that there is no sys-
tematic deviation from straight lines in the plots shared among targets to suggest
that another family of uni-modal parametric distributions would be more appropri-
ate than the normal distribution. Inspection of normal quantile plots for impostor
score data leads us to the same conclusion, as well as plots for the baseline system
and the landline/office condition.

7.2.1.2 Gender groups

Next we look at the distribution of score data over groups of target speakers in the
gate/hall condition and test set S2b_G8. Figure 7.2 shows normal quantile plots for
impostor and true-speaker scores in the groups of female and male target speakers
respectively, while Figure 7.3 is a more direct visualization of the same distributions
using histograms together with normal distributions computed from the same data.
Each histogram have been normalized to have area 1 (using trapezoidal numerical
integration) to approximate a probability density function. All distributions except
that for female impostor scores follow their corresponding normal distribution well.
Female impostor data have a shorter left tail than expected from the normal dis-
tribution, but this is also the distribution computed from the smallest number of
score points (208 score values vs. for example 913 for the male impostor data). The
number of tests in the S2b_G8 test set is unevenly spread over targets. We there-
fore also created the corresponding normal quantile plots from score data where
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Figure 7.1: Normal quantile plots for true-speaker score data (ordinate axes)
from the retrained system against their normal distributions (abscissa axes) for
nine individual target speakers in the PER gate/hall condition.
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Figure 7.2: normal quantile plots for impostor or true-speaker score data (ordinate
axes) from the retrained system against their normal distributions (abscissa axes)
for female and male target speakers in the PER gate/hall condition.

the number of tests was limited to 20 impostor tests and 40 true-speaker tests per
target speaker4. A comparison with Figure 7.2 showed very little difference.

4208 and 595 points for the female impostor and target distributions respectively, and 760 and
1401 points respectively for the corresponding male distributions
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Figure 7.3: Score histograms for true-speaker and impostor tests, and normal
approximations of the two distributions, for a) female and b) male data in the PER
gate/hall condition. Histograms for female data have 25 and 50 bins for impostor
and true-speaker scores respectively, and 50 and 100 bins for male data. Scores
are produced by the retrained system using the E2a_G8 enrollment set and the
S2b_G8 test set.

7.2.1.3 Test group

We then pool scores from male and female targets to look at the distribution of
all scores from the S2b_G8 test set in Figure 7.4 (upper panes; normal quantile
plots) and Figure 7.5a (histograms). Figure 7.5b and the lower panes of Figure 7.4
illustrate the the corresponding distributions from the landline/office condition (test
set S2b_LO). The fit is fair also for these distributions. The curved shape of
the quantile plot for the gate/hall true-speaker scores indicates this distribution is
slightly skewed.

A third method to assess the fit of sample data to a normal distribution is
to use a formal hypothesis testing method for normality, like the Shapiro-Wilk’s
normality test or the Kolmogorov-Smirnov test. Neither of the two tests supports
the hypothesis of normality for our score data. Note that these tests are powerful
in rejecting distributions where tails deviate from the normal distribution, and we
have seen from the quantile plots that tails do deviate.

To summarize our findings this far from studying score distributions from the
retrained system, it seems that impostor and true-speaker scores for individual tar-
get speakers follow normal distributions well. Also pooled score values for male
and female target groups, and even all targets taken together, follow normal distri-
butions reasonably well. We cannot state the distributions of pooled scores from
our test group are normally distributed, but we think they are close enough to be
approximated by normal distributions. We therefore move on to using the normal
approximation as a basis for computing error rates.
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Figure 7.4: normal quantile plots for impostor and true-speaker score data (or-
dinate axes) against their normal distributions (abscissa axes). Upper panes show
the PER gate/hall condition, while the lower panes show the telephone/landline
condition.
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Figure 7.5: Score histograms for true-speaker and impostor tests, and normal
approximations of the two distributions, for the a) gate/hall and b) landline/office
conditions. Histograms have 50 bins each except for the true-speaker class in the
gate/hall condition which has 100 bins. Scores are produced by the retrained system
using the E2a_c enrollment set and the S2b_c test set.

7.3 Error rate

Like suggested by Elenius and Blomberg (2002), statistical models can be applied
either directly to decision errors or to the score values that decisions are based on
(assuming a score-based ASV system). Modeling score values has the advantage
that models are independent of a particular decision threshold, but requires that
one can observe score values produced by the ASV system. Modeling decision errors
directly is an alternative when the decision threshold has already been determined,
for example when analyzing an ASV system put into operation in a production
environment.

After recalling the conventional ML estimates of false accept and false reject
rates for completeness, this section derives MAP estimators for the same quantit-
ies using first the non-parametric method then the parametric score distribution
method. The non-parametric methods operate on the decision output of an ASV
system, while parametric methods compute error rates from a parametric model of
score distributions estimated from score output of the ASV system (cf. Table 7.1).

A Bayesian (MAP) approach involves assuming or estimating a prior distribu-
tion of model parameters. If estimated from data, the prior distribution itself is
useful in that it describes how the parameters, for example a false reject error rate,
vary within a population of target speakers. This was used for example by Elenius
and Blomberg (2002) to compute a decision threshold based on the criterion that
a given maximum fraction of targets were allowed a false reject error rate greater
than a given value.
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7.3.1 Non-parametric methods

Like in Section 2.5.2, assume false reject errors by an ASV system for a given target
speaker are generated at random and without memory at a constant rate, i.e. assume
each true-speaker test is a Bernoulli trial with a constant error probability p. We
already defined X as the random variable for the number of errors observed in N
trials, and stated that X is binomially distributed with probability mass function
given by (2.14).

Correspondingly, assume false accept errors by an ASV system for a given pair
of impostor and target speaker are generated at random and without memory at
a constant rate. The same distribution then applies to the impostor case. For
simplicity, the derivation of error rate estimators below will be presented for the
true-speaker case, i.e. for the false reject rate, where not otherwise stated. Given
the corresponding assumption for the impostor case, the same derivations can be
applied to the estimators of false accept rate.

7.3.1.1 Maximum likelihood

The ML estimate of the false reject error probability p follows directly from the
assumption of binomial distribution

p̂ = argmax
p

PX(x|p) = x/N. (7.1)

7.3.1.2 Maximum a posteriori

To formulate a Bayesian estimator for p given an observation of x errors in N trials,
we treat p as the outcome of a random variable ρ. That is, for each target speaker,
a value for p is drawn at random from ρ. The posterior distribution of ρ is given
by Bayes rule as

Pρ(p|x) =
PX(x|p)P (p)

P (x)
. (7.2)

We then need a prior distribution P (p) describing our a priori knowledge, or
belief, about ρ. While any distribution, theoretically or empirically motivated, is
possible for use as a prior distribution in the Bayesian framework, a conjugate prior
to the distribution of observations PX (x|p) allows for closed-form posterior distri-
butions Pρ(p|x) (e.g. Lee, 1989). The conjugate prior of the binomial distribution
is a beta distribution. Hence, if a beta distribution would be appropriate for our
distribution of ρ, it would also be a good choice for the prior distribution. Then we
would assume ρ ∈ Beta(α, β) with probability density function

P (p) =
(1 − p)β−1pα−1

B(α, β)
(7.3)

where B(α, β) is the beta function and α, β > 0 our hyper parameters.
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Fitting prior distributions To test if the beta distribution is appropriate for
our prior, we try to fit beta distributions to observed individual false reject rates
in our data. Given a list of observations of ρ, hyper parameters α and β can be
computed from the first and second moments of observations. For a distribution
Beta(α, β) the mean and variance are















µρ =
α

(α+ β)

σ2
ρ =

αβ

(α+ β)2(α+ β + 1)
.

(7.4)

Thus, estimates µ̂ρ and σ̂2
ρ of the mean and variance of ρ provide estimates for our

two hyper parameters


















α̂ =

(

µ̂ρ − µ̂2
ρ

σ̂2
ρ

− 1

)

µ̂ρ

β̂ =

(

1

µ̂ρ
− 1

)

α̂.

(7.5)

The upper pane of Figure 7.6 shows histograms of individual false reject rates for
target speakers and the retrained and baseline research systems, and the commer-
cial system without adaptation, together with beta distributions with parameters
α and β computed according to (7.5). False reject rates in the histograms are
computed with the non-parametric method (FRRd) directly from score data points
and a target-independent EERd-threshold. The figure displays a good fit for the
beta distribution in all three cases, suggesting that a beta distribution is indeed ap-
propriate as the prior distribution for estimating individual false reject rates. The
lower pane of Figure 7.6 shows that false accept rates are also properly described by
beta distributions. Note, however, that histograms show false accept rate per target
speaker averaged over all available impostor speakers, and not for unique pairs of
impostor and target speaker as was the initial assumption for the derivation of the
MAP estimator.

MAP estimator We can then proceed to formulate the maximum a posteriori
(MAP) estimator for p. Because the beta distribution is a conjugate prior of the
binomial data distribution, the posterior distribution is also a beta distribution. In
our case, after observing x errors in N attempts, we have Pρ(p|x) ∈ Beta(α+x, β+
N − x) (e.g. Lee, 1989) with probability mass function

Pρ(p|x) =
(1 − p)β+N−x−1pα+x−1

B(α+ x, β +N − x)
. (7.6)

The MAP estimate of p is
p̃ = arg max

p
Pρ(p|x) (7.7)
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Figure 7.6: Histograms of FRRd (upper panes) and FARd (lower panes) for 54
individual target speakers and three ASV systems in the PER gate/hall condition
using enrollment set E2a_G8 and test set S2b_G8. Decision threshold for each plot
is the global, gender-independent EERd threshold. Each graph also plots a fitted
beta distribution (dashed curve) with α and β computed from the observations
of false reject/accept rates. The short lines below the histogram bars indicate
individual FRRd or FARd values.

that is

p̃ =

{

α+x−1
α+β+N−2 if α+ x > 0,

0 otherwise
(7.8)

which tends to x/N as N → ∞, i.e. the MAP estimate tends to the ML estimate.
As already stated in Section 2.5.2.1, the assumption about false reject errors

being generated at random and without memory at a constant rate for a given
target is obviously not strictly valid. For example, mismatching input channels and
background noise, learning effects and temporary voice changes from head colds are
likely to vary the error rate over time as they occur. Recent experience of erroneous
decisions may influence a claimant to alter his speaking, causing attempts to be
not strictly without “memory”. These are flaws in the assumptions underlying the
derivation of the MAP estimator that should be kept in mind when interpreting
results from it.
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Similar assumptions were made about false accept errors for a given pair of
impostor and target speaker. Also these assumptions are obviously not strictly
valid. An impostor who is given multiple tries may for example vary his strategy in
trying to imitate the target. Furthermore, the prior distributions for false accept
rates depicted in Figure 7.6 are not computed for individual pairs of impostor and
target. Instead, the FAR values presented in the histograms are averages over all
available impostors for each individual target speaker. A MAP estimator used to
compute a corresponding average FAR against a given target speaker, that uses
such a prior distribution, is derived on the assumption that the false accept rate for
a given target speaker (not specifying a particular impostor) is generated at random
and without memory at a constant rate. This assumption is even less valid, since
it is well known that some impostors may be more successful than others against a
given target speaker (Doddington et al., 1998).

7.3.2 Parametric methods

By parametric score distribution methods, we refer to methods that estimate error
rate through a two-step procedure: first estimate the parameters of a statistical
model of true-speaker and impostor score distributions, and second compute error
rates from the statistical models.

In this section we will assume normal score distributions. It was shown in the
beginning of this chapter that this distribution is a reasonable approximation of
true-speaker and impostor score distributions, at least for individual target speakers
and the ASV system described in Chapter 3.

Given the assumption about normal score distributions and estimates of mean
and variance of a true-speaker (µT , σ

2
T ) and impostor (µI , σ

2
I ) score distributions,

resulting error rates can easily be computed. False reject and false accept error
rates for a given decision threshold θ are

{

FRRp = Φ(θ|µT , σ2
T )

FARp = 1 − Φ(θ|µI , σ2
I )

(7.9)

where Φ() is the normal cumulative distribution function. EERp can be calculated
by first calculating the EERp-threshold θEERp

θEERp = argmin
θ

|FARp(θ) − FRRp(θ)|

= argmin
θ

|1 − Φ(θ|µI , σ2
I ) − Φ(θ|µT , σ2

T )| (7.10)

and then EERp itself
EERp = Φ(θEERp|µT , σ2

T ). (7.11)

7.3.2.1 Maximum likelihood

Denote as µ and σ2 the mean and variance of a normal distribution approximating
the true-speaker score distribution for a given target speaker. The probability of
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observing a sequence of n independent true-speaker score values z (denoted as a
vector z) from a given target speaker is then

PZ(z|µ, σ2) =

n
∏

i=1

1√
2πσ2

e−
(zi−µ)2

2σ2 =
1

(2πσ2)n/2
e−

Sz+n(µ−µz)2

2σ2 (7.12)

where µz is the sample average over observed score values in z, and

Sz =

n
∑

i=1

(zi − µz)
2. (7.13)

The ML estimates of µ and σ2 are then

(µ̂, σ̂2) = argmax
µ,σ2

PZ(z|µ, σ2) (7.14)

that is,
{

µ̂ = µz

σ̂2 = Sz/n.
(7.15)

The ML estimates of the mean and variance of the impostor score distribution
are computed analogously from a sequence of independent impostor score values.

7.3.2.2 Maximum a posteriori

Again denote as µ and σ2 the mean and variance of a normal distribution approx-
imating the true-speaker score distribution for a given target speaker. Treat µ and
σ2 as the outcome of random variables U and V . The posterior joint distribution
of U and V after observing a sequence of n independent true-speaker score values
z (denoted as a vector z) from a given target speaker is

PU,V (µ, σ2|z) =
PZ(z|µ, σ2)P (µ, σ2)

P (z)
(7.16)

where the distribution of observations z given known µ and σ2 was given in (7.12).
The conjugate prior for the normal distribution with unknown mean and vari-

ance is a normal/chi-squared distribution (e.g. Lee, 1989, pp. 73 and 237)

P (µ, σ2) = P (σ2)P (µ|σ2)

=
S
ν0/2
0

2ν0/2Γ(ν0/2)

1

σ2(ν0/2+1)
e−

S0
2σ2 × 1

√

2πσ2/n0

e
−

(µ−µ0)2

2σ2/n0

∝ 1

σ2((ν0+1)/2+1)
e−

S0+n0(µ−µ0)2

2σ2 (7.17)

with hyper-parameters (S0, ν0) for the inverse chi-squared part P (σ2), and (µ0, n0)
for the normal part P (µ|σ2).
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Fitting prior distributions Starting with the inverse chi-squared distribution
P (σ2) we have















µV = E[σ2] =
S0

ν0 − 2

σ2
V = E[(σ2 − µV )2] =

2S0

(ν0 − 2)2(ν0 − 4)
.

(7.18)

Estimates µ̂V and σ̂2
V of the mean and variance of V therefore provide estimates

for our first two hyper parameters as


















Ŝ0 = 2µ̂V

(

µ̂2
V

σ̂2
V

+ 1

)

ν̂0 = 2

(

µ̂2
V

σ̂2
V

+ 2

)

.

(7.19)

Since in (7.17), µ and σ2 are not independent (there is no conjugate prior with
independent µ and σ2), to estimate hyper-parameters for the normal part of (7.17)
we first compute the marginal distribution of µ (analogous to Lee (1989, p. 70))

P (µ) =

∫ ∞

0

P (µ, σ2) dσ2

∝
∫ ∞

0

σ−2((ν0+1)/2+1) e−
S0+n0(µ−µ0)2

2σ2 dσ2

∝
(

S0 + n0(µ− µ0)
2
)−(ν0+1)/2

(7.20)

By substituting into (7.20)

t =
µ− µ0

√

S0/(ν0n0)
(7.21)

we see that

P (µ) ∝
(

S0 + n0(µ− µ0)
2
)−(ν0+1)/2

∝
(

1 +
t2

ν0

)−(ν0+1)/2

(7.22)

which means that our substitute variable t has a Student’s t distribution with ν0

degrees of freedom with mean 0 and variance ν0/(ν0 − 2). It then follows directly
from (7.21) that







µU = E[µ] = µ0

σ2
U = E[(µ− µU )2] =

S0

ν0n0
· E[t2] =

S0

n0(ν0 − 2)
.

(7.23)
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Estimates µ̂U and σ̂2
U of the mean and variance of U therefore provide estimates

for our last two hyper parameters as






µ̂0 = µ̂U

n̂0 =
S0

σ̂2
U (ν0 − 2)

.
(7.24)

Figure 7.7 shows histograms of observed score variance and mean values for
true-speaker tests for individual target speakers and the retrained and baseline re-
search systems, and the commercial system without adaptation in the gate/hall
condition. Histograms of score variance values are plotted together with inverse
chi-squared distributions with hyper parameters S0 and ν0 computed according to
(7.19), while histograms of score mean values are plotted together with translated
and scaled Student’s t-distributions (7.21) with hyper parameters µ0 and n0 com-
puted according to (7.24). The figure displays a good fit for the estimated inverse
chi-squared distribution in all three cases, suggesting that this distribution family
is appropriate as the prior distribution for estimating the variance of true-speaker
scores for individual targets. The corresponding fit for the estimated Student’s t
distributions are reasonable, but histograms are not quite symmetric like the para-
metric distributions. Figure 7.8 shows that variance and mean of impostor scores
for individual target speakers are also properly described by the chosen parametric
distributions.

On the whole, it looks like the normal/chi-squared distribution is an appropriate
prior distribution for the unknown mean and variance of score values for individual
target speakers, both for true-speaker and impostor scores.

MAP estimator We can then proceed to formulate the joint maximum a posteri-
ori (MAP) estimators for µ and σ2. Because the normal/chi-squared distribution
is a conjugate prior for the normal distribution with unknown mean and variance,
the posterior distribution is also a normal/chi-squared distribution. In our case,
after observing n independent true-speaker scores z for a given target speaker, we
have (Lee, 1989, p. 74)

P (µ, σ2|z) ∝ P (z|µ, σ2)P (µ, σ2)

∝ 1

σ2(n/2)
e−

Sz+n(µ−µz)
2

2σ2 × 1

σ2((ν0+1)/2+1)
e−

S0+n0(µ−µ0)2

2σ2

=
1

σ2((ν0+n+1)/2+1)
e−

S0+Sz+n0(µ−µ0)2+n(µ−µz)2

2σ2

=
1

σ2((ν1+1)/2+1)
e−

S1+n1(µ−µ1)2

2σ2 (7.25)
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Figure 7.7: Histograms of true-speaker score variance (upper panes) and mean
(lower panes) for 54 individual target speakers and three ASV systems in the
gate/hall condition using enrollment sets E2a_G8 and test sets S2b_G8. Each
graph also plots a fitted inverse chi-squared distribution (upper panes) or a trans-
lated and scaled Student’s t distribution (lower panes) with hyper parameters com-
puted from the observations of score mean and variance values. The short lines
below the histogram bars indicate individual score variance or mean values.

where






























S1 = S0 + Sz +
n0n

n0 + n
(µ0 − µz)

2

ν1 = ν0 + n

µ1 =
n0µ0 + nµz
n0 + n

n1 = n0 + n

(7.26)

That is, the joint posterior distribution has the same shape as the prior but with
parameters (S1, ν1) for the inverse chi-squared part, and (µ1, n1) for the normal
part.

The joint MAP estimate of µ and σ2 is

(µ̃, σ̃2) = argmax
µ,σ2

PU,V (µ, σ2|z) (7.27)
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Figure 7.8: Histograms of impostor score variance (upper panes) and mean (lower
panes) for 54 individual target speakers and three ASV systems in the gate/hall
condition using enrollment sets E2a_G8 and test sets S2b_G8. Each graph also
plots a fitted inverse chi-squared distribution (upper panes) or a translated and
scaled Student’s t distribution (lower panes) with hyper parameters computed from
the observations of score mean and variance values. The short lines below the
histogram bars indicate individual score variance or mean values.

that is5,






µ̃ = µ1

σ̃2 =
S1

ν1 + 3

(7.28)

which tends to the pair of ML estimates µ̂ = µz and σ̂2 = Sz/n as n→ ∞.
Given MAP-estimated parameters of the true-speaker score distribution for a

target, the corresponding false reject rate for a threshold θ can now be calculated
from Equation (7.9).

The assumptions underlying this MAP estimator of score distribution paramet-
ers are similar to those made for the MAP estimator for error rate: independent

5the maximization problem (7.27) can be solved with standard calculus by solving for equality
to zero the partial derivatives of the logarithm of (7.25) with respect to µ and σ2.
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trials and a fixed, time-invariant, parameter distribution for a given target speaker.
In addition we here also made the assumption that score distributions are normal.

7.4 Experiments

In this section we compare the non-parametric and parametric error rate estimation
methods (cf. Table 7.1) experimentally using PER data. We first look at estimation
of error rates for individual targets and then for groups of targets. The two cases
differ in the number of available test trial observations and in that assumptions
underlying the estimation methods are violated to a higher degree for groups of
target speakers than for individual target speakers. For individual targets we look
both at batch estimation of (individual) EER, at incremental estimation of FRR
and FAR, and at the problem of detecting error-prone target speakers (“goats”).
For target groups we look at global EER and DET curves.

7.4.1 Error rate by target

7.4.1.1 Batch estimation

In this section we consider the problem of computing the EER for individual target
speakers given a sequence of observed score values. Two approaches to computing
the EER were described above: the conventional non-parametric method (EERd)
and the proposed parametric score distribution method (EERp). Results from the
two methods are compared here in terms of histograms of error rate in a group of
target speakers.

A target-specific EER, based on a target-dependent a posteriori decision threshold,
is of little interest as a measure of actual performance in a real application. Because
the threshold is adjusted after seeing (many) true-speaker and impostor test tri-
als, the indicated error rate is usually much smaller than that achieved in practice
(Nordström et al., 1998), because in reality the decision threshold must be determ-
ined before the decision can be taken. In practice, either a target-independent
threshold is used, or a target-dependent a priori threshold must determined from
data available before the time of the decision. However, the target-specific EER
may be of interest as a measure of speaker discriminability. It is used for this
purpose in Chapter 8 of this thesis, for example.

Figure 7.9 shows normalized histograms for both EERp and EERd over in-
dividual targets for three systems in the gate/hall condition: the retrained and
baseline research systems and the commercial system without speaker adaptation.

A compelling feature shared by the three EERp histograms in Figure 7.9 is
“smoothness”; EERp values for the three systems seem to be drawn from smooth
distributions. Distributions resemble for example an exponential distribution, or
in the case of the baseline system a gamma distribution (of which the exponential
distribution is a special case). EERd histograms, in contrast, are more “rough”.
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Figure 7.9: Comparison between histograms of EERd (upper panes) vs. EERp
(lower panes) for individual target speakers and three ASV systems in the gate/hall
condition using enrollment sets E2a_G8 and test sets S2b_G8. The short lines
below the histogram bars indicate individual values.

It feels more intuitive that the true distribution of EER for individual targets is
smooth.

For all three systems, histograms show more targets in their left-most bin for
EERd than for EERp.

Figure 7.10 shows histograms of EERp over individual targets for the three ASV
system in the landline/office condition. Again all three histograms are smooth, and
they all seem to fit an exponential distribution.

7.4.1.2 Incremental estimation

Comparing the two methods (Equations (7.8) vs. (7.28)) for estimating the false
reject or false accept rate for a given target speaker, we expect the one operating
on score values to be more efficient with respect to how many trials are needed for
an expected maximum estimation error. This is because there is more information
in the observation of a score value than in the observation of a binary decision.

To evaluate the two methods for estimating individual false reject rates we used a
leave-one-out cross validation method. Out of the 54 target speakers in the S2b_G8
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Figure 7.10: Histograms of EERp for individual target speakers and three ASV
systems in the landline/office condition using enrollment sets E2a_LO and test
sets S2b_LO. The short lines below the histogram bars indicate individual EERp
values.

test set, the 17 targets (14 male, 3 female) with more than 100 true-speaker trials
were used for testing. For each of the 17, true-speaker score distribution parameters
and false reject error rates were computed from the target’s own true-speaker scores,
and prior distribution parameters were computed from all other 53 targets in the
S2b_G8 test set. A target-independent (a posteriori) EERd-threshold computed
from data from all 54 targets was used to map scores to decisions.

True-speaker score observations were grouped into two-week blocks such that
block 1 contains scores from test sessions recorded during 0-13 days after enrollment,
block 2 contains scores from 14-27 days after enrollment, etc. The shortest time
between enrollment and the last recorded test session among the 17 target speakers
is 34 weeks, corresponding to 17 blocks of score data. These blocks of score data
were then used to compute estimates of true-speaker score distribution parameters
and false reject error rates as a function of time after enrollment. Since target
speakers in general did not produce an equal amount of test sessions per week,
score observations are unevenly distributed among blocks. Blocks with less than
three score observations were not used for these tests.

Figure 7.11 shows how MAP estimates of false reject error rate (Eq. (7.8) for
the non-parametric estimation method and (7.28, 7.9) for the parametric score
distribution method) evolve with an increasing number of observations and time
after enrollment for the 17 individual target speakers and the retrained research
system in the gate/hall condition. The first estimate (at 0 weeks) is based on the
prior distributions only, and no observations from target speakers themselves. The
second estimate (at 2 weeks) is based on the prior distribution and the first block
of score data. After each new observed block of scores, the most recent posterior
distribution is used as the prior distribution for the next block, etc. Upper panes
show the estimates themselves, while lower panes show the root-mean-square (RMS)
error for each estimate assuming the a posteriori ML FRRd estimate for each target
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Figure 7.11: Non-parametric (FRRd) and parametric (FRRp) accumulated MAP
estimates of false reject rate with time between enrollment and test for 17 target
speakers in the PER gate/hall condition and the retrained research system. Thick
lines show group average. Legend is the same for both graphs.
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Figure 7.12: Accumulated MAP estimates of score mean and variance providing
the FRRp estimates in Figure 7.11. Thick lines show group average. Legend is the
same for both graphs.

as the “true” reference value, i.e. the FRRd value computed using all the available
true-speaker tests in the S2b_G8 test set for each target speaker (including tests
in sessions possibly recorded more than 34 weeks after enrollment). The figure also
shows the average estimate and the total RMS error over all 17 targets as thick
lines.

FRRp-estimates for a target speaker are based entirely on the decision threshold
and estimates of the mean and variance of an assumed normal true-speaker score
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distribution (7.9). Figure 7.12 shows how the latter estimates evolve. From score
mean estimates it is clear that the prior information is “weak” since estimates
change rather much after the first observed block of score data compared to the
a priori estimates, and then change more smoothly. This is consistent with the
parameter values seen for prior distributions in Figure 7.7 with n0 = 1.05 which
can be interpreted in the context of Equation (7.26) such that the prior data is
worth a single observation only. The prior for variance estimation seems to be a
little less weak since it takes two or three blocks of observations for estimates to
level out.

For several targets in Figure 7.12, the score mean estimate decreases with time.
This is also true for the average over all 17 targets, though this trend is much due to
the curve with highest score mean (corresponding to target M1015) which has a very
clear negative trend. The negative trend in score mean estimates translates into
a positive trend in FRRp-estimates which does not appear as clearly. Because of
the shape of the normal distribution, small fluctuations in the score mean estimate
generally result in large changes in FRRp for speakers in the low score mean region
relative to the decision threshold. The negative trend is consistent with previous
research (cf. Rosenberg, 1976) concluding that dissimilarity between a target model
and the target’s test utterances increase with time from enrollment.

From Figure 7.11 it is clear that false reject rates are low for most target speak-
ers. Only five of the 17 targets demonstrate false reject rate estimates above the
mean, which levels out at approximately 2%. It is re-assuring that these are the
same five target speakers with the FRRd and FRRp estimates. Further compar-
ing the two estimation methods, it seems that the parametric method (FRRp)
facilitates finding of the targets with higher false reject rate earlier than the non-
parametric method (FRRd). For example, at 10 weeks only one of the targets have
FRRd>0.5% (M1035) while five targets have FRRp>0.5% (M1035, F1025, F1087,
M1083, M1020). Of the latter five targets, all except M1020 end up with both FRRd
and FRRp estimates greater than 2% after 34 weeks. Seen as detectors of targets
with high false reject rate (or “goat detectors”), both methods miss M1150 who
shows increased FRRd and FRRp estimates only after around 20 weeks.

Estimates presented this far were computed with the MAP methods derived in
this section and prior distributions were adapted after each block of observations
such that estimates after all data have been seen is effectively based on all the data.
Figure 7.13 compares these MAP estimates to three other estimates. The first is
an ML estimate based on accumulated data, i.e. estimates after a given block of
score data is based on all observed data up to and including that block. This is
the ML equivalent of the above MAP estimate. The second estimate is a MAP
estimate based on the (original) prior distribution and the most recently observed
block of score data, and the third estimate is the corresponding ML estimate based
on the most recent block. Naturally, most recent block-estimates fluctuate much
more than accumulated estimates, more so for ML compared to MAP estimates
and for FRRd compared to FRRp estimates.
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Figure 7.13: False reject rate with time between enrollment and test estimated
by four variants each of non-parametric (FRRd) and parametric (FRRp) methods
for 17 target speakers in the PER gate/hall condition and the retrained research
system (upper panes). Variants are ML and MAP methods applied to accumulated
observations and on the most recent two-week block of observations (mrb). Lower
panes show estimates of score mean and variance providing the FRRp estimates.
Legend is the same for all graphs.
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Table 7.2: Comparison of non-parametric (EERd) and parametric (EERp)
equal error rates (in %) and the corresponding a posteriori score thresholds
(θEERd, θEERp) on several PER test sets and conditions (c).

test set non-parametric parametric statistics
name c Nts Nimp θEERd EERd θEERp EERp ∆θa ∆εb relc

S2b_c G8 4643 1121 -0.348 2.41 -0.352 2.87 -0.004 0.46 19%
LO 1228 422 -0.341 3.09 -0.285 4.33 0.056 1.24 40%

S2b_Q:c G8d 977 393 -0.276 2.55 -0.316 2.76 -0.040 0.21 8%
LO 977 393 -0.347 3.52 -0.304 4.65 0.043 1.13 32%
MO 977 393 -0.404 4.82 -0.413 5.80 -0.009 0.98 20%
MH 977 393 -0.392 5.28 -0.408 7.17 -0.016 1.89 36%

athreshold difference θEERp − θEERd
bequal error rate difference EERp − EERd
cequal error rate difference relative to EERd
dfull name plus five-digit test utterances, as opposed to in other results reported for the

S2b_Q:G8 test set where only name plus four digits are used (for example Figures 7.15 and 10.3)

7.4.2 Error rate by test group

The EER calculated from the normal distributions in the gate/hall case on the entire
test set S2b_G8 is EERp = 2.9%, compared to EERd = 2.4% when calculated
directly from the data. Table 7.2 shows the corresponding EER estimates for the
other conditions. Parametric EERs are consistently higher than the respective
non-parametric EERs. The average difference EERp−EERd is around 1.0, or 25%
relative to EERd. These averages hold for all table entries as a group, as well as for
the group of four S2b_Q:c entries. The average threshold difference θEERp−θEERd,
on the other hand, is close to zero. This suggests that the two methods result in the
same EER-threshold estimate, while the parametric method consistently estimates
a higher EER than the conventional non-parametric method.

To allow a comparison between score data and their normal approximation in
terms of DET curves, synthetic score data can be generated from computed normal
distributions. Figure 7.14 compares real and synthetic score data for the retrained
system in the gate/hall and landline/office conditions, while Figure 7.15 compares
the four conditions using such synthetic data from the condition-parallel S2b_Q:c
test sets. Corresponding non-parametric DET curves for the condition-parallel test
sets are shown in Figure 10.3. While non-parametric DET curves in Figure 10.3
unexpectedly show little or no difference between the mobile/office and mobile/hall
conditions, our parametric (synthetic) DET curves show such a difference more
clearly. A more pronounced difference between gate/hall and landline/office is also
shown by the parametric curves.
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Figure 7.14: DET curves for the retrained research system in the a) gate/hall and
b) landline/office conditions (enrollment E2a_c, test set S2b_c). The solid line
represents actual score data from the experiment while the dashed line represents
synthetic score data generated from the normal approximations of the true-speaker
and impostor score distributions.
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Figure 7.15: A comparison between conditions using synthetic score data gen-
erated from normal approximations of the original score distributions from the
condition-parallel test sets (S2b_Q:c) and the retrained system (cf. Figure 10.3,
p. 199). A name plus four digits is used in all conditions. EERp values are 7.2%
(MH), 5.8% (MO), 4.6% (LO) and 3.1% (G8).



7.5. Discussion 151

7.5 Discussion

How much of fluctuations in estimated false reject rates and score distribution
parameters in the figures are due to changes in the underlying “true” parameters
and how much is due to estimation error?

To investigate if false reject rates are constant or change with time from enroll-
ment we compared false reject rate estimates on chronologically ordered data to
estimates on the same data observed in a random order. Figure 7.16 shows aver-
age FRRd and FRRp estimates together with the average score mean and variance
estimates behind FRRp. The first 100 observations from each of the 17 target
speakers with more than 100 available true-speaker tests have been used, irrespect-
ive of elapsed time from a target’s enrollment session to the recording of the test
utterance, and estimates are computed after every tenth observation using both
ML and MAP on accumulated data. The figures show clearly that the average
false reject rate increases and the average score mean decreases with time from
enrollment. Similarly increasing EERs with time from enrollment were found by
Caminero et al. (2002) for “middle-term” (approximately one year from enrollment)
vs. “short-term” (up to about half a year). For “long-term” (up to two years) they
found that EERs decreased slightly from the “middle-term”.
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Figure 7.16: False reject rate for blocks of 10 observations seen in chronolo-
gical vs. random order (upper panges). Estimates by ML and MAP variants of
non-parametric (FRRd) and parametric (FRRp) methods with accumulated obser-
vations for 17 target speakers in the PER gate/hall condition and the retrained
research system. Lower panes show estimates of score mean and variance providing
the FRRp estimates. Legend is the same for all graphs.
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Chapter 8

Prompting methods

8.1 Introduction

Speaker verification systems can be classified as being text-dependent, text-inde-
pendent or prompted. Systems of the prompted class work similarly to a text-
dependent system but have the feature that the system prompts the claimant what
to say each time the system is used (Higgins et al., 1991).

There are two main reasons for wanting a speaker verification system to prompt
the claimant with a new passphrase for each new test occasion: (1) clients do not
have to remember a fixed password or passphrase and (2) the system can not easily
be defeated by an impostor re-playing recordings of a legitimate user’s speech.

In a telephony application the obvious way of prompting passphrases is by
presenting them through the telephone with a prompting voice. We refer to this
method as aural prompting (Doddington, 1985). The prompting voice may be a
synthetic voice or recordings of a human voice.

As an alternative, passphrases can be presented to claimants visually, for claimants
to read and speak. We refer to this method as visual prompting (Doddington, 1985).
There are at least three possible approaches for presenting passphrases visually:
through the use of on-line displays, password lists or password generators.

With on-site applications, the use of a display is the most straight-forward ap-
proach for implementing visual prompting. The application simply displays the
passphrase and asks the claimant to speak it. This approach was used for example
in the PER application. With telephony applications, on the other hand, the dis-
play approach is probably not the best one. While modern mobile telephones have
graphical displays, they may not be practical to use for visual prompting of pass-
phrases mainly because, unless a hands-free utility is used, the handset is held by
the ear while claimants are talking, and claimants cannot view the display simul-
taneously. Furthermore, for ASV applications accessed remotely via the telephone,
use of the display requires some facility for the application to send passphrases to
the display remotely and in real-time. For ASV applications implemented locally in

155
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the handset itself, display control should not be a problem. Most existing handsets
connected to the landline network do not have a display, and thus visual prompt-
ing through a display is not an option with them unless additional hardware is
provided.

The next two approaches both involve providing clients off-line with one time
passphrases that they are asked to speak. Passphrases can be provided either
through a list or by means of a passphrase generator. Both lists and generators
have already been used in electronic banking services for many years. For example,
Nordea1 uses lists distributed by mail on a plastic card covered with opaque coating
from which users scrape codes one by one, while SEB1 uses Digipass-type gener-
ators that display a code after activation by a PIN-code. Generators can be used
in response-only mode or in challenge-response mode. In the latter case, the ap-
plication provides a challenge code for the user to type into the generator, and the
generator then produces the code for the response. In current banking applications,
the one time passwords themselves serve for authentication security since only a
claimant who has the list or the generator (and knows the PIN to the generator)
can produce the right codes (without guessing). If used in conjunction with ASV
by asking claimants to speak the one time passwords, we add a biometric layer of
security by verifying the claimant’s voice. Hence, this way of visually prompting
passwords to claimants has a good security potential, with the drawback in user
convenience since clients must have the list or generator available when using the
application.

This chapter addresses the problem of how to prompt the user with a passphrase
by presenting two comparative experiments. In the first experiment (A), visual
prompting of four-digit sequences is compared to aural prompting of the same
sequences. The second experiment (B) compares the use of four-digit and five-digit
sequences as the aurally prompted passphrase. Each experiment is analyzed by
looking at the number and type of speaking-errors subjects make while saying the
different passphrases, and by comparing the performance of an automatic speaker
verification system on passphrases acquired under the various conditions. The
verification part is a re-run of experiments presented in (Lindberg and Melin, 1997)
with additional ASV systems (those presented in Chapter 3) and with different
performance measures: DET curves and EERs or FRRs with speaker-independent
thresholds.

8.2 Data

The experiments were conducted on the Gandalf corpus (cf. Section 6.2), i.e., data
were not collected during actual usage of a speaker verification system. In the corpus
recording, aural prompting was implemented by playing the prompt followed by a
100 ms beep sound. The recording started after the beep and continued during
a fixed time interval whose length was determined individually for each type of

1Nordea and SEB are large banks operating in Sweden
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recorded item. Prompts were synthesized with a rule-based formant synthesis TTS
system (Carlson et al., 1982, 1991) to ensure exact reproducibility of the prompting
voice. Visual prompting was implemented by printing digit strings on a manuscript
that subjects were reading from. The individual digits were separated by a space to
indicate they should be read as digits and not as numbers. Comparing to the three
approaches for visual prompting presented above, the method used when recording
Gandalf data best resembles the password list approach. During a recording session,
the four visually prompted items were always recorded before the aurally prompted
items.

8.3 Experiment

Two separate experiments were conducted. The first (Experiment A) aimed at
comparing speaker verification on digit strings collected through visual prompting
vs. aural prompting under the assumption that the prompted digit strings in both
cases were “cleanly” produced by subjects and captured by the recording equip-
ment. That is, we wanted to compare how subjects speak in response to the two
prompting strategies with respect to speaker verification error rate. In a com-
plementing study we then looked at how often recordings of subjects’ responses
contained some kind of error and again compared the two prompting strategies.
Errors could be for example digit substitutions, wrong word order or disfluencies,
which all appear in the speech signal, but also truncated recordings. We will refer
to all such errors as speaking or recording errors, or SREs. Note that for most types
of errors, it is not clear if they are caused by the implementation of the prompting
or recording method (for example imperfect speech synthesis or too short recording
windows), by inabilities or mistakes in subjects (for example hearing loss or lack of
concentration), by disturbances in the subject’s environment, or combinations of
the above.

The second (Experiment B) focused on the effect of digit string length with
aural prompting under the hypothesis that longer digit strings would generate more
SREs in subject responses, while when correctly spoken they would also allow for
lower speaker verification error rate due to the availability of more test data. In
this experiment we chose to measure the effect of SREs directly through speaker
verification error rate, though we have also made a study on a particular kind of
SRE, namely word order (or transposition) errors.

In Experiment A, verification tests were made on pairs of visually and aurally
prompted versions of the same digit string. A pair was always recorded in the
same telephone call and only pairs where both recordings contained precisely the
requested four-digit sequence were used (recordings with SREs were sorted out
through manual listening). Among the 1850 true-speaker test calls from client
subjects in Gandalf there are 455 such pairs that can be used for true-speaker
tests. Among those, 405 were chosen, so that to each target there are at least
four true-speaker test pairs. This selection gives 69 targets with on average six
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true-speaker tests per target. For impostor tests, one pair from each of the client
subjects plus one pair from each of 37 other subjects were used. Even though
test data were selected carefully through the just described procedure, there is still
a possible source of bias between the two prompt types in that visual prompts
appeared before aural prompts in a all sessions.

The main goal of Experiment B was to compare four-digit vs. five-digit aur-
ally prompted sequences. Since the test material for that comparison must be
chosen differently from Experiment A (five-digit speech-prompted sequences are
only recorded in the 17th and later test calls in Gandalf, cf. Table 6.6, p. 97), the
comparability between results from A and B ran a risk of getting lost. Therefore,
visually prompted four-digit sequences were also included in experiment B. Hence,
verification tests were made on triples of items recorded during the same telephone
call, where each triple contains one visually prompted four-digit sequence plus one
four-digit and one five-digit aurally prompted sequence. Two groups of true-speaker
test sets were designed from such triples. The first group contained triples with no
SREs. These sets were combined with impostor test sets into test sets referred to
as B/clean. The second group contained all other triples, namely those in which at
least one of the constituents of a triple contained at least one SRE. In other words,
triples of utterances from a single call in which for at least one combination of
prompting method and passphrase length a speaking or recording error was found.
These sets were combined with (the same) impostor test sets into test sets referred
to as B/dirty.

The 61 client subjects with 8 or more such triples available were selected as
targets in Experiment B. The average number of triples per subject is 17.5 including
SREs and 15.5 excluding them. Data for impostor tests were chosen analogously to
experiment A; one triple per speaker was chosen with no items in the triple having
an SRE. The impostor parts of test sets B/clean and B/dirty are identical, thus
any differences measured between the two groups of test sets are due entirely to
the true-speaker tests.

The number of speakers and tests used in each experiment is summarized in
Table 8.1, where numbers for male and female targets are presented separately.
Test sets are exactly those used in (Lindberg and Melin, 1997), except that cross-
sex impostor attempts have been omitted.

Target models were built from 25 visually prompted five-digit sequences recorded
in one session (Gandalf digits enrollment set 1s1h*1, cf. Table 6.8, p. 101). In these
25 sequences each digit occurs at least twelve times and in all left and right contexts.

For studying SREs in visually prompted versus aurally prompted items, all
available calls from the 61 subjects used as targets in experiment B were used. The
61 subjects all have recorded at least 20 test calls, thus it should be possible to
observe potential learning effects. The total number of calls for this SRE study
is 1511, with four visually prompted and two aurally prompted four-digit items in
each call. 535 of those calls also contain two aurally prompted five-digit items.
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Table 8.1: Properties of test sets used in the verification test part of experiments
A and B. Numbers indicate dimensions of each of the prompt-specific test sets, i.e.
in Experiment A there are two test sets with the dimensions given in this table,
while in Experiment B there are three test sets for B/clean and three for B/dirty.
All impostor tests are same-sex tests.

Experiment A B/clean B/dirty
male female male female male female

targets 39 30 37 24 25 17
true-speaker tests

per target on average 6.5 5.7 15.5 15.6 3.0 2.8
total number of tests 253 170 573 374 75 48

impostor tests
additional subjects 25 12 33 10
per target 63 41 69 33
total number of tests 2457 1230 2553 792

8.4 Speaker verification systems

Results are presented in this chapter for four ASV systems. In addition to the
HMM and GMM-based systems and their combination described in Chapter 3 of
the present thesis, results from the system used in the original experiments reported
in (Lindberg and Melin, 1997) have been included. The latter system is referred
to as the CAVE-system from the project it was developed within (Bimbot et al.,
2000). It is similar to the HMM-based system presented in Section 3.3, but differs
in the following major aspects:

1. target and background HMMs have two Gaussians per state (vs. 8)

2. the static part of feature vectors are LPCC-type (vs. MFCC)

3. target models are trained from scratch (vs. using the background models for
initial values)

4. target model variances are trained (vs. fixed to the same values as in a back-
ground model)

5. the background model is gender-independent (vs. gender-dependent)

6. word-level alignment at test time is produced through Viterbi searches within
the target and background models using a common silence/garbage model (vs.
external alignment shared between target and background models).

Furthermore, in these experiments, word-level segmentation at training was manual
with the CAVE-system (vs. automatic given word-level transcriptions of training
utterances) and the CAVE background model was trained on the 15 male and



160 Chapter 8. Prompting methods

15 female background speakers in Gandalf (vs. 960 speakers from the SpeechDat
corpus). Note that while the CAVE-system is exactly the same as used in (Lindberg
and Melin, 1997), performance measures used in this chapter are not the same as
in the reference, and hence the numbers are not the same.

8.5 Results

8.5.1 Speaking and recording errors

Recorded items used in the verification part of Experiment A are those where the
text content of the recording is exactly that of the prompted text. This section
presents some observations on the remaining items, i.e. those with at least one
SRE, divided into two groups: those where the passphrase is complete and those
where it is not. A passphrase is here considered complete if the requested digits
are included in the recording and occur in the correct order.

Table 8.2 shows the frequencies of occurrence of SREs in our data in percent
of the number of recorded four-digit items of each prompt type. Statistics are
first given for all types of SREs pooled together, then separately for complete and
incomplete passphrases, and finally for each type of SRE we have identified.

The division into three groups of test calls (1–4, 5–16, 17–26) in Table 8.2 is
somewhat arbitrary, but allows the observation of potential short and long term
changes in error rate while subjects get more used to the prompting procedures.
The last group (17–26) was chosen to match calls used in Experiment B where
five-digit aurally prompted sequences are available.

As can be seen in the table, the recording procedure with aural prompts caused
trouble initially. Subjects frequently started speaking but were somehow disturbed
by the beep, and re-started saying the whole sequence. Most of those errors could
perhaps be eliminated by removing the beep from the prompting procedure.

The lower part of Table 8.2 shows observations from items where the passphrase
is not complete. “Digits spoken as numbers” refers to cases like “1 2” spoken as
twelve, which naturally occur only with visual prompting.

A large portion of the word substitution errors turned out to be confusions
between digits 1 ( � �����!% ) and 6 ( � � �!��� % ). Since those errors are likely to have come
from misinterpretations of the prompting voice, they are separated from other word
substitution errors in the table. Digits 1 and 6 are confused especially in the context
after the digit 6, e.g. 6-1 ( � ���!���������!% ) was often perceived as 6-6 ( � � �!��������� % ). Note
that the synthesized speech was played through a telephone line and hence the
high-frequency components of

�
�
�

were attenuated. From the 17th test call the
sequences with the pair 6-1 were no longer included in the pool of possible prompts
and therefore the error rate for word substitution due to the synthesizer decreased
considerably.

A detailed study of all types of SREs for experiment B is not given here. Instead,
verification results are given below for the cases where SREs are included and
excluded respectively. It can be noted, however, that the proportion of five-digit
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Table 8.2: Observations on four and five-digit items with some speaking or recording error (SRE). Numbers are given as
the percentage of the number of recorded items of a prompt type. Rows with indented left column show a factorization
into different kinds of errors. Bold-face numbers indicate errors that are considered systematically related to the prompt
type, while other errors are more related to the particular implementation used when recording the Gandalf corpus.

number of digits/prompt type 4/visual 4/aural 5/aurala 5/auralb

range of test calls: 1–4 5–16 17–26 1–4 5–16 17–26 17–26 17–26

speaking or recording error (SRE) 1.5 0.86 0.74 15 5.9 2.4 10 8.4
passphrases complete 0.20 0.38 0.28 10 1.4 1.2 2.8 2.0

recording method 8.81 1.02 0.47 0.37 0.56
other 0.20 0.38 0.28 1.19 0.41 0.74 2.4 1.5

passphrase incomplete 1.33 0.48 0.46 5.1 4.5 1.2 7.5 6.4
digits spoken as number 0.10 0.07 0.09
word subst. due to subject 0.00 0.03 0.14 0.82 0.68 0.19 1.3 0.19
word subst. due to synthesizer 3.07 2.73 0.46 0.93 1.9
wrong word order 0.41 0.75 0.56 5.0 3.2
recording method 1.13 0.20 0.09 0.00 0.07 0.00 0.00 0.37
omitted word 0.00 0.03 0.05 0.82 0.27 0.00 0.19 0.75
other 0.10 0.14 0.09
sum of bold-face factors 0.20 0.27 0.37 2.05 1.70 0.75 6.5 4.2

aprompt played once
bprompt played twice
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Table 8.3: Distribution of word order error rates over subjects in four and five-
digit aurally prompted sequences. A table cell shows how large fraction of subjects
made word order errors at a rate within the given range with a given prompt type.
Results are based on 86 subjects in the four-digit case and 63 subjects in the five-
digit case.

Test set (number of digits/prompt type)
Range of 4/aural 5/aural 5/aural
error rate (%) (single prompt) (double prompt)

–5 97% 73% 76%
6–15 3% 6% 14%

16–25 14% 10%
26–35 5%
36– 2%

items where the passphrase is incomplete is as high as 7.5% in response to a single
prompt and 6.4% with the prompt played twice, to be compared to the 1.2% for
four-digit aurally prompted items (single prompt) in calls 17–26 in Table 8.2.

8.5.2 Word order speaking-errors

This section presents some observations on a particular kind of SRE, namely word
order (or transposition) errors made by subjects in response to aural prompts.
Results reported here are based on all available Gandalf true-speaker test calls.

8.5.2.1 Four-digit sequences

The data set is 1850 calls from 86 subjects with two four-digit aurally prompted
items in each call. The number of items with a word order error is 28, or 0.8%.
Their distribution over subjects is shown in Table 8.3 together with the corres-
ponding distributions for five-digit strings. Figure 8.1 shows the same distribution
graphically with higher histogram resolution than the table.

Table 8.4 shows how often digits in certain positions of the phrase are swapped.
The ‘other’-entry for four-digit sequences in the latter table represents two cases
with a swap between positions #1-#3. It is clear that a swap between the two
middle digits is the most common word order error.

8.5.2.2 Five-digit sequences

The data set is here 539 calls from 63 subjects with two five-digit aurally prompted
items in each call. Those two items have a difference: the first has a single prompt
while the second has a double, i.e. the prompt was played twice to the subject. The
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Figure 8.1: Distribution of word order error rate with aurally prompted four-digit
strings (4/aural) over 86 subjects. Dashed curve shows the best fit beta distribution.

Table 8.4: Distribution of word order errors on positions of the four and five-digit
aurally prompted sequences. The Positions-columns show how large fraction of the
errors occurred as swapping of digits in the two positions given in the Positions-
columns. An example of an error which is sorted into the “#2-#3” row for four-digit
sequences is ‘1 5 3 0’ → ‘1 3 5 0’. The total number of word order errors are 28 for
four-digit strings and 50 for five-digit strings.

Test set (number of digits/prompt type)
4/aural 5/aural
Positions Proportion Positions Proportion

initial #1-#2 7% #1-#2 6%
medial #2-#3 82% #2-#3 32%

#3-#4 46%
final #3-#4 4% #4-#5 6%
other 7% 10%

fraction of items with a word order error is 5.9% for a single prompt and 3.3%2

for a double prompt. The distribution of errors over subjects is shown in Table 8.3
for single and double prompts respectively. Note that the statistics on individual
speakers is weak since the number of recorded items of an aurally prompted five-
digit sequence is small, 20 for 42 of the subjects and less for the remaining 21
subjects.

Table 8.4 shows how often digits in certain positions of the phrase are swapped.
The ‘other’-entry for five-digit sequences in the table contains five errors which all

2These fractions are larger than those reported for word order errors in Table 8.2 because
some utterances with a word order error also contained other types of errors and were counted
under other categories in the table.
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Table 8.5: Speaker verification EERs for the two test sets in experiment A with
four ASV systems.

System Test set (number of digits / prompt type)
4/visual 4/aural

CAVE 7.2% 8.9%
HMM 5.4% 7.2%
GMM 9.1% 10.7%
Combined 5.2% 7.2%

can be described as swapping groups of digits, where in the observed cases one
group is two digits and the other group is one digit. An example of such an error is
’6 3 4 1 8’ → ’6 4 1 3 8’. In four of the five cases the middle groups are swapped (as
in the example), while in the fifth case the two first groups were swapped (’4 0 9 8 7’
→ ’9 4 0 8 7’). The formulation swapping two groups of digits not including the first
and the last digit in the sequence hence covers as much as 86% of word order errors
for the five-digit sequences. The same formulation degenerates to the #2-#3-case
for four-digit sequences, which corresponds to 81% of those sequences.

Similar observations on transposition errors have been made in research on
short-term memory retention. For example Bjork and Healy (1974) found that
items, in their case consonant letters, in non-initial and non-final position were more
likely to be recalled in the wrong order than initial and final items. Furthermore,
they found that order information was lost more quickly than item information.
Their experiments were conducted with visual prompts. Subjects read a letter se-
quence aloud, followed by a number of digits, and was then asked to recall the letter
sequence. While there are a number of differences between the task their subjects
were tested for and the task of repeating an aurally prompted digit sequence, results
are indeed similar, suggesting that general properties of human short-term memory
may explain our observations on SREs.

8.5.3 Speaker verification performance

Experiment A. Table 8.5 presents speaker verification EERs (using speaker-
independent thresholds as opposed to in (Lindberg and Melin, 1997)) for each of
the two test sets in Experiment A for the four ASV systems, and Figure 8.2 shows
the corresponding DET curves for the HMM subsystem (Figure D.1 in Appendix D
includes DET curves for all four systems). To show what happens with the balance
between false accept and false reject rates when the prompting method changes,
the FAR/FRR value pair for a specific threshold has been marked in DET plots,
namely that for the threshold corresponding to the a posteriori EER threshold on
the case with visually prompted digits. Denote this threshold θv

EERd. The threshold
is determined individually for each ASV system.

For all four systems, the EER is lower for visually prompted utterances than for
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Figure 8.2: DET curves from Experiment A for the HMM subsystem and aurally
vs. visually prompted 4-digit strings. Diamonds indicate the FRR/FAR pair for a
threshold θv

EERd determined as the EER threshold on the visually prompted data.

aurally prompted ones, and DET plots show this trend holds along the entire range
of operating points. Looking at all the systems together (Figure D.1) it seems that
the FRR is more affected than the FAR by the change in prompting strategy, since
the operating point marked by diamonds is shifted consistently along the FRR axis,
while the shift along the FAR axis is smaller and with varying sign. This implies
that the effect of changed prompting strategy is subordinate to speaker identity in
the speaker verification process, a result that is comforting but not surprising.

To further investigate on the observed difference in overall FRR between the
two prompting methods, we look at distributions of error rate over targets (cf.
Lindberg and Melin, 1997). First, we look at (non-parametric) FRR (FRRd) at
the same threshold θv

EERd shown in the DET plots. Second, as an indication of
speaker-discriminability we look at individual EER with a posteriori target-specific,
prompt method-dependent thresholds. In this case, EERs are estimated with the
parametric ML method (EERp) presented in Section 7.3.2 (p. 137).

Figure 8.3 shows the distribution of individual FRRd and EERp for the two
contrasting test sets and the HMM subsystem, while Figure 8.4 shows the distribu-
tion of changes in individual error rates when going from visual prompts to aural
prompts. Figures D.2 through D.5 in Appendix D include the corresponding distri-
butions for all four systems. Figures show that for a majority of targets, FRR does
not change at all with prompting method. For targets where there is a difference, a
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Figure 8.3: Distribution of non-parametric FRR (FRRd) at a fixed target-
independent threshold θv

EERd determined as the EER threshold on the visually
prompted data (a,b), and EERp (target-dependent a posteriori thresholds) (c,d)
over targets in Experiment A (visually vs. aurally prompted 4-digit strings) with
the HMM subsystem. Dashed lines in a) and b) show fitted beta distributions (cf.
Section 7.3.1.2, p. 135).

majority see an error rate increase when going from visual to aural prompts. The
situation is similar for EERp, suggesting that speaker discriminability decreases
with aural prompts relative to visual prompts.

The lack of bars for small FRRd differences in Figure 8.4a is due to differences
being quantized into steps the size of 1/ni, where ni is the number of tests available
for target i. The average number of tests per target in Experiment A is 6.5 for male
and 5.7 for female targets (cf. Table 8.1), hence the clusters of bars around ±17%.
An alternative form of presentation would be a bar chart that shows differences in
the number of errors instead of differences in error rate.

In Section 10.5.1.1 (p. 210), we show how a non-parametric test called McNe-
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Figure 8.4: Distribution over targets of differences in a) FRRd at a fixed target-
independent threshold θv

EERd determined as the EER threshold on the visually
prompted data and b) EERp (target-dependent a posteriori thresholds), when
comparing the two sets in Experiment A with the HMM subsystem. A posit-
ive difference x indicates that the individual FRRd (EERp) for aurally prompted
items was x units higher than for visually prompted items.

mar’s test for the significance of changes (e.g. Siegel, 1956) can be used to test for
differences between overall FRR. The same method can be applied here. In fact, the
test, as applied in Section 10.5.1.1, is basically a formalization of the comparison
we made above on Figure 8.4a. Under the null hypothesis that there is no differ-
ence between the two prompting methods, the test checks if the number of targets
that appear to the left in the histogram is sufficiently different from the number
of targets that appear to the right, not to be a result of chance. The McNemar
test indicates a difference (at 5% level of significance) in FRR between the visual
and aural prompts in Experiment A for the GMM subsystem and the combined
system, but not for the CAVE and HMM systems. For EERp, a significant differ-
ence could not be detected for any of the ASV systems (contrary to our graphical
interpretation of figures). Table 8.6 shows detailed results of the McNemar tests.
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Table 8.6: Results of McNemar’s test of differences at 5% level of significance.

case A case B system pa diffb

Effect 1: FRRd at fixed target-independent, system-specific threshold θv
EERd

visual aural CAVE system 0.14 -
HMM subsystem 0.044 -
GMM subsystem 0.007 x
combined HMM and GMM system 0.004 x

Effect 2: EERp with target-dependent a posteriori threshold

visual aural CAVE system 0.63 -
HMM subsystem 0.15 -
GMM subsystem 0.34 -
combined HMM and GMM system 0.23 -

aprobability that test statistic x has observed value T
χ2 or greater (P

χ2 (x >= T
χ2 ))

b’x’ indicates a statistically significant difference detected by a two-sided test at α = 0.05
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Experiment B. Table 8.7 shows FRR for Experiment B for the four ASV sys-
tems and the B/clean and B/dirty groups of test sets. The decision threshold for
each combination of system and test set is determined as the a posteriori EER
threshold for the B/clean version of the test set. FRRs are presented rather than
EERs because impostor parts of the test sets are identical, thus differences between
“clean” and “dirty” test sets lie only in the true-speaker parts of test sets. The
table also shows results for the B/clean and B/dirty test sets pooled (B/all). These
test sets contain a naturally occurring blend of correctly spoken utterances and ut-
terances with SREs for the respective prompting methods and passphrase lengths.
Thus, by comparing the prompting methods and passphrase lengths through the
B/all test sets, we take into account how often SREs occur, how many verification
errors they cause and verification performance in the SRE-free utterances.

Figure 8.5 shows DET curves for Experiment B with the HMM subsystem (DET
curves for all four systems are included in Appendix D). The figure contains four
panes. The first three compares each of the three test sets for the B/clean and
B/dirty groups, and the pooled B/all. The final pane compares the three groups
for a single test set, namely that with visually prompted 5-digit strings. While
FRRs in Table 8.7 are computed from an EER threshold on the 4/visual test set,
the diamonds included in DET plots mark the operating point determined by the
EER on the 4/visual test set, like in Figure 8.2.

Results for aurally prompted digit strings show that 5 digits perform slightly
better across all tested ASV systems, given that utterances are correctly spoken and
recorded (B/clean test sets). On the B/dirty test sets there is no clear difference
(note that there are only 123 true-speaker tests per test set, so the statistical
uncertainty in DET curves is much larger than in the B/clean case). With SREs
taken into account at their natural frequency of occurrence (B/all), there is again
no consistent advantage in error rate for any of the two passphrase lengths across
our ASV systems. Thus, the advantage for 5-digit strings on clean data seems to
have been consumed by the effect of SREs.

Comparing visually and aurally prompted 4-digit strings in Experiment B, there
appears to be no advantage for visual prompts on clean data like there was in
Experiment A. On the B/dirty test sets, visual prompts show smaller error rates
(still with a larger statistical uncertainty) than aural prompts, in particular for the
two HMM-based systems. In the pooled B/all case, no clear advantage is shown.
Note that in Experiment B pairs of visually and aurally prompted 4-digit strings
do not necessarily contain the exact same digit sequence like in Experiment A,
and that visually prompted strings are drawn from a pool of only four different
sequences, while aurally prompted sequences are drawn from a pool of 20 sequences
(see Section 6.2.2.5, p. 96).

Finally, note that the large differences in error rate for four-digit visually and
aurally prompted sequences in Experiments A and B (Tables 8.5 vs. 8.7) come
from the fact that A and B have very different test sets. B includes only calls from
the same handset, the so called favorite handset (cf. Section 6.2), while A includes
calls from many different handsets. The error rates in experiment A are therefore
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Table 8.7: Speaker verification FRR for the two groups (’clean’ and ’dirty’) of
three test sets in Experiment B with four ASV systems, and the two groups pooled
(’all’). Decision thresholds are determined as the a posteriori EER threshold on
the ’clean’ version of a test set for each system and test set. Note that the impostor
part of test sets is the same in all groups.

System Group Test set (number of digits / prompt type)
4/visual 4/aural 5/aural

CAVE B/clean 4.9% 5.2% 4.4%
B/dirty 2.4% 8.1% 6.5%
B/all 4.6% 5.6% 4.7%

HMM B/clean 3.3% 3.3% 3.4%
B/dirty 4.1% 9.8% 11.4%
B/all 3.4% 4.2% 4.2%

GMM B/clean 6.2% 6.3% 5.0%
B/dirty 8.1% 10.6% 17.9%
B/all 6.4% 6.7% 6.5%

Combined B/clean 3.2% 3.3% 3.0%
B/dirty 3.3% 6.5% 12.2%
B/all 3.2% 3.6% 4.0%

generally higher.

8.6 Discussion

In experiment A, the overall EER for visually prompted sequences was lower than
for aurally prompted sequences. One should keep in mind, though, that target
models were trained on visually prompted speech. The result can be interpreted
such that there is a difference in how subjects speak a phrase when it is given to
them through visual rather than aural prompts. It is not clear that visual prompts
generally provide for better results than the aural prompts. If the target models in
the case of aural prompts were also trained on aurally prompted speech, the result
would probably be different.

The difference in DET curves between visual and aural 4-digit prompts is lar-
ger in Experiment A than in the ‘clean’ part of Experiment B (Figure 8.2 vs.
Figure 8.5a). In Experiment A, which was designed for exactly this comparison,
utterances within each pair contain the exact same digit sequence, and therefore
results from A should be more reliable in this respect. Furthermore, results in Ex-
periment A are based on more target speakers than Experiment B suggesting also
that the comparison in Experiment A is more reliable (even though there are more
tests per target in Experiment B; cf. the discussion in Section 10.5.1).

In addition to these differences, we can also identify a number of systematical
differences in the data sets used in the two experiments, such as the number of
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Figure 8.5: DET curves from Experiment B with the HMM subsystem (corres-
ponding plots for the other systems are included in Appendix D): a) B/clean test
sets, b) B/dirty test sets, c) B/clean and B/clean merged into B/all, d) DET curves
from a through c for aurally prompted 5-digit strings drawn together.
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used handsets, slightly different sets of target speakers, the number of different digit
sequences used, etc. A difference we find interesting, and that may have contributed
to the decreased difference between visual and aural prompts between Experiments
A and B, is that Experiment A uses test data recorded during the first four months
of the data collection, while B uses test data recorded from month seven and later.
Hence, there may be a learning or normalization effect such that subjects have for
example “learned” to speak equally natural in response to both visual and aural
prompts.

In the comparison between four and five aurally prompted digits, results con-
sidered for all four ASV systems as a group showed that the advantage of more test
data in the longer utterances was consumed by the higher frequency of SREs. This
finding is different from that in (Lindberg and Melin, 1997), which was based on the
CAVE system only and where we found that the longer digit sequences performed
better also when including SREs. In this revised study (with other performance
measures), the CAVE system still performs better with the longer digit sequences,
but it was the only system that did so.

The portion of SREs is a measure of how often an ASV system would have to give
the claimant a new try just because the passphrase was wrong. The only systematic
sources of SREs related to visual prompts seems to be reading disfluencies (included
in the “other” group in Table 8.2) and digits pronounced as numbers. Observed
error rates for both are very small relative to the EER of the used ASV systems. For
aural prompts, observed SRE rates were higher and of the same order of magnitude
as the EERs. In this case, SREs seem to have come from two sources: either the
subject did not hear the prompt correctly, or the short-term memory failed him
and he repeated the wrong sequence, either with the wrong word order or with
word substitutions. In particular the word order error rate in response to aurally
prompted five-digit sequences was large, 5% with a single prompt and 3% when the
prompt was played twice.

Since longer test utterances still have greater potential for lower error rates; how
do we get rid of SREs or how do we deal with them? We envisage four approaches.
The first approach is to use visual prompts instead of aural prompts. We saw fewer
SREs with visual prompts than aural prompts with four-digit sequence, and we be-
lieve the difference would be even larger with five-digit sequences. While not tested
explicitly, this belief is supported by experience from the PER experiments presen-
ted in Chapter 10 where five-digit strings were visually prompted to claimants. If
we need to use aural prompts, the three main approaches are to make the ASV
system reject SREs, to make it deal with them, and/or to lower the frequency of
generated SREs.

SREs can be rejected by working with speech recognition or text verification
techniques (e.g. Li et al., 2000) to check that a recorded response contains exactly
the prompted digit sequence and nothing else. One such approach was successfully
implemented in the PER system, where an utterance was rejected if the promp-
ted digit string did not show up in a (short) N-best list produced by the speech
recognizer.
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A key to making (word-based) ASV systems more robust to SREs may be
in how word alignments are produced and used. For example, one of the differ-
ences between the two HMM-based systems in the present study is in alignments.
The CAVE system produces word alignment separately within the target and back-
ground models using the target and background HMMs themselves, while the HMM
system developed in this thesis uses a single external alignment that is produced by
a speech recognizer and that is shared between target and background models. This
difference could be one reason to why the CAVE system showed better robustness
to SREs in our experiment. Another suggestion for increased SRE robustness is to
smoothly accept word order errors by claimants in the verification process.

The frequency of generated SREs with aural prompts can be reduced by in-
creased intelligibility in the prompting voice (improved synthetic voice or record-
ings of a human voice), by avoiding digit combinations with higher probability of
generating confusions (for example the combination “6 1” was often perceived as
“6 6” in our data), and possibly to play a prompt to claimants twice. To repeat
the prompt is a rather extreme measure, but it may be useful as part of a back-off
strategy when a dialog system detects SREs during several consecutive attempts in
a verification dialog. Along with improving the aural prompting mechanism, the
“recording error” part of SREs can be reduced by improving the recording mech-
anism. In the present study we used a fixed-time recording window. While this
technique is easy to implement and unaffected by background noise, it is of course
inflexible. The time window needs to be sufficiently large to capture the majority
of responses and thus results in unnecessarily slow response times from the ASV
system for most claimant responses. Controlling the recording window adaptively
through the use of a good speech detector or feedback from an incremental speech
recognizer may be a better option. In the telephone part of our subsequent PER
experiment we used strings of four rather than five digits to be on the safe side. We
also used a diphone-type synthetic voice (instead of the formant-based synthesis
used in the Gandalf collection).

An alternative to increasing the length of aurally prompted digit strings is to use
short digit strings with a sequential decision strategy as discussed in Section 10.5.2
(p. 211).

Word order error rate in responses to aurally prompted digit strings was found
to spread unevenly over subjects as shown by Table 8.3 and Figure 8.1. This opens
a possibility for exploiting individual word order error rate as a feature in speaker
recognition. For example, an ASV system could try to estimate the word order
error rate in a target using the MAP approach presented in Section 7.3.1 (p. 134)
(Figure 8.1 shows a nice fit for a beta distribution that could be used as a conjugate
prior for a binomial distribution of the number of observed word order errors).
Given an estimated word order error rate in a target and in a general background
population, a likelihood ratio for an observed word order error, or the lack of one,
can then be calculated. Such a likelihood ratio could then perhaps be used in
combination with other ASV techniques such as those presented in Chapter 3 of
this thesis, or fit into a multi-classifier recognition framework.
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8.7 Conclusion

From the study of speaking and recording errors (SREs) in response to visual and
aural prompts respectively, it is clear that aural prompts leave the claimant with
a more difficult task and more SREs are therefore produced. While SRE rate for
aurally prompted four-digit strings was not critical, increasing the digit string length
to five resulted in an SRE rate in the same order of magnitude as EER for a speaker
verification task on SRE-free data for the tested ASV systems. In particular, word
order errors were found to be a significant source of error in aurally prompted five-
digit strings. We conclude that aural prompts, if used, should be limited to four
digits.

As a means for prompting passphrases visually, password generators, like those
currently used in many electronic banking services, may offer a very high security
potential if claimants were asked to speak a generated code. To the current security
in legitimate users already having the unique generator and knowing its activation
PIN, speaker verification would add a biometric layer of security.

Speaker verification experiments on visually and aurally prompted passphrases
indicate that there may be a (small) difference between speech produced in response
to the respective prompt types, which affect the performance of both HMM and
GMM-based speaker verification system. Since all our experiments were made with
enrollment speech elicited through visual prompts, we were not able to establish
that one prompt type results in speech more suitable for ASV than the other,
only that given visual prompts at enrollment, there is a small advantage for visual
prompts over aural prompts at test time in terms of ASV error rate. It seems likely
that from an ASV error rate point of view it is better to use matching prompt
types at enrollment and test, since all similarity based ASV systems are more
or less sensitive to mismatched conditions. In choosing between aural and visual
prompts, however, we believe other considerations than ASV error rate differences
(on SRE-free data) will be more important in practice, such as application context,
user preference and re-prompt rate due to SREs.



Chapter 9

Variance estimation

9.1 Introduction

In practical applications ASV systems are generally used in contexts where very few
target enrollment data are available. One problem with using small training data
sets is the risk of over-training, that is, parameters of the target model are over-
fitted to the particular training data. Especially variance parameters are susceptible
to over-fitting: a variance estimated from only a few data points can be very small
and might not be representative of the underlying distribution of the data source.

The maximum likelihood (ML) principle is often used in training parameters of
continuous density hidden Markov models (HMM). The most general implementa-
tion of that principle (the EM-algorithm) consists in optimizing all parameters of
the HMM, including means and variances of state pdfs. With sparse training data
from an enrollee, target model variances tend to be over-trained (Bimbot et al.,
2000).

In this chapter1 we look at three heuristic approaches to robust estimation of
target model variances in the context of word-level, left-right HMM-based speaker
verification. The three approaches are referred to as variance flooring, variance
scaling and variance tying and they can all be viewed as modifications of the
ML/EM-algorithm.

By variance flooring, we modify the EM-algorithm to impose a lower bound on
variance parameters, a variance floor. With this method any given variance value
will have its corresponding floor value as a lower bound during iterations of EM.
A new problem is then how to compute this floor value. Within the CAVE-project
a method to compute variance floors is suggested (Bimbot et al., 2000). With this
method, all variance vectors of all HMMs in a speaker model share one flooring
vector. This vector is estimated as the variance over some calibration data set

1Experiments and most of the results in this chapter have previously been published in (Melin
et al., 1998; Melin and Lindberg, 1999b).
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multiplied by a constant variance-flooring factor. The calibration data set can be
for instance the same data used to train background models.

Variance flooring can be implemented with several levels of “resolution” in up to
three “dimensions”. The first dimension is the vector index, where resolution can
range from a scalar floor, where all components of a variance vector share a floor
value, to a floor vector where each component has its own floor value. The second
dimension is time (represented by a state sequence in a left-right HMM) where
a unique floor can be shared by variance vectors within all states in all models,
ranging to each state having its own floor. The third dimension is feature space,
where different parts of the feature space may have their own floor. An example
of the latter is when each Gaussian term within a composite pdf has its own floor
value.

An alternative modification to the EM algorithm is to keep variances fixed
while updating means and transition probabilities (Matsui and Furui, 1993). In
the context of speaker verification, where a background model is often used for
likelihood normalization, the variances of the target model can be copied from the
background model. A background model is often trained on a lot of data from many
speakers and all parameters of the model can be reliably estimated with the original
EM-algorithm. If background model variances are used systematically in target
models, target model variances become target-independent. This modification can
be generalized by setting target model variances proportional to variances in the
background model. We refer to this approach as variance scaling.

Through variance tying the number of variance parameters to estimate can be
reduced. Like variances can be floored at different resolutions, as introduced above,
they can also be tied at the same “resolutions” along the same “dimensions”, for
example all mixture components sharing a variance vector within an HMM state or
within an entire HMM. The purpose of reducing the number of variance parameters
is to allow the remaining parameters to be robustly estimated.

In this chapter we compare several variations of the three principle modifications
to the EM-algorithm mentioned above. The comparison is made on three separate
telephone quality corpora in three different languages. The recognition tasks are
slightly different, but are all some form of text-dependent task using digits.

From the variety of possible variance flooring methods we try three variants with
gradually increasing resolution: model-dependent, state-dependent and mixture
component-dependent vector floors. The various floor vectors are computed as an
empirical constant times a basis vector, like in (Bimbot et al., 2000). The basis
vector is derived from speech data or directly from a multi-speaker model. We
look empirically at verification error rate as a function of the scale factor to see if
there is a minimum for some value. We then do similar experiments with variance
scaling. Finally, we reduce the number of variance parameters by tying variance
vectors across mixture components within each state. The target models have eight
mixture components per state, and by tying variances within states we reduce the
number of variance parameters by a factor eight. We compare tied-variance models
with the original ones for the various variance estimation methods to see if the
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smaller number of variances can be more robustly trained.
Since the variance flooring and scaling techniques involve the setting of an em-

pirical constant, its usefulness depends on to which extent the choice of an optimal
scaling factor will generalize from development data to new evaluation data. We
present a series of experiments to investigate on such generalization properties.

9.2 Data

Three corpora have been used in the tests: Gandalf (cf. Section 6.2), SESP (Boves
et al., 1994; Bimbot et al., 2000) and Polycost (Hennebert et al., 2000). Further-
more, the development and evaluation parts of Gandalf were used separately in this
chapter as if they were two different corpora. All corpora contain digital telephony
data recorded through the ISDN. Table 9.1 summarizes the main features of the
corpora. The notation used for enrollment sets is that introduced for Gandalf in
Section 6.2.4, i.e. N sM h*t, where N is the number of sessions, M the number of
handsets, and t is the approximate (effective) amount of speech in minutes. The
norm for the amount of speech is Gandalf where 25 five-digit sequences are estim-
ated to one minute of speech (one digit is 0.5 seconds).

Segmentation of speech data into words is made on a per-utterance basis with a
speech recognizer operating in forced alignment mode given the manuscripted text.

9.3 Speaker verification systems

Experiments in this chapter are made with variations of the word-level HMM sys-
tem described in Section 3.3 (p. 40), where variations include a number of different
ways to estimate target model variances. In addition to these variations, systems
used in this chapter all use a fixed background model for score normalization during
verification tests selected for each target during enrollment as in (Melin and Lind-
berg, 1999b) (in Section 3.3 the background model was instead re-selected at each
new verification test). In this chapter, the HMM system described in Section 3.3,
where target model variances are copied from the male or female background model
(variance scaling with scale factor 1.0), and with the fixed selections of background
model, is referred to as the baseline system.

9.3.1 Parameter estimation

In the baseline system, a background model is selected individually for each target
speaker and each word during enrollment as one of two competing gender-dependent
multi-speaker models, with no a priori information on the gender of the enrollee.
When training the target model, the best matching multi-speaker model is copied
as a seed for the target model.

Target model means and mixture weights are always estimated from enrollment
data with the ordinary EM equations while transition probabilities are kept con-
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Table 9.1: Summary of main features of the three corpora and their protocols used in variance estimation experiments.
Number of speakers are given as #male/#female.

Test corpus Gandalf Polycosta SESP
Set dev-set eval-set

language Swedish English Dutch
Task native speakers 100% 15% 100%

enrollment 1s1h*1.0 2s1h*0.2 4s2h*0.9b

password 2 x 4 digits 10 digits 14 digits
clients 22 / 18 24 / 18 61 / 49 21 / 20

Test impostors 23 / 18 58 / 32 61 / 49 21 / 20
data total number of true-speaker tests 927 886 664 1658

impostor tests (same-sex) 790 1926 824 763
corpus SpeechDat Polycost Polyphone

Background speakers 399 / 561 11 / 11 24 / 24
data total time (approx.) 5 h 0.5 h 0.3 h

examples per digit and speaker 4 19 5

aPolycost test was baseline experiment 2, version 2.0, as defined in (Nordström et al., 1998).
bThis enrollment set is referred to as G in previous literature (Bimbot et al., 2000). The number of handsets is an estimate.
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stant. Target model variances are estimated with one of two alternative methods.
To define those methods we denote as σ

2
wjk the variance vector of target model w,

state j and mixture component k; as s
2
wjk the corresponding variance vector of the

seed model or some calibration data; and as α or γ a scalar, system-global scale
factor. In the first method, referred to as scaled variances, target model variances
are inferred directly from the seed variances (9.1), and no training on enrollment
data is involved. The second method is variance flooring where variances are trained
from enrollment data with a constraint on the minimum variance as given by (9.2),
which is applied after every iteration of the (modified) EM algorithm. Note that
with γ = 0 this method converges to the original EM algorithm.

σ
2
wjk = α · s2

wjk (9.1)

σ
2
wjk ≥ γ · s2

wjk (9.2)

9.3.2 Tied variances

To reduce the number of parameters to train, the variances of a set of state distri-
butions can be tied to a single vector. We use a letter-pair ϑv = a/b to indicate the
“level” of tying, where a indicates tying in the target model and b in the background
model. Letters a and b can take symbols in an ordered alphabet Λ = {X, S,M},
where X indicates one variance vector per mixture component (no tying), S one
vector per state, and M one vector per model. With ϑv = S/S, equations (9.1) and
(9.2) are still valid if we remove index k. If ϑv = S/X, on the other hand, we need
to compute a state variance from mixture component variances in the background
model. We try a simple heuristic approach by estimating a state variance through
a linear combination of mixture component variances. Eqs. (9.3) and (9.4) are then
our modifications of (9.1) and (9.2) for the case ϑv = S/X, where ck is the mixture
weight for component k.

σ
2
wj = α ·

∑

k

cks
2
wjk (9.3)

σ
2
wj ≥ γ ·

∑

k

cks
2
wjk (9.4)

With variances tied across entire target HMMs (ϑv = M/X), the basis vector s
2
w

for variance flooring in model w is computed directly from the background speech
data used to train the corresponding background HMM. Equations (9.1) and (9.2)
are then used with s

2
w in place of s

2
wjk.

9.3.3 Tied variance floors

To summarize information that was already given above, basis vectors for variance
flooring are derived in one of the three following ways:
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• model-dependent floor: the basis-vector for word model w is the variance of
all feature vectors within background data segments identified as the corres-
ponding word, from speakers of the same gender as the automatically detected
gender of the enrollee

• state-dependent floor: the basis-vector for a state j in word model w is com-
puted as a linear combination of variance parameters of the Gaussian mixture
in state j in a background model

• mixture component-dependent floor: the basis-vector for a mixture compon-
ent k in state j of model w is the variance of mixture-component k in the
corresponding state of a background model.

The “resolution” of a variance floor introduced above can be described in the
same framework as in the previous section if the variance floor vector is viewed as
a tied vector. We can then define another letter-pair ϑf to denote the tying level
of the variance floor. The variable ϑf takes values from the same alphabet Λ.

With respect to the resolution of variance tying and variance flooring, results
will be presented in this chapter for two series of experiments. In the first, variances
are not tied (ϑv = X/X) while variance floors are tied at the model or state level. In
the second series, variance floors are tied at the same level as variances themselves
(ϑf = ϑv).

9.3.4 Feature extraction

To check if results for the MFCC feature vectors used in the baseline system are
valid also with another type of feature vector, MFCCs are replaced with LPCCs in
one experiment. Parameters from a 16-pole linear prediction filter are computed
with the autocorrelation method and are transformed to 12-element cepstrum. The
energy term is the raw log-energy within each frame of samples, normalized within
each utterance to have constant maximum amplitude for every utterance.

9.4 Results

Results in terms of equal-error-rate (EER) based on same-sex impostor attempts
and a speaker-independent a posteriori threshold for test cases presented below will
be presented in two ways. First, EER is given as a function of scale factor γ or α
(Figures 9.1–9.3). In all figures results for the variance scaling case with α = 1 are
included as a baseline for comparison. Second, results for particular choices of scale
factor are given in Table 9.2. In the Table, we then treat the Gandalf development
set as our development corpus and determine an optimal a priori scaling factor
γ̂ (or α̂) for each system setup from this data. We treat the other three data
sets as our evaluation corpora and compare the average error rates achieved with
a priori scale factors on the three evaluation sets to the corresponding results with



9.4. Results 181

Table 9.2: Average EER for a) variance flooring and b) variance scaling. Baseline
is target-independent scaled variances with α = 1. For the fourth column, the scale
factor was chosen a posteriori for each individual data set. For the last column, a
single scale factor was chosen based on the Gandalf development set and used as
an a priori factor with the other data sets. All averages are taken over the three
other data sets (Gandalf evaluation, SESP and Polycost).

a) flooring
tying level flooring level baseline a posteriori γ a priori γ̂

X/X M/X 4.22% 5.12% 5.14% (γ̂ = 0.6)
X/X S/X 4.22% 4.13% 4.52% (γ̂ = 0.8)
X/X X/X 4.22% 3.94% 3.95% (γ̂ = 1.1)
S/X S/X 8.11% 3.97% 4.53% (γ̂ = 0.9)
S/S S/S 4.01% 3.95% 4.00% (γ̂ = 1.0)

b) scaling
tying level flooring level baseline a posteriori α a priori α̂

X/X - 4.22% 3.96% 4.44% (α̂ = 0.8)

a posteriori optimal scale factors for each individual evaluation corpus, and with
baseline.

Figures 9.1a–c show the error rate as a function of γ with no variance tying
and for three cases of variance flooring in target models: model, state and mixture
component-dependent variance floors (ϑf : M/X, S/X and X/X). They show that
the higher resolution in flooring, the less critical is the choice of scaling factor, since
the minima in those curves are much wider and the position of the minima are closer
to each other than for low resolution flooring. Considering results in Table 9.2, there
is a clear trend that higher resolution in variance flooring is better than lower, and
only for the mixture component-dependent floors is the average error-rate with an
a priori scale factor lower than with target-independent variances.

Figures 9.1c–e show the error rate as a function of γ for variance flooring and
three cases of variance tying, ϑv : X/X, S/S and S/X (X/X represents no tying at
all). In these cases, variance floor vectors are tied at the same level as variance
vectors themselves (ϑv = ϑf ), i.e. the variance floor resolution is as high as possible
given the level of variance tying.

Since the variance flooring method is applied to avoid over-training of variances
on sparse training data, it can be expected that for a given recognition task and
corpus, the need for flooring would systematically decrease with increased size of
the enrollment set. The more training data the less should variances need to be
floored. Hence, we expected the optimal scale factor in variance flooring to decrease
with larger enrollment sets. Figure 9.2 shows a comparison of EER as a function
of scaling factor with enrollment sizes from 0.3 to 1 minutes (3 to 12 training ex-
amples per digit). Graphs are included for mixture component and state dependent
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a) variance flooring, ϑv = X/X,
ϑf = M/X (no variance tying,
model-dependent variance floor):

b) variance flooring, ϑv = X/X,
ϑf = S/X (no variance tying,
state-dependent variance floor):
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c) variance flooring, ϑv = ϑf = X/X
(no variance tying):

d) variance flooring, ϑv = ϑf = S/S
(tying within states of target and
background model):
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e) variance flooring, ϑv = ϑf = S/X
(tying with states of target model only):

f) variance scaling, ϑv = X/X (no
variance tying):
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Figure 9.1: Same-sex EER as a function of the variance flooring factor γ (a–e)
or the variance scaling factor α (f) for the four data sets and for three levels of
variance tying (ϑv): variance flooring a–c) X/X, d) S/S, e) S/X, and f) variance
scaling X/X. Charts a–c differ in how the variance floor vector is tied in the
target model: a) within model b) within state c) no tying of variance vector. In
charts a–e the baseline case with target-independent scaled variances, α = 1 and
the corresponding variance tying configuration is included at the left (’BL’). DET
curves and score distribution plots for (b,c,f) are included in Appendix E.
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a) Gandalf, dev-set, ϑv = X/X,
ϑf = X/X (no variance tying, mixture
component-dependent variance floor):

b) Gandalf, eval-set, ϑv = X/X,
ϑf = X/X (no variance tying, mixture
component-dependent variance floor):
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c) Gandalf, dev-set, ϑv = X/X,
ϑf = S/X (no variance tying,
state-dependent variance floor):

d) Gandalf, eval-set, ϑv = X/X,
ϑf = S/X (no variance tying,
state-dependent variance floor):
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Figure 9.2: Comparison between different enrollment set sizes on the Gandalf
development and evaluation sets. Variance floors are either not tied (a,b) or tied at
the state level in target models. ’BL’-points show results for variance scaling with
α = 1.0. Variances parameters themselves are not tied.

variance floors on the development and evaluation parts of Gandalf, respectively.
The expected trend is found in Figure 9.2c but not in the other three graphs.

One could further expect that the improvement of variance flooring relative to
target-independent variances would be higher with larger enrollment sets than with
smaller ones. There is no evidence for this in the figure.

We also compared the MFCC-based features used so far, with LPCC-based
features. Figure 9.3 shows error-rates for state-dependent floors on the four data
sets. The locations of minima are roughly the same for the two feature types on
the respective databases suggesting that a scaling factor optimized for one feature
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a) Gandalf, dev-set: b) Gandalf, eval-set:
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c) Polycost: d) SESP:
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Figure 9.3: Comparison between EER with MFCC-based and LPCC-based
features on the four corpora. Each curve contains results with fixed, target-
independent variances (BL) and with variance flooring with state-dependent floors.

type is reusable for another. With LPCC features, like with MFCC features, the
smallest achieved EERs are comparable to those produced by the baseline system,
with target-independent variances.

The purpose of tying variances across a set of mixture components is to reduce
the number of variance parameters so the remaining parameters can be robustly
estimated from enrollment data. We therefore expected the relative improvement
with variance flooring over baseline to be smaller with tied variances than with non-
tied variances. This is also the case in Table 9.2 for ϑv = S/S (4.01% → 3.95%)
relative to X/X (4.22% → 3.94%). However, in terms of absolute EERs, differences
between S/S and X/X are small.

The motivation for ϑv = S/X is to allow for a high modeling accuracy in the
background model for which there is usually much data available, while having a
more coarse but robust model for the target speaker for which there are usually little
available data. The poor performance of scaled variances in Figure 9.1e indicates
that the computation of state variances from the background model variances in
Eq. (9.3) is not good for predicting the state variances of the target model. An
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alternative approach would be to use a multi-speaker model with tied variances in
parallel to the one with non-tied variances, and to take the seed variances (s2

wj)
from the former while using the latter for score normalization.

There is a stronger correlation between error curves in Figures 9.1c–e for the
two Gandalf sets than between those and the corresponding SESP and Polycost
curves. This is reasonable since the choice of a good scaling factor for the various
methods may depend on relationships between training data for background models
and data for client enrollment and test; and since those are different for the corpora
we used. It is therefore likely that better predictions could have been made from
development sets especially designed for the SESP and Polycost sets respectively.
Table 9.2 includes results for an a posteriori, corpus-dependent choice of scaling
factor that give a hint on what results could be achieved with such development
sets. The table shows that results with a priori and a posteriori choices of γ are
very similar in the X/X and S/S cases.

Figure 9.1f shows error rate as a function of scaling factor α for variance scaling
and ϑv = X/X. Curves have a similarly flat shape as the corresponding curves in
Figure 9.1c. In both figures, the average EER over all curves have a minimum at
a scale factor around 1.1. An optimal value greater than 1.0 is unexpected since
it would mean that all target model variances are larger than the corresponding
variances in the background model. However, because of the flat shape of the
curves, our estimate of the best scale factor clearly has a large variance.

9.5 Discussion

In search of some insight into what effect variance flooring and scaling have on the
ASV system, we include in Appendix E graphical presentations of score distribu-
tions produced with a range of scale factors. Score distributions are included for all
four data sets used in this chapter, with three variance estimation methods and a
scale factor range 0.40–1.40 at 0.20 intervals. The methods are state-dependent vari-
ance floors (ϑf = S/X), mixture component-dependent variance floors (ϑf = X/X)
and variance scaling. In all cases, variances are not tied (ϑv = X/X).

Score distributions are illustrated by three types of graphical methods: DET
plots, normal quantile plots and score histograms. Both the actual score distribu-
tions and normal distributions defined by estimates of the mean and variance of
the respective score distribution are shown. The normal distribution serve both
as a reference for the shape of score distributions, and as a (hypothesized) robust
estimate of the underlying “true” score distribution (cf. Section 7.2, p. 126).

A trend observed from normal quantile plots and score histograms is that the
left tail of true-speaker distributions is shortened with a raised variance floor or
scaled variance. This is manifested in the normal quantile plots as the lower left
end of the plot bending upwards, and in the score histograms as the tail being drawn
closer towards the center of the distribution. Since the integral of the left tail in
a true-speaker distribution up to a threshold value correspond to the false reject
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error rate of a system, the observed shortening of the tail should correspond to a
relative decrease in false reject rate. This trend is accompanied by a lengthening of
the right tail of the impostor score distribution, corresponding to a relative increase
in false accept rate.

The trends referred to in the previous paragraph can be generalized to say that
a class-dependent score distribution is changed with increased variance floor, or
scaled variance, such that the left tail is shortened and the right tail is lengthened –
distributions are skewed to the left. “Class” here refers to true-speaker or impostor
test sets.

To understand the performance of the ASV system both the true-speaker and
impostor score distributions must be taken into account, so we turn our attention
to the DET plots in Appendix E.

As a basis for discussing the effect of variance flooring and scaling on DET
curves, we will establish some basic relationships between the properties of score
distributions and the resulting DET curves.

First, recall that the coordinate system used in DET plots is designed to draw
pairs of Gaussian score distributions as straight lines (Martin et al., 1997).

Second, as shown by Auckenthaler et al. (2000), an increased mean difference
between impostor and true-speaker distribution results in a shift of the DET curve
towards the origin, while an increase in true-speaker score variance results in a
counter-clockwise rotation of the DET curve.

Third, consider non-normal score distributions. As an example of DET curves
for non-normal true-speaker score distributions, Figure 9.4 shows DET curves for
four types of true-speaker score distributions (on the right), together with plots
of the pdfs themselves (on the left). All four true-speaker score distributions have
zero mean and a variance equal to 60. A single normal impostor distribution with
identical variance and a shifted mean (−25) is shared by all four DET curves.
The solid blue DET curve (b) shows a normal true-speaker score distribution as a
straight line, while DET curves (a) and (c) show asymmetric distributions. (a) is
a χ2-distribution flipped horizontally about its own mean. It is skewed to the right
with a long left tail and a short right tail. This distribution results in a concave-
shaped (̂ ) DET curve. (c) is the (non-flipped) χ2-distribution that is skewed to
the left with a short left tail and a long right tail and appears as a convex-shaped (
_ ) DET curve. The fourth distribution (d) is a Student’s t-distribution with five
degrees of freedom. It is symmetric like the normal but has longer tails and a more
narrow “hill”. It appears in the DET plot as a concave-shaped curve.

Now we are ready to discuss the effect of variance flooring and scaling on DET
curves.

DET curves drawn from our normal approximations of score distributions in the
Appendix are mostly parallel within each plot, indicating that the score distribution
variance does not change much with the scale factor value in variance flooring or
scaling. Their distance relative to the origin do change, however, indicating that
the separation between impostor and true-speaker score mean changes. The latter
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Figure 9.4: Four examples of simulated true-speaker score distributions and the
corresponding DET curves. a) χ2-distribution flipped horizontally about its own
mean, b) normal distribution, c) χ2-distribution, d) scaled Student’s t-distribution
with five degrees of freedom. All true-speaker distributions have the same mean
and the same variance.

change is more pronounced with state-dependent variance floors than with mixture
component-dependent floors and with variance scaling.

Looking at deviations from the Gaussian shape of score distribution through
DET curve bending, no clear pattern emerges that is common to all data sets. On
the Gandalf evaluation data and Polycost data, DET curves are concave (pp. 297
and 313). This together with score histograms and quantile plots indicate long left
tails on the true-speaker score distributions. For the Gandalf evaluation data, this
result is mainly due to a single target speaker, from which most of the score points
in these tails originate from. The ASV system obviously has performed badly for
this target, and none of the variance flooring or scaling techniques were able to
remedy this.

On Gandalf development data (p. 289) and SESP data (p. 305), there is a
tendency for an increased scale factor to rotate the DET curve clock-wise, resulting
in larger differences between DET curves for different scale factors at the high-left
and low-right regions of the DET plots than in the middle region around the EER.
In most cases DET curves are straight, except for a few examples of curve bends
that can probably be explained by random variations due to the limited number of
score data points. The rotation is found in the direct DET plots, but usually not in
DET plots based on a normal approximation of score distributions, so the rotation
seems to be due to some other effect than changed variances. With the observed
left-skewness of class-dependent score distributions observed on quantile plots and
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Figure 9.5: Examples of simulated true-speaker and impostor score distributions
and corresponding DET curves. b) normal true-speaker and impostor distributions,
c) χ2 true-speaker distribution and normal impostor distribution, e) χ2 true-speaker
and impostor distributions. All distributions have the same variance and each class
(true-speaker and impostor) of distribution have the same mean.

score histograms in mind, we therefore generated synthetic score data from skew
true-speaker and impostor score distributions. The result is shown in Figure 9.5 as
DET curve (e). In the same plot are included the curves for normal true-speaker
and impostor distributions (b) and for normal impostor distribution with a skew
true-speaker distribution (c) from Figure 9.4. We see that the result of skewing both
distributions to the left, as in the example, is a clock-wise rotation of the DET curve
together with a slight convex bending of the curve. Hence, the distribution skewness
at increased scale factor values observed on the pdfs themselves is consistent with
a clock-wise rotation of the DET curve seen in our DET plots.

While the pattern of rotation of DET curves was not seen for Gandalf evaluation
data, as noted above, it can be noted that the change in DET curves in the upper
left region of DET plots could be the result of an “underlying” rotation, but that the
(lower) right part of the curves have been “pinned” by a bad performance of the ASV
system for a few target speakers. Hence, observations on Gandalf evaluation data
does not necessarily contradict the discussion in the previous paragraph. Results
on Polycost data still fall outside of the DET curve rotation pattern.

To summarize observations on DET curves in Appendix E, the primary effect of
variance flooring and scaling in terms of changes to score distributions is a transla-
tion of DET curves relative to the origin, such that there is often a minimum error
rate for each operating point criterion for some scale factor. A secondary effect is a
clock-wise rotation of curves with increased scale factors. We hypothesize the latter
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effect to be due to an increased skewness of true-speaker and impostor distributions
to the left with shortened left pdf tails and lengthened right tails.

These results support the conclusions drawn from EER figures in this chapter
and suggests that the effect of variance flooring and scaling is larger at operating
points with high or low ratios between false reject and false accept rates than around
the EER operating point.

9.6 Conclusions

In this chapter we compared three modifications to the EM algorithm for HMM
training on sparse data in the context of text-dependent speaker verification.

The first approach used target-independent variances. Variances were copied
from a gender-dependent, multi-speaker background model and were kept fixed
while the EM-algorithm was applied to means and mixture weights. This approach
was also generalized to variance scaling, where the target model variance was set
equal to a constant scale factor times the corresponding background model variance.
The scaling aspect brought no advantage in terms of optimizing EER — the error
rate did not change much with small changes in the scale factor around 1.0.

In the second approach, variances were trained but they were floored after each
iteration of EM. Three variants of the variance flooring method with different resol-
ution were tried and it was found that the one with the highest resolution performed
best. In this approach, the floor for the variance vector of a given Gaussian mixture
component is proportional to the corresponding variance vector in the background
model. The optimal scaling factor for this kind of variance flooring was found to
be around 1, which means that all variances were about the same value as the cor-
responding target-independent variances, or larger. The average EER over three
evaluation data sets with an a priori scale factor determined on a development
data set was smaller than with target-independent variances. However, the differ-
ence was very small, and the approach with target-independent variances is much
simpler.

The third approach was to reduce the number of variance parameters through
variance tying. One important advantage brought by tied variances is reduced
storage requirements. With variances tied across eight mixture components within
each state, 30% of the size is saved. Another expected advantage is that fewer
parameters can be more robustly estimated, but no positive effect was observed
from this, and recognition accuracy with and without tying was comparable.

These results consolidate similar observations made in (Newman et al., 1996)
and at NIST evaluations in text-independent ASV (NIST, 1998; Reynolds et al.,
2000) that target models trained as adaptation of multi-speaker models with keep-
ing covariance matrices constant brings a significant advantage, especially in the
case of very scarce enrollment data.

One important approach not tested in this chapter is to train variances with
a MAP method (Lee and Gauvain, 1993, 1996). MAP adaptation provides data-
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dependent weighting between a priori information (e.g. the background model vari-
ance) and observed data (sample variance in enrollment data), such that enrollment
data get high weighting where available, while a priori information is used other-
wise. This should allow for training variances robustly without variance flooring.
Experiments with MAP adaptation of variances in the context of GMMs for ASV
have shown some success compared to using target-independent variances. Early
GMM experiments on Gandalf data showed an advantage for adapting variances
(Neiberg, 2001), while later experiments (with an improved system) targeted at op-
timizing the system for use in the PER application showed little difference compared
to using target-independent variances. (Reynolds et al., 2000) found it better to
update only mean parameters and leave variances unadapted on Switchboard data.



Chapter 10

PER experiments

10.1 Introduction

This chapter reports on findings from an evaluation of the on-site and telephone
versions of the PER system described in Chapter 5 (p. 79). The evaluation was
conducted with speech data collected through actual use of the two system versions.
The data collection and data themselves were described in Section 6.3 (p. 101).

All our development of the speaker verification component of the PER system
before the collection of evaluation data was made using general purpose telephone
corpora Gandalf (Melin, 1996), Polycost (Hennebert et al., 2000), SpeechDat (El-
enius, 2000) and Switchboard, since the Department’s research was directed on
telephone applications of speaker verification (Lindberg and Melin, 1997; Melin,
1998; Melin et al., 1998; Nordström et al., 1998; Melin and Lindberg, 1999b; Bimbot
et al., 1999, 2000; Neiberg, 2001). Hence, the system used to collect live evaluation
data was not optimized for the particular application it was used in. However,
in parallel to collecting evaluation data, separate, application-specific development
data were collected allowing for off-line simulation experiments with an optimized
system. In this chapter, results are presented both for the initial, general-purpose
system and the optimized, application-specific system.

Besides the variants of our own research system, a commercial speaker verifica-
tion system has also been tested on the collected corpus. Results from these tests
serve as calibration of the data and the recognition tasks.

Results from practical use of ASV technology for person authentication in on-
site applications have been reported in several publications. Test sites include Texas
Instruments corporate headquarters in Dallas (Doddington, 1985), Siemens in Mu-
nich (Feix and DeGeorge, 1985) , LIMSI in Paris (Mariani, 1992), AT&T Bell Labs
in cooperation with a large bank (Setlur and Jacobs, 1995), Fraunhofer Institute
in Erlangen (Wagner and Dieckmann, 1995), University of Frankfurt (Schalk et al.,
2001) and Panasonic Speech Technology Laboratory in Santa Barbara (Morin and
Junqua, 2003). At AT&T Bell Labs the application was an automated teller ma-
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chine (ATM), while at all other sites it was a voice-actuated lock that secured access
to a physical room or building.

At Texas Instruments, a template based system was installed in the mid 1970s
(Rosenberg, 1976; Doddington, 1985). It was aurally text prompted using strings
of four words like “Proud Ben served hard”, and used a sequential decision strategy
where claimants were asked to speak new word sequences until a certain level of
confidence was achieved. False reject and false accept rates (casual impostors) of
below 1% are reported with on average 1.6 utterances required by the sequential
decision strategy. Users were required to step into a booth to use the system.

At LIMSI, a text-dependent, template based system was first publicly demon-
strated in 1985. It was installed in a voice-actuated door lock application at the lab
in 1987 and was used by about 100 users (Mariani, 1992). A second generation sys-
tem was installed in 1990 and a new generation, HMM-based system was developed
in 1997 which has so far only been used for data collection (Lamel, 2005).

At Panasonic Speech Technology Laboratory in Santa Barbara a biometric ter-
minal has been in service since April 2002 by the building’s main entrance door
(Morin and Junqua, 2003). It is a multi-modal access control system where any of
the three modes speech, fingerprint or keypad (10-digit account number) can be used
individually, or in combination for uncertainty recovery. The speech sub-system is
template based and operates on user-selected pass-phrases in an open-microphone
mode. Users can speak the pass-phrase at any time from within typically 0.3–
3 meters from the terminal. The system has been in use by about 35 enrolled users
and was reported to have about 8% FRR and 0.1% FAR (2.8% EER) for the speech
mode only. Some of the initial rejections were recovered via another mode reducing
the FRR to about 5%. Other results using data collected by this system have been
reported in (Bonastre et al., 2003a).

AT&T conducted a six month field trial with an ATM application where a text-
prompted, HMM-based speaker verification system was used in addition to regular
PIN codes typed on a keyboard (Setlur and Jacobs, 1995). Claimants were asked
to repeat random 4-digit phrases into a handset connected to the ATM.

10.2 Development tests

This section describes what data was used for developing the PER system and how
it was used.

Table 10.1 shows results from the development experiment to determine em-
pirical values for weights ωξ used in combining scores from the HMM and GMM
subsystems (Eq. 3.23, p. 47).

The value of the decision threshold θ (Eq. 3.25) was also determined empiric-
ally as the same-sex EER threshold with the combined ASV system on the same
development test set.
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Table 10.1: Equal error rate εξ, standard deviation σξ of score distribution and
combination weights ωξ for the HMM and GMM subsystems as determined from a
development experiment on Gandalf data.

subsystem (ξ) EER (εξ) stdev (σξ) weight (ωξ)
HMM (H) 7.51% 4.017 0.142
GMM (G) 6.11% 0.6747 0.858

10.2.1 Development data

Most experiments behind development decisions in the design of the HMM sub-
system were done on various partitions of the Gandalf (Melin, 1996) and Polycost
(Hennebert et al., 2000) corpora, e.g. (Melin and Lindberg, 1999b) and (Nordström
et al., 1998). With particular development for the PER application in mind, a
PER-like development test configuration on Gandalf was created. It was used to
optimize the configuration of the GMM subsystem and to determine the a priori
score fusion weights and the decision threshold used during data collection.

The PER-like development test configuration uses one of two fixed sentences
in place of names. Half of the target speakers were assigned one sentence and the
other half the other sentence. Enrollment was performed with 10 repetitions of the
sentence and 10 five-digit sequences taken from two recording sessions from differ-
ent handsets (enrollment set d5+fs0x, cf. Table 6.8), while each test was performed
with a single repetition of the same sentence and an aurally prompted string of four
digits (test set 1fs+1r4-fs0x, cf. Table 6.9). All impostor tests used in development
experiments were same-sex attempts. True-speaker test sessions were recorded from
up to 10 different handsets per target, but at least half of the sessions came from
one of the target’s enrollment handsets. Impostor test sessions were generally not
recorded from one of the target’s enrollment handsets. Even though this develop-
ment test configuration was designed to simulate the PER application as well as
possible given the constraints of the already existing Gandalf corpus, it differs in
several aspects from real PER data as summarized in Table 10.2 for the telephone
version of PER. The on-site version of PER naturally adds the differences already
identified between the two PER versions (Table 5.1).

Background models were trained on subsets of files from 960 speakers in the
Swedish landline FDB5000 SpeechDat corpus (Elenius, 2000). Background models
in the HMM subsystem were trained on a digits subset composed by five files per
speaker that may contain pronunciations of isolated or connected digits (corpus
and item identifiers with parentheses): a random 10-digit sequence (B1), a 10 or 7
digit prompt sheet number (C1), an 8-12 digit phone number (C2), a 16-digit credit
card number (C3), and a 6-digit PIN-code (C4). Background models in the GMM
subsystem were trained on a mixed subset composed by six files per speaker: a
random 10-digit sequence (B1), three phonetically rich sentences (S1-S3), and two
phonetically rich words (W1, W2). None of the 960 speakers occur in the Gandalf or
PER corpora.
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Table 10.2: Main differences between the PER-like development set on Gandalf
and telephone subset of PER evaluation data.

Aspect Gandalf development PER evaluation

Elicitation recording use of ASV system

Enrollment data two session, two
different handsets

single session

Test data (per target) multiple handsets;
cross-handset impostors

single handset;
same-handset
impostors

Impostors random
pseudo-impostors

dedicated impostors

Vocabulary sentence+digits proper name+digits

Passphrase variation 1 sentence/20 targets 1 name/1 target

Acoustic models for speech recognition were trained on 4016 speakers (gender-
balanced) in the referred SpeechDat corpus, including all files from each speaker
with the exception of files transcribed with truncated signal, mispronunciations,
unintelligible speech or phonetic letter pronunciations (Lindberg et al., 2000). The
number of used speakers is less than 5000 because 500 speakers were withheld for
testing, 37 more because they were included in the Gandalf corpus, and 10% of
the remaining speakers were set aside for development testing. Hence, there is no
speaker overlap between this data and the Gandalf data. There is also no speaker
overlap between used SpeechDat data and PER data. The total duration of speech
segments in this training data is approximately 120 hours.

Six of the subjects (M1003, M1005, M1015, 1032, F1025 and F1031) in the PER
test group participating as clients (five in group E and one (F1031) in group L)
and impostors are also included in the development set of the Gandalf corpus,
together with three subjects (M1002, M1166 and F1009) participating as impostors
only in the PER collection (one with gate-only data, the other two with gate and
telephone data). The unfortunate overlap between subjects in PER evaluation data
with respect to Gandalf development data is thus 11% of the 54 clients and 9% of
the 98 impostors in the PER gate-only test set and 19% of the 27 clients and 16%
of the 51 impostors in the condition-parallel test sets. More details about subjects
participating both in Gandalf and PER can be found in Section 6.4.
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Table 10.3: Statistics on the average number of attempts per enrollment item
and gross duration (minutes :seconds) of enrollment sessions, based on complete
enrollment sessions included in enrollment sets E2a_c.

Condition, c #Sessions Attempts Duration
Min Avg Max Min Avg Max

gate/hall 54 1.1 1.9 4.5 1:42 3:41 8:44
landline/office 54 1.0 1.1 2.1 1:35 2:18 4:32
mobile/office 29 1.0 1.2 1.7 1:49 2:26 3:48
mobile/hall 29 1.0 1.4 3.9 2:02 3:08 8:28

10.3 Field test results

10.3.1 Enrollment

During the data collection period, 56 subjects started enrollment. 54 of them suc-
ceeded to complete the enrollment sessions they were asked to do (enrollment in
two conditions for client group L and four conditions for client group E). Table 10.3
shows statistics on how many attempts per item they made and the total duration
of the sessions. Durations are measured from session start to completed enrollment,
including time for system prompts, system delays, etc. For all telephone enrollment
sessions this includes the entry of a 7-digit enrollment code by voice for authoriza-
tion, and for sessions from a mobile phone it also includes a sub-dialog to determine
if the call was made from the office or the hall. Attempts statistics are based on
the average number of attempts per enrollment item and session, e.g. 1.1 in the
Min-column for the gate/hall condition means the session with the least number
of attempts had 11 attempts total since there were ten items. Attempts are coun-
ted from the system point of view, disregarding whether users actually made an
attempt to speak an enrollment item or not.

In the longer enrollment sessions, users typically experienced problems with a
few of the enrollment items, which they had to repeat many times before the speech
recognizer was able to recognize their utterance correctly, or they opted to skip the
item. The skip-possibility was introduced as described in Section 5.5 (p. 84) as an
attempt to limit user frustration in these cases and to allow the enrollment process
to be completed despite such problems. Within the enrollment sessions that were
eventually completed, eight subjects (15%) skipped one item and one subject (2%)
skipped two items in the gate/hall condition, while a single subject (2%) skipped
one item in the landline/office condition. In the two mobile conditions, no items
were skipped.

39 of the 54 subjects who completed their requested enrollment sessions (72%)
completed all their enrollment session at the first attempt, while the remaining
15 (28%) had one or more failed or aborted enrollment sessions before the com-
plete ones. In failed sessions for nine of the latter, the actual enrollment procedure
was never started because either subjects had not enabled enrollment through the
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intranet or the enrollment window had expired (four cases); their name was incor-
rectly recognized (seven cases); or they did not have the enrollment code available
(two cases). Six subjects terminated the enrollment procedure of one or more en-
rollment sessions pre-maturely. Four of the six terminated one session each (three
in the gate/hall and one in the mobile/hall condition), probably after feeling dis-
turbed by other people passing through the gate or otherwise making noise in the
hall. One of the six, it appeared, had removed his last name through the web
interface so the ASR grammar contained only his first name while he was still
speaking his full name. After correcting this, his enrollment sessions were immedi-
ately successful. The last of the six had severe problems with getting the speech
recognizer to recognize his utterances. He terminated three enrollment sessions in
the gate/hall condition and one in the landline/office condition before succeeding
with enrollment. The source to the system’s problems with this subject appears to
have been a combination of the subject being a non-native speaker of Swedish and
him speaking very loudly to the system.

The remaining two of the 56 subjects (3.6%), one male and one female subject,
failed to complete any enrollment session. The female subject, a non-native speaker
of Swedish, tried to enroll in both the gate/hall condition and the landline/office
condition, with similar results in both cases: The speech recognizer consistently
failed on digit sequences including the digit 7, probably caused by her non-native
pronunciation of this digit (a typical Swedish pronunciation would be � ��� ��% or � ��� � % ).
The male subject terminated his first (and only) enrollment session in the gate/hall
condition after being disturbed by noise from other people passing through the gate
at the time. He suggested to try another time, but never did so.

10.4 Simulation results

Results in this section are from off-line simulations of speech recognition and speaker
verification operations using the PER corpus (with recordings from actual use of
the PER system; cf. Section 6.3). Results are presented in terms of DET curves
and EER.

10.4.1 Baseline system

The original speech recognition and speaker verification components of the PER
system (as described in Chapter 5) used to collect data, without the use of a speech
detector, is designated as the baseline system.

Results for the baseline system in the gate/hall and landline/office conditions
using E2a_c and S2b_c enrollment and test sets for the respective condition, are
shown by the dashed DET curves in Figure 10.1. EERs are 6.4% for gate/hall
and 4.0% for landline/office. Error rates are lower in the telephone case as was
expected since both acoustic models (ASR) and background models (ASV) were
developed on telephone data. However, test sets S2b_G8 and S2b_LO are not
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Figure 10.1: DET curves for baseline and retrained systems in the a) gate/hall
(S2b_G8) and b) landline/office (S2b_LO) conditions. Baseline is with the original
speech recognition and speaker verification components used during data collec-
tion, while in the retrained case both components have been adapted to condition-
dependent data from background speakers. The remaining two plots show results
where only one of the speech recognition or speaker verification components has
been adapted.

directly comparable since they are based on different number of subjects, etc. A
more fair comparison is shown in Figure 10.2 using the condition-parallel test sets
S2b_Q:c. The comparison is more fair because, firstly, every test in a given condi-
tion has a corresponding test in all other conditions (Section 6.3.4.4, p. 113), and
secondly, a name and four digits is used per test in all four conditions, with a digit
in a random position having been omitted from every test in the gate/hall data.
Figure 10.2 confirms the lower error rates for landline/office than for gate/hall,
however with a smaller difference than in Figure 10.1, even though one digit less
per utterance is used in the gate/hall condition.

Figure 10.2 also indicates the operating points corresponding to the a priori
decision threshold determined using the EER point on the Gandalf development
test configuration. The resulting operating points are near the a posteriori EER
point in the telephone conditions, while it is clearly far-off in the gate/hall condition.

10.4.2 Retrained system

Models of the original (baseline) PER system were adapted to PER-specific data
from background speakers to create new, retrained, condition-dependent systems.
These systems are expected to perform better in the PER application than the
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Figure 10.2: A comparison between conditions using the condition-parallel test
sets (S2b_Q:c) and the baseline system. A name plus four digits is used in all
conditions. EERs are 6.4% (MH), 5.8% (MO), 4.3% (LO) and 5.1% (G8). Asterisks
(*) mark the operating points determined by the a priori threshold.

baseline system, but since background data was collected in parallel to evaluation
data, the retrained systems have only been tested using off-line simulations on
recorded data.

Acoustic models in the speech recognition component were not only trained
on the new data, but their structure were also changed in two respects: models
were made gender-dependent and the number of terms in the Gaussian mixture
was reduced from eight to four. The new models were created with the following
procedure. Gender-independent models with four terms per state were created with
the same procedure as the original (eight-term) models. The four-term models
were then cloned into male and female gender-dependent models and background
speaker files were tagged as male or female. Mean vectors of the gender-dependent
models were then adapted to the new data by a gender-independent Maximum
Likelihood Linear Regression (MLLR) transform followed by a single MAP iteration
using HTK (Young et al., 1999). The MLLR transform was made with a single
transformation matrix for both male and female models, while the MAP adaptation
was made with gender-dependent data.

Background models of the speaker verification component (both the HMM and
GMM subsystems) were adapted to new data with three iterations of the EM-
algorithm and the ML criterion, updating means, variances and mixture weights.
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Figure 10.3: A comparison between conditions using the condition-parallel test
sets (S2b_Q:c) and the retrained, condition-dependent systems. A name plus four
digits is used in all conditions. EERs are 5.3% (MH), 4.8% (MO), 3.5% (LO) and
2.6% (G8).

Original models were used as the starting point for the first iteration. The HMM
subsystem was trained on the digits subset of background speaker data, and the
GMM subsystem on the name and digits subset.

The solid lines in the DET plots of Figure 10.1 show results for the retrained
systems where both speech recognition and speaker verification components have
been retrained, while dotted and dash-dotted lines indicate the contribution from
retraining the individual components. The figure shows that adapting the speech
recognition component improves performance considerable in the gate/hall condi-
tion while no effect can be seen in the landline/office condition, while adapting
background models in the speaker verification component reduces error rates in
both conditions. EER for the solid lines in Figure 10.1 is 2.4% for gate/hall and
3.1% for landline/office. This corresponds to a 63 % relative reduction in EER
for gate/hall compared to baseline, and 23% for landline/office. Figure 10.3 shows
DET curves for the condition-parallel test sets and the retrained systems.1 Note
that with the retrained systems, performance is better in the gate/hall condition
than in the landline/office condition.

1See also Figure 7.15 (p. 150) for an alternative comparison using parametric DET curves.
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Figure 10.4: DET curves for the retrained system and its individual subsystems
in a) gate/hall and b) landline/office conditions.

10.4.3 Fusion

Figure 10.4 shows DET curves for the individual HMM and GMM subsystems
along with the combined system, all retrained on PER background speakers. Score
combination weights are the a priori weights computed on Gandalf data. Clients
are enrolled using the full enrollment session (E2a_c) and test sets are the single-
condition test sets S2b_c. The GMM and HMM subsystems exhibit similar error
rates in both the gate/hall and landline/office conditions, but note that the GMM
subsystem uses more speech data than the HMM subsystem since it uses both the
name and the digits. EER in the gate/hall condition is 4.2% and 4.0% respectively
for the GMM and HMM subsystems and 2.4% for the combined system; 5.2% for
both subsystems and 3.1% for the combined system in the landline/office condition.

10.4.4 Enrollment length

All of the above results were produced using target models trained on the full enroll-
ment session represented by enrollment sets E2a_c. This includes 10 repetitions of
name and digits for most targets, and 8 or 9 repetitions for a few targets where one
or two enrollment utterances were skipped (cf. Section 10.3.1, p. 195). Figure 10.5
compares these results to the case with half of the enrollment data, exactly five
repetitions per target, and the retrained systems. Note that background models
were the same in both cases. They were trained on full enrollment sessions from
each background speaker. EER is 2.4% and 5.3% in the gate/hall condition and
3.1% and 8.8% in the landline/office condition, i.e. the EER is more than doubled
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Figure 10.5: Client enrollment using the full enrollment session (E2a_c) and
the first half of it (E1a_c) with the retrained system for the a) gate/hall and b)
telephone/office conditions. Test sets are the single-condition sets S2b_c.

in the former condition with the reduction in enrollment data, and almost tripled
in the latter condition.

10.4.5 Test utterance length

Test utterances collected in the gate/hall condition contain name plus five digits,
while those in telephone conditions contain one digit less. Results for single-
condition test sets are based on those test utterances directly, and thus the gate/hall
condition has a slight advantage over telephone conditions, offered by the use of a
display to prompt passphrases. To focus on speaker verification system perform-
ance in comparison between conditions, results on condition-parallel test sets in
this chapter are produced with one digit removed from every test utterance in the
gate/hall condition (with the exception of Figure 10.8 where all five digits were
used with the commercial system).

Figure 10.6 displays the effect of the test utterance length directly. In the
gate/hall condition, it compares DET curves for the retrained system with a name
and two, three, four or five digits. To produce test utterances with less than five
digits, digits in one or more random positions within each test utterance have been
ignored in the feature vector stream, i.e. delta parameters in feature vectors were
computed from the complete waveform to avoid discontinuities. The EER increases
from 2.4% for the full test utterance to 2.9%, 3.2% and 4.0% when dropping one,
two and three digits, respectively. These results for test utterances with less than
five digits should be interpreted as approximate estimates of error rates for real
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Figure 10.6: DET plots for the retrained system with the gate/hall single-
condition test set S2b_G8 and including the name plus two, three, four or five
digits in each test.

test utterances with the same number of digits, since synthetic short digit string
utterances created by omitting digits from a longer utterance cannot be expected
to be exactly equivalent to corresponding real utterances. Naturally, the prosody of
the synthetic utterances will not be correct, but it may also be that digits in short
strings are pronounced more clearly than longer strings. However, we believe the
influence on presented results is small because the ASV system does not explicitly
model sentence prosody or word context dependency.

10.4.6 Commercial system

Figure 10.7 shows DET curves for the commercial system for the single-condition
test sets S2b_c and the gate/hall and landline/office conditions. Results are presen-
ted with the full and half session enrollment. EERs are 6.8% and 8.4% in the
gate/hall condition and 6.0% and 7.6% in the landline/office condition (24% and
27% relative increase in EER for the two conditions with the reduction in enroll-
ment data). Operating points marked with asterisks in the figure correspond to the
EER-threshold determined from the Gandalf development experiment.

A comparison to Figure 10.5 shows that the commercial system performs better
with less enrollment data relative to the retrained research systems.

Figure 10.8 compares the four conditions with the commercial system with full-
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Figure 10.7: DET plots for the commercial system and client enrollment using the
full enrollment session (E2a_c) and the first half of it (E1a_c) for the a) gate/hall
and b) telephone/office conditions. Test sets are the single-condition sets S2b_c.
Asterisks (*) mark the operating points determined by the a priori threshold. The
speaker adaptation feature is turned off.

session enrollment and condition-parallel test sets. It also includes operating points
determined from the EER point on Gandalf development data. As for the baseline
research system (Figure 10.2), the operating point for the gate/hall condition is
further to the lower right relative to those for the telephone conditions. However,
all four points are shifted to the upper left compared to the same system.

10.4.6.1 Speaker adaptation

The commercial system has a speaker adaptation feature that allows a target model
to be adapted to a test utterance if the verification score is greater than an adapta-
tion threshold. Figure 10.9 shows DET curves for the commercial system on single-
condition test sets (S2b_c) with tests run in a random order, the full enrollment
session (E2a_c), and with the adaptation feature turned on. Since the adaptation
threshold is specified relative to the decision threshold, an ideal decision threshold
for the EER point was determined a posteriori for each condition from a previous
run on the exact same test data with the adaptation feature turned off. This de-
cision threshold was then used together with the default value on the adaptation
threshold. EER with adaptation turned on is 3.2% in the gate/hall condition and
4.0% in the landline/office condition. This is a 53% relative reduction in EER for
gate/hall and 27% for landline/office, compared to not using adaptation.
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Figure 10.8: A comparison between conditions using the commercial system
without speaker adaptation, full enrollment sessions (E2a_c), and the condition-
parallel test sets (S2b_Q:c). A name plus four digits is used in telephone conditions
and name plus five digits in the gate/hall condition. EERs are 8.4% (MH), 8.7%
(MO), 6.4% (LO) and 5.3% (G8). Asterisks (*) mark the operating points determ-
ined by the a priori threshold.

With speaker adaptation the order of tests is relevant (e.g. Fredouille et al.,
2000). In Figure 10.9 two cases were tested: random where all tests were run in
a random order, and optimistic where all true-speaker tests were run before any
impostor test. The latter case is an idealized situation for a speaker verification
system, and was meant to estimate a lower bound on error rates with speaker
adaptation. However, it turned out in Figure 10.9b that error rates are lower with
the random order test than with the optimistic.

Table 10.4 shows how many of true-speaker and impostor tests resulted in a
model adaptation (for each test the name and digits file were concatenated to form
a single file per test).

10.5 Discussion

10.5.1 Statistical significance

Table 10.5 summarizes EERs found in this chapter in the gate/hall and land-
line/office single-condition test sets. Table 10.6 show corresponding results for
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Table 10.4: Proportion of true-speaker and impostor tests that resulted in model
adaptation and the corresponding false reject (FRR) and false accept rates (FAR)
in the experiments presented in Figure 10.9.

Cond. Adapt Test order True-speaker
tests

Impostor
tests

FRR FAR

G8 off - - - 6.7% 6.8%
on random 97.4% 3.3% 0.75% 12.8%
on optimistic 98.1% 4.2% 0.39% 14.9%

LO off - - - 6.0% 6.2%
on random 96.7% 4.5% 0.57% 13.8%
on optimistic 96.2% 6.0% 1.55% 16.4%
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Figure 10.9: DET plots for the commercial system with and without its speaker
adaptation feature turned on for the a) gate/hall and b) telephone/office conditions.
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condition-parallel test sets. However, to allow the computation of post-trial con-
fidence intervals (CI) based on Section 2.5.2, where we only considered false reject
rates, we present EERs as if they were FRRs and compute CIs for the FRR. Basing
a CI on an FRR this way is not statistically sound since EER is based on an a pos-
teriori decision threshold determined after observing all the true-speaker test scores
we are analyzing, plus a series of impostor test scores. The a posteriori threshold
introduces a dependency between observations of decision errors. By treating ob-
servations of EER as observations of FRR we have basically assumed that previous
experiments on development data resulted in a threshold that exactly meets an
EER criterion on evaluation data (this was obviously not the case in most of our
experiments). We claim the method still gives an idea of the uncertainty in our
results.

The tables present 95% post-trial CIs for the “true” overall false reject rate
given an observation of a fraction of errors p̂ = x/N using two different methods.
In both methods, intervals are computed from the binomial distribution as defined
by (2.15). The methods differ in how the value for N in the binomial distribution
(2.14) is determined:

• Method 1: N equals N ′ as determined by Eq. (2.18), i.e. such that the vari-
ance p̂(1− p̂)/N ′ of the fraction of errors predicted by the binomial equals the
variance s2p̂ in the estimate of p̂ estimated from Eq. (2.22). In the computation
of ŝ2p̂, false reject rate pi for target i is simply the fraction of errors observed
for this target (defined as the non-parametric ML method in Eq. (7.1), p. 134;
pi = FRRd(i)). This is the “best practice” approach suggested by Mansfield
and Wayman (2002), but we use the binomial directly to compute intervals,
instead of its normal approximation.

• Method 2: N is fixed for a given test set and equals N ′ computed according
to Eq. (6.1) with ρ = 0.2.

Since the variance estimation step in Method 1 can be viewed as a way to determine
ρ, the resulting values of ρ are included in the tables. After estimating the variance
ŝ2p̂ with (2.22), ρ was computed relative to the adjusted total number of tests N ∗

(defined in Section 6.3.4.6) using (2.20) and (2.19) with N substituted by N∗ and
n substituted by bn̄c∗, i.e. by solving for ρ in

1 + (bn̄c∗ − 1)ρ =
N∗ŝ2p̂
p̂(1 − p̂)

. (10.1)

Figure 10.10 shows the binomial distributions behind the confidence intervals for
the retrained research (combo) system and single-condition test sets. Appendix F
provides corresponding plots for condition-parallel test sets for the retrained combo
system (Table F.3) and for the baseline research system and the commercial system
(Table F.4 and F.5).
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Table 10.5: Summary of observed FRR (%) with 95% confidence intervals com-
puted from the binomial distribution with Methods 1 and 2 to select N . In all
cases, the threshold equals the a posteriori EER (EERd) threshold. Systems above
the dashed line within each method section of the table have been retrained on
PER-specific, condition-dependent background data.

Test set T2b_G8 T2b_LO
ASV system FRR interval ρa FRR interval ρb

<Method 1>

Combo, retrained

- full enrollment 2.4 (1.2–3.6) 0.066 3.1 (0.0–6.1) 0.285

- half enrollment 5.3 (3.5–7.2) 0.076 8.8 (3.8–14.3) 0.267

GMM, retrained

- full enrollment 4.2 (2.4–6.2) 0.101 5.2 (1.8–10.2) 0.259

HMM, retrained

- full enrollment 4.0 (2.4–5.8) 0.093 5.2 (2.1–8.7) 0.141

Combo, baseline

- full enrollment 6.4 (3.8–9.3) 0.156 4.0 (0.8–7.8) 0.240

Commercial system

- full enrollment 6.8 (4.0–9.9) 0.181 6.0 (1.1–11.2) 0.320

- half enrollment 8.4 (5.1–11.9) 0.214 7.6 (1.6–14.3) 0.463

<Method 2> ρ = 0.2 (k = 10.8) ρ = 0.2 (k = 8.8)
Combo, retrained

- full enrollment 2.4 (0.8–4.4) 0.200 3.1 (0.7–6.6) 0.200

- half enrollment 5.3 (2.8–8.4) 0.200 8.8 (4.4–14.0) 0.200

GMM, retrained

- full enrollment 4.2 (2.0–6.8) 0.200 5.2 (1.5–9.5) 0.200

HMM, retrained

- full enrollment 4.0 (1.6–6.4) 0.200 5.2 (1.5–9.5) 0.200

Combo, baseline

- full enrollment 6.4 (3.6–9.7) 0.200 4.0 (0.7–7.4) 0.200

Commercial system

- full enrollment 6.8 (4.0–10.0) 0.200 6.0 (2.2–10.3) 0.200

- half enrollment 8.4 (5.2–12.1) 0.200 7.6 (3.7–12.5) 0.200

aN∗ = 2700 in calculations of ρ (cf. Table 6.12)
bN∗ = 1200 in calculations of ρ (30 targets with bn̄c = 40 true-speaker tests/target)
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Table 10.6: Summary of observed FRR (%) with 95% confidence intervals computed from the binomial distribution
with Methods 1 and 2 to select N . In all cases, the threshold equals the a posteriori EER (EERd) threshold. Systems
above the dashed line within each method section of the table have been retrained on PER-specific, condition-dependent
background data.

Test set T2b_Q:G8a T2b_Q:LO T2b_Q:MO T2b_Q:MH
ASV system FRR interval ρ FRR interval ρ FRR interval ρ FRR interval ρ

<Method 1>

Combo, retrained

- full enrollment 2.6 (0.0–5.5) 0.277 3.5 (0.0–7.4) 0.314 4.8 (1.0–9.4) 0.261 5.3 (2.7–8.0) 0.067

Combo, baseline

- full enrollment 5.1 (2.0–8.2) 0.113 4.3 (1.1–8.9) 0.280 5.8 (2.3–9.1) 0.130 6.4 (3.6–9.9) 0.096

Commercial system

- full enrollment 5.3b (2.5–8.5) 0.110 6.4 (1.2–12.0)0.306 8.7 (4.2–14.4)0.207 8.4 (3.0–14.1)0.252

<Method 2> ρ = 0.2 (k = 8) ρ = 0.2 (k = 8) ρ = 0.2 (k = 8) ρ = 0.2 (k = 8)
Combo, retrained

- full enrollment 2.6 (0.0–5.0) 0.200 3.5 (0.8–7.5) 0.200 4.8 (1.6–9.1) 0.200 5.3 (1.6–10.0)0.200

Combo, baseline

- full enrollment 5.1 (1.6–9.1) 0.200 4.3 (0.8–8.3) 0.200 5.8 (1.6–9.9) 0.200 6.4 (2.5–10.8)0.200

Commercial system

- full enrollment 5.3c (1.6–9.9) 0.200 6.4 (2.5–10.8)0.200 8.7 (4.1–14.1)0.200 8.4 (4.1–13.3)0.200

ausing name and four digits, where not otherwise specified
busing name and five digits
cusing name and five digits
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Figure 10.10: Binomial distributions used to compute confidence intervals for
the retrained research system, test sets T2b_G8 and T2b_LO and full enrollment
(E2a_c). ρ (rho) for solid lines with diamonds are computed with Method 1, while
the distributions for ρ = 0.20 (dashed lines with circles) correspond to Method 2
with an a posteriori choice of ρ. The normal approximation to each binomial is
shown as a dotted line.

For Method 2, we have chosen2 a constant intra-speaker correlation coefficient
ρ = 0.2 corresponding to values for k between 8 and 11 for the different test
sets. Our prior belief about k was that a constant k = 2 would be a good value.
Compared to values for ρ (and k) resulting from Method 1 based on an estimated
variance, we chose to show intervals for a constant ρ = 0.2 instead, being the average
over all ρ values found with Method 1 within Tables 10.5 and 10.6, respectively.
Thus, the CIs shown for Method 2 in the table are based on an a posteriori choice
of ρ.

The potential usefulness of Method 2 lies in predicting pre-trial CIs rather than
estimating post-trial CIs. We include results from Method 2 here for comparison.
The motivation for a constant ρ in Method 2 is that the “intra-speaker correlation”
should depend mainly on the speakers and not so much on the particular test set
or ASV system under test.

The evaluation strategy of Bolle et al. (2004) (applied to fingerprint data) should
be applied also to ASV data to evaluate post-trial CI estimation methods. With this
strategy, a corpus is randomly divided into two disjunct halves. CIs are estimated
with each method on one half and compared to the “true” error rate estimated on
the other half. The procedure is then repeated a number of times to estimate the
coverage, i.e. the probability that a CI covers the true error rate3.

2this choice is discussed in Section 11.2
3ideally, a 95% confidence interval should have a coverage of 95%.
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Given confidence intervals from Method 1 in Tables 10.5 and 10.6, we can get
an idea of which experimental differences observed in this chapter are statistically
supported, and which are not, by comparing confidence intervals. Well separated,
non-overlapping confidence intervals indicate strong support for the difference, while
intervals that overlap to a great extent indicate no support for a difference. Note
that to make formal conclusions about differences being statistically significant
or not, the results normally require more rigorous analysis. In particular, our
confidence intervals are derived to say something about measurements on one ASV
system compared to some underlying “true” value. Comparing two systems on the
same speech data, or comparing the performance of a single system on different
types of data, requires other types of statistical tests, for example McNemar’s test
(e.g. Siegel, 1956).

Informally comparing4 confidence intervals in the tables, we find for example:

• A positive effect from retraining the (combined) research system on PER-
specific, condition-dependent tuning data is well supported in the gate/hall
condition by results on the single-condition test set T2b_G8, while it is not
supported in the telephone conditions. On the condition-parallel gate/hall
test set (T2b_Q:G8) this difference is weakly supported.

• Performance degradation from halving the amount of enrollment data with
the retrained (combined) research system is supported in the gate/hall and
landline/office conditions.

• An improvement from combining the (retrained) HMM system with the GMM
system (including the additional use of proper names for verification) is weakly
supported in the gate/hall condition, and not support in the landline/office
condition.

• Difference in performance of the retrained (combined) research system between
the four conditions are not supported, except for the difference between the
gate/hall and mobile/hall condition which is weakly supported.

10.5.1.1 McNemar tests

McNemar’s test for the significance of changes (e.g. Siegel, 1956) is a non-parametric
test that can be applied to pair-wise related measures on a nominal scale (labeled
data). To apply this test in speaker verification with good theoretical justification,
FRR and FAR should be treated jointly somehow (Bengio and Mariéthoz, 2004b).
For simplicity, however, we will take the same approach as above and compare false
reject error rates only, at a global a posteriori EER threshold. The problem is

4We used the following definitions: Call two cases under comparison case A and case B, and
the estimated false reject rates and confidence intervals from the two cases p̂A, p̂B, ĈIA and ĈIB.
A difference is well supported when ĈIA and ĈIB are non-overlapping; supported when p̂A /∈ ĈIB

and p̂B /∈ ĈIA; weakly supported when p̂A /∈ ĈIB but p̂B ∈ ĈIA; and not supported if p̂A ∈ ĈIB

and p̂B ∈ ĈIA.



10.5. Discussion 211

again that FRR observations are then dependent through the threshold and also
depend on impostor tests.

To compare two cases, say A and B, with the McNemar test, we compare in-
dividual FRR for each target speaker and determine if the FRR is higher or lower
in case B than in case A, assuming each target has the same number of tests in
both cases. Denote as pAi and pBi the FRR for target i in the two cases. Denote
as MAB the number of targets for which pAi < pBi (better result in case A than in
case B)5, and as MBA the number of targets for which pBi < pAi. Designate as the
null hypothesis H0 that there is no difference between cases A and B. Under H0,
expected values of both MAB and MBA would then equal (MAB + MBA)/2. The
McNemar test tests if observed values MAB and MBA are sufficiently different from
their expected values. It proceeds by computing the test statistic

Tχ2 =
(|MAB −MBA| − 1)2

MAB +MBA

(10.2)

and the probability of the value Tχ2 , or a more extreme value, under the χ2-
distribution with one degree of freedom (df = 1). If this probability is less than
(1−α)/2 (two-sided test), H0 is rejected in favor of the alternative hypothesis, that
there is a difference between cases A and B. We use the same level of significance
α = 0.05 as with confidence intervals above.

Table 10.7 shows the results of applying McNemar’s test to some of the com-
parisons made in this chapter. Note that the results from McNemar are consistent
with findings from our comparisons of confidence intervals above. All differences
that were found to be at least weakly supported in the comparison of confidence in-
tervals were found statistically significant with the McNemar test, while differences
that McNemar tests did not find statistically significant were found not supported
by confidence interval comparison.

Note that the McNemar test does not take into account the magnitude of differ-
ences in individual FRR between the two cases, only the sign. Since our measures
are ordinal (FRR differences can be ranked with respect to their magnitude), the
Wilcoxon matched-pair signed-ranks test (e.g. Siegel, 1956) could also be used,
which does take the magnitude of differences into account. This is a more powerful
statistical test. However, since our approach of comparing FRR at case-dependent
a posteriori thresholds introduces dependencies between speakers, and thus the as-
sumptions behind both tests are not quite true, we decided to use the more “blunt”
McNemar test instead.

10.5.2 Length of enrollment and test data

It is clear from Figure 10.5 and confidence intervals in Table 10.5 that the (retrained)
research system benefits from the rather large number of repetitions of name and

5MAB is equivalently the number of targets for which fewer false reject errors are observed in
case A than in case B, given our assumption about an equal number of tests per case for each
target.
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Table 10.7: Results of McNemar’s test of differences at 5% level of significance.

case A case B common test set pa diffb

Effect 1: retraining on PER condition-specific background data

baseline retrained combo system, T2b_G8 <0.001 x
full enrollment T2b_LO 1.0 -

T2b_Q:G8 0.016 x
T2b_Q:LO 1.0 -
T2b_Q:MO 0.24 -
T2b_Q:MH 0.45 -

Effect 2: reducing enrollment data by a factor two

full half combo system, retrained T2b_G8 <0.001 x
T2b_LO 0.002 x

commercial system T2b_G8 0.015 x
T2b_LO 0.34 -

Effect 3: combining HMM subsystem with GMM subsystem

HMM combo retrained systems, T2b_G8 0.004 x
full enrollment T2b_LO 0.043c -

Effect 4: changing PER condition

G8 LO combo system, retrained T2b_Q:c 1.0 -
G8 MO 0.30 -
G8 MH 0.006 x
LO MO 0.15 -
LO MH 0.015 x
MO MH 0.33 -

aprobability that test statistic x has observed value T
χ2 or greater (P

χ2 (x >= T
χ2 ))

b’x’ indicates a statistically significant difference detected by a two-sided test at α = 0.05
cdifference would have been significant with a one-sided test
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digits in the full enrollment session, since cutting it to half more than doubled
the EER. The same is not true for the commercial system, for which the EER
increased by only about 25%. This difference between the two systems can be
partly explained by target model size: gross model size is about five times larger
for the research system than for the commercial system after compressing each
model set using Lempel-Ziv coding to partly compensate for an ineffective storage
format used with the research system. The research system was dimensioned to
operate with rather large amounts of enrollment data.

Test utterances in this study are an order of magnitude shorter than the total
length of enrollment and consist of a name and a string of digits. It was argued
in Section 5.3 (p. 81) that it is difficult to collect digit strings with more than four
digits from users in a telephone application through aural prompts, but collecting
longer digit strings through visual prompts as in the gate case should be feasible.
In this study we collected only five digits per utterance in the gate/hall condition,
and simulated the use of two, three and four digits per utterance with the results in
Section 10.4.5 (p. 201) and Figure 10.6. Figure 10.11 shows a prediction of EER for
test utterances with longer digit strings, based on an exponential fit to the EERs
of Figure 10.6 extended with the EER for the corresponding experiments with a
name only, and a name plus a single digit. It suggests that the EER with a name
plus six digits would be 1.8%, a 37% relative reduction compared to 2.8% for a
name plus four digits. The prediction of 1.1% EER for a name plus eight digits is
uncertain because, firstly, it is not evident that the exponential prediction model is
valid for longer digit strings; and, secondly, it is also not evident that users would
accept such long strings, and it is likely that they would generate significantly
more disfluencies, such as substitutions, hesitations, repairs, etc. Such disfluencies
are likely to generate errors in the speech recognition process and the resulting
segmentation used by the speaker verification system.

A complementary approach for collecting more test data efficiently is to rely on
a sequential decision strategy such as a heuristic method (Furui, 1981; Naik and
Doddington, 1986) or one based on Wald’s sequential probability ratio test principle
(Lund and Lee, 1996; Surendran, 2001).

10.5.3 Effects of fusion

Fusion results in Section 10.4.3 (p. 200) show a large error rate reduction from each
of the individual systems to their combination. This may be surprising since both
subsystems are based on similar features, classifiers and normalization techniques,
and their output score should therefore be correlated and not be very good candid-
ates for score fusion. However, one major difference is their use of data: the GMM
subsystem uses both names and digits, while the HMM subsystem ignores the name
and uses the digits only. To understand/explain the underlying factors, we tested
the separate and combined systems on the individual and combined parts of the
gate/hall test utterances. In all cases were clients enrolled using the full name plus
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Figure 10.11: The EER values for the retrained system with the gate/hall single-
condition test set S2b_G8 and including the name plus zero through five digits in
each test (bars) and a prediction (dashed line) of EER values for a different number
of digits using an exponential model (cf. Figure 10.6).

digits enrollment set (E2a_c). EERs are shown in Table 10.8, where cases C, D
and F match the DET curves included in Figure 10.4a.

Using the cases in the table, the formation of the final result (case F) can be illus-
trated with the two alternative paths of information fusion shown in Figure 10.12.
Each path consists of conceptual information fusion along two axes: score fusion
of separate systems and vocabulary fusion of the name and the digit parts of the
test utterance. The lower path (via case E) consists of one fusion step along each
axis: a system fusion on the digits part of the test utterance, followed by fusion of
the two parts of the utterance. Hence, each step combines independent sources of
information. The upper path (via case C) more closely reflects the actual structure
of the ASV system, but it contains the fusion (C,D)→F with simultaneous fusion
along both axes, since it combines system scores based on different parts of the
test utterance, and hence combines information sources that are not independent.
We propose that the lower path better explains the formation of the system output
(from a conceptual point of view).

10.5.4 On-site vs. telephone use of ASV

Is there a greater potential for well-performing ASV in an on-site application than
in a telephone application? This is a very general question, and of course we don’t
have a foundation to answer it in a general sense, but we do have some clues for
our particular application instances.
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Table 10.8: EER for the individual subsystems and their combination applied
to digits-only or name-only subsets of the S2b_G8 test set, or the complete test
set using both name and digits. The enrollment set is the full (name and digits)
E2a_G8. The combined system in case E uses the same score combination weights
as the system in case F.

Case System Vocabulary EER
A gmm name 7.3%
B gmm digits 6.9%
C gmm name, digits 4.2%
D hmm digits 4.0%
E combo digits 3.4%
F combo name, digits 2.4%

gmm:digits
(6.9%)

hmm:digits
(4.0%)

combo:digits
(3.4%)

gmm:name
(7.3%)

combo:name+digits
(2.4%)

gmm:name+digits
(4.2%)

A

B

D

E

F

C

Figure 10.12: Two alternative conceptual information fusion paths that explain
how the output of the ASV system is formed. Numbers within parentheses are
the measured EERs for the gate/hall condition with the system and test utterance
content represented by each box.
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We believe our comparison between ASV in the on-site and telephone version
of PER is fair. First, the design differences introduced between the on-site and
telephone versions of PER are well founded. For example, verification based on
a client’s proper name and a digit sequence collected in a single utterance, where
the digits are visually prompted, works well in the on-site application, while the
name and digits must be separated in the telephone case. Aural prompts are the
only alternative with most telephones (since they don’t have a display). Second,
our data collection procedure and design of the condition-parallel test sets based on
series of sessions recorded in chronological proximity in the four conditions, allow
for similar prerequisites in the four conditions. If a subject suffered a head cold
during a gate session, the same was true in telephone sessions within the same series.
If there was a noisy background, it was probably there both during a gate session
and a corresponding mobile telephone session in the hall. Random between-session
variation in for example background noise will naturally have occurred, but such
variation can only be excluded by stereo recordings, and stereo recordings in our
case would have meant a more artificial context for the recordings. Systematical
differences between conditions may also have occurred, however. For example, in
many series the gate/hall session was made before telephone sessions because it
was recorded when the subject arrived to work in the morning. Since a number of
steps had to be climbed to reach the gate, (true-speaker) subjects might have been
more out-of-breath at the gate than after arriving in the office and sitting down
to make the landline/office call. There is also the possible difference in motivation
in subjects, since the gate version of PER could actually open the door, while
telephone calls were made for recording purposes only.

Results from the condition-parallel test sets indicate that, provided acoustic
models in the speech recognition and speaker verification components are tuned
using proper development data, ASV error rate may be lower in the on-site condition
than in all three telephone conditions, though a statistically significant advantage
was measured only relative to the mobile/hall condition (Table 10.7). With acoustic
models trained on a general-purpose telephone corpus, little or no difference was
seen between the conditions. The performance difference introduced by tuning on
proper development data was large for the on-site application and non-significant
for the telephone application. This highlights an important difference between
using a variety of ubiquitous telephone handsets vs. using a single microphone in
a particular room in an on-site application: the need for dedicated tuning data is
larger for the on-site application than for telephone applications. It should be easier
to create an ASV system that will perform consistently at a near optimum error rate
between instances of telephone applications without tuning it for every particular
application, while tuning data will be important for any on-site application. To
achieve the best possible performance, however, tuning data from the application
will usually be needed in either case.

Our point estimates of EER in the gate/hall and landline/office conditions were
2.6% vs. 3.5% on the condition-parallel test sets using the same number of digits in
the test utterance. While this corresponds to a 25% relative reduction for the on-
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site application, the statistical uncertainty in the estimates is large and we can not
infer a difference between the two conditions based on these measurements alone.
But that was with the same number of digits. In our on-site version of PER we used
five digits that caused no apparent trouble for subjects, and we believe six digits
would have worked well too. Considering Figure 10.11, we would expect a 37%
relative reduction in EER for six digits compared to four, suggesting the 2.6% EER
for the on-site application could be reduced to 1.6%6. We are then up to a 54%
reduction for gate/hall relative to the landline/office condition. The corresponding
reductions are 67% relative to mobile/office and 70% relative to mobile/hall.

We can further speculate into factors we have not tested. In our experiments
with on-site data, we used a downsampled 8 kHz version of the original wide-band
audio recordings made at 16 kHz. Given good development data for wide-band
speech and a proper modification of the system’s speech feature representation to
operate with 16 kHz data, it should be possible to achieve a further reduction in
error rate in the on-site system. Furthermore, we saw in Section 6.3.4.5 that the
proportion of different-number calls (test calls from a different telephone number
than the target’s enrollment call) was higher in the impostor part of the telephone
condition test sets (around 25%) than in the true-speaker part, suggesting that in
a fully same-channel test set error rate in telephone conditions could have been
higher than what we saw in our data.

To conclude the discussion on the potential for well-performing ASV in an on-
site application vs. in a telephone application, our data suggests that, given the
availability of application-specific tuning data, ASV error rate may be less than
half in an on-site application than in a corresponding telephone application.

6Note that Figure 10.11 and the previous discussion on test utterance lengths are based on
the single-condition test set S2b_G8, while in this paragraph we look at the condition-parallel
test set S2b_Q:G8.
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Chapter 11

Concluding remarks

11.1 Summary

The introductory part of the thesis gave an overview of the field of speaker recogni-
tion, to serve as a background. A basic taxonomy of speaker recognition tasks was
given and basic conditions for recognizing individuals by means of their voices were
discussed around the basic concepts of inter-speaker and intra-speaker variability.
The most common techniques proposed for speaker recognition were then surveyed
from a somewhat historical perspective, including feature extraction, classification
and score normalization techniques. A background for assessment of speaker recog-
nition system performance was also given, along with some basic requirements on
corpora for speaker recognition research and development.

The central parts II–IV of the thesis dealt with three broad aspects related to
the task of speaker verification: system and application design, assessment methods
and practical experiments.

Part II was concerned with system and application design on different levels,
from detailed description of speaker verification methods up to an example of a com-
plete application where speaker verification was used. First, two speaker verification
systems were described in detail from a mathematical point-of-view. A number of
aspects of the text-dependent HMM-based system were the focus of the author’s
work during 1995-1999. Aspects included the overall structure of the system as
well as more detailed aspects such as methods for estimating target-dependent
variances, the choice of cohort method and background models, and methods for
segmenting utterances into words for use with the word-dependent HMMs. Except
for the investigation on segmentation methods (Melin, 1998), all these aspects were
covered more or less explicitly in the thesis. The design and implementation of
the GMM system was the work of Daniel Neiberg under the author’s supervision.
Its description is included for completeness since it was used in other parts of the
thesis and because not all parts of the description were published elsewhere. The
chapter on speaker verification systems was concluded with a description of the
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GIVES software framework which has been used to implement the systems.
The next level of system design was covered by ATLAS, a software framework

for building prototype applications with speech technology. The purpose of the
framework was to include many parts of a speech technology-based system in an
application-independent way, such that it provides a high-level speech technology
interface to the creator of the actual application. Speech technology components
connected to ATLAS and example applications built on it were listed.

Finally, a complete application using speaker verification was described, the
PER application. The application was implemented on top of the ATLAS frame-
work and used GIVES and a score-level combination of the two described ASV
systems to verify the claimed identities of its users. The application was implemen-
ted in two versions, an on-site access control system securing a barred gate in a
reverberant stairway, and a mock-up telephone version. The telephone version was
created to support a parallel data collection of on-site and telephone speech.

Part III covered tools and methods for assessment of speaker verification sys-
tems. First, two Swedish speaker verification corpora were described, the Gandalf
and the PER corpora. Gandalf is a telephone corpus with 86 client speakers and 30
background speakers containing a mixture of text-dependent and text-independent
material recorded with a tape-recorder metaphor, while PER is a text-dependent
corpus of parallel on-site and telephone speech containing 54 client speakers and
79 background speakers recorded during actual use of an ASV system. The design
of baseline experiments for the European-English Polycost database was then re-
viewed in retrospect by surveying work that has used the database. A chapter was
then dedicated to estimation methods for false reject and false accept error rates
in speaker verification. In particular, the parametric approximation of score distri-
butions by means of normal distributions and its possible use in robust error rate
estimation were proposed and compared to the standard non-parametric estima-
tion method on PER data. ML and MAP implementations of the two methods
were derived and it was shown that conjugate prior distributions used with the
MAP variants fit well to observed PER data for our speaker verification system. In
particular, it was found that the distribution of false reject and false accept rates
over target speakers are well described by beta distributions. Applications of the
parametric method include estimation of error rate for individual target speakers
and incremental estimation of error rates.

Part IV comprised three chapters on speaker verification experiments.
The first experiments-chapter compared the use of aural vs. visual prompting

of digit strings to claimants using Gandalf data. It was found that aural prompts
resulted in more speaking-errors in user responses than visual prompts, in particu-
lar when prompts included five instead of four digits. It was also found that, given
visually prompted (read) enrollment data, visually prompted test utterances resul-
ted in a slightly lower error rate than aurally prompted test utterances, suggesting
there is a difference in how digit sequences are spoken in response to the two types
of prompts.

The second chapter compared several variance estimation methods in the con-
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text of word-level target speaker HMMs using three different telephone corpora. In
particular, a number of variance flooring methods with different levels of resolution
were proposed. While the best variance flooring methods resulted in slightly lower
error rates than using target-independent variances copied from a gender-dependent
background model, the latter method was found to be more robust, and it is much
simpler to use.

The third chapter on ASV experiments gathered many results from the PER
system. Some of the results originated directly from live use of the system, while
most presented results were from off-line simulations using well-defined data sets
from the PER corpus. Results include comparisons of the original (baseline) ASV
system used during the data collection and systems retrained on application-specific
tuning data; comparison of the performance on on-site, landline and mobile tele-
phone data; effects of the amounts of enrollment and test data; and on system
fusion. Beside our research systems, an anonymous commercial ASV system was
also used, to calibrate the recognition tasks and to validate the research systems as
state-of-the-art recognition systems. EERs around 5% were found for the retrained
research system on mobile telephone data, 3.5% on landline telephone data and
2.4% on the on-site data. It was argued that performance in the on-site application
could be improved further by using wide-band audio and by increasing the length
of visually prompted passphrases, to EERs below 2%.

A large part of the work described in this thesis involved creating research tools,
including speaker verification corpora with corresponding data set definitions, and
software platforms for creating speaker verification systems and speech technology
based applications in general. The tools were then used more or less extensively
in experiments also included in the thesis, but the “pay-off” in our own research
work is not very large compared to the amount of work invested in creating the
tools. However, the tools have also been used by others as cited in the thesis, for
research and educational purposes and in one case for commercial purposes. To
summarize work done by others with our tools, GIVES has been used in ten MSc
theses projects and one research project; ATLAS in one PhD project (Pakucs),
eight MSc or BSc theses projects and three research projects (including two EU
projects); and Gandalf in one PhD project (Olsen) and five MSc projects. The
total number of MSc or BSc projects where at least one of the tools were used is 17.
They were spread over the years 1999–2004 and constituted 25% of all completed
MSc/BSc projects at the Speech group in the Department during the same period.

11.2 General discussion

11.2.1 Performance prospects

Research presented in this thesis has been on automatic speaker verification in the
context of its commercial applications, characterized by co-operative users, user-
friendly interfaces, and requirements for small amounts of enrollment and test data.
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A logical question at this point is: What performance can be expected from ASV
in the near future?

Much of the work has been directed towards answering this question. As we
pointed out in the introductory overview chapter on speaker recognition, a univer-
sal answer does not make much sense, since performance depends on many factors
related to the application, for example signal quality, text-dependence modes,
amounts of enrollment and test data, and the particular user. What we have done
is instead to collect speech data representative of some conceivable applications in
terms of such factors, to build a state-of-the-art ASV system for evaluation, and
to measure what error rates we could achieve. We also developed one particular
application (PER) that we implemented and let users try “for real”, using a text-
dependent mode and what we think are reasonable amounts of enrollment and test
data. As quoted in the above summary, error rates corresponding to an overall
EER of approximately 2.4% were found for the on-site version of this application,
with a potential for further improvements to below 2%. The corresponding EER
for the telephone versions were a few percent-units higher.

We will now discuss the validity of these error rates in relation to the question
on what performance can be expected from ASV in the near future. Pertinent
issues are subject selection, competitiveness of our ASV system, and the relevance
of application factors.

A key limitation in our studies is the biased selection of subjects. Subjects in
both the Gandalf and the PER corpora are biased in that people with high educa-
tion in general, and with an education or profession related to speech and language
in particular, are over-represented. We would expect a user group not biased in
this respect to experience higher error rates on average, at least during an initial
learning phase. For example, compared to experienced users of speech technology,
unfamiliar users may be expected to be less patient with system mistakes, speak
less consistently from session to session, over-articulate, etc.

Technically, lower error rates than those found in our studies can be expected by
increasing the amount of enrollment data per user, and even more so for the amount
of test data. For example, the Dialogues Spotlight Consortium (2001) found an
average same-sex half total error rate (HTER; roughly comparable in magnitude to
EER if the operating point in the HTER case is near the a posteriori EER operating
point) as low as 0.9% using telephone test data consisting of nine utterances (a total
of 19 digits and five non-digit words) and large amounts of mixed-type enrollment
data in English, using the Nuance Verifier. We believe these amounts of enrollment
and test data are not viable in a commercial application, at least not if requested
from users in every session and if the goal of the application is to serve a general
population. Example results from the same study with quite realistic amounts of
data are a HTER of 1.6% using three repetitions of an eight-digit account number
for enrollment and a single repetition of the same number for test, or 1.9% similarly
using a nine-digit membership number. (These error rates are about half of what
we found for the landline telephone version of PER; this is discussed below.) In
this example, the error rate (HTER) was reduced to about a half by using a lot



11.2. General discussion 225

more data — at the cost of users having to spend more time on enrollment and
test. However, using a good incremental decision strategy, where most decisions are
taken after one or two utterances, and more is needed only in a few cases, it may
be possible to reach down towards the 0.9% error rate and still keep users happy,
at least the security-aware ones.

Is our ASV system state-of-the-art, or are there better systems? Except for the
use of a downsampled signal in the on-site version of PER, we claim our system
is near state-of-the-art, and that our results are representative of what error rates
can be achieved today for the test cases we used. Of course, there is always room
for improvement, and there are still many proposed methods in the literature we
have not tried. Especially, improvements can be expected from fusing multiple
systems (as we already saw an example of in this thesis). However, we also tested
a competitive commercial system on our data, with comparable results.

We then need to relate to the lower error rates found in the Dialogues Spot-
light Consortium study cited above. They found average same-sex HTER around
1.5% using less enrollment data (about one third of a full PER enrollment session)
and about the same amount of test data as in the PER study. We identify the
main difference between the two studies in that the Spotlight test case is more
text-dependent since it is based on fixed passphrases. In the PER case, the proper
name is fixed and the order of digits is randomized. We have seen in other tests
(e.g. Nordström et al., 1998) that Nuance Verifier performs better with fixed phrases
than with randomized word strings. We think that, in general, the use of fixed pass-
phrases during enrollment and test allows for higher precision in speaker modeling,
and therefore potentially lower verification error rates. The drawback is a potential
risk that an ASV system can be defeated using plain recordings of clients’ pass-
phrases. We also suspect users may trust a fixed-phrase system less because they
would at least partly associate security with the secrecy of their passphrase, and
would not like to speak it in public. With randomized prompts, it is easier to
convince users that the important thing is how the passphrase is spoken, not what
it contains, and that recordings in the hands of others is not an issue. In the end,
this suspected trust problem can perhaps be solved with proper priming material
and marketing of the application.

Can ASV system performance be expected to improve in the near future, say
within the next five years? In our view, marginal improvements in text-dependent
ASV error rate can be expected, but not radical ones. During recent years, much
of ASV research effort has been spent on text-independent verification techniques,
and substantial improvements in text-independent ASV have also been observed
during the annual NIST speaker recognition evaluations (Przybocki and Martin,
2004). It is possible, but not obvious, that at least some of the improvements can
be re-applied successfully in the text-dependent domain. We would also like to point
out Support Vector Machines (SVM) as a relatively new and promising classifier
technique. SVMs and other new techniques may well be used in combination with
current state-of-the-art techniques to improve performance.

Looking at the distribution of FRR for individual target speakers (at the cor-
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responding global EER threshold), we found that only a few speakers show FRR
above the average, while most speakers fall below the average. That is, as has been
well known since previous work by others (e.g. Doddington et al., 1998), errors are
unequally distributed among users of an ASV system, with a small fraction of users
contributing to a large fraction of the errors. However, we also found that our
empirical distributions of FRR and FAR over target speakers fit well to the fam-
ily of beta distributions. A consequence of this uneven distribution of errors over
users may be that those who experience high error rates stop using the associated
application (or use alternative means of identity verification if such are offered),
and only those who experience low error rates remain. For applications where such
drop-out is acceptable, the result would be reduced overall error rates among users
of the application. We have seen examples of this with PER.

Let us summarize the discussion so far. We have results from the PER corpus,
2.4% EER for the on-site version and 3.5% for landline telephones. Our subjects
were biased towards lower error rate, suggesting error rates with a general popu-
lation to be higher. We claimed our research system is near state-of-the-art, but
use of wide-band signal processing and an increased length of passphrases should
reduce the on-site error rate; and a good incremental decision strategy may be used
to reduce error rates at only a small increase in the average length of test data.
We expected state-of-the-art text-dependent ASV techniques to improve over the
near future, but not radically so. This would by definition be accompanied by an
additional reduction in error rate. We expected a transition to using fixed pass-
phrases instead of randomized digit strings to buy another reduction in error rate,
perhaps at the cost of decreased resistance against recordings and lower user trust
(or increased need for user “education”).

We thus have one argument as to why state-of-the-art ASV error rate in a
commercial application in the near future would be higher than those we found with
the PER systems, and three arguments for lower error rates, with an additional
fourth argument for a lower error rate in the on-site version. Without indulging
ourselves in trying to quantify each of the expected changes in error rate, we believe
the expected error rate increase from a non-biased group of users may be larger than
each of the individual expected reductions. It is our feeling that on-site overall EER
can reach below 2% but not below 1%, and telephone error rates can reach below
3% but not below 1.5%.

11.2.2 Statistical significance

Pre-trial confidence intervals for observed error rates given a hypothesized “true”
error rate can be useful in determining the required sample size for an experiment,
for example when planning a corpus collection or a live service trial. Given a hy-
pothesis about the error rate of an ASV system under scrutiny, and a requirement
for statistical significance in testing the hypothesis, the number of required target
speakers and impostor subjects can be approximately calculated (Higgins et al.,
1991; Dialogues Spotlight Consortium, 2000; Dass and Jain, 2005). Counting only
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test trials from distinct targets as independent, by setting the intra-speaker cor-
relation coefficient ρ in Eq. (2.20)1 equal to 1, such an estimate of the number of
required speakers will usually be very high. In practice, funding and the availability
of subjects and resources for data collection may well limit the number of samples
that can be collected, in particular the number of speakers. On the other extreme,
assuming multiple trials from each speaker as independent (ρ = 0) results in gross
under-estimation of the required number of speakers. Considering that in the case
of speaker verification we want access to multiple sessions from each target to cap-
ture intra-speaker variability, and that if the number of available subjects is limited,
it would be beneficial if it were possible to determine a more advantageous value
of ρ that reflects the actual statistical dependency between data collected through
multiple sessions from a set of target speakers.

For our experiments on the PER corpus, we computed post-trial confidence
intervals for false reject rates based on the distribution of individual error rate.
While these intervals are only estimates of statistical uncertainty, at least they are
based on observations and not only guesses. Counting “backwards” they correspond
to ρ-values of 0.06–0.22 for the largest test set (T2b_G8; 54 target speakers and an
adjusted2 average number of trials per target of 50) and 0.06–0.47 for the smaller
test sets (27 targets, 36–40 trials per target on average). The average ρ over all
cases was 0.2 (without having proved that an average makes sense in this case). We
hypothesize that as a simple method for predicting pre-trial confidence intervals for
overall false reject rates (in experiments not yet having been carried out) on the
PER corpus, the choice of a fixed ρ = 0.2 will give reasonable results, while ρ = 0.3
will be on the “safe side”. At the least, using any of the two values should result in
better estimates of uncertainly than using ρ = 0 or ρ = 1. However, these choices
of ρ are based on observations on the existing corpus.

We set out by stating that pre-trial confidence intervals can be useful in de-
termining the required sample size for an experiment, for example when planning a
corpus collection or a live service trial. To allow this, we need to predict confidence
intervals for new, unseen data. Then, the question is: Do the ρ-values observed for
the PER corpus carry over to other corpora? To answer this, further investigation
is required. We think that they do to some degree, especially if the properties of
the corpora are similar.

11.3 Future work

We think the estimation of uncertainty in ASV results need more attention. While
the basic method for estimating confidence intervals (CI) based on the binomial
distribution can be applied to results on corpora with a large number of speakers,
such as corpora used in NIST speaker recognition evaluations, many ASV exper-
iments are performed on corpora with a smaller number of speakers (say 50-100)

1p. 31
2cf. Section 6.3.4.6, p. 116
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but many trials from each speaker. Such corpora are important in the ASV field,
in particular for research on text-dependent techniques in “small” languages like
Swedish: it is less costly in terms of subject recruitment and instruction overhead
to collect a smaller number of speakers many times than a large number of speakers
a few times; multiple trials from each speaker are required anyway to capture intra-
speaker variability; and existing large English corpora may not be an alternative,
in particular not the text-independent ones. One problem with such corpora is that
estimation of uncertainty is more difficult because of dependencies between trials
from the same speaker. Improved theoretical models are needed, and should be
evaluated on real ASV data together with data-driven methods for CI estimation.

The PER and Gandalf corpora were designed to incorporate more factors than
were eventually investigated in this thesis. Some of the remaining factors should be
studied. Side-information about speakers and sessions in the Gandalf corpus should
be used for a more detailed analysis of ASV results on this corpus (Section 6.2.3.2).
Use of wide-band recordings in PER would give some insight into what additional
speaker-dependent information is available in the 4–8 kHz band, and a better indic-
ation of what performance can be expected from ASV in on-site applications. The
Swedish Speecon corpus (Iskra et al., 2002) could be used to support such experi-
ments with training of wide-band background models. Cross-condition experiments
on PER data would be a challenging task. We believe good performance on such a
task, with for example enrollment by telephone and access on-site, is an important
prerequisite to enabling wide-spread use of ASV in the future, under the motto
“enroll once - access anywhere”.

In terms of technical advances in ASV in commercial-type applications, we
believe improvements in the near future will be seen from improved support vector
machine classifiers and fusion of multiple systems. Much would be gained in terms
of overall error rate from improving ASV performance for the small fraction of
the user population (“goats”) that contribute to the majority of errors. While the
use of multiple systems and data fusion is a “brute force” approach that does not
provide a better understanding of the real recognition problem, it has a potential for
improving results. While not given much attention in this thesis, good incremental
decision strategies and methods for robust selection of operating points for an ASV
system will also be important for the potential future success of automatic speaker
verification in the commercial market.
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Appendix A

PER photos

Figure A.1: The new installation of PER at Lindstedtsvägen 24. Photos by
Botond Pakucs.
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258 Appendix A. PER photos

Figure A.2: View of the bar gate with the on-site version of PER at Drottning
Kristinas väg 31. Photo by Botond Pakucs.
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Figure A.3: Photos of the author taken during nine distinct sessions between May
and September 2003 by PERs network camera. The images are captured at the
time when the photo electric sensor first signals the presence of a person.





Appendix B

Gandalf - data sets and extended

statistics

This Appendix presents additional data sets defined for the Gandalf corpus and
additional statistics not included in Section 6.2 (p. 89).

B.1 Data sets

This section provides additional details and background information on data sets
not included in Section 6.2.4 (p. 99), including data sets that have been defined but
were not used in this thesis.

The assignment of subjects into development, evaluation and background set
shown in Table B.1 and referred to as Division-1 was created this way:

• Only subjects who allowed other labs to use their recordings were used (this
eliminated F056, M066, M127, F134, F151, F157, M173 and F186).

• 15 male and 15 female non-client subjects were assigned to the background
speaker set.

• The first half of the female client subjects and the first half of the male client
subjects were assigned to the development set to be used as both clients and
impostors.

• The remaining client subjects were assigned to the evaluation set to be used
as both clients and impostors.

• The remaining non-client subjects were assigned to the evaluation set to be
used as impostors only. They were assigned to the evaluation set rather than
being split onto the development and evaluation sets to keep the develop-
ment set smaller (it is run more often) and to provide for better statistical
significance in tests on the evaluation set.
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Table B.1: Gandalf subjects assigned to the background, development and eval-
uation sets.

Set Subjects

Background Background speakers (15F, 15M): F102, F103, F116, F117,
F129, F130, F136, F137, F147, F148, F152, F156, F179, F180,
F192, M100, M101, M104, M105, M106, M107, M110, M111, M112,
M113, M114, M115, M118, M124, M128

Develop-
ment

Client and impostor (18F, 22M): F016, F018, F019, F022,
F023, F024, F025, F026, F027, F028, F030, F031, F032, F035,
F037, F041, F044, F047, M010, M011, M012, M013, M014, M015,
M017, M020, M021, M029, M033, M034, M038, M040, M042, M043,
M045, M046, M048, M050, M054, M055

Impostor only (1M): M036

Evaluation Client and impostor (18F, 24M): F049, F051, F052, F053,
F062, F063, F064, F065, F070, F071, F072, F073, F074, F083,
F084, F089, F091, F095, M057, M058, M059, M060, M061, M068,
M069, M075, M076, M077, M078, M079, M080, M081, M082, M085,
M086, M087, M088, M090, M092, M093, M094, M096

Impostor only (14F, 34M): F067, F109, F120, F122, F133,
F135, F138, F144, F150, F166, F167, F169, F194, F199, M121,
M125, M126, M131, M132, M139, M140, M141, M142, M143, M145,
M153, M154, M155, M161, M162, M163, M164, M165, M175, M177,
M178, M181, M182, M184, M185, M187, M188, M189, M190, M191,
M195, M197, M198

• It was then decided to use as clients only subjects who completed all the
(enrollment) calls 1, 2 and 99. This disqualified M036 and F067 (who both
miss call 99) and they were used as impostors only.

B.2 Extended call statistics

Table B.7 shows the distribution of types of locations that the subjects called from
as indicated by call response sheets (CRS).

Subjects were encouraged to make some calls during collection Part 1 from
abroad. A total of 33 calls were international calls. They were distributed as follows.
Three client subjects (M012, F051 and M092) made four calls each from abroad,
four subjects made two calls each and 11 subjects made a single international call.
One of the impostor subjects (M143) made both his calls from abroad. Of the
33 international calls, 14 were made from France, 11 from Great Britain and the
remaining eight from six other countries. The 31 international calls from client
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Table B.2: Gandalf enrollment sets defined on five-digit sequences (d5), varied
sentences (vs), and fixed sentence (fs0n, with n ∈ {1, 2}). Files are specified on the
format session/filename.

Composition Phrase t Files

1s1h d5 1 001/D5{01–25}

0.5 001/D5{01–12}

0.3 001/D5{01–07}

vs 0.5 001/VS{01–10}

0.25 001/VS{01–05}

0.15 001/VS{01–03}

fs0n 0.25 001/FS0n{01–05}

0.15 001/FS0n{01–03}

2s1ha d5 1 001/D5{01–12}, 099/D5{13–25}

0.5 001/D5{01–06}, 099/D5{07–12}

0.3 001/D5{01–04}, 099/D5{05–07}

vs 0.5 001/VS{01–05}, 099/VS{06–10}

0.25 001/VS{01–03}, 099/VS{04–05}

0.15 001/VS{01–02}, 099/VS03

fs0n 0.25 001/FS0n{01–03},
099/FS0n{04–05}

0.15 001/FS0n{01–02}, 099/FS0n03

2s2h d5 1 001/D5{01–12}, 002/D5{13–25}

0.5 001/D5{01–06}, 002/D5{07–12}

0.3 001/D5{01–04}, 002/D5{05–07}

vs 0.5 001/VS{01–05}, 002/VS{06–10}

0.25 001/VS{01–03}, 002/VS{04–05}

0.15 001/VS{01–02}, 002/VS03

fs0n 0.25 001/FS0n{01–03},
002/FS0n{04–05}

0.15 001/FS0n{01–02}, 002/FS0n03

d5+fs0x 1 001/D5{01–05}, 002/D5{06–10},
001/FS0n{01–05}),
002/FS0n{01–05})b

athe second of the two sessions (099) is nominally recorded four months into the collection
period

bn = 1 for half the targets and n = 2 for the other half
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Table B.3: Gandalf test sets based on digit utterances.

Test set Text Prompt Files Comment

1d4-
d40n

4 digits visual D40n the same digit sequence
across all targets and calls
(four test sets; n ∈ {1 . . . 4})

1d3 3 digits visual D301 ora D302 or
D303 or D304

the same digit sequence for
a given target across all calls

1d4 4 digits visual D401 or D402 or
D403 or D404

the same digit sequence for
a given target across all calls

2d3 6 digits visual (D301, D302) or
(D302, D303) or
(D303, D304) or
(D304, D305)

the same digit sequences for
a given target across all calls

2d4 8 digits visual (D401, D402) or
(D402, D403) or
(D403, D404) or
(D404, D401)

the same digit sequences for
a given target across all calls

1r4 4 digits aural R401 or R402 sequences are picked at
random

2r4 8 digits aural R401, R402 sequences are picked at
random

aD301 is used in all attempts against the first 1/N fraction of the target group, D302 against
the next 1/N fraction, etc., where N is the number of alternatives (N = 4 in this case).

subjects correspond to 2.2% of all calls in Part 1, or 1.7% of the client test calls in
all three parts.

On the call response sheet (CRS), subjects were asked to specify any illness
that may have affected their voice2 during the call in terms of: “no illness that
I think affected my voice” vs. combinations of “a little sore throat” or “very sore
throat”; “slight runny nose” or “very runny nose”; “fever”; and “something else
that I think affected my voice” (open question). For the purpose of presenting the
outcome of collected replies, we here define an illness to be in effect if any of the
sore throat, runny nose or fever options were checked; and a severe illness to be
in effect if at least one of “very sore throat”, “very runny nose” or “fever” were
checked. Comments written to the “something else. . . ” option were very diverse,
so they are reported separately below.

2the Swedish term used was “röst”, which in the speech science community usually refers to
the voice source, but we believe lay people relate this term more to a broader sense of how a
person’s speech sounds.
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Table B.4: Gandalf test sets based on sentence utterances and combinations of
digit and sentence utterances.

Test set Text Prompt Files Comment

1vs 1 sent. visual VS01 or VS02 or
VS03 or VS04

VS01 contains the same sentence
across targets for a given call
number; impostors use files from
call 3

1vs-2a 1 sent. visual VS01 or VS02 or
VS03 or VS04

VS01 contains the same sentence
across targets for a given call
number

2vs 2 sent. visual (VS01, VS02) or
(VS02, VS03) or
(VS03, VS04) or
(VS04, VS01)

VS01 contains the same sentence
across targets for a given call
number

2vs-2b 2 sent. visual (VS01, VS02) or
(VS02, VS03) or
(VS03, VS04) or
(VS04, VS01)

VS01 contains the same sentence
across targets for a given call
number

1rs 1 sent. aural RS01 sentences are picked at random;
“short” sentences

1rl 1 sent. aural RL01 sentences are picked at random;
“long” sentences

1fs-fs01 1 sent. visual FS01 the same sentence across all
targets and calls

1fs-fs02 1 sent. visual FS02 the same sentence across all
targets and calls

1fs+1r4-
fs0x

1 sent.,
4 digits

visual,
aural

(FS01, R401) or
(FS02, R402)

the same sentence across calls;
digit sequences are picked at
random; designed as
development set for PER
experiments

aImpostors use files from different calls, such that a given impostor use the same sentence
against all targets, and no two impostors use the same sentence.

bimpostors use files from different calls, such that a given impostor use the same pair of
sentences against all targets, and no two impostors use the same sentence pair.
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Table B.5: Relations among subjects in the Gandalf database. Groups of subjects
with similar voices, according to their own opinion, have been underlined. (Referred
to on p. 93.)

Relation Subjects

Identical twins F083–F084, M079–M080

Siblings F024–F135, F025–F138, F037–F095, F051–F053,
F065–F169, M010–M046, M012–M126–M127,
M029–M140–M141–M143, M040–M145, M048–M076,
M068–M164, M085–M175, M086–M187, M096–M185

Parent–child (same
gender)

F024–F070, F047–F044, F052–F051, F052–F053,
F091–F031, F120–F109, F144–F037, F144–F095,
F150–F049, F151–F052, F166–F071, F167–F073,
F186–F074, M012–M125, M021–M131, M045–M010,
M045–M046, M086–M177, M121–M081, M139–M029,
M139–M140, M139–M141, M139–M143

Parent–child (different
gender)

F035–M029, F044–M010, F044–M046, F072–M033,
F122–M081, F133–M131, M012–F070, M055–F051,
M055–F053

Cousins (same gender) M010–M036, M010–M048, M010–M076, M036–M046,
M036–M048, M036–M076, M046–M048, M046–M076

Table B.6: Client subjects who called from other handsets than their designated
favorite handset during collection parts 2 and 3 (calls 17-28). (Referred to on p. 95.)

Subject Call range Number of calls
M013 28 1
F016 17–28 12
F023 18–28 11
F030 20–28 9
F037 26–28 3
M050 23–28 6
F051 17 1
F052 27 1
F065 25–28 4
M068 17–23 7
M078 27–28 2
M082 20–28 9
M087 24–28 5
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Figure B.1: Histogram on how many client subjects recorded how many calls in
Gandalf. The bars at 17, 24 and 29 calls show how subjects completed Parts 1, 2
and 3 of data collection. (Referred to on p. 95.)

Table B.7: Number of calls from different types of locations for Gandalf calls from
favorite and non-favorite handsets, respectively. The non-favorite handset section
also shows the proportion of calls made from mobile phone and public pay phones.

Client calls Impostor calls
Favorite handset Non-favorite handset Enroll Test

Location Subjects Calls Calls Mobile Pay calls calls
phone phone

Homea 54 846 414 12% 56 58
Office 31 469 227 14% 25 20
Phone booth 51 100%
Public roomb 36 11% 58% 1 3
Car 10 100%
Outdoors 9 78% 11%
Other 1c 21c 13d 31% 15% 1

aincluding hotel room
bThe exact term used on the CRS was “stor lokal med många människor” (large room with

many people).
clocation specified as an open-plan office
dopen-plan office(3), computer/copy-machine room(3), restaurant(2), sound-proof room(1),

train(1), dressing room(1), unspecified(2)
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Figure B.2: Histogram on the number of subjects who made how many calls
during illness. The left pane includes any degree of illness, while the right pane
includes the more severe degrees of illness only (very sore throat, very runny nose
or fever).

In 51 of the 2106 calls from client subjects (2.4%) a severe illness was in effect.
These calls are distributed as shown in the right pane of Figure B.2. The subject
with four such calls is F016, while subjects F052 and M078 have three calls each.
53 subjects reported no call with severe illness. Five of the severe illness calls were
enrollment calls (subject/call): F024/001 (fever), F051/001 (sore throat), F053/099

(runny nose), F056/001 (runny nose), and M076/099 (runny nose).
If we also include the slighter versions of illness there were 378 calls from client

subjects (18%). The left pane of Figure B.2 shows the histogram on how many
such calls were made by how many client subjects.

In 53 of the illness calls (as defined above), a subject also specified another
source of voice alteration through the “something else that I think affected my
voice” option. In 124 other calls (5.9% of client calls), client subjects specified
another source of voice alteration without checking any of the nose, throat or fever
options. Table B.8 shows an attempt to categorize the various sources suggested
by subjects for those calls. Note that the table shows what subjects believed may
have altered their voice. These sources may or may not correspond to voice changes
that are actually measurable in the produced speech, but it may still be interesting
for the reader to see what factors appear important to subjects. Note also that,
naturally, subjects have individual opinions on what factors are influential, and
thus, the frequency counts in the table are not likely to indicate probabilities of
factor occurrence in the general population.

The call response sheet also requested information about background noise in
terms of “it was quiet” vs. combinations of “there was some occasional noise” and
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Table B.8: Categorization of client subject responses to the open question “some-
thing else that I think affected my voice” after Gandalf calls in cases were subjects
did not also check any of the throat, nose or fever options.

Category

Subcategory Examples Cases

throat related

abnormality hoarseness, laryngitis, other vocal cord
problem, dryness, allergic reaction, phlegm,
coughing, harking, creaky voice

42

tiredness from using voice; from singing 6

startup first speaking in morning; have not spoken
for a long while

11

nose related stuffed nose, hay fever 6

mouth related blister on tongue, oral infection 4

influence from substance anesthetic (by dentist), alcohol, medicine,
smoking (active or passive), eating (while
calling), drinking (while calling)

19

mental or physical state toothache, headache, stomachache, stress,
tension, tired, sleepy, physical exercise,
distracted, happiness, laughter

34

position leaning backwards while sitting 1

other lots of dust in the room 1

“there was persistent noise”. The two noise options had sub-options for the noise
source: “talk”, “music” and “car noise”. In addition to checking our pre-specified
options, subjects often added their own comments in the margin to specify other
noise sources.

Looking at calls from client subjects where the CRS indicated the presence of
persistent noise, there were 241 such calls, corresponding to 11% of all 2106 client
calls. In 194 calls (80% of 241) a single noise source was specified, while 47 calls
had multiple noise sources. Looking at one noise source at the time, there were
72 calls with “talk” (43% as the single source), 89 calls with “music” (63% as the
single source), 29 calls with “car noise” (76% as the single source), and 101 calls
with another noise source only as indicated by margin comments (84% as the single
source). “talk” and “music” occurred together in 30 calls.

In the calls with persistent “car noise”, 16 (55%) came from a public payphone
and 6 (21%) from a mobile phone. Table B.10 presents percentages of calls with
any type of persistent noise made from public payphones, mobile phones vs. other
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Table B.9: Categorization of other sources of persistent noise

Category

Subcategory Examples Cases

Office environment

computer computer fan, computer noise 31

other printer, copy machine, office noise 5

Home environment

appliances dish washer, tumble dryer, kitchen machine,
boiling water, kitchen fan

10

broadcast TV, radio 5

other screaming child 1

Other ventilation fan, ventilation 26

Public environment train, traffic, plane, escalator 9

Construction work pounding, drilling 5

Weather rain, wind 2

Other “noise”, clatter, metallic sound, door slam,
“was interrupted”, unknown

7

types of phones.
Table B.9 gives an overview of other types of noise sources than our pre-specified

options (“talk”, “music” and “car noise”) indicated by subjects in the margin of
CRSs. Note that almost 60% of the calls listed in this table indicate noise from
some kind of fan or ventilation system. This type of noise is usually of a more
stationary nature than any of talk, music or car noise, and probably result in a
higher signal-to-noise ratio (SNR) in a recorded speech signal, and thus we believe
these calls will pose a lesser problem for automatic speech and speaker recognition
than the latter types of noise. We also note that modern desktop computers have
generally become more quiet since 1996 when Gandalf recordings were concluded.

Turning to calls from client subjects where the CRS indicated the presence of
intermittent noise, there were 454 such calls, corresponding to 22% of all client
calls. In 392 calls (86% of 454) a single noise source was specified, while 62 calls
had multiple noise sources. Looking at one noise source at the time, there were
249 calls with “talk” (78% as the single source), 59 calls with “music” (66% as the
single source), 75 calls with “car noise” (79% as the single source), and 103 calls
with another noise source only as indicated by margin comments (79% as the single
source). “talk” and “music” occurred together in 26 calls.

In the calls with intermittent “car noise”, 20 (27%) came from a public payphone
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Table B.10: Occurrence of any type of noise (talk, music, car or other) in calls
by client subjects as indicated by call response sheets. The any column indicates
in how many calls either or both intermittent and persistent noise was indicated.
The Other phone category includes wired and cordless telephones in the landline
network.

Telephone type Calls Noise occurrence
intermittent persistent any both

Public payphone 73 47% 48% 92% 3%
Mobile phone 106 29% 16% 44% -
Other phone 1952 20% 9.7% 29% -

and 6 (8%) from a mobile phone. Table B.10 presents percentages of calls with any
type of intermittent noise made from public payphones, mobile phones vs. other
types of phones. It also indicates co-occurrence of intermittent and persistent noise.





Appendix C

PER - data sets

This Appendix presents additional data sets defined for the PER corpus not in-
cluded in Section 6.3.4 (p. 110), including data sets that have been defined but
were not used in this thesis. To make this Appendix self-contained, definitions
already given in Section 6.3.4 are repeated here, in some cases re-formulated to fit
a more generic framework.

C.1 Background speaker enrollment sets

Based on background speaker enrollment sessions, two enrollment sets per condition
c were defined using text acceptance rule a and 51 male and 28 female background
speakers that completed enrollment in all four conditions:

• E2a_c using the same definition as E2a_c set for client speakers but applied
to the group of background speakers.

• E5a_c like E2a_c but also including the first repetition with accepted text
status of five sentence items.

These enrollment sets can be used for example to create pseudo-impostor models
for T-norm.

Enrollment sets E2a-gen_c and E2a-wld_c have been defined to train condition-
dependent multi-speaker models. Speech data used in the former is the same as in
E2a_c but with pooled data from all male or female background speakers, while in
the latter all data were pooled, irrespective of gender, for training a “world” model.

C.2 Single-condition test sets

Separate sets of true-speaker and impostor test sets are defined first. Those are
then combined into complete test sets.
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Two sets of true-speaker test sets, T1x_c and T2x_c, and two sets of impostor
test sets, I1x_c and I2x_c, have been defined. Common to all test sets is that
they contain no more than one attempt from any given session, and only from
login sessions annotated as valid and complete that contain at least one attempt
whose file level transcription meet the conditions of the b-criterion for “accepted
text status”.

Common to both true-speaker and impostor test sets is that they contain no
more than one attempt from any given session, and only from login sessions an-
notated as valid and complete that contain at least one attempt whose file level
transcription meet the conditions of the b-criterion for “accepted text status”.

True-speaker test sets include one attempt per session from all true-speaker
login sessions. Impostor test sets include one attempt per combination of impostor
speaker and target where the impostor speaker has recorded at least one session
where (s)he claimed the given target identity. If there is more than one such session,
the first one is used. Only same-sex impostor tests are used.

Test sets with index 1 and 2 differ in how attempts are selected from a session
in which the PER system accepted the claimant. T1x_c and I1x_c include the
last attempt (the attempt that was accepted during data collection), while T2x_c
and I2x_c include the first attempt with an accepted text status. From sessions in
which the PER system rejected the claimant, all test sets include the first attempt
with an accepted text status. Hence, the test sets with index 2 always include the
first attempt with an accepted text status, while those with index 1 change selection
criterion with the decision of the collection system for each session.

True-speaker and impostor test sets are paired into the following complete test
sets:

• S1x_c=T1x_c+I1x_c. This set most closely mimics the conditions of the
final decision as taken in each login session of the data collection. The condi-
tions include that claimants (both clients and impostors) get a new attempt
if the text or voice test fails, up to three attempts total. Note that even if up
to three attempts were indeed needed to produce the test utterance (or pair
of utterances in telephone conditions), exactly one attempt from each session
is included in the test set.

• S2x_c=T2x_c+I2x_c. This test set is like S1x_c, except it simulates that
the claimant doesn’t get a second attempt if the voice test fails, only if the
text test fails. For the verification system used during the collection, this test
set is more difficult on true-speaker tests (will lead to higher false reject rates)
and easier on impostor tests (will lead to lower false accept rates) than S1x_c.
This is because in those true-speaker sessions where S1x_c and S2x_c include
different attempts, S2x_c will always include an attempt that was rejected
during the data collection (except if the rejection was due to some system
failure rather than a reject by the ASV system). Also in impostor sessions
where S1x_c and S2x_c include different attempts, will S2x_c include an
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attempt that was rejected during the collection, but in this case “reject” is
the correct decision.

Table 6.10 (p. 112) shows the number of speakers and tests included in the PER
test sets used in the thesis, while Figure 6.6 shows how tests are distributed over
targets in the G8 true-speaker and impostor test sets.
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Figure D.1: DET curves from Experiment A in Chapter 8 for a) the HMM-based
CAVE system used in (Lindberg and Melin, 1997), b) the HMM subsystem, c) the
GMM subsystem and d) the combined HMM and GMM system. The three latter
systems are all described in Chapter 3. Each plot compares a pair of test sets with
4-digit strings prompted aurally and visually, respectively. Diamonds indicate the
FRR/FAR pair for a threshold determined as the EER threshold on the visually
prompted data.
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Figure D.2: Distribution of non-parametric FRR (FRRd) at a fixed target-
independent threshold θv

EERd determined as the EER threshold on the visually
prompted data over targets in Experiment A, with the ASV systems: CAVE system
(a,b); HMM subsystem (c,d); GMM subsystem (e,f); and the combined HMM and
GMM system (g,h). Dashed lines show fitted beta distributions (cf. Section 7.3.1.2,
p. 135).
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Figure D.3: Distribution over targets of differences in FRRd at a fixed target-
independent, system-specific threshold θv

EERd determined as the EER threshold on
the visually prompted data, when comparing the two sets in Experiment A. Results
are given for four ASV systems: a) CAVE system, b) HMM subsystem, c) GMM
subsystem, and d) the combined HMM and GMM system. A positive difference x
indicates that the individual FRRd for aurally prompted items was x units higher
than for visually prompted items.
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Figure D.4: Distribution of EERp (target-dependent a posteriori thresholds)
over targets in Experiment A, with four ASV systems: CAVE system (a,b); HMM
subsystem (c,d); GMM subsystem (e,f); and the combined HMM and GMM system
(g,h).
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Figure D.5: Distribution of differences in EERp (target-dependent a posteriori
thresholds) over targets when comparing the two sets in Experiment A. Results
are given for four ASV systems: a) CAVE system, b) HMM subsystem, c) GMM
subsystem, and d) the combined HMM and GMM system. A positive difference x
indicates that the individual EERp for aurally prompted items was x units higher
than for visually prompted items.



Prompting methods - extended results 283

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)

Prompt methods (Gandalf), CAVE−system, experiment B, clean data

 

 

B:4/aural/clean
B:4/visual/clean
B:5/aural/clean

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)

Prompt methods (Gandalf), HMM−subsystem, experiment B, clean data

 

 

B:4/aural/clean
B:4/visual/clean
B:5/aural/clean

a) b)

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)

Prompt methods (Gandalf), GMM−subsystem, experiment B, clean data

 

 

B:4/aural/clean
B:4/visual/clean
B:5/aural/clean

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)

Prompt methods (Gandalf), combined system, experiment B, clean data

 

 

B:4/aural/clean
B:4/visual/clean
B:5/aural/clean

c) d)

Figure D.6: DET curves from Experiment B/clean in Chapter 8, i.e. with no
speaking and recording errors in the true-speaker part of test sets, for a) the HMM-
based CAVE system used in (Lindberg and Melin, 1997), b) the HMM subsystem,
c) the GMM subsystem and d) the combined HMM and GMM system. The three
latter systems are all described in Chapter 3. Each plot compares a triple of test
sets with 4-digit visually prompted and 4 and 5-digit aurally prompted strings,
respectively. Diamonds indicate the FRR/FAR pair for a threshold determined as
the EER threshold on the visually prompted 4-digit data.
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Figure D.7: Same comparisons as in the previous figure but with the complement-
ary B/dirty test set, i.e. true-speaker parts of test sets contain only triples with at
least one speaking and recording error. Diamonds indicate the FRR/FAR pair for
a threshold determined as the EER threshold on the visually prompted 4-digit data
in B/clean (with speaking and recording errors excluded).
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Figure D.8: Same comparisons as in the two previous figures but with corres-
ponding B/clean and B/dirty test sets pooled, i.e. true-speaker parts of test sets
contain a natural blend of speaking and recording errors. Diamonds indicate the
FRR/FAR pair for a threshold determined as the EER threshold on the visually
prompted 4-digit data in B/clean (with speaking and recording errors excluded).
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Figure D.9: DET curves for aurally prompted 5-digit sequences from the ’clean’
and ’dirty’ group of test sets in Experiment B in Chapter 8, and for the two groups
pooled. The B/dirty test set is comprised of the aurally prompted 5-digits file
in the 123 triples of files where at least one of the files in the triple has at least
one speaking or recording error (SRE). The B/clean test set is comprised of the
corresponding file in all other triples from Experiment B, i.e. those where none of
the files in the triple contain an SRE. Panes show result for a) the HMM-based
CAVE system used in (Lindberg and Melin, 1997), b) the HMM subsystem, c) the
GMM subsystem and d) the combined HMM and GMM system. The three latter
systems are all described in Chapter 3. Diamonds indicate the FRR/FAR pair for
a threshold determined on as the EER threshold on the visually prompted 4-digit
data in B/clean (with speaking and recording errors excluded).
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State-dependent variance floors (ϑf = S/X, ϑv = X/X)
a) actual score values b) normal approximation
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c) actual score values d) normal approximation
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Variance scaling (ϑv = X/X)
e) actual score values f) normal approximation

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)

Gandalf, dev, scaled mixture variances, mfcc, SS

0.60
0.80
1.00
1.20
1.40

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)

Gandalf, dev, scaled mixture variances, mfcc, SS, synthetic normal data

0.60
0.80
1.00
1.20
1.40

Figure E.1: Gandalf development data: DET curves from variance flooring
and variance scaling experiments in Chapter 9. Plots on the left (a,c,e) correspond
to the “gand, dev” plots in Figures 9.1b, 9.1c and 9.1f, respectively. Plots on
the right (b,d,f) show DET curves of synthetic score data generated from normal
distributions estimated from curves on the left.



290 Appendix E. Variance estimation - extended results

a) γ = 0.60
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Figure E.2: Gandalf development data: normal quantile plots for state-
dependent variance floors (ϑf = S/X, ϑv = X/X) and three scale factors. Data
correspond to the “gand, dev” plot in Figure 9.1b (p. 182) and Figures E.1a,b.
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Figure E.3: Gandalf development data: Score histograms for state-dependent
variance floors (ϑf = S/X, ϑv = X/X) and a range of scale factors. Data correspond
to the “gand, dev” plot in Figure 9.1b (p. 182) and Figures E.1a,b. Dashed lines
are normal distributions estimated from the actual score values.



292 Appendix E. Variance estimation - extended results

a) γ = 0.60
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Figure E.4: Gandalf development data: normal quantile plots for mixture
component-dependent variance floors (ϑf = X/X, ϑv = X/X) and three scale
factors. Data correspond to the “gand, dev” plot in Figure 9.1c (p. 182) and
Figures E.1c,d.
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Figure E.5: Gandalf development data: Score histograms for mixture
component-dependent variance floors (ϑf = ϑv = X/X) and a range of scale factors.
Data correspond to the “gand, dev” plot in Figure 9.1c (p. 182) and Figures E.1c,d.
Dashed lines are normal distributions estimated from the actual score values.
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Figure E.6: Gandalf development data: normal quantile plots for variance
scaling with untied variances (ϑv = X/X) and three scale factors. Data correspond
to the “gand, dev” plot in Figure 9.1f (p. 182) and Figures E.1e,f.
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a) α = 0.40 b) α = 0.60
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Figure E.7: Gandalf development data: Score histograms for variance scaling
with untied variances (ϑv = X/X) and a range of scale factors. Data correspond to
the “gand, dev” plot in Figure 9.1f (p. 182) and Figures E.1e,f. Dashed lines are
normal distributions estimated from the actual score values.
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State-dependent variance floors (ϑf = S/X, ϑv = X/X)
a) actual score values b) normal approximation
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c) actual score values d) normal approximation
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Variance scaling (ϑv = X/X)
e) actual score values f) normal approximation

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)

Gandalf, eva, scaled mixture variances, mfcc, SS

0.60
0.80
1.00
1.20
1.40

   2     5    10    20  

     2

     5

    10

    20

False Accept Rate (in %)

Fa
lse

 R
ej

ec
t R

at
e 

(in
 %

)

Gandalf, eva, scaled mixture variances, mfcc, SS, synthetic normal data

0.60
0.80
1.00
1.20
1.40

Figure E.8: Gandalf evaluation data: DET curves from variance flooring and
variance scaling experiments in Chapter 9. Plots on the left (a,c,e) correspond
to the “gand, eva” plots in Figures 9.1b, 9.1c and 9.1f, respectively. Plots on
the right (b,d,f) show DET curves of synthetic score data generated from normal
distributions estimated from curves on the left.



298 Appendix E. Variance estimation - extended results

a) γ = 0.60
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Figure E.9: Gandalf evaluation data: normal quantile plots for state-dependent
variance floors (ϑf = S/X, ϑv = X/X) and three scale factors. Data correspond to
the “gand, eva” plot in Figure 9.1b (p. 182) and Figures E.8a,b.



Variance estimation - extended results 299
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Figure E.10: Gandalf evaluation data: Score histograms for state-dependent
variance floors (ϑf = S/X, ϑv = X/X) and a range of scale factors. Data correspond
to the “gand, eva” plot in Figure 9.1b (p. 182) and Figures E.8a,b. Dashed lines
are normal distributions estimated from the actual score values.
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Figure E.11: Gandalf evaluation data: normal quantile plots for mixture
component-dependent variance floors (ϑf = X/X, ϑv = X/X) and three scale
factors. Data correspond to the “gand, eva” plot in Figure 9.1c (p. 182) and Figures
E.8c,d.
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Figure E.12: Gandalf evaluation data: Score histograms for mixture
component-dependent variance floors (ϑf = ϑv = X/X) and a range of scale factors.
Data correspond to the “gand, eva” plot in Figure 9.1c (p. 182) and Figures E.8c,d.
Dashed lines are normal distributions estimated from the actual score values.
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Figure E.13: Gandalf evaluation data: normal quantile plots for variance
scaling with untied variances (ϑv = X/X) and three scale factors. Data correspond
to the “gand, eva” plot in Figure 9.1f (p. 182) and Figures E.8e,f.
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a) α = 0.40 b) α = 0.60
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Figure E.14: Gandalf evaluation data: Score histograms for variance scaling
with untied variances (ϑv = X/X) and a range of scale factors. Data correspond
to the “gand, eva” plot in Figure 9.1f (p. 182) and Figures E.8e,f. Dashed lines are
normal distributions estimated from the actual score values.
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State-dependent variance floors (ϑf = S/X, ϑv = X/X)
a) actual score values b) normal approximation
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c) actual score values d) normal approximation
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Variance scaling (ϑv = X/X)
e) actual score values f) normal approximation
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Figure E.15: SESP data: DET curves from variance flooring and variance scal-
ing experiments in Chapter 9. Plots on the left (a,c,e) correspond to the “sesp”
plots in Figures 9.1b, 9.1c and 9.1f, respectively. Plots on the right (b,d,f) show
DET curves of synthetic score data generated from normal distributions estimated
from curves on the left.
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a) γ = 0.60
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Figure E.16: SESP data: normal quantile plots for state-dependent variance
floors (ϑf = S/X, ϑv = X/X) and three scale factors. Data correspond to the
“sesp” plot in Figure 9.1b (p. 182) and Figures E.15a,b.
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a) γ = 0.40 b) γ = 0.60
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Figure E.17: SESP data: Score histograms for state-dependent variance floors
(ϑf = S/X, ϑv = X/X) and a range of scale factors. Data correspond to the
“sesp” plot in Figure 9.1b (p. 182) and Figures E.15a,b. Dashed lines are normal
distributions estimated from the actual score values.
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a) γ = 0.60
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Figure E.18: SESP data: normal quantile plots for mixture component-
dependent variance floors (ϑf = X/X, ϑv = X/X) and three scale factors. Data
correspond to the “sesp” plot in Figure 9.1c (p. 182) and Figures E.15c,d.
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Figure E.19: SESP data: Score histograms for mixture component-dependent
variance floors (ϑf = ϑv = X/X) and a range of scale factors. Data correspond
to the “sesp” plot in Figure 9.1c (p. 182) and Figures E.15c,d. Dashed lines are
normal distributions estimated from the actual score values.



310 Appendix E. Variance estimation - extended results

a) γ = 0.60
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Figure E.20: SESP data: normal quantile plots for variance scaling with untied
variances (ϑv = X/X) and three scale factors. Data correspond to the “sesp” plot
in Figure 9.1f (p. 182) and Figures E.15e,f.
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a) α = 0.40 b) α = 0.60
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Figure E.21: SESP data: Score histograms for variance scaling with untied vari-
ances (ϑv = X/X) and a range of scale factors. Data correspond to the “sesp” plot
in Figure 9.1f (p. 182) and Figures E.15e,f. Dashed lines are normal distributions
estimated from the actual score values.
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State-dependent variance floors (ϑf = S/X, ϑv = X/X)
a) actual score values b) normal approximation
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Figure E.22: Polycost data: DET curves from variance flooring and variance
scaling experiments in Chapter 9. Plots on the left (a,c,e) correspond to the “poly”
plots in Figures 9.1b, 9.1c and 9.1f, respectively. Plots on the right (b,d,f) show
DET curves of synthetic score data generated from normal distributions estimated
from curves on the left.
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Figure E.23: Polycost data: normal quantile plots for state-dependent variance
floors (ϑf = S/X, ϑv = X/X) and three scale factors. Data correspond to the
“poly” plot in Figure 9.1b (p. 182) and Figures E.22a,b.
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Figure E.24: Polycost data: Score histograms for state-dependent variance
floors (ϑf = S/X, ϑv = X/X) and a range of scale factors. Data correspond to the
“poly” plot in Figure 9.1b (p. 182) and Figures E.22a,b. Dashed lines are normal
distributions estimated from the actual score values.
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Figure E.25: Polycost data: normal quantile plots for mixture component-
dependent variance floors (ϑf = X/X, ϑv = X/X) and three scale factors. Data
correspond to the “poly” plot in Figure 9.1c (p. 182) and Figures E.22c,d.
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Figure E.26: Polycost data: Score histograms for mixture component-dependent
variance floors (ϑf = ϑv = X/X) and a range of scale factors. Data correspond
to the “poly” plot in Figure 9.1c (p. 182) and Figures E.22c,d. Dashed lines are
normal distributions estimated from the actual score values.



318 Appendix E. Variance estimation - extended results

a) γ = 0.60

−3 −2 −1 0 1 2 3

−
35

−
30

−
25

−
20

impostor score

normal quantiles

sc
or

e 
qu

an
til

es

−3 −2 −1 0 1 2 3
−

30
−

25
−

20
−

15
−

10

true−speaker score

normal quantilesb) γ = 1.00

−3 −2 −1 0 1 2 3

−
20

−
15

−
10

−
5

impostor score

normal quantiles

sc
or

e 
qu

an
til

es

−3 −2 −1 0 1 2 3

−
10

−
5

0

true−speaker score

normal quantilesc) γ = 1.40

−3 −2 −1 0 1 2 3

−
10

−
5

0

impostor score

normal quantiles

sc
or

e 
qu

an
til

es

−3 −2 −1 0 1 2 3

−
5

0
5

10

true−speaker score

normal quantiles

Figure E.27: Polycost data: normal quantile plots for variance scaling with
untied variances (ϑv = X/X) and three scale factors. Data correspond to the
“poly” plot in Figure 9.1f (p. 182) and Figures E.22e,f.
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a) α = 0.40 b) α = 0.60
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Figure E.28: Polycost data: Score histograms for variance scaling with un-
tied variances (ϑv = X/X) and a range of scale factors. Data correspond to the
“poly” plot in Figure 9.1f (p. 182) and Figures E.22e,f. Dashed lines are normal
distributions estimated from the actual score values.
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Figure F.1: Distribution of FRRd (at target-independent EERd-threshold) over
targets in PER test set T2b_G8.
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Figure F.2: Distribution of FRRd (at target-independent EERd-threshold) over
targets in PER test set T2b_LO.
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Figure F.3: Binomial distributions used to compute confidence intervals for the
retrained research system, test sets T2b_Q:c and full enrollment (E2a_c). ρ (rho)
for solid lines with diamonds are computed with Method 1, while the distributions
for ρ = 0.20 (dashed lines with circles) correspond to Method 2 with an a posteriori
choice of ρ. The normal approximation to each binomial is shown as a dotted line.
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Figure F.4: Binomial distributions used to compute confidence intervals for the
baseline research system, test sets T2b_Q:c and full enrollment (E2a_c). ρ (rho)
for solid lines with diamonds are computed with Method 1, while the distributions
for ρ = 0.20 (dashed lines with circles) correspond to Method 2 with an a posteriori
choice of ρ. The normal approximation to each binomial is shown as a dotted line.
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Figure F.5: Binomial distributions used to compute confidence intervals for the
commercial system, test sets T2b_Q:c and full enrollment (E2a_c). ρ (rho) for
solid lines with diamonds are computed with Method 1, while the distributions for
ρ = 0.20 (dashed lines with circles) correspond to Method 2 with an a posteriori
choice of ρ. The normal approximation to each binomial is shown as a dotted line.



Appendix G

ATLAS log file DTD

<!-- ############################################################

File: atlas-log.dtd

Document Type Definition for log files generated by Atlas.

Created for use with JAXB (version 1.0ea).

Note: JAXB 1.0ea does not support NOTATION, ENTITY, ENTITIES and

enumeration NOTATION types.

Missing from this DTD:

- dialog component specific things

- ...

General attribute descriptions:

- startDateTime specifies a calendar date and time

- startTime specifies a time in milliseconds since the start of

the session where an element belongs.

- startTime and duration for say, play, gesture and listen elements

refer to the media signal associated with the element.

################################################################# -->

<!-- dataDir should be base directory for session-dependent subdirectories -->

<!ELEMENT application ( history, propertyList, resources ) >

<!ATTLIST application

name CDATA #REQUIRED

startDateTime CDATA #REQUIRED

duration CDATA #IMPLIED
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dataDir CDATA #IMPLIED >

<!ELEMENT history ( session | signal )* >

<!-- dataDir should specify a session directory as a path relative to

a base directory specified in the application element. It may also

specify an absolute path, especially if no base directory is specified

for the application. -->

<!ELEMENT session ( subHistory, propertyList ) >

<!ATTLIST session

startDateTime CDATA #REQUIRED

duration CDATA #IMPLIED

dataDir CDATA #IMPLIED

localId CDATA #REQUIRED

remoteId CDATA #REQUIRED >

<!ELEMENT signal ( description, action? ) >

<!ATTLIST signal

type ( incoming | hangup | other ) #REQUIRED

startDateTime CDATA #REQUIRED

startTime CDATA #REQUIRED

duration CDATA #IMPLIED >

<!ELEMENT description ( #PCDATA ) >

<!ELEMENT action ( #PCDATA ) >

<!-- propertyList may contain both given input values and resulting output

values -->

<!-- purpose should provide a short intuitive description for what

the component is supposed to do, for example "login", "confirmation" or

"getDate". -->

<!-- type should be a unique identifier for the component type,

such as its qualified classname -->

<!ELEMENT dialogComponent ( subHistory, propertyList ) >

<!ATTLIST dialogComponent

purpose CDATA #REQUIRED

type CDATA #REQUIRED

startTime CDATA #REQUIRED

duration CDATA #IMPLIED >

<!ELEMENT subHistory ( ( dialogComponent | turn | signal )* ) >

<!ELEMENT turn ( say | play | gesture | listen | signal )+ >
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<!ATTLIST turn

startTime CDATA #REQUIRED

duration CDATA #IMPLIED >

<!-- startTime indicates when the audio signal started playing in the

media device(s) -->

<!-- duration indicates the length of the played audio signal -->

<!ELEMENT say ( message, audioFile?, errorDescription? ) >

<!ATTLIST say

startTime CDATA #IMPLIED

duration CDATA #IMPLIED >

<!-- startTime indicates when the audio signal started playing in the

media device(s) -->

<!-- duration indicates the length of the played audio signal -->

<!ELEMENT play ( message?, audioFile, errorDescription? ) >

<!ATTLIST play

startTime CDATA #IMPLIED

duration CDATA #IMPLIED >

<!-- startTime indicates when the gesture started showing in the media

device(s) -->

<!-- duration indicates the length of the animation -->

<!ELEMENT gesture ( errorDescription? ) >

<!ATTLIST gesture

name CDATA #REQUIRED

startTime CDATA #IMPLIED

duration CDATA #IMPLIED >

<!ELEMENT message EMPTY >

<!ATTLIST message

text CDATA #REQUIRED

language CDATA #REQUIRED >

<!ELEMENT expectedMessage EMPTY >

<!ATTLIST expectedMessage

text CDATA #REQUIRED

language CDATA #IMPLIED

description CDATA #IMPLIED >

<!-- expectedMessage is a description of what was expected from

the user a priori -->

<!-- audioFile refers to the output of a speech detector if one is used,

otherwise to the recorded data -->
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<!-- id is an id number unique among listen operations in a single

application run -->

<!-- startTime indicates when the audio signal started recording in

the media device -->

<!-- duration indicates the length of the recorded audio signal -->

<!ELEMENT listen ( expectedMessage?, result, errorDescription?,

processors, audioFile?, speechDetector? ) >

<!ATTLIST listen

id CDATA #REQUIRED

startTime CDATA #IMPLIED

duration CDATA #IMPLIED >

<!-- audioFile refers to input data to speech detector (the recorded data) -->

<!ELEMENT speechDetector ( sdUtterance, audioFile?, propertyList ) >

<!ATTLIST speechDetector

resourceName CDATA #REQUIRED >

<!ELEMENT propertyList ( property )* >

<!ELEMENT property ( #PCDATA ) >

<!ATTLIST property

name CDATA #REQUIRED >

<!-- omitted startTime and duration means no utterance was detected -->

<!ELEMENT sdUtterance EMPTY >

<!ATTLIST sdUtterance

startTime CDATA #IMPLIED

duration CDATA #IMPLIED >

<!ELEMENT audioFile EMPTY >

<!ATTLIST audioFile

fileName CDATA #REQUIRED

fileFormat ( raw | wav | other ) #REQUIRED

sampleRate CDATA #REQUIRED

sampleFormat ( lin16 | lin8 | alw | ulw | other ) #REQUIRED

byteOrder ( low | high | none ) #REQUIRED

length CDATA #IMPLIED >

<!ELEMENT processors ( processor )* >

<!-- locale, if defined, must be a string like "sv_SE", "en_GB".

Undefined means the processor is locale independent. -->

<!-- propertyList is meant to list properties specific to the particular

application of the processor. More static properties should be
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listed as resource properties. -->

<!ELEMENT processor ( result, errorDescription?, propertyList ) >

<!ATTLIST processor

resourceName CDATA #REQUIRED

resourceType ( RECOGNIZER | VERIFIER | OTHER ) #REQUIRED

locale CDATA #IMPLIED >

<!ELEMENT result ( speakerHypothesis*, textHypothesis*, labelFile? ) >

<!ATTLIST result

processingTime CDATA #REQUIRED >

<!ELEMENT speakerHypothesis ( speakerId, personName? ) >

<!ATTLIST speakerHypothesis

score CDATA #REQUIRED

decision ( reject | accept | none ) #IMPLIED >

<!ELEMENT speakerId ( #PCDATA ) >

<!ELEMENT personName ( #PCDATA ) >

<!ELEMENT textHypothesis ( message ) >

<!ATTLIST textHypothesis

score CDATA #REQUIRED >

<!ELEMENT labelFile EMPTY >

<!ATTLIST labelFile

fileName CDATA #REQUIRED

format ( htk ) #REQUIRED >

<!-- startTime is the time when the error occured (relative to the start

of the session in which it occured) -->

<!ELEMENT errorDescription ( errorDescription? ) >

<!ATTLIST errorDescription

startTime CDATA #REQUIRED

message CDATA #IMPLIED

exceptionClassName CDATA #IMPLIED >

<!ELEMENT resources ( resource )* >

<!-- locale, if defined, must be a string like "sv_SE", "en_GB".

Undefined means the resource works in any locale. -->

<!ELEMENT resource ( propertyList ) >

<!ATTLIST resource

name CDATA #REQUIRED
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type CDATA #REQUIRED

locale CDATA #IMPLIED

numGets CDATA #IMPLIED >

<!-- end of DTD -->
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