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Abstract

Rational Krylov methods for model order reduction are studied. A dual rational
Arnoldi method for model order reduction and a rational Krylov method for model order
reduction and eigenvalue computation have been implemented. It is shown how to deflate
redundant or unwanted vectors and how to obtain moment matching. Both methods
are designed for generalised state space systems—the former for multiple-input-multiple-
output (MIMO) systems from finite element discretisations and the latter for single-input-
single-output (SISO) systems—and applied to relevant test problems. The dual rational
Arnoldi method is designed for generating real reduced order systems using complex shift
points and stabilising a system that happens to be unstable. For the rational Krylov
method, a forward error in the recursion and an estimate of the error in the approximation
of the transfer function are studied.

A stability analysis of a heat exchanger model is made. The model is a nonlinear partial
differential-algebraic equation (PDAE). Its well-posedness and how to prescribe boundary
data is investigated through analysis of a linearised PDAE and numerical experiments on
a nonlinear DAE. Four methods for generating reduced order models are applied to
the nonlinear DAE and compared: a Krylov based moment matching method, balanced
truncation, Galerkin projection onto a proper orthogonal decomposition (POD) basis, and
a lumping method.

Sammanfattning

Rationell Krylovmetoder för modellreduktion studeras. En dual rationell Arnoldime-
tod för modellreduktion och en rationell Krylovmetod för modellreduktion och egenvärdes-
beräkning har implementerats. Det visas hur överflödiga och oönskade vektorer tas bort
och hur momentmatchning erhålls. Båda metoderna är konstruerade för generaliserade
tillståndsrumssystem — den förra för system med flera in- och utsignaler från finita ele-
mentdiskretiseringar och den senare för system med bara en in- respektive utsignal — och
tillämpade på relevanta testproblem. Den duala rationella Arnoldimetoden är gjord för
att generera reella reducerade modeller utifrån komplexa skiftpunkter och stabilisera en
modell som har råkat bli instabil. För den rationella Krylovmetoden studeras ett framåtfel
i rekursionen och en skattning av felet i approximationen av överföringsfunktionen.

En stabilitetsanalys av en värmeväxlarmodell utförs. Modellen är en ickelinjär parti-
ell differential-algebraisk ekvation (PDAE). Dess rättställdhet och hur randvärden skall
anges undersöks genom analys av en linjäriserad PDAE och numeriska experiment på en
ickelinjär DAE. Fyra metoder för generering av reducerade modeller används på den icke-
linjära DAE:n och jämförs: en Krylovmetod för momentmatchning, balanserad trunkering,
Galerkinprojektion på en POD-bas och en lumpningsmetod.

Keywords: Model order reduction, dual rational Arnoldi, rational Krylov, moment
matching, eigenvalue computation, stability analysis, heat exchanger model

AMS 2000 subject classification: 65F15, 65F30, 65F50, 93A30, 65M60, 35L80,
76T10
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Chapter 1

Introduction

En allmän introduktion
ger lite information:
med samband och bakgrund,
exempel och urkund,
beskrivs vår situation.

1.1 General Introduction

Looking up numerical analysis in Encyclopædia Britannica Online, 19 April 2005,
we could read the following:

‘The goal of numerical analysis is the efficient computation of accurate approx-
imations of the values that satisfy mathematical equations. Two major problems
confront the numerical analyst: the round-off errors that unavoidably arise dur-
ing computation, and the representation of problems involving infinite amounts
of information with the finite number of values that a person (or computer) can
handle.’

We will keep this goal and these problems in mind while introducing the subject
of this thesis.

The history of calculus begins with Leibniz and Newton in the 17th century,
and since then mathematicians and physicists have derived and analysed differential
equations modelling different phenomena. One famous example is Newton’s second
law of motion, stating that the acceleration of an object multiplied by its mass is
equal to the net force acting on it. This is a differential equation for computing
the position of an object, since acceleration is the second derivative, with respect
to time, of the position. We write it as

m
d2

dt2
x(t) = F (t), or mẍ(t) = F (t),

where x denotes position, t time, F force, and m mass. If the mass is connected to

1



2 CHAPTER 1. INTRODUCTION

a damper and a spring, and we let x denote spring displacement, we get

mẍ(t) + dẋ(t) + kx(t) = f(t), (1.1)

where d is a damping constant, k a spring constant, and f the sum of all external
forces acting in the x-direction. We note that we can write this second order
equation as an equivalent first order system:

[
d m

1 0

] [
ẋ

ẍ

]
=

[
−k 0
0 1

] [
x

ẋ

]
+

[
f(t)
0

]
.

Given initial conditions on the position x(t0) = x0 and velocity ẋ(t0) = v0 at time
t0 it is possible to solve the differential equation for the position x(t) for subsequent
times t ≥ t0. Proving that there exists a solution is a crucial step in the analysis
of a differential equation. It is also desired that the solution is well-posed, in the
sense of Hadamard, which means that for each set of given data there is a unique
solution that depends continuously on the data. In this example the data consists
of the initial conditions. Once we know that there is a solution we try to find it.
Unfortunately—or fortunately, for numerical analysts—not all differential equations
have a known analytical solution. In particular, facing a partial differential equation
defined on a non-trivial domain we must turn to numerical techniques for obtaining
an approximate solution.

Assume that we want to compute the deflection of a beam in response to an
applied dynamic load, or the vibrations of a drum, or the flow of air past a car.
Each of these problems can be approached through the formulation of a partial
differential equation, containing spatial and temporal derivatives of the unknown
solution and accompanied by appropriate initial values and boundary conditions.
This gives a continuous problem where the solution u(x, t) satisfies the equation for
all positions x in the given domain and all times t in the interval from the initial
time to a final time. This solution belongs to an infinite dimensional function space
and in general we are not able to find it. The key is then to discretise the problem
and look for an approximate solution, with only a finite number of unknowns, using
a computer. For example, we can use a finite difference [13] or finite element [5]
discretisation of the spatial variable to transform the partial differential equation
into a system of ordinary differential equations in time, and then solve it using a
time-stepping algorithm designed for such systems. In the discretisation we usually
choose a mesh size parameter; a smaller parameter value gives a larger discrete
system with a solution closer to that of the continuous problem, and conversely a
larger value gives a smaller system with a less accurate approximate solution. This
is an important trade-off between accuracy and cost (in terms of the computing
time and computer memory required).

To illustrate the discretisation process, we use the example of a two dimensional
drum skin fastened at a plane boundary Γ and occupying the interior Ω. The



1.2. MODEL ORDER REDUCTION 3

vibrations of the skin can be computed from the wave equation

ü(x, t) − ∆u(x, t) = f(x, t), x ∈ Ω ⊂ R
2, t ≥ 0,

u(x, t) = 0, x ∈ Γ, t ≥ 0,
u(x, 0) = u0(x),
u̇(x, 0) = v0(x),

(1.2)

where u is the displacement of the skin perpendicular to its flat rest position and
f is the external force acting on the skin. The Laplace operator ∆ contains second
order spatial derivatives. If Γ is not of simple shape such as a circle we resort to
finding a numerical solution. In a basic finite element or finite difference method,
we introduce a mesh that covers the domain Ω and look for the value of the solution
in the mesh points. The finer the mesh, the more unknown point values to compute.
With these values collected in a vector U , we transform the term ∆u into a matrix-
vector product AU through a variational formulation or application of a finite
difference stencil, taking the boundary values into account. The matrix A is then
large and sparse, with only a small fraction of the many elements nonzero. Finally,
from the given initial conditions we get the discrete initial conditions necessary for
starting the time-stepping and can compute a solution up to a final time.

1.2 Model Order Reduction

From a spatial discretisation of a partial differential equation, as described in the
previous section, we can get a linear time-invariant dynamical system known as a
generalised state space system:

Eẋ = Ax + bu,

y = cx,
(1.3)

with constant matrices E,A ∈ R
n×n and vectors b ∈ R

n×1, c ∈ R
1×n. The vector

x, called the state, contains the unknown values to be computed, and there is an
input function u affecting the system and an output function y observing the state.
The matrices E and A are in this case usually sparse, and E may be singular when
either the original problem is a partial differential algebraic equation or boundary
values are included in the state. If the number of states n is large, a computer
simulation of the system can be costly in terms of CPU time and memory used.
Therefore, we would like to derive a reduced order system of the same form with
r � n states,

Ê ˙̂x = Âx̂ + b̂u,

ŷ = ĉx̂,
(1.4)

such that the output error y − ŷ is small for a given input u.
For simplicity, we consider single-input-single-output (SISO) systems in this sec-

tion, although some of the methods we describe may be applied to MIMO systems
with multiple inputs and outputs.
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The transfer function is useful for measuring how well the reduced order system
approximates the original system. Using the Laplace transform

X(s) ≡ L (x(t)) (s) =

∫
∞

0−

e−stx(t)dt,

and assuming zero initial conditions, we get the transfer function

H(s) = c (sE − A)
−1

b

that takes an input signal U(s) to an output signal Y (s) = H(s)U(s).
Small state space systems on the standard form with an identity matrix E = I

are common in control theory, and much work has been done on approximation
using reduced order models; see, for example, [19] and the references therein. The
controllability (sometimes called reachability) and observability grammians

P =

∫
∞

0

eAtbbT eAT t
dt , Q =

∫
∞

0

eAT tcT c eAt
dt ,

describe the past input energy needed to reach a given state and the future output
energy from a given state, respectively. They can be computed from the following
Lyapunov equations:

AP + PAT = −bbT ,

ATQ + QA = −cT c.

Then, a balancing transformation can be done such that the grammians are diagonal
and equal, after which the states that are both difficult to reach and difficult to
observe can be truncated; see, for example, [25] and the references therein. The
Hankel singular values σi are the square roots of the eigenvalues of the product PQ,
and a reduced order model of size k obtained from balanced truncation satisfies the
error bound

‖H − Ĥ‖H∞
= sup

ω∈R

‖H(iω) − Ĥ(iω)‖2 ≤ 2

n∑

i=k+1

σi.

This is a global error bound in the sense that it covers all frequencies ω.
In designing a controller, it can be desired to reduce the number of states from

say n = 10 to r = 4, and the methods that are used for solving Lyapunov equations
and balancing grammians use dense matrix operations with complexity O(n3). For
systems with large, sparse matrices this is not reasonable, and methods for approx-
imate balanced truncation are developed, taking advantage of the facts that the
right hand sides in the Lyapunov equations are of low rank and the Hankel singular
values often decay rapidly; see, for example, [15], [25], [1].
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The main alternative to balanced truncation for model order reduction is mo-
ment matching. With an expansion of the transfer function at a point σ we get

H(s) = c (sE − A)
−1

b

= −c
(
I − (s − σ)(A − σE)−1E

)−1
(A − σE)−1b

=
∞∑

j=0

− (s − σ)
j
c
{

(A − σE)
−1

E
}j

(A − σE)
−1

b

=

∞∑

j=0

(s − σ)
j
mj(σ),

where the coefficients

mj(σ) ≡ −c
{

(A − σE)
−1

E
}j

(A − σE)
−1

b

are called moments at σ. Explicitly computing these moments and constructing a
matching reduced order model can be done, but the process usually becomes ill-
conditioned already for matching a few moments; see, for example, [6]. Fortunately,
we can get moment matching using a projection method with basis matrices V and
Z to arrive at a reduced order model (1.4) with Ê = ZT EV , Â = ZT AV , b̂ = ZT b,
ĉ = cV , and an approximate state vector given by x = V x̂. We will see in Section 1.4
how to choose V and Z to match a desired number of moments in desired points,
and that these matrices can be constructed using rational Krylov methods. Note
that with moment matching we only know the approximation quality locally in the
points used, there is no global error bound.

From some applications, we naturally get a second order system

Mẍ + Dẋ + Kx = bu,

y = cx,
(1.5)

analogous to the equation (1.1) for the mass connected to a spring and a damper.
Then we can either use what is called a linearisation and treat the system

[
D M

I 0

] [
ẋ

ẍ

]
=

[
−K 0
0 I

] [
x

ẋ

]
+

[
b

0

]
u,

y = [c 0]

[
x

ẋ

]

of twice the size or use a method designed for second order systems.

1.3 Eigenvalue Computation

We are often interested in computing the eigenvalues of a matrix A, that is, the
values of λ such that Ax = λx for a nonzero vector x which is then a corresponding
eigenvector. For each such eigenpair (λ, x), the matrix A − λI is obviously singular
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so the eigenvalues are the solutions to the equation det(A − λI) = 0. This is a
polynomial equation in λ of degree equal to the size of A, which means that for
matrices of size larger than four we generally need to use an iterative method for
computing the eigenvalues since there are no algebraic expressions for them.

From some applications we get a generalised eigenvalue problem Ax = λEx with
a matrix pair (A,E) also known as a pencil A − λE. We restrict our attention to
regular pencils having a finite number of eigenvalues. For more details on different
eigenvalue problems and methods for solving them, we refer to [2].

The drum example (1.2) gives rise to an eigenvalue problem when we want
to compute the eigenfrequencies of the drum to find out how it will sound. The
continuous eigenvalue problem is

−∆φ(x) = µφ(x), x ∈ Ω,

φ(x) = 0, x ∈ Γ,

with eigenfunctions φ(x) also called eigenmodes, and after spatial discretisation it
becomes

Az = λz,

where the eigenvectors z approximate the eigenfunctions. The eigenvalue closest to
zero corresponds to the basic tone of the drum.

Given a large eigenvalue problem of size n we may not be interested in computing
all the n eigenvalues, either because it requires to much computer time and memory
or because we are only interested in finding certain parts of the spectrum. For
example, for a dynamical system of the form (1.3) with E = I and a diagonalisable
matrix A, such that A = V ΛV H with V unitary and Λ diagonal, we get

ż = Λz, x = V z,

which is a decoupled system with solutions zi(t) = zi(0)exp(λit). If any eigenvalue
λi on the diagonal of the matrix Λ has a positive real part, the corresponding
component zi will grow without bound as the time goes. For the system to be
stable, all eigenvalues must have negative real parts. Then, the eigenvalues closest
to the imaginary axis correspond to the components zi with the slowest decay
towards zero. Therefore, it is often interesting to compute these eigenvalues close
to the imaginary axis. A method for model order reduction called mode reduction
consists of keeping precisely the least damped eigenmodes, corresponding to these
eigenvalues.

1.4 Krylov Subspace Methods

The Lanczos and Arnoldi methods for transforming a Hermitian matrix to tridi-
agonal form and a non-Hermitian matrix to Hessenberg form, respectively, can be
written as

AVj = VjTj,j + vj+1e
T
j βj
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and
AVj = VjHj,j + vj+1e

T
j hj+1,j ,

where Vj is a basis for the Krylov subspace Kj (A, v1) ≡ span
{
v1, Av1, . . . , A

j−1v1

}
.

Originally, these methods were intended for use as an initial step in computing all
eigenvalues of a matrix and the algorithms were run up until j was equal to the size
n of the matrix A. Then, the matrix Vn is unitary and Hn,n is similar to A (from
now on we focus on the Arnoldi method for the non-Hermitian case to be specific).
It was found, however, that the eigenvalues of Hj,j gave good approximations to
some of the eigenvalues of A already after j � n steps. We see that from an
eigenpair (θ, z) of Hj,j , that is, Hj,jz = θz, we get a Ritz pair (θ, Vjz) of A with
the residual

AVjz − θVjz = Vj(Hj,jz − θz) + vj+1hj+1,jzj = vj+1hj+1,jzj

with norm equal to |hj+1,jzj |. If hj+1,j is equal to zero, we have found an invariant
subspace Vj , that is, AVj = VjHj,j , and all Ritz pairs are exact eigenpairs.

The convergence of the Ritz values θ towards the eigenvalues λ of A depends on
the starting vector v1 and the distribution of the eigenvalues in the complex plane.
Well separated eigenvalues of large modulus will be the first to converge. Thus,
when we look for eigenvalues close to a point σ in the complex plane we can use
the shift-and-invert transformation C = (A − σI)−1 since

Cx = µx ⇔ (A − σI)−1x = µx ⇔ Ax =

(
σ +

1

µ

)
x = λx.

At each step of the Arnoldi method we have to multiply a vector by the matrix
A, or solve a system with a shifted version of it, and then orthogonalise against
all previous vectors. Usually the matrix is large and sparse, and it is crucial to
take advantage of this sparsity. The orthogonalisation is done through some Gram–
Schmidt method and will become costly as the size of the basis increases. Therefore,
in a practical implementation we need some strategy for reducing the basis size by
removing unwanted directions and restarting. We also know that an unreduced
Hessenberg matrix cannot have multiple eigenvalues, so for finding multiple copies
we need a method for locking converged eigenvalues.

For the generalised eigenvalue problem Ax = λEx, we get the shift-and-invert
transformation from

Ax = λEx ⇔ (A − σE)x = (λ − σ)Ex ⇔ (A − σE)−1Ex =
1

λ − σ
x = µx.

The rational Krylov sequence method for eigenvalue computation [22] is de-
signed for using several shift points σ, and keeping the subspace found with one
shift when moving to the next. With this method, starting from a vector x we
generate a basis for the rational Krylov sequence

x, (A − σ1E)−1Ex,
{
(A − σ1E)−1E

}2
x, . . . ,

{
(A − σ1E)−1E

}j1
x,

(A − σ2E)−1Ex, . . . ,
{
(A − σKE)−1E

}jK

x.
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The advantage is that we can get rapid convergence of eigenvalues in different
regions—at each shift σk—and the price to pay for this is that we make a sparse
LU-factorisation of each shifted matrix A − σkE, for k = 1, . . . ,K.

Krylov subspace methods have been used for model order reduction since it
was found that they could be used for generating a moment matching reduced
order model without the ill-conditioned explicit matching from computed moments;
see Gallivan, Grimme and Van Dooren [9], Feldmann and Freund [6]. The first
such methods were designed for SISO systems on standard state space form, with
matching at either zero or infinity [9] or at one arbitrary point [6]. Then a Lanczos
method for Padé approximation of MIMO systems was given by Freund [7], and a
rational Lanczos method was developed by Gallivan, Grimme and Van Dooren [10].
Grimme [11] showed that projections onto unions of Krylov subspaces for shift-and-
invert with several shifts gives moment matching at all these points, for a MIMO
system with m inputs and p outputs: If

K⋃

k=1

m⋃

l=1

KJb(k,l)

{
(A − σkE)

−1
E, (A − σkE)

−1
B( : , l)

}
⊆ span {V } ,

K⋃

k=1

p⋃

l=1

KJc(k,l)

{
(A − σkE)

−T
ET , (A − σkE)

−T
C(l, : )T

}
⊆ span {Z} ,

then the moments mj(σk) of the original and m̂j(σk) of the reduced order models
are equal for j = 0, . . . , Jb(k, lb) + Jc(k, lc) − 1; k = 1, . . . ,K; lb = 1, . . . ,m; and
lc = 1, . . . , p. This also shows what starting vectors to use in a rational Krylov
method for moment matching. Such methods were studied by Skoogh [24].

The systems we apply our model order reduction techniques to are usually causal
and stable, that is, the output values at a certain time depend on past input values
but not on future input values and the output is bounded for all bounded inputs.
Then, starting from zero initial conditions, a periodic input signal u(t) = u0e

iωt,
with u0 ∈ R

m and i =
√
−1, gives the periodic output signal y(t) = H(iω)u0e

iωt.

Thus, if Ĥ(iω) = H(iω) the reduced order system gives the same output as the full
order system when the input is a sine or cosine function of frequency ω. This is one
of the reasons for matching moments at the imaginary axis, another is that with
poles located there we expect to get a rational Krylov subspace containing good
approximations to the dominant eigenmodes, that is, the ones with eigenvalues
closest to the imaginary axis.

During the last years most of the work on Krylov subspace methods for model
order reduction has been on how to handle second order systems without working
on a linearised system; see [4], [8], [29], [16]. Preserving stability and passivity [27]
is also an important issue, and there is much work to be done on methods for
nonlinear systems [3].



Chapter 2

Summary of Reports

Kanhända är tiden på jorden för kort
för alla att läsa varenda rapport,
läs här referat
av vårt resultat
så flyger väl färre av timmarna bort.

2.1 Model Order Reduction in FEMLAB by Dual Rational

Arnoldi

Solving a time-dependent partial differential equation (PDE) in a finite element pro-
gram such as FEMLAB is done through a spatial discretisation leading to a system
of ordinary differential equations (in time). The aim for reasonably high accuracy
leads to a choice of a small mesh size and thereby to an oftentimes vast number of
degrees of freedom. It is therefore natural to consider techniques for model order
reduction, especially if the model is to be used in a control system program such
as Simulink designed for working on systems with small, dense matrices.

Our aim in the work presented here was to implement a method for model
order reduction in FEMLAB that would be more general and efficient than the
mode reduction by projection onto dominant eigenmodes and static modes that
was already available.

We start from a system in generalised state space form

Eẋ = Ax + Bu,

y = Cx,

obtained after linearisation in the case of a nonlinear PDE. The matrices E and A

are large and sparse, and the pencil A − λE is regular although E may be singular.
There can be several input and output signals, in which case B and C have several
columns and rows, respectively.

9
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The main methods for model order reduction are balanced truncation and mo-
ment matching. Since we have a generalised state space system with large, sparse
matrices we choose to use a Krylov method for moment matching. In general, the
matrices A and E are non-normal and CT 6= B so the system is not symmetric. We
want a robust method for generating a small reduced order model—rather spend-
ing a bit more time generating a smaller model—and use a dual rational Arnoldi
method.

In the dual rational Arnoldi method we generate basis matrices V and Z, each
with orthonormal columns, such that

span {V } =

K⋃

k=1

m⋃

l=1

KJb(k)

{
(A − σkE)

−1
E, (A − σkE)

−1
bl

}
,

span {Z} =

K⋃

k=1

p⋃

l=1

KJc(k)

{
(A − σkE)

−H
EH , (A − σkE)

−H
C(l, : )H

}
.

The shift points σk, k = 1, . . . ,K, are given by the user or chosen as imaginary
points covering a given frequency interval. The number of vectors to generate at
each shift point from each starting vector is also specified by the user and determines
the size of the reduced order model. We generate a reduced order model by explicit
multiplication with the basis matrices to arrive at

Ê ˙̂x = Âx̂ + B̂u,

ŷ = Ĉx̂,

where Ê = ZHEV , Â = ZHAV , B̂ = ZHB, and Ĉ = CV , since we know from
Grimme [11] that this will give a reduced order model matching a maximal number
of moments in the chosen shift points.

We use a vector-wise construction with deflation for building up the bases V

and Z; note that we handle MIMO systems and use several shift points so it is
not entirely unlikely that we will find linear dependencies in the unions of Krylov
spaces. For each shift point σk, we make a sparse LU-factorisation of (A − σkE)
that we use for solving systems with this matrix when generating the corresponding
parts of V and Z. If more vectors have been deflated in the construction of either V

or Z, we add more vectors to this smaller matrix to get quadratic matrices Ê and Â

and match extra moments. Usually, the state space matrices of the original system
are real and we use imaginary shift points but want to arrive at a real reduced order
model. We do this by implicitly using the complex conjugate of each complex shift
point and adding two real vectors to the basis using the ideas of Ruhe [21].

It may happen that the reduced order model is unstable although the original
model was stable. In such cases, we have seen that usually only one or two ei-
genvalues lie in the right half plane and we truncate this unstable part using an
additive decomposition of the transfer function [14]. Keeping only the stable part
of the transfer function, we no longer get the moment matching. Hopefully, and
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this is usually a reasonable hopefulness, the unstable poles are weak in the sense
that they have a small influence on the transfer function, and we cheaply evaluate
the error in the transfer function caused by the truncation and give a warning if it
is not small.

We discuss the choice of shift points and the use of an iterative solver instead
of a matrix factorisation.

Finally, we apply our code to two test problems in FEMLAB and compare the
results with those obtained using projection onto eigenmodes and static modes.

2.2 Rational Krylov for Model Order Reduction and

Eigenvalue Computation

Since the rational Krylov sequence method for eigenvalue computation was intro-
duced by Ruhe in 1984 [20] it has undergone a few changes and also been applied to
model order reduction. In this report we try to take it one step further, using the
knowledge gathered during these twenty years and making a new implementation.

We consider the matrix pencil A − λE, corresponding to a generalised eigenvalue
problem Ax = λEx or a generalised state space system Eẋ = Ax + bu, y = cx. In a
rational Krylov method, starting from a vector v we look for approximations using
a basis V for the space spanned by the vectors in the sequence

v, (A − σ1E)−1Ev,
{
(A − σ1E)−1E

}2
v, . . . ,

{
(A − σ1E)−1E

}j1
v,

(A − σ2E)−1Ev, . . . ,
{
(A − σKE)−1E

}jK

v.

In an earlier formulation [22], two Hessenberg matrices H and K are constructed
such that

AVj+1Hj+1,j = EVj+1Kj+1,j ,

but here we consider the more recent version [23] using only one Hessenberg matrix.
We also include a shift µ, in addition to the pole σ, since this is used for nonlinear
problems and might give some extra freedom in the formulation (although the choice
of shift does not affect the Krylov space generated), and get the basic recursion

(A − σE)
−1

(A − µE) Vj = Vj+1Hj+1,j ,

where Hj+1,j is an unreduced Hessenberg matrix.
We show how to update the recursion without operating with the large matrices

A and E when moving to a new pole σ1 6= σ and a new shift µ1 6= µ, where obviously
µ1 6= σ1, to get

(A − σ1E)
−1

(A − µ1E) Ṽj = Ṽj+1H̃j+1,j

with span
{
Ṽj+1

}
= span {Vj+1}. This involves a QR-decomposition

Qj+1,j+1Rj+1,j =
µ − σ1

µ1 − σ1

[
Ij,j

01,j

]
− σ − σ1

µ1 − σ1
Hj+1,j ,
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and a transformation to Hessenberg form of the matrix

QH
j+1,j+1

(
µ1 − σ

µ1 − σ1
Hj+1,j −

µ1 − µ

µ1 − σ1

[
Ij,j

01,j

])
R−1

j,j ,

where we obviously want to avoid an ill-conditioned Rj,j .
When computing eigenvalues we must know how to lock converged eigenvalues

and purge unwanted ones. We use the ideas of Meerbergen [17] and Stewart [26]
for locking and purging by computing and reordering a Schur form of the Hessen-
berg matrix to get a new basis. Starting from a recursion of size j with l locked
eigenvalues

(A − σE)
−1

(A − µE) [Vl Vj−l] = [Vl Vj+1−l]

[
Tl,l Ml,j−l

0 Hj−l+1,j−l

]
,

where Tl,l is triangular and Hj−l+1,j−l is unreduced Hessenberg, we expand it to
size k, at each step operating on the last vector and orthogonalising against all
vectors. We show how to do locking and purging working on the active Hessenberg
part H, and how to update the passive locked parts T and M when changing poles
and shifts.

Assuming errors in the locked and active parts of the recursion,

(A − σE)
−1

(A − µE) [V1 V2] = [V1 V2 v3]

[
T M

0 H

]
+ [Φ1 Φ2] ,

and an error in the QR-decomposition, we derive expressions for the forward errors
in the recursion after a change of poles and shifts similarly to Meerbergen [17]. For
the locked part we find that we should not place the new pole close to an already
converged eigenvalue, which is rather obvious. For the active part we find that the
norms of R−1 and (A − σ1E)−1(A − µ1E) are the important factors to control.

For model order reduction, we show that using the reduced order system matrices

Â = 1
σ−µ

(σHj,j − µIj,j) ,

Ê = 1
σ−µ

(Hj,j − Ij,j) ,

ĉ = cVj ,

b̂ = V H
j (A − σE)

−1
b,

we get moment matching at all poles used up until step j. We write the error in
the approximation of the transfer function,

e(s) = Ĥ(s) − H(s) = e1(s)e2(s),

as the product of a factor

e1(s) ≡ c (sE − A)
−1

(σE − A) vj+1
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containing the large matrices and a factor

e2(s) ≡ −kj+1,j(s)e
H
j K−1

j,j (s)tj

containing only quantities from the small system which thereby is cheaply evaluated.
A similar splitting was done by Gallivan, Grimme and Van Dooren [10]. Our aim
is to use the part e2(s) as an error estimate for choosing where to place the next
pole, and in the numerical experiments we investigate the possibility of this.

We discuss how to handle second order systems, and find that we have to use
the linearisation to a system of twice the size. We also give some thought to
the problems of constructing real reduced order systems using complex shifts and
choosing poles and shifts, and present the not entirely successful results of our
attempts.

We have implemented the algorithms for eigenvalue computation and model
order reduction in Matlab and present results from applications to one illustrative
toy example and two benchmark problems. Using these test problems we study
strategies for pole placement, how the error in the recursion evolves, if the error
estimate is useful, and the trade-off between the cost of a new factorisation when
changing poles and the cost of generating a larger basis at the old pole.

2.3 Stability Analysis of a Degenerate Hyperbolic System

Modelling a Heat Exchanger

We would like to derive and analyse a numerical model of a carbon dioxide heat
pump, since experiments have shown two different steady-states with different coef-
ficients of performance. Our first step is to have a look at one of the heat exchangers,
the evaporator. Assuming a low Mach-number, we use the following simplified one-
dimensional compressible Euler equations for modelling the two-phase flow in a
long slender tube with constant cross section area A:

A
∂f

∂p

∂p

∂t
+ A

∂f

∂h

∂h

∂t
+

∂F

∂x
= 0,

A
∂p

∂x
= R,

−A
∂p

∂t
+ Af

∂h

∂t
+ F

∂h

∂x
= Q,

where p is the pressure, h the mass specific enthalpy, ρ = f(p, h) the density,
T = g(p, h) the temperature, and F = Aρu the mass flow rate for a velocity u.
The friction is modelled as

R = −LfF |u| = −Lf

F 2

Aρ
sign(F ),

where Lf is a constant, and the energy exchange is given by

Q = Aexchα(Tair − T ),
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where Aexch is the heat exchanger area, α a heat conductivity coefficient and Tair

the temperature of the surrounding air.
We now have a PDAE for the unknowns F , p and h, and want to find out how to

specify boundary conditions and initial conditions to obtain a well-posed problem.
We linearise the PDAE and freeze coefficients to arrive at a constant coefficient

linear system of the form
Aut + Bux + Cu = G,

that can be transformed to the canonical form



1 0 0
0 0 0
0 1 0


 vt +




uc 0 0
0 1 0
0 0 1


 vx + Dv = H,

with a hyperbolic equation for v1, a parabolic equation for v2, and an algebraic
equation for v3. Thus, we have to give one boundary condition according to the
characteristic and the other two at opposite boundaries. Using such boundary
conditions, we derive the energy estimate

‖v(·, t)‖2 ≤ C(t){‖v1(·, 0)‖2 + ‖v2(·, 0)‖2 + ‖v1,x(·, 0)‖2 + ‖v2,x(·, 0)‖2

+

∫ t

0

‖H(·, τ)‖2 + ‖Hx(·, τ)‖2dτ}

containing first spatial derivatives of initial data and forcing functions and thus
indicating that the problem is weakly ill-posed.

Going back to the physical variables we find that h should be given at the inflow
while F and p should be given at opposite boundaries.

After this linear stability analysis, we also make a numerical stability analysis
of the nonlinear system on the form

∂ρ

∂t
= − 1

A

∂F

∂x
,

0 = −A
∂p

∂x
− Lf

F |F |
Aρ

,

∂e

∂t
= − 1

A

∂Fh

∂x
+

Aexchα(Tair − T )

A
,

0 = −ρ + f(p, h),

0 = ρh − p − e,

0 = −T + g(p, h),

using a finite difference discretisation in space. We now need to give numerical
boundary conditions for F , p and h at either the inflow or the outflow. To invest-
igate stability, we compute a steady-state solution to start from and look at the
spectrum of a linearisation of the DAE at this solution. Testing all eight possible
combinations of where to prescribe these boundary values, we find that the two
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combinations that give stable spectra are: F and h given at the inflow, p at the
outflow; and p and h given at the inflow, F at the outflow. In both cases, the condi-
tion for h is given at the inflow and the other ones are given at opposite boundaries,
which agrees with the findings from the linear analysis. We also check the stability
by time-stepping the system and finding that these two combinations are the ones
that work, and the former is preferable since it needs fewer steps.

The equations of state we want to use for computing f(p, h) and g(p, h) are
continuous and monotone, but they are not differentiable at the saturated vapour
line in the pressure–enthalpy diagram. Since we want a differentiable right hand
side for the DAE solver, we use interpolating C1 monotone quadratic spline surfaces
f and g approximating the equations of state.

As expected, the solver identifies the system as an index-1 DAE.

2.4 Model Order Reduction of a Heat Exchanger Model

The heat exchanger model we studied in [12] is interesting for us to use as a test
problem for model order reduction methods, since it is a new model intended for
further use in numerical simulations and we can compare our results with those
obtained using a lumped model obtained through spatial integration as described
in [28].

We start from a nonlinear PDAE model of the evaporator and discretise in space
to get a system of the form

Eż = f(z) + bu,

y = cz,

where z is the state vector containing values of the mass flow rate F , pressure p,
enthalpy h, density ρ, internal energy e and temperature T in the discretisation
points. The descriptor matrix E is singular and f is a nonlinear function. We use
the pressure at the outflow as input variable u and the enthalpy at the outflow as
output variable y.

Linearising at a steady state we get a generalised state space system that is not
symmetric. We apply our dual rational Arnoldi method for model order reduction
to this system, and also a variant of balanced truncation for descriptor systems [18].
In the Arnoldi method we need to specify poles where we want to match moments
in the transfer function, and how many moments to match at each pole. These
choices determine the size of the reduced order system. For balanced truncation we
only have to give an error tolerance for the approximation of the transfer function;
the choice of tolerance implicitly determines the reduced system size.

We try two methods for nonlinear model order reduction. First, we use a lumped
model obtained after several simplifying assumptions and spatial integration. This
gives a nonlinear DAE in only 4 variables. Second, we use a Galerkin projection
onto a POD basis computed using a simulation of the full nonlinear system. This
also gives a nonlinear DAE, but its size depends on how well the data from the
simulation should be approximated.
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In our numerical experiments we see the expected approximation properties in
the transfer functions of the reduced order models obtained using the linearised
full order system. For comparing all the methods we use a specific input signal
and compare the output signals from the reduced order models with that from the
original model. We then see that the linear models give similar results while that
from the nonlinear POD model is a bit better. The output from the lumped model
is quite far from the other ones.
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Conclusions

Nu har vi kommit fram till slutsatserna
där vi skall se vad vi har kommit fram till.

We have studied two rational Krylov methods for model order reduction by
moment matching. The first is a dual rational Arnoldi method where two basis
matrices are constructed and used for generating a reduced order model by explicit
multiplication with the full order system matrices; this is a robust way to compute
a model matching a maximal number of moments. The second is a rational Krylov
method where the reduced order system matrices are obtained from the Hessenberg
matrix of orthogonalisation coefficients; this is a more elegant way to compute a
moment matching model. In both methods, a main issue that is still not resolved is
how to automatically choose poles, and the number of moments to match at each
pole, in an optimal way.

In the dual rational Arnoldi method, we handle models with multiple inputs
and outputs, retain real models by implicitly using the conjugate of complex poles,
and stabilise when needed by truncating the unstable part. Constructing basis
matrices for subsequent multiplication, we are not looking at eigenvalue convergence
or keeping track of any low-order information that might be used for error estimates
and choosing new poles.

In the rational Krylov method, we always have a low-order representation—
based on the Hessenberg matrix—of the system in the present subspace. This is
useful for constructing cheaply evaluated error estimates, but it is still not clear to
us how to keep the special form of the recursion while constructing real reduced
order models using complex poles and how to get moment matching for second
order systems without linearisation.

We have also used the rational Krylov method for eigenvalue computation.
Then, locking and purging becomes important and we describe in some detail how
to do this, working on an active part and updating the locked part when changing
poles. From a forward error analysis we get some not too intriguing indications of
when a change of poles can introduce a large error in the recursion. We have used

17
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a heuristic for choosing where to place the next pole based on the converged Ritz
values, but there are still several parameters to be chosen in concert when running
the program.

Always on the lookout for interesting test problems for our model reduction
methods, we have been involved in a stability analysis of an evaporator model.
This model is a nonlinear PDAE. From a linear stability analysis, working on
a frozen coefficient linearisation transformed to a canonical form, we derive an
energy estimate and see how to prescribe boundary data. We also make numerical
simulations using a finite difference discretisation in space, supporting the linear
stability analysis.

The evaporator is part of a heat pump system, and we want to look at low
order models for future simulations of the entire system. Our numerical evaporator
model is a nonlinear DAE. We linearise it to obtain a generalised state space
system, and apply one of our Krylov methods for moment matching as well as a
balanced truncation method. We also have a look at nonlinear methods, using
Galerkin projection onto a POD basis as well as a physically motivated lumping
method. In this perspective, we find the two linear methods to give similar results.
We have reasons to believe that model order reduction methods will be useful in full
system simulations, but the choice of method and model size will have to depend
on the range of input signals.
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