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Abstract

Language technology is when a computer processes human languages in some way. Since
human languages are irregular and hard to define in detail, this is often difficult. Despite
this, good results can many times be achieved. Often a lot of manual work is used in
creating these systems though. While this usually gives good results, it is not always
desirable. For smaller languages the resources for manual work might not be available,
since it is usually time consuming and expensive.

This thesis discusses methods for language processing where manual work is kept to
a minimum. Instead, the computer does most of the work. This usually means basing
the language processing methods on statistical information. These kinds of methods can
normally be applied to other languages than they were originally developed for, without
requiring much manual work for the language transition.

The first half of the thesis mainly deals with methods that are useful as tools for
other language processing methods. Ways to improve part of speech tagging, which is
an important part in many language processing systems, without using manual work, are
examined. Statistical methods for analysis of compound words, also useful in language
processing, is also discussed.

The first part is rounded off by a presentation of methods for evaluation of language
processing systems. As languages are not very clearly defined, it is hard to prove that
a system does anything useful. Thus it is very important to evaluate systems, to see if
they are useful. Evaluation usually entails manual work, but in this thesis two methods
with minimal manual work are presented. One uses a manually developed resource for
evaluating other properties than originally intended with no extra work. The other method
shows how to calculate an estimate of the system performance without using any manual
work at all.

In the second half of the thesis, language technology tools that are in themselves useful
for a human user are presented. This includes statistical methods for detecting errors in
texts. These methods complement traditional methods, based on manually written error
detection rules, for instance by being able to detect errors that the rule writer could not
imagine that writers could make.

Two methods for automatic summarization are also presented. One is based on com-
paring the overall impression of the summary to that of the original text. This is based
on statistical methods for measuring the contents of a text. The second method tries
to mitigate the common problem of very sudden topic shifts in automatically generated
summaries.

After this, a modified method for automatically creating a lexicon between two lan-
guages by using lexicons to a common intermediary language is presented. This type of
method is useful since there are many language pairs in the world lacking a lexicon, but
many languages have lexicons available with translations to one of the larger languages of
the world, for instance English. The modifications were intended to improve the coverage
of the lexicon, possibly at the cost of lower translation quality.

Finally a program for generating puns in Japanese is presented. The generated puns
are not very funny, the main purpose of the program is to test the hypothesis that by
using “bad words” things become a little bit more funny.
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Sammanfattning

Språkteknologi innebär att en dator på något sätt behandlar mänskligt språk. Detta är i
många fall svårt, eftersom språk är oregelbundna och det är svårt att definiera exakta regler
för ett helt språk. I många fall kan man uppnå bra resultat trots detta. Ofta använder
man dock mycket mänskligt arbete under utvecklandet av språkteknologiska verktyg. Även
om detta ofta ger bra resultat är det inte alltid önskvärt. Till exempel kan det vara ett
problem för mindre språk, där resurser för manuellt arbete ofta inte finns, eftersom det
kan vara både tidskrävande och dyrt.

I denna avhandling diskuteras språkteknologiska metoder där manuellt arbete i stort
undviks. I stället låter man datorn arbeta. I de flesta fall betyder detta att metoderna
baseras på statistisk information. Denna typ av metoder kan ofta användas på andra språk
än det de först utvecklades för, utan att kräva några större arbetsinsatser för språkan-
passning.

I den första halvan av avhandlingen tas metoder som främst är hjälpverktyg för andra
språkteknologiska metoder upp. Där diskuteras hur man utan extra arbete kan förbättra
ordklassgissningsmetoder, en viktig komponent i många språkteknologiska sammanhang.
Statistiska metoder för analys av sammansatta ord tas också upp. Även detta har många
tillämpningar inom språkteknologi.

Slutligen tas metoder för att utvärdera hur väl språkteknologiska system fungerar
upp. Då det på grund av språks vaga karaktär är mycket svårt att bevisa att ett system är
användbart är utvärderingar mycket viktiga för att klargöra om ett system är användbart.
Utvärdering leder ofta till manuellt arbete, men i denna avhandling diskuteras två andra
metoder där dels en manuellt producerad resurs används i utvärdering av även andra
egenskaper än det var tänkt, utan extra arbete, och dels hur en uppskattning av ett
systems prestanda kan beräknas helt utan manuellt arbete.

I den andra halvan av avhandlingen presenteras språkteknologiska verktyg som är mer
direkt användbara för en människa. Dessa innefattar statistiska metoder för att detektera
språkliga fel i texter. Dessa metoder kompletterar traditionella metoder, som bygger på
manuellt skrivna feldetekteringsregler, genom att till exempel kunna detektera fel som
regelkonstruktörer inte kunnat föreställa sig att folk kan göra.

Två metoder för automatisk sammanfattning av text presenteras också. Den ena av
dessa bygger på att jämföra helhetsintrycket av en sammanfattning med helhetsintrycket
av originaltexten, med hjälp av statistiska metoder för att mäta innehållet i en text. Den
andra metoden försöker lindra problemet att det ofta är tvära kast i automatgenererade
sammanfattningar, vilket gör dem svårlästa.

Sedan presenteras en utvidgad metod för att skapa lexikon mellan två språk genom att
utnyttja redan färdiga lexikon till något gemensamt mellanspråk. Denna typ av metoder är
användbara då det saknas lexikon mellan många språk i världen, men det ofta finns färdiga
lexikon mellan ett visst språk och något av världens stora språk, till exempel engelska. De
utvidgningar av de vanliga metoderna för detta som skett är till för att öka omfånget av
lexikonet, även om det sker till priset av något lägre översättningskvalitet.

Slutligen presenteras ett enkelt program för att generera ordvitsar på japanska. Pro-
grammet genererar inte speciellt roliga vitsar, men är till för att testa hypotesen att det
blir lite roligare om man använder fula ord än om man använder vanliga ord.
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Chapter 1

Introduction

This thesis concerns natural language processing, often shortened to NLP. NLP
is when a computer does something with a language normally used by humans,
such as English or Swedish. NLP is of course a very large research area, including
such diverse things as speech recognition, machine translation, text categorization
and dialogue systems. While it seems very hard to make a computer understand
languages in the sense that humans seem to understand them, many useful things
can be done with much simpler methods. Finding information one is interested in
in very large text collections such as the Internet is one example where computers
are useful. Helping writers find unintentional spelling errors is another.

The contents of this thesis span many different areas of NLP, such as analysis of
compound words, automatic summarization and grammar checking. The different
parts are not very tightly coupled. The main theme is consistently trying to be
lazy, in the sense of trying to avoid doing any actual work yourself. Instead, the
computer should do the work that needs to be done. Sometimes the results of work
that has already been done by someone else is also used.

Letting the computer do most of the work has many benefits. Computers are
often cheaper to use than human labor, and almost always faster. Computers are
very patient, they do not make random mistakes because they grow tired or bored.
Another benefit is that methods based on little or no manual work can quickly be
adapted to other languages or language domains.

There are of course many useful methods in NLP that require substantial
amounts of human labor. These often work very well, many times outperforming
methods based mainly on automatic work, and can be used for many interesting
applications. In this thesis the focus will however be on methods that require little
or no manual work. While this is in many ways a good thing it should not be taken
to mean that methods requiring manual work are bad or inferior.

The largest advantage of manual labor is that a human actually understands
language. Humans also have a lot of background knowledge and experience with
language. An example of a language processing task where manual work works

1



2 CHAPTER 1. INTRODUCTION

very well is writing rules for detecting some form of grammatical errors in text.
A human rule writer will generally have a good idea of which properties of some
example errors are most important, of what makes an error an error. This is difficult
for computers.

Computers on the other hand are very good at keeping track of large amounts
of data. A language processing task where this is useful is writing rules for speech
recognition. Given some audio signal and what we believe we have heard before,
what is the most likely interpretation of the audio signal? Computers can collect
detailed statistics on for instance word sequence probabilities from large example
collections. It turns out to be quite hard for a human to specify useful rules for the
same application.

Another example where a computer is more useful than a human is when search-
ing a large text database. The computer will likely make many mistakes, returning
documents unrelated to the search query. A human would likely understand a query
and the documents well enough to only recommend relevant texts, but given a large
enough database a human will lack the time, patience and memory capacity to read
and remember all texts.

This thesis mainly deals with language processing tasks where both manual
and automatic methods can and have been used. The intent is to reduce the
manual work mainly because it is expensive, time consuming and possibly boring.
Thus, even if the automatic methods do not perform as well as methods based on
manual work could perform, as long as the results are useful it will be considered
good enough. Of course, if the automatic methods also perform better than or
complements manual work, this is even better.

The contributions to the field of NLP presented in the thesis include:

• a new method for part of speech tagging,

• methods for increasing part of speech tagging accuracy by combining different
tagging systems,

• evaluations of the impact of different properties of the training data on the
resulting tagging accuracy,

• statistical methods for splitting compound words,

• two new methods for evaluating the robustness of annotation systems such
as parsers, one using a resource annotated for another purpose and one using
no annotated resources at all,

• three new statistical methods for automatic grammar checking,

• two new methods for automatic summarization,

• an extension to a method for generating new bilingual lexicons from other
bilingual lexical resources, increasing the coverage of the generated lexicon,
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• an evaluation of automatically generated puns, showing that by using “bad
words” the generated jokes become funnier.

The thesis is divided into two parts: one treating methods that are rarely in-
teresting for a normal computer user but useful as a tool for other programs doing
things the user is interested in; and one part treating applications that are in them-
selves useful.

The research has been done as parts of two projects at KTHNada, the CrossCheck
project and the Infomat project.

CrossCheck – Swedish Grammar Checking for Second Language
Learners

CrossCheck1 was a project that studied how grammar checking can help second
language learners. It was a continuation of a previous project where a grammar
checker for Swedish was developed. Learners of Swedish make many errors that
native speakers never make. Learners also generally make many more errors than
native speakers. A grammar checker normally needs some correct text to base
the analysis of the text on. The fact that learners make many errors means that
this form of grammar checking is in some ways harder, since there is less correct
context to base the analysis on. Another difficult property is that learners make
“unexpected” errors. It is for instance hard to write rules for error types that the
rule writer himself does not realize that people can make.

My part in the project mainly consisted of designing and evaluating statistical
methods for grammar checking. These can often find the unexpected error types
too, since they classify anything that differs from the “norm” of the language they
have been taught as an error. This of course means that the statistical methods
have problems with new domains that differ a lot from the reference domain.

Infomat – Swedish Information Retrieval with Language
Technology and Matrix Computations

The Infomat project2 was a cooperation with a medical university, Karolinska In-
stitutet, where very large collections of natural language data is available. How
to use this data in meaningful ways, such as clustering large amounts of text for
a good overview, was studied. My part consisted mostly of creating methods for
underlying techniques, such as compound splitting, which is useful for clustering
and other tasks.

1http://www.csc.kth.se/tcs/projects/xcheck/
2http://www.csc.kth.se/tcs/projects/infomat/
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scrabbled joked eloped
scrabbling joking eloping
scrabbles jokes elopes





Figure 1.1: Example corpus, using 63 characters.





scrabbl
jok
elop









ed
ing
es





Figure 1.2: Compact representation of the corpus in figure 1.1, using 21 characters.

1.1 Related Research, Other Lazy Approaches

In this section, earlier research that in various ways can be considered lazy is presen-
ted. This section is not meant to be exhaustive, it is an overview of some of the
work that has been done. Mainly research that is in some way related to the other
contents of the thesis has been included.

Unsupervised Learning of Morphology Rules

Much useful work on computational morphology has been done using two-level sys-
tems (Koskenniemi, 1983). This work gives good results but normally requires quite
a lot of manual work. Several methods for automatically learning the morphology
of a language from unannotated text have been suggested. Here, morphology will
mean finding a set of inflectional patterns (collections of suffixes that occur with
the same stem) and words that are inflected according to these patterns.

If a word contains the letters l1, l2, . . . , ln, we can check the possible continu-
ations and their probabilities after seeing the letters l1, . . . , lm. If we calculate the
entropy at each position in the word, detecting morpheme boundaries can be done
by detecting peaks in entropy. It is of course also interesting to check the entropy
given suffixes instead of prefixes, e.g. lm, . . . , ln. This is an old idea that gives quite
good results (Harris, 1955, Hafer and Weiss, 1974).

The previous approach is local in the sense that no information on morphemes
from other words is used when searching for morpheme boundaries in a new word
(though of course information from other words is used when calculating entropies).
Since many words are inflected according to the same rules as other words, using
only local information discards a lot of interesting information.

Methods that try to find a globally optimal analysis with regards to morphemes
have also been suggested. One interesting approach uses minimum description
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length as the criterion for how good an analysis of the morphology of the set of
words in a corpus is (Goldsmith, 2001). This means that a model of the morphology
is evaluated by how well the model can compress the corpus, i.e. how compact is
the description of the data using the model. An example of the compression of a
corpus is shown in figures 1.1 and 1.2. The complexity of the model is also taken
into account, and the description length of each model is calculated. The model
with the shortest description of both model and data is considered optimal.

Unsupervised Part of Speech Tagging

Part of speech (PoS) tagging is described more fully in section 2, but can here be
described as assigning part of speech information to words in text. The part of
speech information is usually the word class of a word and some extra information,
such as which inflectional form is used, grammatical gender or similar information.

Many methods for PoS tagging rely on a manually annotated training resource.
Once this is available, a learning algorithm automatically learns from the manual
annotation how to annotate other texts. This is lazy in the sense that by using
someone else’s manual work, with no extra work for oneself it is possible to create
for instance a part of speech tagger. The initial annotation of the training data
does however require quite a lot of work.

Methods for unsupervised PoS tagging also exist. Here unsupervised means
that no annotated training data is required. Unsupervised methods normally use
a large unannotated corpus for training. A lexicon detailing the possible tags for
each word is also used.

Different methods for PoS tagging exist, and different methods for unsupervised
estimation of parameters for these methods also exist. A typical example would be
to use the probabilities of a certain tag occurring with a certain word and a certain
tag occurring in a certain tag context. Given some initial estimate, such as that all
words that can appear with a certain tag are equally likely for this tag, joint tag
word probabilities can be calculated.

This is then done for the unannotated corpus, selecting the tag assignments that
maximize the likelihood of the data. From these tag assignments, the tag word
probabilities and tag sequence probabilities can be reestimated, and the procedure
can be repeated again.

While this unsupervised method does not require any manual annotation, the
results are normally much worse than for supervised methods. Different methods
to improve the results of unsupervised tagging, as well as a good introduction to
the methods applied, are described by Wang and Schuurmans (2005).

Memory Based Learning

A machine learning method that is relevant to this thesis is memory based learning,
which is even sometimes called lazy learning. The name memory based learning
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relates to the fact that instead of reading the training data and producing a hypo-
thesis for how to generalize to new data, the memory based learner simply keeps
all the training data around. When new data is to be classified, the decisions are
based on the remembered training data.

The method is lazy in the sense that it does not do any work, such as training,
unnecessarily. It only performs some work at the last possible moment, when new
data has to be classified. As is normally the case when being lazy, postponement
often leads to a lot of work when the work is actually done, usually requiring a
larger total amount of work than methods that perform a lot of work during the
training phase.

One simple example of memory based learning is to classify new examples as
belonging to the same class as the closest example in the training data. For language
processing, this could for instance mean classifying a document as belonging to the
same genre as the previously seen document which is closest. Closeness could be
measured by for instance word overlap between documents.

Classifying new data according to the closest training data example is often
called nearest neighbor classification. This can often over fit the data, i.e. noise in
the form of errors or occurrences of unlikely events in the training data will be given
too much weight. A straightforward way to mitigate this is to use the k nearest
neighbors, letting them vote on the classification. The votes can also be weighted
with their distances to the new example.

Memory based learning has been used for natural language processing. Ex-
amples include part of speech tagging (Daelemans et al., 1996), resolving preposi-
tional phrase attachment ambiguities (Zavrel et al., 1997) and named entity recog-
nition (Meulder and Daelemans, 2003) to mention just a few.

An interesting example of memory based learning is memory based parsing
(Kubler, 2005). The idea is to assign a parse tree to a sentence based on the
parse tree of the closest sentence. Assigning the parse tree of a previously parsed
sentence to a new sentence may not be a good idea, even if it is the sentence that
in some sense is closest. The approach taken is to adapt the parse tree from the
closest sentence. If for instance the new sentence “I am going to Sweden.” is to be
parsed, and the closest sentence in the training data is “I am going to Sweden next
week.”, the parse tree is adapted by simply cutting away the parts of the tree that
correspond to parts not appearing the new sentence.

Since sentences lead to very sparse data even with large treebanks, back-off
methods are also used. Sentences that are close on the part of speech level or on
the phrase level are also considered.

Automatic Learning for Word Sense Disambiguation

When there are two or more independent sources of information for solving a prob-
lem, these can be used together, each giving information to the other. One example
where this has been used is word sense disambiguation. Word sense disambiguation
is the problem of assigning which of several possible meanings of a word a certain
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occurrence of the word represents. Are the “plants” in “She was watering the
plants.” in the botanical sense or some of the other possible senses?

Two relatively independent sources of information when disambiguating word
senses are co-occurring words and the other senses used in the same discourse
(Yarowsky, 1995). Words often have only one sense per discourse and they also
often have only one sense when co-occurring with another specific word.

This means that by manually assigning the correct sense information to a few
seed occurrences, large amounts of unlabeled data can then be automatically labeled
with high precision. First a method using the one sense per discourse assigns the
same sense to all other occurrences in the same discourses as the seed words. Then a
method that finds strong collocations (words that are not co-occurring by chance)
is used on all the now labeled examples. After finding interesting co-occurrence
patterns, this method also labels all new examples the new rules apply to.

Then the one sense per discourse method is applied again using the new ex-
amples, followed by the co-occurrence method again. The methods can in this way
help each other and large amounts of data can be labeled automatically.

Random Indexing

Random Indexing (RI) is used in several experiments in this thesis, for instance in
conjunction with compound splitting and summarization. It is also relevant for this
thesis in the way that it requires only unannotated text, though in large amounts,
and is very simple to implement. Thus, it is a good method in the lazy sense.
A short overview of RI is given here, for instance Sahlgren (2005) gives a more
detailed introduction.

RI is a method to measure how related two words are to each other. It is a
word space model, i.e. it uses statistics on word distributions. In essence, words
that occur in similar contexts are assumed to be related. RI has been used for
many different tasks. As for most methods that try to capture the relatedness of
words, a high-dimensional vector space is created and words that are close in this
space are assumed to have related meanings.

The most well known and studied word space model is probably Latent Se-
mantic Analysis/Indexing (LSA) (Landauer et al., 1998). LSA has been used in
many applications, for instance search engines and summarization systems. One
advantage that RI has over LSA is that RI is an incremental method, so new texts
are easily added.

In RI, each context is given a label. A context can be a document, paragraph,
co-occurring word etc. This label is a very sparse vector. The dimensionality of
the vector can be chosen to be quite short if high compression of the word space is
desired, or long if compression is not needed. A few percent of the vector elements
are set to 1 or −1, the rest to 0. This means that the labels are approximately
orthogonal. Usually, which positions are set to 1 or −1 are determined randomly,
hence the name Random Indexing. Assigning the values randomly is not strictly
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necessary, many other functions would also work, but it is a very simple method to
implement.

Each word is given a context vector. Whenever a word occurs in a context, the
label of the context is added to the context vector of the word. Words that often
occur in the same contexts will thus have similar context vectors.

In this thesis, unless otherwise stated, co-occurring words are used as contexts.
More specifically the three preceding and three following words, weighted so that
closer words are given more weight, are considered to be the context.

1.2 Resources Used in this Thesis

Apart from using methods that require little or no work for yourself, it is also often
possible to use work intensive methods, but based on other peoples’ work. By now,
there are many resources that a lot of work was put into that are freely available
for use by other people. In this thesis several resources of this type are used, and
they are given a short presentation here. In return, the work presented in this
thesis created some new freely available resources, such as a compound splitter for
Swedish, a part of speech tagger and two bilingual lexicons.

SUC

SUC, the Stockholm-Umeå Corpus (Ejerhed et al., 1992), is a corpus of written
Swedish. A corpus is a collection of texts, often with additional information added.
SUC is an attempt at creating a balanced corpus of Swedish. It contains texts from
different genres, such as newspaper texts, novels, government texts etc. It has been
manually annotated with part of speech (word class and inflectional information),
and word and sentence boundaries are also marked. It contains about 1.2 million
tokens when counting punctuation as tokens. It is freely available for academic
purposes.

When used in this thesis, the tag set of SUC was slightly changed, resulting
in 150 different tags. The changes consisted of removing tags for abbreviations,
removing tags that are never used and enriching the verb tags with for instance tags
features for modal verbs (verbs such as “would” and “could”, expressing intention,
possibility etc.).

In this thesis, SUC has been used for many purposes, such as training and testing
part of speech taggers, i.e. programs that automatically assign part of speech to
text, and as example text in evaluations of compound splitting, parser robustness
and grammar checking.

Parole

Parole (Gellerstam et al., 2000) is a large corpus of written Swedish, containing
about 20 million words. It has been automatically annotated with part of speech
and contains texts from different genres, though mostly newspaper texts.
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In this thesis it has mainly been used as test data for grammar checking and
reference text for statistical methods for grammar checking.

SSM

The SSM corpus (Hammarberg, 1977, Lindberg and Eriksson, 2004), Svenska Som
Målspråk (“Swedish as a target language”), contains essays written by people learn-
ing Swedish as a foreign language. They come from several different language back-
grounds, being native speakers of for instance Japanese, Polish, Arabic, Turkish
and many other languages. The language proficiency varies a lot between different
writers, ranging from people just beginning their studies to having studied Swedish
for three years.

In this thesis, the SSM corpus has mainly been used when evaluating grammar
checking methods, but it was also used when training PoS taggers.

DUC

When it comes to evaluation of automatic summarization, the Document Under-
standing Conferences (DUC, 2005) have become something of a standard. A lot
of manual work has been put into creating summarization evaluation resources.
For instance, there are manually written summaries of varying lengths available for
many documents.

In this thesis the DUC data has been used for evaluating summarization systems.

KTH News Corpus

The KTH News Corpus (Hassel, 2001) is a collection of news articles from the web
editions of several Swedish newspapers. These texts were automatically collected
from the web sites of the newspapers. It contains about 13 million words of text.

In this thesis the KTH News Corpus has been used as a reference corpus for
chunk statistics in the grammar checking experiments, in PoS experiments and as
a reference corpus for the random indexing method.

KTH Extract Corpus

The KTH Extract Corpus (Hassel and Dalianis, 2005) contains manually produced
extracts of Swedish newspaper articles. There are 15 documents in the corpus and
the average number of extracts per document is 20.

In this thesis the corpus was used for evaluating summarization.

fnTBL

The machine learning program fnTBL (Ngai and Florian, 2001) is a transformation
based rule learner. It can learn transformation rules from an annotated corpus. The
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learning consists of trying all rules matching a given set of rule templates on a corpus
with the current system annotation and the gold standard annotation available. The
rule that changes the system annotation so that the highest agreement with the
gold standard is achieved is selected. This rule is saved for later use on new texts.
It is also applied to the training data, and the learning is repeated, selecting a
new rule. When no rule improves the system annotation more than some threshold
value, the training ends.

In this thesis fnTBL has been used in part of speech tagging experiments and
for grammar checking using machine learning methods.

TnT

TnT (Brants, 2000) is a Hidden Markov Model part of speech tagger. It is freely
available for academic use and can easily be trained for many languages if there is
an annotated corpus available. TnT has been implemented to be very fast, both
when training the tagger on a corpus and when tagging new texts.

To tag new texts TnT uses tag n-grams of length up to three. For known words
the word-tag combination frequencies are also used, while for unknown words the
suffix of the word is used.

In this thesis TnT has been used when running parsers that require part of
speech tagging, in some compound splitting experiments and of course in the
chapter on part of speech tagging.

The Granska Tagger

The Granska tagger (Carlberger and Kann, 1999) is a Hidden Markov Model part
of speech tagger, very similar to TnT, described above. The Granska tagger was
developed for Swedish and has a compound word analysis component for use on
unknown words. It can also produce lemma information for the words that are
tagged.

In this thesis the Granska tagger has been used in part of speech tagging ex-
periments. It is also an important component in the Granska grammar checking
system, which has been used for comparative evaluations in the grammar checking
chapter.

GTA

GTA, the Granska Text Analyzer (Knutsson et al., 2003), is a shallow parser for
Swedish. It produces a phrase structure analysis of the text, based on manually
constructed rules. These rules are mostly based on part of speech information.
GTA also produces a clause boundary analysis.

GTA outputs the parse information in the IOB format, that is each word can
be the place of the Beginning of a constituent, Inside a constituent, or Outside
constituents of interesting types. A word can have multiple levels of labels, for
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Viktigaste (the most important) APB|NPB
redskapen (tools) NPI
vid (in) PPB
ympning (grafting) NPB|PPI
är (are) VCB
annars (normally) ADVPB
papper (paper) NPB|NPB
och (and) NPI
penna (pen) NPB|NPI
, 0
menade (meant) VCB
han (he) NPB
. 0

Figure 1.3: Example sentence showing the IOB format.

((NP (AP Viktigaste) redskapen)
(PP vid (NP ympning))
(VC är)
(ADVP annars)
(NP (NP papper) och (NP penna))
0 ,
(VC menade)
(NP han)
0 . )

Figure 1.4: The text from figure 1.3 in a corresponding bracketing format.

instance being the Beginning of an adjective phrase Inside a larger noun phrase,
presented as APB|NPI by GTA. Figures 1.3 and 1.4 show example output from
GTA.

Stava

Stava (Domeĳ et al., 1994, Kann et al., 2001) is a spelling checking and correction
program for Swedish. It uses Bloom filters for efficient storage and fast searching in
the dictionaries used. It has components for morphological analysis and handling
compound words. Especially the compound word component has been used in this
thesis.

Stava uses three word lists:

1. the individual word list, containing words that cannot be part of a compound
at all,
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individual word list

last part list

first part list

suffix rules

Figure 1.5: Look-up scheme for compound splitting.

2. the last part list, containing words that can end a compound or be an inde-
pendent word,

3. the first part list, containing altered word stems that can form the first or
middle component of a compound.

When a word is checked, the algorithm consults the lists in the order illustrated
in figure 1.5. In the trivial case, the input word is found directly in the individual
word list or the last part list. If the input word is a compound, only its last com-
ponent is confirmed in the last part list. Then the first part list is looked up to
acknowledge its first part. If the compound has more components than two, a
recursive consultation is performed. The algorithm optionally inserts an extra -s-
between parts, to account for the fact that an extra -s- is generally inserted between
the second and third components. As in “fotbollslag” (“fot-boll-s-lag”, “football
team”).

Stava was used for compound analysis and automatic spelling error correction
in this thesis.

The Grammar Checking Component in Word 2000

The most widely used grammar checker for Swedish is probably the one in the
Swedish version of MS Word 2000 (Arppe, 2000, Birn, 2000), which was constructed
by the Finish language technology company Lingsoft. It is based on manually
created rules for many different error types. It was developed with high precision
as a goal. It is a commercial grammar checker, and thus not freely available, though
many computers come with MS Word already installed.

In this thesis the MS Word grammar checker was used for comparison in eval-
uations of grammar checkers.

The Granska Grammar Checking System

The grammar checker Granska (Domeĳ et al., 2000) is based mainly on manually
created rules for different error types. About 1,000 man hours have been spent
creating and tuning the rule set. Granska is a research product, which is still being
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developed. There is also a statistical grammar checking component in the Granska
framework, ProbGranska, described below. In this thesis, Granska is used to refer
to the component using manually created rules only.

In this thesis the Granska grammar checker was used for comparison in evalu-
ations of grammar checkers.

ProbGranska

Previously in the CrossCheck project a statistical grammar checker for Swedish
called ProbGranska (Bigert and Knutsson, 2002) was developed. It looks for im-
probable part of speech sequences in text and flags these as possible errors. Since
the tag set used has 150 tags, there is a problem of data sparseness. ProbGranska
has some methods to deal with this problem, such as never signaling an alarm for
constructions that cross clause boundaries and using back off statistics on common
but similar tags for rare PoS tags.

ProbGranska was used for comparison in evaluations of grammar checkers and
was also the inspiration for some of the grammar checking methods presented in
this thesis.

1.3 List of Papers

This thesis is mainly based on the following papers:

I. Jonas Sjöbergh. 2003. Combining pos-taggers for improved accuracy on Swedish
text. In Proceedings of Nodalida 2003, Reykjavik, Iceland.

II. Jonas Sjöbergh. 2003. Stomp, a POS-tagger with a different view. In Proceed-
ings of RANLP-2003, pages 440–444, Borovets, Bulgaria.

III. Johnny Bigert, Ola Knutsson, and Jonas Sjöbergh. 2003. Automatic evalu-
ation of robustness and degradation in tagging and parsing. In Proceedings
of RANLP-2003, pages 51–57, Borovets, Bulgaria.

IV. Jonas Sjöbergh. 2003. Bootstrapping a free part-of-speech lexicon using a
proprietary corpus. In Proceedings of ICON-2003: International Conference
on Natural Language Processing, pages 1–8, Mysore, India.

V. Jonas Sjöbergh and Viggo Kann. 2004. Finding the correct interpretation of
Swedish compounds – a statistical approach. In Proceedings of LREC-2004,
pages 899–902, Lisbon, Portugal.

VI. Johnny Bigert, Jonas Sjöbergh, Ola Knutsson, and Magnus Sahlgren. 2005.
Unsupervised evaluation of parser robustness. In Proceedings of CICling
2005, pages 142–154, Mexico City, Mexico.
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VII. Johnny Bigert, Viggo Kann, Ola Knutsson, and Jonas Sjöbergh. 2004. Gram-
mar checking for Swedish second language learners. In Peter Juel Henrichsen,
editor, CALL for the Nordic Languages, pages 33–47. Samfundslitteratur.

VIII. Jonas Sjöbergh. 2005. Chunking: an unsupervised method to find errors in
text. In Proceedings of NODALIDA 2005, Joensuu, Finland.

IX. Jonas Sjöbergh. 2005. Creating a free digital Japanese-Swedish lexicon. In
Proceedings of PACLING 2005, pages 296–300, Tokyo, Japan.

X. Jonas Sjöbergh and Ola Knutsson. 2005. Faking errors to avoid making errors:
Very weakly supervised learning for error detection in writing. In Proceedings
of RANLP 2005, pages 506–512, Borovets, Bulgaria.

XI. Martin Hassel and Jonas Sjöbergh. 2005. A reflection of the whole picture
is not always what you want, but that is what we give you. In "Crossing
Barriers in Text Summarization Research" workshop at RANLP’05, Borovets,
Bulgaria.

XII. Jonas Sjöbergh and Viggo Kann. 2006. Vad kan statistik avslöja om svenska
sammansättningar? Språk och Stil, 16.

XIII. Jonas Sjöbergh. forthcoming. The Internet as a normative corpus: Gram-
mar checking with a search engine.

XIV. Martin Hassel and Jonas Sjöbergh. 2006. Towards holistic summarization:
Selecting summaries, not sentences. In Proceedings of LREC 2006, Genoa,
Italy.

XV. Wanwisa Khanaraksombat and Jonas Sjöbergh. forthcoming. Developing
and evaluating a searchable Swedish – Thai lexicon.

XVI. Jonas Sjöbergh and Kenji Araki. 2006. Extraction based summarization
using a shortest path algorithm. In Proceedings of the 12th Annual Natural
Language Processing Conference NLP2006, pages 1071–1074, Yokohama, Ja-
pan.

XVII. Jonas Sjöbergh. forthcoming. Vulgarities are fucking funny, or at least
make things a little bit funnier.

Papers I, II and IV all relate to part of speech tagging and are discussed in
chapter 2.

In papers III and VI, which are treated in sections 4.1 and 4.2, methods for
evaluating the robustness of annotation systems such as parsers and taggers are
presented. My contribution to both papers consisted mainly of doing the evalu-
ations. I also helped discuss and develop the basic ideas of the methods, while
most of this work was done by Johnny Bigert. Ola Knutsson did all the manual
gold standard annotation needed for the evaluations.
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The research regarding compound splitting, papers V and XII, was done to-
gether with Viggo Kann and is discussed in section 3. I was the main contributor
to these papers. Viggo Kann did the work on producing suggestions for inter-
pretations of the compounds and discussed some methods for choosing the correct
interpretations.

The research on grammar checking methods, papers VII, VIII, X and XIII, is
presented in chapter 5. My contribution to paper VII was the description of the
SnålGranska method and the comparative evaluation of the systems. For paper X
I did most of the work, while Ola Knutsson came up with the original idea and
added helpful suggestions.

Papers IX and XV discuss the automatic creation of bilingual lexicons, which is
discussed in chapter 7. For paper XV I created the lexicon and developed the web
interface. Wanwisa Khanaraksombat came up with the original suggestion and did
all the evaluations.

Papers XI, XIV and XVI concern automatic summarization, which is discussed
in chapter 6. For papers XI and XIV Martin Hassel and I developed the ideas
together. I did most of the implementation work and produced the system sum-
maries. Martin Hassel did most of the evaluations. For paper XVI I was the main
contributor.

Paper XVII, which is discussed in chapter 8, presents some experiments in
automatic generation of puns in Japanese.





Part I

Behind the Scenes
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In this part, methods that produce results that are mainly useful for other
NLP methods are discussed. One example is analysis of compound words. Human
readers are rarely interested in how a certain compound word should be analyzed,
but it can be a useful tool for a search engine, which in turn can produce results
that the user finds helpful and interesting.

A special case is evaluation methods, also discussed in this part of the thesis.
These are not in themselves very useful for the end user, nor are they very useful
as tools for other NLP methods. They are however important when developing and
comparing NLP tools. Since the informal nature of languages make it very hard to
prove that systems actually work, the best one can do is often to evaluate a tool
on actual examples of language and see how well it works.





Chapter 2

Part of Speech Tagging

2.1 Introduction to Tagging

Tagging in general means that we assign labels to something, for instance words.
Part of speech (PoS) tagging means that we assign each word some information
about its part of speech. Usually this is the word class and some extra information,
such as which inflectional form is used, the grammatical gender of the word or
similar information.

Part of speech tagging, often referred to as tagging, is an important step in many
language technology systems. It is used for instance for parsing, voice recognition,
machine translation and many other applications.

Tagging is a nontrivial problem due to ambiguous words and unknown words,
i.e. words that did not appear in the reference data used. Tagging is more difficult
for some languages than for others. In this thesis mainly tagging of Swedish written
text will be studied. Typical accuracy for PoS tagging of Swedish is 94% to 96%,
though this varies between genres and depending on which tag set is used etc.

There are many ways to do tagging: by hand, by writing rules for which words
should have which tags, using statistics from a labeled corpus etc. A nice introduc-
tion to different methods for PoS tagging is given by Guilder (1995). Currently, us-
ing a hand labeled corpus as training data for different machine learning algorithms
is the most common method, and this is the method used in this thesis.

Tagging is typically evaluated by running the program to be evaluated (the
tagger) on hand annotated data. Then the number of correctly assigned tags is
counted and the accuracy is calculated as the number of correctly assigned tags
divided by the total number of assigned tags. Some taggers assign several tags to
the same word when they are unsure of the correct choice and then the accuracy
cannot be calculated in this fashion. Typically though, a tagger will assign exactly
one tag to each word.

Sometimes several tags can be considered more or less equally correct. If the
tagger chooses one correct tag and the manual annotation uses another, the tagger

21
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will be penalized for a correct choice. This problem can usually be removed by
redesigning the tag set to account for this type of phenomenon.

Another problem that is harder to deal with is that there are usually errors in
the annotation. Even though the tagger chooses the correct tag, it will be counted
as an error when it is actually the annotation that is wrong.

2.2 Stomp, a Lazy Tagger

This section describes a method for PoS tagging. It was presented at RANLP 2003
(Sjöbergh, 2003c). The main motivation for creating a new tagger using a new
method for PoS tagging when there are already many implementations available
was the research in the next section. There it will be shown that by combining
several methods for tagging the performance can be improved.

One theory that was examined was that using a method that is very different
from the other methods is good, even if the method by itself is not very power-
ful. Thus, a new and different method for PoS tagging was developed, since most
available taggers are quite similar in the way they work.

The new tagger is called Stomp. The accuracy is not very high compared to
other systems, but it has a few strong points. Mainly, it uses the information in the
annotated corpus in a way that is quite different from other systems. Thus, some
constructions that are hard for other systems can be easy for Stomp. It can also
provide an estimate of how easy a certain tag assignment was or how sure one can
be of it being correct. This means that Stomp can be used for detecting annotation
mistakes by finding places where the annotation differs from the suggested tag from
Stomp when the tagger is confident in its own suggestion. The handling of some
types of unknown words is also useful, and could be used with other PoS tagging
methods.

Description of the Method

The basic idea of Stomp is to find the longest matching word sequence in the
training data and simply assign the same tags as for that sequence.

For a known word, find all occurrences of this word in the training corpus. Select
the “best” match and assign the tag used for this occurrence. The score of a match
is calculated as the product of the length, in words, of the matching left context
and the length of the matching right context. “To be or not to be.” would have a
score of 2 as a match for the word “or” in the text “To be or not.”, since there are
two matching words in the left context and one in the right context.

The match with the highest score is considered to be best. If there are several
matches with the same score, the most frequently assigned tag among them is
selected. If there is still a tie, the one occurring first in the corpus is selected.

To rank one-sided matches by length, a small constant is added to the lengths
of the matching contexts before multiplying.
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Many known words always have the same tag assigned in the training corpus.
For efficiency these words are stored in a table to avoid the time consuming matching
procedure, since they will always have the same tag assigned regardless of context.
Note that these words may still be ambiguous, despite being unambiguous in the
training data. Accuracy on these words is 98% in the evaluations of Stomp.

For unknown words there are of course no matches at all in the training data.
Since Stomp was developed for use on written Swedish texts, most unknown words
will be compound words (for a discussion of Swedish compounds, see section 3). In
the evaluations, more than 60% of the unknown words are compounds.

When an unknown word is found, Stomp first checks if this can be analyzed as
a compound that it knows how to tag. In Swedish, the last part of a compound de-
termines the part of speech, so “ordklasstaggare” (“ord-klass-taggare”, PoS tagger)
would have the same PoS as “taggare” (tagger).

For an unknown n letter word with characters c1c2 . . . cn this is done by check-
ing if cici+1 . . . cn is a known word, for 2 ≤ i ≤ n − 6. So the system checks if
“rdklasstaggare”, “dklasstaggare” etc. are known words.

If a substring matching a known word is found, the compound is replaced by
the known word. This is done before the tagging starts, so the known word will be
used as context when tagging the neighboring words. If there are several matching
substrings, the longest is used.

Although many Swedish compounds end with words shorter than the six letters
required by Stomp, allowing shorter words leads to other problems. Many common
suffixes for regularly inflected words are also known words in the lexicon. One
example is the common adjective suffix “ande” which is also a Swedish noun.

Many words that are not really compound words will also be analyzed as
compounds by the method above. One example is the verb form “plundrade”
(plundered), which contains the word “undrade” (wondered). While not a com-
pound of “pl-undrade”, the two words have the same PoS. This type of substring
match will generally have the same PoS as the original word, so this is a good side
effect of the somewhat lazy compound analysis. It also correctly handles many
prefix phenomena such as “initialized” and “uninitialized”.

Words that are not considered to be compounds with known word endings are
handled with the help of hapax words, i.e. words occurring only once in the training
data. These make up about half the words in the training data vocabulary and 4.5%
of the word occurrences in the training data.

An unknown word is treated as occurring in all places where a hapax word
with the same last four letters occurs. If no hapax word ends with the same four
letters, the unknown word is treated as matching all hapax words in the corpus.
This procedure is only used when tagging the unknown word. When tagging other
words, the unknown word will not be treated in any special way, and will thus never
match any part of the reference corpus when it occurs in the context of a word to
be tagged.

The matching score of the best match can be used to give an indication of how
likely the suggested tag is to be correct. Very long matches are extremely unlikely



24 CHAPTER 2. PART OF SPEECH TAGGING

to yield an incorrect tag, while one word matches are not very good. Long matches
that only match on one side are of course not as good as two sided matches, since
the reason the other side does not match could influence the tagging of the last
word.

Since the tagging of short matches is not very accurate and short matches are
common, a back-off strategy for short matches is also used. When the tagging of
all words is finished, Stomp checks all words with short matches one more time.
Matching is done as above, but when no more words match, matching is continued
using the assigned PoS tags and the annotation in the training corpus.

The back-off procedure changes about 3% of the assigned tags, increasing the
tagging accuracy from 93.8% to 94.5%. It does however also take quite a lot of
time, more than the original tagging procedure.

Of the tags that are changed, 8% are one error changed to another error, 33% are
a correct tag changed (to an incorrect one) and 59% are an incorrect tag changed
to the correct tag.

Stomp rechecks words starting on the last word and working backwards. Check-
ing the words in any other order would also work. Different orders can give different
results, since the matching tag context changes for some words when a word is re-
tagged. In practice the order makes very little difference. Likewise, running the
back-off again after the first back-off has finished changes very few tags, about 0.1%.

In the tests performed, the mean length of matches, including the word itself, is
2.8 words when tagging. When using the back-off method, matches for the treated
words are increased from 2.3 words to 3.6 words. These matches and the long
matches for words where no back-off was used, have a mean length of 4.0 words.
This was for a balanced training corpus of 1.1 million words and a test text of
about 60,000 words from the same domain. Unambiguous words were not included
in these numbers, since no matching is done for them.

Evaluation

The SUC corpus, described in section 1.2 was used for the evaluations. Training
and testing was performed by splitting SUC into two parts: a test set consisting of
about 58,000 words, and a training set consisting of the rest of the corpus, about
1.1 million words. This results in approximately 5% of the words in the test data
being unknown words. To increase reliability of results, the part of SUC used as
test data was chosen in 10 different ways (all 10 test sets were disjoint) and the
training and testing repeated once for every choice. The test data was chosen to
be as balanced as possible.

Testing was done by stripping the tags from the test data and letting the tagger
tag the text. An assigned tag was then deemed correct if it was the same as the
original tag.

Stomp tags 94.5% of all words correctly (93.8% without back-off). It tags 77%
of unknown words correctly, which means 22% of all errors were unknown words.
47% of all unknown words are recognized as compounds and 88% of these are tagged
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Type of match Stomp No back-off fnTBL Mxpost TnT Words

All words 94.5 93.8 95.6 95.5 95.9 100.0
Known words 95.5 94.9 96.5 96.1 96.3 94.6
Unknown words 77.4 75.8 79.8 85.1 88.5 5.4

Unknown words
Compound 88.4 87.8 82.2 85.5 91.2 2.6
Non-compound 67.6 64.9 77.7 84.9 86.0 2.9

Word only 80.5 75.5 86.4 88.5 90.0 6.2
Short edge 92.0 90.9 93.9 93.9 94.1 35.4
Long edge 96.6 96.1 97.0 96.4 96.5 0.9
1+1 word 93.9 93.9 94.9 95.0 94.3 9.2
Short good 95.4 95.4 95.9 96.1 95.2 5.4
Long good 97.8 97.8 97.1 97.0 96.4 1.6
Unambiguous word 98.7 98.7 98.3 97.9 98.8 41.3

Table 2.1: Tagging accuracies (in % correctly tagged words) for different types of
matches. “Edge” means the matching word was the first or last word of the match,
where long means at least 4 matching words, and short means 2 or 3. “1+1”
means there was one word on each side in the match. “Good” means there was
matching context on both sides, where short means 2 or 3 words on one side and 1
word on the other, long is all other two-sided matches. Unambiguous words means
words with only one tag in the training data. Unknown words are included in the
matching measurements, since Stomp treats these as regular words (though not as
the unknown word itself) when matching.

correctly. For other unknown words the accuracy is 68%. State of the art taggers
achieve 95.5% to 96.0% accuracy, with 80% to 90% accuracy on unknown words,
on the same dataset.

A baseline unigram tagger, choosing the most common tag for known words and
the most common open word class tag for unknown words, achieves 87.3% accuracy
(25.4% on unknown words) on the same data.

In table 2.1 accuracy information for different types of matches is presented.
There is also accuracy measurements for three state of the art taggers: a Brill-
tagger, fnTBL described in section 1.2; a maximum entropy tagger, Mxpost (Rat-
naparkhi, 1996) and an HMM-tagger, TnT, see section 1.2.

Stomp performs well on long matches, especially on long matches with matching
context on both sides. It also performs well on unknown words it believes are
compounds. On these types of matches it outperforms several of the state of the
art taggers. These types of matches are not very common, though, and Stomp
performs poorly on short matches, which are common. Using the scores of the
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Training size in words Words per second

4,000,000 2,200
2,000,000 3,400
1,000,000 4,800
100,000 25,000
10,000 36,000

Table 2.2: Tagging speed, measured on tagging only (including back-off, ignoring
time for reading corpus, printing output etc.). Measured on a SunBlade 100.

matches Stomp uses to choose the best match, it is easy to separate the different
types of matches. It is thus easy to use Stomp for only some types of words, and
let another tagger tag the rest.

Stomp makes good use of larger training sets, since the information it uses
(series of words) is so sparse. Not having any larger annotated resources available,
three million words of newspaper clips from the web were automatically tagged
with a voting ensemble of taggers. When this was added to the training data of
Stomp, the accuracy increased to 95.1%, despite the new data not being 100%
correct (probably around 96.5% correct). About half the increase was on unknown
words which were no longer unknown since they occurred in the new training texts,
which Stomp generally makes a lot of errors on. The other half was on known
words, though, so Stomp seems to use large training sets well.

The handling of unknown words, especially those believed to be compounds,
seems promising even though it is quite naive. A more advanced method based on
these principles might be a good addition even to some state of the art taggers. This
was tested by letting Stomp exchange unknown words believed to be compounds
for the corresponding known word and then running Mxpost on the resulting text,
which resulted in an unknown word accuracy of 86.6% compared to 85.6% when
using Mxpost on the original text (tested on 57,000 words).

Since tagging is done by matching a text to the corpus, tagging time increases
with both corpus size and text size. Most taggers have a separate training step,
and then only depend on the text size. Stomp has zero training time (no training
is done), while tagging time is quite high. This is to be expected, since Stomp uses
a form of instance based learning, which generally makes the classification of new
data computationally heavy.

Tagging a text of 60,000 words with training data consisting of 1.1 million words
takes 30 seconds on a SunBlade 100. Of this, 15 seconds are spent on reading the
corpus, 3.5 seconds on tagging and 9 seconds on back-off for short matches. This
amounts to 2,000 words per second all in all, and 4,000 words per second excluding
the time for reading training data.

Other taggers vary in speed, of the taggers included in the evaluations, TnT is
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very fast (8 seconds on the same task), while Mxpost and fnTBL are slower than
Stomp (a few minutes). More details on tagging speed using different implementa-
tions are given in section 2.3.

Stomp’s very high accuracy on long matches can be useful, for instance when
correcting a manually tagged corpus. If a long word sequence is found several times
in a corpus and the annotation differs for words in the middle of the sequence, there
is likely an error or inconsistency in the annotation.

This too was tested on the SUC corpus. Stomp was used to find all matches with
at least two matching words on each side where the tagging differed in different parts
of the corpus. This gave about 2,000 matches. Some of these were then manually
checked by a linguist. In most cases any of the two tags could have been used in
both matches, so the tagging was inconsistent (one of the tags should have been
used for all occurrences or the ambiguity should have been kept), and in some cases
one of the annotations was wrong (and in some cases there was a genuine difference
between the two matches).

When evaluating taggers, they will often make “errors” on words with inconsist-
ent annotation, since several suggestions are correct, but only one will be considered
correct in the evaluation, and the tagger has no way of guessing which tag was used
in this part of the test data. They also degrade the quality of the training data by
introducing differences in the annotation where there is no real difference. This is
also true for words where the annotation is wrong.

Källgren (1996) gives a thorough discussion of evaluation of automatic taggers,
tagging errors and ambiguous words in SUC.

The intention when creating Stomp was to create a tagger which uses differ-
ent information than most other taggers. Mxpost uses information similar to the
information Stomp uses, Mxpost looks at (among other things) the preceding and
following word, and the tags in the context of a word to tag. For long matches
Stomp uses different information than Mxpost, though, and they also treat un-
known words differently.

To test whether Stomp is actually useful in an ensemble of taggers a small test
was performed. An ensemble was created by using several publicly available taggers,
TnT in section 1.2, Mxpost (Ratnaparkhi, 1996) and TreeTagger (Schmid, 1994).
These were trained and tested in the same way as Stomp. The taggers then voted
on which tag to choose, with ties being resolved by using the tag suggested by the
most accurate single tagger in the ensemble. The accuracies of the ensembles are
presented in table 2.3.

When exchanging one of the taggers for Stomp and then using the new ensemble,
the ensemble accuracy increased except when removing Mxpost (TreeTagger and
TnT are quite similar so they do not complement each other very well).

Then the same was done with fnTBL, which also differs a lot from the taggers
in the ensemble, and is also very accurate alone (unlike Stomp). fnTBL increased
the accuracy of the ensembles about as much as Stomp, once by a little more, twice
by a little less, but the difference was small.
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Tagger Accuracy (%)

TnT 95.9
fnTBL 95.6
Mxpost 95.5
TreeTagger 95.1
Stomp 94.5

TnT+Mxpost+TreeTagger 96.2

Mxpost+TreeTagger+Stomp 96.3
TnT+TreeTagger+Stomp 96.1
TnT+Mxpost+Stomp 96.4

Mxpost+TreeTagger+fnTBL 96.3
TnT+TreeTagger+fnTBL 96.1
TnT+Mxpost+fnTBL 96.5

All five 96.5

Table 2.3: Tagging accuracy of ensemble taggers when trained on one million words
of Swedish. More than one tagger means simple voting was used, with ties broken
by the most accurate tagger. The ensemble with all five taggers is actually more
accurate, by almost 0.1% (significant using McNemar’s test at the 5% level (Everitt,
1977)), than the best trio, but the difference is too small to show up in this table.

In all cases except when removing Mxpost, the ensembles with Stomp had
greater accuracy on unknown words than the original ensemble and the ensemble
with fnTBL instead of Stomp. This indicates that it is mainly the handling of
unknown words in Stomp that is useful for the ensembles. Also, if the minimum
length allowed for compounds is lowered in Stomp, the accuracy of an ensemble with
Stomp increases slightly, while the accuracy of Stomp decreases noticeably. The
known word accuracy is also increased in ensembles with Stomp, so it contributes
useful information there too, but not as much as for unknown words.

Finally, all five taggers were combined. This gave the highest accuracy of all,
although not much higher than the best trio. All ensembles were more accurate
(significant using McNemar’s test at the 5% level (Everitt, 1977)) than the best
tagger (TnT) alone.

For more results on ensembles, see the next section.

2.3 Combining Taggers for Better Results

Since there are many methods to do PoS tagging, it is possible to combine several
methods. When different methods make different types of tagging errors, they can
correct each other’s mistakes. Since there are already many methods freely available
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for tagging, this means that one can get better performance with no extra work.
This section discusses different methods to combine taggers and evaluates how much
can be gained. The results were first presented at Nodalida 2003 (Sjöbergh, 2003b).

There has been quite a lot of research done on the more general problem of
combining different classifiers, in our case taggers, also known as using ensembles
of classifiers. A good overview of why ensembles are a good idea and different ways
of constructing and combining classifiers is given by Dietterich (1997). The basic
idea is that classifiers making uncorrelated errors can correct each other.

The error reduction achieved by combining classifiers has been shown to be
negatively correlated with how correlated the errors made by the classifiers are (Ali
and Pazzani, 1996). Classifiers that are different from each other in some way are
likely to make uncorrelated errors, thus different ways of creating a diverse classifier
ensemble have been studied. These include using different classifier algorithms,
using different training sets, using different data features (or feature weights) and
generating different pseudo-examples for training, see for instance Tumer and Ghosh
(1996) for examples from classifying in general or Màrquez et al. (1999) for PoS
tagging examples.

Common ways of combining PoS taggers include voting, possibly weighted,
training a new classifier on the output of the taggers and hand written rules choos-
ing a tagger based on for instance text type or linguistic context (Brill and Wu,
1998, van Halteren et al., 1998, Borin, 2000).

Combining classifiers in the context of PoS tagging has mainly been used to in-
crease tagging accuracy. Other uses include automatically creating a larger training
corpus by bootstrapping and combining two taggers (Màrquez et al., 1998) and us-
ing an ensemble of taggers to filter out synthetic noise (deliberately added tagging
errors) in a pre-tagged corpus (Berthelsen and Megyesi, 2000).

Here, the main focus is on increasing tagging accuracy. In the next section an
application of high accuracy tagging is presented. Similar research has also been
done by van Halteren et al. (2001) for English and German, here only Swedish text
is studied.

Evaluation Procedure

The SUC corpus described in section 1.2 was used for training and testing. Training
and testing was done in the same way as in section 2.2, i.e. 10 disjoint test sets of
about 60,000 words with training sets of 1.1 million words were used, giving about
5% unknown words in the test data.

Testing was done by stripping the tags from the test data and letting the taggers
tag the text. The assigned tags were then compared to the original tags of the test
data and if the assigned tag for a word was the same as the original tag it was
deemed correct, otherwise incorrect.

This method results in some unfairness, as SUC (and thus the test and training
data) contains some erroneous taggings and some inconsistent taggings. Later, some
of the tests were run again on a newer version of SUC, where some taggings had
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been changed (presumably corrected). This gave slight improvements on all tested
taggers, one typical example was an increase in accuracy from 95.9% to 96.0%.

Also, in some cases several tags could be seen as correct, but only the one chosen
in SUC would be counted as such. A thorough discussion of evaluation of automatic
taggers, tagging errors and ambiguous words in SUC is given by Källgren (1996).

Taggers

The main criteria for selecting taggers was that they should be easily available,
relatively language independent and easy to train on new data. One of the big
advantages of combining many taggers is that it is possible to get better results
with very little extra work, so mainly taggers that required little manual work were
used. All taggers were run with their default options. No optimization of the
taggers performance was done, since the goal was not to see which tagger was most
accurate but to try and improve tagging beyond the most accurate single tagger.
This may give some taggers a lower score than they could achieve if optimized.
Training time, tagging time and tagging accuracy measurements can be found in
table 2.4. The following taggers were used:

• fnTBL, see section 1.2, a transformation based tagger.

• Granska, see section 1.2, a trigram HMM-tagger.

• Mxpost (Ratnaparkhi, 1996), a maximum entropy tagger.

• Stomp, the tagger described in section 2.2.1

• Timbl (Daelemans et al., 2001), a memory based tagger.2 Timbl was also
trained as a second level classifier to combine results of other taggers.

• TnT, see section 1.2, a trigram HMM-tagger.

• TreeTagger (Schmid, 1994), a tagger using decision trees.

1The version of Stomp used here differed slightly from the one described in the previous
section. The one used was the version available at the time of these tests, and it works better in
ensembles, despite being less accurate on its own. The difference between the two versions is the
handling of unknown words, the old version uses only the context of an unknown word where the
new version also uses the suffix of the word.

2Timbl can use either decision trees or memory based learning. Only memory based learning
was used in these experiments.

Timbl has no “default” option for PoS tagging, so features had to be selected. It was trained
on the following features: for known words: the word itself, the two preceding assigned tags,
ambiguity class (possible tags for word), ambiguity class of next word; for unknown words: the
two preceding assigned tags, last 4 letters (each a different feature), word is capitalized flag,
ambiguity class of next word. All words in any of the open word classes were used for training the
classification of unknown words. Better features could probably be selected, making Timbl more
accurate, but this was deemed accurate enough.
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Tagger Accuracy (%) Accuracy (%) Training Tagging
(all words) (unknown words) time time

Baseline1 87.3 25.4 34 s 13 s
fnTBL 95.6 79.8 2 h2 2 min2
Granska Original3 96.0 89.5 6 min 41 s
Granska3 95.4 88.4 6 min 41 s
Mxpost 95.5 85.1 13 h 4 min
Stomp 93.8 63.3 0 2.5 min
Timbl 94.7 79.1 8.5 min 1 h
TnT 95.9 88.5 20 s 8 s
TreeTagger 95.1 77.5 35 s 5 s
1 A unigram tagger: choose most common tag for known words and choose
most common open word class tag for unknown words. This tagger was not
used in later experiments, just for comparison here.

2 The SunBlade otherwise used did not have enough memory to run fnTBL,
so a Pentium III 1100 MHz (about twice as fast) was used instead.

3 Granska normally tokenizes text differently than the text in the test data,
mainly by combining some constructions of several words into one token.
This makes it hard to use in an ensemble, so another version of Granska,
which keeps the original tokenization, was used whenever Granska was used
in an ensemble. This version is quite a bit worse than the original. The
accuracy of the original version is shown for comparison with the accuracy
of the ensemble methods (since it happened to be the most accurate tagger).
The other, less accurate, version was used everywhere else.

Table 2.4: Tagging accuracy on Swedish text. Measurements are for training data
of 1.1 million words, 5% of the words in the test data were unknown words. The
total number of words in the test data was 600,000. Training and tagging time was
measured on a SunBlade 100.

Voting

One straightforward way of improving accuracy is to use voting. If the errors made
by the taggers were independent, voting would be very useful. Take for instance
three taggers, each with 95% accuracy, that are independent. If they are voting,
they will only be wrong when two or three taggers are wrong at the same time.
The probability for this is 0.053 + 3 · 0.052 < 0.01. Thus, they would have over 99%
accuracy when voting. More taggers or more accurate taggers would perform even
better.

Unfortunately, the errors made by the taggers are not independent. Simple
voting, giving one vote to each tagger and letting a preselected tagger break ties
gives 96.6% accuracy for the best ensembles. An accuracy increase from 96.0%
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Tagger Accuracy Accuracy
(all) (unknown words)

Best tagger 96.0 89.5
Best voting 96.6 90.2

Table 2.5: Accuracy of the best single tagger and of voting taggers for the best
voting ensemble, consisting of all taggers except Timbl (adding Timbl is slightly
worse).

No. of % of tokens Acc. when Acc.
taggers all agree all agree all words

7 87.6 99.0 96.5
6 88.4 98.9 96.5
5 89.2 98.7 96.4
4 90.2 98.5 96.2
3 91.4 98.2 96.1
2 95.3 97.6 -

Table 2.6: Accuracy on words for which all taggers in an ensemble assign the same
tag. Accuracy for an ensemble size is measured as the mean value of the accuracy
for all ensembles of that size that can be created from the examined taggers (if a
tagger is not allowed to occur twice in the same ensemble).

(the best single tagger) to 96.6% is an error reduction of 15%. The difference in
accuracy between the best voting ensemble and the best single tagger is significant
at the 5% level, using McNemar’s test (Everitt, 1977).

Giving the taggers different voting weight manually, by for instance giving them
weight proportional to their stand alone accuracy (on data separate from the test
data) did not improve on simple voting.

An interesting property of voting ensembles is that for words which all taggers
assign the same tag the accuracy is high. How high varies depending on how many
taggers are included in the ensemble, more taggers gives fewer words were all agree,
but higher accuracy on these words, see table 2.6.

This could be used for instance for detecting annotation errors in the corpus.
When all taggers agree on a tag that differs from the manual annotation, it could
indicate an annotation error. This idea has been used to remove synthetic noise
(deliberately added tagging errors) in a corpus (Berthelsen and Megyesi, 2000).

The high accuracy when all taggers agree could also be used to quickly bootstrap
a new corpus. Manually checking only the (few) words were the taggers disagree
would still catch most of the annotation errors in the new data.

Other properties of voting ensembles in these experiments include: Almost all
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fnTBL Granska Mxpost Stomp Timbl TnT TreeTagg.

fnTBL - 95.8 95.5 94.3 95.6 96.4 95.4
Granska 95.8 - 95.4 93.7 94.9 97.8 96.7
Mxpost 95.5 95.4 - 93.2 94.6 95.9 95.1
Stomp 94.3 93.7 93.2 - 94.9 94.2 93.7
Timbl 95.6 94.9 94.6 94.9 - 95.6 93.7
TnT 96.4 97.8 95.9 94.2 95.6 - 97.4
TreeTagg. 95.4 96.7 95.1 93.7 94.6 97.4 -

fnTBL - 97.6 97.9 97.7 97.3 97.6 97.7
Granska 97.6 - 97.8 97.8 97.6 96.8 96.9
Mxpost 97.9 97.8 - 98.2 97.8 97.8 97.8
Stomp 97.7 97.8 98.2 - 96.9 97.8 97.8
Timbl 97.3 97.6 97.8 96.9 - 97.5 97.8
TnT 97.6 96.8 97.8 97.8 97.5 - 96.9
TreeTagg. 97.7 96.9 97.8 97.8 97.6 96.9 -

Table 2.7: Agreement ratios between taggers. The percentage of words for which
the taggers assign the same tag (above), and the accuracy on these words (below).

voting ensembles are more accurate than the best tagger in the ensemble. The only
exception is when using one of the very accurate taggers (fnTBL, Granska or TnT)
together with just the two worst taggers (Stomp and Timbl), which is slightly worse
than the good tagger alone.

A voting ensemble normally benefits from adding more taggers, even if the new
taggers are not very good, but not always. Combining several good taggers is
generally better than combining bad taggers.

A voting ensemble can suffer from adding a new very good tagger, if it is too
similar to another tagger already in the ensemble (thus pretty much giving that
tagger more weight). As an example of this, using just Mxpost, Timbl and Granska
(or TnT) gives higher accuracy than using Mxpost, Timbl, Granska and TnT.

This is because both Granska and TnT are HMM-taggers and produce very
similar results. TnT and Granska are in agreement in 97.8% of all cases, of which
about 96.8% are correct. On average two taggers agree on 95.3% of all tags, with
97.6% of these being correct. In table 2.7 the agreements between the taggers are
summarized.

This also works the other way around, adding a quite bad tagger increases
the performance of an ensemble if the tagger is different enough from the taggers
already in the ensemble. An example of this is Stomp, which is by far the least
accurate tagger, but which is very useful when added to an ensemble. For instance,
an ensemble with Granska, Mxpost, TnT and Stomp has higher accuracy than an
ensemble where Stomp has been exchanged for fnTBL, despite fnTBL being a much
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Figure 2.1: Plot of the accuracy on remaining tokens as a function of how many
words remain when a threshold is chosen (words with scores below the threshold
are discarded). The dashed line is for Stomp, the fully drawn is for Granska and the
dashed and dotted line is for TreeTagger. Granska is very confident on unambiguous
(in the training data) words and thus suffers when a high threshold is set, since the
accuracy for these is only about 98%. TreeTagger has lower accuracy here than in
other experiments. For some reason TreeTagger did not choose the same tags as
usual when outputting confidence estimates.

more accurate tagger.

Tagger Confidence

TreeTagger, Granska and Stomp can output confidence measurements for their tag
assignments, i.e. an estimate of how likely it is that an assigned tag is correct. These
estimates can be used for thresholding, discarding all words where the confidence is
below the threshold. In figure 2.1 the accuracy on the remaining words as a func-
tion of how many words are discarded is shown for the three taggers. TreeTagger
gives the best estimates, while the accuracy of Granska actually decreases if a high
threshold is set. This is caused by words that are unambiguous in the training
data (i.e. always have the same tag), which are not necessarily actual unambiguous
words. Granska is very confident on these words, while the accuracy for these words
is actually below 98% in the test data.

One intuitively attractive use for these confidence measurements is to let the
tagger change its voting contribution according to its confidence, i.e. give the tagger
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more weight for words where it is confident. This was tried in several ways. First
by letting a tagger overrule the voting when confidence is above a chosen threshold,
otherwise voting as normal. Second, by ignoring the vote from a tagger when
the confidence is below a chosen threshold. Finally, by giving the tagger a vote
proportional to the confidence. This was tried for all three of the taggers above,
both one at a time and all at once.

Unfortunately, this does not improve on simple voting (though the accuracy
is not significantly worse either), despite the fact that for instance TreeTagger
has an accuracy above 99% for some thresholds (or below 40% when ignoring low
confidence words). This is caused by the fact that in general the different taggers
find the same words hard (or easy) to tag. For words where TreeTagger achieve
over 99% accuracy most of the other taggers also achieve about 99% accuracy. This
means that they can correct each other in the few cases one of them is wrong, so
voting is still superior.

The only exception to this is Stomp, which measures its confidence based on
how many words of matching context it found in the training data, which when
using a high enough threshold actually improves voting slightly. This is probably
because it does not use the same type of information that most other taggers do
(i.e. n-grams of tags), and thus does not always find the same words hard (or easy)
as the other taggers. Unfortunately matches where Stomp is confident are very
rare, so the increase in accuracy is very small.

Of course, the opposite is also true, words most of the taggers find easy are
not always tagged very well by Stomp. This is less useful since the other taggers
generally agree on the correct tag already.

Though tagger confidence did not help while voting, since most taggers found
the same words easy or hard, the estimates could be used for other things. One
example is detecting possible errors in an existing tagged corpus. When the tag in
the corpus differs from the suggested tag and the confidence of the tagger is high
enough there is probably an error in the corpus.

They could also be used in creating a new tagged corpus quickly, as manually
checking only (the few) tags with low confidence would still catch most tagging
errors. Using this kind of information for choosing when to trust the tagger has
been examined before, for instance by Elworthy (1994).

Stacked Classifiers

Another way to combine the taggers in an ensemble is to train a new classifier on
the tags selected by the taggers. This has the potential to correct even those cases
where none of the taggers choose the correct tag (which no voting scheme could
do). For 1.2% of all words in these experiments, no tagger is correct. It is also
easy to combine taggers that use different tag sets in this way, while voting is much
trickier if not all taggers use the same tag set.

For the evaluation of the stacked classifier approach, some extra work was done.
First, all the taggers were trained on a training set and each then tagged an inter-
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Tagger Accuracy (all words)

Best tagger 96.0
Timbl 96.7
Relief-F 96.8

Table 2.8: Accuracy of two new second level classifiers and the best single tagger.
The new classifiers were trained on the output of the PoS taggers (and, in the case
of Timbl, the tag of the next word). Relief-F was trained and tested on very few
examples.

mediary set. This intermediary set did not overlap the training set. This was then
repeated for other choices of intermediary and training set, while keeping all inter-
mediary sets disjoint. The intermediary sets were then combined into one dataset,
consisting of 580,000 words, and the stacked classifiers were evaluated by 10-fold
validation on this dataset.

Training Timbl, as a memory based learner, on the output of several taggers
(Granska, Mxpost, Stomp and TnT) gives 96.6% accuracy. Adding other types
of information, such as the estimated probabilities of Granska and TreeTagger,
decreases accuracy. This is because the method used by Timbl cannot detect that
two features are dependent (e.g. use the tag TreeTagger suggests only if TreeTagger
is confident). Using context increases accuracy slightly, training Timbl on the tags
from fnTBL, Granska, Mxpost, Stomp, TnT and the tag selected by voting on the
following word gives 96.7% accuracy.

Another stacked classifier was created using the Relief-F algorithm (Kononenko,
1994) to estimate which attributes to use when building a decision tree. Relief-F is
capable of finding codependent features. It was given the following input: the tags
chosen by Granska, Mxpost, TreeTagger, Stomp, TnT, Timbl (as tagger), and the
confidence estimates of Granska, TreeTagger and Stomp. It achieves high accuracy,
96.8%, but this was tested on a small data set (9,000 words training data, 1,000
words test data, 10-fold validation), since Relief-F is very time consuming (weeks
or months) with larger data sets.

Another way of using a stacked classifier is to specialize it on words which are
believed to be hard. One way to do this is to consider tags for which all taggers
agree as “good enough” and the other words as hard. This will hopefully allow the
stacked classifier to learn what to do for the words were voting is less successful.
This reduces the problem the stacked classifier has to learn, but it also reduces the
amount of available training data.

This was tried by training and testing Timbl only on those tags where there
were at least two suggestions from the tagger ensemble (using 10-fold validation).
Accuracy on these words was then around 78%, which gives a total accuracy of
96.6% (these word make up about 11% of all words and the accuracy on the rest is
99%). This is the same accuracy as when using Timbl as a stacked classifier on all
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words, so there was no improvement over a regular stacked classifier.

Error Analysis

Generally, errors occur in a “mirror” patter, i.e. if words with tag X are often
misstagged as Y, then errors of misstagging type Y words as X will also be com-
mon. The most common type of tagging errors made by the taggers are choosing
singular instead of plural and vice versa for nouns (7% of all errors), adjective vs.
adverb (10%), determiner vs. pronoun (7%), proper noun vs. noun (7%), particle
vs. adverb (5%), preposition vs. particle (4%). This corresponds well to other
examinations of Swedish PoS tagging (Megyesi, 2001).

After voting there are still many errors of these types. The number of errors of
some of these types actually increases. One example is the singular/plural problem
for nouns. Before voting 7% of the errors belonged to this type. The number of
such errors after voting would correspond to 8% of the original errors, and make
up 10% of all errors that remain after voting. Before voting there are about 1,200
different error types, after voting there are only 900 types. This means that mostly
uncommon errors are corrected, and that the errors that remain are concentrated
to fewer categories. This is an interesting property, since it is less work to write
manual correction rules for the (few) common error types than for the (many)
uncommon error types.

The stacked classifiers behave similarly to voting, they mainly correct uncom-
mon errors.

A small test shows that it is possible to write rules that correct some of the
tagging errors. These rules can for instance make use of longer scope or semantic
clues that the taggers cannot use. Four rules were created (by a non-linguist) in
a few hours and applied on the tags selected by voting. These rules corrected 131
errors and introduced 32 new errors (and one error was changed to another error)
for a net gain of 99 correct tags.

While it is possible to write rules to correct some tagging errors it seems hard to
get large improvements, though using a trained linguist or more time to construct
rules might achieve better results. One problem is that the common errors are
mistaking one common tag for another common tag, so rules trying to correct this
often introduce many new errors because there are so many correctly assigned tags
of these types.

Many of the remaining errors are actually errors in the corpus, ambiguities where
the suggested tag could also be considered correct or words where the correct tag
can only be selected by semantic knowledge.

See Källgren (1996) for a discussion of common error types for automatic and
manual tagging in SUC.
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2.4 The Lexicon for the Tagger

Here, factors that are important regarding the training data of the tagger are dis-
cussed. The original problem was that we wanted to make a tagger we had, here
called Granska, see section 1.2, freely available. The tagger is however not very
useful without its lexicon, here used to mean the data collected from the annotated
training data. The lexicon we had was not freely available, though we had a license
to use it ourselves. It turned out that it is possible to create a new free lexicon by
automatic means, and if you do it right the tagger using this lexicon outperforms
the tagger using the original lexicon. Most of this research was presented at ICON
2004 (Sjöbergh, 2003a).

The Lexicon

The tagger was developed for written Swedish, but is relatively language inde-
pendent and can easily be retrained for many other languages. It is based on HMM
using trigrams of PoS tags. Normally it is automatically trained on the SUC corpus
described in section 1.2.

When the tagger creates a lexicon it needs a PoS annotated corpus. Preferably
the lemma of each word should also be provided, and sentence boundaries should
be marked. The tagger has a lemma guesser and a sentence boundary detection
mechanism, so only part of speech information is strictly necessary. Also, the lemma
information is not used much in actual tagging (but for some unknown words it
can be used), but mostly for guessing lemmas of new text (which in turn is used
by the grammar checking framework the tagger is normally used in).

From the annotated training data the following information is extracted:

• Word frequencies. Word-tag pair frequencies and word-tag-lemma triple fre-
quencies.

• Tag n-grams. Unigram, bigram and trigram frequencies.

• Suffix information. All suffixes of lengths between two and five letters, from
words in any open word class are collected, as suffix-tag pair frequencies.

This data is what is referred to as a “lexicon” in this section. The tag n-grams
and the word-tag frequencies are used when tagging known words, while the tag
n-grams and the suffix information is used when tagging unknown words. For
unknown words, other factors like capitalization are also used.

Creating a New Lexicon

The basic idea in creating a new lexicon was to take freely available unannotated
texts and automatically annotate these, then train the tagger on the newly annot-
ated data. The texts were taken mainly from the KTH News Corpus, described in
section 1.2.
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Several freely available taggers were collected. The taggers used were the same
ones used in the previous section on combining taggers for better accuracy:

• fnTBL, see section 1.2, a transformation based tagger.

• Granska, see section 1.2, a trigram HMM-tagger.

• Mxpost (Ratnaparkhi, 1996), a maximum entropy tagger.

• Stomp, described in detail in section 2.2.

• TnT, see section 1.2, a trigram HMM-tagger.

• TreeTagger (Schmid, 1994), a tagger using decision trees.

These were automatically trained on the SUC, using default options as far as
possible. When trained, the taggers all tagged the new texts from the KTH News
Corpus. The results were combined by simple voting, giving each tagger one vote
and picking the tag which received the most votes. Ties were broken by a prede-
termined tagger. Though there were methods that achieved better accuracy than
simple voting in the previous section, voting was almost as good and is very easy to
implement, especially in our case since all taggers were using the same tag set. In
the spirit of avoiding work as much as possible, voting was deemed good enough.

After annotating the new data with part of speech tags, the Granska tagger was
run on the tagged text, in lemma guessing mode, to add lemma information and
sentence boundaries.

The Granska tagger, which the new lexicon is to be used by, was then trained
on the new data. The quality of the lexicon was evaluated on a test set from SUC,
consisting of 60,000 words and disjoint from the part of SUC used when training the
taggers. The test set was tagged with the Granska tagger using different lexicons
and the quality of the lexicons compared by comparing the accuracies on the test
set.

This method of creating a new lexicon requires very little manual labor, only
acquiring the taggers and the texts, and then starting the training and tagging
(which is then automatic).

Evaluation of Lexicons

A few variations where tried when creating the new training data, to see what effect
different methods have on the resulting lexicon. The following expected behaviors
were evaluated: the more training data used, the better the lexicon; using several
genres is better than using only one (e.g. newspaper texts); using well written texts
is better than using texts with many errors; using many taggers to annotate the
new texts is better than using only one.

This was evaluated by using the following strategies for annotating the training
data:
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• Using only the tagger itself when tagging the training data.

• Using the voting ensemble when tagging the training data.

• Using only sentences where all taggers agree on the tagging as training data.
This gives less training data (about 90% of the data is discarded) but the
tagging accuracy on the remaining data is very high.

To test some of the assumptions above, other texts were added to the KTH
News Corpus texts (but some of these can likely not be included if the lexicon is to
be freely available). The following are examples of variations of the training data:

• Adding other genres, in this case text from an encyclopedia.

• Adding malformed language, in the form of essays written by second language
learners, to the training data (to see if the quality of the texts is important).

• Adding text of high quality but which is not modern Swedish, in the form of
a novel from 1879.

The performance of the tagger using lexicons constructed by these methods can
be found in figures 2.2 and 2.3. In figure 2.4 a comparison of how much manually
corrected data is needed to achieve a certain accuracy level is shown, by using
different amounts of data from the SUC.

As expected the new lexicon gives worse performance than the one created
from the manually corrected SUC. This is because the taggers strengthen their
misconceptions from the original training data on the new texts. The best accuracy
achieved (when using all available data, 10 million tokens of newspaper texts, 3
million tokens of encyclopedia text, 100,000 tokens of student essays and 100,000
tokens from a novel) was 95.6% and the best accuracy when using only the KTH
News Corpus texts was 95.3%. The accuracy when using the manually corrected
SUC was 96.0%. To achieve the same accuracy as the best result of the automatic
method using manually corrected annotation would require roughly 700,000 tokens
of annotated text, if the new texts are from the same (balanced) domain as the test
data. This can be seen in figure 2.4, where different amounts of training data from
the SUC were evaluated.

The more data used for training, the less the degradation in tagging accuracy
with the new lexicon. While adding more training data improves the lexicon, the
rate of improvement decreases when the training set becomes large.

Annotation Methods

As can be seen in figure 2.2, using an ensemble of taggers when annotating the new
training data gives better performance than using the tagger alone. This is because
the taggers correct each other, so the annotation of the training data contains fewer
errors than when using only one tagger. The best result using the ensemble on the
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Figure 2.2: Tagging accuracy when using different lexicons, as a function of the
size of the training data used when creating the lexicon. The dashed line is the
accuracy when using the manually corrected SUC as training data and the dotted
line is when using all available new data.
x using only the tagger itself to tag the training data
o using an ensemble of taggers
* using only the sentences where all taggers agree on the tagging.

newspaper texts was 95.3% and the best result on the same texts using only the
best single tagger alone was 95.1%.

For words where all the taggers in the ensemble agree on the tagging, the tagging
accuracy is very high, above 99%. To see if using only such data is a good idea
a training set was created by using only those sentences where all taggers agreed
on the tagging of all words. This results in much less training data, about 90% of
the data is discarded, but with less tagging errors in the remaining data. This did
not improve the lexicon, even when compared to a lexicon created from an equal
amount of training data tagged by voting. In fact, it is even worse than using only
one tagger. The highest accuracy when using only data where all taggers agree was
94.0%, and the accuracy when using the same amount of data (though of course
not the same sentences) was 94.2% when tagged by one tagger and 94.4% when
using the ensemble.

One reason for the perhaps surprisingly bad performance when using only the
highly accurately annotated sentences, is that the data consist mostly of simple
constructions. The difficult constructions are not represented at all in the training
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Figure 2.3: Tagging accuracy when using different lexicons, as a function of the size
of the training data used when creating the lexicon. The dashed and dotted lines
are the same as in figure 2.2.
o using only newspaper texts
+ using only encyclopedia texts
x using newspaper texts and some malformed text (second language learner student
essays)
* using both encyclopedia and newspaper texts
In all cases the ensemble of taggers tagged the text.

data, since some tagger usually makes a mistake on the difficult constructions. This
means that the tagger only learns how to tag simple language constructions, while
the test data (and most real texts) contain difficult constructions too, which the
tagger cannot handle well without seeing them in the training data.

Genres

Since different text genres have somewhat different characteristics, using only one
genre (in this case newspaper texts) when training was expected to be worse than
using several genres, since the test data consists of balanced material, not just
newspaper texts. To test this, texts from an encyclopedia, the Nationalencyklo-
pedin (NE, 2000), were tagged in the same way as the newspaper texts. These
texts consisted of about 3 million tokens. The performance of lexicons created
from only newspaper texts, only encyclopedia texts and from a mix of both was
then evaluated. The results are shown in figure 2.3.
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Figure 2.4: Tagging accuracy when using different lexicons, as a function of the size
of the training data used when creating the lexicon. The training data is the SUC,
a manually corrected, balanced corpus of Swedish text. The dashed and dotted
lines are the same as in figure 2.2.

As expected, using texts from both genres gave much better results than using
only one genre. Using only encyclopedia texts was roughly as good as using only
newspaper texts, though when using small amounts of text, the encyclopedia texts
were worse, likely caused by selecting only the first part of the encyclopedia and
thus getting a skewed distribution (i.e. too many words starting with the letter
“a”). Using only newspaper texts the best accuracy was 95.3% and for the same
amount of training data using both encyclopedia and newspaper texts, the accuracy
was 95.5%.

Text Quality

To see if the quality of the texts is important, 100,000 words from second language
learner essays were added to the training data. These texts contain many erroneous
constructions and misspelled words. Somewhat unexpectedly, adding malformed
language to the training data improved the lexicon when compared to a lexicon
created from an equal amount of data consisting only of newspaper texts. This is
probably caused by the addition of new genres to the training data, which as seen
earlier is good, even when some of the new material is ungrammatical. Replacing
the essays with the novel “Röda rummet” (“The Red Room”), Strindberg (1879),
which consists of well written nineteenth century Swedish (i.e. not modern Swedish),
gave the same accuracy, while replacing it with an equal amount of encyclopedia
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text (very high quality text), gave even higher accuracy. This indicates that while
high quality text is better than low quality, the benefits of using several genres is
greater than the drawbacks of errors in the text, and that using the same genres in
the training data as in the test/application domain is better than other genres (i.e.
in this case modern Swedish of the encyclopedia vs. Strindberg).

Some reasons for text quality not being very important can be seen from the
properties of the tagger. The errors in the essays consist of spelling errors, which
do not affect the tagger, and grammatical errors, which do affect the tagger. The
reason spelling errors do not affect the tagger is that they will contribute a lot of
misspelled words to the lexicon, but these will have no effect on the tagging of other
words, unless the new words are the same misspelled words. Theoretically, spelling
errors could possibly help the tagger, by having the ensemble guessing the tag and
thereby having more input on how to tag unknown words (most misspelled words
will be uncommon and thus used in training the taggers behavior on “unknown”
words, so there will be more words for “unknown” word training). Also, the training
data only needs to be locally (grammatically) correct to be useful, and many local
constructions are correct in the essays.

Combining Automatic and Manual Annotation

Finally, to combine the usefulness of large amounts of data with the usefulness
of high quality annotation (i.e. manually annotated data), both the KTH News
Corpus annotated by the voting ensemble and the manually annotated SUC was
used as training data. The lexicon produced using this training data was better
than using only the manually annotated data, resulting in a slight improvement,
96.2% accuracy. Using the SUC and data automatically annotated only by the
Granska tagger itself was less accurate than only using the SUC, the tagger tends
to reinforce its misconceptions.

2.5 Important Points

In this chapter it was shown that combining several methods for PoS tagging is a
simple way to improve the tagging quality. Many machine learning implementations
are readily available, thus better results can be achieved with no extra manual work.

Using extra information from the systems, such as estimates of how reliable the
current guess is, generally gave very modest improvements. Possibly, better results
could be achieved with larger data sets, since there is something of a sparse data
problem when adding the extra dimension of system confidence.

When combining learning systems, it would be best if they made independent
errors. This will rarely if ever happen in this type of application, but using systems
that are as different as possible is good, even if the individual systems are not that
accurate.

Similar things can be said for the training data: having many different genres
is good. Adding text with low text quality is still good, at least if this widens the
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genre coverage. With regards to training data, it was also shown that combining
a relatively small amount of high quality (i.e. manual) annotation with very large
amounts of automatically annotated data gave better results than either source by
itself.





Chapter 3

Compound Splitting

3.1 Introduction to Compound Splitting

Swedish is a compounding language, and compounding is very productive. So in
Swedish a “glass bowl” would be written as the word “glas” (meaning “glass”)
and the word “skål” (“bowl”) written together, “glasskål” (“glass bowl”). Com-
pound words can be made using many words, not just two, though most compounds
contain only two or three components.

In NLP Applications it is often useful to split compounds. It can for instance
help in finding more relevant pages when using a search engine (Dalianis, 2005),
improve clustering (Rosell, 2003), make hyphenation more readable by hyphenating
at the correct compound component borders or be used in machine translation,
where most likely not all compounds will be listed in the translation lexicon, but
most compound components could be included.

Many compound words have more than one possible interpretation, such as
“glas-skål” (“glass bowl”) and “glass-skål” (“bowl of ice cream”), both of which
are written as “glasskål”. In most cases a human reader will have no problem to
determine the correct interpretation of a word in context, while this is much harder
for automatic methods. Automatic methods also have problems with interpreta-
tions that are clearly very unlikely, such as “glass-kål” (“ice cream cabbage”).

The easiest and most common way of splitting compounds is to simply have
a lexicon where the correct interpretation of each compound is listed. This of
course does not solve the problem of genuinely ambiguous compounds, and also
suffers from the fact that there will always be compounds that are not listed in the
lexicon, usually quite many, since compounding is so productive.

Other methods that have been tried include studying letter sequences that can
only occur on the border of two compound components, never in a non-compound
word. For Swedish, “kk” and “stp” would be examples of such letter sequences. Of
course, most compound borders do not contain such letter sequences, so this only
handles a limited number of compounds.

47
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For Swedish, both rule based methods (Karlsson, 1992, Dura, 1998) and stat-
istical methods (Kokkinakis and Johansson Kokkinakis, 1999, Sjöbergh and Kann,
2004) have been used for automatic compound splitting. Similar research has been
done for other languages, such as German (Koehn and Knight, 2003), Norwegian
(Johannessen and Hauglin, 1996) and Korean (Yoon, 2000).

The research presented here was done together with Viggo Kann, and parts of
it has been presented at LREC 2004 (Sjöbergh and Kann, 2004) and in the journal
Språk och Stil (Sjöbergh and Kann, 2006). The main focus is on using statistical
methods for selecting the correct interpretation from several suggestions, but a
method for finding the possible interpretations is also presented.

3.2 How to Find Possible Interpretations

The spelling error detection program Stava, described in section 1.2 was modified to
find all possible splittings of compounds. Unlike Stava, where the algorithm stops
the search when a possible splitting of the word is found, the algorithm used instead
proceeds to find all possible interpretations of the compound. The algorithm is quite
fast, finding all possible interpretations of more than 60,000 words per second on a
standard computer.

3.3 How to Select the Correct Interpretation

In this section several statistical methods to choose the correct interpretation, from
several possible interpretations, of Swedish compounds are presented. These meth-
ods are generally not very closely tied to Swedish, so they should work for many
other languages too. A summary of how well the different methods work can be
found in table 3.1.

Evaluation Method

In a text of 50,000 words taken from the SUC corpus described in section 1.2, all
compound words with at least one suggestion from the program finding interpreta-
tions were manually annotated with their correct interpretations. 3,400 words had
at least one suggestion, 1,200 words had more than one suggest interpretation. If
nothing else is specified, all accuracy figures are based on the 1,200 words that are
in this way ambiguous.

Some compound words in the text had no suggestion at all from the program. A
manually checked sample showed that less than 1% of the compounds were missed
in this way. The biggest problem is compounds containing proper names, such as
“Venusmålningarna” (“the paintings of Venus”) and “Hitchcockläroboken” (“the
reading material on Hitchcock”). Generally, there are not very many proper names
in the first part list, so these words will not be split. This can of course easily be
mitigated by adding common proper names to the list.
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For 99% of the 2,200 compounds that had only one suggestion, this suggestion
was the correct one. For 99% of the 1,200 compounds with several suggestions, one
of the suggestions was the correct interpretation. Here too, most of the problematic
1% were caused by proper names, giving “Ko-rea-kriget” (“the war over selling cows
cheaply”) instead of “Korea-kriget” (“the Korean war”).

Many words that are not compounds can also be split by the program, such as
“vita/vi-ta” (“white/we + take”), “James/Ja-mes” (“James/Yes + small bird”).
This has been avoided by never splitting words that can occur as a non-compound
word, i.e. words that are listed in the last part list or individual word list. Of course,
some non-compound words are still analyzed as compounds, especially inflected
forms, but it is rare. In the test data, 18 words that are not compounds were still
split. Such words were ignored in the evaluations. Some words that could also
be seen as compounds, mainly Swedish family names, which are often made up by
taking two words and writing them together, were also ignored. These were deemed
less interesting to include in the study. They tend to be easy but almost always
uninteresting to split. In the test data, all such words had only one suggested
interpretation.

The program for generating suggestions has a coverage of 99%, in the sense that
99% of all compounds in the test data have a set of interpretations suggested that
include the correct interpretation. It also has a precision of 99% in the sense that
for all words that have interpretations suggested, at least one of these is the correct
interpretation. Words that are not compounds are included here, but can of course
never have a correct suggestion.

Systems for analyzing Swedish compounds have been created before. The most
famous is probably SWETWOL (Karlsson, 1992), based on manually written rules
using the two level formalism. Just like the program used for generating suggestions
to choose from, SWETWOL produces all the interpretations it can find.

SWETWOL can handle some words that the Stava based program does not
handle, such as “Venusmålningarna” (“the paintings of Venus”). Naturally, there
are still many words that it cannot handle, such as “Hitchcockläroboken” (“the
reading material on Hitchcock”). Some words that the Stava based program handles
are not handled by SWETWOL. On the 3,400 compounds included in the test data,
94% had the correct interpretation among the suggestions from SWETWOL.

When the correct interpretation was not available, it was generally caused
by the word not being analyzed as a compound word. Examples of words not
handled correctly by SWETWOL include “yngel|boet” (“the nest of the young-
lings”), “guda|borgen” (“the castle of the gods”), “nikotin|gula” (“nicotine yel-
low”), “läsvane” (“having a large experience of reading”) and “åskblå” (“thunder
blue”).

This means that SWETWOL has higher precision, basically 100%, but lower
recall than the Stava based program.
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Baseline, the Number of Components

One simple way of choosing an interpretation is to take the one with as few com-
ponents as possible. “Korea-kriget” (“the Korean war”) would be preferred to
“Ko-rea-kriget” (“the war over selling cows cheaply”), since it has only two com-
ponents compared to three. This is motivated by the fact that compounds with two
components are much more common than compounds with three, which in turn are
much more common than those with four etc.

If several suggestions have the same number of components, the one that has
the longest last part is selected, since it is more common with inflectional endings
making the last part long than with short components in compounds. “Upp-rättar”
(“establishes”) would be preferred to “upprätt-ar” (“upright area”).

This simple and very fast method works quite well and handles 93% of the
ambiguous compounds in the test corpus correctly.

Words in the Context

Compounds with several reasonable interpretations of course require the use of in-
formation from the context to find the correct interpretation of a certain occurrence.
This type of ambiguity is quite rare, but using contextual information can be useful
in other cases too. A simple way to use the context of a compound is to check if any
of the compound components occur as free words or parts of other compounds in
the near context. In a sentence mentioning a famous glass blower (“glas-blåsare”),
“glas-skål” (“glass bowl”) seems more likely than “glass-skål” (“ice cream bowl”),
since the “glas” (“glas”) component occurs in the same sentence, but the “glass”
(“ice cream”) component does not.

With this in mind, the following method was implemented: For each suggested
interpretation the occurrences of its components as either a word or a part of
a compound word in the context were counted. A context window of fifty words
before and fifty words after the compound was used. The occurrences were weighted
by the distance to the compound, so that closer words were given higher weight.
The interpretation with the highest mean value of its components was selected.

This method works poorly, giving the correct interpretation in only 75% of the
cases. This is caused by data sparseness. A compound component rarely occurs in
the context. If stems of words and components are used the results are improved
slightly, though it is sometimes hard to say what the stem of a compound head is.

Another problem with this method is that it is common that erroneous inter-
pretations contain many short components, such as “han-del-s-min-ister” (“he-part-
s-my-fat”) instead of “handels-minister” (“minister of trade”). Short components
have a good chance of occurring in the context by chance, since short words tend to
be common words. If all suggestions with more components than the one with the
fewest are first removed and the context method is then used as above to choose
between the remaining suggestions, the method works much better. 94% of the
compounds are then correctly interpreted.
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Human readers of course use more context information than the occurrences of
compound components. It would probably suffice to know that the general topic of
a text is related to photography to decide that “bild-rulle” (“roll of film”) is more
likely than “bil-drulle” (“bad driver”). This type of knowledge is hard to capture
using automatic methods, but there are methods that try to do this. One such
method is Random Indexing, RI (Sahlgren, 2005). RI is described in more detail
in section 1.1. In short, it measures how related two words are using co-occurrence
statistics. Words that tend to co-occur with the same words are considered related.

If the method above is modified to calculate the average relatedness of the
components and the context words instead of just counting occurrences of the com-
ponents, performance is improved to 96%. This is one of the best methods of
those presented here. As above, it performs poorly if suggestions with many short
components are also allowed. If these suggestions are also kept, only 51% of the
compounds are correctly interpreted. The reasons are also similar, short compon-
ents correspond to common words, which are often seen as a little related to many
words.

These context methods have the interesting property that they can choose dif-
ferent interpretations for the same compound in different contexts. In our tests, the
context method using RI was the only method that did select different interpret-
ations for the same compound in different parts of the test data, for instance for
the word “kol-atom” (“carbon atom”), which was also interpreted as “kola-tom”
(“empty of caramel”). Unfortunately the text was discussing carbon atoms in both
places, but it is none the less an interesting property. Most methods presented here
and in other research always choose the same interpretation for the same compound.

Relation Between Components

When a way to measure the relatedness of two words is available, such as the one
used in the previous section, it can also be used to see how related the components
of a suggested interpretation are to each other. When looking at the word “glasskål”
we can ask ourselves how often bowls are made of glass (“glas-skål”, “glass bowl”),
how often ice cream is eaten from a bowl (“glass-skål”, “ice cream bowl”) and how
often ice cream and cabbage are eaten together (“glass-kål”, “ice cream cabbage”).

This was tried by calculating the mean relatedness score between the compon-
ents of each suggested interpretation, using the RI method to measure relatedness.
As in the previous section it works poorly when allowing suggestions with many
short components, 46%, and works well if these are first removed, 96%.

Component Frequencies

One method to use statistics when interpreting compounds is to choose “glas-skål”
(“glass bowl”) over “glass-skål” (“ice cream bowl”) on the basis that compounds
with the word “glas” are more common than compounds with “glass”. Frequency
statistics were collected for compound heads and tails. The suggested interpretation
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with the highest geometric mean value of the frequencies of its components was
selected.

This method worked about as well as the baseline method selecting interpreta-
tions with few components, 93% correct. Data sparseness is again the main prob-
lem. Many components of the suggested interpretations did not occur at all in the
text collections from which the frequency data was collected. Several different texts
were tried: the one million words from the SUC corpus (this uses only frequencies
of words, not compound components, since the compounds are not split in this cor-
pus); 84,000 compounds from the SAOL word list (SAOL, 1986) (annotated with
their correct interpretations); the 84,000 compounds from SAOL but with frequen-
cies of the compounds taken from the SUC corpus; 300 compound words from SUC,
manually annotated with their correct interpretation.

The best results were achieved using the 84,000 compounds with occurrence
frequencies from SUC. Using only the word list gives too much weight to rare
words, using only SUC does not give information on the compound component
level and using only 300 compounds gives too little data. The results would likely
be better if frequencies from a large corpus annotated with the interpretations of
compounds were available.

Of the 84,000 compounds from SAOL, only about 10,000 occur in SUC, with an
average of four occurrences each for these. About 14% of the compounds occurring
in SUC are listed in SAOL. This was manually checked in a small sample.

If the powerful heuristic of discarding suggestions with many components is
used, the results are once again improved, giving 95% correctly interpreted com-
pounds.

PoS Context

Often it is clear from the context what the PoS of the compound should be. If dif-
ferent suggested interpretations have different PoS, this type of context information
can be used to select the most likely interpretation.

This was tried by using the statistical PoS tagger TnT described in section 1.2,
which was also used in the previous sections on PoS tagging.

TnT was used to tag the text, with the compound exchanged for the tail of the
suggested interpretation, since the tail determines the PoS in Swedish. TnT was
also run on the text with the compound replaced with a dummy word, to make TnT
select the most likely PoS based solely on the context information. All suggestions
with a different PoS was then discarded and the baseline method using the number
of components were used to select an interpretation between the remaining ones.

This method did not work very well, only 87% correct, which was lower than
the baseline method alone. In most cases all suggestions have the same PoS, so
it is rarely applicable. In the cases some suggestions received a different PoS, it
was usually just a tagging error. It was also common that the suggestion that
was different had a very short component as the tail, which made a favorable
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PoS interpretation possible, since short words are often ambiguous. As mentioned
earlier, short components are rarely the correct interpretation.

If as before suggestions with many short components are discarded first, the
accuracy is improved but still not very good, 90%.

PoS of Components

Some word class combinations are much more common in compounds than others.
Noun noun compounds make up more than 25% of all compounds for instance,
while pronoun pronoun compounds are extremely rare.

To use this information, a PoS tagger for compound components was needed.
No such program was available, most likely because this type of information is
rarely of interest, so a very naive program was created. The program essentially
just makes a lexicon lookup to find the possible PoS of a component. No use of
context information is made. For heads of compounds, which often undergo slight
morphological changes, a few simple morphological rules are used if no lexicon
entry is found. No disambiguation is performed, all interpretations are kept. The
program is not very accurate, especially the heads are often incorrectly tagged.
This is not a great problem though, as explained below.

For each suggested interpretation the probability of the head and tail PoS com-
bination was calculated. If there were several available PoS for either head or tail,
the most favorable interpretation was used. If there were more than two compon-
ents, the probability for each head PoS occurring with the tail PoS was calculated
and the total probability was calculated as the product of these. The suggestion
with the highest probability was chosen as the correct interpretation.

The probabilities for head and tail PoS combinations were automatically calcu-
lated by using the tagging program above to annotate the PoS of the components
of 300 compounds manually annotated with their correct interpretations. Since the
problem consistently makes the same types of mistakes on this reference data as
on the new data, the somewhat low accuracy of the program is not a very serious
problem. It would likely be better if the program was more accurate, though. It
would likely also be better if the reference data was considerably larger. Despite
this, the method works well, with 94% accuracy.

Letter n-grams

Some letter sequences never occur in non-compound words in Swedish, examples
include “kk” and “stp”. When these are found in a word, there must be a compound
border at least in this place. This property has been used to split compound
words (Kokkinakis and Johansson Kokkinakis, 1999). Most compound words do
not contain such letter sequences though.

Similar information can also be used to choose between different suggested in-
terpretations. Even when the letter sequences across the compound border can
occur in non-compound words, they are often rare in non-compounds.
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To use this information, frequencies of letter 4-grams from compound heads
and compound tails were collected. 4-grams spanning a compound border were
not counted. The frequencies were collected from the 84,000 compounds in SAOL,
weighted with frequencies from SUC.

For each suggested interpretation, the sum of the frequencies of all 4-grams
spanning the suggested compound borders was calculated. The suggestion with
the lowest sum was then selected. This was thus the suggestion with the letter
sequences least likely to occur where there is no compound border.

As an example, consider the word “genomarbetat”, which has two possible
interpretations from the first analysis step: “gen-omarbetat” (“genetically redone”)
and “genom-arbetat” (“thoroughly gone through”). The first suggestion has the
following 4-grams and frequencies: “geno (339)”, “enom (342)” and “noma (4)”,
sum 685. The second suggestion has: “noma (4)”, “omar (4)” and “marb (14)”,
sum 22. Suggestion number two, “genom-arbetat”, is thus selected, since it puts
the compound border at the very rare (in non-compounds) “marb” and “omar”,
instead of the word internally more common “enom” and “geno”.

Of the 18,959 4-grams in the compounds in SAOL, 10,211 occur at least five
times in SAOL. If instead the frequencies are calculated with weights from SUC,
only 3680 4-grams occur at least five times. Only 7634 of the 4-grams occur at all
in SUC. The cause is the previously mentioned fact that only a small part of the
compounds from SAOL occur in SUC and only a small part of the compounds in
SUC are listed in SAOL).

Using letter 4-grams worked well, with 95% accuracy. Shorter or longer n-grams
could of course also be used, or combinations of different lengths. Only 4-grams
were examined though.

Ad Hoc Rules

There are some difficult cases that many of the previously mentioned methods
make many mistakes on. To handle such cases a couple of ad hoc rules were
created. One rule handles common inflectional suffixes that can also be interpreted
as compound tails. One such example is “or”, a common noun plural suffix that
can also be interpreted as a rare word meaning a kind of small insect. The first
ad hoc rule simply lists a few such words and suggestions with these as compound
tails are discarded. Though there can certainly be cases were the interpretation as a
compound component is the correct one, such as “glödhet” (“red-hot”), these cases
are rare compared to the suffix interpretations, such as “godhet” (“goodness”), and
they are often suggested as a possible interpretation.

In Swedish, if joining the head and tail results in three identical consonants in
a row, the resulting word is written with only two consonants, i.e. “topp” (“top”)
and “politiker” (“politician”) would make the compound “toppolitiker” (“top politi-
cian”), not “topppolitiker”. This can lead to ambiguities, often with one interpret-
ation being much more likely than the other, such as “vin-nyheter” (“news about
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Method Correct (%) Incorrect (%)

Number of components 93 7
Words in context 75 25
Words in context, few components 94 6
Words in context, RI 51 49
Words in context, RI, few components 96 4
RI between components 46 54
RI between components, few components 96 4
Component frequencies 93 7
Component frequencies, few components 95 5
PoS context 87 13
PoS context, few components 90 10
PoS of components 94 6
Letter n-grams 95 5
Combination method 98 2

Table 3.1: Correctly analyzed compound words, of those with more than one sug-
gestion.

wine”) versus “vinn-nyheter” (“news about winning”). Two reasonable interpreta-
tions is also a possibility, as with the previously mentioned “glasskål”.

Many methods have problems dealing with this kind of ambiguity. One sugges-
tion has a longer compound tail, one suggestion has letter 4-grams with frequency
zero at the compound border etc. but the reason is not the one the method was
meant to deal with. Since many methods do not handle this type of ambiguity in an
intelligent way, an ad hoc rule choosing the slightly more common two consonant
interpretation was created. Some methods, such as the context methods, do not
need this rule, since they handle this type of ambiguity quite well.

Combination Methods

Since the different methods make slightly different kinds of errors they can be
combined and made to correct each other. Almost all compound words have the
correct interpretation selected by at least one method. A simple way to combine
methods is to let them vote on which interpretation should be selected.

A slightly more complicated combination method was tested. The first step is
to discard all suggestions except those with the fewest number of compound com-
ponents. For selecting among the remaining suggestions, the method using the
component frequencies was used together with the method using the PoS of the
compound components. These methods gave a confidence measure for each sug-
gestion and these were combined with slightly more weight given to the frequency
method. The suggestion with the highest total confidence was selected.
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This combination method is correct for almost 98% of the ambiguous compounds
in the test data, which corresponds to slightly more than 98% of all compounds.
This is better than either method on its own.

Error Analysis

The errors made by the automatic methods can be divided into four types. Per-
centages below are for the combination method in the previous section, but should
be considered a bit unreliable, since it only makes 27 errors in our test data. Other
methods make the same types of errors, though in slightly different proportions.

The first error type is to divide a compound at all the correct borders but
also suggest a compound border in at least one more position. One example is
“Vig-gen-plan” (“nimble genetic airplane”), where “Viggen-plan” (“Viggen class
airplane”) would be the correct interpretation. This type of error is usually caused
by the correct interpretation not being available. Since most methods have a very
strong bias towards suggestions with few components, the correct suggestion would
otherwise be selected. About 20% of the errors were of this type.

Error type number two is similar to the first one. The compound is interpreted
as split only at compound borders, but some suggested components are still com-
pounds and should also be split. Example: “fotboll-s-lag” instead of “fot-boll-s-lag”
(“soccer team”). This is the most common error type with slightly more than 40%
of the errors. It can be mitigated by removing compound words from the head and
tail lists of the program that generates suggestions.

How much the compounds should be split depends on the application they are
to be used for, so this error type is not always bad. When searching for good
hyphenation possibilities, likely all possible compound borders are of interest and
thus these errors could lead to less than ideal results. When using compound
splitting for machine translation it is probably better to keep as long components as
possible, as long as they are words that are included in the translation dictionaries.
It is easy to tune how much the compounds should be split by simply varying the
contents of the head and tail lists of the program that generates suggestions.

The third error type is the three identical consonants in a row special case. This
is a quite hard problem and many of these cases lead to errors. Since this type of
ambiguity is not very common though, less than 20% of the errors belong to this
type.

Finally, the fourth error type is when a compound is simply split at the wrong
positions. About 20% of the errors belonged to this type.

3.4 Important Points

In this chapter, methods for automatic compound splitting for Swedish were presen-
ted that using quite modest resources achieved good results. 99% of the compounds
in the evaluation texts were split in some way and 98% of them were split correctly.
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A large part of the remaining errors belong to a type that is often not a serious
problem.

The presented methods are based on statistics. This means that there is no
need for explicitly writing rules for the properties of Swedish compounds. Thus,
it would likely be simple to apply these methods to other languages, and similar
methods have been used on other languages. Most methods are also very easy to
implement.

Several methods require different types of resources to collect statistics from,
though. With the relatively modest resources used here good results were achieved.
With larger resources even better results would likely be achieved.

Some compounds require the use of contextual information to be correctly in-
terpreted. Compounds of this type are very rare, though. Two methods that use
context information were presented, one of which worked quite well.

A very simple and powerful heuristic is to discard suggested interpretations with
many compound components. There are however some words that have two reas-
onable interpretations with different number of components, for example “matris”
(“matrix”) or “mat-ris” (“rice for eating”) and “finskor” (“women from Finland”)
or “fin-skor” (“dress up shoes”). Using the heuristic of few compound components
would thus always make mistakes on one of these interpretations. For this type
of words it is necessary to use context information. Unfortunately, the context
methods worked poorly without the few components heuristic.

In some applications, such as machine translation, it would be interesting to have
the lemma form of the compound components. This has not been dealt with here
but could be done in a straightforward way by simply adding the lemma information
to the compound component entries in the dictionaries used by the modified Stava.
It can be noted though that some compounds have the same component lemmas
despite the compounds being different, such as “broderskap” and “brödraskap”.
For some compounds the lemma form is ambiguous, such as “vaknatt” (“night
watch”), which could be made from “vaka” (“to stay up”) and “natt” (“night”) or
“vak” (“wake”) and “natt”.





Chapter 4

Evaluation Techniques

Evaluation is something that is important to do when dealing with natural lan-
guages. Since languages are not well defined, it is hard to prove things about
systems that deal with them. Since we cannot prove that the system does anything
useful, we should at least evaluate it on some data. This data should be chosen
so that it is similar enough to other data that the system will be used for later so
that the results tell us something interesting. If we do not evaluate the system, we
basically do not know if it works.

Often evaluation requires manual work. For some applications this manual work
can then later be reused for evaluating other systems solving the same task or even
for other tasks. A good example here is a corpus annotated with part of speech,
which can then be used to evaluate part of speech taggers. Although a lot of work
is required in annotating the corpus, any number of systems can then be evaluated
without extra work.

Some tasks can be evaluated using no manual work at all or very little manual
work. An example of this is presented in section 4.2. Another example is evaluating
a parser by simply running it on unannotated text and seeing for how many of the
sentences there is some output from the parser. Even though it is not known how
often the parser is correct, it gives a lower bound for the performance, since the
parser is certainly not correct on the sentences for which it fails to produce an
analysis.

4.1 Evaluating Robustness, Semi-Supervised

This section presents a method for evaluating the robustness of annotation systems
such as PoS taggers or parsers. This research was done together with Johnny Bigert
and Ola Knutsson, and it has been presented at RANLP 2003 (Bigert et al., 2003b).

The method evaluates the robustness of an annotation system. There are many
ways to define the robustness of a system, as pointed out by Menzel (1995). Here,
a system is considered robust if it produces the same analysis of a text when it

59
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contains errors as if the same text had been written with no errors. The less the
change in analysis between a corrupted text and an error free text, the more robust
the system will be considered. A robust system is not necessarily a useful system.
A system that always outputs the same analysis for every word would of course be
a very robust system (under most reasonable definitions of robustness) but it would
not give us any information at all.

A system that is not robust is often less useful than a robust system though.
Most text that systems will be expected to deal with is produced by human writers.
Experience shows that this type of text usually contains quite a few errors. One ex-
ample is search engine queries, for which as much as 10% of all words are misspelled
or in similar ways erroneously input (Dalianis, 2002).

If the system performance degrades rapidly in the presence of errors it will often
be of little use in real applications, even if the performance is good on controlled
test data were errors are rare. In some applications, such as grammar checking, the
system is expected to handle texts with many errors. Why else would you need a
grammar checker?

The evaluation method is illustrated using evaluation of parser robustness as
an example. An overview of different methods for evaluation of parsers is given by
Carroll et al. (1998). Other methods for evaluation of parser robustness have also
been discussed, for instance by Li and Roth (2001) and Foster (2004).

The Evaluation Method

The robustness evaluation method requires an annotated resource, such as a PoS
tagged corpus when evaluating taggers or a tree bank when evaluating parsers etc.
This type of resource is often available, since it is used to evaluate the performance
of the system on relatively error free text. The same resource can then be used to
evaluate the robustness of the system. These types of resources in general contain
texts with very few errors and thus do not give very much information regarding
performance on texts where errors are common.

Although manual work is most likely needed when creating the annotated re-
source, no additional manual work is required for the robustness evaluation. In
section 4.2 the need for this manual work is also removed, though not quite as
much information is gained using that method.

The method itself is very simple. The normal evaluation procedure for determ-
ining the system performance is first used. Normally this consists of running the
system on the evaluation data and comparing it to the gold standard annotation.
This comparison can be done in different ways depending on for instance what
sort of output the system produces. The robustness evaluation method can be ap-
plied regardless of how the actual comparison is done. To simplify the explanation,
assume the system outputs for instance one PoS tag for each word, and the per-
formance is measured by checking for how many of the words this is the same PoS
tag as specified by the gold standard.
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The robustness evaluation then proceeds by (automatically) inserting artificial
errors in the evaluation data. These errors could be of many different types. It
should be noted though that when certain errors are inserted, there might be a new
and more correct analysis of the sentence than the analysis in the gold standard,
since for instance word order errors might lead to new grammatical sentences but
with a different interpretation. These types of errors will not be handled very well
by the robustness evaluation method.

It is of course important that the artificial errors are similar enough to real hu-
man produced errors to tell us something interesting about the system performance.
Some error types may be difficult to simulate artificially in this way. Knowing how
well the system performs on purely synthetic errors is usually not interesting, since
we could just avoid inserting the synthetic errors.

To keep things simple, assume the errors we are interested in are simple spelling
errors resulting in non-words. This means that the new sentence will not have
a better analysis, since this erroneous word is not a proper word, and thus the
most reasonable analysis is probably that the writer made a spelling error and the
intention was the word that we had before inserting the error. This type of error
is not only simple to generate and nice from a new analysis point of view, it is also
a very common error in human written texts, and thus likely to be interesting.

When artificial errors have been inserted, the same evaluation procedure as
before is once again used to measure the performance with these errors.

Different amounts of errors are added and the performance is measured for each
error level. When this is done, robustness is measured as the performance with
errors compares by the performance on error free text. If a system for instance has
90% accuracy on error free text and the performance is 85% accuracy when 10%
of all words have been misspelled, the system has degraded 6% (85% / 90%) in
accuracy when 10% errors were inserted.

To increase the reliability of the measurements, each error level can be evaluated
many times, since there are many possible ways to for instance misspell 10% of the
words. This requires very little extra work, since inserting errors and evaluating
performance can be done automatically.

Example Evaluations

As a practical example of using the robustness evaluation method, an evaluation
of the robustness of a PoS tagger and shallow parser used in a grammar checking
environment is presented.

The robustness of the GTA shallow parser, described in section 1.2, was eval-
uated. The texts used were taken from the SUC corpus, also described in section
1.2. SUC is annotated with PoS but not with the shallow parse information that
GTA generates. A small subset of SUC was manually annotated with the correct
parse information. This test data consisted of about 14,000 words, which is a quite
small test set to draw any conclusions from, but useful for showing the evaluation
method.
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Simple spelling errors were introduced using the program Missplel (Bigert et
al., 2003a), which can introduce many different types of errors. It was used to
generate only spelling errors resulting in non-words, simulating keyboard mistype
like spelling errors.

All words containing alphanumeric characters had an equal chance of being
misspelled. For each word to misspell, a position in the word was randomly chosen.
To simulate performance errors caused by keyboard mistypes, a random choice
between insertion, deletion and substitution of a single letter as well as transposition
of two letters was made. When substituting a letter for another, letters close on the
keyboard are more often mistaken than those far apart. The situation is similar for
insertion, since this is often caused by pressing two keys at the same time. Keys
closer on the keyboard had a higher confusion probability when substituting and
inserting.

Errors were inserted with 1%, 2%, 5%, 10% and 20% probability. For each of
these error levels the procedure was repeated ten times.

GTA outputs the parse information with one label for each word, see section 1.2.
Accuracy was calculated by simply counting how many of the assigned labels were
the same as the manually annotated labels, treating the whole output produced for
one word as one label.

A baseline parser was also produced, which simply selects the most common
phrase level label based on the assigned PoS, i.e. a phrase level unigram tagger.
This was done by tagging 10% of the data at a time, using the rest of the data as
reference data for the unigram tagger.

GTA relies heavily on assigned PoS tags. To study the impact of the PoS
tagging, several PoS taggers were used and compared. The “perfect” tagger, which
is the manually annotated PoS tags; TnT, described in section 1.2, trained on the
parts of SUC not included in the test data; fnTBL, also described in section 1.2, a
transformation based tagger, trained on the same data as TnT; a baseline unigram
PoS tagger, also trained on the same data as TnT.

The results of the evaluations are presented in tables 4.1 and 4.2.

0% 1% 2% 5% 10% 20%

Unigram 85.2 84.4 (0.9) 83.5 (1.9) 81.2 (4.6) 77.1 (9.5) 69.0 (19.0)
Brill 94.5 93.8 (0.7) 93.0 (1.5) 90.9 (3.8) 87.4 (7.5) 80.1 (15.2)
TnT 95.5 95.0 (0.5) 94.3 (1.2) 92.4 (3.2) 89.5 (6.2) 83.3 (12.7)
Perfect 100 - - - - -

Table 4.1: PoS tagging accuracy in percent. The columns are the percentages of
errors introduced. Relative accuracy degradation compared to the 0% error level is
given in brackets.

Some interesting results are that the PoS taggers are quite robust to keyboard
mistypes. This is to be expected, since they already have methods for dealing with



4.1. EVALUATING ROBUSTNESS, SEMI-SUPERVISED 63

0% 1% 2% 5% 10% 20%

Unigram 81.0 80.2 (0.9) 79.1 (2.3) 76.5 (5.5) 72.4 (10.6) 64.5 (20.3)
Brill 86.2 85.4 (0.9) 84.5 (1.9) 82.0 (4.8) 78.0 (9.5) 70.3 (18.4)
TnT 88.7 88.0 (0.7) 87.2 (1.6) 85.2 (3.9) 81.7 (7.8) 75.1 (15.3)
Perfect 88.4 - - - - -

Table 4.2: Parsing accuracy in percent. The unigram parser had 59.0% accuracy
using the perfect tagger and 59.2% accuracy using TnT.

unknown words, and most spelling mistakes will result in something that looks
like an unknown word. As long as the suffix is relatively intact, the unknown word
handling, which usually uses the suffix information, will have relatively little trouble
in choosing the correct PoS.

While the third digit in the accuracy figures should not be given too much
credit, since the test data is quite small, it is still interesting to see that both
parsers seem to work better with an HMM tagger than even the perfect tagger.
This is likely because the perfect tagger is not really error free. The errors made in
the manual annotation are likely random mistakes, while the errors made by TnT
are systematic. It is thus likely easier to generalize from the systematic behavior
than the more random behavior, despite the difference in accuracy.

The GTA parser seems to be fairly robust, only loosing 15% accuracy when
20% of all words are misspelled. This seems to be mostly because of the robustness
of and heavy reliance on the PoS tagging step. The parsing degrades more than
the PoS tagging, likely because tagging errors will influence the parsing of several
words in the near context.

There are many programs for finding this type of spelling errors, and suggesting
corrections for them, available. Thus, it might be prudent to ask if a parser really
has to deal with these errors, even though they are common in texts. Why not just
let a spelling checker correct all suspected spelling errors using the most probable
correction suggestion? While it may seem like a good idea, it actually makes the
parsing worse than if the spelling errors are left alone.

Spelling errors 1% 2% 5% 10% 20%

With errors 88.1 87.3 85.2 81.7 74.9
Automatic correction 87.9 87.1 84.4 80.2 72.4

Table 4.3: Parsing accuracy, in percent, of GTA when errors are inserted. If the
text is automatically corrected by a spelling correction program before parsing, the
results degrade. In both cases the Granska tagger from section 1.2 was used for
PoS tagging.
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Using the spelling checker Stava, described in section 1.2, probably the best
available spelling corrector for Swedish (Bigert, 2005b), on our test data results
in worse results than letting the parser deal with the errors, see table 4.3. The
explanation is likely that the spelling errors are often not very difficult for the
parser, but when an error is corrected using the wrong suggestion the parser has
no clue that something is wrong and sees a possibly quite different sentence. Also,
some correct, but unknown to the spelling checker, words are also “corrected”,
which of course also makes the parsing harder in the same way.

4.2 Evaluating Robustness, Unsupervised

This section extends the work in the previous section. There, an annotated resource
was needed. In this section, the overall approach is very similar, but how much
information can be gleaned without any annotated resources at all is examined.
This research was presented at CICling 2005 (Bigert et al., 2005), where it received
the second place best paper award. This work was done together with Johnny
Bigert, Ola Knutsson and Magnus Sahlgren.

The Modified Evaluation Method

In the previous section a treebank or similar annotated resource was needed. Now
the goal is to eliminate the need for such a resource and see how much information
can be found despite this lack.

Instead of an annotated test set, only an unannotated text collection is required.
Apart from this, an estimate of the system accuracy on error free text is also needed.
This accuracy is usually known. The first step is to annotate the unannotated data
automatically with the system that is to be evaluated. This automatic annotation
will be used similarly to how the gold standard annotation was used previously.

Using the system itself as a gold standard on error free text is thus the first
idea. Of course, the system is most likely not 100% correct on error free text, so
some adjustments have to be made to the method to account for this.

If there is an annotated gold standard available, the five cases in table 4.4 can
occur.

The first case, aaa, is usually the most common case, that the system correctly
annotates the word both when errors are present and on error free text. The second
case, abb, is also quite common, the system fails to annotate some construction
correctly and makes the same mistake when there are errors present in the text.
The third case, aab, is when an error inserted in the text makes the system fail on
a construction it would otherwise have annotated correctly.

Case number four, aba, that the system fails when there are no errors but find
the correct annotation when errors are inserted. It is quite rare, but happens, for
instance when there are two more or less equally probable interpretations for the
system and the correct one is given a little more weight when the context is changed
by some inserted error.
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Correct answer System, no errors System, errors

a a a
a b b
a a b
a b a
a b c

Table 4.4: The five different possible cases when comparing a gold standard, the
parser output on error free text and in the presence of errors.

The last case, abc, that the system has problems with some construction and
chooses a new erroneous interpretation when errors are inserted, is also quite rare.

The problem when not having access to a gold standard is that it is impossible
to distinguish case one from case two, and to distinguish between case three, four
and five, since columns two and three are available. All that can be seen is what
percentage is made up of only aaa and abb or the percentage made up of the other
cases, i.e. how often the parser output is still the same in the presence of errors.

The system accuracy with no errors is of course the percentage made up by aaa
and aab. The accuracy with errors is the percentage made up by aaa and aba. The
degradation of the system in the presence of errors was calculated in the previous
sections as one minus accuracy with errors divided by the accuracy on error free
text.

deg = 1− aaa+ aba

aaa+ aab
(4.1)

This cannot be calculated from the information we have, though it can be
assumed that the denominator aaa+ aab, the system accuracy when no errors are
inserted, is if not equal at lest close to the assumed to be known system accuracy.

deg = 1− aaa+ aba

accuracy
(4.2)

This still cannot be calculated. What can be calculated is an estimate of what
the degradation is likely to be, based on the information that is available. An upper
bound on the degradation can be calculated by this simple formula:

degupper =
1− (aaa+ abb)

accuracy
(4.3)

That is, we take the accuracy we would get using the automatically annotated
data as a gold standard and subtract it from one, thus getting the degradation if
this annotation was 100% correct. Then we adjust for less than 100% accuracy by
simply dividing with the true accuracy. This can be shown to be an upper bound
for the degradation by taking:
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degupper = deg + ε (4.4)

ε will now be:

ε =
1− aaa− abb
accuracy

− 1 +
aaa+ aba

accuracy
(4.5)

Using the facts that accuracy is aaa+aab and that aaa+aab+aba+abb+abc= 1:

ε =
aba+ aab+ abc

accuracy
− aaa+ aab

accuracy
+
aaa+ aba

accuracy
=

2aba+ abc

accuracy
(4.6)

Since aba, abc and accuracy are never negative, it follows that ε ≥ 0, i.e. degupper
is indeed an upper bound on the degradation.

A simple expression for a lower bound for the degradation is half the upper
bound:

deglower =
1− (aaa+ abb)

2accuracy
(4.7)

In a similar way as before, take:

deglower + δ = deg (4.8)

This gives:

δ =
aaa+ aab

accuracy
− aaa+ aba

accuracy
− 1− (aaa+ abb)

2accuracy
=
aab− 3aba− abc

2accuracy
(4.9)

The suggested lower bound is of course only guaranteed to be a lower bound if
δ is non-negative. Thus, unlike the upper bound which will hold for any system,
the lower bound is only guaranteed to hold if:

aab ≥ 3aba+ abc (4.10)

aab is caused by inserted errors causing changes in the annotation of previously
correctly annotated text and both aba and abc are similarly caused changes in
previously incorrectly parsed. Since usually the amount of text that is correctly
annotated is much larger than the amount of errors on text with no errors, this can
be expected to hold quite often.

Both aba and abc occur where the system works poorly, making annotation
errors on error free text. Unfortunately, systems tend to make more changes in
such locations, since there was probably not a clearly favorable interpretation to
begin with. This means that aba and abc will be more common proportionally than
aab, compared to the proportion of originally correctly annotated words, i.e. the
accuracy, aaa+ aab compared to aba+ abb+ abc.
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Still, for a reasonably accurate system, or an inaccurate system that does not
to a very large extent change only annotations of previously failed words, the lower
bound will also hold. For a detailed examination of when the lower bound can be
expected to hold, see (Bigert, 2005a).

When an upper and lower bound is available, the correct value is of course
somewhere in between. When nothing else is known, guessing that the value is
close to the middle of the bounding interval is an efficient strategy for a good
guess. Thus, an estimate of the actual degradation is:

degguess =
3(aaa+ abb)

accuracy
(4.11)

Of course, systems that are very robust will tend to have the degradation over
estimated. Systems with a very high accuracy will also tend to have the degradation
overestimated, since then the automatic annotation is very close to a true gold
standard, and thus the estimated degradation interval will be quite large compared
to what would be needed. This means that the method could likely be improved,
taking these properties into account.

Finally, it is often interesting to know the system accuracy in the presence of
errors, not just the degradation. The system accuracy can of course be calculated
from the estimated degradation and the known system accuracy on error free text.

accupper = (1− degrlower) · accuracy (4.12)

acclower = (1− degrupper) · accuracy (4.13)

accguess = (1− degrguess) · accuracy (4.14)

Note that the interval and any error in the guess will be smaller for the accuracy
than for the degradation, since the error is multiplied by the system accuracy, which
is less than 1.

Evaluating the Evaluation Method

To see how well the presented method works with real systems and data, several
annotation systems were evaluated using the method. For these systems, manually
created gold standards were also available, thus making it possible to see if the
estimated degradations and accuracies are close to the true values.

Four different systems were used to evaluate the evaluation method.

• The shallow parser GTA, described in section 1.2, used in the previous section.
A gold standard of 14,000 words was used.

• The PoS tagger TnT, see section 1.2, also with a 14,000 words gold standard.
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• A dependency parser by Nivre (Nivre, 2003), here called MCD, using a manu-
ally constructed grammar. It assigns dependency links between words, work-
ing from part of speech tagged text. A 4,000 words gold standard was used.

• The Malt parser (Nivre et al., 2004), with a gold standard of 10,000 words.
The parser uses the same algorithm as MCD, but uses a memory based clas-
sifier trained on a treebank instead of a manually constructed grammar. It
also assigns function labels to the dependency links, unlike the MCD parser.

For all systems, errors were inserted in 1%, 2%, 5%, 10% and 20% of the words,
as in the previous section, and for each error level the experiment was repeated
ten times. Since the gold standard annotation was available, the true degradations
and accuracies were calculated. The modified evaluation method not using a gold
standard was of course also used, calculating the lower and upper bounds as well
as the guess of the true values. This was also done on a larger test set, consisting
of 100,000 words, with no gold standard for any of the systems. The results are
shown in tables 4.5 to 4.8 and figures 4.1 to 4.4.

As guaranteed, the true degradation is always below the upper bound. For all
systems the degradation is also above the lower bound, and often quite close to the
guessed value. The evaluation on the larger test set also gives very similar results
as the various smaller data sets.

Error Parse Estimated Real Estimated Real
level differs degradation degradation accuracy accuracy

1 1.1 0.6 – 1.1 (0.9) 0.9 95 – 95 (95) 95
2 1.9 1.0 – 2.0 (1.5) 1.6 94 – 95 (94) 94
5 3.9 2.0 – 4.1 (3.1) 3.6 92 – 94 (93) 92
10 7.3 3.8 – 7.6 (5.7) 6.7 88 – 92 (90) 89
20 14 7.4 – 15 (11) 13 82 – 89 (85) 83

Table 4.5: Estimated and actual robustness of the TnT part of speech tagger on
14,000 words of manually annotated text. Estimated tagger accuracy on error-free
text was 96%.

4.3 Important Points

Evaluation usually entails quite a lot of manual work, either in the form of annot-
ating a gold standard resource to evaluate systems on or manually checking system
output. As was shown, sometimes it is possible to use one type of gold standard
to evaluate other system aspects than the one the gold standard directly supports.
More importantly, it was also shown that it can be possible to derive limits on the
system performance using no manual work at all.
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Error Parse Estimated Real Estimated Real
level differs degradation degradation accuracy accuracy

1 1.2 0.7 – 1.4 (1.0) 0.9 88 – 88 (88) 88
2 2.3 1.3 – 2.6 (1.9) 1.8 87 – 88 (87) 87
5 5.1 2.9 – 5.7 (4.3) 4.2 84 – 86 (85) 85
10 9.9 5.5 – 11 (8.3) 8.1 79 – 84 (81) 82
20 19 10 – 21 (16) 16 70 – 80 (75) 75

Table 4.6: Estimated and actual robustness of the GTA parser on 14,000 words
of manually annotated text. All figures are given in per cent. Estimated parser
accuracy on error-free text was 89%.

Error Parse Estimated Real Estimated Real
level differs degradation degradation accuracy accuracy

1 0.7 0.4 – 0.8 (0.6) 0.6 82 – 82 (82) 82
2 1.7 1.0 – 2.0 (1.5) 1.4 81 – 82 (81) 81
5 4.0 2.5 – 4.9 (3.7) 3.2 78 – 80 (79) 80
10 8.3 5.0 – 10 (7.6) 6.6 74 – 78 (76) 77
20 16 9.6 – 19 (14) 13 67 – 74 (71) 72

Table 4.7: Estimated and actual robustness of the MCD parser on 4,000 words of
manually annotated text. Estimated parser accuracy on error-free text was 82%.

Error Parse Estimated Real Estimated Real
level differs degradation degradation accuracy accuracy

1 1.8 1.1 – 2.3 (1.7) 1.3 77 – 78 (77) 78
2 3.4 2.2 – 4.3 (3.2) 2.4 75 – 77 (76) 77
5 8.7 5.5 – 11 (8.3) 6.1 70 – 74 (72) 74
10 16 11 – 21 (16) 12 62 – 70 (66) 69
20 30 19 – 38 (29) 23 48 – 64 (56) 60

Table 4.8: Estimated and actual robustness of the Malt parser on 10,000 words of
manually annotated text. Estimated parser accuracy on error-free text was 79%.
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Figure 4.1: Degradation of the PoS tagger TnT. Real degradations are marked
with a *, estimated degradation is the fully drawn intervals, dashed intervals are
estimated degradation of TnT using a larger test set with no available gold standard.
The dotted lines are the break even points, where the degradation is the same as
the amount of inserted errors.
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Figure 4.2: Degradation of the GTA parser. The same format as figure 4.1.
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Figure 4.3: Degradation of the MCD parser. The same format as figure 4.1.
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Figure 4.4: Degradation of the Malt parser. The same format as figure 4.1.
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In this part, applications of NLP that can actually be useful for the end user
are presented. These include methods for finding errors in text the user produces,
creating lexicons for helping the user in understanding foreign languages and auto-
matically extracting the important points in long texts.

These applications often rely on the tools presented in the previous section.
Examples include grammar checking, which relies heavily on PoS tagging, and
dictionary lookup, where compound splitting is used when no translation is available
for the compound word.





Chapter 5

Grammar Checking

5.1 Introduction to Grammar Checking

Automatic grammar checking is traditionally done using manually written rules,
constructed by a computational linguist. Normally, rules are written describing
what errors look like, what the diagnosis and possible suggestions for corrections
should be. This can produce very good results, especially regarding high precision.
The main drawback is that it takes a lot of time to write and tune the rules. Some
errors types are also hard to capture with rules without producing many false
alarms. It is also hard to write rules for unexpected errors, which can appear for
instance when a writer is not very proficient in the language used, and thus makes
“strange” errors compared to native speakers of the language.

Another approach is to write rules for correct language use. Anything that
does not match the rules for correct language is then considered wrong. One way
to do this is to write a full parser and flag anything the parser cannot parse as
an error. This approach usually has problems with coverage, languages are very
complex and writing rules describing a language is hard. Usually many correct
language constructions are also flagged as errors because of lack of parser coverage,
or the parser is written with more general rules that allow many incorrect language
constructions to slip through too.

Another way of using rules for correct language is to write rules at two different
detail levels. Rules for errors can then be generated as the difference between the
two detail levels. A simplified example would be a rule saying that a noun phrase
in Swedish contains a determiner and a noun. A more detailed rule would be a
determiner and a noun, agreeing in gender, number and definiteness. Subtracting
the more detailed noun phrase rule from the general one gives for instance rules for
noun phrases with agreement errors in the gender feature. This has been discussed
in a finite state automata framework (Karttunen et al., 1966, Sofkova Hashemi et
al., 2003).

Methods for detecting grammatical errors without using manually constructed

77
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rules have also been used. Some examples: using the probabilities in a statistical
part of speech tagger (Atwell, 1987), detecting errors as low probability part of
speech sequences. ProbGranska, described in section 1.2 also works on PoS, com-
paring new text to known correct text and deviations from the “language norm”
are flagged as suspected errors. Mutual information measurements have been used
to detect incorrect usage of difficult words (Chodorow and Leacock, 2000).

Machine learning has been used to detect when one word has been confused
with another (Mangu and Brill, 1997). This problem has also been attacked by
combining several methods (Golding, 1995). Comma placement and determiner-
noun agreement in Danish has also been treated as a confusion set problem in a
similar way (Hardt, 2001). Another example of a confusion set problem is English
article usage before noun phrases (Han et al., 2004).

In many fields, machine learning is used with an annotated resource as training
data. The straightforward way to do this for grammar checking is to annotate a
corpus, marking all the grammatical errors. Then a machine learning program could
be trained on this, resulting in a grammar checking program. This has been tried
for transcribed English spoken language (Izumi et al., 2003). The large drawback
with this method is that very much manual work is needed for annotating errors in
text to avoid data sparseness. This is especially bothersome since there are many
different error types, thus very large amounts of data are required. It is also hard to
find all errors in a text manually, since readers often skip over errors when reading
text. On small amounts of data, this method has not produced very impressive
results.

Statistical and machine learning methods are good for smaller languages, since
they require few resources to implement. Such methods often only indicate that
something is wrong or different from the norm, though. They rarely give a diagnosis
or a suggestion for how the problem should be corrected. However, for many writers
an indication that something is wrong is enough.

5.2 Evaluating Grammar Checkers

In many areas of natural language processing there are standard ways to evaluate
performance. For instance in tagging and parsing there are standard resources that
people can use for evaluation, which has led to steady improvements in these areas.
For grammar checking there exist evaluation metrics that are often used, mainly
precision and recall, but no standard data sets. That there are no evaluation
resources for grammar checking is somewhat surprising, since it is a useful and
frequently used application of language processing.

Precision and recall are problematic for grammar checking purposes. These
measures vary wildly between different text types using the same grammar checking
program. On text with few errors, for instance newspaper articles, precision is
usually low, one typical example from the evaluations in this chapter is 10% for a
state of the art grammar checker. If there are only four errors to detect in a text,
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making a single false alarm means that the maximum achievable precision drops to
80%.

On texts with many errors, such as essays written by second language learners,
with as much as one error in every three words, the opposite is true: 95% precision
for the program above. Just selecting word pairs at random and indicating an error
there can give reasonable precision scores.

Many grammar checking methods make false alarms on (for them) difficult
constructions, whether there are errors present or not. Thus precision is very much
dependent on the number of errors that it is possible to detect, since a large part of
the number of false alarms is more or less independent of whether there are errors
present or not.

Precision and recall are also problematic in that not all errors are equally im-
portant to find and correct. Keyboard mistypes and erroneous comma placement
might be annoying to the reader, but generally the meaning will be clear. Confusing
two different words or using the wrong word order might give the text a different
meaning and could perhaps be much more troublesome for the reader. Unfortu-
nately, the errors that are most important to correct are usually the hardest to
detect. This means that high precision and recall figures for simple error types
might be less useful than lower figures for more serious error types. Comparing
different systems or evaluating improvements made to a system is thus difficult.

There is also the question of whether the user gets enough information from a
suggestion for correction, a correct diagnosis, just a detection or even a detection
with the wrong diagnosis. Finding a good way to compare different diagnoses etc.
is hard.

In this chapter, generally only detection of errors is evaluated, the diagnosis is
not considered. The main reason is that most of the evaluated grammar checking
methods are statistical methods that do not produce a detailed diagnosis. They
only indicate that something is suspiciously different from the reference language
norm.

Annotation is Hard

When calculating precision and recall, the usual procedure is for a human to look
through all alarms and see if they are correct or not. This is the method used in
this thesis. It would be preferable if this could be done automatically, for instance
using an annotated corpus. This would speed up the process, thus allowing frequent
evaluations of small changes to a grammar checking system etc.

Annotating a resource with error information is however hard. It can be hard to
determine what exactly is wrong, even when it is clear that the text is not correct,
as for example this text taken from a sign in a train Japan: “Please fall to an
Immigration Bureau in 3.4 numbered wire at a station in front of a city hall”. It
can also be unclear whether a construction is wrong or just unusual. It also happens
that the text is not what the writer intended, i.e. wrong, but still grammatical and
even semantically sound. Should these types of errors also be annotated?
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It can also be hard for the annotator to find all the errors, since human readers
come with built in error correction, i.e. often “smooth” over errors, since they
“know” what should come next.

How to annotate errors so that it is easy to evaluate grammar checkers later
is also not clear. Which type of diagnosis from the grammar checker should be
expected? When many diagnoses are possible, should the annotation include all
of them? It can be hard for the annotator to see all possible analyses of the text.
Also, which words should be marked, the ones that are actually wrong or the whole
context that the error depends on? What is more convenient when evaluating is
often dependent on the grammar checker that is to be evaluated.

One way to get cheap annotation of errors is to use error free text and insert
synthetic errors. Since it is now easy to know where the errors occurred, and what
the correct text should be, automatic evaluation can often be used. One problem is
that it is not always clear if these measurements tell us anything interesting; does
the program behave similarly on real errors?

Closing Words

Based on the evaluations in this chapter, current state of the art grammar checking
seems to have very low recall, often less than 30%. Especially for writers that make
many errors. These are the writers that would have had the most to gain from
a good grammar checker. This means that more work needs to be done and that
better evaluation procedures would be useful, since this has generated progress in
other areas.

5.3 Using Chunks for Grammar Checking: ChunkGranska

In section 1.2 the grammar checker ProbGranska is presented. It detects errors in
text by searching for unlikely PoS sequences.

In this section the same basic idea is used, but phrase chunks are used instead
of PoS tags. The chunker used has only 8 different chunk types, which means that
there is no data sparseness problem even for quite long chunk sequences. It also
finds different error types than ProbGranska, since different error types show up
on the chunk level and on the PoS level.

This research was first presented at Nodalida 2005 (Sjöbergh, 2005a). The
presented method creates a grammar checking tool without using any manual work
once a chunker is available. Only the chunker and unannotated text with relatively
few errors is required.

In this section, chunking means dividing sentences into non-overlapping phrases.
The sentence “The red car is parked on the sidewalk.” could be chunked as “[NP
The red car] [VC is parked] [PP on the sidewalk]” where NP means noun phrase,
VC means verb chain and PP means preposition phrase. Chunking is a relatively
well developed field of research. There are chunkers available for several languages
that give good results, usually well over 90% accuracy.
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The GTA shallow parser, see section 1.2, is used for chunking, discarding
everything except the top level phrase information and inserting a special boundary
chunk tag at clause boundaries indicated by GTA.

The Grammar Checking Method

To create a grammar checker a chunker and an unannotated corpus is needed. First,
the corpus is automatically annotated using the chunker. Statistics such as chunk
n-gram frequencies are collected, giving reference statistics for normal language use.

When a new text needs to be checked, the chunker is run on the new text. If
this new text contains chunk sequences that never occurred in the reference texts,
they are marked as possible errors. Of course, a higher threshold for believing
a construction is correct could also be used, for instance if the reference text is
suspected to contain many erroneous constructions.

The number of different chunk types, while varying depending on the language
and chunker in question, is generally quite low. The only requirement on the
corpus is that it should contain relatively high quality texts, so creating a very
large reference corpus is often possible. This means that very good statistics can
be collected even for quite long chunk sequences. Hence, there are few false alarms,
since even rare chunk sequences will normally be present in the reference corpus.
Using only chunk sequences, even for n-grams of length five, less than 10 false alarms
were generated on 10,000 words of text in the evaluations, with slight variation
between different genres.

While it is possible to use the method with long chunk sequences it is probably
better to use shorter n-grams. Since there is no detailed error diagnosis available,
it is not that helpful to get an error report indicating that something is wrong with
a very long text sequence. Pointing out shorter sequences makes locating the error
easier.

While the reliable statistics lead to very few false alarms, it turns out that not
that many true errors are detected either. One example from the evaluations was
13 correct detections and one false alarm on data where other grammar checkers
detected between 60 and 100 errors, though with more false alarms.

To detect more errors the chunk set can be modified. The modifications can be
done completely automatically without changing the chunker. If we are interested
in finding errors related to verb usage, we can substitute the chunk used for verb
chains with the actual words of the chunk. So for the example sentence “[NP The
red car] [VC is parked] [PP on the sidewalk]”, originally the chunk trigram “NP-
VC-PP” is produced. With the new modification “NP-is parked-PP” is produced
instead. This allows detection of new error types, for instance wrong verb tense, as
in “I want to went home” or “I thought he is nice”. Similarly, if we want to find
errors related to prepositional use we can do the same for preposition phrases. This
detects errors such as “I arrived on Stockholm”.
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While this has the benefit of detecting many new errors it also has drawbacks.
The number of chunk types is no longer small, it is very large. Thus the statistics
become sparse, leading to many false alarms.

A better approach in a similar vein is to change only those verb chains or
preposition phrases which are common, i.e. occur more than some threshold number
of times in the reference corpus. If the limit is high enough it works quite well.
The statistical data is still reliable. This gives more correct detections while only
giving a few more false alarms. Of course, not all the errors detected by the more
aggressive strategy of replacing all verb chain chunks are detected with this less
aggressive method. It is easy to tune the aggressiveness by simply changing the
threshold value. This means that users that accept more false alarms if more correct
detections are produced can choose a different setting than users that want fewer
false alarms at the cost of more remaining errors.

The GTA chunker can produce more detailed information for noun phrases,
such as head noun, if the phrase as a whole acts as plural or singular, definite form
or indefinite etc. This information can be used in the same way as exchanging
preposition phrases for their content words. Adding the information to the chunk
tag allows detection of more errors, such as “these are my the cars”, but of course
also makes the statistics more sparse, leading to more false alarms.

adverb phrase
adjective phrase
boundary (clause or sentence)
infinitive phrase
noun phrase
preposition phrase
verb chain
outside of phrase (e.g. punctuation or interjections)

Table 5.1: The chunk types used.

Evaluation

The method was evaluated on Swedish texts. As reference texts the Swedish Parole
corpus of about 16 million chunks, and the KTH News Corpus of about 10 million
chunks, both described in section 1.2, were used. The evaluation was performed
on three different genres: newspaper texts, student essays and essays by second
language learners of Swedish. All error reports were manually checked to see if
each error was a genuine error or a false alarm. The texts were not checked for
undetected errors.

In the tests, chunk n-grams are allowed to span sentence boundaries, though
there is a boundary tag inserted in the chunk sequence at all sentence boundaries.
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N-gram length Limit Correct False

3 500 4 63
3 5,000 2 7
3 50,000 1 2
4 500 14 179
4 5,000 6 52
4 50,000 3 19
5 500 26 279
5 5,000 17 144
5 50,000 15 74

Table 5.2: Evaluation results on 10,000 words of newspaper texts, taken from the
SUC corpus. There are very few errors in these texts, which leads to poor accuracy.

N-gram length Limit Correct False

3 500 75 20
3 5,000 24 2
3 50,000 5 1
4 500 223 43
4 5,000 98 12
4 50,000 33 6
5 500 315 60
5 5,000 199 27
5 50,000 108 13

Table 5.3: Evaluation results on 10,000 words of second language learner essays
from the SSM corpus. With many errors to detect, it is easy to get quite high
precision. Most errors in the text go undetected, though.

Common verb chains and preposition phrases were replaced with the word se-
quence they represented, for different threshold values for what was considered com-
mon. Noun phrases were replaced with a tag indicating the type of noun phrase
found, such as a genitive form or a definite and plural form. A list of the chunk
types used is shown in table 5.1.

In tables 5.2, 5.3 and 5.4 the results using different n-gram lengths and different
limits for when to consider a chunk “common” are presented for three different
genres.

Other grammar checkers have also been evaluated on these texts, and some
results from those are also presented, in tables 5.5, 5.6 and 5.7, to give an idea
of how good the chunk method is in comparison. The two best grammar checkers
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N-gram length Limit Correct False

3 500 26 47
3 5,000 12 11
3 50,000 6 1
4 500 93 138
4 5,000 42 47
4 50,000 24 13
5 500 174 233
5 5,000 118 138
5 50,000 68 69

Table 5.4: Evaluation results on 10,000 words of native speaker student essays from
the written part of the Talbanken corpus. Frequent use of quotations leads to many
false alarms.

MS Word Granska

All detected errors 10 8
All false positives 92 35

Detected spelling errors 8 6
False positives 89 20

Detected grammar errors 2 2
False positives 3 15

Table 5.5: Evaluation of two state of the art grammar checking methods on
proofread newspaper texts, 10,000 words. Table 5.2 shows the chunk method on
similar data.

MS Word Granska

All detected errors 392 411
All false positives 21 13

Detected spelling errors 334 293
False positives 18 5

Detected grammar errors 58 118
False positives 3 8

Table 5.6: Evaluation of two state of the art grammar checking methods on second
language learner essays, 10,000 words. Table 5.3 shows the chunk method on the
same data.
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MS Word Granska

All detected errors 38 48
All false positives 31 13

Detected spelling errors 24 17
False positives 28 0

Detected grammar errors 14 31
False positives 3 13

Table 5.7: Evaluation of two state of the art grammar checking methods on essays
written by native speakers, 10,000 words. Table 5.4 shows the chunk method on
the same data.

evaluated on these texts were MS Word 2000 and Granska, see section 1.2. Both
are based mainly on manually constructed rules for different error types.

The test genres were newspaper texts, essays by native speaker students and
essays by second language learners. The newspaper texts were taken from the SUC
corpus, see section 1.2, which contains almost no errors. The writers also have a very
good grasp of the language and use many “advanced” language constructions. The
student essays were taken from the written part of the Talbanken corpus (Einarsson,
1976). The essays are argumentative, discussing the views expressed in some other
texts the writers have read, and they quote a lot from these texts. The second
language learner essays were taken from the SSM corpus, described in section 1.2.
The language proficiency varies from writer to writer, some have studied Swedish
for only a few months while some have studied several years. These essays are
usually quite short.

Looking in the tables, it can be seen that the method is easy to tune to produce
few or many error reports. The optimal choice is probably different for different
users. Writers with a good grasp of the language using many varied constructions
would likely use a very high limit for “common” phrases, while users with limited
knowledge of the language and thus less productive use of their vocabulary would
benefit more from a lower limit. An experienced writer might also benefit more
from reports of errors on long chunk sequences, probably being able to assess what
is wrong and also capturing error types with longer dependencies. An inexperienced
language user would probably be better served with a more precise diagnosis, i.e.
use shorter n-grams, to understand what is wrong.

On newspaper texts there were almost no errors to detect. A reasonable per-
formance level to choose on this genre is perhaps 3-grams and the highest limit for
“common” chunks. This gives one correct detection and two false alarms. No other
grammar checkers were evaluated on this text, but on similar newspaper texts, also
10,000 words (which were not used in these evaluations, since they turned out to
be part of the reference corpus in these experiments), gave two detected errors and
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three false alarms for MS Word 2000, which was the best performing grammar
checker on this genre. This is while not counting simple spelling errors, otherwise
the best grammar checker was Granska which had 8 correct detections and 35 false
alarms. No grammar checker had less than 35 false alarms when counting spelling
errors.

The best performing grammar checker on essays written by non-native speak-
ers was Granska, which detected 411 errors and made 13 false alarms, which is a
lot more than the chunk based method detects, see table 5.3. However, most of
the 411 detected errors are simple spelling errors, which will generally be ignored,
since the chunker ignores them. If only grammatical errors and hard spelling errors
(errors resulting in another existing word) are counted, the best performing gram-
mar checker detects 118 errors, making 8 false alarms. Using 4-grams of chunks
and a limit of 5,000 occurrences for “common” chunks, the chunk method performs
similarly, with 98 correct detections and 12 false alarms. MS Word 2000, which is
tuned for high precision, detected 58 errors with only 3 false alarms on this text,
not counting spelling errors.

There are very many errors in these essays, most of which were not detected by
any of the grammar checkers. Since there are so many errors and since even trigrams
of chunks can span quite a lot of text, finding n-grams of chunks with errors in them
might be thought to be too easy. While it is true that there are many errors in the
texts, just pointing out random chunk n-grams does not perform that well. When
checking 50 random chunk trigrams, 27 would be counted as correctly detected
errors and 23 as false alarms. The chunk based method presented here performs
better than this.

On the student essays MS Word 2000 detected 14 errors with 3 false alarms
and Granska detected 31 with 13 false alarms. When including spelling errors MS
Word detects 38 errors with 31 false alarms and Granska 48 errors, still with 13 false
alarms. A reasonable performance level for the chunk method here is 24 correct
detections with 13 false alarms, which is not so good.

The chunk method performs quite poorly on these essays. This is mainly caused
by them differing a lot from the reference domain, while still using correct language
constructions. The main problem is that there are a lot of “short quotes” which
are rare in the reference texts and thus give rise to many unseen chunk n-grams.
There are also longer quotes from “odd” genres, such as old bible translations and
law books, which while not erroneous are not examples of the more common use of
Swedish, and thus lead to more false alarms.

Discussion

Many of the unseen n-grams are caused by chunker errors, i.e. the unseen chunk
n-gram is not the n-gram that should be produced by a 100% correct chunker.
Usually the reason the chunker makes an error is because there is an error in the
text, which means that this is not a problem. The method correctly signals an
error.
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As mentioned regarding the poor performance on the native speaker student
essays, the method has problems with texts from domains that differ a lot from the
domains the reference texts come from. In general this is not a great concern, since
it is cheap to add more data to the reference texts. All that is needed is raw text,
although with relatively few errors.

Increasing not only the number of domains covered by the reference texts, but
also just increasing the size of the reference data is generally a good idea. Since
it is so cheap it is a good way to reduce the number of false alarms. False alarms
are generally caused by rare language constructions being used, which is mitigated
by a larger reference corpus. A larger reference corpus also gives a richer chunk set
for a fixed limit on occurrences for “common” chunks, which can also lead to more
correct error detections.

This method detects many different types of errors. Some error types detected
by it are considered “hard” to detect by manually writing rules to detect them, and
are thus not very well covered by traditional grammar checkers. This is one reason
the chunk method detected errors that no other evaluated grammar checker found.

The main error types detected by the method in these experiments were missing
or erroneously placed commas, word order errors, spelling errors resulting in other
existing words and using the wrong preposition for a certain verb. Other error
types with fewer detections were verb tense errors, split compounds, missing words,
missing sentence breaks, agreement errors, other inflectional errors, repeated words,
unconventional use of fixed expressions and idioms and simply using a different
word from the one intended (this error type was only made by the second language
learners).

Since the method detects many different types of errors but does not give a
detailed diagnosis it is perhaps hard for a user to understand what is wrong. One
way to mitigate this is to create different versions of the grammar checker. One
version could for instance use the changing of chunk tags for verb chains and thus
detect mostly verb related errors, while another might change the chunk tags for
noun phrases and thus find noun related errors. They will likely all detect some
error types related to chunk sequences in general, but those that only one version
detects could be given a slightly more detailed diagnosis.

5.4 Using the Internet for Grammar Checking:
SökmotorGranska

A lot of research has recently focused on the fact that very simple methods can
often give interesting results, as long as they have access to very large amounts
of data. This can go as far as outperforming sophisticated methods using smaller
amounts of data.

The Internet is a large and freely available corpus, so it is appealing to use it for
different purposes. Some work using approaches similar to the one in this section
include estimating bigram frequencies for rare bigrams (Keller and Lapata, 2003),



88 CHAPTER 5. GRAMMAR CHECKING

suggesting improvements on text constructions where the author is unsure (Moré
et al., 2004) and detecting malapropisms (Bolshakov, 2005).

Since the statistics on chunks used in the previous section is very good even
in small corpora, one idea is to go in the other direction. Why not use very large
corpora, such as the Internet, and just use word sequences? Then we would not
even need a chunker or tagger.

In this section, this method of grammar checking is explored. Two main ap-
proaches are used: marking language constructions not present on the Internet as
suspected errors and using the Internet to filter out false alarms from other grammar
checking methods. This section is based on the paper “The Internet as a Normative
Corpus: Grammar Checking with a Search Engine” (Sjöbergh, forthcominga).

When using the Internet as an example of correct language use, as we do here,
there are some problems. There are many web sites with intentional examples
of incorrect language use, and recognizing these can be hard. Publishing text on
the Internet is cheap and easy, with no requirements regarding proofreading, so
there are also many unintentional errors. These problems are not that bad in
practice, since there are usually more examples of correct constructions than the
corresponding erroneous constructions. As long as the possibility of errors is taken
into account, many methods using the Internet as a normative corpus work quite
well.

Another problem is that while the Internet is large, it is too small for many
interesting ideas. This is harder to deal with, but the Internet is still growing quite
fast, so just by waiting more and more data is made available.

Internet Size

Word Internet Parole
pages occurrences

välde 4,190 33
multnade 121 1
ett 3,710,000 139,766
den 5,080,000 199,223

Table 5.8: Occurrences in a 20 million words corpus and using an Internet search
engine.

When using the Internet as a large corpus it is interesting to know roughly how
large it is. Since it grows all the time there is no official size available. The size
also varies depending on the search engine (or other method) used to access it.

The search engine eniro.se was used in these experiments. While other search
engines give access to more documents, this one has some advantages. The output
is very easy to parse, there is no limit on the number of searches each day and it
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has an “only pages in Swedish” option, which was useful since the evaluations of
the methods were done on Swedish texts.

Using the Internet search engine eniro.se with the “only pages in Swedish”
option enabled, searches were done for a few words chosen more or less at random.
Some relatively rare words, which probably occur only a few times on each web
page, and some common words, which probably occur many times on each page.
The number of pages returned by the search engine was then compared to the
number of occurrences of the words in the Swedish Parole corpus, described in
section 1.2.

For the rare words there were about 100 times more pages than occurrences
in the corpus. For common words there were about 25 times more pages than
occurrences in the corpus, see table 5.8 for some examples. This difference between
common and rare words is of course caused by the common words occurring many
times on each page in the search engine.

The Parole corpus contains 20 million words, so a low estimate would give a few
billion words of Swedish indexed by this search engine. Swedish is a relatively large
language on the Internet, though not very large in the number of speakers. English
is of course the number one language on the Internet, with a very large margin to
language number two.

These numbers give a rough idea of what sort of statistics are reasonable to
collect. For instance word trigram occurrences would not be reasonable, since even
a low estimate of 100,000 possible word forms would lead to very sparse data indeed.
In the next section we would like to use occurrences of n-grams of words, but even
for bigrams the data will be sparse.

Detecting Errors

An idea similar to ProbGranska, see section 1.2, or the chunk based grammar
checker in section 5.3 was used to detect errors. All word bigrams in a text were
sent to a search engine. Bigrams not occurring on the Internet were reported as
errors. This was tried on newspaper texts and on essays written by learners of
Swedish.

Errors found included spelling errors, erroneously split compounds, agreement
errors, missing words and more. Example errors include: “sådana prisen” (“such
the price”, agreement error), “hav miljon” (“sea milion”, spelling error resulting in
another word, “halv miljon” “half a milion” was intended) and “arbetar restaurang”
(“works restaurant”, a missing preposition). Results can be seen in table 5.9.

The results were compared to two state of the art grammar checkers, MS Word
2000 and Granska, see section 1.2. They not unexpectedly outperform the Internet
method, mostly because they detect a lot of spelling errors but also because they
detect errors using a larger scope than this method.

Since the Internet is too small for good coverage of Swedish word bigrams there
are many false alarms from the Internet method, especially on the newspaper texts.
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Checking only bigrams where both words are common mitigates this, but lowers
recall. All spelling errors go undetected, for instance.

Method Genre Limit Correct False

Internet newspaper 10,000 1 21
Internet newspaper 100 2 162
Granska newspaper - 8 35
MS Word newspaper - 10 92

Internet learner 10,000 21 4
Internet learner 100 100 22
Internet learner 0 283 27
Granska learner - 411 13
MS Word learner - 392 21

Table 5.9: Using word bigrams to detect errors, in newspaper texts and second
language learner essays. “Limit” is the minimum number of occurrences on the
Internet of each word required to try the bigram lookup.

The performance on newspaper texts is quite bad, but on the other hand there
are almost no errors in the text so very few detections can be expected. On the
second language learner essays quite good results are achieved, comparable to state
of the art grammar checkers. Learners use a limited vocabulary, mainly common
words, which is well covered on the Internet. Hence, there are few false alarms.
Learners also make many errors detectable by this method.

This method only finds very local errors. It also has problems with phrase and
clause boundaries and some multi-word expressions, and of course rare words. Some
improvements include ignoring numbers, interjections and proper names, which can
be identified relatively well with automatic methods.

Data is still very sparse for normal language users, since there are several hun-
dred thousand word forms that are commonly used, and only a few billion words
of text are available in the “corpus”. This means that a bigram in general has very
low probability of occurring on the Internet.

Other than being very resource lean, the Internet method also has another
advantage. Of the 21 detected errors in learner essays checking only common words,
8 errors were not detected by any of four other available grammar checkers, the two
state of the art methods above and ProbGranska, see section 1.2, and SnålGranska
from section 5.5. When checking only such bigrams the number of false alarms is
very low.

This indicates that this method can be used together with other methods. This
would improve error coverage while introducing very few new false alarms.
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Removing False Positives

Another use of the Internet is to remove false positives (false alarms). Instead of
letting the lack of certain constructions be an indication that they are wrong, the
occurrences of certain constructions can be used to indicate that they are correct.

This can be done by taking the suspected errors from a grammar checker and
sending these constructions to a search engine. If these have been used a sufficient
number of times on the Internet, treat the suspected error as a false alarm. It is
a good idea to require more than one occurrence on the Internet, since there are
bound to be some errors, intentional or otherwise, on the Internet.

This was tried for two different grammar checkers. Both are based on automatic
methods and thus have a tendency to produce quite many false alarms, especially
on text domains that differ from the training texts.

ProbGranska

ProbGranska, described in section 1.2, detects unlikely PoS trigrams. This leads to
quite a lot of false alarms in general, because the PoS trigram data is quite sparse.
ProbGranska already has strategies to mitigate this, but the Internet can be used
to remove more false alarms.

Detections False Alarms Precision

Original 102 19 84%
Filtered 84 7 92%

Table 5.10: Filtering suspected errors from the grammar checker ProbGranska using
the Internet. Evaluated on essays written by second language learners.

ProbGranska points out PoS trigrams as suspected errors. For each such trigram
the corresponding trigram of words sent to a search engine. If there were more than
25 hits with the search engine the error was removed as a false alarm.

This gives the filter a shorter scope than the original error detection. The filter
only looks at three words, while the tagging step that produces the PoS trigram
can look at the neighboring words and their PoS as well.

When tried on 10,000 words of learner essays precision was increased from 84%
to 92%, but quite a few of the correct detections were also removed, see table 5.10.
On 10,000 words of newspaper texts, 16 of 36 false alarms were removed. Since
there were very few errors in these texts, there was only one correct detection. The
correct detection was not removed.

Split Compounds

Split compounds is a quite common error type in Swedish (and other compounding
languages, such as German). It is quite hard to detect these errors with automatic
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Split Other False
compounds errors alarms

Original 19 27 10
Filtered 16 (0) 3 (19) 0 (3)

Table 5.11: Filtering suspected split compounds from the grammar checker Snål-
Granska, in second language learner essays. Numbers in parenthesis are detections
which remain but had the diagnosis changed to “other error type”.

methods, and few grammar checkers for Swedish try to handle this error type. There
are many (erroneous) split compounds on the web, which means that checking if
the suspected error occurs on the Internet is not a very good way to filter false
alarms for this error type. Too many correct detections are removed.

For split compounds of Swedish, one can instead combine the words of the
suspected split compound into a compound word. If this word exists on the Internet
it was a correct alarm, otherwise it was a false alarm.

This removes many false alarms. This also removes detections of errors which
are not split compounds but still erroneous. Some error types sometimes look like
split compounds, examples include agreement errors and using the wrong word
class, such as adjective form instead of adverb, noun instead of verb. It would
probably be good for the writer to get an error report on such errors, even if the
diagnosis was “split compound”.

Still, it would be better if they were detected with the correct diagnosis, perhaps
by a different grammar checker module. If a good split compound detection module
is to be created, these should be removed.

It is possible to modify the simple filtering method above to handle such errors
better. The words are combined into a compound as before. If this compound is
more common than the original multi-word expression it is treated as a correctly
detected split compound. If neither the compound nor the multi-word expression
occurs on the Internet more than 10 times it is probably not a split compound, but
it is probably still an error. These detections are given another diagnosis, such as
“error, but not a split compound”.

The grammar checker SnålGranska, see section 5.5, detects split compound er-
rors (and some other error types). It has quite good recall for these errors compared
to other grammar checkers. It has a relatively low precision though, so there is po-
tential for improvement by removing false alarms.

When using the first mentioned method to remove false alarms for split com-
pounds 16 of 29 split compound false alarms are removed on 10,000 words of news-
paper text. Using the filter that relabels errors only removes 5 false alarms, while
the other 11 are relabeled. There were no correct detections of split compounds in
these texts, since there were no errors to detect.

On second language learner essays there are more errors to detect. The filter
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removes most false alarms and also correctly relabels most errors of other types,
see table 5.11. 16 of 19 correctly detected split compounds remain, with the correct
diagnosis. 3 errors of other error types are still labeled as split compounds and 3
false alarms remain, though no longer believed to be split compounds.

Discussion

While the Internet is often too small for normal users it might be large enough for
special applications. One example is learners of a new language, who use a limited
vocabulary. This vocabulary tends to be common words, and thus well covered on
the Internet.

The Internet can also be used as a complement to traditional methods, by
for instance removing false alarms or detecting some error types missed by other
methods.

5.5 Using Machine Learning for Grammar Checking:
SnålGranska

In this section a method for constructing a grammar checker using machine learning
is presented. To avoid the time consuming annotation of training data, artificial
errors are used instead of real errors. The main strength of the method is that
it is very resource lean, requiring little in the way of manual work and available
resources. This research was done together with Ola Knutsson, and it was presented
at RANLP 2005 (Sjöbergh and Knutsson, 2005).

General Method

The basic idea of the method is to treat grammar checking as a tagging task. Collect
a lot of text, mark all errors with “ERROR” and all other words with “OK”. Train
an off-the-shelf tagger on this data and you have a grammar checker. To achieve
better feedback it is possible to have different tags for different types of errors, i.e.
“SPELLING”, “VERB-TENSE”, etc. Another way to achieve this is to train a new
specialized classifier for each error type, which ignores other types of errors.

Finding these errors and annotating them requires a lot of work. This is here
avoided by using artificial errors. A lot of text without errors is used, and the text
is then corrupted by adding errors. Since they are added automatically they can
be annotated at the same time.

When this is done, the resulting text is automatically annotated with PoS, here
using TnT, see section 1.2. The words, PoS and error annotation are then used as
training data for the automatic grammar checker. Almost any machine learning
implementation could be used for this. Here, fnTBL described in section 1.2 was
used. One reason was that it produces rules that are easy to understand for non
technical humans. This means that it is easy to check the results to see if they are
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interesting, and that it is possible for for instance a linguist to go through the rules
and possibly change them after the learning is done.

When generating the artificial errors it is likely that the more “human like” the
errors are, the better the grammar checker will be. Of course, using real human
produced errors would be best, since that would give the machine learner a proper
view of what errors look like. Since the strength of the method is that it is resource
lean, though, focus was not put on producing realistic errors. If a lot of effort is
spent on producing artificial errors it would perhaps have been more useful to create
a traditional grammar checker. As long as the resulting grammar checker is useful,
the simpler the error generation the better, so very simple artificial errors were
used. About 30 minutes of manual work was used in creating the error generation
programs for both the error types tested. This is all the manual work that is needed
to create the grammar checker.

In figure 5.1 an example of an error generation program, for agreement errors,
is shown. When implemented in a high level scripting language, the code is not
much longer than this pseudo code.

(1) Read lemma lexicon (or stems)
(2) Read PoS tags with agreement constraints
(3) Run PoS tagger
(4) For each tagged sentence:
(5) Pick random word with agreement constraint
(6) Get lemma (lexicon)
(7) Get random word with this lemma (lexicon)
(8) If not exact same word:
(9) Change word, mark as error

Figure 5.1: Example of error generation code, for generating agreement errors.

If the error generation code is run on “I bought a car.” we could get for instance
“I/OK bought/OK a/OK cars/ERR ./OK”.

The error generation programs sometimes change a sentence so that the result
is still grammatical. One simple example would be a program that inserts word
order errors by randomly changing the order of neighboring words. Not all changes
will lead to errors, for example “I heard dogs barking” and “I heard barking dogs”
are both correct, but “heard I dogs barking” is not. Such sentences will of course
still be marked as erroneous. This is not a great problem, since if something is
correct there are usually many examples of this which are not the result of changes,
and thus marked as correct. This means that the learner will in general only learn
rules for those artificial errors that result in text which is incorrect, since the other
“errors” will be drowned out by all the correct examples.

This method can be used on many error types. Some examples of errors that
could be generated artificially include: word order errors (reorder randomly se-
lected words), missing words (remove randomly selected words), “hard” spelling
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errors (replace words with another word with only a one letter difference), split
compounds (replace all words that could be made from concatenating two other
words in the corpus with these two words), agreement errors and verb tense errors
(use a dictionary lookup to replace words with another inflectional form of the same
word), prepositional use (change prepositions to other prepositions), etc.

The main strength is errors that are simple to generate, but where the resulting
sentence structure is hard to predict. Word order errors and split compounds are
examples of such errors. Errors such as repeated words for which it is straight-
forward to predict the result can also be handled by this method, but is probably
better handled by traditional methods.

The method was tested on two different error types: split compounds, an error
type suited to our method, and agreement errors, suited to traditional grammar
checking methods. Agreement errors were tested to see how the method holds up
where the competition is the hardest. The method was evaluated on Swedish text
and compared to three other grammar checkers.

Error Type 1: Split Compounds

In compounding languages, such as Swedish and German, a common error is to
split compound words, i.e. write “quick sand” when “quicksand” was intended.
Two concrete examples from Swedish: (1) “en långhårig sjukgymnast” means “a
physical therapist with long hair”. Splitting the compounds to make “en lång hårig
sjuk gymnast” is still grammatical but the meaning is changed to “a tall, hairy
and sick gymnast”. (2) If the compound “ett personnummer” (“social security
number”) is split to “ett person nummer” (“one person number”) it would lead to
an agreement error and be ungrammatical.

The SUC corpus, see section 1.2, was used as training data for the machine
learner. The Stava spelling checker, also described in section 1.2, was used to
automatically split compounds. The research on compound splitting presented in
section 3 was carried out after these experiments, otherwise those methods could
of course also be used. Even simpler methods, such as splitting words if they can
be constructed from two other words in the corpus, could also be used.

While some manual work has been put into creating Stava (and thus in a sense
made this type of error generation less independent of manual work), the part used
here, i.e. the compound analysis component, was automatically constructed from a
dictionary. If however there are tools available that someone already put a lot of
manual effort into creating, the method described here could of course use these.
It would then be a method of creating a grammar checking component from other
tools in an unsupervised way.

The training data consisted of the corpus texts, to show correct language use,
and another copy of all the corpus texts. The second copy had all compounds recog-
nized by the compound splitter split into their components, with the components
marked “error”.
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The rule learner was given the word n-grams, PoS n-grams and error annotation
n-grams. The n-grams were unigrams, bigrams and trigrams. Some combinations
of these were also allowed, such as the current word and error annotation trigrams.
The initial guess for the learner was that words more common in compounds than
as a single word (in the training data) were probably errors and all other words
correct. The best rules found by the learner used PoS bigrams or error annotation
of one word and PoS of its neighbor.

To improve the precision of the learned rules the fact that if a compound is
split it will result in at least two components can be used. Any single word marked
error is thus probably a false positive (or one of its neighbors is a false negative),
and can be removed. Since there was a spelling checker available we improved this
a little by filtering the output through the spelling checker. If a suspicious word
could not be combined into a correct compound by using a neighboring word also
marked “error” it was considered a false alarm and the error was removed. This
improved the precision but also removed many correctly detected split compounds,
usually because they were misspelled as well as erroneously split (and would thus
be found by the spelling checker instead).

Using the spelling checker gave only a very small improvement over just remov-
ing errors with no neighboring error, while both methods improved the precision of
the original rules significantly.

Error Type 2: Agreement Errors

In Swedish, determiners, adjectives, possessives and nouns must agree in number,
gender and definiteness. Agreement errors are quite common, especially when re-
vising text using a computer. The agreement can span long reaches of text, which
can make the errors hard to detect. Manually writing good rules for agreement
errors is relatively straightforward, and it is one of the more popular error categor-
ies to detect among automatic grammar checkers. Though manually created rules
usually detect agreement errors with high precision, the recall is often low.

To generate artificial errors the SUC corpus was used again. In each sentence a
word from any word class with agreement restrictions was randomly selected. This
word was then changed to another randomly selected form of the same word. This
was done by a simple lexicon lookup were the lemma of the word was found and
another word with the same lemma and a different surface form was selected. The
selected word was marked as an error and all other words were marked as correct.

When an agreement error occurs, at least two words are involved. This method
only marked the changed word as an error, although it would also be reasonable
to mark all words with agreement restrictions related to the changed word. One
reason for doing it this way is that it is easy to mark the changed word but hard
to mark the other words. If they could be found, the same method could be used
to detect agreement errors. Also, since here it is known which word was changed,
which word should be corrected to retrieve the intended meaning is thus known,
even though the agreement error itself could likely be corrected in several ways.



5.5. USING MACHINE LEARNING FOR GRAMMAR CHECKING:
SNÅLGRANSKA 97

MS Word Pr.Gr. Granska SnålGr. SnålGr. Base Base Union Inter-

+ filter + filter section

Detected 75 225 322 588 535 331 120 582 275
False neg. - - 490 224 277 481 692 230 537
False pos. - - 6 49 24 162 6 29 1

Prec. (%) - - 98 92 96 67 95 95 100
Rec. (%) - - 40 72 66 41 15 72 34

Table 5.12: Detection of split compound components. The baseline “Base” is simply
the most common tag for each word (“error” or “correct”), from the training data.
“Union” is any word marked “error” by either the manual rules of the Granska
grammar checker or the filtered automatic rules of SnålGranska (the presented
method). “Intersection” is any word marked by both. MS Word and ProbGranska
do not specifically address the problem of split compounds but find some anyway,
but of course with a different diagnosis.

As features for the machine learner the gender, number and definiteness of the
word were given (if applicable). All this information is included in the tag set TnT
was trained on, and was automatically assigned. The PoS of the word and the error
annotation were also included. Unigrams, bigrams, trigrams and combinations of
these features were used. The best rules combined PoS and n-grams of the gender
features.

The initial guess was that there were no errors in the text. A baseline was
constructed by locating every occurrence of two consecutive words that had different
gender, number or definiteness and marking the first of these as an error. This
baseline could be used as initial guess for the learner, which gives higher precision
than the original initial guess, since many rules are learned that remove alarms
(mostly spurious alarms from the baseline), but lower recall.

Evaluation

The method was evaluated and compared to Granska and MS Word 2000, and also
to the ProbGranska statistical grammar checker. All three are described in section
1.2.

Evaluation on Collections of Errors

The first evaluation was performed on collections of examples of authentic split
compounds and agreement errors. These were all taken from real texts, but since
there is at least one error in each sentence it is a quite unrealistic data set, and
it is easy for the grammar checkers to achieve high precision with so many errors
available. The benefit of these collections is that all errors that occur have been



98 CHAPTER 5. GRAMMAR CHECKING

MS Word ProbGr. Granska SnålGr. Baseline Union Intersection

Detected errors 71 17 101 88 100 134 54
False negatives 155 - 125 138 126 92 172
False positives 1 - 5 15 143 19 1

Precision (%) 99 - 95 85 41 88 98
Recall (%) 31 - 45 39 44 60 24

Table 5.13: Detection of agreement errors. The baseline marks the first of any
two consecutive words that have different gender, number or definiteness as an
error. “Union” is any word marked “error” by either the manual rules of the
Granska grammar checker or the automatic rules of SnålGranska (our method).
“Intersection” is any word marked by both. ProbGranska does not specifically look
for agreement errors.

manually annotated, so it is easy to check the precision and recall of the grammar
checkers. Since these are real errors a grammar checker with a good result on these
texts will likely work well on “real” texts too.

For split compounds, examples were taken mostly from web pages and news-
papers. There were 5,124 words, of which 812 were components from split com-
pounds. Most compounds consisted of only two components. Sometimes two (but
rarely more) adjacent compounds were both split. The results are shown in table
5.12.

For split compounds the results are quite good. Compared to the other grammar
checkers, the automatically learned rules have lower precision but the highest recall.
Detecting split compounds is considered quite hard, and Granska is one of the few
grammar checkers that actually tries to detect split compounds. It is likely the best
grammar checker currently available for this.

The grammar checker in MS Word 2000 does not look for split compounds but
these errors sometimes look like other types of errors that MS Word recognizes. On
the test data MS Word classed 75% of the detected split compounds as spelling
errors. One third of these were caused by the split compound also being miss-
spelled, one third by the compound containing a word which was not recognized
(e.g. “Rambo”) and one third by the morphological change of the head of the
compound. MS Word classed the remaining detected split compounds as agreement
errors.

The ProbGranska extension to Granska often finds split compounds. In the test
data most of the alarms generated by ProbGranska are caused by split compounds,
which is not surprising since there are so many split compounds to detect in the
data.

For agreement errors the data consisted of 4,556 words, also mostly from news-
papers or the Internet. There were 221 agreement errors in the test data, the results
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MS Word ProbGr. Granska SnålGr. Total

All detected errors 10 1 8 3 13
All false positives 92 36 35 50 200

Detected spelling errors 8 0 6 1 9
False positives 89 - 20 - 101

Detected grammatical errors 2 1 2 2 4
False positives 3 36 15 50 99

Detected agreement errors 0 0 0 1 1
Detected split compounds 0 0 0 0 0

Table 5.14: Evaluation on proofread newspaper texts, 10,000 words. Since there
are very few remaining errors to detect, performance is less than impressive.

are shown in table 5.13.
For agreement errors the results are not as impressive, which is to be expected

since agreement errors are one of the best covered error types of traditional grammar
checkers. While the automatic rules are outperformed by the manually created
rules, the results are still good enough to be useful.

The main reason for the lower recall of the automatic rules is that they only
work in a small local window. Many of the errors detected by the manual rules
span tens of words. Since the automatic rules find none of these errors and still
manage to find almost as many errors, there are a lot of errors detected by the
automatic rules not found by the manual rules. Combining the two methods thus
gives better results than either method individually, as shown in table 5.13. They
also complement each other, though not as much, on split compounds, as shown in
table 5.12.

Evaluation on Real Texts

To evaluate the performance on real texts a few sample texts were collected. All
grammar checkers were then run on the texts. All words suspected to contain errors
by any of the grammar checkers were manually checked to see if each error was a
real error. The texts were not manually checked to find all errors, since that would
require a lot of work, which goes against the theme of this thesis, and the time was
not available. This gives the precision of the grammar checkers, but not the recall
since there could be many errors not detected by any of the grammar checkers. It
is possible to get an upper bound on the recall though, using the errors missed by
one grammar checker and detected by another.

The first genre was old newspaper articles. These were taken from the Swedish
Parole corpus described in section 1.2. These texts are very hard for the grammar
checkers, since they are well proofread and contain almost no errors. The results are
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MS Word ProbGr. Granska SnålGr. Total

All detected errors 392 101 411 122 592
All false positives 21 19 13 19 67

Detected spelling errors 334 34 293 26 362
False positives 18 - 5 - 21

Detected grammatical errors 58 67 118 96 230
False positives 3 19 8 19 46

Detected agreement errors 32 9 49 43 74
Detected split compounds 5 8 20 27 35

Table 5.15: Evaluation on second language learner essays, 10,000 words. With
many errors in the text high precision is to be expected. Less than half of all errors
are detected, though.

shown in table 5.14. The results are not impressive, the precision is very low for all
grammar checkers. Since there are almost no errors to find, this is to be expected.
The number of false positives (false alarms) gives an indication of whether the
grammar checkers would be usable for writers who make few errors. 50 false alarms,
as for the presented method, in 10,000 words is probably tolerable, considering that
the commercial grammar checker produces about twice as many when including
spelling error reports. Though of course it also tries to capture more error types.

The second genre was essays written by people learning Swedish as a second
language. These were taken from the SSM-corpus described in section 1.2. These
texts contain a lot of errors, which is generally good for the grammar checkers in
the sense that it is easy to get high precision. It also leads to problems though,
since many errors overlap and there is often very little correct text to base any
analysis on. Results are shown in table 5.15. There are a lot of errors that no
grammar checker detects, in a 1,000 words sample that was manually checked to
find all errors less than half the errors were detected by any grammar checker.

The grammar checkers using manually constructed rules show much higher pre-
cision (about 95%) than the presented method (about 86%). They also detect many
more errors, mainly because they also look for spelling errors, which are common
and much easier to detect. When it comes to grammatical errors the recall is com-
parable to the manual rules. On split compound errors, which this method is well
suited for and which are hard to describe with rules, it performs very well. On
agreement errors, which are one of the best covered error types using manual rules,
its performance is still quite good, with similar recall but lower precision compared
to the manual rules.

It is also interesting to note that the grammar checkers do not overlap very
much in which errors they detect. A total of 230 grammatical errors are detected
but no individual grammar checker detects more than 118. Combining different
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MS Word ProbGr. Granska SnålGr. Total

All detected errors 38 23 48 28 90
All false positives 31 45 13 31 111

Detected spelling errors 24 3 17 1 25
False positives 28 - 0 - 28

Detected grammatical errors 14 20 31 27 65
False positives 3 45 13 31 83

Detected agreement errors 5 0 11 8 15
Detected split compounds 0 1 1 1 1

Table 5.16: Evaluation on essays written by native speakers, 10,000 words. Frequent
use of spoken language style and quotations from for instance legal documents lead
to a lot of false alarms in these essays.

methods, for instance by signaling an error whenever at least one grammar checker
believes something is wrong, would thus give much higher recall.

The final genre was student essays written by native speakers, table 5.16. Again,
the results are not impressive for any of the grammar checkers. Many false alarms
are caused by quotations, law books and old texts such as the Bible are quoted.
These contain text that is grammatical but differs a lot from “normal” language
use. There are also false alarms when spoken language constructions that are rare
in written texts are used. This is especially true for the two statistical methods,
which both compare new texts to the “language norm” they were trained on (in
this case written language).

Discussion

The presented error detection method requires almost no manual work. It works
quite well for detecting errors. It has lower precision than state of the art grammar
checkers based on manually constructed rules, but the precision is high enough to
be useful. For some error types the recall of the new method is much higher than
the recall of other grammar checkers.

The greatest advantage of this method of creating a grammar checker is that
it is very resource lean. A total of 30 minutes were spent on generating artificial
errors. Some other resources are also needed but only commonly available resources:
unannotated text, a part of speech tagger and a spelling checker were used.

If several different modules are trained to detect different types of errors they
can be combined into one framework that detects many error types. In this case
false alarms become a problem, since even if each module only produces few false
alarms the sum of them might be too high. In our tests many false alarms were
caused by some other type of error occurring. This kind of false alarm might not
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be a serious problem, since they are caused by real errors and just have the wrong
classification. Possibly the module which should find this type of error will also find
those errors and the correct classification will also be available. It is also possible to
steer the machine learner towards high precision (few false alarms) in the training
phase.

It is especially interesting that the method works so well for split compounds.
This is a common problem for second language learners of Swedish and also quite
common in informal texts by native speakers. It is also a hard problem to write
rules for manually. Few grammar checkers address these errors.

Another interesting and useful result is that the automatically learned rules
complement the manually constructed rules. This means that they do not find
the same errors, so combining the two methods to achieve better results than each
individual method is possible.

While the method used artificial errors so as not to be too labor intensive a
better grammar checker could likely be produced by training on real errors. It
should be feasible to collect enough training data for this. For instance copy editors
at newspapers and teachers with students writing essays have access to a lot of text
with errors that is also manually proofread.

5.6 Combining Different Grammar Checking Methods

As was shown in section 2.3, combining several PoS taggers is good, giving higher
accuracy and requiring very little extra work. The same basic idea can of course
also be used for grammar checking programs. Many of the results reported here
has been presented before, in the “CALL for the Nordic Languages” collection of
papers (Bigert et al., 2004).

Grammar checking is a little different from PoS tagging, though. It is common
that different grammar checkers detect different error types. Thus combining them
by voting would not be very interesting, since grammar checkers that do not try to
find a certain error type would vote that there was nothing wrong.

Grammar checkers tend to have very low recall. Combining grammar checkers
to improve recall can be done in a straightforward way by simply signaling an error
when at least one grammar checker believes something is wrong.

Of course, if several grammar checkers try to detect the same error type, they
can also be combined for improved precision. For instance by requiring error reports
from at least two grammar checkers to report an error, or by using voting or some
other method from section 2.3.

Improving Precision

Since state of the art grammar checkers often already have quite high precision,
only two small experiments were done with regards to improving precision. The
grammar checker Granska, see section 1.2, and the grammar checker SnålGranska,
described in section 5.5, detect both split compounds and agreement errors.
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Granska SnålGranska Combined

Detected errors 101 88 54
False negatives 125 138 172
False positives 5 15 1
Precision (%) 95 85 98
Recall (%) 45 39 24

Table 5.17: Combining grammar checkers for improved precision on detection of
agreement errors. There are 4,556 words, with 221 agreement errors.

Granska SnålGranska Combined

Detected errors 322 535 275
False negatives 490 277 537
False positives 6 24 1
Precision (%) 98 96 100
Recall (%) 40 66 34

Table 5.18: Combining grammar checkers for improved precision on detection of
split compound errors. There are 5,124 words, of which 812 are parts of split
compound errors.

Two test collections were used, both containing sentences from newspapers and
web pages. All sentences contain at least one error of the type to be evaluated,
making this data set quite easy for the grammar checkers when it comes to achieving
high precision, since there are so many chances for true positives.

The grammar checkers were combined by only signaling an alarm if both gram-
mar checkers thought there was an error. The results of combining the grammar
checkers to improve precision is shown in tables 5.17 and 5.18. The precision can
be improved, but the cost in lost recall is quite high.

Improving Recall

Since the big problem with current grammar checkers seems to be low recall, more
experiments were done on combining systems to improve recall. First, the same
two systems and test sets as in the previous section were combined, see tables 5.19
and 5.20. This time they were combined by signaling an error whenever at least
one system thought the text was wrong.

As is usually the case, if the gain in recall is large, as for agreement errors,
the drop in precision is also quite significant. However, this also has a lot to do
with SnålGranska not being very good at detecting agreement errors. For split
compound errors the gain in recall is not that large, but the precision is still high.
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Granska SnålGranska Combined

Detected errors 101 88 134
False negatives 125 138 82
False positives 5 15 19
Precision (%) 95 85 88
Recall (%) 45 39 60

Table 5.19: Combining grammar checkers for improved recall on detection of agree-
ment errors. There are 4,556 words, with 221 agreement errors.

Granska SnålGranska Combined

Detected errors 322 535 582
False negatives 490 277 230
False positives 6 24 29
Precision (%) 98 96 95
Recall (%) 40 66 72

Table 5.20: Combining grammar checkers for improved recall on detection of split
compound errors. There are 5,124 words, of which 812 are parts of split compound
errors.

Three grammar checkers from the Granska suite were combined in the same way.
Whenever Granska, ProbGranska or SnålGranska believed there was an error, the
combined system gave an alarm. The test data was 10,000 words of second language
learner essays from the SSM corpus, see section 1.2. These were not manually
checked to find all errors, so no recall figure is available. All alarms generated by
any of the systems were manually checked to see if they were correct error detections
or not, so precision can be calculated.

In table 5.21 the results can be seen. The results are quite good for grammatical
errors. With a slight drop in precision, from 86% for the best grammar checker, to
83% for the combined system, the recall is drastically improved, with 214 detected
errors instead of 118.

Table 5.22 shows the overlap in error detection between the three systems. Both
how many errors are detected by two systems at the same time and how many errors
are detected by at least one of the systems is shown.

The number of false alarms made by more than one system is very low. This
is not very good when combining the systems by taking all alarms generated by
any system, since it basically makes the number of false alarms for the combined
system the sum of all false alarms. However, this property could be used when
high precision is desired, since requiring two systems to believe something is wrong
before signaling an error would remove most false alarms. The recall would be quite
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ProbGranska Granska SnålGranska Any

All detected errors 102 411 121 528
All false positives 19 13 19 48
Precision (%) 84 97 86 92

Detected spelling errors 35 293 26 314
False positives - 5 - 5
Precision (%) - 98 - 98

Detected grammatical errors 67 118 95 214
False positives 19 8 19 43
Precision (%) 78 94 83 83

Table 5.21: Evaluation on second language learner essays, 10,000 words. “Any”
means all errors detected by any of the Granska methods.

Combination Both Only Only Only Any
Granska ProbGr. SnålGr.

Granska & ProbGr. Correct 17 101 50 168
False alarms 0 8 19 27

Granska & SnålGr. Correct 44 74 51 169
False alarms 3 5 16 24

ProbGr. & SnålGr. Correct 11 56 84 151
False alarms 0 19 19 38

Table 5.22: Overlap in detection of grammatical errors between the grammar check-
ers Granska, ProbGranska and SnålGranska.

low, though, since most of the reason the number of common false alarms is low is
that the systems detect different types of errors.

The gain in recall from using two different systems is very large, even if one of
the systems is much better than the other and they both try to find more or less the
same error types, as for Granska and SnålGranska. Still, most errors go undetected
by any system. A small hand checked sample showed that less than half the errors
were detected.





Chapter 6

Summarization

6.1 Introduction to Summarization

Summarization here means that a text is processed so that a shorter text is produced
which still includes the most important information of the original text. What is
important can of course vary depending on what the purpose of the summarization
is, who the intended reader is etc. Summarization has received increased interest
lately since the world is increasingly filled with very large amounts of available
information. Summarization is done in many situations, often by manual work.
Here only automatic summarization will be discussed, i.e. a computer program will
do all the work.

Automatic summarization has been done in many ways and the research field
has been active for quite some time (Luhn, 1958, Edmundson, 1969, Salton, 1988).
Summarization can be divided into two different approaches, abstraction and ex-
traction. Abstraction is what humans generally do, and means that the original
text is analyzed in a relatively deep way and a new text is produced that is a sum-
mary of the original text. Extraction means that selected parts of the original text
are extracted and these make up the summary while the rest of the text is dis-
carded. There are also methods that fall in between abstraction and extraction, for
instance by selecting passages from the original text and then transforming them
in some non-trivial way, such as deleting subordinate clauses or joining incom-
plete fragments (Jing and McKeown, 2000, Jing, 2000). Abstraction is generally
much harder to do than extraction, and thus most research has used extractive
approaches. In this thesis, only extraction will be used.

Usually extraction based summarization is accomplished by ranking individual
segments, such as sentences or paragraphs. Then the best ranked segments are se-
lected for inclusion one after the other. Often adjustments are made so the ranking
of later segments is sensitive to choices made earlier, so as to avoid redundancy
(Carbonell and Goldstein, 1998, Hovy and Lin, 1999, McDonald and Chen, 2002).

Often, summarization is performed on newspaper texts. Two reasons for this

107



108 CHAPTER 6. SUMMARIZATION

are that it is a readily available text type, and that there is some interest in having
it summarized since very large amounts of news are produced daily. Newspapers
themselves are also sometimes interested in systems that can shorten texts auto-
matically if more space is needed for instance for commercials. One problem with
this genre with regards to summarization is that newspaper texts are often written
in a style so as to make it very easy to shorten them. This makes it hard to pro-
duce a method that works substantially better than very simple methods such as
removing text from the end until the text is short enough.

This method of using the first part of the original text as a summary is an often
used baseline in summarization research, usually called the “lead” method. It often
performs very well, and avoids many of the problems with extractive summaries,
such as broken references and lack of “flow” in the text, by taking a manually
written coherent chunk of text.

Scientific research papers have also been used for summarization. These are also
readily available and new texts are produced in such amounts that reading all the
full texts is deemed more or less impossible in many fields. An obvious problem
with this genre is that most research papers already include a short summary of
the important points. Hence, the reasons for generating automatic summaries are
somewhat limited. This fact is not only a negative point though, it also means that
there is a readily available gold standard summary for each paper.

Automatically evaluating summarization turns out to be quite hard. This is
not unexpected, since it very difficult to give an objective definition of what a good
summary is. When it comes to evaluating summarization several methods have
been used, but most have drawbacks.

One obvious method is to have human judges read the summaries and give a
judgment on how good they (subjectively) think they are. This of course measures
what one would usually want the system to be good at, generating summaries that
human readers think are good. Drawbacks include variability, i.e. people are not
generally consistent, and the method requires a lot of manual work.

Recently, evaluation of summarization has used human written summaries as
gold standards. The automatically generated summaries are then compared to these
gold standard summaries, and the more similar they are the better the summaries
are assumed to be. Similarity is usually measured using word n-gram overlap,
usually using the ROUGE evaluation metrics, which have been shown to correlate
well with human evaluations (Lin and Hovy, 2002; 2003a;b). This method requires
quite a lot of manual work for generating the gold standard summaries, but once
this is done any number of systems, or changes to one system, can then be evaluated
quickly and automatically.

In this thesis, the ROUGE evaluation metrics are used for evaluation of auto-
matic summarization. In total, three different ROUGEmetrics are used. ROUGE-1
measures word overlap. ROUGE-L measures the longest common word sequence.
ROUGE-W is also based on the idea of long common word sequences, but weighted
to favor sequences where consecutive words from the respective documents are used.
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There are also word n-gram based ROUGE metrics, but the scores for the
best available summarization systems (and human agreement) are very low, so
differences between systems are not very clear using these metrics. The inter system
ranking is usually the same regardless of which ROUGE metric is used, though.

6.2 Using Random Indexing in Summarization

In this section a method for calculating the similarity of a summary and the original
text, using Random Indexing (RI), is presented. A short overview of RI is given
in section 1.1. This similarity information is then used to select the summary that
is most similar to the original text from a set of generated summary suggestions,
which are in our case extracts of the original text. This research has been presented
at the workshop “Crossing Barriers in Text Summarization Research” workshop at
RANLP 2005 (Hassel and Sjöbergh, 2005) and at LREC 2006 (Hassel and Sjöbergh,
2006), and the research was done together with Martin Hassel.

The Similarity Measure

It is in general quite hard to calculate a similarity score for how similar the contents
of two texts are. When used to distinguish between texts that are all extracts from
the same text some extra complications arise. Most methods that calculate the
similarity between two documents use measures like word or n-gram overlap. Since
all candidate summaries generated by our method are extracts from the original
text, all words in all summaries overlap with the original text. This is thus not a
good way to differentiate between candidates.

The method used here is basically word overlap, but the words are “weighted”
using the RI method, so it is in some sense a “concept” overlap measure. Other
methods that are similar to RI could of course also be used instead.

As mentioned in the overview of RI in section 1.1, each word is assigned a context
vector that in some sense represents the semantic content of the word. Here, each
text is also assigned a context vector. This vector is simply the weighted sum of the
context vectors of the words in the text. It should be noted that there is nothing
inherent in the RI method that says that summation in this way should make sense.
However, it turns out to work quite well in the experiments performed. Similar ideas
have been used for instance for text categorization (Sahlgren and Cöster, 2004).

Similarity between two texts is then simply measured as the similarity between
the directions of the context vectors of the texts.

When constructing the semantic vector for a text, the context vector for each
word is weighted with the importance of this word, by simply making the length
of the vector proportional to the importance of the word. The weight could for
instance be something simple, such as making the length of the vector be tf·log(idf),
the term frequency and inverse document frequency. It is of course easy to add other
weighting criteria if desired, for instance for slanted summaries where some words
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are deemed more important, or by giving words occurring early in the document,
in document or paragraph headings etc. higher weight.

Here two different weighting methods were tried: tf·log(idf) and the “burstiness”
of the word. The burstiness of a word is here based on the standard deviation of the
distance (in words) between different occurrences of this word in the text, which
is a measure that has been used for keyword extraction (Ortuño et al., 2002).
Words that occur only with large distances between occurrences usually have a
high standard deviation by chance, so the standard deviation is divided by the
mean distance between occurrences. The final weight of a word is tf · σ/µ, where µ
is the mean and σ the standard deviation of the distances between occurrences, in
words.

Words never encountered during the word space model generation generally
degrade performance, since no information regarding their distributional properties
is available. Using RI this is trivially solved by simply adding a text to the index
before using this method, since it is easy to update the index later. This means all
words in the relevant texts will have been encountered at least once.

This method of determining similarity between two texts can of course also be
used for many other things, not just summarization.

Searching for Good Summaries

In principle, all possible extracts of a desired length could be generated and the best
one, in the sense of being most similar to the original text, could then be selected.
In practice the number of possible summaries is of course prohibitively large, since
it grows exponentially with the length of the text and summary sizes.

In this section the strategy is to start with one extract summary and then check
all other extracts that are in some sense close to this and see if one of them is
better. If so the procedure is repeated for the best summary found so far, until a
locally best summary is found, i.e. a simple hill climbing search is used.

The starting summary is simply the lead summary, i.e. the extract that consists
of sentences taken from the start of the original text until the desired size is reached.
The neighbors of a summary are simply those summaries that can be reached by
removing one sentence and adding another. Since sentences and summaries can vary
in size, just adding one sentence and removing two or adding one new sentence
without removing any sentence is also allowed. Summaries that differ too much
from the desired size are discarded.

When all such summaries have been investigated, the one most similar to the
original document is updated to be the currently best candidate and the process
is repeated. If no other summary is better than the current candidate, the search
is terminated. It is also possible to stop the search at any time if so desired, and
return the best candidate so far.

To avoid getting caught in a low local maxima it is of course possible to use other
search strategies, or simply repeat the search from a few more randomly generated
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Elizabeth Taylor is breathing with the assistance of a ventilator
after undergoing surgery aimed at determining the cause of pneumonia
that has kept her hospitalized for three weeks, her physicians said
Monday. The Academy Award-winning actress was admitted to St. John’s
Hospital in Santa Monica last week for treatment of the pneumonia,
and was listed in serious condition in the hospital’s intensive-care
unit on Monday, her doctors said in a prepared statement. "She
is seriously ill and on Sunday underwent a lung biopsy to further
determine the cause of her pneumonia," the physicians’ statement said.

Figure 6.1: Lead summary, used as starting point when searching for a good sum-
mary. The resulting summary is shown in figure 6.2.

Elizabeth Taylor is breathing with the assistance of a ventilator
after undergoing surgery aimed at determining the cause of pneumonia
that has kept her hospitalized for three weeks, her physicians said
Monday. Liz is as close to American royalty as you can have, and our
readers.. .My heart feels big and pounding. But the Betty Ford clinic
encouraged Taylor only to fight the good fights that had brought
her there, rather than take on all addictions – to drugs and food
– at once. Miss Taylor said she feels "completely vindicated," and
that after the newspaper’s management determined the articles were in
error, the Enquirer "acted promptly and in good faith."

Figure 6.2: Local maximum summary starting from the summary in figure 6.1.

start summaries to reduce the risk of really bad local solutions. This was not done
here, though.

In the experiments here, the generated summaries were quite short, about three
sentences. This meant that the search contained relatively few iterations, usually
around four, before stopping in a local maxima, though sometimes very many
iterations were required.

An example of a starting point lead summary can be found in figure 6.1 and
the resulting summary when a local maxima is found is shown in figure 6.2.

Evaluation on Manual Abstracts

To evaluate the random indexing summarization system, the same procedure as
used in DUC 2004 task 2 (Over and Yen, 2004) was used. This means the system
is given a long text and outputs a summary of up to 100 words. There are human
written model summaries available of the same length. Summaries are evaluated
using ROUGEeval (Lin, 2003), which is an n-gram overlap measure that has been
shown to correlate highly with human evaluations (Lin and Hovy, 2002; 2003a;b).
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DUC 2004 DUC 2001 – 2004

Baseline-Lead 31 28
Human 43 40
tf · log(idf), 1000 34 32
tf · log(idf), 500 34 32
tf · log(idf), 250 34 32
Burstiness, 1000 34 32
Burstiness, 500 34 32
Burstiness, 250 34 32

Table 6.1: ROUGE-1 scores, in %, for different dimensionality choices of the context
vectors. There are 114 documents from DUC 2004 and 291 from DUC 2001 – 2004.

This was done for all texts which had manually constructed 100 word summaries
available, from DUC 2001 – 2004.

ROUGE scores were calculated in the same way as in DUC 2004. ROUGEeval-
1.4.2 was used, with the settings rouge -a -c 95 -b 665 -m -n 4 -w 1.2. The
important settings here are that stopwords are not removed when computing n-
gram overlap, but stemming is used. All summaries are truncated to 665 bytes if
they are longer.

For each document to be summarized by the system, a lead baseline and a
human agreement score was also calculated. The baseline is simply the first 665
bytes from the document. The human agreement score is the mean score for the
humans, where the score of each human is the score if this summary is removed from
the reference summary set and instead treated as a system generated summary.

As reference data for the RI method the British National Corpus, BNC, con-
taining about 100 million words, as well as all the texts to be summarized from
DUC 2001 – 2004, another 2 million words, were used. After stopword filtering
and stemming there are about 290,000 unique stems taken from 4415 documents.
Both stopword filtering and stemming were used for the RI summarization system,
after a quick initial test had shown that both methods resulted in considerable
improvements.

Since the choice of dimensionality to reduce to in the RI method is somewhat
arbitrary, three different choices, 250, 500 and 1,000 were evaluated. Generally, as
low a dimensionality as possible is desirable, since processing times and memory
usage is then lower. In table 6.1 it can be seen that the variation between different
dimensionalities is quite low. It is largest for tf · log(idf), where the mean value
for dimensionality 250 is 32.0% and the mean value for 1,000 is 32.3% in the DUC
2001 – 2004 data set. This is nice, since it seems to be unimportant to spend a lot
of time optimizing the choice of this parameter.

For each choice of dimensionality the mean performance using ten different
random seeds was calculated. The impact of the randomness used in the method
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Figure 6.3: The number of human produced extracts that included each sentence
from one of the Swedish corpus texts. There are a total of 27 human produced
extracts for this text. Sentences marked with a * are those selected by the RI
summarization system.

seems larger than the impact of the dimensionality choice. The largest variation
was for the dimensionality 500, spanning 33.1% – 34.3 % ROUGE-1 score in the
DUC 2004 data set. Variations for the other dimensionalities were slightly less.

The choice between tf · log(idf) or burstiness seems to have very little impact,
the results are nearly identical in ROUGE-1 scores.

A ROUGE-1 score of 34% on the DUC 2004 data set is not very impressive, but
neither is it very bad. The best systems from DUC 2004 scored about 39% (Over
and Yen, 2004), with many systems scoring around 34%.

Evaluation on Manual Extracts

Since the method is relatively language independent it was also evaluated on Swedish.
The human produced extracts from the KTH Extract Corpus described in section
1.2 were used. These extracts were however not produced to give an overview of
the whole contents of the texts. Since the summarization method tries to produce
a summary similar to the original text, it tends to try to include something about
every aspect, not just the main theme. The humans were more focused on find-
ing the most important topic in the text and then providing mostly information
relevant to that.

The corpus extracts also vary quite a lot in compression rate, even for a specific
document. There are usually some sentences that are included in almost all extracts,
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though, so there is agreement on what the main topic is. See figure 6.3 for an
example of the variation in selected sentences for one of the texts from the extract
corpus.

As reference texts for the RI method the Swedish Parole corpus, 20 million
words, the SUC corpus, 1 million words, and the KTH News Corpus, 13 million
words, all described in section 1.2, were used. Stemming and stop word filtering
were used, since this worked well on the English texts.

When evaluating summaries a weighted precision was calculated. The score for
a sentence included in the summary is the number of human produced extracts
that also included this sentence divided by the total number of human produced
extracts. The precision for the summary is then the average for all sentences in the
summary.

A recall-like measurement was also calculated, since otherwise it would be best
to simply pick a single sentence that the system is sure should be included. Each
sentence that was included in at least one human produced extract, but not included
in the summary to be evaluated, was also given a score as above, i.e. how often it
was included by humans. The recall-like measurement is then the average score for
all sentences not included in the summary but included in some human produced
extract. Sentences ignored by both the system and the humans have no impact in
the evaluation.

Since the extracts vary so much in length two different sets of summaries were
generated by the RI summarization system. The first, called Holistic-long, was
the summary most similar to the original text that was longer than the shortest
human produced extract and shorter than the longest. This generally produced
long summaries, since it is easier to achieve good coverage of the original text with
many words than with few. Since long summaries will have lower precision, a set
of shorter summaries, called Holistic-short, were also generated. While longer than
the shortest human produced extract, these were not allowed to be longer than the
average length human produced extract.

For both sets of summaries, four different Random Indexes were used, since
there are slight variations in the performance due to the randomness in RI. The
results in table 6.2 are the mean values of these four sets. All values were within
1.5 percentage units of the mean value.

The system was compared to two baselines: lead, the first sentences of the
original text with a size as close to the system generated summary as possible; and
random, randomly chosen sentences up to the same size. The agreement between
the humans was also calculated, by taking the average over all human produced
extracts when treating them one at a time as a system generated summary instead.

The results are shown in table 6.2. It can be seen that the system does not
generate the same type of summaries as the other methods. Since it tries to include
the same proportions regarding different topics in the summary as was found in the
original text, it has a quite low score with the precision-like measurement. This
is natural, since the reference extracts normally only cover one topic. This also
leads to a high (i.e. bad) score on the recall-like measurement, since the reference
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Included Ignored Perfect

Human 53 27 8
Baseline, Short Lead 55 29 2
Baseline, Long Lead 48 26 2
Baseline, Short Random 33 36 0.3
Baseline, Long Random 34 37 0
Holistic-500, Short 42 34 1
Holistic-500, Long 38 35 0

Table 6.2: Proportion of human produced extracts that included the sentences
chosen by the system, in % (higher is better), and sentences ignored by the system
but included by at least one human, also in % (lower is better). “Perfect” indicates
for how many of the 15 documents a system generated an extract that was exactly
the same as one of the human produced extracts.

extracts include so much information regarding the main topic that the RI method
discards some of it as redundant.

When generating shorter summaries the same sentences are of course still con-
sidered redundant by the RI method, so the recall-like figure is more or less un-
changed. Since the extract is shorter, there is room for less information. This gives
higher precision, since the RI method still agrees that the main topic should be
covered, but now includes less information regarding other topics. As expected, it
seems that using this method when single topic summaries are wanted does not
give the best results.

It can also be seen that outperforming the lead baseline on newspaper texts
is very hard, since it performs on par with humans when generating shorter ex-
tracts. This means that this type of text is not very exciting to do summarization
experiments on.

6.3 Using Shortest Path Algorithms in Summarization

Graph algorithms have successfully been used for extraction based summarization
(Mihalcea, 2004). In this section a method for producing extracts using a shortest
path algorithm is presented. This research was done together with Kenji Araki, and
it has been presented at the 12th Annual Natural Language Processing Conference
NLP2006 in Yokohama, Japan (Sjöbergh and Araki, 2006).

The general idea is to build a graph where sentences are nodes and similar
sentences have edges connecting them. The summary is then all nodes on the path
from the first sentence of the original text to the last sentence, using the path with
the lowest cost. Since the original text also starts and ends with these sentences,
the summary will in some sense cover the same ground as the original text, though
in a shorter way.
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Extraction based summaries often contain very sudden breaks in the flow of
the text, since sentences are pulled from different parts of the original text. By
selecting a path where each sentence is similar to the next sentence, summaries
that are “smoother” to read might be generated.

Building the Graph

When a text is to be summarized, it is first split into sentences and words. The
sentences become the nodes of the graph. Sentences that are similar to each other
have an edge between them. Here, similarity simply means word overlap, though
other measures could also be used. Thus, if two sentences have at least one word in
common, there will be an edge between them. Of course, many words are ambigu-
ous, and having a matching word does not guarantee any kind of similarity. Since
all sentences come from the same document, and words tend to be less ambiguous
in a single text, this problem is somewhat mitigated.

Extraction based summarization can often result in texts that have very abrupt
topic changes between sentences. The idea here is that a series of sentences where
each extracted sentence is similar to the next should have a good chance of being
smooth. If the sentences are similar, it seems unlikely that they are dealing with
very different topics.

All sentences also have an edge to the following sentence. There are two reasons
for this. The most important is that the method will only work if there is a path
from the first sentence to the last, which will be guaranteed by this step. The
second is that since these two sentences were put next to each other in the original
text, it would still be a smooth text if they are next to each other in the summary
too.

Edges are given costs (or weights). The more similar two sentences are, the
less the cost of the edge. The further apart the sentences are in the original text,
the higher the cost of the edge. To favor inclusion of “interesting” sentences, all
sentences that are deemed relevant to the document according to classical summar-
ization methods have the costs of all the edges leading to them lowered.

The cost of an edge from the node representing sentence number i in the text,
Si, to the node for Sj is calculated as:

costi,j =
(i− j)2

overlapi,j · weightj
and the weight of a sentence is calculated as:

weightj = (1 + overlaptitle,j) ·
(

1 +
∑

w∈Sj tf(w)
∑

w∈text tf(w)

)
· early(j) ·

√
1 + |edgesj |

where early(j) is 2 if j < 10 and 1 otherwise, overlapi,j is simply the number of
words in common between sentences Si and Sj , and only words of four or more
letters are counted in the tf (term frequency in the document) calculations.



6.3. USING SHORTEST PATH ALGORITHMS IN SUMMARIZATION 117

Since similarity is based on the number of words in common between two sen-
tences, long sentences have a greater chance of being similar to other sentences.
Favoring long sentences is often good from a smoothness perspective. Summaries
with many short sentences have a larger chance for abrupt changes, since there are
more sentence breaks. The contents of a single sentence are normally smooth, so
the main problem is when changing from one sentence to the next.

Constructing the Summary

When the graph has been constructed, the summary is created by taking the
shortest path that starts with the first sentence of the original text and ends with
the last sentence. The original text also starts and ends in these positions, and this
method will hopefully give a smooth but shorter set of sentences between these two
points.

The N shortest paths are found by simply starting at the start node and adding
all paths of length one to a priority queue, where the priority value is the total cost
of a path. The currently cheapest path is then examined and if it does not end
at the end node, all paths starting with this path and containing one more edge
are also added to the priority queue. Paths with loops are discarded. Whenever
the currently shortest path ends in the end node, another shortest path has been
found, and the search is continued until the N shortest paths have been found.

This gives wildly varying lengths (in the number of words) of the summaries for
different texts. This is often not desirable. Usually, the summarization task has a
predetermined expected length of the summary. To allow for this, the N shortest
paths are generated and the one closest to the desired length is chosen.

If none of the summaries are of an appropriate length, two heuristics are used.
If the summaries are too long, the shortest one is selected and simply cut of at the
desired length. If the summaries are too short, the longest is selected and padded
to the desired length by adding previously unselected sentences, starting with the
sentence with the highest importance weight, to the end of the summary until the
desired length is reached. These heuristics are not very good when it comes to
producing smooth summaries, though.

Evaluating the Summaries

The shortest path summarizer was evaluated on the DUC test texts used in the
previous section. See also section 1.2 for a short description of DUC. Summaries
of lengths 100 words, 200 words and 400 words were generated. As in the previous
section, the automatic evaluation method ROUGE was used for evaluating how
well the extracts correspond to the manually written summaries. The results are
shown in table 6.3.

The system is compared to the baseline called lead, simply taking the desired
number of words from the start of the original text. The system is also compared
to the interagreement between humans. This was done by simply evaluating each
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100 words 100 words 200 words 400 words
2004 2001 – 2004

Shortest path 35 / 31 / 11 33 / 29 / 10 41 / 38 / 12 54 / 49 / 15
Lead 31 / 27 / 10 28 / 25 / 9 38 / 35 / 11 51 / 46 / 14
Agreement 43 / 38 / 13 40 / 36 / 13 40 / 37 / 12 41 / 37 / 11

Table 6.3: The shortest path method, the lead baseline and human interagreement,
ROUGE-1 / ROUGE-L / ROUGE-W scores for texts from the DUC data sets from
2001 – 2004. There are 291 documents of 100 words in this set, 114 of which are
from the year 2004. There are 87 documents with 200 words summaries and only
28 with 400 words summaries.

human as if its summaries were produced by an automatic system, comparing it to
the remaining human written summaries. The reported figure is the mean value
for all human written summaries.

While the system does not perform badly on 100 words, nor does it perform
very well. These summaries are too short for the system, which rarely finds a
short path that contains only 100 words. Thus the aggressive cutting heuristic is
normally used. On the 100 words texts from DUC 2004, the best systems had a
ROUGE-1 score of about 39%, using the same evaluation method and data sets.
Many systems performed similarly to the shortest path method, with around 34%
ROUGE-1 scores.

On longer texts, ROUGE scores are not generally available for other systems.
The shortest path system does however outperform the lead baseline, which is
usually a quite good summarizer on newspaper texts. It even outperforms human
interagreement, which should be considered quite good. Of course, for summaries
of 400 words, the baseline also outperforms human interagreement, so this may not
mean so much.

Discussion

The system is quite simple, using no language resources other than word token-
ization and sentence splitting. It is easy to implement and should be relatively
language independent, though it was only evaluated on English texts. For longer
documents the processing time for the shortest path algorithm can be quite long,
although the current implementation is not at all optimized for speed.

One possible problem with the method is that it could quite possibly keep a lot
of the redundancy in the original text by selecting sentences that are too similar.
It could also miss the main point of the text completely, though the weighting of
“important sentences” helps in avoiding this. In practice it seems to work quite
well.
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When looking at the generated summaries, they are often somewhat “smooth”
to read, compared to for instance the summaries generated by the system in the
previous section. This smoothness is quite hard to quantify objectively, though,
and the extracts are by no means as smooth as a manually written summary (or
the lead baseline summary).

When it comes to including the important facts from the original text, the
weighting of sentences using traditional extraction weighting methods seems to be
the most important part. Taking a path from the first to the last sentence does give
a spread to the summary, making it likely that most parts of the original text that
are important will be included and making it unlikely that too much information
is included from only one part of the original text.





Chapter 7

Bilingual Lexicons

7.1 Introduction to Bilingual Lexicon Creation

There are many ways to create bilingual lexicons. Traditionally it has been done
by hand. A linguist collects words and their translations and writes a lexicon. This
is of course very time consuming and thus expensive if the desired lexicon is large,
but it generally yields very high quality lexicons.

Since manual creation of lexicons is expensive and bilingual lexicons are a very
useful resource, many ways to create them by automatic means have been devised.
While automatic methods usually have drawbacks, such as including noise in the
form of erroneous and less than ideal translations and possibly generating trans-
lations for other words than the most desired ones, they are still popular because
of the enormous time saving potential. Automatic methods can be and have often
been used to generate a first noisy lexicon which is then cleaned up and extended
by manual work.

There are many methods for generating bilingual lexicons from a parallel cor-
pus, i.e. a corpus where the same text is available in different languages. Koehn
and Knight (2001) discuss different methods using bilingual corpora, monolingual
corpora and lexicon resources to extract bilingual dictionaries.

Other approaches use existing bilingual lexicons from the source and target
language to some common intermediate language. Usually, English is used as the
“interlingua”, since there exist large bilingual lexicons between English and many
other languages. This is the approach used in this thesis, both for generating a
lexicon between Japanese and Swedish and a lexicon between Thai and Swedish.

Some problems surface when using two lexicons to build a new one. Many
English words are ambiguous, which can lead to erroneous translations in the new
lexicon.

A similar problem is English translations with a wider meaning than the original
word. Paraphrasing is another problem. The same meaning is often described in
very different ways by different lexicographers, so even though two translations are
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both in English it can be hard to automatically match them. Is a small difference in
translation indicative of a difference in nuance or is it just different lexicographers
describing the same thing? This can lead to many “missing” translations in the
new lexicon.

Another problem with the same effect is that many words in the source language
do not have directly corresponding words in the target language. The same meaning
would instead be described using several words.

Work on automatic bilingual lexicon creation using existing bilingual lexicons
and an intermediate language has been done before (Tanaka and Umemura, 1994,
Shirai et al., 2001, Shirai and Yamamoto, 2001). The problem of ambiguity can
be mitigated by using several intermediate languages (Paik et al., 2001) and using
part of speech and semantic categories (Bond et al., 2001). Hopefully the different
intermediate languages will not be ambiguous in the same way. The impact of using
lexicons in different directions, i.e. a source language-English or an English-source
language lexicon, has also been examined (Paik et al., 2004).

7.2 Creating a Japanese-Swedish Lexicon

The research in this section was presented at Pacling 2005 (Sjöbergh, 2005b). The
main goal was to create a lexicon with very large coverage, possibly at the expense
of translation quality. A less than ideal translation that still gives some indication
of the intended meaning was considered better than no translation at all. Of course,
high quality translations would be even better.

In short, the method used is to match all English descriptions of Japanese words
to all English descriptions of Swedish words. Matches are basically word overlap,
and the best matches are selected as translation candidates. Since the main focus
was on large coverage, two new ideas were implemented that helped in this regard:
weighting words with a measure similar to idf (Inverse Document Frequency), useful
when ranking several poor translation candidates; and allowing one source language
word to be translated by a combination of two target language words, which gives
many new translations.

Creating the Lexicon

The Japanese-English lexicon EDICT (Breen, 1995), which is freely available for
personal use, was used when generating the new lexicon. It contains about 110,000
Japanese index terms. The Swedish-English lexicon used contains about 160,000
Swedish index terms.

From the English descriptions a few stop words were removed, such as “the” or
“an”, and all words with only one letter. All characters that were neither letters,
numbers nor the characters ’ or - were also removed.

All remaining words had a weight calculated. This was basically the inverse
document frequency used for instance in information retrieval, and will thus be
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called idf here.

idf(w) = log(
|S|+ |J |
Sw + Jw

) (7.1)

where w is the word the weight is calculated for, |S| is the total number of lexicon
entries in the Swedish-English lexicon, |J | the same for Japanese, Sw is the number
of descriptions in the Swedish-English lexicon this word occurs in and Jw similarly
for Japanese.

Then all English descriptions in the Japanese-English lexicon were matched
to all descriptions in the Swedish-English lexicon. Matches were scored by word
overlap, weighted by the idf of the words. A word was only counted once, even if it
occurred many times in the same description. So as not to give longer descriptions
an unfair advantage the score was normalized by the lengths of the descriptions.

score =
2
∑
w∈S∩J idf(w)∑

w∈S idf(w) +
∑
w∈J idf(w)

(7.2)

where J is the text in the Japanese-English lexicon and S is the text in the Swedish-
English lexicon that we are trying to match it to.

There are quite a few words in the Japanese-English lexicon with no direct
correspondence in the Swedish-English lexicon, or sometimes even in the Swedish
language. These can often be described using two Swedish words though.

One example is “perpetual motion”. There is no Swedish word with this mean-
ing listed in the lexicon (though there is a similar word in Swedish). There are
however words for “motion” and “perpetual” in the lexicon. Combining these two
Swedish words gives a very good description of the meaning of the Japanese word.

To find this type of description all pairs of words were also treated as one word,
with the translation being the concatenation of the respective descriptions. To
favor a directly corresponding Swedish word, if there was one, over a combined
description all such pairs had their matching score lowered by 5%.

When all matching descriptions had been found the translation candidates were
ranked according to the score of their descriptions. The highest scoring Swedish
word is hopefully the best translation. Of course this was not always the case,
sometimes the best translation was not ranked as number one, and sometimes
there was no correct translation available in the Swedish-English lexicon but other
words partly match and were suggested instead, but in general the ranking worked
well.

The focus was on creating a lexicon with very large coverage. Preferably with
high translation quality, but if the choice was between a poor but at least somewhat
helpful translation and no translation a poor translation would be preferred. The
two new contributions in the method both help in this regard. First, weighting by
idf tends to give the best suggestion of several poor suggestions when no good sug-
gestions are available. Second, allowing one word to be matched by a combination
of two words drastically increases the number of useful translations.
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Evaluation Method

The resulting lexicon was evaluated by randomly drawing words and classifying
them into five categories, depending on the translation quality. This is a quite
common way to evaluate automatically created bilingual lexicons, though the clas-
sification is often quite coarse, for instance “good translation”, “acceptable trans-
lation”, or “bad translation”.

The first evaluation category is the best and most common case; that all top
scoring suggested Swedish translations for the Japanese word are correct.

It is common to find many translation suggestions with the same score. If not
all are correct but more are correct than incorrect a Swedish reader will still be
able to understand what the word means. This is the second category.

The third category, that only a minority of the suggestions are correct, is still
useful. A Swedish reader will (probably) understand the correct meaning in context,
since it is (hopefully) the most likely of the suggested meanings in the text the reader
is reading. It is also useful when manually improving the lexicon; since the correct
translation is available the lexicographer only has to remove the bad translations.

Something that is quite common is suggestions that are not correct, but very
similar to the correct translation, such as “broadcasting (usually radio or TV)” as
the suggestion for “webcast / Internet broadcast” or “blue” as the suggestion for
“light blue”. While these translations are not correct they are helpful enough that
the general meaning of a text is usually clear even with these erroneous suggestions,
so they have their own category.

Finally, the last category is for when the suggestions are just plain wrong.
The evaluation was mainly performed by the author, a native speaker of Swedish,

with some knowledge of Japanese and good knowledge of English. When evaluating
translations the Japanese word, the candidate Swedish translations and the original
English translation of the Japanese word were presented.

Another native speaker of Swedish, also with some knowledge of Japanese and
good knowledge of English, also independently classified a subset of the evaluated
words (300 words). This was done to see if there was large agreement in classifica-
tion or bias from the author in the evaluations. Both evaluators agreed on almost
all words, though in the few cases that differed it was usually the author that was
more forgiving of the translations.

Another way of evaluating bilingual lexicons that has been used by others is
to select translation pairs from some other lexicon and see how many of these
are correctly matched in the new lexicon. Since the largest Japanese-Swedish lex-
icon available was smaller than the randomly selected sets of words this evaluation
method was not used.

Results

Of the 110,000 Japanese index terms in EDICT, 104,000 had a matching description
from the Swedish-English lexicon with a score of at least 20%. Of these, about 75%
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Type Words %

All correct 353 50
Majority correct 78 11
Some correct 107 15
Similar 116 17
Wrong 46 7

Table 7.1: Translation quality of 700 randomly selected words with score ≥ 0.2.
There are 104,439 words in this category.

Type Words %

All correct 522 75
Majority correct 83 12
Some correct 59 8
Similar 24 3
Wrong 12 2

Table 7.2: Translation quality of 700 randomly selected words with score ≥ 0.9 and
at most 10 suggestions with top score. There are 28,178 words in this category.

had at least one correct translation among the top ranked suggestions, see table
7.1. If a higher threshold on the overlap score is used the quality of the translations
of the remaining words is high, but of course many correct translations are also
removed. With a threshold of 90% overlap well over 90% of the 28,000 remaining
words have a correct translation among the top ranked suggestions, see table 7.2.

The scoring is generally quite good. When there is a correct translation available
in the Swedish-English lexicon it is usually the suggestion with the highest score.
When there is no correct translation available, available words similar in meaning,
such as hyponyms, will normally have higher score than unrelated words.

The idf helps in giving good ranking among suggestions, especially for words
with longer descriptions in English. These have many translation candidates, since
there are many words in their descriptions that can match the description of a
Swedish word. The idf orders these matches so that suggestions matching the more
important words are preferred over matches on for instance prepositions. The idf
also allows the stop word list to be very short, since words which should be stop
words but are not included in the list will tend to have a very low idf and thus not
have a great impact on the matching.

Having a good ranking is very helpful when manually cleaning up the lexicon.
This allows the inclusion of words with only very weak matches as suggestions for
the lexicographer, which otherwise would perhaps be thought of as too noisy, but
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Type Words %

All correct 622 89
Majority correct 38 5
Some correct 21 3
Similar 9 1
Wrong 10 1

Table 7.3: Translation quality of 700 randomly selected words with score = 1.
There are 16,843 words in this category.

still includes many words with correct translations.
Allowing word pairs as translations increases the number of correct translations

drastically. The EDICT includes many words which have no direct translation in
Swedish, at least not one that is available in the other lexicon. The coverage thus
would be very low using just a one to one matching of the index terms from the
two lexicons. Of course, there are also some words and expressions in EDICT that
would require more than two of the available Swedish index terms.

Since it is generally better to have a match on one entry in the Swedish-English
lexicon than on two, the ranking score of pairs was reduced by 5%. During the
evaluation it was found that it might be better to reduce them even further, perhaps
as much as 25%. Examples where this would be better include many colors, such
as “light green” which is translated as “light” + “green”, with perfect overlap
from a pair of Swedish words. While this is quite good it is not as good as the
Swedish word for light green, which is available. The reason this does not rank
higher is that the Swedish word is translated as “light or pale green”, thus only
scoring 76% overlap. Then again, “heavyweight” also scores 76% as a translation
for “light heavyweight” and would thus replace the current translation “light” +
“heavyweight”, but a better value than 5% could likely be found.

Finally, here is a simple example of the impact of the ranking methods: The
word “horoyoi” is translated as “slightly drunk, tipsy” in the Japanese-English
lexicon. Since no Swedish word has this exact translation, there are only partial
matches. The top scoring matches are all Swedish words for drunk or tipsy, ranked
as 52% overlap (matching “tipsy”). Next comes the Swedish word for “slightly”,
with 50% overlap. This is followed by more Swedish words matching “drunk”.
When allowing pairs of words to match one word, the top suggestions all consist of
“slightly” and different words for “drunk”, with an overlap of 76%.

One possible improvement is checking the word class of suggestions, mostly
disambiguating between the noun and verb sense of many English words. Many
erroneous translations include the related verb form for a noun and vice versa.

Another problem is that the Japanese-English lexicon uses American spelling
(e.g. “honor”) while the Swedish-English lexicon uses British spelling (e.g. “hon-
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our”). Harmonizing the spelling would give better translations, since currently
some words that should match will not be considered equal.

It would also be nice to use other intermediate languages to improve the quality
of the translations, but there was no other language with sufficiently large lexicons
available. Mainly this bottleneck was on the Swedish side; for Japanese there
are other quite large lexicons available. The smaller available lexicons for other
languages could likely be used to improve the quality for the covered vocabulary,
though.

The method is of course not limited to generating a Japanese-Swedish lexicon.
Using the same source lexicons a Swedish-Japanese lexicon could also be generated,
and in fact it has been done. The reason this lexicon was not evaluated in the same
way was that the people available for evaluating the lexicon were not very proficient
in Japanese. The quality could be assumed to be similar to the Japanese-Swedish
lexicon, though.

The highest quality translations have been made available on the Internet, at
http://www.japanska.se, were manual improvement of the lexicon has also been
done. Other parts of the results are available on request.

7.3 Creating a Thai-Swedish Lexicon

The same method that was used in the previous section was later used to generate
a Thai-Swedish lexicon. There were a few modifications of the method, namely:
one source language word was only allowed to be translated by one target language
word; words explicitly marked as a certain word class was not allowed to match
words explicitly marked as some other word class.

The created lexicon consists of over 20,000 words, which is the largest Swedish-
Thai lexicon known to us. The next largest machine searchable lexicon known
contains about 2,000 words, though in book form there are lexicons of about 7,000
words available. The main drawback of the automatically created lexicon is of
course that it contains erroneous translations.

For creating the Swedish-Thai lexicon, the Thai-English lexicon Lexitron (Pal-
ingoon et al., 2002) was used. It is a freely available dictionary from NECTEC
(downloadable from http://www.nectec.or.th/) which includes not only transla-
tions but also word class information, example sentences and pronunciation.

7.4 NLP Tools for Lexicon Lookup

The work in this section was developed with helpful suggestions from Wanwisa
Khanaraksombat, who also did all the evaluations. This section is based on the pa-
per “Developing and Evaluating a Searchable Swedish – Thai lexicon” (Khanarak-
sombat and Sjöbergh, forthcoming).

A simple web interface for looking up words in the Thai-Swedish lexicon from
the previous section was created. To help users of the lexicon interface, especially
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learners of Swedish, some language technology tools were added. These include
spelling checking, inflection, and compound analysis. These tools were only imple-
mented for searches in Swedish. In the spirit of believing that the user is probably
right if the system understands the query, these tools are only used if the search
fails to return any matches.

The first tool is spelling correction. Experiences from other popular lexicon
services on the Internet indicate that a substantial part of all queries are misspelled,
even by native speakers. Thus, if a query returns no results, the word is put through
a spelling checker. If there are suggested corrections from the spelling checker,
all such suggestions are automatically used as search queries and the resulting
translations are shown.

The second tool is a lemmatizer. When there are no results, the lemma form
of the word is used instead, since some word classes have quite rich inflection in
Swedish but only the lemma forms are listed in the lexicon.

The third tool is compound splitting, since Swedish has very productive com-
pounding. Search queries that return no results can be automatically split into
their compound components. The translations of each component are presented to
give an indication of the meaning of the whole compound.

It is also possible to search the lexicon using words in Thai (or even English),
though the language tools only work for Swedish.

Since there is a possibility of erroneous translations, mainly caused by ambigu-
ous English words, it is also possible to view the original English translations, color
coded to show which parts have a matching word in the corresponding translation.
Other helpful information, such as sound files with Swedish pronunciation, is also
available.

The Swedish-Thai lexicon and the lexicon tools were evaluated in a small user
study. Six students, native speakers of Thai currently studying in Sweden, were
asked to use the lexicon while solving some simple tasks. The students have been in
Sweden one to two years and have been studying Swedish for six to twelve months.

The students, working in pairs, were given the task of creating a short story
from eight given pictures. The story was to be written in Swedish, so the lexicon
was mainly used for searching in Thai, to find Swedish words for what the students
wanted to express.

The students were observed while working and after the task was finished an
interview was conducted. Overall, the students thought the lexicon worked well.
However, the user interface was confusing, too much information was presented at
once in an unstructured way. Also, too many matches were returned for many
searches, which further increased this problem. This is probably caused by the
bilingual lexicon generation method, which stores all translations when there is
more than one possible translation with the same quality, instead of keeping only
the most appropriate translation.

The most praised point was that the original English translations were also
available, which makes it possible to check whether the translations were likely to
be correct when one is unsure if the Swedish word is the correct one. Despite this it
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did happen that the students were tricked by erroneous translations in the lexicon.
One example is using the word “förmiddag” which indicates times roughly between
9 AM and noon, instead of “morgon”, which indicates times roughly between 6 AM
and 9 AM.

Suggested improvements include having the user interface available also in Thai,
adding more information such as the gender class of Swedish nouns and reducing the
number of matching translations by removing less common translation possibilities.
For most purposes the students would be happy with coverage of only common
words.

It was also suggested that the options to turn the NLP tools on or off be removed
from the user interface since the students thought that the tools should always be
used. Pronunciation help was not used by the students in these tasks, but they
thought that it was a good thing to include in a lexicon. Most students thought
that the most difficult part of learning Swedish was the pronunciation. Building a
large vocabulary was also considered hard, while Swedish grammar was not thought
to be very difficult, mainly because of its similarity to English grammar.

Another user study, were the students are given a Swedish text to translate into
Thai, is also planned.





Chapter 8

Automatic Generation of Puns

In this chapter some simple experiments on computational humor are presented.
A program that generates puns in Japanese was created and evaluated to test the
hypothesis that by using “bad words” jokes become a little bit more funny. This
chapter is based on the paper “Vulgarities are fucking funny, or at least make things
a little bit funnier” (Sjöbergh, forthcomingb). Thanks must go to all the people
who participated in the evaluations of the jokes, and especially to Kanko Uchimura
and Mitsukazu Tabuchi who gave very thorough comments.

There have been some attempts at creating puns in Japanese before (Yokogawa,
2001, Binsted and Takizawa, 1998). In (Binsted and Takizawa, 1998) a system for
generating punning riddles in Japanese is described. The program of this chapter
was developed in a very similar way. The big difference being the use of “bad
words” to hopefully make the generated puns a little funnier. Two different kinds
of jokes were generated, riddles using puns and proverbs changed in a pun-like way
to new expressions.

8.1 Preliminary Test: Punning Riddles

A very simple program for generating riddles was created. When generating pun-
ning riddles, three connected words are searched for and then inserted into a fixed
template. This template is “An X is an X but what kind of X is Y? Z!”. Here
X and Z are two words that have similar pronunciation. Y is a description that
matches the meaning of Z. To make things funnier, Z is always chosen from a list
of vulgar or taboo words. This list was constructed for this program, with words
collected from different sources.

An example joke (freely translated into English) generated by the program is:
“Sisters (shimai) are sisters, but what kind of sisters are untidy? Sloppy bitches
(darashinai).”

X and Z are found by looking through a dictionary of words, checking all word
pairs to see how similar the pronunciation is. Similarity is based on a few simple
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Sound Similarity

i, e 0.7
u, o 0.7
a, other vowel 0.55
V 1, V 2 0.5
n, m 0.9
g, b, d 0.9
k, p, t 0.9
kiV , kiyV 0.95
kiV , kyV 0.9
kiyV , kyV 0.9
V , yV 0.7
shi, hi 0.95
voiced/unvoiced (z-s, d-t, g-k, . . . ) 0.7

Table 8.1: Pronunciation similarity scores used. V indicates a vowel sound.

rules for which sounds are similar in Japanese. Similarity scores used are shown in
table 8.1.

When Z has been selected, the description Y is generated by looking in a dic-
tionary of Japanese, with descriptions of the words also written in Japanese. The
Sanseido online dictionary was used for this. If the first sentence in the description
is short, the whole sentence is used as Y. Otherwise the first word of the sentence
is used.

Since the joke is not funny if X and Z are synonyms, a check is also done to
see if the meanings are too similar. This is done by checking the word overlap of
the English descriptions of X and Z in a Japanese-English dictionary, for which the
EDICT (Breen, 1995) was used.

A very small evaluation of this program was done by letting four Japanese
readers read jokes and decide how funny they were on a scale from 1 (not funny) to
5 (very funny). It was also possible to select “I don’t understand” if for some reason
it was impossible to tell if the joke was funny or not; for instance if it contained
difficult words that the reader did not understand.

The evaluation contained 5 examples of similar (though not vulgar) jokes cre-
ated by humans, found on the Internet. There were also 10 non-jokes, created by
selecting X, Y and Z by randomly drawing words from the dictionary. Finally there
were 15 jokes from the program described above and another 15 jokes generated
not using the vulgar words (i.e. Z was selected as a similar sounding word from the
normal word list).

The reason that the evaluation was very small was that the jokes were considered
almost completely unfunny by most readers. All readers did give vulgar jokes higher
scores than non-vulgar jokes, though, and most readers gave human generated jokes
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Type Score Too hard

Human 2.6 22%
Vulgar 2.2 22%
Normal 1.8 36%
Random 1.5 40%

Table 8.2: Evaluation of generated proverb jokes. Mean value of funniness (from 1
to 5) and the percentage of the jokes that were not understood by the readers.

the highest scores.
The comments from these preliminary evaluations indicated that this kind of

punning riddles were not considered funny, even if they were cleverly created puns
by humans. Thus it was decided to change the generated joke type to something
with more humor potential and discontinue the evaluation of the riddles.

8.2 Proverb Punning

The second type of jokes that were generated was based on Japanese proverbs and
idiomatic expressions. A joke is generated by presenting a proverb and then the
same proverb with one word changed to another similar sounding word, changing
the meaning of the phrase. The similar sounding word is always chosen from the
list of vulgar or taboo words.

An example joke from the program (with approximate English translations) is:
“isogaba maware (more haste, less speed) – kusobaba maware (turn away, you old
hag)”.

The evaluation was done in a similar way as in the previous section, by having
six Japanese readers read jokes and selecting from 1 to 5 how funny they were, or
indicating that the joke was not understood.

Five non-jokes were generated by changing a random word from the proverb to
a randomly selected word from a dictionary. 10 jokes were taken from a web site
with proverbs and a changed form of the proverb. These human generated jokes
were usually more sophisticated than the computer generated jokes, for instance
changing more than one word. Many of them also turned out to be very very vulgar.
Then there were 17 jokes generated by the program above and 15 jokes generated
in the same way but using normal words from the dictionary instead of the list of
vulgar words.

Table 8.2 shows the results of the evaluation. As expected, human produced
jokes are considered funnier than the computer generated jokes, though still not
very funny. Vulgar jokes are considered funnier than jokes generated in the same
way but using normal words. Least funny are the randomly changed proverbs which
are also the ones that are hardest to find any meaning in. Vulgar jokes are more
easily understood than non-vulgar jokes.
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8.3 Discussion

The generated jokes were not considered very funny, most jokes scored the lowest
possible value of one. Jokes by humans also scored very low. The scores varied
quite a lot between different readers, though, with one reader assigning a mean
score of 4.1 and another 1.2.

Many jokes were hard to understand. This was caused by among other things
using proverbs that the reader was not familiar with, using slang words or difficult
words that the reader did not know, writing otherwise known words using difficult
kanji that reader did not understand and similar things. There were also some
mistakes in the automatic assignment of pronunciation to some words written with
kanji, which was confusing.

Many jokes were also incomprehensible for the simple reason that the new word
did not make any sense in the changed proverb, so it was impossible to construe a
reasonable meaning for the new phrase. This was less of a problem with the vulgar
words than other words, likely because the vulgar words have many meanings or
can be used in many ways.

The readers also had the possibility to write any comment they liked about
the jokes. One comment was that some jokes were cleverly created but too vulgar
or offensive, so the total funniness was low, at least for this reader. This usually
referred to the human generated jokes.

Other comments included things like stating that a certain joke was not funny,
but with a very small change to another word too, it would be much funnier. This
indicates that it is probably a good idea to change more than one word, selecting
several new words that are related to each other.

8.4 Conclusions

The theory that bad words are funny seems to hold for the generated jokes. When
using bad words, it also seems to be easier to find a reasonable interpretation of
the new generated proverb. While the generated jokes were not considered very
funny in general, neither were the jokes generated by humans. There were some
automatically generated jokes that were considered quite funny by most readers.

Future possibilities include changing the proverbs in more sophisticated ways,
by for instance selecting words that have a meaning related to the remaining words
in the proverb, by changing more than one word in each proverb, by changing
words to words without similar pronunciation but with related meanings (such as
antonyms) etc. Another possibility is to generate puns on other types of texts, such
as titles of famous movies or books.

Generating jokes that are funny regardless of context, such as these jokes have
to be since they have no context, is quite hard. Another possibility is to generate
jokes in a certain context, which then can be used. A simple example would be a
dialogue system, were the previous sentences can be used as a context to base jokes
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on. While in general it is easier to produce jokes that are funny in a certain context
than jokes that are always funny, understanding how to use the context to make a
funny joke is of course a quite hard problem.





Chapter 9

Contributions and Future
Thoughts

In this thesis, different methods for processing natural languages were presented.
The common theme was to avoid manual work as much as possible, instead having
the computer perform the work.

The first part of the thesis presented methods that are useful in many language
processing situations. The first example was part of speech tagging, an important
tool in many applications. How to improve the tagging accuracy without using
any extra manual work, by combining different automatic systems, was discussed.
Effects of the quality and genre of the training data were also examined, showing
that text quality was perhaps surprisingly unimportant and that quite good results
can be achieved without explicitly using manual annotation. Combining manually
annotated data and automatically annotated data lead to better results than us-
ing either resource alone. Finally, a new method for part of speech tagging was
presented. While not very good on its own, it was useful in combination with other
systems.

When it comes to combining systems for tagging, it would be interesting to
further explore more sophisticated methods that can take dependencies among the
features into account. A method that could for instance discover that when the
Stomp tagger is very confident, it is almost always right so we can ignore the output
of the other systems, but when it is less sure the performance is not as impressive.

For the Stomp part of speech tagger, it would be interesting to evaluate the
performance using a much larger training corpus. Using only a one million words
corpus gives quite sparse data for Stomp, compared to the information used by
other systems. This means that it is likely that the improvement gained by using a
larger training corpus is greater for Stomp than for the systems that outperformed
Stomp using the smaller resource.

Also regarding training data, it would be interesting to examine the impact
of adding texts with syntactic errors to the training data. In grammar checking
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applications the part of speech tagger usually plays a very important role. The
tagger is however normally only trained on more or less error free texts. This means
that the tagger often hides errors in the text by finding a grammatical but very
unlikely interpretation of the sentence, ignoring the correct interpretation since for
the tagger the likelihood of an erroneous sentence is basically zero. Having errors in
the training data would increase the likelihood of erroneous sentences as viewed by
the tagger, which might give more useful tagging results for the grammar checker.

Next in the first part of the thesis, compound splitting by statistical means was
examined. Many different methods were evaluated, and as expected a combination
of several methods performs much better than any single method. It was shown
that using only quite meager resources, good results can be achieved using statistical
methods. In the future, it would be interesting to see how well the methods might
perform if larger training resources were available. Evaluating these methods on
other languages were compounding is common would also be interesting.

The last chapter in the first half of the thesis dealt with evaluation methods.
Evaluating language tools is very important, since because languages are relatively
vaguely defined, it is hard to prove if a system works, so evaluations are the only
way to see if a system actually seems to perform well. The evaluation methods
presented show how resources annotated for one purpose, here parsing, can be used
to evaluate a different aspect of a system than first expected. The robustness of a
parsing system can be evaluated even if the annotated resource only contains error
free text. It was also shown how some information on the robustness of a system
can be calculated using no annotated resources at all.

The unsupervised estimates can most likely be improved, since the current
method tends to give an interval were accurate systems are usually found in one
end and less accurate systems in the other end of the interval. Adjusting the guess
of where in the interval the true accuracy lies to take this into account should be
possible. It would also be interesting to apply the same kind of reasoning to develop
unsupervised evaluation methods for other types of language processing tasks.

In the second part of the thesis some useful applications of language processing
were presented. The first of these was grammar checking, which many people use
every day. The work presented showed statistical methods for detecting errors
in text. These generally complement traditional grammar checking methods us-
ing manually constructed error detection rules. Statistical methods usually detect
things that differ from a normative training resource, while manual methods look
for specific erroneous constructions.

One of the strengths of the statistical methods is that they are good at finding
errors that no one imagined people could make, which is hard to capture by writing
rules. The same ability also leads to false alarms, when a new genre is examined
and grammatical constructions that are common in the new genre but rare in the
normative training data are discovered.

In the future, it would be interesting to do work on how to present a useful error
diagnosis and possible suggestions for corrections when a statistical method finds
a suspected error. It would also be interesting to modify the methods that report
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that a certain construction is rare enough in the training data to be suspicious in
new text. A modified version could then signal that a certain construction is very
common in correct text, but lacking in the current text. This kind of avoidance of
certain language constructions is common among learners of a new language, but
current tools generally ignore this type of error.

The second chapter in the second half of the thesis presented two new methods
for automatic summarization. One tries to evaluate the whole summary at once,
calculating how similar it is in content to the original text. This method gives
summaries that try to capture all the content of the original text, while some other
systems focus on finding one important topic and reporting mainly on this. The
second method presented tries to produce extractive summaries that have smoother
transitions between sentences than other methods. Both methods require only quite
unsophisticated tools, such as sentence and word boundary detection.

In the future, these methods could be improved by using more sophisticated
tools, for instance for anaphora resolution or for removal of uninteresting parts of
sentences. It would also be interesting to evaluate them on other languages, since
both methods can easily be adapted to many other languages.

A method for automatically generating a bilingual dictionary using dictionar-
ies to a common intermediate language was also presented. This method had two
slight modifications to the more or less standard way to do this. Both modifications
were meant to improve the recall of the resulting dictionary, possibly at the cost of
translation quality. This resulted in two new large bilingual dictionaries, between
Swedish and Japanese and Swedish and Thai. A dictionary search interface in-
cluding some language tools to help writers lacking a perfect grasp of the source
language was also produced.

Work is now performed on increasing the quality of these dictionaries, mostly by
manually cleaning out bad translations. It would also be interesting to use several
intermediate languages instead of only one, which removes many of the problems
leading to bad translations.

Finally, some simple experiments on generating jokes automatically were presen-
ted. While the results were not very impressive, the theory that by using “bad
words” jokes become a little bit more funny seems to hold. While humor may not
seem to be very important in the context of computers, it is a very important part
of human interaction. Thus, it would probably be useful for instance in human
computer interaction to have some understanding of humor. While not very much
research has been done when it comes to computational humor, some progress has
been made. It seems to be an area of research with many interesting possibilities.

To sum up, statistical methods can be useful in many language processing tasks.
While better results can often be achieved by using manual work than by using only
statistics, even better results can often be achieved by using both types of work.
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