
Electronic Cash and Hierarchical Group Signatures

MÅRTEN TROLIN

Doctoral Thesis
Stockholm, Sweden 2006

TRITA-CSC-A 2006:24
ISSN 1653-5723
ISRN KTH/CSC/A–06/24–SE
ISBN 91-7178-510-8

School of Computer Science and Communication
KTH

SE-100 44 Stockholm
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i datalogi den
15 december kl 14:00 i D3, Lindstedtsvägen 5, Kungl Tekniska högskolan, Stock-
holm.

© Mårten Trolin, december 2006

Tryck: Universitetsservice US AB

iii

Abstract

In this thesis we present results in two areas, electronic cash and hierarchical group
signatures.

• We investigate definitions of security for previously proposed schemes for electronic
cash and strengthen them so that the bank does need to be trusted to the same
extent. We give an experiment-based definition for our stronger notion and show
that they imply security in the framework for Universal Composability. Finally we
propose a scheme secure under our definition in the common reference string (CRS)
model if based on a family of trapdoor permutations.

As a tool we define and prove the existence of simulation-sound non-interactive zero-
knowledge proofs (NIZK-PK) in the CRS-model under the assumption that a family
of trapdoor permutations exists.

• We propose a scheme for electronic cash based on symmetric primitives. The scheme
is secure in the framework for universal composability if based on a symmetric CCA2-
secure encryption scheme, a CMA-secure signature scheme, and a family of one-way,
collision-free hash functions. In particular, the security proof is not in the random-
oracle model. Due to its high efficiency, the scheme is well-suited for devices such
as smart-cards and mobile phones. We also show how the proposed scheme can be
used as a group signature scheme with one-time keys.

• We introduce the notion of hierarchical group signatures. This is a proper gener-
alization of group signatures, which allows multiple group managers organized in a
tree with the signers as leaves. For a signer that is a leaf of the subtree of a group
manager, the group manager learns which of its children that (perhaps indirectly)
manages the signer. We give definitions and three different constructions.

Our first construction uses general methods and is secure if based an a family of
trapdoor permutations. It is not intended for actual use, but serves as a proof of
concept of our definition. Our second construction is almost practical, and we prove
its security in the random oracle model under the strong RSA assumption and the
DDH assumption. Our third construction is practical and secure under the strong
RSA assumption and the DDH assumption in the random oracle model. The third
construction is optimistic in that a group manager may need to interact with other
parties to open a signature of a corrupt signer.

Finally we show that if a hierarchical group signature scheme is secure, then it
realizes an ideal hierarchical group signature scheme in the framework for universal
composability.

v

Sammanfattning

I denna avhandling presenteras resultat inom två områden – elektroniska betalningar
och hierarkiska gruppsignaturer.

• En starkare säkerhetsdefinition för digitala pengar presenteras med syfte att använ-
dare inte ska behöva lita på banken i samma utsträckning som för äldre definitioner.
Denna starkare definition ges dels som en experimentbaserad definition och dels som
en definition i ramverket för universell sammansättning (UC). Det visas att säker-
het enligt den experimentbaserade definitionen implicerar UC-säkerhet. Dessutom
beskrivs en konstruktion med allmänna metoder som är säker enligt den nya defini-
tionen i modellen med gemensam referenssträng (CRS) om den baseras på en familj
lönndörrspermutationer.

I samband med konstruktionen definieras extraherbara, simuleringssunda, icke-inter-
aktiva kunskapslösa bevis. Existensen av sådana bevis i CRS-modellen bevisas under
antagandet att det existerar en familj lönndörrspermutationer.

• Ett system för digitala pengar beskrivs. Systemet bygger på symmetriska primitiv
och är säkert i UC-ramverket under antagandet att ett symmetriskt CCA2-säkert
kryptosystem, ett CMA-säkert signaturssystem och en familj enkelriktade kollisions-
fria hashfunktioner används. Beviset är inte i slumporakel-modellen. Tack vare sin
höga effektivitet är system väl lämpat för exempelvis smartkort och mobiltelefoner.
Det beskrivs vidare hur systemet kan användas som ett system för gruppsignaturer
med engångsnycklar.

• Begreppet hierarkiska gruppsignaturer introduceras. Detta är en äkta generalisering
av gruppsignaturer som tillåter flera gruppchefer organiserade i ett träd med signa-
törerna som löv. Om en signatör är löv i ett delträd under en gruppchef får denne
gruppchef reda på till vilket delträd signatören hör. Definitioner och tre olika kon-
struktioner ges.

Den första konstruktionen använder allmänna metoder och är säker om den baseras
på en familj lönndörrspermutationer. Denna konstruktion är inte avsedd för prak-
tisk använding, utan ska ses som ett bevis att definitionen är rimlig. Den andra
definitionen är nästan praktisk, och dess säkerhet bevisas i slumporakelmodellen
under starka RSA-antagandet och DDH-antagandet. Den tredje konstruktionen är
praktisk och säker under starka RSA-antagandet och DDH-antagandet. Denna kon-
struktion är optimistisk i den meningen att en gruppchef kan behöva interagera med
andra parter för att öppna en signatur.

Slutligen bevisas att om ett system för hierarkiska gruppsignaturer är säkert så
realiserar det en ideal funktionalitet i UC-ramverket.

Contents

Contents vii

I Background 1

1 Introduction 3

1.1 About this Thesis . 3

1.2 Confidentiality and Authenticity . 4

1.3 Public Key Cryptography . 5

1.4 Zero-Knowledge Proofs . 6

1.5 One-Way Functions and Trapdoor Functions 6

1.6 Building Cryptographic Protocols . 7

1.7 Efficient vs. Practical Protocols . 7

1.8 Optimistic Protocols . 8

1.9 Security of Cryptographic Primitives and Protocols 8

1.10 Anonymity . 10

1.11 Payment Systems . 11

1.12 Group Signatures . 12

1.13 Acknowledgments . 13

2 Notation and Definitions 15

2.1 Basic Notation . 15

2.2 Security Models . 16

2.3 Computational Assumptions . 19

2.4 Security of Cryptographic Primitives 20

3 Contributions 33

3.1 Electronic Cash . 33

3.2 Hierarchical Group Signatures . 36

vii

viii CONTENTS

II Electronic Cash 43

4 Introduction and Background 45

4.1 About This Part . 45

4.2 Previous Work . 45

4.3 Group Signatures and E-cash Schemes 46

5 A Stronger Definition for Anonymous Electronic Cash 47

5.1 Introduction . 47

5.2 Protocol Definition and Security Model 47

5.3 Security in the Framework for Universal Composability 58

5.4 A Construction . 65

5.5 Proof of Security . 69

5.6 Proof of Theorem 2.4.23 . 75

5.7 Future Work . 78

6 Practical Universally Composable Electronic Cash 79

6.1 Introduction . 79

6.2 Notation and Definitions . 80

6.3 The Protocol . 81

6.4 The Ideal Functionality . 82

6.5 The Real Protocol . 86

6.6 Comparison to Group Signatures . 91

6.7 Additional Notes . 92

7 Conclusion of Part II 95

III Hierarchical Group Signatures 97

8 Introduction, Background, and Definitions 99

8.1 Introduction of the New Notion . 101

8.2 The Definition of Security . 102

8.3 A Definition of an Optimistic Scheme 107

8.4 A Characterization of Anonymous Encryption Schemes 112

8.5 Proofs of Knowledge, Proofs, and Zero-Knowledge 115

9 A Constructions under General Assumptions 123

9.1 About the Construction . 123

9.2 The Algorithms of the Scheme . 126

9.3 Proof of Security . 128

9.4 An Alternative Construction . 134

ix

10 A Construction under Standard Assumptions 137
10.1 About the Construction . 137
10.2 Building Blocks . 140
10.3 The Algorithms of The Scheme . 150
10.4 Proof of Security . 154
10.5 Construction of the Proof of Knowledge 163
10.6 Complexity Analysis . 193

11 An Optimistic Construction 195
11.1 About the Construction . 195
11.2 The Algorithms of the Scheme . 198
11.3 Proof of Security . 201
11.4 Proof of Knowledge . 209
11.5 Complexity Analysis . 215

12 Universally Composable Hierarchical Group Signatures 217
12.1 Notation . 217
12.2 Proper Hierarchical Group Signatures 217
12.3 Optimistic Hierarchical Group Signatures 220
12.4 The Real Protocols . 222
12.5 The Proofs of Security . 224

13 Conclusion of Part III 229

Bibliography 231

Part I

Background

1

Chapter 1

Introduction

1.1 About this Thesis

Historically cryptography was only about sending secret messages. The Caesarian
cipher, where each letter of the message is replaced the letter three positions ahead
in the alphabet, is often mentioned as the first known use of cryptography. Although
a quite simple scheme, one can assume it was quite effective at the time, when most
people were illiterate and the message, if at all read, would be assumed to be in
a foreign language. Other examples can be found in fiction. One example is the
secret language of [60] in one the early works by Lindgren.

These schemes have in common that, once the underlying idea is known, they
are quite easy to break. One could argue that they are more about obscurity than
security. As cryptography has evolved, modern schemes are designed to be secure
even if the method is known to an attacker.

Organization of the Thesis

Part I gives the background. Chapter 1 gives a relatively non-technical introduction
to the subject. In Chapter 2 we provide definitions of concepts and primitives,
almost all of which are well-known from literature. Note that some definitions
which are only used locally can be found later in the thesis. A summary of our
results is found in Chapter 3.

Our results on electronic cash are presented in Part II. Chapter 5 is based on
an unpublished manuscript and Chapter 6 is based on [83].

The contributions on hierarchical group signatures are found in Part III, where
parts of Chapter 8 as well as Chapters 9 and 10 are based [84]. The rest of the
Chapter is based on an unpublished manuscript. The results of this part are joint
work with Douglas Wikström.

3

4 CHAPTER 1. INTRODUCTION

How to Read the Thesis

If you only want an introduction to the subject, it suffices to read Chapter 1. If you
also want a short description of the results, you can read Chapter 3, possibly using
Chapter 2 to look up standard definitions. If you need the detailed descriptions,
including the proofs, you will have to read also Parts II and III.

1.2 Confidentiality and Authenticity

Hiding information from eavesdroppers, confidentiality, is the traditional reason to
use cryptography. An analogy is to send a message in a sealed envelope (or maybe in
a locked safe, although it is debatable how realistic such an analogy is). Sometimes
we are not primarily interested in hiding information, but rather in ensuring that
information isn’t modified or counterfeited, authenticity. By this we mean that
the receiver can be convinced that sender is who he claims to be, and that the
message has not been altered in transit. The analogy here is to sign a paper with
the message on it. Since signatures are assumed to be hard to forge, a signature
identifies the sender.

In an environment where messages are mainly sent electronically, we need meth-
ods to achieve confidentiality and authenticity by digital means, and this is one
major part of what cryptographic research is about. The traditional approach is
to set up a key sk and define a function E to encrypt and a function D to decrypt
so that Dsk (Esk (msg)) = msg for any legal message msg. We will call msg the
plaintext and the encryption Esk (m) the ciphertext. Since we want the system to
be secure, we want it to be infeasible to compute any useful information about the
plaintext from the ciphertext, provided that the key sk is unknown.

It is quite reasonable to assume that the attacker has more information than
just the ciphertext. The attacker may have seen ciphertexts for which she knows
the plaintext. For example, every plaintext may begin with the same standard
header. It may even be the case that the attacker can trick the the sender into
encrypting plaintexts of the attacker’s choice, or decrypting ciphertexts chosen by
the attacker. The attacker may also know a subset of legal messages from which
msg is drawn, Depending on the scenario we may require the encryption scheme to
remain secure also for such settings,

Consider the functions necessary to ensure that a message isn’t counterfeited
or modified. The usual approach is to define a function S to create a message
authentication code (MAC) and a function V to verify that a MAC is valid. The
function S takes as input a message msg and a key sk and returns a MAC. The
function V takes a key, a message and a MAC, and returns 1 if the MAC is valid
and 0 otherwise. It must hold that Vsk (m,Ssk (m)) = 1, and it should be infeasible
to compute a message m and a MAC s such that Vsk (m, s) = 1 without knowledge
of sk . Also here the attacker may have access to side information such as MACs
on messages of his choice.

1.3. PUBLIC KEY CRYPTOGRAPHY 5

1.3 Public Key Cryptography

Asymmetric Encryption Schemes

In the above definitions, the same key is used for encryption and decryption. For a
long time, this was the only known way to perform cryptography. In the middle of
the 1970s, a major breakthrough was made when methods to perform asymmetric
cryptography were discovered. Asymmetric schemes use two keys, the public key,
pk and the secret key (sometimes called private key), sk . The public key is used
to encrypt, and the private key to decrypt so that Dsk (Epk (m)) = m. The public
key can be published, since it is used only for encryption, but the private key must
be kept secret.

Let us now compare this with symmetric encryption schemes to see what the
differences may mean in practice. Assume ten people work at the same company,
and that they want to be able to send encrypted messages to each other. First
consider a symmetric encryption scheme. One solution is to have a single common
key that everything is encrypted with, but there are several drawbacks with this
approach. Someone who gets hold of the key (for example by bribing one of the
employees) is able to read all messages sent. Also any employee can read any
message, even it wasn’t meant for him. If an employee quits, a new key has to
be set up and distributed in a secure manner. A second solution is to have one
key between every pair of employees. Then only the intended recipient can read
his messages, and if one employees sells (or accidently discloses) his keys, only the
messages sent or received by that employee can be read. However, the number of
keys necessary for such a system is high. Our ten employees need a total of 45
keys. Although this number may not seem very high, we must take into account
that agreeing on a symmetric key is a cumbersome task. It is not advisable to send
the keys electronically, since they can be eavesdropped, and if a key is sent by mail,
there is always the risk that someone opens the envelope and gets the key. The
only safe way is to meet in person. Now consider a company with 1000 employees.
Then a total of 499, 500 keys are necessary! It is obvious that symmetric encryption
schemes have certain drawbacks.

Let us consider using asymmetric cryptography to solve the problem. Each of
the ten employees generates a key pair consisting of a secret and a public key. The
public keys are published, say in the company phone book. If Alice wants to send
a message to Bob, she looks up Bob in the phone book, encrypts using his public
key and sends the message. Bob uses his secret key to decrypt, and no-one else can
read the message. If the company hires new employees, then each of them generates
a key pair. No keys have to be exchanged under secure conditions.

Digital Signatures

Also authenticity can be achieved by asymmetric means. When a MAC is used,
the same key is used for computing the MAC and verifying it. Hence only the

6 CHAPTER 1. INTRODUCTION

intended recipient can check the validity of the message. Furthermore, ability
to verify implies ability to compute a MAC, making it hard to use a signature
as proof in case of a dispute. Therefore, in many situations, it is desirable to
have a scheme in which it is possible to verify without being able to sign. Using
asymmetric techniques we can construct a scheme where the signing is performed
using the secret key sk and the verification with the public key pk . Now it must
hold that Vpk (m,Ssk (m)) = 1. This is also what we expect from real-world signing
schemes – anyone can look at a signature and check whether it has been written
by the putative sender (by comparing it with other signatures written by the same
person), but no-one but the sender else should be able to produce such a signature.

A digital signature is in one sense more secure than a physical signature on
paper. When a paper with the message written on it is signed, it is hard to ensure
that the message is not altered afterwards. A forger may add new text to a signed
document or combine pages from two or more signed documents into a new docu-
ment. A secure digital signature scheme withstands attacks of this type, since the
signature is tied to the message and becomes invalid if the message is modified.

1.4 Zero-Knowledge Proofs

In some cases a player, which we call the prover, needs to prove to a different player,
the verifier, that she knows a certain secret such as a secret key or a password. The
most obvious way to do this is by simply passing the secret to the verifier. This
would be a proof system. Often it is not permissible to pass the secret to the verifier,
since the verifier could use the secret himself. What we need is a zero-knowledge
proof system, which convinces the verifier without exposing the actual secret.

A general proof system may require communication between the prover and the
verifier. A non-interactive proof system is a proof system where the communication
consists of only a single message from the prover to the verifier. Clearly there is no
need for a direct link between the two parties for such a protocol.

It may seem counter-intuitive that knowledge of a secret can be proved using
a non-interactive protocol without actually revealing the secret, but it is known
that, informally speaking, such a non-interactive zero-knowledge proof exists for
any type of (computational) secret.

We often write NIZK instead of non-interactive zero-knowledge proof.

1.5 One-Way Functions and Trapdoor Functions

Two of the most important building blocks for cryptographic functions are one-
way functions, i.e., functions that are easy to compute but hard to invert, trapdoor
functions, i.e., functions that are one-way functions with the additional property
that there is a secret which makes the function easy to invert. Take, for example,
multiplication. It is easy to multiply two numbers, but no method is known that
factors a numbers into its prime factors in reasonable time. It should be noted

1.6. BUILDING CRYPTOGRAPHIC PROTOCOLS 7

that the existence of one-way and trapdoor functions is a classical open problem,
and a proof of their existence would be a major breakthrough. However, there are
functions that have been subject to intensive research for more than thirty years,
and no evidence contradicting the hypothesis that they are trapdoor functions have
been found. It is therefore reasonable to assume that they are indeed trapdoor
functions. From functions that are assumed to be trapdoor functions, it is possible
to build cryptographic primitives, e.g., encryption and signature schemes.

1.6 Building Cryptographic Protocols

To achieve more complex tasks, such as setting up a secure channel between parties
who have not previously met, or creating digital coins, we need to describe how to
combine primitives to get the functionality we need. The result is called a protocol,
and the protocol describes how the participants should act. A protocol can be seen
as a set of algorithms, one for each participant.

A protocol may be interactive or non-interactive. An interactive protocol is
used when the parties can send messages to each other in an interleaved manner.
An example may be a user logging on to a web-site. In a non-interactive protocol
the sender creates the message on his own, and only then sends it to the receiver.
Encrypting and signing emails are a typical examples of non-interactive protocols.

1.7 Efficient vs. Practical Protocols

Naturally we want our protocols to be as efficient as possible. However, in different
contexts effiency may have different meanings. The common definition of an efficient
algorithm is that the execution time is bounded by a polynomial in the size of the
input. For example, the grade school algorithm for multiplication is polynomial
time, since the number of steps needed is less than 2n2, where n is the number of
digits of each factor.

An example of an algorithm that is not polynomial is factoring by exhaustive
search. To factor an n-bit number m we may need to check each number up to

√
m,

that is, 2n/2 different numbers. Even if we assume that we can check divisibility in
a single step, we still need an exponential number of steps before we are guaranteed
to have a result.

It is clear that this definition of efficient algorithms does not cover everything
we need from an algorithm to be usable in practice. If we design an algorithm
that runs in n30 steps, it would still be considered efficient according to the above
definition. However, the algorithm would be impossible to use in practice except
for extremely small inputs.

The protocols in this thesis fall into one of two categories. The first category
are protocols which uses general methods, such as the existence of zero-knowledge
proofs. Such protocols should only be viewed as evidence that a certain kind of
protocols exist, and may give some insight into how a practical protocol may be

8 CHAPTER 1. INTRODUCTION

constructed. The second category are protocols with an explicit description. These
protocols must be specified in such detail that it is possible to analyze their running
time precisely and not only show that it is bounded by some polynomial. Being
practical is not a strict definition. In some cases, we want a protocol that can
be executed on devices with little computing power such as smart-cards or mobile
phones. In other cases it is enough if the protocol runs reasonably fast on a personal
computer, and in still other cases the protocol will run on a server with large storage
capabilities.

1.8 Optimistic Protocols

We would prefer protocol that performs well all of the time. It may be the case
that we do not succeed in constructing such a protocol. Then we may settle for
a protocol which performs well if all parties are honest, but may perform worse,
while still being secure, if there are dishonest parties. The protocol may need to
query an external trusted party when inconstistencies are detected. Such protocols
are called optimistic for obvious reasons.

1.9 Security of Cryptographic Primitives and Protocols

Obviously we want the cryptographic primitives we use to be secure. However, we
need to define precisely what we mean by security of a primitive. Let us consider
an encryption scheme. One definition of security is that the scheme is secure if
an attacker who sees a ciphertext cannot recover the plaintext. However, in some
scenarios this is not enough, since the attacker may have access to additional in-
formation. Maybe the attacker knows that the plaintext is either “yes” or “no”,
and maybe the attacker has seen encryptions of other plaintexts. Maybe the at-
tacker even has seen encryptions of “yes” and “no”. A good encryption scheme
should remain secure even under these circumstances. For example, to remain se-
cure even if the attacker knows encryptions of “yes” and “no”, the encryption must
be probabilistic, so that when the same plaintext gives different ciphertexts when
encrypted several times.

Designing protocols that are as secure as the primitives used is not trivial. It
may very well be the case that a protocol turns out to be insecure although all
components used are secure. Also in the case of protocols, the term “secure” must
be properly defined. Take, for example, a scheme for electronic cash involving
customers, merchants and a bank. Naturally a customer should not be able to
counterfeit money, but what happens if a customer and a merchant collaborates
to forge electronic coins? Or maybe when two customers together try to create a
coin that appears to be valid to the merchant but which is rejected by the bank?
Obviously there are many subtle details when deciding what kind of security we
want from a protocol. Therefore it is important to make a clear definition of

1.9. SECURITY OF CRYPTOGRAPHIC PRIMITIVES AND PROTOCOLS 9

security and to prove that the protocol fulfils those definition under some plausible
assumptions.

Computational Assumptions

It is seldom possible to construct schemes that are unconditionally secure. The most
common approach is to design a scheme so that it is secure if some well-examined
problem is hard to solve. The assumptions which we use in this thesis are the
strong RSA assumption and the decisional Diffie-Hellman assumption. Informally
the strong RSA assumption says that, given an RSA modulus N, i.e., a product
of two primes, and g ∈ ZN, it is hard to find a number e > 1 and t such that
te = g mod N. Put differently, it is assumed to be hard to draw any root of an
element of the group ZN.

The decisional Diffie-Hellman assumption is about the following problem. Con-
sider a prime q, and let g be a generator for the multiplicative group Zq. Suppose
we are given a tupel (a, b, c) which have either been constructed by a = gx, b = gy,
c = gxy, or a, b, c can be random variables. The task is to decide which of the two
cases holds. The decisional Diffie-Hellman assumption states that it is hard to solve
this problem.

Experiment-Based Security vs. Simulation-Based Security

Let us consider a scheme for digital signature, and what we would expect from such
a scheme in terms of security. One way to describe the desired properties is the
following. An adversary attacking a signature scheme is successful if it constructs a
signature without having access to the private key. It is now possible to construct
an experiment to test whether an adversary is indeed successful. The experiment
gives some information to the adversary which it would have access to in a real-
world scenario. In the case of a signature scheme this would be the public key.
The experiment may also allow the adversary to access some kind of additional
information. It may, as an example, be allowed to request signatures on certain
messages. Then the adversary outputs a message-signature, and it wins if the
signature is valid and no signature on the message has been given to the adversary
by the experiment.

If the scheme is secure, then there cannot exist an efficient adversary which wins
the experiment, other than possibly with very low probability. To prove this, one
assumes the existence of such an adversary, and shows that such an adversary can
be used to perform some task which is assumed to be impossible.

A different approach is to define how a signature scheme would behave if we
had access to a completely honest party, called the ideal functionality, with which
everyone could communicate freely. To construct signatures, the ideal functionality
would verify that the player requesting the signature is allowed to do this, and if
so, output a string representing the signature. To verify a signature, the message
and signature is sent to the ideal functionality. If the trusted party has produced

10 CHAPTER 1. INTRODUCTION

the signature, then it answers that the signature is valid, and otherwise it responds
that it is invalid. Intuitively this is what one would expect from a signature scheme.

Now we can define a signature scheme as secure if it is indistinguishable from
the ideal signature scheme. To prove that a specific scheme fulfills this definition
of security, we assume there exists an environment which interacts with either the
real protocol or the ideal functionality, and which is able to determine which one
it interacts with. Then we show how to use such an environment to break some
assumption.

1.10 Anonymity

Assume the cash you withdraw had your name on it. What would that mean? In
most cases it would not mean anything. No-one would be interested in knowing
that it was you who bought that pack of chewing gum. You might feel a little
bit uncomfortable if you knew that a curious trainee working in the pharmacy can
keep track of what medicine you use. If the government can figure out your political
viewpoint by monitoring what newspapers you purchase and what events you buy
tickets to, you have reason to be really worried.

We often take anonymity for granted. If you purchase a newspaper with cash,
it is not possible to trace the purchase back to you by looking at the coins you paid
with. If you buy a couple of tokens for the metro, it is not possible to see if two
trips were paid by tokens purchased at the same time. The simple reason neither
coins nor metro tokens are traceable is that they do not have a serial number. The
reason they do not have a serial number is that their low value do not make them
an interesting target for counterfeiter – the cost of producing a fake coin or metro
token probably exceeds its value.

Now you may argue that these transactions are not at all anonymous – if you
go and buy the newspaper in person, anyone can see what you bought. However,
the important point here is that it requires considerable resources to track a person
that way, and it is impossible to do in an automated way on a large scale.

When the physical coins and metro tokens are replaced with electronic coun-
terparts, the scenario is changed. The cost of copying an electronic coin, which
is nothing but a sequence of zeros and ones, is next to nothing. Therefore even
low-value coins need some kind of serial number to detect duplicates, and that po-
tentially makes them traceable. One of the challenges when designing protocols for
transactions that people assume to be anonymous is to make them anonymous also
when performed electronically.

Before we can design anonymous protocols, we must decide what we mean by
anonymity. One definition of anonymity is that a transaction cannot be connected
to the identity of any involved party. This definition, however, is weaker than
the anonymity of real-world transactions, because it does not say anything about
connecting transactions. Assume, for example, that you use your electronic coins
first to buy a train ticket that is mailed to your home and then to buy a political

1.11. PAYMENT SYSTEMS 11

newsletter. If the coins are anonymous only in the above sense, the identity of the
buyer of the newsletter may still be revealed if the two purchases can be connected.
Clearly it is unlinkability that we should strive for.

If a protocol involves several parties, in the case of electronic coins a customer,
a merchant and the bank, we may settle for anonymity only towards the merchant
to make the protocol more efficient. In other words, the merchant cannot link two
purchases, but once the coin reaches the bank, the bank can see who withdrew the
coin. Another concept is revocable anonymity. Here some trusted third party (who
could, for example, be a judge) can extract the identity from a coin, but otherwise
the coin is anonymous to both the bank and the vendor.

Although anonymity is desirable from the user’s point of view, protocols that
ensure anonymity tend to be less efficient than non-anonymous protocols. Also
from a legal point of view anonymity might be problematic. If electronic coins are
achieved through black-mailing or other illegal activities, anonymity works in favor
of the criminal.

In an anonymous scheme for electronic coins the bank cannot monitor the flow
of coins. It will detect irregularities only after a long period of time (if ever).
This may be one reason why the schemes for electronic cash that are in use are
non-anonymous.

1.11 Payment Systems

When making purchases, the most common ways to pay for the goods is either by
cash or by a payment card or check. Cash has the property that it is anonymous
and that it is possible to verify that it is valid by just looking at it and without
calling the bank. This offline property of cash is important, and very desirable.
It reduces communication costs, it makes the scheme more robust since it doesn’t
require the bank to be available, and it is fast. The merchant can deposit the cash
with his bank, use it as change, buy goods, pay salary etc. Unfortunately cash also
has the not so nice property that it can be stolen. A payment card or check, on the
other hand, is not itself a proof that the customer has the money to pay. The issuer
must be contacted to verify that the customer has the necessary funds, but once
the transaction is completed, it cannot be stolen like cash. Since the merchant’s
name is part of the payment, no-one else can get credited for the transaction.

Digital payment systems try to mimic these properties. Systems for digital cash
try to keep the anonymity of the customer, possibly with a trusted party that can
revoke the anonymity. However, since a digital coin is just a bit-string, it can be
copied and spent twice. The most common way to deal with this is to design the
system so that the identity of the owner is revealed if the same coin is spent twice.
Another solution is to make the system online, but then part of the motivation to
use coins is lost.

Systems for digital cash often require that the merchant deposits the cash with
the bank after the transaction rather than reuse it. However, digital cash may also

12 CHAPTER 1. INTRODUCTION

have the useful property that in cannot be stolen while at the merchant, since the
merchant’s name is part of the transaction.

If digital cash does not completely correspond to cash in the real world, payment
card transactions are easier to make purely electronic. In many cases this simply
means that the physical signature on the receipt is replaced by a digital signature
by the cardholder. Here, however, we can ask for more and make payment card
transactions anonymous to the merchant.

The goal then is to design a system such that two transactions cannot be linked
by the merchants. The system will still be non-anonymous to the issuer, since the
issuer must be able to charge the correct account. A trivial way to achieve an-
onymity towards the merchant is to give each cardholder not just one card number,
but several one-time numbers. The bank keeps a list of which number belongs to
which cardholder, and the cardholder makes sure each number is only used once.
Provided that the card numbers are generated randomly, such a system would be
anonymous to the merchants.

1.12 Group Signatures

In this section we discuss a more general approach to the problem of creating
anonymous credit cards. We use group signatures. In a group signature scheme,
there are group members and a group manager. Group members can sign documents
on behalf of the group, but the only information that someone other than the
group manager gets is that someone in the group signed the document. The group
manager, however, is able to determine the identity of a signer. As the alert reader
has already seen, this is exactly what we need to make payment cards anonymous.
The group members are the cardholders, and the issuer is the group manager. When
making a payment, the cardholder produces a group signature on the transaction.
The merchant verifies that the signature is produced by someone in the group of
cardholders, but does not get any additional information. When the transaction is
passed on to the card issuer, the issuer, who acts as group manager, extracts the
identity of the cardholder to debit the correct account.

The scheme described above with group signatures works for payment cards
when there is just one issuer, and every merchant sends all transactions directly to
that issuer. In reality this is not the case. There is not just one but several issuers
cooperating within a network. Rather than sending the transaction directly to the
issuer, the merchant sends it to the network, which routes it to the issuer.

The obvious way to solve the problem is to set up a group signature scheme
for each issuer. With this solution we lose some anonymity, since the merchant
learns the name of the issuer, and in some cases this can give quite a lot of in-
formation. Therefore we would like a variant of group signatures where there are
group managers that only get partial information about the identity of the signer.
More specifically, in the case of payment cards, we need a scheme such that the
signature is anonymous to the merchant, the network can see which issuer the card

1.13. ACKNOWLEDGMENTS 13

belongs to, and the issuer sees the identity of the cardholder. Naturally this can
be generalized so that there are several intermediate group managers that get more
and more detailed information about the identity. In this thesis we describe such an
extension of group signatures. Because of the hierarchical way information about
the identity is revealed, we call the scheme hierarchical group signatures.

1.13 Acknowledgments

Now that the scientific part of the thesis is ready, the hardest part remains, namely
to remember all the people who helped me finish the thesis. Many of my colleagues
have helped me proof-read manuscripts, have listened to and commented on sem-
inars, or have taken time to discuss topics related or unrelated to my research.
Although it is impossible to mention everyone by name, I will do my best.

First of all I would like to thank my advisor Johan Håstad for all the help and
excellent ideas. Without this support, my work had not been possible. I would also
like to thank Mikael Goldmann for good advice and useful tips. I have had many
interesting and rewarding discussions with my fellow students. These discussions
have often given me new insights and new perspective on my work. I would like to
thank Gustav Hast for valuable discussions on the protocol for electronic cash as
well on some of the ideas behind the group signature scheme. Of course Douglas
Wikström, with whom I co-authored the paper that is the basis for the chapter on
group signatures, deserves a special acknowledgment.

Part of the thesis was written while I was visiting University of Latvia in Riga.
I am very grateful to prof Jānis Bārzdiņš and prof Rūsiņš Freivalds, who made this
visit possible.

Chapter 2

Notation and Definitions

2.1 Basic Notation

We write [a, b] to denote the set {x ∈ Z | a ≤ x ≤ b} or the set {x | a ≤ x ≤ b}. In
each case the meaning will be clear from the context. We use SQN to denote the
subgroup of squares in Z∗

N. Elements in SQN are written in bold-face, e.g., z ∈
SQN. We write ∅ to denote both the empty set and the empty string. We say that
an element is chosen “randomly” instead of the more cumbersome “independently
and uniformly at random”. We denote the set of all finite binary strings by {0, 1}∗.
Sometimes we say that an element is chosen randomly from {0, 1}∗ and interpret
this as if a sufficiently long string was chosen randomly. Whenever we do so there
exists an explicit bound on the length needed.

Whenever we say that an element is chosen randomly from a set it is possible to
generate an element with distribution statistically close to uniform. For example,
if q is a prime we may choose a random 2 log2 q bit string s and output s mod q to
generate an almost random element in the field Zq.

We write log2 n and lnn to denote the binary and natural logarithms of a
number n. We also take the liberty to interpret the result of taking a logarithm as
an integer when convenient. In other words we write log2 q instead of ⌈log2 q⌉ or
⌊log2 q⌋, whichever is appropriate.

We follow common practice in the cryptographic community and say that a
prime p is safe if (p− 1)/2 is a prime. This another way of saying that (p− 1)/2 is
a Sophie Germain prime.

When we describe experiments we write y ← Alg(x) to denote that y is the
output of the algorithm Alg when executed on input x. When Alg is a probabilistic
algorithm we consider x as sampled with the induced distribution.

Let T be a tree with root ω. We denote by L(T) its set of leaves. Abusing
notation we let T be both the tree and the set of nodes. By levelT (v) we denote
the level of v in the tree T where the root is on level 0.

By r ←R S we mean that r is chosen randomly in S. A function f : N→ [0, 1]

15

16 CHAPTER 2. NOTATION AND DEFINITIONS

is said to be negligible if for each c > 0 there exists a κ0 ∈ N such that f(κ) < κ−c

for κ0 < κ ∈ N. We say that a function f : N → [0, 1] is non-negligible whenever
it is not negligible, and we say that a function f is overwhelming if 1 − f(κ) is
negligible. When we say that a number is k-bit, we implicitly mean that it has a
leading one (i.e., that it is in the interval [2k−1, 2k − 1]). We write ⌈r⌉ to denote
the smallest integer n ≥ r and we write ⌊r⌋ to denote the largest integer n ≤ r.

All adversaries in this paper are modeled as polynomial time Turing machines
with non-uniform auxiliary advice string. We denote the set of such adversaries by
PT∗.

Given two distributions X and Y the statistical distance between X and Y is
defined as dist(X,Y) =

∑

α |Pr[X = α]− Pr[Y = α]|. Two ensembles {Xn}n∈N and
{Yn}n∈N are statistically close if dist(Xn, Yn) is negligible in n.

We say that a distribution ensamble D = (Di)
∞
i=1 is efficiently sampleable if

there exists a probabilistic polynomial time algorithm TD(1i) that outputs a random
sample distributed according to Di.

2.2 Security Models

In this thesis we use both the classical experiment-based notion of security and
simulation-based security. In experiment-based definitions a number of experiments
are defined, and the scheme is said to be secure if no adversary can win in any of the
experiments. For simulation-based definitions we use the framework for universal
composabilty to give security results.

The Framework for Universal Composability

A detailed description of the framework for universal composability, UC-framework,
is given by Canetti in [30]. For completeness we here give a brief summary.

A protocol is described by giving an ideal functionality, which is an interactive
Turing machine. The players of the ideal protocol may send messages to the ideal
functionality, and the ideal functionality may send messages to the players, but
no other communcation is allowed. All commmunication is assumed to take place
over secure and authenticated channels. There is an adversary, called the ideal
adversary, or simulator, denoted S, which may corrupt players and delay messages.

A function is either immediate or non-immediate, where immediate functions
are calls to the functionality which are immediately followed by a response sent to
the calling party. One can think of immediate functions as local computations, and
of non-immediate functions as interactive protocols. It will be stated for each ideal
functionality which functions are immediate.

An implementation of a protocol is a graph of interactive Turing machines,
which communicate over secure and authenticated channels. The adversary A may
corrupt players and learn their internal state and control their input and output,
and it may delay messages. If we only allow the adversary to corrupt players before
the execution is initiated, we say that the adversary is static.

2.2. SECURITY MODELS 17

F

CI

P̃1 P̃2 P̃3 S

Z

C

P1 P2 P3 A

Z

Figure 2.1: The environment Z interacting with the ideal protocol (to the left) and
with the real protocol (to the right).

Security is defined by introducing an environment Z, whose task is to distin-
guish between the ideal and the real protocol. The ideal protocol is run with
dummy players, which do nothing but forward messages from the environment to
the functionality and back. The environment is allowed to send arbitrary messages
to the players and the adversary. It may instruct the adversary to corrupt players.
Its goal is to decide whether it runs with the ideal functionality or the practical
protocol. We say that a protocol securely realizes an ideal functionaly if for each
real adversary A there exists an ideal adversary S(A) such that no environment
can tell whether it runs with the real or ideal protocol.

As the name suggests, one of the powers of the framework for universal compos-
ability is that protocols can be combined so that the new protocols is secure if the
building blocks are secure. Let us be a little more precise. A hybrid model is a real
protocol with access to an ideal functionality. Informally the composition theorem
says that if a protocol π securely realizes a functionality F in the F ′-hybrid model,
and π′ securely realizes F ′, then π securely realizes F also if F ′ is replaced by π′.

We use tilde-notation for dummy players, i.e., P̃1.

We use a model where the ideal functionality is linked to the players through an
ideal communication network CI . The communication network forwards a message
msg from a player P as (P,msg) to the ideal functionality. When CI receives
(P,msg) from the functionality for a non-immediate function, it informs the ideal
adversary that P has been sent a message, and does not forward it until S has

18 CHAPTER 2. NOTATION AND DEFINITIONS

approved. The message itself it never forwarded to S. Hence the ideal adversary
is allowed to delay the delivery of such a message, but not change its content. For
immediate functions the response is forwarded to P without involving the ideal
adversary.

The use of a communication network replaces the need for session identifiers of
[30], since each protocol uses its own communication network. The difference is
purely formal, but it makes the description more simple.

The Common Reference String (CRS) model

It is often hard to construct a provably secure scheme without any setup assumption.
One such assumption is that every player has access to a common string, which
is called the Common Reference String, or CRS. In an honest execution of the
protocol, the string is chosen randomly before the protocol is initiated.

Let us briefly describe the proof technique for a scheme in the CRS model. Let
A be an adversary breaking some security property of the scheme. By constructing
the CRS such that some trapdoor is known, we may be able to use A to solve some
presumebly hard problem. It is important that the CRS created in such a way has
a distribution which is identical, or almost identical, to an honestly created CRS.

The Random Oracle Model

Experiments 2.4.1 and 2.4.2 formalize two possible requirements on functions (or
rather collections of functions). Broadly speaking, these requirements capture the
fact that a function is unpredictable in some specific way. The most unpredictable
function one can imagine is a randomly chosen function.

Sometimes it is not possible, or not known, how to prove the security of a
cryptographic construct under complexity assumptions. This is often the case for
practical constructions. In such circumstances it is common to analyze the security
in the random oracle model. This means that one, or several, of the hash functions
used in the construction are modeled as randomly chosen functions. The security
analysis is then carried out in this model. When the protocol is deployed the random
oracles are replaced by some functions that are believed to be highly unpredictable
such as the SHA-family.

The random oracle hypothesis, first explicitly stated in a paper by Bellare and
Rogaway [10], says that if a construction is secure in the random oracle model,
and the function used when the protocol is deployed is “highly unpredictable” and
chosen “independently of the protocol”, then the protocol is secure even when the
random function is replaced by the unpredictable function. This is not a mathem-
atical statement. In fact, if it is turned into one it can be shown that the hypothesis
is false [32] if interpreted literally. Thus, a protocol that is analyzed in the random
oracle model can at best be heuristically secure.

On the other hand, all known counterexamples such as [32] are contrived. This
is why many people trust the random oracle model even if it strictly speaking

2.3. COMPUTATIONAL ASSUMPTIONS 19

is false. In particular many people believe that constructing a signature scheme
by applying the Fiat-Shamir heuristic to an identification scheme implies that the
resulting signature scheme is in fact secure.

If a scheme is secure in the CRS model, then it is also secure in the random oracle
model, since we can use H(0), H(1), . . . as the common reference string, where H
is the hash function modeled as a random oracle.

2.3 Computational Assumptions

In this section we formalize the Decisional Diffie-Hellman assumption and the strong
RSA assumption.

The Decisional Diffie-Hellman Assumption

The Decision Diffie-Hellman problem in a group G of order n says that it is infeas-
ible to distinguish between the distributions (gα, gβ, gγ) and (gα, gβ, gαβ), where
α, β, γ ∈ Zn are randomly distributed.

Experiment 2.3.1 (Decision Diffie-Hellman, Expddh−b
Gn,A

(κ)).
g ←R Gn
α, β, γ ←R Zn
(X,Y, Z)←

(

gα, gβ , gbγ+(1−b)αβ
)

return A(g,X, Y, Z)

Assumption 2.3.1 (Decision Diffie-Hellman Assumption over the Group Gn). For
all A ∈ PT∗ the advantage

Adv
ddh
Gn,A(κ) = |Pr[Expddh−0

Gn,A
(κ) = 1]− Pr[Expddh−1

Gn,A
(κ) = 1]|

is negligible.

The Strong RSA Assumption

The strong RSA assumption is a potentially stronger assumption the standard RSA
assumption. Informally the strong RSA assumption says that no algorithm can,
given an RSA modulus N and an element g ∈ SQN, find any non-trivial root of g.
The standard RSA assumption, on the other hand, does not allow the adversary
itself to pick which root to find.

We write Kgrsa for the algorithm that on input 1κ generates two random κ/2-bit
primes P = 2P ′ + 1 and Q = 2Q′ + 1, where P ′ and Q′ are also prime, and returns
(P,Q). Thus, Kgrsa generates a κ-bit RSA modulus N = PQ.

Formally we define the assumption using the below experiment.

Experiment 2.3.2 (Strong RSA, Expsrsa
A (κ)).

(p, q)← Kgrsa(κ)

20 CHAPTER 2. NOTATION AND DEFINITIONS

g←R SQpq

(z, e)← A(pq,g)
if (ze = g) ∧ (e /∈ {−1, 1}) then

return 1
else

return 0
end if

Assumption 2.3.2 (The Strong RSA Assumption). For all A ∈ PT∗ the advantage

Advsrsa
A (κ) = Pr[Expsrsa

A (κ) = 1]

is negligible.

2.4 Security of Cryptographic Primitives

Let us now review the definitions for the cryptographic primitives we use. The
definitions use experiment-based security. In some cases we give the adversary
access to oracles for certain functions. We let QO be the set of queries to oracle O
and we let RO be the set of responses. Except for Definition 2.4.22 and Theorem
2.4.23, the definitions in this chapter are well-known standard definitions.

One-Way, Trapdoor, and Collision-Free Functions

A function is called a one-way function if it is infeasible to find the preimage of a
random element. A one-way function is a trap-door function if there exists some
secret which makes the function efficiently invertible. A function is collision-free if
it is infeasible to find two values that map to the same output. Obviously a trapdoor
permutation is a trapdoor function which is also a permutation.

Formally we consider collections of functions to define the above concepts. The
properties are defined with regards to a function drawn at random function from
the collection. A common method to design sampleable function collections is to
make the function depend on a key and sample the key. We abuse notation by
letting f denote both a function and its description.

Definition 2.4.1 (Collection of Functions). A collection of functions F is a set of
functions, all of which have the same domain and image.

We refer to the common domain of the functions of F as Dom(F), and to their
common image as Im(F).

Definition 2.4.2 (Useful). A family of function collections F = (Fi)
∞
i=1 is useful

if

• the uniform distribution on F is efficiently sampleable.

• the uniform distribution on (Im(Fi))
∞
i=1 is efficiently sampleable.

2.4. SECURITY OF CRYPTOGRAPHIC PRIMITIVES 21

• for every f ∈ Fi there exists an algorithm which outputs f(x) on input x ∈
Dom(Fi) and whose running time is a polynomial in i.

When every function f ∈ Fi is a permutation on Dom(Fi) we say that F is a family
of permutations.

In this thesis we only consider useful families of functions unless it is explicitly
mentioned otherwise.

Remark 2.4.3. We have chosen to require the image to be sampleable. This allows
us to use the same definitions for functions with bounded and unbounded input.
We discuss this in more detail in conjuction with hash functions.

A family of function collections F = (Fi)
∞
i=1 is one-way if the functions are hard

to invert in the following sense. Consider the below experiment.

Experiment 2.4.1 (One-Way Function, Expow
F ,A(κ)).

f ←R Fκ
y ←R Im(f)
x← A(guess, f, y)
if f(x) = y then

return 1
else

return 0
end if

Definition 2.4.4 (One-Way Function). A function family F is one-way if the
advantage

Advow
F ,A(κ) = Pr[Expow

F ,A(κ) = 1]

is negligible for any adversary A ∈ PT∗.

Experiment 2.4.2 (Collision-Free Function, Expcol
F ,A(κ)).

f ←R Fκ
(m0,m1)← A(guess, f)
if (m0 6= m1) ∧ (f(m0) = f(m1)) then

return 1
else

return 0
end if

Definition 2.4.5 (Collision-Free Function). A function family F is collision-free-
way if the advantage

Advcol
F ,A(κ) = Pr[Expcol

F ,A(κ) = 1]

is negligible for any adversary A ∈ PT∗.

22 CHAPTER 2. NOTATION AND DEFINITIONS

Let Fi and F−1
i be collections of functions, where Im(F−1

i) ⊆ Dom(Fi) and
Dom(F−1

i) = Im(Fi) for i ∈ N. Let Ti ⊂ Fi × F−1
i such that ∀f ∈ Fi ∃f−1 :

(f, f−1) ∈ Ti for any i. If f(f−1(y)) = y for any (f, f−1) ∈ Ti, y ∈ Im(f), and
F = (Fi)

∞
i=1 is one-way, then T = (Ti)

∞
i=1 is a family of collections of trapdoor

functions. Obviously T is a family of trapdoor permutations if every f ∈ Fi is a
permutation.

Hard-Core Bit

Even if it is hard to invert a function it is not necessarily hard to find some of the
bits of a pre-image. A hard-core bit is a bit of information of the pre-image that is
hard to compute given only the output of the function. This notion was introduced
by Blum and Micali [16]. Goldwasser and Micali [50] use this notion to construct
an indistinguishable encryption scheme.

Let B : {0, 1}∗ → {0, 1} be a function such that there exists a polynomial time
algorithm that computes B(x) on every possible input x ∈ {0, 1}∗. Let F = (Fi)

∞
i=1

be a family of one-way functions. Consider the following experiment.

Experiment 2.4.3 (Hard-Core Bit, Exphardcorebit
(F ,B),A (κ)).

f ←R Fκ
x←R Dom(f)
b← A(guess, f, f(x))
if b = B(x) then

return 1
else

return 0
end if

Remark 2.4.6. Here we require that there exists an efficient algorithm which draws
an element at random from the function domain, which differs from the definition
of useful above, where the requirement was on the function image. Therefore our
defintion for hard-core bits only makes sense for functions with finite domain.

Definition 2.4.7 (Hard-Core Bit). The function B is a hard-core bit for F if the
advantage

Adv
hardcorebit
(F ,B),A (κ) =

∣

∣

∣

∣

Pr[Exphardcorebit
(F ,B),A (κ)]− 1

2

∣

∣

∣

∣

is negligible for any adversary A ∈ PT∗.

The notion of a hard bit is defined for any one-way function, but we only use it
in conjunction with trapdoor permutation families.

2.4. SECURITY OF CRYPTOGRAPHIC PRIMITIVES 23

Hash Functions

A collection of functions Hκ is a collection of hash functions if Dom(Hκ) = {0, 1}∗
and Im(Hκ) ⊆ {0, 1}κ. We will usually consider families of hash functions H which
are one-way and collision-free in the sense described above.

Had we chosen that the function domains must be sampleable for the experi-
ments for a one-way function, then the above definition would not suffice. In such
a case, one could make a more cumbersome description of the hash-function. For
each security parameter κ, the hash function of length κ is represented by a function

ensemble (H
(m)
κ)∞1 , such that H

(m)
κ has {0, 1}m as domain. Then the definitions

which require sampling from the domain can be applied directly.
Since hard-core bits are defined only for functions with sampleable domain, they

cannot be applied to hash functions. In this thesis we never need a hard-core bit
for a hash function, and we use the more simple definition as just described.

Pseudo-Random Functions

Let Rκ be a collection of functions from {0, 1}κ to {0, 1}κ, and let R = {Ri}∞i=1.
Let Uκ be the family of all functions from {0, 1}κ to {0, 1}κ. Informally R is said to
be pseudo-random if is infeasible to distinguish a function from R from a random
function. The following experiment is used to formalize this.

Experiment 2.4.4 (Pseudo-Random, Exp
prf−b
R,A (κ)).

if b = 0 then

f ←R Rκ
else

f ←R Uκ
end if

return Af(·)(guess, 1κ)

Definition 2.4.8 (Pseudo-Random Function). A function family F is pseudo-
random if the advantage

Adv
prf
R,A(κ) = |Pr[Exp

prf−0
R,A (κ) = 1]− Pr[Exp

prf−1
R,A (κ) = 1]| .

is negligible for any adversary A ∈ PT∗.

Signature Schemes

A signature scheme SS = (SSKg, Sig,Vf) consists of

• a key generation algorithm SSKg(1κ) which outputs a key pair (spk , ssk).

• a signing algorithm Sigssk (m) which outputs a signature σ.

• a verification algorithm Vfspk (m,σ) which outputs 1 if σ is valid signature on
m and 0 otherwise.

24 CHAPTER 2. NOTATION AND DEFINITIONS

The signature scheme is correct if for (pk , sk) generated by SSKg and any mes-
sage msg it holds that Vfpk (msg, Sigsk (msg)) = 1. It is secure against chosen-
message attacks, CMA-secure [52], if it is infeasible to produce a valid message-
signature pair for any message not previously signed, even if the adversary has
access to a signing oracle Sigsk (·). Formally we use the following experiment for
the definition. Recall that QO is the set of queries passed to oracle O.

Experiment 2.4.5 (Chosen Message Attack, Expcma
SS,A(κ)).

(pk , sk)← SSKg(κ)
(msg, σ)← ASigsk (·)(pk)
if (msg /∈ QSigsk (·)

) ∧ (Vfpk (msg, σ) = 1) then

return 1
else

return 0
end if

Definition 2.4.9 (CMA-Secure Signature Scheme). A signature scheme SS is
CMA-secure if the advantage

Advcma
SS,A(κ) = Pr[Expcma

SS,A(κ) = 1]

is negligible for any A ∈ PT∗.

Commitment Schemes

A (non-interactive) commitment scheme COM consists of

• the commitment algorithm Commit, which takes as input a message msg ∈
{0, 1}κ and outputs a pair (c, r).

• the reveal algorithm Reveal, which takes a commitment c, a message msg, and
the secret r and determines whether or not c is a commitment to msg under
commitment secret r. The commitment is correct if Reveal(c,msg, r) = 1 for
(c, r)← Commit(msg).

A commitment scheme is secret, sometimes called hiding, if the adversary gains
no useful information about the committed value from (c, r) ← Commit(m). It is
binding if it is infeasible to find c, (m′, r′) and (m, r) such that Reveal(c,m′, r′) = 1
but m§ 6= m′.

The following two experiments defines secrecy and binding of a commitment
scheme.

Experiment 2.4.6 (Secrecy, Exp
secrecy−b
COM,A (κ)).

(msg0,msg1, state)← A(choose, 1κ)
(c, r)← Commit(msgb)
d← A(guess, c, state)

2.4. SECURITY OF CRYPTOGRAPHIC PRIMITIVES 25

return d

Definition 2.4.10 (Secret Commitment Scheme). A commitment scheme COM
has secrecy if the advantage

Adv
secrecy
COM,A(κ) = |Pr[Exp

secrecy−0
COM,A (κ) = 1]− Pr[Exp

secrecy−1
COM,A (κ) = 1]|

is negligible for any adversary A ∈ PT∗.

Experiment 2.4.7 (Binding, Exp
binding
COM,A(κ)).

(c, r0,msg0, r1,msg1)← A(guess, 1κ)
if (Reveal(c,msg0, r0) = Reveal(c,msg1, r1) = 1) ∧ (msg0 6= msg1) then

return 1
else

return 0
end if

Definition 2.4.11 (Binding Commitment Scheme). A commitment scheme COM
is binding if the advantage

Adv
binding
COM,A(κ) = Pr[Exp

binding
COM,A(κ) = 1]

is negligible for any adversary A ∈ PT∗.

One could give stronger a definitions, but in our case the above experiments
suffice. As an example, they do not rule out malleability, i.e., the existence of an
adversary which, after seeing one commitment, creates another commitment to a
related value, which can be opened after the first commitment has been opened.

It is known that secret and binding commitment schemes exist if there exists
a family of one-way permutations [49]. The construction even gives a perfectly
binding scheme, i.e., even an unbounded adversary cannot decommit to more than
one value.

Encryption Schemes

Symmetric Encryption Schemes

A symmetric encryption scheme consists of

• the key generation algorithm Kg(1κ) which outputs a secret key sk .

• the encryption algorithm Esk (msg) which takes as input a key and a plaintext.
It outputs a ciphertext.

• the decryption algorithm Dsk (c) which takes as input a key and a ciphertext.
It outputs a plaintext or ⊥ if the ciphertext is invalid.

A symmetric encryption scheme is correct if Dsk (Esk (msg)) = msg for sk ←
Kg(1κ) and every legal message msg.

26 CHAPTER 2. NOTATION AND DEFINITIONS

Asymmetric Encryption Schemes

A public key, or asymmetric, encryption scheme consists of the following three
algorithms.

• The key generation algorithm Kg(1κ) outputs a key pair (pk , sk).

• The encryption algorithm Epk (msg) takes as input a public key and a plain-
text. It outputs a ciphertext.

• The decryption algorithm Dsk (c) takes as input a secret key and a ciphertext.
It outputs a plaintext or ⊥ if the ciphertext is invalid.

A public key encryption scheme is correct if Dsk (Epk (msg)) = msg for (pk , sk)←
Kg(1κ) and every legal message msg.

Indistinguishable Public Key Encryption Schemes

Informally an asymmetric encryption scheme CS = (Kg, E,D) is called indistin-
guishable if it is infeasible to distinguish between the encryptions of two plaintexts
of the same length. The experiment below formalizes this assumption.

Experiment 2.4.8 (Indistinguishability, Expind−b
CS,A (κ)).

(pk , sk)← Kg(1κ)
(msg0,msg1, state)← A(choose, pk)
c← Epk (msgb)
d← A(guess, c, state)
return d

Definition 2.4.12 (Indistinguishable Encryption Scheme). An encryption scheme
CS is indistinguishable if the advantage

Advind
CS,A(κ) = |Pr[Expind−0

CS,A (κ) = 1]− Pr[Expind−1
CS,A (κ) = 1]|

is negligible for any adversary A ∈ PT∗.

The notion of indistinguishability is equivalent to the well-known definition of
semantic security for non-uniform adversaries [66], which informally says that no
information about the plaintext can be efficiently computed from the ciphertext.
We use the terms “indistinguishable encryption scheme” and “semantically secure
encryption scheme” interchangeably in this text.

Chosen Ciphertext Security for Asymmetric Encryption Schemes

Given an asymmetric encryption scheme CS = (Kg, E,D) the following experiment
is used to define chosen ciphertext security (CCA2). Recall that QO denotes the
set of questions answered by the oracle for O.

2.4. SECURITY OF CRYPTOGRAPHIC PRIMITIVES 27

Experiment 2.4.9 (Asymmetric CCA2, Expcca2−b
CS,A (κ)).

(pk , sk)← Kg(1κ)
(msg0,msg1, state)← ADsk (·)(choose)
c← Esk (msgb)
d← ADsk (·)(guess, c, state)
if c ∈ QDsk (·) then

return 0
else

return d
end if

Definition 2.4.13 (CCA2-Secure Public Key Encryption Scheme). A public key
encryption scheme CS is CCA2-secure if the advantage

Advcca2
CS,A(κ) = |Pr[Expcca2−0

CS,A (κ) = 1]− Pr[Expcca2−1
CS,A (κ) = 1]| .

is negligible for any adversary A ∈ PT∗.

Chosen Ciphertext Security for Symmetric Encryption Schemes

Given a symmetric encryption scheme CS = (Kg, E,D) the following experiment is
used to define chosen ciphertext security (CCA2).

Experiment 2.4.10 (Symmetric CCA2, Exp
sym−cca2−b
CS,A (κ)).

(sk)← Kg(1κ)
(msg0,msg1, state)← AEsk (·),Dsk (·)(choose)
c← Esk (msgb)
d← AEsk (·),Dsk (·)(guess, c, state)
if c ∈ QDsk (·) then

return 0
else

return d
end if

Definition 2.4.14 (CCA2-Secure Secret Key Encryption Scheme). A secret key
encryption scheme CS is CCA2-secure if the advantage

Adv
sym−cca2
CS,A (κ) = |Pr[Exp

sym−cca2−0
CS,A (κ) = 1]− Pr[Exp

sym−cca2−1
CS,A (κ) = 1]|

is negligible for any adversary A ∈ PT∗.

Proofs of Knowledge

Before we continue we recall the definition of an NP-relation and the complexity
class NP.

28 CHAPTER 2. NOTATION AND DEFINITIONS

Definition 2.4.15 (Polynomially Bounded). A relation R ⊂ {0, 1}∗ × {0, 1}∗ is
polynomially bounded if there exists a polynomial p(·) such that |y| ≤ p(|x|) for all
(x, y) ∈ R.

Definition 2.4.16 (NP-Relation). A relation R ⊂ {0, 1}∗ × {0, 1}∗ is an NP-
relation if it is polynomially bounded and there exists a deterministic polynomial
machine M such that M(x, y) = R(x, y).

Definition 2.4.17 (Complexity Class NP). A language LR ⊂ {0, 1}∗ belongs to
NP if there exists an NP-relation R such that x ∈ LR if and only if there exists
an y ∈ {0, 1}∗ such that (x, y) ∈ R.

Every relation R considered in this thesis corresponds to a language LR ∈ NP

in the sense of the definition.
We use non-interactive zero-knowledge proofs of knowledge, or NIZKs, in our

construction. Given a language L ∈ NP with witness relation R and x ∈ L, a
NIZK (P, V) enables a prover P to prove to a verifier V that she knows a witness
w such that (x,w) ∈ R.

A proof system is said to be zero-knowledge if there exists a simulator which
produces proofs indistinguishable from real proofs, and the condition for it to be
called non-interactive should be obvious. A Non-interactive zero-knowledge proofs
(NIZK) is complete if for any (x,w) ∈ R it holds that V (x, P (x,w)) = 1 and sound
if for any algorithm A the probability that V (x, π) = 1 and x /∈ L is negligible,
where (x, π) ← A(ξ) and ξ is the common reference string. A NIZK is a proof of
knowledge (NIZK-PK) if there exists an extractor which, if allowed to choose the
CRS, can extract a witness.

In cryptographic proofs one often performs hypothetic experiments where the
adversary is run with simulated NIZKs. If an experiment simulates NIZKs to the
adversary, the adversary could potentially gain the power to compute valid proofs
of false statements. For a simulation sound NIZK this is not possible.

Non-interactive zero-knowledge proofs (NIZK) were introduced by Blum, Feld-
man, and Micali [15]. Several works have since refined and extended the notion in
various ways. Following [9] we employ the definition of adaptive zero-knowledge
for NIZK introduced by Feige, Lapidot, and Shamir [43] and we use the notion of
simulation soundness introduced by Sahai [77]. The notion of simulation soundness
is strengthened by De Santis et al. [79].

Definition 2.4.18 (NIPS). A triple (p(κ), P, V) is an efficient adaptive non-inter-
active proof system (NIPS) for a language L ∈ NP with witness relation R if p(κ)
is a polynomial and P and V are probabilistic polynomial time machines such that
the following properties hold.

1. Completeness. (x,w) ∈ R and ξ ∈ {0, 1}p(κ) implies V (x, P (x,w, ξ), ξ) = 1.

2. Soundness. For all functions A,

Pr
ξ∈{0,1}p(κ)

[A(ξ) = (x, π) ∧ x /∈ L ∧ V (x, π, ξ) = 1]

2.4. SECURITY OF CRYPTOGRAPHIC PRIMITIVES 29

is negligible in κ.

We suppress p in our notation of a NIPS and simply write (P, V).

Loosely speaking a non-interactive zero-knowledge proof system is a NIPS which
is also zero-knowledge, but there are several flavors of zero-knowledge. We need
a NIZK which is adaptive zero-knowledge (for a single statement) in the sense of
Feige, Lapidot, and Shamir [43].

Experiment 2.4.11 (Adaptive Indistinguishability, Expad−ind−0
(P,V,S),A(κ)).

ξ ←R {0, 1}f(κ)

(state, x, w)← A(setup, ξ)
while (x,w) ∈ R do

(state, x, w)← A(choose, P (x,w, ξ))
end while

return A(guess, state)

Experiment 2.4.12 (Adaptive Indistinguishability, Expad−ind−1
(P,V,S),A(κ)).

(ξ, simstate)← S(1κ)
(state, x, w)← A(setup, ξ)
while (x,w) ∈ R do

(state, x, w)← A(choose, S(x, ξ, simstate))
end while

return A(guess, state)

The advantage in the experiment is defined

Advad−ind
(P,V,S),A(κ) = |Pr[Expad−ind−0

(P,V,S),A(κ) = 1]− Pr[Expad−ind−1
(P,V,S),A(κ) = 1]|

and the notion of adaptive zero-knowledge is given below.

Definition 2.4.19 (Adaptive Zero-Knowledge (cf. [43])). A NIPS (P, V) is ad-
aptive zero-knowledge (NIZK) if there exists a polynomial time Turing machine S
such that the advantage Advad−ind

(P,V,S),A(κ) is negligible for any adversary A ∈ PT∗.

Let us now formalize simulation soundness. Recall that RO is the set of re-
sponses by oracle O.

Experiment 2.4.13 (Simulation Soundness, Expsim−sound
(P,V,S),A(κ) (cf. [79])).

(ξ, simstate)← S(setup, 1κ)
(x, π)← AS(simulate,·,ξ,simstate)(guess, ξ)
if (π /∈ RS(simulate,·,ξ,simstate)) ∧ (x /∈ L) ∧ (V (x, π, ξ) = 1) then

return 1
else

return 0
end if

30 CHAPTER 2. NOTATION AND DEFINITIONS

Definition 2.4.20 (Simulation Soundness (cf. [77, 79])). A NIZK (P, V) with
polynomial time simulator S for a language L is unbounded simulation sound if

Adv
sim−sound
(P,V,S),A(κ) = Pr[Expsim−sound

(P,V,S),A(κ) = 1]

is negligible for all A ∈ PT∗.

De Santis et al. [79] extend the results in [43] and [77] and prove the following
result.

Theorem 2.4.21. If there exists a family of trapdoor permutations, then there
exists a simulation sound NIZK for any language in NP in the CRS-model.

We abbreviate “efficient non-interactive adaptive zero-knowledge unbounded
simulation sound proof” by NIZK.

It is important to note that the above definition does not require that it is pos-
sible to extract the witness, i.e., they are not proofs of knowledge. To our know-
ledge, there are no results on the existence of simulation-sound proofs of knowledge,
although signatures of knowledge [33] are similar.

One must be careful when formalizing extractability. As for simulation sound-
ness, we want to give the adversary the ability to request simulated proofs for
theorems of its choice, and if it outputs a valid proof, the extractor should be
able to extract a witness. In the original definitions of NIZK proofs of knowledge
[80, 79], soundness and validity, i.e., the requirement on extractability, are two sep-
arate properties. Such a definition would be hard to use when designing protocols.
In a protocol, we need to produce a single CRS which is used both for simulation
and for extraction. Therefore it makes sense to combine the two properties in a
single experiment.

Experiment 2.4.14 (Extractable Simulation Soundness, Expext−sim−sound
(P,V,S),A (κ)).

(ξ, simstate)← S(setup, 1κ)
(x, π)← AS(simulate,·,ξ,simstate)(guess, ξ)
w← S(extract, x, π, ξ, simstate)
if (π /∈ R(simulate,·,ξ,simstate)) ∧ ((x,w) /∈ R) ∧ (V (x, π, ξ) = 1) then

return 1
else

return 0
end if

Definition 2.4.22 (Extractable Simulation Soundness). A NIZK (P, V) with poly-
nomial time simulator S for a language L is unbounded extractable simulation sound
if

Advext−sim−sound
(P,V,S),A (κ) = Pr[Expext−sim−sound

(P,V,S),A (κ) = 1]

is negligible for all A ∈ PT∗.

2.4. SECURITY OF CRYPTOGRAPHIC PRIMITIVES 31

In Section 5.6 we prove the following theorem. A dense encryption scheme is
an encryption such that a random string is a valid public key with non-negligible
probability.

Theorem 2.4.23. Given an NP-language L there exists a proof system (P, V)
for L which is extractable, adaptively indistinguishable, and unbounded simulation
sound in the CRS-model if there exists a family of trapdoor permutations and a
dense encryption scheme.

Chapter 3

Contributions

In this chapter we present our contributions and give a brief description of our
results.

3.1 Electronic Cash

Introduction and Background

Anonymous electronic cash was introduced by Chaum et al. [34]. The underlying
problem can be described as follows. We want the coins to be anonymous, but we
want to catch a malicious users which spends the same coins more than once, e.g.,
but copying the digital coin and using it at two different merchants. This may at
first seem like a contradiction. The solution proposed by Chaum was to design the
scheme so that a coin spent once does not reveal the user’s identity, but the identity
can be extracted if the coin is double-spent. This is still the paradigm which most
schemes use.

This thesis contribute in two ways. We discuss ways to improve the security
definitions in order to protect the user from a malicious bank (or corrupt employee
within the bank). Our second contribution is a scheme which is highly efficient but
sacrifices some of the anonymity to the bank.

An Improved Security Definition

Background

From the point of view of the bank, a scheme for electronic cash is secure if it is
infeasible to construct valid coins by other means than withdrawing them. From the
point of view of the merchant, a coin that has been spent should always be accepted
by the bank. Finally, to be secure for a user, the anonymity property should hold
even if the bank conspires with other users and merchants. In addition, the bank

33

34 CHAPTER 3. CONTRIBUTIONS

should not be able to claim that the user has withdrawn more coins than she has,
or falsely accuse the user of double-spending.

In the recent years, several papers have focused on giving precise security defin-
itions for tasks such as group signatures [9, 11] and ring signatures [12]. We suggest
a definition of security for schemes for electronic cash. In addition to an experiment-
based definition we construct an ideal functionality for electronic cash and show
that security in the experiment setting implies simulation-based security in the
framework for universal composability [30] using the ideal functionality.

Strengthening the Definition

We point out that previous definitions do not rule out a corrupt bank cheating
a user. The scenario is that the bank claims that a user has withdrawn a coin,
but the user denies this. We argue that the protocol should include a mechanism
to solve such an issue. Our definition addresses this issue by requiring a proof of
withdrawal from the bank.

We define six algorithms which form a scheme for electronic cash, key generation
for the bank, key generation for a user, spending a coin, identification of a double-
spender, verification of a withdrawn coin, and verification of a spent coin. In
addition we require the existence of a protocol between a user and the bank to
withdraw a coin.

Our security definition is based on four properties, unforgeability, stating that
valid coins can only be issued by the bank, anonymity, ensuring a user stays an-
onymous even if the complete system conspires against her, non-frameability, requir-
ing that no honest user can be accused of double-spending even by a corrupt bank,
and exculpability, ensuring that no user can be falsely accused of withdrawing a
coin. Previously considered security properties, as well as the property mentioned
above, follow from security under these four experiments. The fact the security
in the UC-model follows from the four experiments is another argument that our
definition cover the intuitive meaning of security for electronic cash.

Let us now describe the experiments in more detail.

Unforgeability. In the unforgeability experiment, the adversary is given an hon-
estly generated bank public key, and the ability to add corrupt users to the system.
The corrupt users can interact with an honest bank to withdraw coins, not necessar-
ily following the withdrawal protocol. After the execution, the honest bank holds
a number of withdrawal proofs, and the adversary has created a number of spent
coins. The adversary is successful if the number of spent coins exceeds the number
of withdrawal proofs, and no two spent coins are deemed to be double-spent.

Anonymity. The adversary in the anonymity experiment is allowed to construct
the bank public key itself, reflecting that anonymity should hold also against a fully
corrupt bank. The adversary can add honest users to the scheme, and it can issue
coins to the users by playing the bank’s part in the withdrawal protocol. Then it

3.1. ELECTRONIC CASH 35

chooses two coins. The experiment spends one of the coins and hands the spent coin
to the adversary without telling the adversary which of the coins was spent. If the
adversary correctly guesses which coin has been spent, then it wins the experiment.

Non-Frameability. The non-frameability experiment is defined as follows. The
adversary chooses a bank public key and asks the experiment to add honest users
to the system. The adversary can issue coins to the honest users by playing the
bank’s part in the withdrawal protocol and also spend the coins, possibly forcing
a user to double-spend in the process. The adversary outputs a list of coins. If
the number of double-spendings in the list exceeds the number of double-spendings
explicitly requested by the adversary, the adversary is successful in the experiment.
This reflects the requirement that no honest user may be held responsible for more
double-spendings than she actually is guilty of.

Exculpability. In the exculpability experiment, the adversary constructs the
bank public key and is allowed to add honest users to the system. It can also
play the bank’s part in the withdrawal protocol to issue coins to the honest users.
The adversary outputs a list of withdrawal proofs, and it wins if the list contains a
valid proof, or coin, which the coin holder cannot spend.

A Construction

We construct a scheme using general methods, which is secure under our definition
in the common reference string (CRS) model assuming the existence of a family of
trapdoor permutations. The scheme is not intended for practical use, but should
rather be considered a proof of concept.

A Practical Scheme for Electronic Cash

Background

Most payment schemes involve trapdoor functions such as variants of ElGamal
encryption or RSA groups. A real-life electronic cash scheme would probably be
implemented on a portable device with low computational power such as a smart-
card or a mobile phone. For such schemes it is important that the amount of
computation is low, especially on the user side. The difference between zero, one or
two exponentiations in the payment protocol is significant, whereas many schemes
require tens, or in some cases hundreds, of exponentiations. The merchant terminal
is more comparable to a low-end PC, but also in this case it is desirable to reduce
the amount of computations necessary to one or a few exponentiations.

Outline of Scheme

In Chapter 6 we propose a scheme which relies on symmetric primitives such as
symmetric encryption, hash functions and pseudo-random functions. The only com-

36 CHAPTER 3. CONTRIBUTIONS

putations performed by the user during payment is evaluation of pseudo-random
functions, and the merchant verifies a signature. The scheme has been implemented
on a mobile platform [89]. The scheme is inspired by the scheme by Sander and
Ta-Shma [78].

When a user withdraws a coin, the bank encrypts the user’s identity. Then
the user uses a pseudo-random function to create a list of values and sends the
hash value of the pseudo-random values to the bank. The coin, consisting of the
encrypted identity and the hash values, is then inserted as a leaf into a Merkle hash
tree. After a certain amount of time, the bank builds the tree and publishes the
root. To spend a coin, the user reveals half of the preimages of the hash values
together with a path from the coin up to a published root. The merchant verifies
the correctness of the preimages, and in addition verifies that the chain of hash
values is valid.

If a user double-spends a coin, then she has revealed the preimage of more than
half of the hash values. If this happens the bank decrypts the encrypted identity.
From only the revealed preimages of a double-spent coin, it may be possible to
successfully spend the coin a third time. In other words, a user double-spending
a coin risks being held responsible for additional purchases. This gives additional
incentive not to double-spend.

The anonymity of the scheme follows from the security of the encryption scheme,
and unforgeability of coins follows since the hash function is collision-free.

As an additional feature of our scheme the payment protocol is non-interactive.
In other words, the user produces a coin that can only be deposited by the desig-
nated merchant. This enables a user to prepare a coin for a certain merchant. In
addition, anyone can verify that the coin has been prepared for that merchant. As
an example, a parent can give a coin to their child which can be spent only at a
certain store.

We show security for our scheme in the framework for universal composability
(UC) [30]. We stress that our proof of security is in the plain model and not in the
random oracle model. We only assume that the encryption scheme is CCA2-secure,
that the hash functions are one-way and collision-free, and that the pseudo-random
functions are indistinguishable from random functions. We believe that the current
scheme is the first scheme for electronic cash with a security proof in the UC-model
and also the first scheme that does not use the random-oracle model for its security
proof.

3.2 Hierarchical Group Signatures

Background

Recall group signatures and the payment card application of group signatures from
Section 1.12. The cardholder wishes to preserve his privacy when he pays a mer-
chant for goods, i.e., he is interested in unlinkability of payments. The bank must
obviously be able to extract the identity of a cardholder from a payment (or at

3.2. HIERARCHICAL GROUP SIGNATURES 37

least an identifier for an account), to be able to debit the account. To avoid fraud,
the bank, the merchant, and the cardholder all require that a cardholder cannot
pay for goods without holding a valid card. To solve the problem using group
signatures we let the bank be the group manager and the cardholders be signers.
A cardholder signs a transaction and hands it to the merchant. The merchant
then hands the signed transaction to the bank, which debits the cardholder and
credits the merchant. Since signatures are unlinkable, the merchant learns nothing
about the cardholder’s identity. The bank on the other hand can always extract
the cardholder’s identity from a valid signature and debit the correct account.

A More Complex Application

The payment card application described above for group signatures is somewhat
simplified since normally there are many banks that issue cards of the same brand
which are processed through the same payment network. The payment network
normally works as an administrator and routes transactions to several independent
banks. Thus, the merchant hands a payment to the payment network which hands
the payment to the issuing bank. We could apply group signatures here as well
by making the payment network act as the group manager. The network would
send the extracted identity to the issuing bank. Another option is to set up several
independent group signatures schemes, one for each issuer. In the first approach, the
payment network learns the identity of the customer, and in the second approach
the merchant learns which bank issued the customer’s card. A better solution would
reveal nothing except what is absolutely necessary to each party. The merchant
needs to be convinced that the credit card is valid, the payment network must be
able to route the payment to the correct card issuer, and the issuer must be able
to determine the identity of the cardholder.

A solution that comes to mind is to use ordinary group signatures with the
modification that the customer encrypts his identity with his bank’s public key.
Then we have the problem of showing to the merchant that this encryption contains
valid information. The customer cannot reveal the public key of the bank to the
merchant, making such a proof far from trivial.

Introducing the Hierarchical Notion

In this thesis we introduce and investigate the notion of hierarchical group signa-
tures. These can be employed to solve the above problem. When using a hierarchical
group signature scheme there is not one single group manager. Instead there are
several group managers organized in a tree, i.e., each group manager either manages
a group of signers or a group of group managers. This is illustrated in Figure 3.1.

In the original notion the group manager can always identify a signer, but
nobody else can distinguish between signatures by different signers. The corres-
ponding property for hierarchical group signatures is more complicated. When
opening a signature from a signer in its subtree, a group manager learns to which

38 CHAPTER 3. CONTRIBUTIONS

Mω

Mβ1

Sα1 Sα2

Mβ2

Sα3 Sα4 Sα5 Sα6

Mβ3

Sα7 Sα8 Sα9

Figure 3.1: A tree of group managers and signers where ω = {β1, β2, β3}, β1 =
{α1, α2}, β2 = {α3, α4, α5, α6}, and β3 = {α7, α8, α9}.

of the subtrees directly below it the signer belongs, but nothing else. Signatures
from other signers are indistinguishable. Hence a group manager on the level dir-
ectly above the signers can identify its signers, whereas group managers higher in
the hierarchy only learns to which of its immediate subtrees the signer belongs.

When we use hierarchical group signatures to construct anonymous credit cards
for the more realistic setting we let the payment network be the root manager
that manages a set of group managers, i.e., the issuing banks, and we let the
cardholders be signers. The credit card application also demonstrates what kind of
responsibility model is likely to be used with a hierarchical group signature scheme.
With a valid signature on a transaction, the merchant has a valid demand on the
payment network. If the payment network has a signature that can be shown to
belong to a certain bank, the network has a valid demand on that bank. Thus, it is
in the network’s interest to open the signatures it receives from merchants, and it is
in the issuing banks’ interest to open the signatures they receive from the network.

Definitions

Like schemes for group signatures, a scheme for hierarchical group signatures con-
sists of the key generation algorithm HGKg, the signing algorithm HGSig, the verific-
ation algorithm HGVf, and the opening algorithm HGOpen. As opposed to regular
group signature scheme, the opening algorithm may return an empty response ⊥
if the group manager trying to open the signature is not an ancestor (directly or
indirectly) of the signer.

Let us now discuss the experiments which define security for a scheme for hier-
archical group signatures. We use the same experiments as Bellare et al. [9], al-
though we modify them to fit our needs. Informally the anonymity experiments ex-
amines whether the signatures leaks any knowledge of its signer’s identity other than
what is required from a correct scheme, and the traceability experiment roughly
corresponds to existential forgery for plain signatures.

Hierarchical Anonymity. In the experiment for hierarchical anonymity, the
adversary is first given the public key of the scheme and the private keys of all

3.2. HIERARCHICAL GROUP SIGNATURES 39

signers. Then it may request the private keys of group managers of its choice, and
it has access to an HGOpen oracle, which opens signatures on behalf of a group
manager of the adversary’s choice. The adversary picks two signers and a message.

The experiment lets one of the two signers sign the message, without informing
the adversary of who the signer is. Still having access to the HGOpen oracle, the
adversary guesses which signer produced the signature. It wins if it successful
without having corrupted a group manager which by definition can distinguish
between the two signers and having queried the HGOpen oracle on the challenge
signature.

Hierarchical Traceability. In the full traceability experiment, the adversary is
given the private keys of all group manager. It may corrupt signers of its choice,
and receives the private key for the corrupted signers. During the process it has
access to a HGSig oracle.

At the end of the experiment the adversary outputs a signature for a message for
which the oracle has not produced a signature. The adversary wins if the signature
cannot be opened or if it opens to a non-corrupted signer. In addition, the adversary
wins if two group managers on the same level can open the signature.

The essence of the traceability experiment is that a group manager should always
be able to trust the output of the HGOpen algorithm.

Constructions

We give two constructions for hierarchical group signature schemes. The first one
uses general methods and is shown to be secure if a family of trapdoor permutation
is used. The second construction is explicit and is shown to be secure under the
strong RSA assumption and the decision Diffie-Hellman assumption.

A Construction Using General Methods

As building blocks for our scheme we use a scheme for (non-hierarchical) group
signatures, a public-key encryption scheme, and a non-interactive zero-knowledge
proof system (NIZK). These schemes are known to exist under the assumption of
trapdoor permutations.

The key generator constructs a key pair for the encryption scheme for each
group manager. The private key is handed to the group manager and the public
key is added to the public key of the scheme. Each signer is given a secret key for
the group signature scheme, and the public key is included in the public key of the
hierarchical group signature scheme.

To sign a message a signer first constructs a signature for the group signature
scheme. Then it constructs two list of ciphertexts. The first list is a chain where the
signer’s identity is encrypted with the public key of its parent, the parent’s public
key is encrypted with its parent’s public key and so on until the root is reached.

40 CHAPTER 3. CONTRIBUTIONS

In addition all public keys in the list are encrypted with a separate key. Finally a
NIZK proving that everything is formed as described here is produced.

Verification simply consists of verifying the proof of knowledge. When a group
manager opens a signature it decrypts the ciphertext on its level and verifies against
the additional list that it should be able to open the signature. From the plaintext
it can identify the next step in the chain. Since it is checked that the correct key is
used for decryption, only one group manager on each level can open the signature.

An Almost Practical Construction

Next we give a scheme which is secure under the strong RSA assumption and the
decision Diffie-Hellman assumption. Although the scheme is described explicitly,
it is still slow, requiring about a minute to compute a signature on an ordinary
computer.

Each group manager is given an ElGamal private key and the public key is made
part of the scheme public key. Each signer is given a Cramer-Shoup signature on the
public keys on the path from the root to the signer. A hierarchical group signature is
constructed by computing a commitment to the Cramer-Shoup signature, producing
a chain of ciphertexts as in the general construction, and computing a NIZK that
the signature is formed correctly.

Informally the scheme has traceability, since it is possible to extract a Cramer-
Shoup signature from a forger hierarchical group signature. An adversary breaking
the traceability experiment can be used to break the CMA-security of the Cramer-
Shoup signature scheme. Anonymity holds, since neither the commitment, nor the
ElGamal ciphertexts reveals any information about the identity of the signer.

An Optimistic Scheme

There is room for improvement in terms of efficiency of the scheme above. We now
relax the definitions somewhat in order to be able to give such an improvement.
In the original scheme, a group manager can always open its signatures. In our
relaxation, which we call optimistic, a group manager may not be able to open its
own signatures. However, there is a trusted party which can always identify the
signer. For this reason we introduce a new function, HGTrustOpen, and replace
HGOpen by HGOptOpen.

The term optimistic is used since for honest signers, the protocol works just
as ordinary hierarchical group signatures. The inconvenience of interacting with a
trusted party only occurs for a dishonest signer, which will itself be exposed in the
process.

The security definitions are quite similar to those of ordinary hierarchical group
signatures. The main difference is that in the traceability experiment, HGTrustOpen

replaces HGOpen. This reflects that HGTrustOpen is in some sense the same as
HGOpen, since both algorithms are required to every time output a valid response.
The adversary wins if it breaks traceability in the same sense as for non-optimistic

3.2. HIERARCHICAL GROUP SIGNATURES 41

signatures. In addition, it wins if a group manager opens the signature to something
else than HGTrustOpen and ⊥. That is, a group manager may fail to open a
signature, but it may not point out an honest signer.

Our construction works as follows. Each signer α is given a prime pα. The
prime is constructed so that its binary representation identifies a path from the
root to the signer. The private key of each signer is a pαth root of an element y

in an RSA group, and the group managers are given ElGamal keys. To sign the
signer commits to its root and creates a chain of ciphertexts from itself to the root.
Then it produces a NIZK that the signatures are formed as described above.

Informally traceability holds, since in the random oracle model an RSA root
can be extracted from a valid signature. Therefore an adversary breaking the
traceability can be turned into a machine which computes root of an element in
an RSA group, contradicting the strong RSA assumption. Anonymity holds since
no knowledge about the signer leaks from the commitment, the ciphertexts, or the
NIZK.

Universal Composability

In Section 12 we give an ideal functionalities for the proper hierarchical group
signatures from [84] as well as for the optimistic signatures of this paper. We then
show both for proper and optimistic hierarchical group signatures that a scheme
which is secure according to the experiment-based definition also securely realizes
its ideal functionality for a static adversary.

The ideal functionality constructs signatures with the actual signing algorithm.
Since the environment has access to the secret keys of corrupt group managers,
we need to ensure that signatures are opened correctly with regard to these keys.
On the other hand, signatures should be obviously indistinguishable in all other
cases. We solve this by using the legimite keys of the corrupt group managers, but
modifying the other keys so that signatures which should be indistinguishable are
identically distributed.

Verification of signatures is along the same lines as in [31]. A signature is deemed
invalid if the actual verification algorithm returns 0, or if it opens to an uncorrupt
party. This corresponds to [31] where the ideal verification algorithm considers a
signature valid if it passes the real verification algorithm and the signer is corrupt.

In Section 12 we show that a scheme which is secure in the experiment-based
definition is also secure in the UC-setting.

Part II

Electronic Cash

43

Chapter 4

Introduction and Background

4.1 About This Part

In this part we present two new results on electronic cash. The first contribution
is an improved definition of security for electronic cash together with a realization
under general assumptions. Although the protocol is not practical, it shows that it
is possible to construct a protocol which fulfills our stronger definition. The second
result is a practical scheme which does not ensure the same privacy towards the
bank, but which is highly efficient.

4.2 Previous Work

The concept of electronic cash, e-cash, was introduced by Chaum et al. [34], and
several subsequent schemes have been proposed [20, 44, 86, 78, 73, 69, 68, 25]. In
an e-cash scheme there are three types of participants – the bank, merchants, and
users. The users can withdraw coins from the bank and spend them at merchants.
An e-cash scheme either be online or offline. In the former case the bank is involved
in every transaction, whereas in the second case payments can be performed without
contacting the bank. Obviously offline schemes are preferable to online schemes.
However, an electronic coin, being nothing but a string of numbers, can be copied
and spent more than once, and in an offline scheme such double-spendings cannot
be detected during the actual purchase. Rather than preventing double-spending,
offline schemes are designed so that double-spenders are detected and identified.

Privacy is a crucial ingredient of e-cash schemes. It is desirable that merchants
cannot learn the identity of the user, or even determine whether two payments
were made by the same user or not. Many schemes also provide the same privacy
towards the bank. However, anonymity also works in favor of criminals using the
scheme for illegal activities protected by the privacy offered. To protect against
such events some schemes offer the possibility for trusted third parties to trace a
payment.

45

46 CHAPTER 4. INTRODUCTION AND BACKGROUND

Most schemes require a merchant to deposit a coin after the purchase. A few
schemes allow a coin to be transferred between users in several steps before it is
deposited at the bank [72, 73]. Such schemes are said to have transferable coins.
Another possible feature is divisability, i.e., that a coin may be spent only in part
[73, 69, 68].

In [21], the possibility of later revoking the anonymity of the coins is added,
which may be desirable for legal reasons. Sander and Ta-Shma [78] present a
system where the bank does not have a secret key. The scheme in Chapter 6 is
based on the ideas of that system. The similarities and differences between our
system and the system introduced by Sander and Ta-Shma are discussed in more
detail in Section 6.1.

4.3 Group Signatures and E-cash Schemes

Group signatures bear many resemblances to electronic cash. Group signatures
are indistinguishable to anyone but the group manager in very much the same
way payments are indistinguishable in anonymous e-cash schemes. One important
difference is that there is no concept of double-spending for group signatures.

In Chapter 5.2 and Chapter 6.6 we compare our two schemes to group signatures.

Chapter 5

A Stronger Definition for

Anonymous Electronic Cash

5.1 Introduction

In this chapter we propose a definition of security for schemes for electronic cash
which gives a stronger protection for the user against the bank than the schemes
mentioned in Section 4.2. In particular, after a withdrawal the bank acquires a
proof in case the user claims the withdrawal never took place.

5.2 Protocol Definition and Security Model

While some security properties of electronic cash are obvious and dealt with from
the very first scheme, others are more subtle. Naturally a scheme must not allow for
a user to forge coins, and a double-spender must be detected. The schemes [25, 87]
require that a corrupt bank cannot accuse an honest user of double-spending,
whereas this requirement is not explicit in some other papers, e.g., [68, 61]. How-
ever, to our knowledge, no scheme discusses the possibility of a corrupt bank falsely
claiming that an honest user has withdrawn a coin, or rejecting a deposition from
a merchant of a legally spent coin. The tendency seems to be to, apart from an-
onymity, protect the interests of the bank rather than those of the user.

We give a definition requiring that the bank be able to prove withdrawals. Thus,
after executing the withdrawal protocol, the output of the bank should be a proof
of withdrawal and the output of the user should be a valid coin. However, the
neither part may benefit from aborting the protocol prematurely. While there exist
protocols which address this issue, so called fair exchange [14], they are either based
on gradual release of information and thus not very practical, or require the presence
of a third trusted party. Since we would like a definition that can be instantiated
with a practical protocol, we use a different approach. After the execution, the
bank receives a withdrawal proof, and the user receives a coin secret data which

47

48
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

can be used to spend the coin. The honest bank would send the withdrawal proof
to the user, who can use it as a coin. Should the bank fail to do this, the user can
challenge the transaction and force the bank to prove that a coin has indeed been
withdrawn. Since the proof can be used a coin, the scheme is fair also from the
point of view of the user. We call the bank’s output the coin public data and we
call the user’s output the coin user secret data.

We require that spent coins be publicly verifiable to avoid the possibility of
the bank rejecting a deposition and to ensure that a merchant cannot deny having
received a payment. In particular the bank can verify a spent coin. Therefore there
is no need for an interactive deposition protocol. The merchant simply hands the
spent coin to the bank.

Our security definition is based on four experiments, unforgeability, stating that
valid coins can only be issued by the bank, anonymity, ensuring a user stays an-
onymous even if the complete system conspires against her, non-frameability, re-
quiring that no honest user can be accused of double-spending even by a corrupt
bank, and exculpability, ensuring that no user can be falsely accused of withdrawing
a coin. Previously considered security properties, as well as the property mentioned
above, follow from security under these four experiments. The fact that security
in the UC-model follows from the four experiments is another argument that our
definition covers the intuitive meaning of security for electronic cash.

Even with all merchants being fully corrupt, a scheme should stay secure in
the sense that coins cannot be forged and anonymity still holds. If spent coins are
anonymous and cannot be forged even with the merchants’ secret keys revealed,
there is no reason to keep them secret. Therefore the merchants do not have any
secret keys in our definitions, and the merchants do not take part in any protocol. In
particular, the spending algorithm is non-interactive, i.e., to spend a coin, the user
applies an algorithm to spend it, and gives the merchant’s identifier as parameter.

With a non-interactive spending algorithm, the merchant’s consent is not neces-
sary in order to spend a coin. In practice, a user would require some sort of contract
before handing the merchant a coin, but we feel this is best handled outside of our
protocol. In standard banking systems it is indeed possible to wire money without
the recipient’s approval, although it is usually not very sensible to do so.

We assume the existence of a PKI, i.e., given a public key there exists a method
to obtain the identity of the holder of the key. Since we have a PKI and assume
the existence of trapdoor permutations, we can construct secure and authenticated
communication. We do not explicitly define a protocol to register a user. If the
protocol requires some secret information to be passed from the bank to the user,
this can be done in the withdrawal protocol, since we have the existence of secure
and authenticated channels. Therefore there is no loss of generality in not having
a registration protocol.

In this paper we discuss payment schemes containing all basic properties, but
there are many possible extensions. Examples of such alternative definitions include
the presence of a trusted third party which can identify coin spenders, even when
they have not double-spent. Such schemes are called fair. Another extension is the

5.2. PROTOCOL DEFINITION AND SECURITY MODEL 49

possibility to transfer a coin between users in several steps before it is deposited
at the bank, and divisible coins. We leave it as an open problem to adjust the
definition to handle also such cases.

We construct a scheme using general methods, which is secure under our defini-
tion in the common reference string (CRS) model assuming the existence of a family
of trapdoor permutations. The scheme is not intended for practical use, but it is
rather a proof of concept.

Participants

The participants are the bank B and users Ui. Each merchant has an identity mid,
but the merchants do not take active part in any of our protocols.

Algorithms and Protocols

We now define the algorithms and protocols of which a scheme for electronic cash
consists. For non-interactive algorithms the definition is straight-forward. We
define two-party protocols as a pair of algorithms, where each participant executes
one algorithm. The algorithms take as input a message and a state. The state
is initialized with the private input of the party. On startup of a protocol the
initiating party executes the algorithm with ∅ as message. Each algorithm outputs
a pair (msg, state), where msg is handed as message to the other party’s algorithm,
and state is passed as input by the executing party the next round. When a party’s
algorithm outputs p = ⊥ the protocol is finished, and the final value of each party’s
state is parsed as private output.

The following algorithm illustrates the execution between two parties using al-
gorithms A and B with private input skA, skB, respectively.

stateA ← skA
stateB ← skB
while (msgA 6= ⊥) ∧ (msgB 6= ⊥) do

(msgB , stateA)← A(msgA, stateA)
if msgB 6= ⊥ then

(msgA, stateB)← B(msgB, stateB)
end if

end while

return (stateA, stateB)

None of our subprotocols involve more than two parties, which allows us to use
the simplified notation above for interactive subprotocols. As a matter of fact, the
only protocols which involves exactly two parties is the withdrawal protocol.

There is an algorithm for creating a bank key pair and a user key pair. After
the user has generated its keys, the public key is inserted into the PKI and hence
tied to the user’s identity.

The merchants have no secret keys. Instead each merchant has an identity
mid ∈ {0, 1}κ/2, which together with a transaction identity tid ∈ {0, 1}κ/2 uniquely

50
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

identifies a transaction. The reason to have fixed-length identities can informally
be described as follows. We would like a spent coin to have a fixed length, and we
would like a scheme which is secure under general assumptions such as the existence
of trapdoor permutations. If a user can create two inputs which result in the same
spent coin, then she will not be caught as a double-spender. Therefore it must
be infeasible to construct two such inputs. However, this is what is required from
a collision-free hash functions. Hence such a scheme could be used to construct
a collision-free hash function keyed on all other parameters of the scheme, which
would solve the long-standing open problem of the existence of collision-free hash
functions assuming only the existence of trapdoor permutations.

On the other hand, should we assume the existence of a collision-free hash
function, we could have merchant and transaction identifiers of arbitrary length
and hash them to a value of appropriate length.

Algorithm 5.2.1 (Bank Key Generation BKg).
Input: BKg(1κ), where κ is the security parameter.
Output: (bpk, bsk), where bpk is a bank public key and bsk is a bank secret key.

Algorithm 5.2.2 (User Key Generation UKg).
Input: UKg(1κ), where κ is the security parameter.
Output: (upk, usk), where upk is a user public key and usk is a user secret key.

Protocol Head 5.2.1 (Coin Withdrawal, (UWithdraw,BWithdraw)).
Parties: Bank B, User U .
Private input of B: Bank public key bpk, bank secret key bsk.
Private input of U : Bank public key bpk, user public key upk, user secret key
usk.
Private output of B: Coin public data cpd.
Private output of U : Coin user secret data cusd.

(UWithdraw,BWithdraw) is the protocol used when a user withdraws a coin.
The private input of the user is a user private key usk, a user public key upk, and
a bank public key bpk. The private input of the bank is a bank secret key bsk and
a bank public key bpk. The user’s private output is the coin user secret data cusd

used when spending the coin, whereas the bank’s output is interpreted as the coin
public data, cpd, which we will sometimes simply refer to as a coin. Normally the
bank would hand the public data to the user, but we do not address this in the
protocol. If the bank fails to hand the coin public data to the user and still charge
the user’s account, the user would request a proof of the withdrawal. Since the coin
public data is the proof, the bank would be forced to reveal it.

To simplify notation, we use a short notation for an honest execution of the
protocol. We define Withdraw(bpk, bsk, upk, usk) to be the result, i.e., coin public
data cpd and coin user secret data cusd, of a withdrawal where both parties behave
according to the protocol.

Algorithm 5.2.3 (Coin Spending Spend).
Input: Spend(cpd, upk, usk, cusd, mid, tid, bpk), where cpd is coin public data,

5.2. PROTOCOL DEFINITION AND SECURITY MODEL 51

upk is a user public key, usk is a user secret key, cusd is a coin user secret data,
mid ∈ {0, 1}κ/2 is a merchant identity, tid ∈ {0, 1}κ/2 is a transaction identity, and
bpk is a bank public key.
Output: spentcoin, where spentcoin is a (publicly verifiable) spent coin.

Informally VfDoubleSpent(spentcoin1, spentcoin2, bpk) returns the public key upk

of the double-spender if spentcoin1 and spentcoin2 are two spendings of the same
coin. Otherwise it returns ⊥.

We require that the spent coins handed to VfDoubleSpent have been verified,
or the output of the algorithm is undefined. This requirement could be removed
by including (mid, tid) for each coin in the call, but this would make the interface
unnecessarily complex.

The bank secret key is not used in the below algorithm. If a key is indeed
needed, and it is separate from the key used to issue coins, then it can be made
public by including it into bpk. It is quite realistic to have double-spendings being
publicly verifiable. In case of a double-spending, the bank would still need to able
to prove this to a third party. It also makes the definitions less cumbersome.

Algorithm 5.2.4 (Identifying a Double-Spender, VfDoubleSpent).
Input: VfDoubleSpent(spentcoin1, spentcoin2, bpk), where the two input parameters
spentcoin1 and spentcoin2 are two spent coins and bpk is a bank public key.
Output: upk, a (possibly empty) user public key.

In addition to the above, there are two algorithms which verify the valid-
ity of coins produced during withdrawal and spending, VfCoin(cpd, upk, bpk),
VfSpentCoin(spentcoin, mid, tid, bpk), The algorithms output 1 if the proof is valid
with regards to the additional input parameters and 0 otherwise.

Algorithm 5.2.5 (Verifying a Withdrawal, VfCoin).
Input: VfCoin(cpd, upk, bpk), where cpd is the public data of a withdrawn coin,
upk a user public key, and bpk a bank public key.
Output: b ∈ {0, 1}.

Algorithm 5.2.6 (Verifying a Spent Coin, VfSpentCoin).
Input: VfSpentCoin(spentcoin,mid, tid, bpk), where spentcoin is a spent coin, tid ∈
{0, 1}κ/2 is a transaction identity, mid ∈ {0, 1}κ/2 is a merchant identity, and bpk

is a bank public key.
Output: b ∈ {0, 1}.

Each new coin public data cpd gives the bank the right to charge the account
once. To define what is meant by a “new” coin, we must decide on what we mean by
a two coin public data cpd1 and cpd2 being equal. The most obvious choice would
be to require the two bit-string to be equal. However, we allow the scheme to define
the equivalence relation in a different way. This equivalence relation is implicitly
used also in the security experiment, e.g., when building sets of coin public data.
The reason to allow this is that a scheme may allow the bank to reform a cpd into a

52
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

different cpd′ in a certain pattern, e.g., by resigning some data with a probabilistic
signing scheme. Rather than require a scheme to take additional steps to withstand
such an attack, we allow it to simply define two such coins to be identical and thus
not to give the bank the right to charge the account a second time.

Correctness

By correctness we mean that the scheme works as expected when all participants are
honest. Proving correctness is often straight-forward, and this property is some-
times not stated explicitly. Here we define correctness for a scheme as defined
above.

Experiment 5.2.1 (Correctness, Expcorrect
EC,A (κ)).

(bpk, bsk)← BKg(1κ)
(upk, usk)← UKg(1κ)
(cpd, cusd)←Withdraw(bpk, bsk, upk, usk)
if VfCoin(cpd, upk, bpk) = 0 then

return 0
end if

(mid, tid)← A(guess, bpk, upk, cpd)
spentcoin← Spend(usk, cpd, cusd,mid, tid, bpk)
if VfSpentCoin(spentcoin,mid, tid, bpk) = 0 then

return 0
end if

return 1

Definition 5.2.1 (Correctness). A scheme for electronic cash EC is correct if the
advantage

Advcorrect
EC,A (κ) = Pr[Expcorrect

EC,A (κ) = 0]

is negligible as a function of κ for any adversary A ∈ PT∗.

Detection of double-spenders is not included in the definition of correctness.
This may seem strange at first, but correctness only stipulates how the protocol
works with honest parties, and an honest party does not double-spend. As we will
see later, the definition of unforgeability implies that double-spenders are detected.

Security

We describe four experiments, or games, to define security for a scheme for electronic
cash. In each experiment the adversary has access to a number of oracles defined
below. They operate on the following global parameters.

• U contains all public keys inserted into the PKI.

• C contains the public keys of corrupt users. Obviously C is a subset of U.

5.2. PROTOCOL DEFINITION AND SECURITY MODEL 53

• (upki, uski) is the public and private key of the ith honest user.

• l is the number of coins withdrawn from the bank using the withdrawal oracle.
It is initialized to 0.

• dsi is the number of double-spendings that has been made on behalf of user
upki using the spending oracle HonestSpend. It is initialized to 0.

• CSKi is the set of coin user secret data for user upki produced when the
withdrawal oracle is used. For a new user it is initiated as the empty set.

The oracles are defined as follows.

HonestUKg(1κ) calls UKg(1κ) to generate a key pair (upk, usk). The public key
upk is inserted into the PKI and U. For the ith call to the oracle the key
pair (upk, usk) is stored in the key list as (upki, uski). The public key upk is
returned.

AddCorruptU(upk) inserts the key upk into the PKI and into the sets C and U.

HonestUWithdraw(i, j,msg) executes one step of withdrawal session j for Ui. More
precisely, if session j has not been instantiated for Ui, i.e., stateij is not defined,

then stateij ← (upki, uski, bpk). Thereafter a call is made to UWithdraw(msg,

stateij) with output (msg′, stateij). The message msg′ is returned, and stateij is
stored for use in subsequent calls to the oracle. After the session has finished,
stateij is parsed as a coin user secret data cusdij . The key set for user i is

updated CSKi ← CSKi ∪ {cusdij}.
HonestBWithdraw(j,msg) executes one step of withdrawal session j for B. More

precisely, if session j has not been instantiated, i.e., statej is not defined,
then statej ← (bpk, bsk). Then a call is made to BWithdraw(msg, statej) with
output (msg′, statej). The message msg′ is returned, and statej is stored.
After the session has finished, statej is parsed as a coin cpd and returned.
Each time a coin is returned the counter l is incremented.

HonestSpend(cpd, i, j,mid, tid) spends cpd on behalf of Uj using the secret key from
withdrawal session j. The oracle first checks if the secret data from withdrawal
session j, cusdij , has been stored in CSKi and returns ⊥ if this is not the case.
Then it checks if (i, cpd) has been stored by the oracle and sets dsi ← dsi + 1
if this is the case. Then it stores (i, cpd), calls Spend(cpd, upki, uski, cusdij ,
mid, tid, bpk), and returns the output.

Concurrency

The adversary is given oracle access to the withdrawal protocol without any re-
strictions on how to access it. In particular it may execute several sessions in
parallel. Therefore the scheme must be secure also under concurrent use to pass
our definition.

54
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

Unforgeability

The property of unforgeability informally says that one cannot create valid coins by
other means than withdrawing them from the bank. A little more precisely it says
that if a coalition of users spend more than they have legally withdrawn, then at
least one of them will get caught as a double-spender. Recall that l is the number
of withdrawn coins using the withdrawal oracle. Unforgeability corresponds to the
property balance of [25].

Experiment 5.2.2 (Unforgeability, Exp
unforge
EC,A (κ)).

(bpk, bsk)← BKg(1κ)
(spentcoin1, . . . , spentcoink)← AAddCorruptU(·),HonestBWithdraw(·,·)(bpk)
if k ≤ l then

return 0
end if

if ∃i ∈ [1, k] : VfCoin(spentcoini, bpk) = 0 then

return 0
end if

if ∃(i, j) ∈ [1, k]2 : VfDoubleSpent(spentcoini, spentcoinj , bpk) ∈ C then

return 0
end if

return 1

In the above experiment, there is no method for creating honest user. If there is
an adversary which would benefit from this, it could as well create the key pair itself
and run AddCorruptU. Coins for the honest user could be withdrawn by playing
the user part of the withdrawal protocol honestly.

Definition 5.2.2 (Unforgeability). A scheme for electronic cash EC has unforge-
ability if the advantage

Adv
unforge
EC,A (κ) = Pr[Exp

unforge
EC,A (κ) = 1]

is negligible as a function of κ for any adversary A ∈ PT∗.

Non-Frameability

A potential problem could be that a coalition of users and possibly the bank
could accuse an honest user of double-spending. We say that a scheme has non-
frameability if it is infeasible to frame an honest user in such a way.

In experiment below, DS is the set of (indices of) double-spent coins that im-
plicate the framed Uj . The adversary wins if it creates more double-spendings than
dsj , the number of double-spendings the adversary has made on behalf of Uj using
the spending oracle. Intuitively this means that a user can only be accused of the
actual number of double-spending she has performed.

Non-frameability corresponds to strong exculpability of [25]. The weak variant
would guarantee that a user that has never double-spent cannot be accused of

5.2. PROTOCOL DEFINITION AND SECURITY MODEL 55

double-spending, but it would not prevent a double-spending user from being set
up for additional double-spendings. Which variant to prefer is a matter of taste.
One could argue that a user that double-spends has already breached her part of the
contract, and it is not necessary to add complexity to the protocol to protect her.
On the other hand, a double-spending could occur due to a technical malfunction
rather than intentional misconduct, and in such a case it would be unreasonable for
the protocol to allow an adversary to create additional double-spendings on behalf
of the user. We choose the strong definition.

Since not even a dishonest bank should be able to frame a user, we allow the
bank key to be chosen in an adversial way.

Experiment 5.2.3 (Non-Frameability, Expnon−frame
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
((spentcoini,midi, tidi)

k
i=1, j)←

AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·)(guess, state)
if ∃i : VfSpentCoin(spentcoini,midi, tidi, bpk) = 0 then

return 0
end if

DS ← {i : ∃i′ > i : VfDoubleSpent(spentcoini, spentcoini′ , bpk) = upkj}
if |DS| > dsj then

return 1
else

return 0
end if

We do not provide an oracle to add corrupt users to the PKI, since we are not
interested in exposing honest users as double-spenders.

Definition 5.2.3 (Non-Frameability). A scheme for electronic cash EC has non-
frameability if the advantage

Adv
non−frame
EC,A (κ) = Pr[Expnon−frame

EC,A (κ) = 1]

is negligible as a function of κ for any adversary A ∈ PT∗.

Anonymity

Informally a scheme for electronic cash is anonymous if it is infeasible for any player,
including the bank, to decide the identity of a spender. We define anonymity in
a very strong sense, namely that not even knowing the private key of the spender
helps revealing the identity of the user. We cannot, however, give the adversary the
coin secret user data, since in such a case the adversary could itself double-spend
the coin and reveal the identity. For the same reason the adversary may not use
the HonestSpend oracle to double-spend one of the challenge coins.

In the experiment we let the adversary choose the bank public key and use
oracles to create users and withdraw coins before it selects two coins, one of which

56
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

will be spent as the challenge. Together with the challenge spentcoin the adversary
is given the private keys of all users. This corresponds to the scenario where the
private key of a user is exposed. The privacy of the user should be kept also in such
a case.

If the keys were given to the adversary in the first stage, it could withdraw
coins itself using the protocol, and it would trivially win the experiment by double-
spending the challenge coins.

Experiment 5.2.4 (Anonymity, Expanon−b
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
(i0, j0, i1, j1,mid, tid)←
AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·,·)(choose, state)

spentcoin← Spend(cpdib , uskib , cusdibjb ,mid, tid, bpk)

d← AHonestSpend(·,·,·,·,·)(guess, state, spentcoin, (uski)
|U|
i=1)

if ∃mid, tid : ({cpdi0 , i0, j0,mid, tid), (cpdi1 , i1, j1,mid, tid)}∩QHonestSpend(·,·,·,·,·) 6=
∅ then

return 0
end if

if d = b then

return 1
else

return 0
end if

Definition 5.2.4 (Anonymity). A scheme for electronic cash EC has anonymity
if the advantage

Advanon
EC,A(κ) = |Pr[Expanon−0

EC,A (κ) = 1]− Pr[Expanon−1
EC,A (κ) = 1]|

is negligible as a function of κ for any adversary A ∈ PT∗.

Exculpability

Exculpability states that the bank should not be able to create proofs of withdrawal,
i.e., coins, which the user cannot spend. It should also not be able to produce more
proofs than number of withdrawals made by the user.

Experiment 5.2.5 (Exculpability, Exp
exculp
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
(j, (cpdi)

k
i=1,mid, tid)←

AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·,·)(guess, state)
if ∃i : VfCoin(cpdi, upkj , bpk) = 0 then

return 0
end if

if k > |CSKj | then

5.2. PROTOCOL DEFINITION AND SECURITY MODEL 57

return 1
end if

if ∀cusd ∈ CSKj : Spend(cpd1, upkj , uskj , cusd,mid, tid, bpk) = ⊥ then

return 1
end if

return 0

There is no loss of generality in only checking if cpd1 is spendable, since the
adversary can always reorder the coins to output an unspendable coin first.

Definition 5.2.5 (Exculpability). A scheme for electronic cash EC has exculpab-
ility if the advantage

Adv
exculp
EC,A (κ) = Pr[Exp

exculp
EC,A (κ) = 1]

is negligible as a function of κ for any adversary A ∈ PT∗.

Finally we make the following definition.

Definition 5.2.6 (Secure Scheme for Electronic Cash). A scheme for electronic
cash is secure if it has unforgeability, non-frameability, anonymity, and exculpabil-
ity.

Comparison to Group Signatures

Electronic cash resembles group signatures in many ways. We refer to Part III for
a detailed description of group signatures.

Both group signatures and electronic cash allow users to perform transactions
while remaining anonymous. On a high level, the roles of the bank and the group
manager are similar. Withdrawing a coin has similarities to joining the group of
a group signature scheme, and spending is in some ways similar to signing. The
major difference in terms of anonymity is that a group signature can always be
opened by the group manager, but a spent coin is anonymous also to the bank. In
this sense, a scheme for electronic cash can be seen as a group signature scheme
with one-time keys and unrevocable anonymity.

It is not surprising that the security properties of the two tasks are similar in
many ways. Let us compare our definition for electronic cash to the definitions for
dynamic group signatures in [57, 11].

Unforgeability

Our definition of unforgeability resembles the misidentification attack of [57] and
traceability of [11].

58
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

Non-Frameability

Non-frameability is similar to the non-frameability property of both group signature
definitions in that it requires that a user cannot be framed even if the complete
system conspires against her. Although the adversary is given the secret keys of the
group manager in [57, 11], our definition is stronger, since we allow the adversary
to construct the key itself.

Anonymity

Anonymity of a group signature is different than that of a spent coin, since the
opening key can always be used to open group signature. This is reflected in the
experiments, which otherwise are quite similar.

Exculpability

The exculpability property is not defined for any group signature scheme to our
knowledge. The corresponding property would be that a group manager cannot
falsely claim that it has included a certain member into the group. A scenario
where this might pose a problem is if group members are allowed to download
certain information and there is a price to join the group. Group signatures do not
address the potential issue when a member claims that the group manager has not
issued him a key.

5.3 Security in the Framework for Universal Composability

We now consider the relation between experiment-based security of a scheme for
electronic cash as defined above and security in the framework for universal com-
posability (UC) [30]. We describe an ideal functionality, discuss why it captures
the notion of anonymous electronic cash, and show that a scheme that is secure
according to Definition 5.2.6 also securely realizes the ideal functionality. We use a
model which is described in Section 2.2. The functionality described here has only
one non-immediate function – the withdrawal protocol.

The ideal anonymous electronic cash functionality FAnonEC running with parties
B, U = {U1,U2, . . . ,Uk} is given below. The ideal adversary S corrupts a subset
of the users and possibly the bank before the start-up. We let C be the set of
corrupted parties.

We do not differentiate between users and merchants. In fact, any party (except
for the bank B) can act both as a merchant and as a user. In addition we assume
every user is uniquely identified with an identifier mid ∈ {0, 1}κ/2.

The ideal functionality stores the following values.

Tcoins is the table of coins that the bank has issued.

cc is the number of coins that have been withdrawn by corrupt users. It is initialized
to 0.

5.3. SECURITY IN THE FRAMEWORK FOR UNIVERSAL

COMPOSABILITY 59

Tspent−coins contains the coins that have been honestly spent.

Tvalid−coins holds the coins that have been verified to be correct, but which have
not been spent by honest users.

Tdouble are the coin pairs that have been determined to be double-spendings.

ds is the number of coins that have been determined to be double-spent by corrupt
users. It is initialized to 0.

Functionality 5.3.1 (Anonymous Electronic Cash).

1. Wait for the message (S, Keys, (bpk, bsk), (upki, uski)
k
i=1) where uski = ⊥ if

Ui ∈ C and bsk = ⊥ if B ∈ C. Store (bpk, bsk) and (upki, uski).

2. Then handle incoming messages as follows.

• Withdraw. Upon reception of (B, AccWithdrawal,Ui) act as follows.

– If Ui /∈ C, then compute (cpd, cusd) ← Withdraw(bpk, bsk, upki,
uski). Store (Ui, cpd, cusd) in Tcoins. Then hand the messages ((B,
IssuedNewCoin, Ui, cpd), (S, AccWithdrawal, Ui)) to CI .

– If Ui ∈ C, then hand (S, AccWithdrawal,Ui) to CI . Upon reception
of response (S, IssuedNewCoin,Ui, cpd), store (Ui, cpd,⊥) in Tcoins.
Set cc← cc + 1. Hand (B, IssuedNewCoin,Ui, cpd) to CI .

• Verify Coin. Upon reception of (P, VfCoin, cpd,Ui), compute b ←
VfCoin(cpd, bpk, upki) and hand (P, VfCoin, cpd,Ui, b) to CI .

• Spend. Upon reception of (Ui, Spend, cpd,mid, tid), execute (·, VfCoin,
cpd, Ui). If the result is 0, then hand (Ui, Spend, cpd, mid, tid, ⊥) to CI .

Otherwise set (upk′, usk′) ← UKg(1κ), (cpd′, cusd′) ← Withdraw(bpk,
bsk, upk′, usk′), spentcoin′ ← Spend(cpd′, usk′, cusd′, mid, tid, bpk).
Store (Ui, cpd′, mid, tid, spentcoin′) in Tspent−coins.

• Verify Spent Coin. Upon reception of (P , VfSpentCoin, spentcoin,
mid, tid) proceed as follows.

– If B ∈ C, then set b← VfSpentCoin(spentcoin,mid, tid, bpk).

– If (·,mid, tid, spentcoin) has been stored in Tspent−coins, then set b←
1.

– If (·, cpd,mid, tid, spentcoin) /∈ Tspent−coins, then do as follows.

∗ If there exists Uj ∈ C such that (Uj , cpd,⊥) ∈ Tcoins, then set
b ← VfSpentCoin(spentcoin, mid, tid, bpk). If b = 1, then store
(Uj , mid, tid, spentcoin) in Tvalid−coins.
For each spentcoin ∈ Tvalid−coins proceed as follows. First com-
pute upk ← VfDoubleSpent(spentcoin, spentcoin′, bpk) and let
Uj be such that upkj = upk. Insert (Uj , {spentcoin, spentcoin′})

60
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

into Tdouble if Uj ∈ C. Let ds ← ds + 1 if at least one such
double-spending is found.
If |Tvalid−coins|−cc > ds, then insert (Uj , {spentcoin, spentcoin′})
into Tdouble for a random spentcoin′ ∈ Tvalid−coins \ {spentcoin}
and Uj ∈ C and set ds← ds + 1.

∗ If no such user exists, then set b← 0.

Hand (P, VfSpentCoin, spentcoin,mid, tid, b) to CI .

• Find Double-Spender. Upon reception of a message (P, VfDblSpent,
spentcoin1, spentcoin2), proceed as follows.

– If (Uj , cpd,mid, tid, spentcoin1) and (Uj , cpd,mid′, tid′, spentcoin2) for
(mid, tid) 6= (mid′, tid′) exist in Tspent−coins, then set U ← Uj .

– If (Uj , {spentcoin1, spentcoin2}) ∈ Tdouble, then let U ← Uj.
– Otherwise let U ← ⊥.

Hand (P, VfDblSpent, spentcoin1, spentcoin2,U) to CI .

About the Functionality

Let us discuss why FAnonEC captures what one would expect from a secure scheme
for anonymous electronic cash.

Withdrawal

For an honest user, the coin is created as in the protocol to ensure correct distri-
bution. The coin is stored in the table for withdrawn coins Tcoins and returned to
the bank. For a corrupt user, the bank engages in the withdrawal protocol (via the
simulator). If the result is indeed a coin, then it is stored in the coins table and the
counter for coins withdrawn by corrupt users is incremented.

Coin Verification

Coins are deemed valid when the protocol says so. This may seem overly simplified,
but since the Spend algorithms requires valid coins to be spendable, this covers what
one would expect from a valid coin. By the correctness of EC, honestly withdrawn
coins always pass the verification.

Spending

Before a coin can be spent, it is verified that it is valid and the spender owns the
coin. If so, then a spent coin is created by creating a new user, withdrawing a coin,
and spending it. Thus the spent coin has no information about the owner to ensure
anonymity. The coin is stored in the table for spent coins Tspent−coins.

5.3. SECURITY IN THE FRAMEWORK FOR UNIVERSAL

COMPOSABILITY 61

Verification of Spent Coin

If the bank is honest and the coin exists in the table for spent coins, then it is
valid. If it does not exist in the table, it may still be valid, but only if it has been
spent by a corrupt party and would implicate a corrupt party if double-spent. This
is handled by including the spent coin in the list of potential double-spending by
corrupt parties.

If the bank is corrupt, then any coin deemed valid by the protocol is accepted.

Identification of Double-Spenders

The algorithm is constructed so that it may only point out an honest user if it has
actually double-spent a coin by sending a Spend command twice for the same coin.

The algorithm also ensures that if more coins are spent than withdrawn by
corrupt parties, then a double-spender will be revealed. If the two coins have been
spent by corrupt parties, then they may only be cleared from double-spending
if there are enough potential double-spendings to cover the surplus of spent coins
against withdrawn coins. As a special case a double-spending is never required to be
exposed if the corrupt parties have not spent more coin than they have withdrawn.

On the Possibility of Simplifying the Functionality

The functionality FAnonEC is rather complex, and it is natural question to ask
whether it could be simplified. Let us consider how double-spenders are identified.
Let Z be an environment proceeding as follows:

• Z runs with one corrupt user U1.

• U1 withdraws three coins.

• U1 spends four times, creating spentcoin1, spentcoin2, spentcoin3, spentcoin4.

When only three coins have been spent, the functionality does not need to
intervene if no double-spending is detected. If the fourth coin does not reveal a
double-spending, then the functionality forces a double-spending to be reported.
By using the Tdouble table, it is ensured that further queries are answered in a
consistent way.

As the above example suggests, the functionality needs to be keep track of which
coins have been reported as double-spendings, and which have not. It also needs
to determine whether to many coins have been spent, forcing a double-spending if
the number of spent coins exceeds the number of withdrawn coins. It seems that
the functionality needs to be fairly complex.

The Real Protocol πAnonEC

We describe how the protocol πAnonEC is built from the algorithms of the scheme.

62
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

The Bank

The bank B generates (bpk, bsk)← BKg(1κ) and broadcasts bpk. Then it waits for
a message (Keys, upki) for every user Ui. Incoming messages are handled as follows:

• Upon reception of (AccWithdrawal,Ui), the bank engages in the withdrawal
protocol with Ui. After the protocol has terminated,the bank outputs the
tuple (IssuedNewCoin, Ui, cpd).

Users

The user Ui generates (upki, uski) ← UKg(1κ) and broadcasts upki. Then it waits
for a message (Keys, upkj) for every user Uj and (Keys, bpk) from B. Incoming
messages are handled as follows:

• When challenged in the withdrawal protocol, run it according to the algorithm
UWithdraw. After the protocol has terminated, store the output cusdj .

• Upon reception of (Spend, cpd,mid, tid), set spentcoin ← Spend(upki, uski,
cusdj , mid, tid, bpk) for the corresponding coin secret data cusdj . Output
(Spend, cpd, mid, tid, spentcoin).

All Parties

Incoming messages are handled as follows:

• Upon reception of the message (VfCoin, cpd, Uj), set b ← VfCoin(cpd, upkj ,
bpk) and return (VfCoin, cpd, Uj , b).

• Upon reception of the message (VfSpentCoin, spentcoin, mid, tid), set b ←
VfSpentCoin(spentcoin, mid, tid, bpk) and return (VfSpentCoin, spentcoin,
mid, tid, b).

• Upon reception of the message (VfDblSpent, spentcoin1, spentcoin2), com-
pute upk ← VfDoubleSpent(spentcoin1, spentcoin2, bpk). If upk = ⊥, then
return (VfDblSpent, spentcoin1, spentcoin2, ⊥). Otherwise let Uj be such
that upkj = upk, and return (VfDblSpent, spentcoin1, spentcoin2, Uj)

Proof of Security

Theorem 5.3.1. Let EC = (BKg, UKg, UWithdraw, BWithdraw, VfCoin, Spend,
VfSpentCoin, VfDoubleSpent) be a secure scheme for anonymous electronic cash
according to Definition 5.2.6. Then πAnonEC securely realizes FAnonEC.

Proof. Defining the Hybrids. We prove the theorem with a hybrid argument. We
build a polynomial-size chain of protocols π0

1 , π1
1 , . . ., πm1 , π0

2 , π1
2 , . . ., πm2 , π0

3 ,
π1

3 , . . . , π
m
4 such that π1

0 = FAnonEC and πm4 = πAnonEC. Then we show that if
there exists an adversary A which can distinguish between πt and πt+1 for some t,

5.3. SECURITY IN THE FRAMEWORK FOR UNIVERSAL

COMPOSABILITY 63

π0
0

// π0
1

// · · · // π0
m−1

// π0
m

ssfffffffffffffffffffffffffffffffff

π1
0

// π1
1

// · · · // π1
m−1

// π1
m

ssgggggggggggggggggggggggggggggggggg

...
...

. . .
...

...

ssggggggggggggggggggggggggggggggggggg

π5
0

// π5
1

// · · · // π5
m−1

// π5
m

Figure 5.1: The chain of hybrid protocols.

then A can be used to break the security of EC. For simplicity we assume all chains
to be of the same length, which can always be arranged by padding. The chain
built in this way is shown in Figure 5.1.

1. Let π0
1 be FAnonEC. We define πt1 to be πt−1

1 with the difference that the
tth call to Spend produces a spent coin according to the protocol rather than
using a dummy user as in the functionality.

2. Let π0
2 = πm1 . We define πt2 to be πt−1

2 with the difference that the tth call to
Spend there is no call to VfCoin before the spent coin is constructed.

3. Let π0
3 = πm2 , and define πt3 to be πt−1

3 with the difference that the tth call to
VfSpentCoin returns the VfSpentCoin(spentcoin,mid, tid, bpk) rather than the
value stipulated by the functionality. The table are manipuliated according
to the functionality.

4. Let π0
4 = πm3 , and define πt4 to be πt−1

4 with the difference that the tth
call to VfDblSpent is executed according to the protocol rather than to the
functionality and no table are manipulated in VfSpentCoin..

Building the Simulator. By assumption Z distinguishes between FAnonEC and
πAnonEC for any ideal adversary. In particular it distinguishes between the two
protocols for the adversary defined as follows.

For each player Pi that the real-world adversary A corrupts, the ideal adversary
S corrupts the corresponding dummy player P̃i. When a corrupted dummy player
P̃i receives a message m from Z, the simulator S lets Z ′ send m to Pi. When
a corrupted Pi outputs a message m to Z ′, then S instructs the corrupted P̃i to
output m to Z. This corresponds to Pi being linked directly to Z.

64
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

The simulated real-world adversary A is connected to Z, i.e., when Z sends
m to S, Z ′ hands m to A, and when A outputs m to Z ′, S hands m to Z. All
non-corrupted players are simulated honestly. The corrupted players run according
to their respective protocols.

When all parties have broadcasted their keys, S inspects the internal state of
honest parties and intercepts the broadcast of corrupt parties to construct (bpk, bsk)
and (upki, uski)

k
i=1 where bsk = ⊥ and uski = ⊥ only if B and Ui, respectively, is

corrupt. It hands (FAnonEC, Keys, (bpk, bsk), (upki, uski)
k
i=1) to CI .

When S receives the message (AccWithdrawal,Ui), it instructs Z ′ to send
(AccWithdrawal,Ui) to B. If Ui ∈ C, then on output (IssuedNewCoin,Ui, cpd)
from B, S hands (FAnonEC, IssuedNewCoin,Ui, cpd) to CI . All other functions are
local and need not be simulated for A.

We now handle the cases when Z distinguishes between πti and πt+1
i for i =

1, 2, 3, 4.

1. Assume Z can distinguish between πt1 and πt+1
1 with non-negligible probabil-

ity. Then we construct Aanon breaking the anonymity of EC as follows. Aanon

runs in Experiment 5.2.4 while simulating the protocol to Z as

by using its HonestUKg oracle to set up keys for honest users, interacts with
HonestBWithdraw to simulate withdrawals, and uses the HonestSpend oracles
to construct spent coins. Let the (t + 1)th Spend request be on behalf of
user Ui for data (mid, tid). When executing Experiment 5.2.4, Aanon requests
a spent coin by either Ui or a user Uj , which has never before spent a coin.
The challenge coin spentcoin is returned on the Spend request.

If the challenge coin is by Ui, then Aanon has run πt+1
1 , and if the coin is by

Uj , then the protocol simulated is πt1. Since, by assumption Z can distinguish
between the two, Aanon wins the anonymity experiment with non-negligible
probability.

2. Assume Z can distinguish between πt2 and πt+1
2 with non-negligible probab-

ility.

We construct Aexculp breaking the exculpability property of EC by running in
Experiment 5.2.5 and simulating the protocol for Z. Aexculp uses its oracles
to create keys for the users, withdraw coins, and create spent coins. Since Z
can distinguish between πt2 and πt+1

2 , the coin to be spent in call t + 1 does
not pass the VfCoin, but can still be spent. Then Aexculp outputs this coin
in the guess phase of the experiment. Since the coin cannot be spent, Aexculp

wins the experiment with non-negligible probability.

3. Assume Z can distinguish between πt3 and πt+1
3 with non-negligible probab-

ility. We can assume B /∈ C, since otherwise VfSpentCoin is run identically
in the protocol and the functionality. By the correctness of EC, a coin issued
by the bank and honestly spent is always accepted.

5.4. A CONSTRUCTION 65

By the construction of the functionality, a spentcoin created by corrupt user
will be detected as a double-spending if more coins are spent than has been
withdrawn. Therefore Z can distinguish between the protocol and the func-
tionality only if the tth call to Spend will be revealed as a double-spending
by the functionality but not by the protocol.

We use Z to break the unforgeability of EC as follows. We construct Aunforge

running in Experiment 5.2.2. The keys of the users are created honestly and
then “registered” using the AddCorruptU oracle. Withdrawals are simulated
by interacting with the HonestBWithdraw oracle. When asked to output forged
coins, it outputs Tvalid−coins. By the assumption, the table contains more coins
than have been withdrawn, thus breaking the unforgeability property of EC.

4. Assume Z can distinguish between πt4 and πt+1
4 with non-negligible probab-

ility.

For double-spendings that point out a corrupt user as double-spender, the
protocol and the functionality are identical. ThereforeZ, if able to distinguish
between the functionality and the protocol, has found (spentcoin1, spentcoin2)
such that the functionality does not consider them a double-spending, but the
protocol points out an honest party as double-spender.

We let Anon−frame interact in Experiment 5.2.3 and simulate the protocol for
Z as follows. The bank keys are constructed honestly and the keys of the hon-
est users are created using the HonestUKg oracle. Withdrawals are performed
by interacting with the HonestUWithdraw oracle, and spent coins are con-
structed with the HonestSpend oracle. By construction of the functionality,
Z has found (spentcoin1, spentcoin2) such that they were not both construc-
ted using the Spend, but still form a double-spending. Anon−frame breaks the
non-frameability of EC by outputting this pair.

As shown, for each hybrid pair we can construct an adversary breaking a security
assumption of EC. Therefore it follows that if EC is secure, πAnonEC securely realizes
FAnonEC.

5.4 A Construction

In this section we describe a secure scheme for electronic cash based on general
methods. We first define the primitives, then we give the algorithms, and finally
we prove that our scheme is secure according to our definition.

Common Reference String Model

Our model is secure in the Common Reference String (CRS) model. In this model
every player has access to a random string. The string is chosen at a setup phase
which is not discussed explicitly.

66
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

Primitives

Our construction uses a signature scheme SS = (SSKg, Sig,Vf), a commitment
scheme COM = (Commit,Reveal), and simulation sound non-interactive zero-know-
ledge proofs of knowledge (NIZK-PK). We refer to Chapter 2 for precise definitions
of these well-known concepts.

We need NIZKs for languages on the form L = {x ∈ Im(f)}. Here the obvious
witness relation is R = {(x,w) : f(w) = x}. Adapting the notation of [23], we use
the notation NIZK(ω : f(ω) = x) to denote a NIZK of such a relation. We use
Greek letters to denote variables in the witness, i.e., known only to the prover, and
Latin letters for variables known both to the prover and to the verifier. We denote
the verification algorithm by Vf. It will be clear from context for which relation
the proof is.

The Protocol

Here we give the definitions for algorithms and protocols that form a scheme for
electronic cash in the CRS-model. We begin by giving an informal description. In
order to identify double-spenders, we use Ferguson’s [44] trick of letting each coin
contain a line y = ax + upk, such that the coordinate of its intersection with the
y-axis coincides with the identity upk of the owner. When spending the coin, one
point on the line is revealed. Thus one spending of a coin gives no information
about its owner. However, since we make sure different spendings reveal different
points, the identity can be computed from two spendings of the same coin.

When withdrawing a coin, the user randomly selects the slope a. It computes
a commitment ã of a and a commitment â of ã with associated randomness ra and
rã.

a //

��@
@@

@@
@@

@ ã //

 A
AA

AA
AA

A â

ra rã

A two-step commitment b̂ of the user public key upk is also computed. Then
â, b̂ is sent to the bank and signed, and when a coin is spent, ã is revealed together
with a proof of knowledge that it is correctly formed, i.e., that it is indeed the
middle element of a two-step commitment of a and the user knows the associated
randomness and bank signature. Intuitively this gives anonymity, since ã, b̃ cannot
be linked to â, b̂. It also assures that double-spenders are detected, since it is
infeasible to open â, b̂ in more than one way. It can be noted that the signing
mechanism is similar to the blind signature scheme found by Fischlin [46].

We let SS = (SSKg, Sig,Vf) be a CMA-secure signature scheme and we let
COM = (Commit,Reveal) be a binding and hiding commitment scheme. Such
signature schemes and commitment schemes exist if one-way functions exist [76, 49],
and thus certainly if trapdoor permutations exist.

5.4. A CONSTRUCTION 67

We use NIZKs for two different relations in the withdrawal and the spending
protocols. The NIZKs work in the common reference string model. We will denote
the reference string ξ. Each proof system needs its own CRS, so we divide ξ into
two parts so that ξ = ξ0||ξ1 such that both ξ0 and ξ1 are long enough. We let
S(setup, 1κ) create both ξ0 and ξ1, store the two secrets in simstate, and return
ξ0||ξ1. Now S can simulate and extract proofs for both relations.

We start with the key generation algorithms. Key generation for the bank
consists of generating a key for the signature scheme. The key for the user is
created by drawing a value at random and computing a commitment to the value.
The private key is the random value and coin tosses used in the commitment, and
the public key is the commitment. As explained above, we do not include user
registration at the bank as part of the protocol.

Definition 5.4.1 (BKg(1κ)).

(bpk, bsk)← SSKg(1κ)
return (bpk, bsk)

Definition 5.4.2 (UKg(1κ)).

t←R {0, 1}κ
(upk, rt)← Commit(t)
usk← (t, rt)
return (upk, usk)

Merchant registration is straight-forward. Since our protocol does not use a
merchant secret key, registration simply consists of handing the merchant identity
to the bank, which registers the merchant.

The coin withdrawal protocol is a two-round protocol with the following steps.

1. The user draws a value a at random and commits to a in two steps, i.e., it
computes a commitment ã to a, and a commitment â to ã. In the same way
it computes a two-step commitment b̂ to its public key upk. It also constructs
a proof πU of knowledge of a a and coin tosses used in the commitments. It
hands â, b̂ and πU to the bank and stores a together with the coin tosses as
the coin user secret data cusd.

2. The bank verifies that the user is allowed to withdraw a coin and that the
proof of knowledge is valid. It then signs the user’s public key concatenated
with (â, b̂). The coin consists of the signature, â,b̂, the user’s public key upk,
and the proof πU .

More precisely, the withdrawal protocol consists of the following two algorithms.

Definition 5.4.3 (UWithdraw(msg, state)).
Parse state as (upk, usk).
a←R {0, 1}κ
(ã, ra)← Commit(a)

68
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

(â, rã)← Commit(ã)
(b̃, rupk)← Commit(upk)

(b̂, rb̃)← Commit(b̃)

πU ← NIZK(α, ρα, α̃, ρα̃, τ, ρτ , ρupk, β̃, ρβ̃ :
Reveal(ã, α, rα) = 1 ∧ Reveal(â, α̃, ρα̃) = 1 ∧ Reveal(upk, τ, ρτ) = 1∧
Reveal(β̃, upk, ρupk) = 1 ∧ Reveal(b̂, β̃, ρβ̃) = 1)

return ((a, ã, ra, rã, b̃, rupk, rb̃), (upk, â, b̂, πU))

Definition 5.4.4 (BWithdraw(msg, state)).
Parse state as (bsk).

Parse msg as (upk, â, b̂, πU).
Quit if user with public key upk is not allowed to withdraw a coin.
if Vf(πU) = 1 then

return (reject, ∅)
end if

s←R Sigbsk(upk, â, b̂)

cpd← (s, â, b̂, upk, πU)
return (cpd, ∅)

We also need to be able to verify whether or not a coin has been withdrawn by
a certain user by verifying the coin’s signature and the user’s proof of knowledge.

Definition 5.4.5 (VfCoin(cpd, upk, bpk)).

Parse cpd as (s, â, b̂, upk, πU).

return Vfbpk((upk, â, b̂), s) ∧ Vf(πU)

We define two coin public data cpd = (s, â, b̂, upk, πU) and cpd′ = (s′, â′, b̂′,

upk′, πU) to be equal if â = â′, b̂ = b̂′, upk = upk′.
To spend a coin the user first checks that the coin is valid. Then it lets (x, y) be

a point on the line y = ax + upk, where a is the coin user secret data and upk the
public key of the user. The point x is chosen as the concatenation of the transaction
identity and the merchant identity. The user reveals the values ã and b̃. The spent
coin consists of (ã, b̃, x, y), and a proof of knowledge of a and upk such that (x, y)

is indeed a point on the line and of a bank signature on (upk, â, b̂) as well as of coin

tosses such that â is a commitment of ã and b̂ of b̃.

Definition 5.4.6 (Spend(cpd, usk, cusd,mid, tid, bpk)).
Parse cpd as (s, â, û, upk, πU)
Parse usk as (t, rt)
Parse cusd as (a, ã, ra, rã, b̃, rupk, rb̃)

if (Vfbpk((upk, â, b̂), s) = 0) ∨ (Reveal(ã, a, ra) = 0) ∨ (Reveal(â, ã, rã) = 0) ∨
(Reveal(upk, t, rt) = 0) ∨ (Reveal(b̃, upk, rupk) = 0) ∨ (Reveal(b̂, b̃, rb̃) = 0) then

return ⊥
end if

5.5. PROOF OF SECURITY 69

x← mid||tid
y ← ax+ upk

π ← NIZK(ι, α, ρα, α̂, ρã, ρupk, β̂, ρb̃, σ, τ, ρτ :

y = αx+ ι ∧ Reveal(ã, α, ρα) = 1 ∧ Reveal(α̂, ã, ρã) = 1 ∧ Reveal(b̃, ι, ρupk)∧
Reveal(β̂, b̃, ρb̃) = 1 ∧ Vfbpk((ι, α̃, β̃), σ) = 1 ∧ Reveal(ι, ρτ , τ) = 1)

spentcoin← (ã, b̃, x, y, π)
return spentcoin

Verification of a spent coin is straight-forward:

Definition 5.4.7 (VfSpentCoin(spentcoin,tid,mid,bpk)).
Parse spentcoin as (ã, b̃, x, y, π).
if x 6= mid||tid then

return 0
end if

return Vf(π)

Finally we give the algorithm to identify a double-spender. A coin is double-
spent if the values (ã, b̃) appears twice with different values of x. Finding the
double-spender is then simply a task of solving the two equations for upk.

Definition 5.4.8 (VfDoubleSpent(spentcoin1, spentcoin2, bpk)).
Parse spentcoin1 as (ã1, b̃1, x1, y1, π1).
Parse spentcoin2 as (ã2, b̃2, x2, y2, π2).
if ((ã1, b̃1) 6= (ã2, b̃2)) ∨ (x1 = x2) then

return ⊥
end if

upk← x1y2−x2y1
x1−x2

return upk

5.5 Proof of Security

In this section we prove the following theorem about the scheme EC = (BKg, UKg,
UWithdraw, BWithdraw, VfCoin, Spend, VfSpentCoin, VfDoubleSpent) as defined in
Section 5.4.

Theorem 5.5.1. If there exists a family of trapdoor permutations, then there exists
a scheme for electronic cash which is correct and secure in the common reference
string model.

From Theorem 5.3.1 this implies the following.

Theorem 5.5.2. If there exists a family of trapdoor permutations, then there exists
a protocol which securely realizes FAnonEC in the CRS model.

We prove the theorem by showing the five properties about the scheme defined
in Section 5.4. Each lemma holds in the CRS-model under the assumption that a
family of trapdoor permutations exists, although this is not stated explicitly.

70
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

Lemma 5.5.3 (Correctness). The scheme EC is correct.

Proof. Follows by the construction of the algorithms.

Lemma 5.5.4 (Unforgeability). The scheme EC has unforgeability.

Proof. Let A be an adversary that is successful in Experiment 5.2.2 with non-
negligible probability. We show how to use A to construct either a machine Acma

breaking the CMA-security of the signature scheme SS = (SSKg, Sig,Vf), a ma-
chine Abinding breaking the binding property of the commitment scheme COM, or
a machine Asim−sound breaking the simulation soundness of the NIZK-PK.

Acma is given a public key pk for the signature scheme as input. It passes
pk as parameter bpk to A. The CRS is created using the simulator (ξ, simstate)←
S(setup, 1κ). As in the experiment for CMA security, Acma has access to a signature
oracle. The BWithdraw oracle is run honestly using the signature Sigbsk(·) produced
by calling the signature oracle.

Let k be the number of spentcoin produced by A. Recall A has made l with-
drawals using its oracle. This implies Acma has made l calls to the CMA oracle.
For each spentcoini = (ãi, b̃i, xi, yi, πi), Acma calls S(extract, (âi, b̂i, xi, yi), πi, ξ,

simstate) to extract (among other parameters) σi, ι, α̂, β̂, ρβ such that Vfbpk((ι, α̂,

β̂), σ) = 1. We now have the following different cases:

1. Signatures on more than l distinct messages are extracted. Then there exists
a message-signature pair (ι, α̂, β̂) for which no signature has been generated
by the CMA oracle. Hence Acma is successful in breaking the CMA-security
of SS by returning (ι, α̂, β̂), σ.

2. At least one proof πi cannot be extracted. In this case Asim−sound uses πi to
break the extractable simulation soundness of the NIZK-PK in the following
way. Asim−sound takes part in Experiment 2.4.14 while running A. Asim−sound

creates the bank key pair honestly and answers queries to HonestBWithdraw

honestly. When A has output spentcoini with the unextractable proof πi,
Asim−sound returns spentcoini, thus winning in its experiment.

3. All proofs can be extracted, but two proofs yield signatures on the same
message (ι, α̂, β̂). Since no double-spending is detected, all (α̃, β̃) are dis-
tinct. Hence there are two commitments with associated randomness (α̃i, ρi)
and (α̃j , ρj) such that Reveal(α̂, α̃i, ρi) = Reveal(α̂, α̃j , ρj) = 1. A machine
Abinding which lets the simulator generate the CRS, generates the bank keys
honestly, answers HonestBWithdraw queries honestly wins Experiment 2.4.7,
the binding experiment of the commitment scheme COM, by extracting and
outputting (α̂, α̃i, ρi, α̃j , ρj).

Thus we have shown that an adversary which breaks unforgeability can be used
to either break the CMA security of SS, the extractable simulation soundness of the
NIZK-PK, or break the binding property of COM. Hence EC has unforgeability.

5.5. PROOF OF SECURITY 71

Lemma 5.5.5 (Non-Frameability). The scheme EC has non-frameability.

Proof. Let A be an adversary that succeeds in Experiment 5.2.3 with non-negligible
probability. We show how to use A to construct either a machine Asecrecy breaking
the secrecy property of the commitment scheme COM, a machine Abinding breaking
the binding property, or a machine Aext−sim−sound, which breaks the extractable
simulation soundness of the NIZK-PK.

The machine Asecrecy takes part in Experiment 2.4.6. It creates a CRS using
the simulator (ξ, simstate) ← S(setup, 1κ). It randomly draws two message msg0

and msg1 which it returns to its experiment, receiving a challenge commitment c.
Let the polynomial p(κ) be an upper bound on the number of calls to HonestUKg

by A. Since A runs in polynomial time, there exists such a polynomial. Asecrecy

randomly selects t ∈ [1, p(κ)]. Intuitively Asecrecy guesses that A will frame user Ut.
All queries to HonestUKg are executed honestly except for query t, to which Asecrecy

responds c.

When A queries HonestUWithdraw or HonestSpend for a user different from Ut,
the query is answered honestly. For Ut, the NIZK-PK is constructed by invoking
the simulator S(simulate, ·, ξ, simstate).

First consider the case when A behaves differently on simulated and honest
proofs. If this is the case, then we can construct Aad−ind running in Experiment
2.4.11 or 2.4.12 as follows. Aad−ind receives the CRS from its experiment. It runs
A simulating all oracles honestly, except that the NIZK-PKs are constructed by re-
questing an honest or simulated proof from its experiment. Note that the view of A
is identical to the view of A when used by Asecrecy. If A behaves differently on hon-
est and simulated proofs, then Aad−ind can distinguish between its two experiments,
breaking the adaptive indistiguishability of the NIZK-PK.

A outputs a list of spent coins (spentcoini)
k
i=1. Let spentcoini, spentcoinj be spent

coins such that VfDoubleSpent(spentcoini, spentcoinj , bpk) /∈ C and at least one
spent coin has not been produced by HonestSpend. Since A outputs more double-
spent coins than was created by HonestSpend, such a pair of spent coins exists
by the pigeon-hole principle. Let spentcoini = (ãi, b̃i, xi, yi, πi) and spentcoinj =

(ãj , b̃j, xj , yj, πj). By the assumption that they form a double-spending, we have

that (ãi, b̃i) = (ãj , b̃j) and xi 6= xj . With probability 1/p(κ), i.e., non-negligible,
it holds that VfDoubleSpent(spentcoini, spentcoinj , bpk) = upkt. From now on, we
will assume that this is the case.

From πi and πj the machine Asecrecy attempts to extract (āi, r̄
(i)
a , ¯upki, r̄

(i)
upk,

¯uski, r̄
(i)
usk) and (āj , r̄

(j)
a , ¯upkj , r̄

(j)
upk), ūskj , r̄

(j)
usk) such that Reveal(ãi, āi,r̄

(i)
a) = 1,

Reveal(b̃i, ¯upki, r̄
(i)
upk) = 1, Reveal(¯upki,

¯uski, r̄
(i)
usk) = 1 and Reveal(ãj , āj , r̄

(j)
a) = 1,

Reveal(b̃j , ¯upkj , r̄
(j)
upk) = 1, Reveal(¯upkj ,

¯uskj , r̄
(j)
usk) = 1. We now have the following

cases and subcases:

1. None of the proofs were created by the simulator.

72
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

a) At least one extraction fails. In such case we can construct a machine
Aext−sim−sound using A and breaking the extractable simulation sound-
ness of the NIZK-PK as follows. Aext−sim−sound takes part in Experiment
2.4.14. When A asks for a spent coin, Aext−sim−sound uses its simula-
tion oracle to form the NIZK-PK of the spent coin. The un-extractable
NIZK-PK of A is output by Aext−sim−sound, which wins the extractable
simulation soundness experiment with non-negligible probability.

b) Both extractions succeed but return āi 6= (̄a)j or ¯upki 6= ¯upkj . Let
us assume the first inequality holds, since the other case is analog-
ous. In such a case the extracted values can be used by the machine
Abinding to break the binding property of COM by letting Abinding run A
while generating the keys and simulating the oracle honestly and output

(ã, r̄
(i)
a , āi, r̄

(j)
a , āj) in Experiment 2.4.7.

c) Both extractions succeed and return consistent values. Since the NIZK-
PK also proves that yl = axl + upk, it follows that ¯upk = upkt. The
machine Asecrecy breaking the secrecy of COM by running in Experiment
2.4.6 is constructed as follows. Recall that msg0,msg1 are drawn by
Asecrecy when genereating a key for Ut. Now Asecrecy finds d such that
msgd = ¯cusd and returns d. Since A is successful with non-negligible
probabilty, the so is Asecrecy.

If no such d is found, then a machine Abinding wins in Experiment 2.4.7 in
the following way. In runs as described with the difference that (c, r)←
Commit(usk). It then outputs (upkt,

¯cusd, r̄upk, c, r), which forms a
double opening of a commitment. Hence Abinding is successful with non-
negligible probabilty.

2. One proof was created by the simulator. Without loss of generality we assume

that the simulator created πj , and let aj , r
(j)
a , upkj , r

(j)
upk be the values used

when responding to the oracle query.

a) The extraction of the proof πi fails. If this is the case, then Aext−sim−sound

proceeds as in Step 1a to break the simulation soundness of the NIZK-
PK.

b) The extraction of πi succeeds but yields (āi, r̄
(i)
a , ¯upki, r̄

(i)
upk) 6= (aj , r

(j)
a ,

upkj , r
(j)
upk). Then, as in Step 1b, the binding property of COM is broken.

c) The extraction πi succeeds and gives consistent values. Then, as in Step
1c, the secrecy of COM is broken.

3. Both proofs were created by the simulator. Since, by assumption, at least one
coin was not created by an oracle query, this cannot happen.

We have shown that if A breaks the non-frameability property, then at least one
of the machines Asecrecy, Abinding, and Aext−sim−sound is successful with non-negligible
probability. Since this breaks the assumption, the scheme EC has non-frameability.

5.5. PROOF OF SECURITY 73

Lemma 5.5.6 (Anonymity). The scheme EC has anonymity.

Proof. Assume A wins in the anonymity experiment 5.2.4 with non-negligible prob-
ability. We show how to construct either Asecrecy breaking the secrecy of the commit-
ment scheme COM or a machine Aad−ind breaking the adaptive indistinguishability
of the NIZK-PK.

We define two variants of the scheme EC. We let EC′ be EC with the modification
that the CRS is created by the simulator, (ξ, simstate)← S(setup, 1κ) and that the
NIZK-PK in the Spend algorithm is generated by the simulator. We let EC′′ be EC′
with the difference that the commitment scheme of UWithdraw used to produce ã
is replaced by a commitment scheme with perfect secrecy.

Since a spentcoin in EC′′ contains no information about the spender of a coin,
the advantage of A when attacking EC′′ is 0. We now have the following two cases.

1. The advantage of A when attacking EC′ is non-negligible. We show how to use
A to construct Asecrecy which successfully attacks the secrecy of the commit-
ment scheme COM. Asecrecy takes part in Experiment 2.4.6 while simulating
Experiment 5.2.4 to A. All calls to HonestUKg and HonestSpend are answered
honestly. When A outputs (i0, i1,mid, tid), Asecrecy outputs (upki0 , upki1) to
its experiment, receiving a commitment c in response. Then Asecrecy uses c as
ã when creating the challenge spentcoin and constructs the rest of the coin
honestly. (Since EC′ only uses simulated NIZK-PKs, not knowing the mes-
sage of c is not a problem.) A outputs a bit d, which Asecrecy outputs in its
experiment.

From the construction it follows that Asecrecy is successful when A is, and
hence breaks the secrecy of COM with non-negligible probability.

2. The advantage of A when attacking EC′ is negligible. In such case we can
use A to construct Aad−ind breaking the adaptive indistinguishability of the
NIZK-PK. Aad−ind takes part in Experiment 2.4.11 and 2.4.12 while executing
Experiment 5.2.4 for A. All parts of Experiment 5.2.4 are executed honestly,
except that NIZK-PKs of HonestSpend are created by requesting a proof for
Aad−ind in the choose phase. If A is successful, Aad−ind responds that it is
interacting with Experiment 2.4.11, and otherwise that it is interacting with
Experiment 2.4.12. Since A is successful only when NIZK-PKs are genuine,
Aad−ind has a non-negligible advantage.

We have shown that a machine breaking the anonymity of EC can be made
into a machine either breaking the secrecy of the commitment scheme or a machine
breaking the adaptive indistinguishability of the proof system. Since such machines
contradicts the assumptions, we conclude that EC has anonymity.

Lemma 5.5.7 (Exculpability). The scheme EC has exculpability.

74
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

Proof. Let A be an adversary which wins in Experiment 5.2.5 with non-negligible
probability. Thus A either creates the coin public data which the owner cannot
spend or creates a coin which has not been withdrawn. Let us consider the first
case. We use A to construct either a machine Asecrecy breaking the secrecy property
of the commitment scheme COM, Abinding breaking the binding property of the
COM, or a machine Aext−sim−sound breaking the simulation soundness of the NIZK-
PK.

We define the scheme EC′ being equal to EC with the difference that the CRS
is setup using the simulator (ξ, simstate) ← S(setup, 1κ) and the NIZK-PK of
UWithdraw is created using the simulator.

First assume A has negligible probability of breaking the exculpability property
of EC′. Then we can use A to construct Aad−ind in the following way. Aad−ind takes
part in Experiment 2.4.11 or 2.4.12. It invokes A, answering all queries honestly
except that the NIZK-PK is created by requesting a proof in the choose phase of
Aad−ind. Hence, if Aad−ind is run in Experiment 2.4.11, it will run EC for A, but if it
is run in Experiment 2.4.12, it will run EC′. If A is successful, then Aad−ind returns
0, and otherwise it returns 1. From the construction of Aad−ind it follows that it
breaks the adaptive indistinguishability of the NIZK-PK.

Now assume A has non-negligible probability in winning the exculpability ex-
periment against EC′. We use A in a similar way, letting (ξ, simstate) be constructed
by the simulator. Proofs of knowledge for Ut are constructed using the simulator.

1. The NIZK-PK πU of cpd output by A has been constructed by the simulator.
This implies that πU was created by HonestUWithdraw for a certain user and
coin secret key uski, cusdi. Hence the coin can be spent using uski, cusdi,
contradicting the assumption that the exculpability property is broken.

2. The NIZK-PK πU of cpd output by A has not been constructed by the sim-
ulator. In this case we can construct Asecrecy breaking the secrecy of the
commitment scheme as follows. Let p(κ) be an upper bound on the num-
ber of calls to HonestUKg. Since A is polynomial, such a bound exists. Let
t ←R [1, p(κ)]. Informally Asecrecy guesses that A will frame Ut. Asecrecy ran-
domly chooses τ0, τ1 and requests a challenge commitment c on one of them
from its experiment. It answers queries honestly, except that when asked to
generate the public key for Ut, it returns the challenge commitment c as upkt.

With probability 1/p(κ) A produces a coin cpd that can be verified to belong
to Ut. Assume this is the case. Then Asecrecy uses the extractor to extract
τ, rτ such that Reveal(upkt, τ, rτ) = 1. We now have three cases.

a) There exists d such that τd = τ . Then Asecrecy returns d and breaks the
secrecy of the commitment scheme COM with non-negligible probability.

b) No such d exists. Then two openings of commitment upkt has been
found, allowing us to construct Abinding breaking the binding property
of COM as follows. Abinding runs Asecrecy (which in turn runs A) as

5.6. PROOF OF THEOREM 2.4.23 75

above. When the challenge commitment c is created for τb, Abinding

stores c = upkt and the associated randomness rc. After Asecrecy has
extracted τ, rτ , Abinding outputs τb, upkt, rc, τ, rτ . Since τ 6= τb, Abinding

breaks the binding property of COM.

c) The extraction fails. Such an adversary A can be used by Aext−sim−sound

breaking the extractable simulation soundness of the NIZK-PK of the
withdrawal protocol which is constructed as follows. Aext−sim−sound runs
in Experiment 2.4.14, using ξ as CRS. When A asks for a withdrawn coin,
Aext−sim−sound uses a simulated proof from its experiment, constructing
the other parts of the coin honestly. The other oracles are simulated
honestly. When the unextractable proof π is constructed, it is output by
Aext−sim−sound, which then is successful in its experiment. Since the view
of A is the same as in the above cases, the probability of A constructing
such a proof is non-negligible.

Let us now consider the case where A outputs more coins than executions of
the withdrawal protocol. Since we can assume that all coins can be spent, oth-
erwise the first case would hold, two distinct coins cpd1 = (s1, â1, b̂1, upk1, π1),

cpd2 = (s2, â2, b̂2, upk2, π2) can be spent with the same coin secret data cusd. By

the definition of equal coins, (â1, b̂1) 6= (â2, b̂2). Since the probability that two
honestly created coins can be spend using the same cusd is negligible, with over-
whelming probability at least one of the coins has been constructing without using
the withdrawal oracle of A. Without loss of generality we let cpd1 be this coin.
Then case 2 above holds if we use cpd1 in place of cpd.

We can conclude that a machine breaking the exculpability property of EC
implies a machine breaking one of the assumptions. Therefore EC has exculpability.

5.6 Proof of Theorem 2.4.23

We prove now that every NP-language has a NIZK-PK by giving a construction
and showing that it has the necessary properties.

Proof. (Theorem 2.4.23) We give a construction of an extractable simulation sound
proof system based on an unbounded simulation sound proof system. The idea
behind the construction is the same as for [80], which is also used in [33], namely
to encrypt the witness using a semantically secure encryption scheme where the
public key is derived from the common reference string. Extraction is performed
by letting the extractor choose the CRS in such a way that it knows the private
key.

Let L be a language with witness relation R, i.e., x ∈ L exactly when there
exists w such that (x,w) ∈ R. We define a proof system (P, V) with simulator
S and prove that it is an unbounded simulation sound zero-knowledge proof of
knowledge. Note that S plays the role both of the simulator and the extractor.

76
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

In all the below experiments, we let the common reference string ξ consist of
two parts, ξ0 and ξ1, where ξ0 is long enough to be used as CRS for a NIZK of
[79]. We let pk be a public key for the encryption scheme CS = (Kg, E,D) of
the appropriate length defined by ξ1, and we let sk be the corresponding secret
key. We also let L′

ξ1
= {(x, c) | x ∈ L ∧ (x,Dsk (c)) ∈ R} with witness relation

R′
ξ1

= {((x, c), (w, r)) | (x,w) ∈ R ∧ Epk ,r(w) = c}. Let (P ′
ξ1
, V ′
ξ1

) be a unbounded
simulation sound proof system for L′

ξ1
, and let S′

ξ1
be its simulator guaranteed to

exist by [79].

Definition 5.6.1 (Prover P (x,w, ξ)). pk ← ξ1
(c, r)← Epk (w)
π′ ← P ′

ξ1
((x, c), (w, r), ξ0)

π ← (c, π′)
return π

Definition 5.6.2 (Verifier V (x, π, ξ)). Parse π as (c, π′)
return V ′

ξ1
((x, c), π′, ξ0)

Definition 5.6.3 (Simulator S(tag, params)). if tag = setup then

Parse params as 1κ

(pk , sk)← Kg(1κ)
ξ1 ← pk

(ξ0, simstate′)← S′(setup, 1κ)
simstate← (sk , simstate′)
ξ ← (ξ0, ξ1)
return (ξ, simstate)

else if tag = simulate then

Parse params as (x, ξ, simstate)
Parse simstate as (sk , simstate′)
c← Epk (0)
π′ ← S′(simulate, (x, c), ξ0, simstate′)
π ← (c, π′)
return π

else if tag = extract then

Parse params as (π, x, ξ, simstate)
Parse simstate as (sk , simstate′)
Parse π as (c, π′)
w← Dsk (c)
return w

else

return ⊥
end if

We prove, in order, the properties adaptive indistinguishability and extractable
simulation soundness of our construction.

5.6. PROOF OF THEOREM 2.4.23 77

Adaptive Indistinguishability Assume (P, V) is not adaptively indistin-
guishable. Let A be an adversary such that Adv

ad−ind
(P,V,S),A(κ) is non-negligible. We

will use A to construct Aad−ind, breaking either the adaptive indistinguishability of
(P ′, V ′), or Asem−sec, breaking the semantic security of CS.

Let (ξ0, simstate′) ← S′(setup, 1κ), and let ξ1 be chosen at random. Let pk

be the public key defined by ξ1. Consider the proof system (P̃ , Ṽ), which is
identical to (P, V) except that instead of outputting (c, π′), the prover P̃ out-
puts (c, S′(simulate, (x, c), ξ0, simstate′)). Assume A wins the Experiments 2.4.11,
2.4.12 with non-negligible probability when Experiment 2.4.11 is run with P and
S is replaced by P̃ in Experiment 2.4.12. Then Aad−ind running in Experiment
2.4.11 can use A as follows. When A asks for a proof, simulated or honest, of
(x,w) ∈ R, then Aad−ind computes (c, r) ← Epk (w) and asks its experiment for a
proof of (x, c), (w, r). When the answer π′ is received, it prepends c and returns
the answer to A. If Aad−ind is run with P ′, then this is what P would return, and
if run with S′, then the answer is that of P̃ . When A returns its guess, the same
guess is forwarded by Aad−ind. By construction Aad−ind is successful when A is.

If A does not distinguish between P and P̃ , then it distinguishes between P̃
and S with non-negligible probability. Let us define a chain of machines P̃0, . . . , P̃k
such that P̃t answers the t first queries as S and the remaining queries as P̃ , i.e.,
P̃0 = S and P̃k = P̃ for k such that A makes at most k queries. Then A can
distinguish between P̃t and P̃t+1 for some t with non-negligible probability. Fix
such a t. We show how such a machine A can be used by Asem−sec in the following
way. Asem−sec receives a public key pk as input in Experiment 2.4.8, and lets ξ1 be
the CRS corresponding to pk and defines (ξ0, simstate′) ← S′(setup, 1κ). When A
make query t + 1 on (x,w), then Asem−sec requests an encryption c of either w or
0 from its experiment, and returns (c, S′(simulate, (x, c), ξ0, simstate′)) to A. If A
responds that it is executed with P̃t, then Asem−sec guesses that 0 was encrypted,
and otherwise that w was encrypted. By construction Asem−sec is successful when
A is.

Since, by assumption, (P ′, V ′) has adaptive indistinguishability and CS is se-
mantically secure, the existence of either Aad−ind or Asem−sec with the above prop-
erties is a contradiction. Hence (P, V) has adaptive indistinguishability.

Extractable Simulation Soundness Assume (P, V) does not have extract-
able simulation soundness, and let A be an adversary which wins in Experiment
2.4.14 with non-negligible probability. We describe how to construct an adversary
Asim−sound which breaks the simulation soundness of (P ′, V ′).

Asim−sound runs A in Experiment 2.4.14, while taking part in Experiment 2.4.13
itself. When Asim−sound receives the CRS ξ it uses it as ξ0 in Experiment 2.4.14,
while ξ1 is generated as in the definition of S. Asim−sound answers queries to S
by the algorithm in Definition 5.6.3, using its oracle S′ where necessary. When
A outputs (x, π) on the call A(guess, ξ), Asim−sound parses π as (c, π′) and outputs
((x, c), π′) on its call Asim−sound(guess, ξ). If w ← Dsk (c) is not a witness of x, then
(x, c) /∈ L′. Thus Asim−sound wins in its experiment exactly when A wins. Thus
Asim−sound breaks the simulation soundness of (P ′, V ′), which is a contradiction.

78
CHAPTER 5. A STRONGER DEFINITION FOR ANONYMOUS

ELECTRONIC CASH

We conclude that (P, V) is extractable simulation sound.

5.7 Future Work

It remains an open problem to construct a practical scheme which is secure in
our sense under some well-established number-theoretical assumptions such as the
strong RSA assumption and the Decision Diffie-Hellman assumption.

Chapter 6

Practical Universally Composable

Electronic Cash

6.1 Introduction

For the schemes in Section 4.2 most of the execution time of an actual imple-
mentation is used for exponentiations or other tasks involving trapdoor functions.
The scheme described in this chapter aims at reducing the number of such time-
consuming operations.

Our scheme does not offer the same anonymity towards the bank as many other
schemes. In particular it does not satisfy the definition of the previous chapter. Its
high efficiency is due to the fact that on the user side, only symmetric primitives,
such as evaluation of pseudo-random functions and computation of hash functions,
are performed. It is commonly believed that there exist efficient algorithms for the
primitives needed, e.g., AES and SHA-256.It is an interesting question whether a
scheme that does not involve trapdoor functions can offer the anonymity towards
the bank in the same strong sense as, e.g., [34]. For a more thorough discussion on
this, see Section 6.7.

Relations to Group Signatures

Although proposed as a scheme for electronic cash, our scheme has some similarities
with group signatures. The bank has the ability to open a coin to extract the
identity in the same way the group manager can open a signature. As a matter of
fact, our scheme can be seen as a group signature scheme with one-time keys. This
is discussed in further detail in Section 6.6.

Comparison with Sander-Ta-Shma

As in the scheme by Sander and Ta-Shma [78], in our scheme the bank builds
a hash tree and the merchant uses the published root when verifying a coin. In

79

80
CHAPTER 6. PRACTICAL UNIVERSALLY COMPOSABLE ELECTRONIC

CASH

their scheme a zero-knowledge protocol is used by the user to prove ownership of
a preimage of a hash value and a path to a certified root. Focusing on efficiency,
we avoid the zero-knowledge proof by letting the user reveal preimages of κ/2 out
of κ hash values. The cost for this efficiency increase is that the bank always can
identify the payer.

6.2 Notation and Definitions

Notation

String concatenation is denoted by ||. For two integers a and b their concatenation
a||b is the number created by concatenating their binary representations, e.g., a||b =
2kb + b, if b is a kb-bit number.

Let I = {i1, i2, . . . , ik}, ij < ij+1, be a subset of [1, n]. For a list of val-
ues v = (v1, v2, . . . , vn) we define vI = (vi1 , vi2 , . . . , vik). Let f be a function,
S = {s1, s2, . . . , sm} a set, and v = (v1, v2, . . . , vn) a vector. We define f(S) =
{f(s1), f(s2), . . . , f(sm)} and f(v) = (f(v1), f(v2), . . . , f(vn)).

Merkle Trees and Hash Chains

Consider the task of proving that a value belongs to a set of certified values. One
way to achieve this is to create a binary tree with the values as leaves by setting
the value of every inner node to the hash value of the concatenation of the values of
its two children and publish the root in a certified way. This tree is called a Merkle
tree [64].

From a Merkle tree a hash chain from each leaf up to the root of the tree can be
constructed. For each step the chain contains a value and an order bit which says
whether the given value should be concatenated from the left or from the right.

An example of a Merkle tree is given in Figure 6.1. From the tree in the figure we
can construct a hash chain from c121 up to the root as (c121, ω, v2, r, v11, l, c122, r).
The values in the chain from c121 have been circled in the figure. Note that v1 and
v12 are not part of the chain, since these values are computed during verification.

Definition 6.2.1 (Hash chain). A hash chain h of length d is a vector h =
(v, h0, h1, o1, h2, o2, . . . , hd−1, od−1) where oi ∈ {l, r}. A hash chain is said to be
valid under a hash function H if h0 = h′0, where h′d−1 = v and

h′i−1 =

{

H(hi||h′i) if oi = l
H(h′i||hi) if oi = r

for i = d − 1, d − 2, . . . , 1. This is written isvalidH(h) = 1, or isvalid(h) = 1 if it
is clear from the context which hash function is used. We also define root(h) = h0

and leaf(h) = v.

6.3. THE PROTOCOL 81

ω = H(v1, v2)

v1 = H(v11, v12)

v11 = H(c111, c112)

c111 c112

v12 = H(c121, c122)

c121 c122

v2 = H(v21, c22)

v21 = H(c211, c212)

c211 c212

c22

Figure 6.1: A Merkle tree with the values stored in the hash chain from c121 to the
root marked.

Once a Merkle tree has been built for a set of values and its root value has been
published, constructing a hash chain for a value not in the set implies finding a
collision for the hash function. Since this is assumed to be infeasible, Merkle trees
give a method of proving membership.

We define the randomized function buildtreeH(S) with input a set S = {s1, s2,
. . ., sn} to build and output a hash tree of depth ⌈log2 n⌉ where the leaves have
values s1, . . . , sn in random order. When n is a power of two, all leaves have equal
depth d−1, and otherwise some leaves have depth d−2. The function getchainT (s)
returns the hash chain from the first leaf with value s to the root in the tree T and
∅ if no such leaf exists.

6.3 The Protocol

Security Parameters

Two security parameters, κ1 and κ2, are used in the protocol. The parameter κ1

can be thought of as key length for the symmetric cipher, and κ2 is the number of
bits needed so that each merchant can be identified by a κ2-bit number with κ2/2
number of ones.

The Players

The players in the protocols are denoted B, P1, . . . , Pm. To simplify the description
we also write P0 for B. Except for the bank, any player may act as a customer, i.e.,
withdraw and spend coins, as well as a merchants, i.e., accept payments and deposit
coins. We abuse notation and let Pi represent both the identity of the player and
the Turing machine taking part in the protocol.

We let I be a public map from identities to [κ2] such that I(Pi) has cardinality
κ2/2 and I(Pi) 6= I(Pj) for Pi 6= Pj . I can be thought of as a collision-free hash
function which maps its input to {0, 1}κ2 with the additional property that the

82
CHAPTER 6. PRACTICAL UNIVERSALLY COMPOSABLE ELECTRONIC

CASH

number of 1’s in the output is always exactly κ2/2. We define

spanI ({Pi1 , Pi2 , . . . , Pik}) =

P | I(P) ⊆
k

⋃

j=1

I(Pij)

.

Given preimages of a coin corresponding to players Pi1 , Pi2 , . . . , Pik one can combine
the preimages to spend the coin at any player in spanI({Pi1 , Pi2 , . . . , Pik}). It holds
that P ∈ spanI(S) if P ∈ S and since I is injective spanI({P}) = {P}.

6.4 The Ideal Functionality

Introduction

In this section we define the ideal functionality and discuss why it captures the
properties of an e-cash scheme.

We use a model for universal composability which is described in Section 2.2.
The functionality described here has only one non-immediate function – the with-
drawal protocol.

The adversary is allowed to choose an arbitrary number of players to corrupt
at start-up. For further discussion on this, see Section 6.7. We do not allow the
adversary to corrupt B. It would be possible to give a functionality that allows the
adversary to corrupt B. In such a functionality even a corrupted B would not be
able to “revoke” an issued coin. However, since this would the functionality more
complex, we describe FEC for a trusted bank.

Informal Description

The ideal functionality FEC for an e-cash scheme accepts the following messages.

• KeyGen to set up keys.

• Issue Coin to issue a coin to the designated user.

• Tick to build a new hash tree.

• Prepare Coin to mark a coin for spending at a certain merchant.

• Verify Coin to verify whether or not a coin can be spent at a certain mer-
chant.

• Open Coin to let the bank extract the identity of the user the coin was issued
to.

• Check Doublespent to check whether a coin has been spent more than once.

There is no separate message for depositing a coin at the bank. To deposit the
merchant hands the coin to the bank, who runs the Verify Coin algorithm to
check that the coin is valid.

6.4. THE IDEAL FUNCTIONALITY 83

Table 6.1: The tables stored by the ideal functionality FEC.

Name Content
Ci (c, Pi, k, h), where c is a bit-string, Pi the coin-owner, k the

coin-secret and h the hash chain.
Tprepared Coins which are about to be spent.
Tsigned The certified roots.

Definition of the Ideal Functionality

The ideal functionality FEC holds a counter t that is initialized to 0 and indexed sets
Ci for coins that have been issued in period i. For convenience we let C = ∪iCi.
For e = (c, ·, k, ·) ∈ C we define valH(e) = c||H(k1)||H(k2)|| · · · ||H(kκ2). The
functionality holds a set of signed roots Tsigned and a set of coins ready to be spent
Tprepared. The sets Ci, Tsigned, Tprepared are initialized to ∅. The tables stored by
the functionality are summarized in Table 6.1.

The functionality must be indistinguishable from the protocol, which implies
that it must output data on the same format as the real protocol, and therefore
in some way depend on the implementation of the real protocol. This can be
achieved by querying the ideal adversary for any such output, or the functionality
can produce the output itself. In the former case, the ideal adversary needs to be
tailor-made for a certain implementation of the protocol, whereas in the latter case
the functionality must be parameterized on the implementation. We choose the
second approach in this paper.

Functionality 6.4.1 (FH,R,CS,SS
EC). Until (B, KeyGen) is received all messages ex-

cept (B, KeyGen) are ignored.

• Upon reception of (Pi, KeyGen) proceed as follows:

1. If Pi = B, set sk ← Kg(κ1), (pk , sk)← SSKg(κ1), and return (B, KeyGen,
pk).

2. Else record Pi in the member list and draw U i from the family Uκ1 and
return (Pi, KeyGen).

• Upon reception of (B, Issue Coin, Pi), verify that Pi is in the member list.
If not, return (B, Not A Member) and quit. Set

c← Esk (0), kj ← (U i(c||j))κ2

j=1, z ← H(k) ,

where k = (k1, k2, . . . , kκ2). Add (c, Pj , k, ∅) to Ct. Hand (S, New Coin, Pi)
and (Pi, New Coin, c, z) to CI .

• Upon reception of s message (B, Tick), set T ← buildtreeH(valH(Ct)) and
modify each e = (c, Pi, k, ∅) ∈ Ct into (c, Pi, k, getchainT (valH(e))). Compute

84
CHAPTER 6. PRACTICAL UNIVERSALLY COMPOSABLE ELECTRONIC

CASH

σ ← Sigsk (root(T)) and add root(T) to Tsigned. Return (B, Tick, T, σ) to CI .
Set t← t+ 1.

• Upon reception of (Pi, Prepare Coin, c, z, Pj), find k such that (c, Pi, k, ·) ∈
C. If no such k exists, then hand CI the message (Pi, Reject Prepare Coin)
and quit. Otherwise set k̃ ← kI(Pj), return (Pi, Prepared Coin, c, k̃) to CI
and store (c, Pj) in Tprepared.

• Upon reception of (Pi, Verify Coin, c, z, k̃, Pj , h
′, σ, pk ′), find Pl, k, h such

that (c, Pl, k, h) ∈ C. Return (Pi, Verify Coin, c, Pj , invalid) to CI at least
one of the following holds:

1. No such entry exists.

2. pk = pk ′ and root(h) /∈ Tsigned.

3. Vfpk ′(root(h), σ) = 0.

4. h′ 6= h.

5. Pl is not corrupted, and

(k̃ 6= kI(Pj)) ∨ (Pj /∈ spanI({P | (c, P) ∈ Tprepared})) .

6. Pl is corrupted and H(k̃) 6= zI(Pj).

Otherwise return (Pi, Verify Coin, c, Pj , valid) to CI .

• Upon reception of (B, Open Coin, c), find a value (c, P, ·, ·) in C. If no such
entry exists, then set P ← Dsk (c). Return (B, Open Coin, c, P).

• Upon reception of (Pl, Check Doublespent, c, z, k̃1, k̃2, h, σ, Pj1 , Pj2) from CI ,

execute (Verify Coin, c, z, k̃i, h, σ, Pji) for i = 1, 2.

1. If at least one execution returns (Verify Coin, c, Pji , invalid), then
return (Pl, Check Doublespent, c, invalid) to CI .

2. If Pj1 = Pj2 then return (Pl, Check Doublespent, c, no), otherwise re-
turn (Pl, Check Doublespent, c, yes) to CI .

The functionality is parameterized by a symmetric encryption scheme CS =
(Kg, E,D), a signature scheme SS = (SSKg, Sig,Vf), a family of pseudo-random
functions R and a collision-free, one-way hash functions H drawn from a family
of hash functions Hκ1 . To simplify the description we assume that SS is correct.
Instead of parameterizing the functionality it is possible to give a non-parameterized
description, where the functionality is given (a description of) the function families
from S at startup. The definition of FEC is given in Functionality 6.4.1.
FEC captures some specifics of the current scheme, such as the tree update

function, the specific format of a coin, the weaker anonymity, a non-interactive
payment protocol, and the possibility to transfer prepared coins to other users.
Therefore a generic ideal functionality for electronic cash would differ from ours.

6.4. THE IDEAL FUNCTIONALITY 85

On the Ideal Functionality

In this section we discuss why FEC captures the security requirements for elec-
tronic cash. The five messages KeyGen, Issue Coin, Tick, Prepare Coin, and
Check Doublespent are all straight-forward. They manipulate tables, and use
H,R, CS,SS only to produce output that has the format of a coin. When answer-
ing the Open Coin query, the functionality decrypts c if it is not found in the table.
This is so since the CCA2-security of CS does not prevent Z from producing a valid
plaintext-ciphertext pair and use it to whether it interacts with the functionality
or the real protocol.

Since the most involved message is Verify Coin, we discuss it in more detail.
As noted in [31], a messages created by corrupted players or messages created by
keys that do not originate from the protocol must be verified according to the
real protocol rather than rejected. Otherwise the environment Z could distinguish
between the ideal functionality and the real protocol by creating a new pair of
signature keys and sign a root with this new key pair. The same holds for a
corrupted U which might leak its secret to Z to let Z prepare coins internally
without interacting with the protocol.

When a coin is verified, Condition 1 says that it should be considered invalid
if it has not been issued by B. Condition 2 say that if the coin is being verified
with the correct key public key, then it is valid only if B actually signed the root,
and Condition 3 ensures a correct answer when the coin is verified with a different
public key. Because of the correctness of SS, Condition 3 always holds for pk =
pk ′ if the coin has been signed. Condition 4 says that the correct path must be
given. Condition 5 says that if the coin owner is not corrupted, the coin must have
been prepared for the designated receiver Pj . (Recall that spanI({P}) = {P}).
Alternatively if the coin has been prepared more than once, then Pj must be in the
span of the set of receivers. Condition 6 says that for a corrupt coin owner, the
coin is accepted if the given preimages actually hash to the correct values.

Anonymity

In the ideal protocol, c is an encryption of 0, and thus the coin does not contain
any information about the owner. The only information that is disclosed to the
merchant is to which tree the coin belongs. The amount of information this contains
depends on the size of the tree. The larger the tree, i.e., the longer the interval
between Tick messages, the smaller the amount of information released to the
merchant.

Fairness

By fairness we mean that if a player (or coalition of players) prepares l + 1 coins
that pass Verify Coin after withdrawing only l coins, at least one withdrawn coin
will be detected as double-spent. Since the only coins that can be successfully spent
are the coins in the database C, and the only way to have a coin being added to

86
CHAPTER 6. PRACTICAL UNIVERSALLY COMPOSABLE ELECTRONIC

CASH

the database is to engage in the withdrawal protocol, by the pigeon hole principle
at least one coin has been prepared twice in this case. The implementation of the
double-spending detection in the ideal functionality guarantees that double-spender
is revealed.

Non-Frameability

A coalition of players should not be able to spend coins withdrawn by someone
outside of the coalition. Since the Prepare Coin algorithm checks that it is called
by the coin owner, this requirement is fulfilled.

Detection of double-spenders

A user that spends a coin at two different merchants will by construction have to
produce two different sets of ki’s and will always be detected by the bank.

Since double-spending at a single merchant will not be detected by the bank,
it is the responsibility of the merchant to detect such actions, holding a list of the
coins spent at that merchant. However, a simple modification of the scheme allows
the merchant to remember only the coins spent the same day. To achieve this, we
include the date in the computation of the index set. In the other words, rather
than disclosing the list kI(Pi), the list kI(Pi,date) is disclosed.

Correctness

An e-cash scheme is correct if a coin withdrawn by an honest player always, or
almost always, can be spent at an honest merchant and the merchant can deposit
the coin at the bank. It is immediate from the construction that this property holds
for the ideal functionality provided that the signature scheme SS is correct.

6.5 The Real Protocol

Definition of the Protocol

We give the definition of the protocol in the FSIG-hybrid model. The ideal signature
functionality FSIG [5, 31] accepts messages KeyGen, Sign, Verify to set up keys, sign
a message, and verify a signature. We use the definition of FSS

SIG given in Figure
6.2, slightly modified from [31] in that the functionality is parameterized by the
signature scheme, and SS is assumed to be correct.

We are now ready to define the protocol πH,R,CSEC .

Protocol 6.5.1 (πH,R,CSEC).

• The bank B acts as follows:

– Upon reception of (KeyGen), B creates and stores a symmetric key sk ←
Kg(κ1), requests pk from FSIG, sets C ← ∅ and returns (KeyGen, pk).

6.5. THE REAL PROTOCOL 87

Functionality 6.5.1 (FSS
SIG [31]).

• Upon reception of (B, KeyGen), set (pk , sk)← SSKg. Hand (B, pk) to CI .

• Upon reception of (B, Sign,m), set σ ← Sigsk (m), store m, and hand
(B, Signature,m, σ) to CI .

• Upon reception of (Pi, Verify,m, σ, pk ′), set f = 0 if B is uncor-
rupted and m is not stored. Otherwise set f = Vfsk (m,σ). Hand
(Pi, Verify,m, f) to CI .

Figure 6.2: The definition of FSS
SIG.

– Upon reception of (Issue Coin, Pi), B initiates the following protocol
with Pi:

1. B computes c← Esk (Pi) and sends (Withdrawal Request, c) to Pi.

2. Pi sets kj ← Ri(c||j), z ← H(k). Then it outputs (New Coin, c, z)
and hands (Withdrawal Response, c, z) to B.

3. B stores (c||z1||z2|| . . . ||zκ2) in C.

– Upon reception of (Open Coin, c), B returns (Open Coin, c,Dsk (c)).

– Upon reception of (Tick), B computes a new hash tree T from all stored
values, i.e., sets T = buildtreeH(C). It acquires a signature σ on root(T)
from FSIG, sets C = ∅, and returns (Tick, T, σ).

• A non-bank player Pi, i.e., i > 0, acts as below:

– Upon reception of (KeyGen), Pi creates and stores a pseudo-random func-
tion Ri ←R Rκ1 and returns (KeyGen).

– Upon reception of (Prepare Coin, c, z, Pj), Pi sets kl ← Ri(c||l) for
l = 1, . . . , κ2 and verifies that z = H(k). If this does not hold, it
outputs the message (Reject Prepare Coin) and quits. Otherwise it
sets k̃ = kI(Pj) and outputs (Prepared Coin, c, k̃).

– Upon reception of (Withdrawal Request), Pi acts as described above.

• In addition to the above, any player Pi, including the bank, acts as follows.

– Upon reception of (Verify Coin, c, z, k̃, Pj , h, σ, pk), Pi proceeds as fol-
lows:

1. Pi sends (Verify, root(h), σ, pk) to FSIG. If FSIG returns 0, then Pi
returns (Verify Coin, c, Pj , invalid) and quits.

88
CHAPTER 6. PRACTICAL UNIVERSALLY COMPOSABLE ELECTRONIC

CASH

2. Pi verifies that H(c, z) = leaf(h) and that isvalidH(h) = 1. If this
is not the case, then Pi returns (Verify Coin, c, Pj , invalid) and
quits.

3. Pi verifies that H(k̃) = zI(Pj) . If this is not the case, then it returns
(Verify Coin, c, Pj , invalid) and quits.

Pi returns (Verify Coin, c, Pj , valid).

– Upon reception of (Check Doublespent, c, z, k̃1, k̃2, h, σ, Pj1 , Pj2), Pi ex-

ecutes (Verify Coin, c, z, k̃i, h, σ, Pji) for i = 1, 2.

1. If at least one of the two executions above returns (Verify Coin,
c, Pji , invalid), then Pi returns (Check Doublespent, c, invalid)
and quits.

2. If Pj1 = Pj2 then Pi returns (Check Doublespent, c, no), otherwise
it returns (Check Doublespent, c, yes).

On the Real Protocol

The protocol relies on the existence of an ideal signature functionality. Such a
functionality can be implemented with a CMA-secure signature scheme [5, 31]. It
is possible that a merchant will verify several coins from the same tree. In these
cases the merchant can save time by only verifying the signature once.

The scheme relies on the roots being constructed after a certain amount of
time, and therefore coins may not be immediately usable. The scheme can also
be used without this delay by constructing a tree of size one for each coin issued
and returning the signature to the user immediately. This increases coin size since
there is a separate signature for each coin, but does not increase the amount of
computation the user has to perform. This modification also eliminates linkability
issues when coins with same owner are placed in the same tree.

Security of the Real Protocol

Theorem 6.5.1. The protocol πH,R,CSEC securely realizes FH,R,CS,SS
EC in the FSIG-

hybrid model if H is drawn from a family H of one-way collision-free hash functions,
R is a family of pseudo-random functions, and CS is a CCA2-secure encryption
scheme.

Proof. We divide the proof into subsections. First we define the simulator, then we
define the hybrids used and finally we describe how to break one of the assumptions
if an environment can distinguish between the ideal functionality and the protocol.

Description of the Simulator. The simulator works as follows: For each player
Pi that the real-world adversary A corrupts, the ideal adversary S corrupts the
corresponding dummy player P̃i. When a corrupted dummy player P̃i receives a
message m from Z, the simulator S lets Z ′ send m to Pi. When a corrupted Pi

6.5. THE REAL PROTOCOL 89

FEC

CI

P̃1 P̃2 P̃3 P1 P2 P3

A

Z ′

Z

S

Figure 6.3: The simulator for a protocol with three players where P2 is corrupted.
The dashed edges represent simulated connections.

outputs a message m to Z ′, then S instructs the corrupted P̃i to output m to Z.
This corresponds to Pi being linked directly to Z.

The simulated real-world adversary A is connected to Z, i.e., when Z sends
m to S, Z ′ hands m to A, and when A outputs m to Z ′, S hands m to Z. All
non-corrupted players are simulated honestly. The corrupted players run according
to their respective protocols.

If S receives the message (New Coin, Pi) from FEC, then it instructs Z ′ to send
(Issue Coin, Pi) to B. All other functions are local and need not be simulated for
A.

Building the Hybrids. Now assume there exists an environment Z that can
distinguish between an execution of the ideal protocol and an execution of the
real protocol for any ideal adversary S. Then it can distinguish between the two
for the simulator described above. We will create a chain of protocols π0, . . . , πt
such that π0 is the ideal protocol and πt the real protocol. We construct such a
chain of polynomially many intermediate steps. If Z can distinguish between the
ideal protocol and the real protocol, then there must exist an i such that Z can
distinguish between πi and πi+1. We now build the chain and describe how Z
can be turned into a machine that solves one of the problems assumed to be hard.
To simplify the description we build the hybrid chains as several subchains called
π0, π1 etc. We assume all chains have the same length m. Should a chain πr as
described below have length m′ < m we can always “pad” by letting πri = πrm′ for

90
CHAPTER 6. PRACTICAL UNIVERSALLY COMPOSABLE ELECTRONIC

CASH

i = m′ + 1, . . . ,m.
We let π0

0 be the ideal protocol. We then let π0
i be the same protocol with the

difference that up to the ith coin issued we set c to be an encryption of the identity,
c = Esk (Pi), rather than c = Esk (0).

We define π1
0 to be π0

m. Define π1
i to be π1

0 with the modification that for the
first i calls to Open Coin actually decrypts c according to the real protocol instead
of looking up the answer in the table.

Let π2
0 = π1

m. Define π2
i to be π2

0 with the difference for player P1, . . . , Pi a
pseudo-random function is used to generate ki instead of the random function U i.

Let π3
0 = π2

m. Define π3
i to be π3

0 with the modification that up to the ith time
Check Doublespent is called yes is returned if more than κ2/2 hash values have
been opened rather than using the table.

The protocol π4 is defined to be π3 with the difference that the in the first i
calls to Verify Coin it is checked whether the path p is valid rather than checks
that the coin exists in the table.

Finally the hybrid π5 is defined to be π4 with the modification that for π5
i the

i first times the Verify Coin algorithm is called it is checked that κ2/2 values ki
hash to zi rather then checking them against the tables C and S.

Breaking the Assumption. Assume Z can distinguish between π0
i and π0

i+1 for
some i. We show how to use Z to build an algorithm A that breaks the CCA2-
security of CS. Participating in Experiment 2.4.10 A has access to an encryption
and a decryption oracle. No symmetric key is generated, but instead the encryption
oracle is used to correctly form the first i coins, and the decryption oracle is used
to open coins. When the (i+ 1)st coin is about to be created with identity Pj , A
asks the challenge oracle to encrypt either 0 or Pj . All subsequent coins are created
according to the ideal functionality.

Note that if the challenge oracle encrypts 0, the protocol executed is π0
i , and if

it encrypts Pj , the protocol is π0
i+1. Since Z is able to distinguish between π0

i and
π0
i+1 with non-negligible probability it will break the CCA2-security of CS.

The protocols in hybrid chain π1 answer the Open Coin query identically, and
thus Z cannot distinguish between them.

Assume Z can distinguish between π2
i and π2

i+1 for some i. We show how to
use Z to build an algorithm A that is able to distinguish between a pseudo-random
function R and a random function U , thus contradicting the assumption that R is
pseudo-random. A is given oracle access to a function f . For players P1, . . . , Pi a
pseudo-random function is used as in the real protocol. When coins are created for
player Pi+1, the oracle for f is used to generate kj , and for players Pl, l > i + 1,
the random function is used as in the ideal protocol.

If f is drawn from Uκ1 , then the protocol described is π2
i , and if f is drawn from

Rκ1 , then the protocol is π2
i+1. Thus if Z is able to distinguish between π2

i and π2
i+1

with non-negligible probability p, then A can distinguish between pseudo-random
functions and random functions with the same probability p.

By construction instances of π3 are indistinguishable, since no two Pi 6= Pj have
the same associated index set.

6.6. COMPARISON TO GROUP SIGNATURES 91

Assume Z distinguishes between π4
i and π4

i+1. This means that Z with non-
negligible probability has created a coin (c, z) and corresponding path h such that

• root(h) was signed by B.

• h was not in the original tree created by B.

From this we can construct an algorithm A that given a key for the hash function
finds a collision, contradicting the assumption that H is collision-free.

Assume Z distinguishes between π5
i and π5

i+1 with non-negligible probability
p1. In that case, Z has succeeded to provide Verify Coin with c, z and values ki
such that either

• no entry c, Pj exists in Tprepared, or

• the values ki do not match the values in the database.

and H(ki) = zi.
In the first case, the corresponding Prepare Coin has not been executed, and

thus the values of ki have not been revealed. We can now produce an algorithm A
that given y computes x ∈ H−1(y), contradicting the assumption that H is hard
to invert. Let us assume that coin verified in the (i+ 1)st call to Verify Coin was
issued to P in the jth call to Issue Coin with non-negligible probability p2. A
runs the protocol honestly except that zl = y, where l is the smallest index in the
index set I(P). Since Z is able to make Verify Coin accept, it must have provided
x such that H(x) = y. A then outputs x. Under the assumptions A succeeds with
probability at least p1p2.

In the second case, we can construct an algorithm that finds a collision in the
hash function.

We have now shown that if Z can distinguish between πEC and FEC, it can
be used either to break the CCA2-security of CS, to break the CMA-security of
SS, to distinguish between R and random functions, to find a collision in H , or to
compute H−1(x) for a random x. Since this is assumed to be hard, the proof is
concluded.

6.6 Comparison to Group Signatures

Our scheme is in some ways similar to group signatures. A coin can be viewed
as a signature on the identity of the merchant. Signatures by different users are
indistinguishable by the merchant, but not by the bank. This corresponds to a
group signatures scheme where the bank acts as group manager.

A user can only sign once for every coin she withdraws. For electronic cash this
is a fundamental property, but it differs, of course, from ordinary group signatures.
Also when used a group signatures scheme, there is no exculpability against the
group manager. In other words the group manager can frame a group member.

92
CHAPTER 6. PRACTICAL UNIVERSALLY COMPOSABLE ELECTRONIC

CASH

Some group signature schemes offer revocation. When converting our scheme
into a group-signature like scheme this can be achieved by publishing the coins
issued to the revoked player. When verifying a signature, the verifier first checks
the coin against the revocation list.

6.7 Additional Notes

Can We Do Better?

As seen above, the proposed scheme lacks some of the properties one could ask
from an e-cash scheme. Also, when used as a group signature scheme, it does not
have all the properties one could wish for. The reason for this is that we base the
scheme on symmetric rather than asymmetric primitives. A natural question to
ask is whether one could do better using only symmetric primitives.

It is known [24] that the existence of a group signature scheme implies existence
of a CCA2-secure public-key encryption scheme. Impagliazzo and Rudich [53] show
that it is unlikely that a public-key encryption scheme can be based only on the
assumption of the existence of one-way functions where the function is used as a
black box. Actually, the existence of such a construction would give a proof that
P 6= NP. Therefore a construction of a group signature scheme from black-box
access to symmetric primitives is likely to be extremely involved.

For electronic cash the situation is less clear. If double-spenders are detected
only by the bank and not by anyone else (including the merchant), then it is pos-
sible to reduce CCA2-encryption to electronic cash in the same way as for group
signatures. The same holds if there is a trusted third party that can identify coin
owners. However, we are not aware of such a reduction from e-cash in general.

These restrictions only hold when there is only black-box access to symmetric
primitives. When one is allowed access to the circuit computing a one-way func-
tions, it is possible to, e.g., prove in zero-knowledge the knowledge of a preimage
of a value under a hash function. Although polynomial, such proofs would most
likely be highly inefficient.

On Adaptive Security

The security proof assumes that the adversary corrupts players in a non-adaptive
way. An adversary that is allowed to corrupt adaptively would be able to distinguish
between the real protocol and the ideal functionality. In the ideal functionality, the
preimages a user U uses are random numbers, whereas in the real protocols they
are pseudo-random numbers. When corrupting U , the adversary expects to receive
a key for the pseudo-random function that matches the preimages. In the ideal
protocol the probability that such a key even exists is negligible.

We can modify the real protocol to solve the problem. If U instead of generat-
ing the preimages from a pseudo-random function generates random numbers, the

6.7. ADDITIONAL NOTES 93

above scenario does not apply. The drawback is that the amount of data that U
needs to store increases.

Coin Size and External Databases

As the reader may have noted, the hash chains do not contain any sensitive inform-
ation. Therefore they can be stored in public databases rather than by the user.
This gives a way to reduce the size of the coins by storing only an index of the hash
root together with the path in the tree as a {0, 1} string. The merchant can then
retrieve the hash values and (c, z) from a public database.

Since the databases do not need to be authenticated as long as the roots are
signed, they could be provided by untrusted third parties, and not necessarily by
the bank. By verifying the hash chain the merchant would detect if a database is
corrupted. A large merchant could even have its own database.

Chapter 7

Conclusion of Part II

We have presented present a security definition for electronic cash which focuses on
the user’s security. While we have given a construction satisfying the requirements
based on general methods, it is still an open problem to construct a scheme based
on explicit number-theoretic assumptions.

For our second construction the goal is different. We have described a scheme
where the goal is to make the scheme efficiently enough to be usable on a device
with limited computing powers such as a smart-card, while keeping a reasonable
security level. The scheme has unforgeable coins, and it is anonymous to merchants.
It is, however, not anonymous to the bank.

Thus, the two schemes can be seen as two extremes with regards to efficiency
and security. Obviously it would be very interesting to increase the efficiency of the
former scheme, and to increase the security of the latter.

95

Part III

Hierarchical Group Signatures

97

Chapter 8

Introduction, Background, and

Definitions

In this part we introduce the notion of hierarchical group signatures, which is a
generalization of group signatures. Therefore, before we proceed we give an informal
description of group signatures.

Group Signature Schemes

Recall group signatures from Section 1.12 and the generalization of hierarchical
group signatures from Section 3.2.

The notion of group signatures was introduced by Chaum and van Heyst [36].
There is a single group manager M and several signers S1, . . . , SN . The signers
are also called group members. A signer Si can compute a signature that reveals
nothing about the signer’s identity to anybody, except the group manager, except
that he is a member of the group. On the other hand the group manager M can,
given a signature, always reveal the identity of the signer.

A group signature scheme is said to be static if it is impossible to change the set
of signers after they have been given their keys. If it is possible to add and possibly
revoke signers the scheme is said to be dynamic.

Related Work

The concept of group signatures was introduced by Chaum and van Heyst [36] in
1991. The original scheme in [36] and the group signature schemes that followed
[37, 23] all have the property that the complexity of the scheme grows with the
number of parties. In [29] Camenisch and Stadler presented a system where the
key does not grow with the number of parties. This system, however, relies on a
non-standard number-theoretic assumption. The assumption was actually found
to be incorrect and was modified in [4]. An efficient system whose security rests
on the strong RSA-assumption and the decision Diffie-Hellman assumption was

99

100 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

presented by Camenisch and Michels in 1998 [27]. This system was improved in [3].
The currently most efficient scheme that is secure under standard assumptions was
given by Camenisch and Groth [24]. More efficient schemes do exist [17, 26], but
they are based on bilinear maps and thus relies on less well-studied assumptions
for security.

A related notion is traceable signatures introduced by Kiayias et al. [55], where
signatures belonging to a member can be opened, or traced, in a distributed way
without revealing the group secret.

Bellare et al. [9] give a definitional framework for group signatures for static
groups, i.e., when the set of members cannot be changed after the initial setup.
They also present a scheme which is secure according to their definitions under
general assumptions. Kiayias and Yung [56] define security for dynamic groups and
prove that a modification of [3] is secure under these definitions. Independently,
Bellare et al. [11] extend the definitions of [9] in a similar way to handle dynamic
groups, and present a scheme that is secure under general assumptions.

The first of our constructions which is secure under general assumptions can be
seen as a generalization of the construction in [9].

In [4] the concepts of multi-group signatures and subgroup signatures are de-
scribed, and in [58] a system for hierarchical multi-groups is given. It is worthwhile
to consider the differences between these concepts and hierarchical group signatures
introduced here.

Subgroup signatures make it possible for an arbitrary number i of signers to
produce a joint signature which can be verified to stem from precisely i distinct
group members, without disclosing the identity of the individual signers.

Multi-group signature schemes allow a signer who is a member of two groups
to produce a signature that shows membership of either both groups or just one
of them. In hierarchical multi-groups a signer who is a member of a supergroup
with subgroups can produce a signature that reveals membership either of the
supergroup or of a subgroup of his choice. Thus, the signer decides to some extent
the amount of information about its identity that is made public.

As mentioned in Section 3.2, a hierarchical group signature scheme the parties
are organized in a tree with group managers as internal nodes and signers as leaves.
As for group signatures no outsider can determine from a signature which signer
produced it. A group manager can from a signature determine if the signer that
produced the signature belongs to the subtree of which it is the root, and if so
determine to which of its immediate subtrees the signer belongs, but nothing else.

In both subgroup signatures and multi-group signatures there are several group
managers, but any group manager that opens a valid signature learns the identity
of the signer. In hierarchical group signatures on the other hand the opening
procedure is hierarchical. Both the subgroup property and the multi-group property
are independent from the hierarchical property we study.

The connection between group signatures and anonymous payment schemes is
quite natural and has been studied before. In [62] a system for electronic cash based
on group signatures is given by Lysyanskaya and Ramzan.

8.1. INTRODUCTION OF THE NEW NOTION 101

Group signatures, and especially hierarchical group signatures, should not be
confused with zero-knowledge sets as described in [65]. Zero-knowledge sets enables
a prover to commit to a set S. Given x he can then prove x ∈ S or x 6∈ S, whichever
is true, without disclosing anything else about S. For zero-knowledge sets the prover
has the necessary information to produce a proof of membership for any element
in the set. With group signatures on the other hand the set of members may be
public, and the signer proves that it belongs to this set.

Organization of this Part

In this chapter we introduce the notation and give security definitions for hierarch-
ical group signatures. We also discuss the difficulties involved in constructing a
hierarchical group signature scheme and propose a weaker security definition, to
allow for more efficient realizations.

In Chapter 9 we describe a construction of hierarchical group signatures which
is secure if based on a trapdoor permutation family. In Chapter 10 we give a
construction that is secure and almost practical under standard computational as-
sumptions. Finally in Chapter 11 we give a construction which is more efficient than
the previous two schemes, but which only satisfies the weaker security definition.

Notation and Conventions

The main security parameter is denoted κ, but we also use two additional security
parameters κc and κr extensively. We use κc to denote the number of random bits
used in challenges in proofs of knowledge. The value of κr decides the statistical
distance between the distribution of a the view in an execution of a protocol and a
simulated view. The exact interpretation of these parameters differ slightly depend-
ing on the chapter, so the reader should consider this a convention. The additional
security parameters are defined such that 2−κc and 2−κr are negligible in κ.

8.1 Introduction of the New Notion

In this section we introduce the notion of hierarchical group signatures. We de-
scribe the parties of a hierarchical group signature system and give formal defini-
tions. We also discuss informally alternative definitions and the difficulties involved
in constructing a hierarchical group signature schemes. Finally, we prove a charac-
terization of anonymous encryption schemes that is used in the next section.

The Parties

There are two types of parties: signers denoted Sα for α in some index set I, and
group managers denoted Mα for indices α described below. The parties form a tree
T , where the signers are leaves and the group managers are inner nodes. We denote
by L(T) its set of leaves and by V(T) the set of all vertices. The indices of the

102 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

group managers are formed as follows. If a group manager manages a set of signers
Sα for α ∈ β ⊂ I we denote it by Mβ . This corresponds to Mβ having Sα for α ∈ β
as children. If a group manager manages a set of group managers {Mβ1, . . . ,Mβl}
we denote it by Mγ where γ is the set of sets {β1, . . . , βl}. This corresponds to Mγ

having Mβi for i = 1, . . . , l as children. Let Mω denote the root group manager.
We define the root group manager to be at depth 0 and assume that all leaves in
the tree are at the same depth. This is illustrated in Figure 3.1 in the introduction.
We reproduce this figure below for convenience.

Mω

Mβ1

Sα1 Sα2

Mβ2

Sα3 Sα4 Sα5 Sα6

Mβ3

Sα7 Sα8 Sα9

Figure 8.1: A tree of group managers and signers, where ω = {β1, β2, β3}, β1 =
{α1, α2}, β2 = {α3, α4, α5, α6}, and β3 = {α7, α8, α9}.

Note that standard group signatures correspond to having a single group man-
ager M[1,l] that manages all signers S1, . . . , Sl.

8.2 The Definition of Security

Bellare et al. [9] give a definition of a group signature scheme, but more importantly
they argue that two properties of group signatures, full anonymity and full trace-
ability, imply any reasonable security requirements one can expect from a group
signature scheme.

We follow their definitional approach closely and develop definitions that are
proper generalizations of the original.

The idea is that the managers and signers are organized in a tree T , and we
wish to associate with each node and leaf α a public value hpk (α) and a private
value hsk (α).

Definition 8.2.1 (Hierarchical Group Signature). A hierarchical group signature
scheme HGS = (HGKg,HGSig,HGVf,HGOpen) consists of four polynomial-time
algorithms

1. The probabilistic key generation algorithm HGKg takes as input (1κ, T), where
T is a tree of size polynomially bounded in κ with all leaves at the same depth,
and outputs a pair of maps hpk , hsk : V(T)→ {0, 1}∗.

2. The probabilistic signature algorithm HGSig takes as input a message m, a
tree T , a public map hpk , and a private signing key hsk(α), and returns a
signature of m.

8.2. THE DEFINITION OF SECURITY 103

3. The deterministic signature verification algorithm HGVf takes as input a tree
T , a public key map hpk , a message m and a candidate signature σ of m and
returns either 1 or 0.

4. The deterministic opening algorithm HGOpen takes as input a tree T , a pub-
lic map hpk , a private opening key hsk (β), a message m, and a candidate
signature σ. It outputs an index α ∈ β or ⊥.

In the definition of HGSig above, it is assumed that it is possible to verify in
polynomial time given the public tree hpk , a private key hsk (α) and an index α′, if
α = α′. This is the case for the construction in [9]. We assume that hpk and hsk

map any input that is not a node of T to ⊥ and that HGOpen(·, ·,⊥, ·, ·) = ⊥.
We need to define what we mean by security for a hierarchical group signature

scheme. We begin with anonymity. Consider Figure 8.2, where two signers Sα(0)

and Sα(1) are marked. Assume that a signature σ of a messagem is given and that it
is computed by either Sα(0) or Sα(1) . Then any group manager on the path leading
from Sα(0) or Sα(1) to their first common ancestor can determine who produced the
signature. In the figure those group managers are marked black. In the definition of
anonymity we capture the property that unless the adversary corrupts one of these
group managers, it cannot determine whether Sα(0) or Sα(1) signed the message,
even if the adversary is given the private keys of all signers and is allowed to select
α(0), α(1) and the message m that is signed.

Figure 8.2: Nodes in black represent group managers able to distinguish between
signatures by Sα(0) and Sα(1) , the two leaves marked ⊕ and ⊗ respectively.

We define Experiment 8.2.1 to formalize these ideas. Throughout the exper-
iment the adversary has access to an HGOpen(T, hpk , hsk (·), ·, ·) oracle. At the
start of the experiment the adversary is given the public keys of all parties and
the private keys of all signers. Then it can adaptively ask for the private keys of
the group managers. At some point it outputs the indices α(0) and α(1) of two
leaves and a message m. The HGSig(·, T, hpk , hsk(α(b))) oracle then computes the
signature of m and hands it to the adversary. The adversary finally outputs a guess
d of the value of b. If the scheme is anonymous the probability that b = d should
be negligibly close to 1/2 when b is a randomly chosen bit. The labels corrupt,
choose and guess below allows the adversary to distinguish between the phases of
the experiment.

104 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

Experiment 8.2.1 (Hierarchical Anonymity, Expanon−b
HGS,A(κ, T)).

(hpk , hsk)← HGKg(1κ, T)
state ← (hpk , hsk(L(T)))
C ← ∅
α← ∅
repeat

C ← C ∪ {α}
(state, α)← AHGOpen(T,hpk ,hsk(·),·,·)(corrupt, state, hsk(α))

until α /∈ V(T) \ C
(state, α(0), α(1),m)← AHGOpen(T,hpk ,hsk(·),·,·)(choose, state)
σ ← HGSig(m,T, hpk , hsk (α(b)))
d← AHGOpen(T,hpk ,hsk(·),·,·)(guess, state, σ)

Let B be the set of nodes on the paths from α(0) and α(1) up to their first
common ancestor αt excluding α(0) and α(1) but including αt, i.e., the set of nodes

α
(0)
l , α

(1)
l , l = t, . . . , δ − 1, such that

α(0) ∈ α(0)
δ−1 ∈ α

(0)
δ−2 ∈ . . . ∈ α

(0)
t+1 ∈ αt ∋ α

(1)
t+1 ∋ . . . ∋ α

(1)
δ−2 ∋ α

(1)
δ−1 ∋ α(1) .

If B ∩ C 6= ∅ or if A asked its HGOpen(T, hpk , hsk(·), ·, ·) oracle a query (α
(0)
l ,m, σ)

or (α
(1)
l ,m, σ) return 0. Otherwise return d.

No generality is lost by having a corrupt phase only before σ is computed. The
reason for this is that before A receives σ, it has decided on α(0) and α(1) and can
corrupt any group manager not on the path from α(0) or α(1) respectively.

Consider the above experiment with a depth one tree T with root ω. In that case
we may assume that hsk(ω) is never handed to the adversary, since the adversary
fails in that case anyway. Similarly the HGOpen(T, hpk , hsk(·), ·, ·) oracle reduces
to the GOpen oracle in [9]. Thus, our experiment reduces to the experiment for full
anonymity given in [9] where the adversary gets the private keys of all signers, but
only the public key of the group manager.

Next we consider how the notion of full traceability can be defined in our setting.
Full traceability as defined in [9] is similar to security against chosen message attacks
as defined by Goldwasser, Micali and Rivest [52] for signatures. Their definition is
given in Section 2.4.

The only essential difference is that the group manager must always be able to
open a signature and identify the signer. In our setting this amounts to the follow-
ing. Given a signature deemed valid by the HGVf algorithm, the root should always
be able to identify the child directly below it of which the signer is a descendant.
The child should have the same ability for the subtree of which it is a root and so
on until the child itself is a signer.

Again we define an experiment consisting of two phases. The adversary is given
the private keys of all group managers and has access to a signature oracle, and
adaptively chooses a set of signers to corrupt. Then in a second phase the adversary
outputs a message m and a signature σ. If σ is a valid signature of m and the signer

8.2. THE DEFINITION OF SECURITY 105

cannot be traced, or if the signature is traced to a non-corrupted signer Sα and the
adversary has not queried its signature oracle HGSig(·, T, hpk , hsk(·)) on (m,α),
the adversary has succeeded and the experiment outputs 1. The other way the
adversary can succeed is by constructing a signature that does trace correctly, but
has the property that some group manager not belonging to the path also gets a
valid index corresponding to one of its children if it opens the signature. If none of
the above is the case it outputs 0. Thus, the distribution of the experiment should
be negligibly close to 0 for all adversaries if the scheme is secure.

Experiment 8.2.2 (Hierarchical Traceability, Exptrace
HGS,A(κ, T)).

(hpk , hsk)← HGKg(1κ, T)
state ← (hpk , hsk(V(T) \ L(T)))
C ← ∅
α← ∅
repeat

C ← C ∪ {α}
(state, α)← AHGSig(·,T,hpk ,hsk(·))(corrupt, state, hsk(α))

until α /∈ L(T) \ C
(m,σ)← AHGSig(·,T,hpk ,hsk(·))(guess, state)

If HGVf(T, hpk ,m, σ) = 0 return 0. Define α0 = ω and define αl for l = 1, . . . , δ by
αl = HGOpen(T, hpk , hsk(αl−1),m, σ). Return 1 if

1. αl = ⊥ for some 0 < l ≤ δ.

2. αδ 6∈ C and the HGSig(·, T, hpk , hsk (·)) oracle did not get a query (m,αδ).

3. If there exists an index α ∈ V(T) such that α 6= αl for l = 1, . . . , δ and
HGOpen(T, hpk , hsk (α),m, σ) 6= ⊥.

Remark 8.2.2. The above definition differs from the one in [84] in that the require-
ment on the special index α “outside” the path has been added. The original
definition guarantees that the group managers along the path to the producer of a
signature can open their part of the signature. Unfortunately, it does not prohibit
the construction of signatures such that if two distinct group managers Mα and
Mβ on the same level open a signature they both get indices α′ ∈ α and β′ ∈ β.
Naturally, we expect that only one of α′ and β′ can be different from ⊥. Thus,
although the original definition guarantees that the signer can be identified, a group
manager can not fully trust the result of the opening algorithm unless it communic-
ates with all group managers on the path from itself to the root. This goes against
the non-interactivity of signature schemes.

The definition above on the other hand not only requires that the group man-
agers along the path to the signer can open a signature and recover the index of the
sub-group manager to which the signer belongs, but also that if any group manager
that is not on the path to the signer opens the signature then the result is ⊥.

106 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

Consider the experiment above with a depth one tree. This corresponds to giving
the adversary the private key of the group manager, and letting it adaptively choose
additional signing keys. Furthermore, the HGSig(·, T, hpk , hsk (·)) oracle reduces
to the GSig oracle in [9]. Thus, the definition reduces to the definition of full
traceability in [9].

The advantages of the adversary in the experiments are defined by

Advanon
HGS,A(κ, T) = |Pr[Expanon−0

HGS,A(κ, T) = 1]− Pr[Expanon−1
HGS,A(κ, T) = 1]|

and

Advtrace
HGS,A(κ, T) = Exptrace

HGS,A(κ, T) .

Definition 8.2.3 (Security of Hierarchical Group Signatures). A hierarchical group
signature scheme HGS = (HGKg,HGSig,HGVf,HGOpen) is secure if for all trees
T of polynomial size in κ with all leaves at the same depth, and all adversaries
A ∈ PT∗ the sum Adv

trace
HGS,A(κ, T) + Adv

anon
HGS,A(κ, T) is negligible.

An ordinary signature scheme SS = (SSKg, Sig,Vf), with key generator SSKg,
signature algorithm Sig, and verification algorithm Vf, can be viewed as a hierarch-
ical group signature scheme (SSKg, Sig,Vf,HGOpen) of depth 0. Definition 8.2.2
reduces to the definition of security against chosen message attacks as defined by
Goldwasser, Micali, and Rivest [52].

Remark 8.2.4. Formally, only the private key of a corrupted group manager or signer
is handed to the adversary in the definitions above. Thus, the definition captures
a model where the signers always erase the randomness that is used to construct
signatures.

Alternative Definitions

Above we define a hierarchical group signature scheme such that the group man-
agers are organized in a tree where all leaves are at the same depth. Furthermore, a
group manager can by looking at a signature decide whether the signer belongs to
it or not without any interaction with other group managers. Several other variants
are possible. Below we discuss some of these variants informally.

Trees with leaves on different depths could be considered. Any such tree can
clearly be replaced by a tree with all leaves at the same depth by inserting dummy
group managers in between signers and their immediate parents until all signers
are at the same depth.

We could let group managers sign on behalf of its group. If this is needed a
dummy signer that corresponds to the group manager is added. Depending on if
the parent of the group manager should be able to distinguish between a signature
of the group manager itself and its children or not, the signer is added as a child to
the group manager’s parent or itself. This may give a tree with leaves on different
depths, in which case the transformation described above is applied.

8.3. A DEFINITION OF AN OPTIMISTIC SCHEME 107

We could consider a forest of trees, i.e., there could be several roots. Such a
scheme can be simulated in our definition by first joining the trees into a single tree
by adding a root and then disposing of the private root key.

The group managers could be organized in a directed acyclic graph (DAG), e.g.,
two group managers could share a common subtree. This would give alternative
paths to some signers. There may be situations where this is advantageous, but the
semantics of such a scheme is complex and involves many subtle issues, e.g., should
all group managers of a signer get information on its identity, or should the signer
decide on a path from a root and only reveal information to group managers along
this path? Although we believe that the techniques we use for our constructions
would be useful also for this type of scheme we do not investigate such schemes
further.

Another interesting variation is to require that a group manager needs the ad-
mission and help of its ancestor to open a signature, or to help any of its children
to open a signature. We believe that it is not hard to solve this problem using our
methods, but we have not investigated this in detail.

8.3 A Definition of an Optimistic Scheme

The Main Difficulties

All modern group signatures are based on the idea that the signer encrypts a
secret of some sort using the group manager’s public key, and then proves that
the resulting ciphertext is on this special form. The security of the encryption
scheme used implies anonymity, since no adversary can distinguish ciphertexts of
two distinct messages if they are encrypted using the same public key. We generalize
this approach.

First we consider the problem of forwarding partial information on the identity
of the signer to group managers without leaking information. Each group manager
Mβ is given a private key skβ and a public key pkβ of an encryption scheme. We
also give each signer Sα a public key pkα that is used to identify the signer. Each
signer is associated in the natural way with the path α0, α1, . . . , αδ from the root
ω = α0 to the leaf α = αδ in the tree T of group managers and signers. To compute
a signature, the signer computes as part of the signature a chain

(C0, C1, . . . , Cδ−1) =
(

Epkα0
(pkα1

), Epkα1
(pkα2

), . . . , Epkαδ−1
(pkαδ)

)

.

Note that each ciphertext Cl in the list encrypts the public key pkαl+1
used to form

the next ciphertext. The particular structure of the chain and the fact that all leaves
are on the same depth in the tree ensures that a group manager Mβ on depth l can
try to open a signature by decrypting Cl, i.e., it computes pk ← Dskβ (Cl).

If αl = β, then pk ← pkαl+1
. Thus, if Mβ manages signers, it learns the identity

of the signer Sα, and if it manages other group managers it learns the identity of the

108 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

group manager below it in the tree which, perhaps indirectly, manages the signer
Sα.

Now suppose that αl 6= β, so pk 6= pkαl+1
. What does Mβ , or indeed any

outsider, learn about the identity of the signer Sα? It clearly does not learn anything
from a ciphertext Cl about the encrypted plaintext, as long as the encryption
scheme is semantically secure. There may be another way to deduce the content of
Cl though. If the ciphertext Cl+1 somehow indicate which public key was used to
form it, Mβ , or any outsider, can simply look at Cl+1 and recover the plaintext of
Cl. This means that it can look at the chain of ciphertexts and extract information
on the identity of the signer. We conclude that using the approach above, we need
an encryption scheme which not only hides the plaintext, but also hides the public
key used to form the ciphertext. An encryption scheme with this property is said
to be anonymous. We give a definition in Section 8.4. The property of anonymity
was discussed in [1] and studied extensively by Bellare et al. in [6].

Next we consider the problem of ensuring hierarchical traceability. This prob-
lem consists of two parts. We must ensure chosen message security to avoid that an
illegitimate signer is able compute a valid signature at all. The difficult problem is
to ensure that the signer Sα not only formed (C0, . . . , Cδ−1) as described above for
some public keys pkα0

, . . . , pkαδ , but also that the public keys used correspond to
the unique path α0, α1, . . . , αδ from the root ω = α0 to the leaf α = αδ correspond-
ing to the signer Sα. This is the main obstacle to construct an efficient hierarchical
group signature scheme.

Optimistic Protocols

Many protocols may be designed to be more efficient if all participants are honest
than if some participants are corrupt. Additional steps may be performed when
dishonest participants are detected. Such protocols are called optimistic. Examples
of such protocols include optimistic protocols for fair exchange [2], which uses a
trusted third party that intervenes only in exceptional circumstances.

For real-world applications this is a realistic approach. In a typical execution
all participants are honest, and the protocol is efficient. In the rare case of corrupt
participants, the scheme can handle the abnormality and identify the misbehaving
party. In other words, a corrupt player can cause extra work for other players,
but it will itself be detected in the process. Especially when combined with secure
hardware, optimistic protocols are an attractive option. If someone is ready to
spend the necessary resources to break the hardware protection, all she achieves is
to increase the work performed by other participants.

Optimistic Hierarchical Group Signatures

In a hierarchical group signature scheme any group manager can try to open a
signature. There are two types of results of this. There could be no result at all,
encoded by ⊥. This means that the signer is not managed (not even indirectly)

8.3. A DEFINITION OF AN OPTIMISTIC SCHEME 109

by the group manager who opened the signature. If on the other hand there is a
result, it identifies the subtree below the group manager which contains the signer.

We now relax this and allow a signer to construct a signature which opens to
⊥ by all group managers. However, we stress that the signer can not construct a
signature that points out somebody else as the signer. If a signature opens to ⊥,
the group manager which tries to open the signature can ask a trusted party for
help, and the trusted party can be implemented efficiently in a distributed way. In
an actual application a group manager often knows (by asking its parent) whether
it is supposed to be able to open a signature or not.

Participants

In addition to the participants of scheme for regular hierarchical group signatures,
signers Sα and group managers denoted Mα, there is a trusted party T, which holds
the trusted key that can open any signature.

Algorithms

In contrast to the opening algorithm found in a hierarchical group signature scheme
the opening algorithm in an optimistic scheme comes in two flavors: the optimistic
opening algorithm and the trusted opening algorithm. The former algorithm takes
the same inputs as the opening algorithm in a hierarchical group signature scheme,
and the latter takes a special trusted secret key as additional input.

Definition 8.3.1 (Scheme for Optimistic Hierarchical Group Signatures). An op-
timistic hierarchical group signature scheme HGS consists of the following five
polynomial-time algorithms.

1. The probabilistic key generation algorithm HGKg takes as input (1κ, T), where
T is a tree of size polynomially bounded in κ with all leaves at the same depth,
and outputs a pair of maps hpk , hsk : V(T) → {0, 1}∗ and a trusted opening
key skT.

2. The probabilistic signature algorithm HGSig takes as input a message m, a
tree T , a public map hpk , and a private signing key hsk(α), and returns a
signature of m.

3. The deterministic signature verification algorithm HGVf takes as input a tree
T , a public key map hpk , a message m, and a candidate signature σ of m and
returns either 1 or 0.

We require that for every m ∈ {0, 1}∗, every tree T of polynomial size in κ,
every key triple output (hpk , hsk , skT) of HGKg(1κ, T), and every α ∈ L(T),
HGVf(T, hpk ,m,HGSig(m,T, hpk , hsk (α))) = 1.

110 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

4. The deterministic optimistic opening algorithm HGOptOpen takes as input a
tree T , a public map hpk , a private opening key hsk (β), a message m, and a
candidate signature σ. It outputs an index α ∈ β or ⊥.

5. The deterministic trusted opening algorithm HGTrustOpen takes as input a
tree T , public key map hpk , a trusted opening key skT, an index β ∈ V(T) \
L(T), a message m and a candidate signature σ. It outputs an index α ∈ β
or ⊥.

In the definition of HGSig above, it is assumed that it is possible to verify in
polynomial time given the public tree hpk , a private key hsk (α) and an index α′, if
α = α′. We assume that hpk and hsk map any input that is not a node of T to ⊥
and that HGTrustOpen(·, ·, ·,⊥, ·, ·) = ⊥.

Definition of Security

As in the case of group signatures, we define two experiments: traceability and
anonymity. As argued in [9] these two security properties cover any reasonable
security property one could ask from a group signature scheme. When compared
to signature schemes, traceability corresponds to unforgeability.

Traceability

The adversary is considered successful if it forges a signature that opens to ⊥ or
to an uncorrupted party. In the optimistic setting this is still the case for the
trusted opening algorithm, but for the optimistic opening algorithm we require
that the forged signature opens to an index. In other words, we explicitly allow
the adversary to construct signatures which open to ⊥ using the optimistic opening
algorithm. The experiment below formalizes what we mean by a successful forgery.

Experiment 8.3.1 (Optimistic Hierarchical Traceability, Exptrace
HGS,A(κ, T)).

(hpk , hsk)← HGKg(1κ, T), state ←
(

hpk , hsk (V(T) \ L(T)), skT

)

, C ← ∅, α← ∅
repeat

C ← C ∪ {α}
(state, α)← AHGSig(·,T,hpk ,hsk(·))(choose, state, hsk(α))

until α /∈ L(T) \ C
(m,σ)← AHGSig(·,T,hpk ,hsk(·))(guess, state)

If HGVf(T, hpk ,m, σ) = 0, then return 0. If not, then set α0 ← ω and define αi+1

for i = 0, . . . , δ − 1 by αi+1 ← HGTrustOpen(T, hpk , skT, αi,m, σ). Return 1 if

1. ∃α ∈ V(T) \ L(T) \ {α0, . . . , αδ−1} such that HGTrustOpen(T , hpk , skT, α,
m, σ) 6= ⊥,

2. αδ 6∈ C and no query (m,αδ) was given to the HGSig(·, T, hpk , hsk(·))-oracle.

8.3. A DEFINITION OF AN OPTIMISTIC SCHEME 111

3. ∃α ∈ V(T) \ L(T) such that

HGOptOpen(T, hpk , hsk(α),m, σ) 6∈ {⊥,HGTrustOpen(T, hpk , skT, α,m, σ)} .

The advantage of an adversary A attacking the traceability of a group signature
scheme HGS is defined as Advtrace

HGS,A(κ, T) = Exptrace
HGS,A(κ, T).

Definition 8.3.2. An optimistic group signature scheme HGS has hierarchical
traceability if the advantage Adv

trace
HGS,A(κ, T) is negligible as a function of κ for all

trees T of polynomial size in κ and for all adversaries A ∈ PT∗.

Informally, these requirements ensure that: (1) the group managers for which
the trusted opening algorithm output non-⊥ form a path from the root of the tree,
(2) if the signature is a forgery, this path continues to a corrupted signer, and
(3) the optimistic opening algorithm outputs ⊥ or the same result as the trusted
opening algorithm.

Anonymity

The definition of anonymity is identical to that for hierarchical group signatures
except that the adversary has access to both a trusted opening oracle and an op-
timistic opening oracle.

Experiment 8.3.2 (Optimistic Hierarchical Anonymity, Expanon−b
HGS,A(κ, T)).

(hpk , hsk , skT)← HGKg(1κ, T); state ← (hpk , hsk(L(T))); C ← ∅; α← ∅
repeat

C ← C ∪ {α}
(state, α)←
AHGOptOpen(T,hpk ,hsk(·),·,·),HGTrustOpen(T,hpk ,skT,·,·,·)(corrupt, state, hsk (α))

until α /∈ V(T) \ L(T) \ C
(state, α(0), α(1),m)←
AHGOptOpen(T,hpk ,hsk(·),·,·),HGTrustOpen(T,hpk ,skT,·,·,·)(choose, state)

σ ← HGSig(T, hpk , hsk(α(b)),m)
d← AHGOptOpen(T,hpk ,hsk(·),·,·),HGTrustOpen(T,hpk ,skT,·,·,·)(guess, state, σ)

If α(0) 6∈ L(T) or α(1) 6∈ L(T) return 0. Let B be the set of nodes on the paths
from α(0) and α(1) up to their first common ancestor αt excluding α(0) and α(1)

but including αt, i.e., the set of nodes α
(0)
l , α

(1)
l , l = t, . . . , δ − 1, such that

α(0) ∈ α(0)
δ−1 ∈ α

(0)
δ−2 ∈ . . . ∈ α

(0)
t+1 ∈ αt ∋ α

(1)
t+1 ∋ . . . ∋ α

(1)
δ−2 ∋ α

(1)
δ−1 ∋ α(1) .

If B ∩ C 6= ∅ or if A asked either its oracle for HGOptOpen(T, hpk , hsk (·), ·, ·) or its

oracle for HGTrustOpen(T , hpk , skT, ·, ·, ·) oracle a query (α
(0)
l ,m, σ) or (α

(1)
l ,m, σ),

then return 0. Otherwise return d.

112 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

The advantage of an adversary A attacking the anonymity of an optimistic
hierarchical group signature scheme is defined as

Advanon
HGS,A(κ, T) = |Pr[Expanon−0

HGS,A(κ, T) = 1]− Pr[Expanon−1
HGS,A(κ, T) = 1]| .

Definition 8.3.3. An optimistic group signature scheme HGS has optimistic hier-
archical anonymity if Advanon

HGS,A(κ, T) is negligible as a function of κ for all trees
of polynomial size in κ and for all adversaries A ∈ PT∗.

In the experiment above, B is the set of indices of the group managers that
can distinguish signatures by α(0) from signatures by α(1). The definition captures
the requirement that no other group manager or outsider can do this except with
negligible probability.

Secure Optimistic Group Signature Scheme. Given these two definitions
the definition of a secure optimistic hierarchical group signature scheme follows.

Definition 8.3.4. An optimistic group signature scheme HGS is secure if it has
hierarchical traceability and hierarchical anonymity.

8.4 A Characterization of Anonymous Encryption Schemes

Anonymity

In some applications polynomial indistinguishability is not sufficient. The problem
is that although the adversary can not learn anything about the encrypted plain-
text, it may be able to tell which public key was used to compute the ciphertext. A
encryption scheme that hides the public key used for encryption is called anonym-
ous. This property was discussed by Abadi and Rogaway [1] and studied extensively
by Bellare et al. in [6]. It turns out to be essential in our construction of hierarch-
ical group signatures in the third part of the thesis. Anonymity is formalized by an
experiment similar to the polynomial indistinguishability experiment.

Experiment 8.4.1 (Anonymity, Expanon−b
CS,A (κ)).

(pk0, sk0)← Kg(1κ)
(pk1, sk1)← Kg(1κ)
(m, state)← A(pk0, pk1)
c← Epkb

(m)
return A(guess, state, c)

Note that compared to the definition of polynomial indistinguishability, the roles
played by public keys and messages are reversed. One could consider a variant
experiment that captures both types of indistinguishability, but we think it is more
natural to think of anonymity as an additional property.

8.4. A CHARACTERIZATION OF ANONYMOUS ENCRYPTION SCHEMES113

Definition 8.4.1 (Anonymity). An encryption scheme CS is anonymous if the
advantage

Advanon
CS,A(κ) = |Pr[Expanon−0

CS,A (κ) = 1]− Pr[Expanon−1
CS,A (κ) = 1]|

is negligible in κ for all adversaries A ∈ PT∗.

The property of anonymity is clearly useless if the encryption scheme is not
indistinguishable, since it allows the encryption function to be the identity map.
Thus, anonymity does not imply indistinguishability. To see that the reverse implic-
ation is false, note that if CS is a polynomially indistinguishable encryption scheme,
then so is the encryption scheme where the encryption and decryption functions
c = Epk (m) and Dsk (c) = m are replaced by (c, c′) = E′

pk (m) = (Epk (m), pk) and
D′

sk (c, c′) = Dsk (c) = m respectively, and this is clearly not anonymous.
The following generalization follows by a similar argument as the generaliza-

tion of polynomial indistinguishability. Denote by Exp
µ1−µ2−anon−b
CS,A (κ) the experi-

ment above except for the following changes. Let µ1(κ) and µ2(κ) be polynomially
bounded in κ. The experiment generates lists ((pk1,b, sk1,b), . . . , (pkµ1,b, skµ1,b))
for b ∈ {0, 1} instead of (pk0, sk0) and (pk1, sk1). Then the adversary is given
(pk1,b, . . . , pkµ1,b) for b ∈ {0, 1}. The adversary outputs m = (m1,1, . . . ,mµ1,µ2).
Finally, the encryption oracle computes c = (Epki,b

(mi,j))
µ1,µ2

i=1,j=1 instead of a single
ciphertext. The lemma below follows by a straightforward hybrid argument.

Lemma 8.4.2. If CS is polynomially indistinguishable, then for all adversaries
A ∈ PT∗ the absolute value

|Pr[Exp
µ1−µ2−anon−0
CS,A (κ) = 1]− Pr[Exp

µ1−µ2−anon−1
CS,A (κ) = 1]|

is negligible in κ.

As explained above we need an anonymous encryption scheme to construct a
hierarchical group signature scheme using our approach. The lemma below charac-
terizes the set of encryption schemes which are both polynomially indistinguishable
and anonymous.

Denote by Expind−Dind

CS,A (κ) Experiment 2.4.8, but with the challenge ciphertext
Epkb

(m) replaced by an element distributed according to a distribution Dκ, where

Dind = {Dκ}, and correspondingly for Expanon−Dind

CS,A (κ). We use TD to denote
the Turing machine that on input 1κ returns a sample distributed according to an
efficiently sampleable distribution Dκ. In other words we consider the following
somewhat artificial experiments.

Experiment 8.4.2 (Dind-Indistinguishability, Exp
ind−Dind

CS,A (κ)).

(pk , sk)← Kg(1κ)
(m0,m1, state)← A(pk)
d← A(TD(1κ), state)
return d

114 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

Experiment 8.4.3 (Dind-Anonymity, Exp
anon−Dind

CS,A (κ)).

(pk0, sk0)← Kg(1κ)
(pk1, sk1)← Kg(1κ)
(m, state)← A(pk0, pk1)
d← A(TD(1κ), state)
return d

Lemma 8.4.3. Let CS be an encryption scheme which is both polynomially indistin-
guishable and anonymous. Then there exists an efficiently sampleable distribution
Dind such that for all A ∈ PT∗ the absolute value

|Pr[Expind−b
CS,A(κ) = 1]− Pr[Exp

ind−Dind(κ)
CS,A (κ) = 1]|

is negligible for b ∈ {0, 1}. The reverse implication holds as well.

The intuition behind this lemma is that if an encryption scheme that is both
polynomially indistinguishable and anonymous, then the ciphertexts are polynomi-
ally indistinguishable from a random distribution which is independent of both the
key and the plaintext.

Proof. Suppose that a distribution Dind as in the lemma exists. The indistin-
guishability of CS then follows by the triangle inequality. Suppose that CS is not
anonymous. Then there exists an adversary A ∈ PT∗ such that

|Pr[Expanon−0
CS,A (κ) = 1]− Pr[Expanon−1

CS,A (κ) = 1]|

is non-negligible which by the triangle inequality implies that

|Pr[Expanon−b
CS,A (κ) = 1]− Pr[Expanon−Dind

CS,A (κ) = 1]|

is non-negligible for a fixed b ∈ {0, 1}, which we without loss assume to be 0. Let
A′ be the adversary in Experiment 2.4.8 defined as follows. On input pk it sets
pk0 = pk generates (pk1, sk1) = Kg(1κ) and hands (pk0, pk1) to A, which returns
(m, state). Then A′ returns (m,m, state). When handed (c, state) from the exper-
iment it returns the output of A(c, state). By construction Expind−0

CS,A′(κ) is identic-

ally distributed to Expanon−0
CS,A (κ), and Expind−Dind

CS,A′ (κ) is identically distributed to

Expanon−Dind

CS,A (κ). This is a contradiction, since it implies that

|Pr[Expind−0
CS,A′(κ) = 1]− Pr[Exp

ind−Dind

CS,A′ (κ) = 1]|

is non-negligible.
Suppose next that CS is polynomially indistinguishable and anonymous. We

define our candidate distribution Dind as follows. To generate a sample from Dind,
generate a key pair (pk ′, sk ′) = Kg(1κ) and output an encryption Epk ′(m′), where
m′ is any fixed message. This implies that Dind is efficiently sampleable. Assume
that

|Pr[Expind−b
CS,A (κ) = 1]− Pr[Exp

ind−Dind

CS,A (κ) = 1]|

8.5. PROOFS OF KNOWLEDGE, PROOFS, AND ZERO-KNOWLEDGE 115

is non-negligible for b = 0. Then it is also non-negligible for b = 1, since CS
is polynomially indistinguishable. Let A′

0 be the adversary in Experiment 8.4.1
that does the following. On input (pk0, pk1) it hands pk0 to A which returns
(m0,m1). Then A′

0 returns m0, and is given Epkb (m0) for a randomly chosen
b ∈ {0, 1} by the experiment. It hands Epkb(m0) to A and returns the output of
A. A′

1 is identical to A′
0 except that it hands m′ to the experiment instead of m0.

From the construction follows that Expind−0
CS,A (κ) and Exp

ind−Dind

CS,A (κ) are identically

distributed to Expanon−0
CS,A′

0
(κ) and Expanon−1

CS,A′
1

(κ) respectively. Thus

|Pr[Expanon−0
CS,A′

0
(κ) = 1]− Pr[Expanon−1

CS,A′
1

(κ) = 1]|

is non-negligible. From the anonymity of CS we have that

|Pr[Expanon−0
CS,A′

b
(κ) = 1]− Pr[Expanon−1

CS,A′
b

(κ) = 1]|

is negligible for b ∈ {0, 1}. A hybrid argument then implies that

|Pr[Expanon−b
CS,A′

0
(κ) = 1]− Pr[Expanon−b

CS,A′
1

(κ) = 1]|

is non-negligible for some b ∈ {0, 1}. Without loss we assume b = 0. Denote
by A′′ the adversary in Experiment 2.4.8 defined as follows. Given input pk it
hands pk to A. When A returns (m0,m1), it outputs (m0,m

′), and receives either
Epk(m0) or Epk(m

′), which it forwards to A. Finally, it returns the output of A.

Since, Expind−0
CS,A′′(κ) is identically distributed to Expanon−0

CS,A′
0

(κ) and Expind−1
CS,A′′(κ) is

identically distributed to Expanon−0
CS,A′

1
(κ), this contradicts the indistinguishability of

CS.

Note that Dind depends on CS but is independent of all stochastic variables
in the experiment. In the next section we prove that the probabilistic encryption
scheme of Goldwasser and Micali [50] is anonymous.

Remark 8.4.4. Several standard probabilistic encryption schemes can be made an-
onymous by minor modifications, e.g., it is not hard to see that the ElGamal [42]
encryption scheme is anonymous under the DDH-assumption if all parties employ
the same group.

8.5 Proofs of Knowledge, Proofs, and Zero-Knowledge

Every relation R considered in this thesis corresponds to a language LR ∈ NP in
the sense of Definition 2.4.16. Given two NP-relations R1 and R2 we denote by
R1 ∨ R2 the relation defined by ((x1, x2), w) ∈ R1 ∨ R2 if and only if (x1, w) ∈
R1 or (x2, w) ∈ R2. Similarly we denote by R1 ∧ R2 the relation defined by
((x1, x2), (w1, w2) ∈ R1 ∨R2 if (x1, w1) ∈ R1 and (x2, w2) ∈ R2.

116 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

Computationally Convincing Proofs of Knowledge

The standard definition of a proof of knowledge given by Bellare and Goldreich [7]
is too strict for our setting. The standard definition states that there must exist
an algorithm, called the knowledge extractor, which for every x ∈ R and every
prover P ∗ that convinces an honest verifier with non-negligible probability outputs
a witness w such that (x,w) ∈ R in expected polynomial time, using P ∗ as a
blackbox. Several of our protocols do not satisfy this definition, but they satisfy a
relaxed definition that is sufficient in many settings.

Damgård and Fujisaki [41] introduce a definition that captures a weaker form of
a proof of knowledge. They introduce the notion of a “relation generator” that is in-
voked before the protocol between the prover and verifier is executed. The relation
generator outputs a relation. Then the prover chooses an instance of the relation,
and the protocol is executed with the verifier. Knowledge extraction should then be
possible with overwhelming probability over the randomness of the relation gener-
ator. A protocol that satisfies this extraction property is called a computationally
convincing proof of knowledge.

We use a variation of this definition. We simplify the definition in that we do not
mention the knowledge error explicitly, since our reductions are not exact anyway.
We also rephrase the definition to allow us to state our results in a more natural
way.

We analyze our protocols in the following setting. Let R be an NP-relation.
The adversary is given a special joint parameter h chosen from a set H and outputs
an instance x. Then the prover and verifier execute the protocol on the joint
input x and the special parameter h. The protocol is said to be a computationally
convincing proof of knowledge for R with regards to the distribution of h if it
holds that if the prover convinces the verifier with non-negligible probability, then
a witness w such that (x,w) ∈ R can be extracted in expected polynomial time with
overwhelming probability over the randomness of h and the internal randomness of
the prover.

More precisely, we denote by IP∗(κ, h, rp) the instance output by the prover
when run on security parameter 1κ, special joint parameter h ∈ H , and internal
randomness rp. We denote by viewVP∗(κ, h, rp, rv) the view of the verifier when
P ∗ is executed on common input IP∗(κ, h, rp), special input h and random input
rp, and V is executed on common input IP∗(κ, h, rp), special input h and random
input rv. Thus, the view contains the special parameter, all messages exchanged
by the prover and verifier, and also the random string of the verifier. It does
not contain the random string of the prover. Denote by AccV a predicate that on
input a view outputs the output of V in the protocol. Finally, define δVP∗(κ, h, rp) =
Prrv [AccV (viewVP∗(κ, h, rp, rv)) = 1]. To simplify the exposition we sometimes omit
the security parameter from our notation.

Definition 8.5.1 (Computationally Convincing Proof of Knowledge). A protocol
(P, V) is a computationally convincing proof of knowledge for an NP-relation R
with regards to the distribution of h ∈ H if there exists a probabilistic oracle al-

8.5. PROOFS OF KNOWLEDGE, PROOFS, AND ZERO-KNOWLEDGE 117

gorithm X (·) called the knowledge extractor, and a polynomial p(κ) such that for all
P ∗ ∈ PT∗ the following holds

1. If δVP∗(κ, h, rp) is non-negligible in κ, then XP∗

executes in expected time
O(p(κ)/δVP∗(κ, h, rp)) on input (h, rp).

2. For every constant c, if Prh,rp[δ
V
P∗(κ, h, rp) ≥ κ−c] is non-negligible, then

Pr[(IP∗(κ, h, rp),XP∗

(κ, h, rp)) ∈ R | δVP∗(κ, h, rp) ≥ κ−c]

is overwhelming in κ, where the probability is taken over h, rp and the internal
randomness of XP∗

.

We can recover a coarse grained version of the standard definition of a proof of
knowledge as follows.

Definition 8.5.2 (Proof of Knowledge). A protocol (P, V) is a proof of knowledge
for an NP-relation R if it is a computationally convincing proof with regards to
every constant distribution on h ∈ H.

Computationally Convincing Proofs

The standard definition of a proof introduced by Goldwasser, Micali, and Rack-
off [51] requires that no adversary can convince the honest verifier of any false
statement with probability exceeding 1/3. Another formulation that is more useful
in cryptography requires the probability to be negligible. Loosely speaking the two
definitions are equivalent, since a protocol that satisfies the first definition can be
repeated sequentially to give a protocol that satisfies the second definition. In any
case these definitions are too strict for our setting.

We consider the same adversarial model as for computational convincing proofs
of knowledge, i.e., the adversary is given a special parameter, outputs an instance,
and then executes the protocol with the verifier. In contrast to the standard defini-
tion soundness does not hold for all common inputs, only with overwhelming prob-
ability for a common input chosen by the adversary. More precisely we use the
following definitions.

Definition 8.5.3 (Computationally Convincing Proof). A protocol (P, V) is a com-
putationally convincing proof for an NP-relation R with regards to the distribution
of h ∈ H if for all provers P ∗ ∈ PT∗ the probability

Pr[AccV (viewVP∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR]

is negligible in κ.

We can recover the standard definition of a proof as follows.

Definition 8.5.4 (Proof). A protocol (P, V) is a proof for an NP-relation R if it
is a computationally convincing proof with regards to every constant distribution on
h ∈ H.

118 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

Note that a computationally convincing proof is something different than a
computationally sound proof. A computationally sound proof is sound for every
input, but only computationally so.

It turns out that every computationally convincing proof of knowledge is also a
computationally convincing proof. There may however be computationally convin-
cing proofs that are not computationally convincing proofs of knowledge.

Proposition 8.5.5 (Soundness). If (P, V) is a computationally convincing proof
of knowledge for an NP-language LR with regards to the distribution of h ∈ H,
then it is also a computationally convincing proof for the same parameters.

Proof. Consider an arbitrary prover P ∗. We first prove that for every constant c
exists a κ0 such that

Pr[IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp, rv) ≥ κ−c] < κ−c . (8.1)

If this is not the case there exists a malicious prover P ∗, a constant c and an infinite
index set N such that

Pr[IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) ≥ κ−c] ≥ κ−c ,
for κ ∈ N . This implies that Pr[IP∗(h, rp) 6∈ LR | δVP∗(h, rp) ≥ κ−c] ≥ κ−c and
Pr[δVP∗(h, rp) ≥ κ−c] ≥ κ−c. Since the protocol is a proof of knowledge we conclude
that

Pr[(IP∗(h, rp),XP∗(h, rp)) ∈ R | δVP∗(h, rp) ≥ κ−c]
is overwhelming. The union bound implies that

Pr[(IP∗(h, rp),XP∗(h, rp)) ∈ R ∧ IP∗(h, rp) 6∈ LR | δVP∗(h, rp) ≥ κ−c] ≥ 1

2κc
,

which gives Pr[(IP∗(h, rp),XP∗(h, rp)) ∈ R ∧ IP∗(h, rp) 6∈ LR] ≥ 1
2κ2c > 0. This is

obviously a contradiction, since IP∗(h, rp) is either an element in LR or it is not.
Next we prove the statement in the proposition using Equation (8.1). Suppose

that the statement in the proposition is false. Then there exists a malicious prover
P ∗, a constant c and an infinite index set N such that

Pr[AccV (viewVP∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR] ≥ κ−c

for κ ∈ N . We have

1

κc
≤ Pr[AccV (viewV

P∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR]

= Pr[AccV (viewV
P∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) ≥ 1

2κc
]

+ Pr[AccV (viewVP∗(h, rp, rv)) = 1 ∧ IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) <
1

2κc
]

≤ Pr[IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) ≥ 1

2κc
] +

1

2κc
.

From this we conclude that Pr[IP∗(h, rp) 6∈ LR ∧ δVP∗(h, rp) ≥ 1
2κc] ≥ 1

2κc . This
contradicts Equation (8.1), and the proposition holds.

8.5. PROOFS OF KNOWLEDGE, PROOFS, AND ZERO-KNOWLEDGE 119

Honest Verifier Statistical Zero-Knowledge

A protocol is zero-knowledge if a verifier’s view of the protocol can be simulated
in a way that is indistinguishable from the verifiers view of a real execution of the
protocol. The concept of zero-knowledge is fundamental in modern cryptography.
It was introduced by Goldwasser, Micali, and Rackoff [51]. There are many flavors
of this concept and we only formalize the one we use in this thesis. In all our
applications the verifier is honest. Thus, we only consider honest verifier zero-
knowledge. Informally, this means that we only require that the view of an honest
verifier can be simulated. On the other hand all our protocols are statistical zero-
knowledge. Thus, by indistinguishability of views we mean that their distributions
are statistically close. The strong type of indistinguishability simplifies our security
proofs considerably.

Denote by hviewVP (h, x, w) the view of the verifier when the protocol (P, V) is
executed on special input h, common input x, and the prover is given a witness w
as auxiliary input. In other words we consider the view of an honest verifier when
executing the protocol with the honest prover. If we want to make the randomness
of the verifier explicit we write hviewVP (h, x, w, c).

Definition 8.5.6 (Honest Verifier Statistical Zero-Knowledge). A protocol (P, V)
is honest verifier statistical zero-knowledge if there exists a probabilistic polynomial
time algorithm S, called the simulator, such that for each special parameter h ∈ H
and each common input x such that x ∈ LR, the distributions of hviewVP (h, x, w)
and S(h, x) are statistically close in κ. If the distributions are identical, we say that
the protocol is honest verifier perfect zero-knowledge.

Completeness

Let R be an NP-relation. The completeness of a protocol (P, V) is the probability
that an honest verifier outputs 1 after interacting with an honest prover. Denote
by 〈P (h, x, w), V (h, x)〉 the output of V on an interaction with the honest prover
P on special input h ∈ H and a common input x, where P is also given a witness
w such that (x,w) ∈ R.

Definition 8.5.7 (Completeness). A computationally convincing proof of know-
ledge (P, V) has completeness p if for all special parameters h ∈ H and all (x,w) ∈
R we have Pr[〈P (h, x, w), V (h, x)〉 = 1] ≥ p where the probability is taken over the
internal randomness of P and V . If p = 1 we say that the protocol has perfect
completeness.

Sigma-Protocols

We consider the set of protocols between a prover P and a verifier V that have
three rounds: P sends a message α to V , V sends a challenge c to P , and P sends
a reply d to V . Furthermore, suppose that c is randomly chosen in some set C. We
call such protocols C-three-move protocols. Note that the view of an honest verifier

120 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

V in a C-three-move protocol can be written (x, α, c, d), where x is the common
input, α is the first message sent by P , c is the random challenge of V , and d is
final message sent by P .

Definition 8.5.8 (Special Honest Verifier Statistical Zero-Knowledge). Let (P, V)
be a C-three-move protocol for a language L. We say that (P, V) is special hon-
est verifier statistical zero-knowledge if there exists a probabilistic polynomial time
algorithm S, called the simulator, such that for each (x,w) ∈ R and c ∈ C, the
distributions of S(κ, x, c) and hviewVP (κ, x, w, c) are statistically close in κ.

The term special is used since the simulator S is not allowed to pick the challenge
c itself, but must be able to compute a valid view when given c together with x as
input.

Suppose the challenge c = (c1, . . . , ck) is randomly chosen from a product set
C1 × · · · × Ck for some constant k and that 1/|Ci| is negligible for i = 1, . . . , k
where κ is the security parameter. Then the following slight generalization of
special soundness makes sense. We get the standard definition of special-sound if
k = 1.

Definition 8.5.9 (Special Soundness). Let C = C1 × · · · × Ck. A C-three-move
protocol (P, V) for a relation R is C-special-sound if there exists a deterministic
polynomial time algorithm that given two accepting views (x, α, c, d) and (x, α, c′, d′)
with ci 6= c′i for i = 1, . . . , k, outputs a witness w such that (x,w) ∈ R.

We use a generalized definition of Σ-protocol along the lines suggested by
Cramer, Damgård, and Schoenmakers [38].

Definition 8.5.10 (Σ-Protocol). Let C = C1 × · · · × Ck. A C-Σ-protocol is a C-
three-move protocol (P, V) that is statistical special honest verifier zero-knowledge,
C-special-sound, and has overwhelming completeness.

Composition of Sigma-Protocols

There are two natural ways to compose Σ-protocols. Consider a C1-Σ-protocol
π1 and C2-Σ-protocol π2. It is of course possible to run both protocols at the
same time, i.e., the messages in each round are concatenated and sent as a single
message, and the resulting verifier accepts if both verifiers accepts. We call this
parallel composition. If C1 = C2 we assume that a single challenge is used for both
protocols. The following observations follow straightforwardly.

Observation 8.5.1. Let (Pi, Vi) be a C-Σ-protocol for a language Li for i =
1, . . . , l, where l is polynomially bounded. Then the parallel composition (P, V) of
the protocols where a single challenge in C is used for all protocols is a C-Σ-protocol
for the language L1 ∧ · · · ∧ Ll(κ).

Observation 8.5.2. Let (Pi, Vi) be a Ci-Σ-protocol for a language Li for i =
1, . . . , l, where l is polynomially bounded. Then the parallel composition (P, V) of
the protocols is a C1 × · · · × Cl-Σ-protocol for the language L1 ∧ · · · ∧ Ll(κ).

8.5. PROOFS OF KNOWLEDGE, PROOFS, AND ZERO-KNOWLEDGE 121

Special Sound Protocols are Proofs of Knowledge

Lemma 8.5.11. Let l(κ) be polynomially bounded and let (P, V) be a C1×· · ·×Cl-
special-sound protocol, with 1/|Ci| negligible for i = 1, . . . , l, for an NP-language
L. Then (P, V) is a proof of knowledge.

Proof. Note that the random input rp of P ∗ defines the common input IP∗(κ, rp),
and also the first message α of the prover in the protocol. Consider an extractor
XP∗

defined as follows. The extractor repeatedly chooses rv ∈ {0, 1}∗ randomly
and completes the execution of the protocol with P ∗ by executing V using rv as
random input. This gives a tuple (IP∗(κ, rp), α, c, d). The extractor XP∗

continues
until a tuple is found such that

AccV (IP∗(κ, rp), α, c, d) = 1 .

Then the extractor repeatedly chooses rv
′ ∈ {0, 1}∗ randomly and completes the

execution of the protocol with P ∗ by executing V using rv
′ as random input. This

gives a tuple (IP∗(κ, rp), α, c′, d′). The extractor XP∗

continues until a tuple is
found such that

AccV (IP∗(κ, rp), α, c′, d′) = 1 and c′i 6= ci for i = 1, . . . , l.

Suppose now that δVP∗(κ, rp) is non-negligible. In each iteration of the first loop the
probability that a tuple is suitable is δVP∗(κ, rp). Recall that c′ = (c′1, . . . , c

′
l) are

randomly chosen in C1× · · · ×Cl for a polynomially bounded l and that |Ci| ≥ 2κ.
Thus, the probability that ci = c′i is 1/|Ci| and the union bound implies that
the the probability that c′i = ci for some i = 1, . . . , l is at most l(κ)2−κ which is
negligible. Another application of the union bound then implies that the probability
that a suitable second tuple is found is at least δVP∗(κ, rp)/2 in each iteration. This
implies that the expected number of invocations of P ∗ is O(1/δVP∗(κ, rp)). Thus, the
expected execution time of the extractor satisfies the first requirement in Definition
8.5.2.

It follows immediately from special soundness that the output of the extractor
is a valid witness of the fact that IP∗(κ, rp) ∈ L. Thus, the second requirement in
Definition 8.5.2 is satisfied.

Zero-Knowledge Proofs of Knowledge in the Random Oracle Model

One common use of the random oracle model is to prove the security of signature
schemes constructed using the Fiat-Shamir heuristic [45].

This idea can be explained as follows. Let R be an NP-relation and suppose
that one party holds a witness w of some joint input x such that (x,w) ∈ R. Let
(P, V) be a C-Σ-protocol for the language LR. Recall that such a protocol proceeds
as follows. The prover computes a first message α and sends it to the verifier. Then
the verifier chooses a challenge c ∈ C randomly and sends it to the prover. Finally,
the prover sends a reply d and the verifier verifies the triple (α, c, d). Fiat and

122 CHAPTER 8. INTRODUCTION, BACKGROUND, AND DEFINITIONS

Shamir’s idea is to replace the challenge c with the output of a “cryptographic hash
function” H . In other words, the prover computes α, but then instead of waiting
for a challenge from the verifier it computes c ← H(x, α). Finally, it computes d
as usual. This gives the prover a triple (α, c, d) that it can send to the verifier.
The verifier checks the triple by verifying the triple (α, c, d) as before and that
c← H(x, α). Thus, the protocol is now non-interactive.

Note that although H may be “highly unpredictable” the output c is not in-
dependently chosen from α. Thus, the soundness of the C-Σ-protocol does not
imply that the non-interactive version is sound. Furthermore, it is no longer zero-
knowledge, but if we replaceH by a randomly chosen function O, a so called random
oracle, both soundness and zero-knowledge holds. It is assumed that the random
oracle is available to both the verifier and the prover. We write PO(·) to denote the
prover that computes c as c = O(x, α) using a random oracle O. We write V O(·) for
the verifier that verifies the triple (α, c, d) as is done in the original C-Σ-protocol,
but also that c = O(x, α).

Suppose that the prover wishes to sign a message m. To do that it computes
(α, c, d) ← PO(m,·), i.e., it includes the message to be signed as a prefix to its
random oracle. The signature is verified by checking that V O(m,·)(α, c, d) ← 1.
Thus, the triple (α, c, d) may be viewed as a signature of m computed by the party
holding a witness w such that (x,w) ∈ R. For this to make any sense it must of
course be infeasible to find a witness w such that (x,w) ∈ R given only x.

In Chapters 10 and 11 we analyze two hierarchical group signature schemes in
the random oracle model, and use the above notation.

Chapter 9

A Constructions under General

Assumptions

9.1 About the Construction

In this section we show how hierarchical group signatures can be constructed under
general assumptions. Our focus is on feasibility and conceptual simplicity. More
precisely, we prove the following theorem.

Theorem 9.1.1. If there exists a family of trapdoor permutations, then there exists
a secure hierarchical group signature scheme.

To prove the theorem we construct a hierarchical group signature scheme HGS =
(HGKg,HGSig,HGVf,HGOpen).and prove its security.

Building Blocks

Our construction is based on three primitives: the group signature scheme of Bel-
lare et al. [9], the public key encryption scheme of Goldwasser and Micali [50], and
a non-interactive zero-knowledge proof as defined in Section 2.4. Of these we use
the first and last in a blackbox way. Bellare et al. [9] prove the following theorem.

Theorem 9.1.2. If there exists a family of trapdoor permutations, then there exists
a secure group signature scheme GS = (GKg,GSig,GVf,GOpen).

As explained in Section 8.2 every group signature scheme is also a hierarchical
group signature scheme, and our definition of security reduces to the definition of
security given in [9] for group signatures. The definition of a trapdoor permutation
family is given in Section 2.4.

Recall from Section 2.4 that a non-interactive zero-knowledge proof (NIZK) al-
lows a prover to send a single message to a verifier that convinces the verifier of
some statement in NP. Bellare et al. [9] use a NIZK in their proof of the theorem

123

124 CHAPTER 9. A CONSTRUCTIONS UNDER GENERAL ASSUMPTIONS

above, but the NIZK we use must be adaptive zero-knowledge for polynomially
many statements, and not only for a single statement. The requirement on sim-
ulation soundness is in fact unchanged compared with [9], i.e., single statement
simulation soundness suffices. A precise definition of the type of NIZK we use is
given in Section 2.4.

De Santis et al. [79] extend the results in [43] and [77] and prove the following
theorem.

Theorem 9.1.3. If there exists a family of trapdoor permutations, then there exists
a NIZK for any language in NP.

The probabilistic encryption scheme of Goldwasser and Micali [50] is defined
in Section 9.1.4. Goldwasser and Micali prove that their encryption scheme is
polynomially indistinguishable, i.e., it satisfies Definition 2.4.12, but as explained
in the previous section we need an anonymous encryption scheme. Let us now
review the Goldwasser-Micali encryption scheme.

The Goldwasser-Micali Encryption Scheme

Goldwasser and Micali [50] construct a public key encryption scheme based on the
existence of non-approximable trapdoor predicates. This concept is captured in
modern terminology as a hardcore bit of a family of trapdoor permutations.

The encryption scheme GM = (Kggm, Egm, Dgm) of Goldwasser and Micali [50]
using the family of trapdoor permutations T = F ×F−1 and hardcore bit B can be
defined as follows. The key generator Kggm(1κ) simply draws (f, f−1) from T and
sets (pk , sk) ← (f, f−1). To compute a ciphertext Egm

pk (m) of a bit m ∈ {0, 1}, a
sample r←R Dom(f) is drawn and (f(r),B(r)⊕m) is the ciphertext. To decrypt a
ciphertext (c, c′), we compute Dgm

sk (c, c′) = B(f−1(c)) ⊕ c′. Goldwasser and Micali
essentially show the following theorem.

Theorem 9.1.4. If F is a trapdoor permutation family with hard-core bit B, then
GM is polynomially indistinguishable.

Goldreich and Levin [48] show how to construct a family of trapdoor permuta-
tions F with a hard-core bit B from any family of trapdoor permutations. Thus,
we may take B above to be the Goldreich-Levin predicate.

To encrypt a bit-string the encryption function is invoked with a fresh randomly
chosen r for each bit in the natural way. From Lemma 10.2.8 we know that this is
as secure as the original scheme.

Lemma 9.1.5. If F is a trapdoor permutation family with hard-core bit B, then
GM is anonymous.

Proof. Suppose that GM is not anonymous. Let Uκ+1 be the uniform and inde-
pendent distribution over {0, 1}κ+1. Then for some adversary A ∈ PT∗,

|Pr[Expind−b
GM,A(κ) = 1]− Pr[Exp

ind−Uκ+1

GM,A (κ) = 1]|

9.1. ABOUT THE CONSTRUCTION 125

is non-negligible for a fixed b ∈ {0, 1}. Without loss we assume b = 0. Since GM is
a bitwise encryption scheme, we may without loss assume that m0 = 0 and m1 = 1.
Let m ∈ {0, 1} be randomly chosen. Then a ciphertext Epk (m) = (f(r),B(r)⊕m) is
distributed according to Uκ+1, since the function f is a permutation and B(r)⊕m
is uniformly and independently distributed. A trivial averaging argument then
implies that |Pr[Expind−0

GM,A(κ) = 1]− Pr[Expind−1
GM,A(κ) = 1]| is non-negligible which

is a contradiction.

We remind the reader at this point that we define a trapdoor permutation family
to have domain {0, 1}κ.

Notation

We let F denote a family of trapdoor permutations with a hard-core bit B, and
assume that a Goldwasser-Micali encryption scheme GM has been constructed from
this. We denote by GS = (GKg,GSig,GVf,GOpen) the group signature scheme of
Bellare et al. also constructed from F . We view this as a hierarchical group
signature scheme of depth 1, but we denote its public key map and private key map
by gpk and gsk respectively instead of hpk and hsk to distinguish them from the
public key map and private key maps of the hierarchical group signature scheme we
are constructing. We also use F to construct a NIZK for a language LHGS defined
below.

The Basic Idea of the Construction

The key generator is constructed as follows. First keys for the group signature
scheme GS are generated, where the signers correspond to the signers in the hier-
archical group signature scheme we are constructing, but the root group manager is
not given its usual private opening key gsk (ω). Instead, each group manager is given
a key pair (pkβ, skβ) of the GM encryption scheme. When a signer Sα signs a mes-
sage m it first forms a group signature σ of the message m. Suppose that the signer
corresponds to the path α0, . . . , αδ in the tree, i.e., α0 = ω and αδ = α. Then the
signer forms a chain of ciphertexts C ← (Epkα0

(pkα1
), . . . , Epkαδ−1

(pkαδ)). Finally,

it forms a NIZK π that the chain of ciphertexts C is formed in this way, and that the
encrypted path corresponds to the identity of the signer hidden in the group signa-
ture σ. The hierarchical group signature consists of the tuple (σ,C,C′, π). Verifica-
tion of a signature corresponds to verifying the NIZK. Opening a signature using the
private opening key of a group manager at depth l corresponds to decrypting the lth
ciphertext. In the above description we have not mentioned how it is ensured that
only one group manager on each level opens a signature to something other than
⊥. This is done using an additional chain C′ ± gets(Epk (pkα0

), . . . , Epk (pkαδ−1
)).

126 CHAPTER 9. A CONSTRUCTIONS UNDER GENERAL ASSUMPTIONS

9.2 The Algorithms of the Scheme

Algorithm 9.2.1 (Key Generation, HGKg(1κ, T)). The key generation algorithm
is defined as follows.

1. Generate a random string ξ ∈ {0, 1}∗ sufficiently long for a NIZK based on F
for the language LHGS defined below. Generate (pk , sk)← Kggm(1κ).

2. For each node α in V(T), compute (pkα, skα)← Kggm(1κ).

3. Let I be the bĳection mapping each list (pkα0
, . . . , pkαδ) such that α0, . . . , αδ

is a path in T to αδ, where α0 = ω and αδ ∈ L(T). Define I to map anything
else to ⊥. Denote by TGS the tree with root ω and leaves L(T).

4. Run (gpk , gsk)← GKg(1κ, TGS) to generate keys for a group signature scheme,
and set (hpk (α), hsk (α))← ((pkα, gpk(α)), gsk (α)) for α ∈ L(T).

5. Define the keys of the root ω by (hpk (ω), hsk (ω))← ((ξ, pk , pkω, gpk (ω)), skω)
and set (hpk (β), hsk (β))← (pkβ , skβ) for β ∈ V(T) \ L(T), β 6= ω. Note that
hsk (ω) does not contain gsk (ω).

6. Output (hpk , hsk).

((ξ, pk , pkω, gpk (ω)), skω)

(pkβ3
, skβ3)

((pkα7
, gpk (α7)), gsk(α7))

Figure 9.1: The figure illustrates the public and private keys along a path in the
tree of keys corresponding to Figure 3.1. The edges along the path have thick edges.
Each node contains a pair of public and private keys.

The result of running the above algorithm is illustrated in Figure 9.1. We are
now ready to define the NIZK we need in our construction.

We denote by πhgs = (Phgs, Vhgs) a NIZK of the language LHGS consisting of
tuples (T, hpk ,m, σ, C,C′) such that there exists public keys pk0, . . . , pk δ, gsk(α)
and random strings r0, r

′
0, . . . , rδ−1, r

′
δ−1, rδ such that

α0 = ω ,

(Cl, C
′
l) = (Epkαl

((pkαl+1
, r′l), rl), Epk (pkαl , r

′
l)) for l = 0, . . . , δ − 1 ,

α = I(pkα0
, . . . , pkαδ−1

) , and σ = GSigrδ(m,TGS , gpk , gsk(α)) .

9.2. THE ALGORITHMS OF THE SCHEME 127

The NIZK now enables us to give a succinct description of the signature al-
gorithm.

Algorithm 9.2.2 (Signing, HGSig(m,T, hpk , hsk(α))). Let α0, . . . , αδ be the
path to the signer Sα, i.e., ω = α0 and αδ = α. Choose ri and r′i randomly and
compute

σ = GSigrδ (m,TGS , gpk , gsk(α))

(Cl, C
′
l) = (Egm

pkαl
((pkαl+1

, r′l), rl), E
gm
pk (pkαl , r

′
l)) for l = 0, . . . , δ − 1 ,

π = Phgs((T, hpk ,m, σ, C,C
′),

(pkα0
, . . . , pkαδ , gsk (α), r0, r

′
0, . . . , rδ−1, r

′
δ−1, rδ), ξ) .

Then output (σ,C,C′, π).

Algorithm 9.2.3 (Verification, HGVf(T, hpk ,m, (σ,C,C′, π))). On input a can-
didate signature (σ,C,C′, π) output Vhgs((T, hpk ,m, σ, C,C

′), π, ξ).

Algorithm 9.2.4 (Opening, HGOpen(T, gpk , gsk(β),m, (σ,C,C′, π))). Let l ←
levelT (β). If HGVf(T , hpk , m, (σ,C,C′, π)) = 0, then return ⊥. Otherwise, com-
pute (pkα, r′) = Dgm

skβ
(Cl) and verify that C′

l = Egm
pk (pkβ , r

′) and α ∈ β. Return α
if this is the case and return ⊥ otherwise.

Remark 9.2.1. The scheme described above differs from the scheme in [84]. As
explained in Remark 8.2.2 the original definition in [84] did not capture all the
properties we expect from a hierarchical group signature scheme. We use a stronger
definition in this thesis. The role of the new ciphertexts C′

l is to allow a group
manager to ensure that no other group manager can open a signature to something
other than ⊥.

Remark 9.2.2. In Section 9.4 we describe an alternative construction which seems
better suited if we try to eliminate the trusted key generator, but which is harder
to analyze.

Remark 9.2.3. Suppose we want to instantiate the scheme using the RSA-function.
Then an alternative to using the restrictive definition of a trapdoor permutation
family and applying Yao’s construction [8] to turn the RSA-function into a trapdoor
permutation family with domain {0, 1}κ, is to modify the Goldwasser-Micali encryp-
tion algorithm as follows. It repeatedly chooses r until f(r) < 2κ. This implies
that f(r) < N for all κ-bit moduli N and that the first part of a Goldwasser-Micali
ciphertext is a uniformly distributed element in {0, 1}κ. The probability that r has
this property is at least 1/4. Given that we put a polynomial bound on the number
of tried r, the encryption process fails with negligible probability. It is easy to see
that the proof of anonymity goes through, and the polynomial indistinguishability
of the scheme follows from the polynomial indistinguishability of the original, since
the original scheme uses an r with f(r) < 2κ with probability at least 1/4. To

128 CHAPTER 9. A CONSTRUCTIONS UNDER GENERAL ASSUMPTIONS

change the construction in this way we do need to modify the definition of a public
key encryption scheme such that it allows the encryption algorithm to fail with
negligible probability.

9.3 Proof of Security

We prove the following lemma on the security of our construction, from which
Theorem 9.1.1 follows immediately.

Lemma 9.3.1. If F is a family of trapdoor permutations, then HGS is secure.

Proof. We prove the hierarchical anonymity and the hierarchical traceability of
HGS separately.

Proof of Hierarchical Anonymity. Suppose to the contrary that an adversary
A breaks hierarchical anonymity. Then we have Advanon

HGS,A(κ, T) ≥ 1/κc for some
polynomial size tree T , constant c > 0 and κ in an infinite index setN . We construct
a machine A′ that runs A as a blackbox and breaks the hierarchical anonymity of
GS (recall that hierarchical anonymity is a strict generalization of full anonymity).

Definition of A′. The adversary A′ simulates the hierarchical anonymity experi-
ment, Experiment 8.2.1, with HGS to A. It also plays the role of adversary in
Experiment 8.2.1 with GS.

The key generation is simulated as follows. First the NIZK simulator Shgs is
invoked to compute the reference string with trapdoor (ξ, simstate). The string ξ
is used instead of a random string. Recall that TGS denotes the very simple tree
having ω, the root of T , as root, and children L(T). The adversary A′ waits until
it receives gpk and (gsk(α))α∈L(T). Then it simulates the remaining part of the key
generation honestly except that it uses the received values, and it does not define
gsk(ω) at all. Thus, the keys of all intermediate group managers are generated by
A′. In each iteration in the simulated experiment A may request gsk(α) for some
group manager Mα and the simulator can answer this request honestly.

Queries to the HGOpen(T, hpk , hsk (·), ·, ·)-oracle are simulated in the following
way. Given a query on the form (β,m, (σ,C,C′, π)), A′ first checks that β ∈ V(T)
and

HGVf(T, hpk ,m, (σ,C,C′, π)) = 1 .

If not it returns ⊥. If so it asks its GOpen(TGS , gpk , gsk(·), ·, ·)-oracle the question
(ω,m, σ), to which it replies by α. If α 6∈ L(T) it returns ⊥. Otherwise, let
α0, . . . , αδ be its corresponding path, i.e., α0 = ω and αδ = α. Let β be on depth
l. Then A′ instructs the HGOpen(T, hpk , hsk (·), ·, ·)-oracle to return αl+1 if β = αl
and ⊥ otherwise. We expect that the answers computed in this way are correct,
but this remains to be proved.

9.3. PROOF OF SECURITY 129

When A outputs (α(0), α(1),m), A′ outputs this as well. Let α
(0)
t = α

(1)
t

be the least common ancestor of α(0) and α(1), and let α(0), α
(0)
δ−1, . . . , α

(0)
t and

α(1), α
(1)
δ−1, . . . , α

(1)
t be the paths to this index.

When A′ is given a signature σ from its experiment it does the following.
It computes the ciphertexts C0, C

′
0, . . . , Ct−1, C

′
t−1 honestly. It chooses random

samples Ct, C
′
t, . . . , Cδ−1, C

′
δ−1 according to the distribution Dind guaranteed to ex-

ist by Lemma 8.4.3. Here we in fact need to apply Lemma 10.2.8 and Lemma
8.4.2 to increase the length of messages that can be encrypted, and then apply
Lemma 8.4.3, but we abuse notation below. Then it invokes Shgs of the NIZK on
((T, hpk ,m, σ, C,C′), ξ, simstate) to form a proof π, and hands (σ,C,C′, π) to A.

Eventually A outputs a bit d, which A′ then returns as output.

Analysis of A′. We divide our analysis into three claims. Denote by Hb
c,o,p the

machine that on input κ simply simulates Experiment 8.2.1 with HGS to A and
outputs the result. Denote by Hb

c,o the machine which is identical to Hb
c,o,p ex-

cept that it generates ξ as A′ and also simulates the NIZK π exactly as A′ does.
Thus, except from the fact that the proof π in the challenge signature is simu-
lated, Hb

c,o simulates Experiment 8.2.1 with HGS to A. We also define Hb
c to be

identical to Hb
c,o except that it simulates the HGOpen(T, hpk , hsk(·), ·, ·)-oracle to

A precisely as A′ does. Finally, we define Hb to be identical to Hb
c except that the

Ct, C
′
t, . . . , Cδ−1, C

′
δ−1 in the challenge signature are generated precisely as A′ does.

Thus, by construction Hb is identically distributed to Expanon−b
GS,A′ (κ). This gives

us a chain of distributions Hb
c,o,p, H

b
c,o, H

b
c , H

b starting with Expanon−b
HGS,A(κ) and end-

ing with Expanon−b
GS,A′ (κ). In the following claims we show that the distance between

each pair of distributions is negligible.

Claim 1. There exists a negligible function ε1(κ) such that

|Pr[Hb
c,o,p(κ) = 1]− Pr[Hb

c,o(κ) = 1]| < ε1(κ) .

Proof. The proof is based on the adaptive zero-knowledge of the NIZK πhgs =
(Phgs, Vhgs, Shgs).

Consider the adversary Aadzk defined as follows. It waits for a string ξ from
Experiment 2.4.11 or 2.4.12. Then it starts the simulation of Hc,o except that it uses
ξ instead of choosing it randomly. Then it continues the simulation of Hc,o until it is
about to compute the NIZK π. Instead of computing the NIZK, it requests a NIZK
π from Experiment 2.4.11 or 2.4.12. More precisely, it hands (T, hpk ,m, σ, C,C′)
and (pk0, . . . , pk δ, gsk (α), r0, r

′
0, . . . , rδ−1, r

′
δ−1, rδ) to the experiment. Finally, it

continues the simulation of Hc,o until it halts.
It follows that the random variables Hb

c,o,p(κ) and Hb
c,o(κ) are identically dis-

tributed to Expad−ind−0
πhgs,Aadzk

(κ) and Expad−ind−1
πhgs,Aadzk

(κ) respectively. The adaptive zero-

knowledge property of the NIZK implies that there exists a negligible function ε1(κ)
such that

|Expad−ind−0
πhgs,Aadzk

(κ)−Expad−ind−1
πhgs,Aadzk

(κ)| < ε1(κ) ,

130 CHAPTER 9. A CONSTRUCTIONS UNDER GENERAL ASSUMPTIONS

and the claim follows.

Claim 2. There exists a negligible function ε2(κ) such that

|Pr[Hb
c,o(κ) = 1]− Pr[Hb

c (κ) = 1]| < ε2(κ) .

Proof. The proof of this claim follows from the simulation soundness and the sound-
ness of the NIZK, and we give the details below. First we note that any query
(β,m, (σ,C,C′, π)) to the GOpen(TGS , gpk , gsk (·), ·, ·)-oracle such that
Vhgs((T, hpk ,m, σ, C,C

′, ξ′), π, ξ) = 0 is answered correctly.
Consider now a query (β,m, (σ,C,C′, π)), where π is a valid proof, that is,

Vhgs((T, hpk ,m, σ, C,C
′), π, ξ) = 1, and still (T, hpk ,m, σ, C,C′) 6∈ LHGS. We argue

that such queries are asked with negligible probability.
We construct an adversaryAsims (orAs) against simulation soundness (or sound-

ness), i.e., Experiment 2.4.13 (or the soundness property of Definition 2.4.18),
as follows. It accepts the random string ξ as input and simulates Hb

c (or Hb
c,o).

Whenever A asks a query (β,m, (σ,C,C′, π)), Asims (or As) interrupts the simula-
tion of Hb

c (or Hb
c,o) and checks whether the query is such that (T, hpk ,m, σ, C,C′) ∈

LHGS. This is easily done using the keys to the encryption schemes and the group
signature scheme. If (T, hpk ,m, σ, C,C′) 6∈ LHGS, then Asims (or As) outputs
((T, hpk ,m, σ, C,C′), π). From the simulation soundness (or soundness) we con-
clude that such queries are asked with negligible probability.

Consider a query (β,m, (σ,C,C′, π)) to the HGOpen(T, hpk , hsk(·), ·, ·)-oracle.
Define α0 = ω and define αl for l = 1, . . . , δ by

αl = HGOpen(T, hpk , hsk(αl−1),m, (σ,C,C
′, π)) .

We may assume without loss (T, hpk ,m, σ, C,C′) ∈ LHGS, since this happens with
overwhelming probability for queries that verifies correctly.

This means that a query is answered incorrectly only if β is on level l, β 6= αl
and still β′ = HGOpen(T, hpk , hsk(β),m, (σ,C,C′, π)) with β′ ∈ β. This is one of
the two places in the proof where we use the ciphertexts in the list C′ in an essential
way. Without them, it is not only possible in theory to compute a signature that
opens “correctly” using two distinct secret keys. It is an easy exercise to see that
using the Goldwasser-Micali encryption scheme it would be easy to compute such
a signature. Thus, we must argue that the ciphertexts in the list C′ prohibits the
construction of such signatures.

By the definition of the open algorithm the above anomaly can only happen
if (pkβ′ , r′) = Dgm

skβ
(Cl) and Epk (pkβ , r

′) = C′
l . This is a contradiction and we

conclude that the claim is true, since we know that Egm
sk (C′

l) = pkαl .

Claim 3. There exists a negligible function ε3(κ) such that

|Pr[Hb
c (κ) = 1]− Pr[Hb(κ) = 1]| < ε3(κ) .

9.3. PROOF OF SECURITY 131

Proof. This follows from the polynomial indistinguishability and the anonymity of
the Goldwasser-Micali encryption scheme GM using Theorem 9.1.4, Lemma 9.1.5,
and Lemma 8.4.3 by use of a standard hybrid argument. We give details below.

We define a sequence of hybrid machines Aind,l for l = t, . . . , δ − 1 as follows.
Aind,l simulates Hb

c until it has computed (Ct, C
′
t, . . . , Cδ−1, C

′
δ−1). Then it com-

putes samples (C̄t, C̄
′
t, . . . , C̄l, C̄

′
l) distributed according to the Dind distribution

guaranteed by Lemma 8.4.3. Finally, it replaces

(Ct, C
′
t, . . . , Cδ−1, C

′
δ−1)

in its simulation by

(C̄t, C̄
′
t, . . . , C̄l, C̄

′
l , Cl+1, C

′
l+1, . . . , Cδ−1, C

′
δ−1)

and continues the simulation of Hb
c . By construction, Aind,t−1(κ) and Aind,δ−1(κ)

are identically distributed to Hb
c (κ) and Hb(κ) respectively.

Suppose that the claim is false, i.e., there exists a constant c and an infinite
index set N ′ such that

|Pr[Aind,t−1 = 1]− Pr[Aind,δ−1 = 1]| ≥ κ−c

for κ ∈ N ′. A hybrid argument implies that there exists a fixed t ≤ l < δ − 1 such
that

|Pr[Aind,l−1 = 1]− Pr[Aind,l = 1]| ≥ κ−c/δ .

Denote by A1
ind,l−1 the machine that simulates Aind,l−1 except that it also replaces

Cl by a sample C̄l distributed according to Dind. If we write A0
ind,l−1 instead of

Aind,l−1 and A2
ind,l−1 instead of Aind,l the triangle inequality implies that

|Pr[Aj−1
ind,l−1 = 1]− Pr[Ajind,l−1 = 1]| ≥ 1

2δκc
.

for a fixed j = {1, 2}.
We consider the case j = 1. The other case follows by similar arguments.

Consider the adversary Aind for the indistinguishability experiment of the previous

section, Experiment 8.4.2, run with GM. It chooses β
(b)
δ randomly from L(T).

Let β0, . . . , βδ be the corresponding path, i.e., ω = β0 and βδ = β
(b)
δ . Then it

simulates Aj−1
ind,l−1 except that the keys (pkβl , skβl) are not generated. Instead it

uses the key it receives from the experiment. It continues the simulation and hands
(pkβl+1

, pkβl+1
) to its experiment. The experiment returns an element C̄l that is

used instead of Cl.

If A requests the private key skβl , the simulation can not be continued and Aind

outputs 0. Similarly, if A outputs (α(0), α(1)), where α(b) 6= β(b), then Aind outputs
0. Since β(b) is randomly chosen, we have Pr[α(b) = β(b)] = 1/|L(T)|.

132 CHAPTER 9. A CONSTRUCTIONS UNDER GENERAL ASSUMPTIONS

If neither of the two events above occur, Aind continues the simulation. We have

|Pr[Expind−b
GM,Aind

(κ) = 1]− Pr[Exp
ind−Dind

GM,Aind
(κ) = 1]|

= |Pr[A0
ind,l−1 = 1 ∧ α(b) = β(b)]− Pr[Aind1,l−1 = 1 ∧ α(b) = β(b)]|

= (1/|L(T)|)|Pr[A0
ind,l−1 = 1]− Pr[A1

ind,l−1 = 1]| ≥ 1/(|L(T)|δκc) .

The first equality follows by construction. The second equality follows by independ-
ence. In view of Theorem 9.1.4, Lemma 9.1.5, and Lemma 8.4.3 this contradicts
either the indistinguishability or the anonymity of GM. Thus, the claim is true.

Claim 4. The hierarchical anonymity of GS is broken.

Proof. From Claim 1, Claim 2, and Claim 3 follows that

|Pr[Hb
c,o,p(κ) = 1]− Pr[Hb(κ) = 1]| < ε1(κ) + ε2(κ) + ε3(κ) ,

which gives

|Pr[Expanon−0
GS,A′ (κ) = 1]− Pr[Expanon−1

GS,A′ (κ) = 1]|
≥ |Pr[Expanon−0

HGS,A(κ) = 1]− Pr[Expanon−1
HGS,A(κ) = 1]|

−2(ε1(κ) + ε2(κ) + ε3(κ)) .

The assumption about A implies that the hierarchical anonymity is broken.

Proof of Hierarchical Traceability. Suppose to the contrary that A breaks
the hierarchical traceability of HGS. Then Advtrace

HGS,A(κ, T) ≥ 1/κc for some poly-
nomial size tree T , constant c > 0 and κ in an infinite index set N . We construct
a machine A′ that runs A as a blackbox and breaks the hierarchical traceability of
GS and thus its full traceability.

Definition of A′. The adversary A′ simulates the hierarchical traceability experi-
ment, Experiment 8.2.2, with HGS to A. It also plays the role of the adversary in
Experiment 8.2.2 with GS.

The key generation is simulated as follows. First the NIZK simulator is invoked
to compute a reference string with a trapdoor (ξ, simstate). The string ξ is used
instead of a random string. Recall that TGS denotes the tree having ω, the root
of T , as root, and children L(T). The adversary A′ waits until it receives the
keys (gpk (ω), gsk (ω)) from its experiment. Then it simulates the key generation
honestly except that it uses the received values, and it does not define gsk(α) for any
α ∈ L(T) at all. Thus, the keys of all intermediate group managers are generated
by A′.

In each iteration in the experiment simulated to A, it may request hsk(α) for
some signer Sα. When this happens A′ requests gsk(α) from its experiment, and
hands gsk(α) to A.

9.3. PROOF OF SECURITY 133

When A queries its HGSig(·, T, hpk , hsk(·))-oracle on (m, α) the reply is com-
puted as follows. First A′ queries its GSig(·, TGS , gpk , gsk(·))-oracle on (m, α). The
answer is a GS signature σ. Then A′ computes C0, C

′
0, . . . , Cδ−1, C

′
δ−1 as defined

by HGSig. Finally, it uses the NIZK simulator Shgs on input ((T , hpk , m, σ, C,
C′), ξ, simstate) to get a simulated proof π, and hands (σ,C,C′, π) to A.

At some point A outputs a message-signature pair (m, (σ,C,C′, π)). Then A′

outputs (m,σ). This concludes the definition of A′.

Analysis of A′. We divide our analysis into several claims. Denote by Hπ,p the ma-
chine that simulates Experiment 8.2.2 with HGS to A, and outputs 1 if the experi-
ment outputs 1 and the output (m, (σ,C,C′, π)) of A satisfies (T, hpk ,m, σ, C,C′) ∈
LHGS. Consider such an execution and define α0 ← ω and αl for l = 1, . . . , δ by

αl = HGOpen(T, hpk , hsk(αl−1),m, (σ,C,C
′, π)) .

Consider how the experiment can output 1. We argue that there does not exist a β
on level l in T such that β 6= αl and β′ = HGOpen(T, hpk , hsk(β),m, (σ,C,C′, π))
with β′ ∈ β. If it did, then we would have (pkβ′ , r′) = Dgm

skβ
(Cl) and Egm

pk (pkβ , r
′) =

C′
l , but this contradicts the fact that Dgm

sk (C′
l) = pkαl . Thus, the only explanation

for the output 1 is that αδ 6∈ C.
Denote by Hπ the machine that is identical to Hπ,p except that it simulates the

answers from the HGSig(·, T, hpk , hsk (·))-oracle to A precisely as A′ does.

Claim 5. There exists a negligible function ε1(κ) such that

Pr[Exptrace
HGS,A(κ) = 1] ≤ Pr[Hπ,p(κ) = 1] + ε1(κ) .

Proof. The claim follows from the soundness of the NIZK. Denote by Eπ,p the event
that the output (m, (σ,C,C′, π)) of A satisfies (T, hpk ,m, σ, C,C′) ∈ LHGS. From
the soundness of the NIZK follows that Pr[Exptrace

HGS,A(κ) = 1 ∧ Eπ,p] is negligible.

By definition we have that Pr[Hπ,p(κ) = 1] = Pr[Exptrace
HGS,A(κ) = 1 ∧ Eπ,p]. The

claim follows.

Claim 6. There exists a negligible function ε2(κ) such that

|Pr[Hπ(κ) = 1]− Pr[Hπ,p(κ) = 1]| < ε2(κ) .

Proof. The claim follows from the adaptive zero-knowledge of the NIZK. We con-
struct an adversary Aadzk against the adaptive zero-knowledge, Experiments 2.4.11
and 2.4.12, as follows.

It simulates Hπ except for the following two modifications. Firstly, it uses the
random string ξ from the experiment instead of generating its own. Secondly,
instead of invoking the simulator Shgs on input ((T, hpk ,m, σ, C,C′), ξ, simstate) to
produce a NIZK π it requests a NIZK of (T, hpk ,m, σ, C,C′) from its experiment.

134 CHAPTER 9. A CONSTRUCTIONS UNDER GENERAL ASSUMPTIONS

To do this it must also hand a witness to the experiment, but this is not a problem
since the remainder of the signature is generated honestly. It follows that

|Pr[Hπ,p(κ) = 1]− Pr[Hπ(κ) = 1]|
= |Pr[Expadzk−0

πhgs,Aadzk
(κ) = 1]− Pr[Expadzk−1

πhgs,Aadzk
(κ) = 1]| < ε2(κ) ,

for some negligible function ε2(κ).

Claim 7. Pr[Hπ(κ) = 1] ≤ Pr[Exptrace
GS,A′(κ) = 1].

Proof. All inputs to A in the simulation of Hπ are identically distributed to the
corresponding inputs in Experiment 8.2.2. The only difference in how the output of
Hπ and the output in the traceability experiment are defined is that Hπ outputs 1
if the output (m, (σ,C,C′, π)) of A satisfies (T, hpk ,m, σ, C,C′) ∈ LHGS and α 6∈ C,
whereas the experiment outputs 1 if GVf(TGS , gpk ,m, σ) = 1 and αδ 6∈ C. The
former implies the latter and the claim follows.

Claim 8. The hierarchical traceability of GS is broken.

Proof. From Claim 5, Claim 6, and Claim 7 follows that

Pr[Exptrace
HGS,A(κ) = 1] ≤ Pr[Hπ,p(κ) = 1] + ε1(κ)

≤ Pr[Hπ(κ) = 1] + ε1(κ) + ε2(κ) ≤ Pr[Exptrace
GS,A′(κ) = 1] + ε1(κ) + ε2(κ) .

The claim now follows from the assumption that HGS is broken by A.

Conclusion of Proof. If HGS is not hierarchically anonymous, then by Claim
4 neither is GS. If HGS is not hierarchically traceable, then by Claim 8 neither is
GS. This concludes the proof.

9.4 An Alternative Construction

The construction we describe above is not a good starting point if we want to find
a hierarchical group signature scheme for the adaptive setting. In this section we
sketch an alternative construction. Let SS = (SSKg, Sig,Vf) be a signature scheme.
For each group manager Mα and signer Sα, (spkα, sskα) ← SSKg(1κ), and keys
(pkα, skα) ← Kggm(1κ) to a Goldwasser-Micali encryption scheme are generated.
Then for each child α of β ∈ V(T), σβ(α) ← Sigsskβ

(spkα, pkα) is computed. For
each α ∈ V(T) \ L(T) \ {ω} we set hpk (α) ← (spkα, pkα, σβ(α)), where α ∈ β,
and hsk (α) ← skα. For each α ∈ L(T) set hpk (α) ← (spkα, pkα, σβ(α)), where
α ∈ β, and hsk (α)← (sskα, skα). For the root ω we set hpk (ω)← (spkω, pkω) and
hsk(ω)← skω.

9.4. AN ALTERNATIVE CONSTRUCTION 135

Consider a signer Sα corresponding to a path α0, . . . , αδ, where α0 = ω and
αδ = α. To sign a message m the signer computes

Cl ← Egm
pkαl

((σαl (αl+1), r
′
l), rl) , for l = 0, . . . , δ − 1 ,

C′
l ← Egm

pk (pkαl , r
′
l) , for l = 0, . . . , δ − 1 , and

Cδ ← Egm
pkαδ

(Sigsskα
(m)))

and provides a NIZK π that (C,C′) is formed as above with pkα0
= pkω. The

signature consists of the tuple (C,C′, π).

To verify a signature (C,C′, π) the verifier simply checks the NIZK π. To open
a signature, a group manager Mβ on depth l first verifies the signature. If it is
not valid, it returns ⊥. Otherwise it computes (σ, r′)← Dgm

skβ
(Cl). If σ is equal to

σβ(α) for some α ∈ β and Egm
pk (pkβ , 1) = C′

l , then it returns α and otherwise ⊥.

This construction is a strict generalization of the construction in [9] except
that we require that the encryption scheme used is anonymous. We believe that
the construction is provably secure under the existence of a family of trapdoor
permutations. However, as part of the proof we must essentially redo the analysis
of the CCA2-secure encryption scheme of Sahai [77], and the group signature scheme
of Bellare et al. [9], which makes the proof more complex than the proof for the
construction we detail in this thesis.

A potential advantage of this scheme is that key generation need not be per-
formed centrally. Each group manager Mβ could also be given the private signature
key sskβ which allows it to generate (spkα, pkα) and (sskα, skα) for a child Mα or
Sα by itself. Thus, a group manager could issue keys without interacting with any
other group manager. As we will see in the next section, it is far from obvious how
to define the security of such a scheme.

On Eliminating the Trusted Key Generator

We have defined hierarchical group signatures using a trusted key generator. This is
a natural first step when trying to understand a new notion, but there are situations
where one would like a hierarchical group signature scheme without a trusted party.

If there exists a set of parties of which the majority is trusted, general multiparty
techniques can be used to replace the trusted key generator by the secure evaluation
of a function. Although this solves the problem in some sense it introduces a trust
hierarchy that is inconsistent with the hierarchy of the group managers and signers.

Consider now the security of a construction without a trusted key generator.
In this case hierarchical anonymity and hierarchical traceability do not suffice to
ensure security. The problem is that the experiments only consider the advantage
of an adversary when all keys are generated honestly. Thus, all bets are off if this is
not the case. It is, however, not clear what a definition of security for hierarchical
group signatures without a trusted key generator should look like.

136 CHAPTER 9. A CONSTRUCTIONS UNDER GENERAL ASSUMPTIONS

The adversary should probably have the power to choose its keys adaptively,
based on the keys and signatures of honest parties. There are many subtle issues.
For example, without a trusted key generator the default for hierarchical group
signatures is that not only trees but general acyclic graphs of group managers are
allowed. Is this what we want? If only trees are supposed to be allowed, certificates
must embed additional information that restricts how a certificate chain may look
and the NIZK must consider this as well. Other interesting questions are: Is there
a well defined tree? Do all parties know what the tree looks like? Who generates
the common random string used by the NIZKs?

We believe that the alternative construction described above is well suited to a
setting without a trusted key generator, but without a rigorous definition of security
we cannot claim anything.

Chapter 10

A Construction under Standard

Assumptions

10.1 About the Construction

In this chapter we construct an almost practical scheme for hierarchical group
signatures. We give an explicit construction where the details of all subprotocols
are completely specified. Then we prove the security of our construction in the
random oracle model under the discrete logarithm assumption and the strong RSA
assumption.

The primitives we use to achieve this result are the ElGamal encryption scheme,
the Cramer-Shoup encryption scheme, the Cramer-Shoup signature scheme, the
Chaum-van Heĳst-Pfitzmann hash function, and the Shamir hash function.

An Informal Description of Our Construction

Our construction is quite complex, so before presenting any details we give an
informal description of the key ideas. Recall from Section 10.2 the definition and
basic properties of the ElGamal encryption scheme [42]. It is well known that the
ElGamal encryption scheme is semantically secure under the DDH-assumption, but
it is easy to see that it is also anonymous, as long as a fixed group is used for all
parties. We exploit both properties in our construction. Each group manager Mβ

holds a private key xβ and a public key yβ = gxβ of an ElGamal encryption scheme.

Recall from Section 10.2 the definition of the Cramer-Shoup signature scheme
[40]. It is provably secure under the strong RSA-assumption. We exploit this to
form the private keys of the signers. The private key of a signer Sα is a Cramer-
Shoup signature σα = Sigcs(yα1 , . . . , yαδ−1

) of the public keys corresponding to the
path α0, α1, . . . , αδ from the root ω = α0 to the leaf α = αδ.

To form a signature of a message m the signer first computes a chain of cipher-

137

138CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

texts on the form

((u0, v0, u
′
0, v

′
0), . . . , (uδ−1, vδ−1, u

′
δ−1, v

′
δ−1))

= (Eyα0
(yα1), Eyα0

(1), . . . , Eyαδ−1
(yαδ), Eyαδ−1

(1)) .

Then the signer computes a commitment C(σα) of the signature σα. Finally, it com-
putes an honest verifier zero-knowledge proof of knowledge π(m) that the cipher-
texts above form a chain and that C(σα) hides a signature of the list (yα1 , . . . , yαδ−1

)
of the public keys used to form the chain of ciphertexts. The proof is given in the
random oracle model and the message m to be signed is given as a prefix to the
query to the random oracle. Thus, the complete signature is given by

((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , C(σα), π(m)) .

Recall from Section 2.2 that in a proof in the random oracle model one or several
cryptographic hash functions are modeled by randomly chosen functions. Intuit-
ively, this means that if a signer Sα can produce a valid signature, we can, by
rewinding, extract a signature of the list of public keys corresponding to the path
from the root to the signer. Thus, a signature can only be formed if the signer is
legitimate and if it has formed the chain correctly.

The pair (u′l, v
′
l) may seem useless, but it allows a group manager Mβ on level l

to determine if the ciphertext (ul, vl) in a signature is computed using its public key
yβ or not, and thus avoid that the opening of a signature gives the wrong result.

An Informal Description of the Proof of Knowledge

The main obstacle to find an efficient hierarchical group signature scheme fol-
lowing our approach is how to prove efficiently that C(σα) is a commitment of
a signature σα of the list of public keys (yα1 , . . . , yαδ−1

) used to form the chain
((u0, v0, u

′
0, v

′
0), . . . , (uδ−1, vδ−1, u

′
δ−1, v

′
δ−1)). We construct a reasonably practical

honest verifier zero-knowledge public coin proof for this relation by carefully select-
ing and combining a variety of cryptographic primitives and techniques.

Let q0, . . . , q3 be primes such that qi = 2qi+1 + 1 for i = 0, 1, 2. Recall from
Section 10.2 that such a list of primes is called a Cunningham chain and that it
exists under mild assumptions on the distribution of primes. There is a subgroup
Gqi+1 ⊂ Z∗

qi of order qi+1 for i = 0, 1, 2. Denote by gi and yi fixed and independently
chosen generators of Gqi for i = 1, 2, 3, i.e., loggi yi is not known to any party in
the protocol. Thus, we can form a commitment of a value yα ∈ Gq3 in three ways,
as

(yt
′′′

3 gs
′′′

3 , ys
′′′

3 yα) , (yt
′′

2 g
s′′

2 , ys
′′

2 gyα2) , and (yt
′

1 g
s′

1 , y
s′

1 g
gyα2
1) ,

where t′′′, s′′′ ∈ Zq3 , t′′, s′′ ∈ Zq2 , and t′, s′ ∈ Zq1 are randomly chosen. By extend-
ing the ideas of Stadler [82] we can give a reasonably practical cut-and-choose proof
that the elements hidden in two such commitments are identical.

Recall from Section 10.2 that the collision-free Chaum-Heĳst-Pfitzmann hash
function [35] is defined by HCHP : Zδq2 → Gq2 , HCHP : (z1, . . . , zδ) 7→

∏δ
l=1 h

zl
l ,

10.1. ABOUT THE CONSTRUCTION 139

where h1, . . . , hδ ∈ Gq2 are randomly chosen, i.e., no party knows a non-trivial
representation of 1 ∈ Gq2 in these elements.

We employ ElGamal over Gq3 . This means that the public keys yα1 , . . . , yαδ
belong to Gq3 . Although it is not trivial, the reader should not find it too hard to
imagine that Stadler-techniques can be used to prove that the public keys used for
encryption are identical to values hidden in a list of commitments formed as

((µ0, ν0), . . . , (µδ−1, νδ−1)) = ((y
t′′0
2 g

s′′0
2 , y

s′′0
2 h

yα1

1), . . . , (y
t′′δ−1

2 g
s′′δ−1

2 , y
s′′δ−1

2 h
yαδ
δ)) .

The importance of this is that if we take the product of the commitments we get a
commitment of HCHP(yα1 , . . . , yαδ), i.e.,

(δ−1
∏

i=0

µi,

δ−1
∏

i=0

νi

)

=

(

yt
′′

2 g
s′′

2 , ys
′′

2

δ
∏

i=1

h
yαi
i

)

, (10.1)

for some t′′, s′′ ∈ Zq2 . Thus, at this point we have devised a way for the signer
to verifiably commit to the hash value of the keys it used to form the chain of
ciphertexts. This is a key step in the construction.

Recall that the signer commits to a Cramer-Shoup signature σα of the list of
public keys it uses to form the chain of ciphertexts. The Cramer-Shoup signature
scheme uses an RSA-modulus N and elements from the subgroup SQN of squares
in Z∗

N, and it is parameterized by two collision-free hash functions. We refer the
reader to Section 10.2 for details on this. The first hash function is used to compute
a message digest of the message to be signed, i.e., the list (yα1 , . . . , yαδ) of public
keys. Above we have sketched how the signer can verifiably form a commitment of
the HCHP hash value of this message, so it is only natural that we let this be the
first of the two hash functions in the signature scheme. In the signature scheme
the message digest lives in the exponent of an element in SQN. To move the hash
value up in the exponent and to change group from Gq1 to SQN, the signer forms
two commitments

(

yt
′

1 g
s′

1 , y
s′

1 g
HCHP(yα1 ,...,yαδ)

1

)

and ytgH
CHP(yα1 ,...,yαδ) .

Then it gives a cut-and-choose proof that the exponent in the left commitment
equals the value committed to in the product (10.1). It also proves that the expo-
nents in the two commitments are equal. Thus, at this point the signer has proved
that it holds a commitment over SQN of the hash value of the public keys it used
to form the chain of ciphertexts.

The second hash function used in the Cramer-Shoup signature scheme is applied
to a single element in SQN. Since HCHP is not collision-free on such inputs, we use
the Shamir hash function defined by HSh

(N,g) : Z → SQN, x 7→ gx mod N instead.
A more detailed account of this function is given in Section 10.2. Using similar
techniques as explained above the signer evaluates the hash function and moves the
result into the exponent, by two Stadler-like cut-and-choose proofs.

140CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

Given the two hash values in the exponents of two commitments, standard
techniques can be used to prove that the commitment C(σα) is a commitment of
the Cramer-Shoup signature σα of the list of public keys used to form the chain of
ciphertexts.

10.2 Building Blocks

In this section we introduce some assumptions and concrete primitives we need to
achieve our results. The reader should at least browse this section, since we modify
some primitives slightly and introduce additional notation.

A Variation of the Cramer-Shoup Signature Scheme

Cramer and Shoup [40] introduce a signature scheme based on the strong RSA-
assumption. We describe a slightly modified scheme. The Cramer-Shoup signature
scheme SScs

F1,F2
= (SSKgcs

F1,F2
, Sigcs,Vfcs) is defined as follows, where F1,F2 are

collision-free families of functions.
On input 1κ the key generation algorithm SSKgcs

F1,F1
first chooses two κ/2-bit

safe primes p and q randomly such that there exists a log2 κ-bit integer a such that
apq + 1 is prime and defines N← pq, p′ ← (p− 1)/2, and q′ ← (q − 1)/2. Then
it chooses h, z ∈ SQN and a (κ+ 1)-bit prime e′ such that e′ = 1 mod 4 randomly.

Finally, it draws f1 ←R F
(1)
κ , f2 ←R F

(2)
κ , where F1 = (F

(1)
i)∞i=1, F2 = (F

(2)
i)∞i=1.

Then it outputs ((f1, f2,N,h, z, e
′), (f1, f2,N,h, z, e

′,p′,q′)). We also assume that
it on input (1κ, f1) uses f1 instead of generating it.

The signature algorithm Sigcs takes as input a message m and a private key
(f1, f2,N,h, z, e

′,p′,q′) and outputs a signature (e,σ,σ′) computed as follows.
The algorithm chooses a random (κ+ 1)-bit prime e such that e = 3 mod 4 and a
random σ′ ∈ SQN and computes

z′ = (σ′)e
′

h−f1(m) , and σ =
(

zhf2(z′)
)1/e

.

The verification algorithm Vfcs takes as input a message m, candidate signature
(e,σ,σ′), and (f1, f2,N,h, z, e

′) and verifies the signature as follows. It verifies
that e 6= e′ and that it is an odd integer with at least (3

2κ− 4) and at most (κ+ 1)

bits. Then it computes z′ ← σ′)e
′

h−f1(m) and verifies that z = σeh−f2(z
′). If so it

outputs 1 and otherwise 0.
We have modified the original scheme slightly by making e′ always equal to 1

modulo 4 and the primes e generated at signing equal to 3 modulo 4. This makes
it easier to prove later in zero-knowledge that e 6= e′. In the original scheme F1

and F2 are equal, but in our setting they will be different. This does not affect the
security proof in any way.

Also in our description the exponent e is longer than the modulus, but in the
original description e is shorter than p′ and q′. Below we show that the security
proof still holds.

10.2. BUILDING BLOCKS 141

Theorem 10.2.1. The signature scheme SScs
F1,F2

is CMA-secure under the strong
RSA-assumption and assuming that F1 and F2 are collision free families of func-
tions.

Proof. We assume familiarity with [40]. When the length of the exponent is between
κ+ 1 bits and 3

2κ− 4 bits, the proof of [40] holds except for how a Type III forger
is used to break the strong RSA-assumption, where a Type III forger is defined as
a forger that outputs a signature (using our notation) (e,σ,σ′) such that e 6= ei
for all signatures ei it has seen previously with non-negligible probability.

Let us recall their simulator. It accepts an RSA-modulus N and a generator
g ∈ SQN as input and chooses a polynomial number of primes ei distributed as
the prime chosen in the computation of a signature, and defines h = g2e′

Q

i ei .
These primes are used in the simulation of the signature oracle. Then it chooses
a ∈ [0, 2κ+κr − 1] and computes z = ha. It is shown in [40] that this allows the
adversary to simulate the signature oracle perfectly. If the Type III forger outputs
a valid signature (e,σ,σ′) such that for e 6= ei for all i it is concluded in [40] that

σe = zhf2(z′) . (10.2)

It is then shown that when e < 2κ/2 this allows extraction of a non-trivial RSA-root
of g. The problem with our variant of the scheme is that we do not guarantee that
e < 2κ/2, and this turns out to be essential in our construction of the hierarchical
group signature scheme in the third part of the thesis.

Fortunately, we can still extract a non-trivial root as follows. We modify the
definition of the simulator such that it accepts (N,g, z) as input, i.e., the simulator
no longer generate z. If the output of the forger is a valid signature (e,σ,σ′)
such that e 6= ei for all i, then the simulator outputs (σ, e, 1, f2(z

′)) that satisfies
Equation (10.2). We conclude from Lemma 10.2.11 that there exists no Type III
adversary.

Assumptions on the Distribution of the Primes

In the cryptographic literature a prime p is said to be safe if p = 2q+1 with q prime.
This is another way of saying that q is a Sophie Germain prime. For several reasons
safe primes are particularly useful in the construction of cryptographic primitives.
If we require that q also is a safe prime we end up with a chain of primes called a
Cunningham chain.

Definition 10.2.2 (Cunningham Chain). A sequence q0, . . . , qk−1 of primes is
called a Cunningham Chain1 of length k if qi = 2qi+1 + 1 for i = 0, . . . , k − 2.

In the third part of this thesis the importance of such primes is illustrated.
Before we start using Cunningham chains for cryptography we are obliged to ask
if they exist at all and if they can be found efficiently. Unfortunately, there exists

1This is a chain of the second kind. A chain of the first kind satisfies qi = 2qi+1 − 1.

142CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

no proof that there are infinitely many Cunningham chains of any length, not even
of length 2 which correspond to the Sophie Germain primes. One can apply a
heuristic argument and assume that a randomly chosen integer n is prime with
probability roughly 1/ lnn. If we also assume that the event that (n−1)/2 is prime
is independent of the event that n is prime for every prime a randomly chosen prime
should give a Cunningham chain of length k with probability close to 1/ lnk n.

The assumption about independence is clearly false, but the heuristic argument
is still very plausible in our setting and agrees with computational experiments. In
the thesis we use Cunningham chains of length four. In practice it is not hard to
find such chains for primes of the size used in current cryptography (cf. [74], [75]).
Young and Yung [88] have also published some heuristic tricks for finding length-3
Cunningham chains. In the thesis we also use primes on the form apq + 1, where
p and q are safe primes. Such primes also exist under similar plausible heuristic
assumptions.

We make the following assumption.

Definition 10.2.3 (Assumption on the Distribution of Primes). The distribution
of primes (DP) assumption states that

1. For each constant k exists constants c and κ0 such that a random κ-bit prime
q0 defines a k-Cunningham chain q0, . . . , qk−1 with probability at least κ−c for
κ > κ0.

2. There exists constants c and κ0 such that if p and q are random safe κ-bit
primes, the probability that there exists a prime apq+1 with a log2 κ-bit integer
a is at least κ−c for κ > κ0.

We denote by CunnGenk a polynomial-time algorithm that on input 1κ outputs
a Cunningham chain q0, . . . , qk−1 of length k with overwhelming probability.

We remark that assumptions similar to the above are implicit in several papers
in the cryptographic literature.

It is easy to see that if the DP-assumption and and the strong RSA-assumption
are true, then the strong RSA-assumption is still true if p and q are randomly
chosen safe primes such that there exists a log2 κ-bit integer a such that apq+ 1 is
prime, since this happens with non-negligible probability for random primes. This
is the setting considered in this thesis.

The Discrete Logarithm Assumption

The discrete logarithm assumption for some cyclic group Gn of order n with gen-
erator g says that given a random element h ∈ Gn it is infeasible to compute the
discrete logarithm logg h of h in the basis g. Note that we by Gn denote a particular
representation of a group. Thus, strictly speaking the discrete logarithm assump-
tion is assumed to hold with regards to a specific representation. An interesting
survey on the discrete logarithm assumption can be found in Odlyzko [71].

10.2. BUILDING BLOCKS 143

It is widely believed that solving discrete logarithms in a subgroup Gn of a
multiplicative group Z∗

p modulo a prime p is hard if |Gn| is a product of large
distinct primes. Another example is to define Gn to be an elliptic curve group
of order n. An introduction to elliptic curve based cryptography can be found in
[13, 59].

It is possible to formalize the discrete logarithm assumption in general terms,
but this is not the focus of this thesis. Thus, we define the assumption in a specific
group. There seems to be no consensus on a formal definition of a “standard discrete
logarithm assumption” in a subgroup of the multiplicative group modulo a prime.
Thus, we take the liberty to simply call the specific assumption we define below
“the discrete logarithm assumption” without any special qualifier.

Definition 10.2.4 (Discrete Logarithm Assumption). The discrete logarithm (DL)
assumption states that the DP-assumption is true and the following.

1. Let q0, . . . , qk be a random length k Cunningham chain for a constant k, where
q0 is a κ-bit prime and let Gqi be the unique subgroup of Z∗

qi−1
of order qi for

i = 1, . . . , k. Let gi, hi ∈ Gqi be random elements. Then for i = 1, . . . , k and
all adversaries A ∈ PT∗ the probability Pr[A(qi, gi, hi) = loggi hi] is negligible
in κ.

2. Let p and q be random κ-bit safe primes such that P = apq + 1 is prime for
some log2 κ-bit integer a. Let Gpq be the unique subgroup of Z∗

P of order pq,
let g, h ∈ Gpq be random elements. Then for all adversaries A ∈ PT∗ the
probability Pr[A(P, a, g, h) = logg h] is negligible in κ.

In each case the probability is taken over the random choice of prime, the random
choice of h and the internal randomness of A.

In our security analyses we often ignore the inputs qi and (P, a) to the adversary
when they are clear from the context.

Before we prove the lemma we introduce a relation. We define RDL to consist
of the pairs ((g, h), x) such that h = gx, where g and h are understood to belong
to a group Gqi or Gn generated as described in the assumption.

Lemma 10.2.5 (Non-Trivial Representation). Suppose that the DL-assumption
holds, and let qi be defined as in Definition 10.2.4. Choose gi,1, . . . , gi,N ∈ Gqi
randomly. Then for all A ∈ PT∗, Pr[A(qi, gi,1, . . . , gi,N) = (η1, . . . , ηN) 6= 0 ∧
∏N
j=1 g

ηj
i,j = 1] is negligible in κ.

Proof. If the lemma is false there exists an adversaryA, a constant c, and an infinite
index set N such that the probability is greater than or equal to 1/κc for κ ∈ N
and some 1 ≤ i ≤ k. For simplicity we drop the i subscripts in the proof.

Consider the adversary A′ defined as follows. It takes input (q, g, h) and chooses
j ∈ {1, . . . , N} randomly. Then it sets gj ← h, and chooses el ∈ Zq randomly
and sets gl ← gel for l 6= j. Then it computes (ηl)

N
l=1 ← A(Gq, g, (gl)

N
l=1) and

144CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

outputs 1
−ηj

∑

l 6=j elηl if ηj 6= 0 and (ηl)
N
l=1 gives a non-trivial representation and

⊥ otherwise.
If ηj 6= 0 we have

∏

l 6=j g
ηl
l = h−ηj and it follows that the output is the logarithm

of h. The probability that ηj 6= 0 conditioned on that A outputs a non-trivial
representation is at least 1/N , since j is chosen uniformly at random and the
distribution of g1, . . . , gN is independent of j. Thus, from independence follows
that A′ outputs logg h with probability at least 1

Nκc , which contradicts the DL-
assumption.

The Chaum-van Heĳst-Pfitzmann Hash Function

We employ the hash function CHP = (CHPg, DCHP, HCHP) introduced by Chaum,
van Heĳst, and Pfitzmann [35]. The function sampling algorithm CHPg takes as
input the representation of a prime q such that 2q + 1 is prime and δ ∈ N and
outputs a list (q, h1, . . . , hδ) where (h1, . . . , hδ) ∈ Gδq are randomly chosen elements.

The domain sampling algorithm DCHP takes as input (q, δ) and outputs a random
element in Zδq. The evaluation algorithm HCHP takes input (q, h1, . . . , hδ) and

(z1, . . . , zδ) and outputs
∏δ
l=1 h

zl
l . The following proposition is given in [35], but it

is also an immediate consequence of Lemma 10.2.5 above.

Proposition 10.2.6. Let k be a constant and define CHPgk,i to be the algorithm
which takes (1κ, δ) as input, computes (q0, . . ., qk−1)← CunnGenk(1

κ), and outputs
CHPg(qi, δ). Then the collection of functions (CHPgk,i, D

CHP, HCHP) is one-way
and collision-free under the DL-assumption.

We abuse notation and use HCHP to denote the map computed byHCHP on input
(h1, . . . , hδ) and also to denote the list (h1, . . . , hδ). Thus, we think of HCHP as a

function defined by HCHP(z1, . . . , zδ) =
∏δ
l=1 h

zl
l and represented by (h1, . . . , hδ).

The Decision Diffie-Hellman Assumption

The Decision Diffie-Hellman (DDH) assumption introduced in Section 2.3 states
that it is infeasible to distinguish (gα, gβ, gαβ) from (gα, gβ, gγ) when α, β, γ ∈ Zq
are randomly chosen and g is the generator of a group Gq. The DDH-assumption is
equivalent to the security of the ElGamal encryption scheme, which is introduced
in the next section. Currently the best method to solve the decision Diffie-Hellman
problem is to solve the discrete logarithm problem, but no proof of equivalence
between the two problems is known. We also use a variant of the DDH-problem
captured below.

Lemma 10.2.7 (Variant DDH-Assumption). Suppose that the DDH-assumption
is true, and let qi be defined as in Definition 2.3.1. Let αi, βi, β

′
i, γi, γ

′
i ∈ Zqi be

randomly chosen. Then for i = 1, . . . , k and all adversaries A ∈ PT∗ the absolute
value

|Pr[A(gαii , g
βi
i , g

αiβi
i , g

β′
i

i , g
αiβ

′
i

i) = 1]− Pr[A(gαii , g
βi
i , g

γi
i , g

β′
i

i , g
γ′
i

i) = 1]|

10.2. BUILDING BLOCKS 145

is negligible in κ.

Proof. We drop the subscript i, since the proof for each i is essentially identical.
Suppose that the lemma is false. Then there exists an adversary A ∈ PT∗, a
constant c > 0, and an infinite index set N such that

|Pr[A(gα, gβ , gγ , gβ
′

, gγ
′

) = 1]− Pr[A(gα, gβ , gαβ, gβ
′

, gαβ
′

) = 1]| ≥ 1

κc
.

This implies that one of the following inequalities hold

|Pr[A(gα, gβ, gγ , gβ
′

, gγ
′

) = 1]− Pr[A(gα, gβ, gγ , gβ
′

, gαβ
′

) = 1]| ≥ 1

2κc

|Pr[A(gα, gβ, gγ , gβ
′

, gαβ
′

) = 1]− Pr[A(gα, gβ , gαβ, gβ
′

, gαβ
′

) = 1]| ≥ 1

2κc
.

The former is impossible, since given a triple (u, v, w), the tuple (u, gβ, gγ , v, w) for
random β, γ ∈ Zq is identically distributed to the input to A in the right or left
probability in the first equation depending on if (u, v, w) is a DDH-triple or not.
The latter is impossible, since given a triple (u, v, w), the tuple (u, v, w, gβ

′

, uβ
′

),
for a random β′ ∈ Zq, is identically distributed to the input to A to the left or right
probability in the second equation depending on if (u, v, w) is a random triple or if
it is a DDH-triple. Thus, the lemma is true.

Generalized Semantic Security

Recall semantic security for asymmetric encryption schemes from Section 2.4 The
following generalization is standard. Denote by Exp

µ1−µ2−ind−b
CS,A (κ) the experi-

ment above except for the following changes. Let µ1(κ) and µ2(κ) be polynomially
bounded in κ. The experiment generates a list ((pk1, sk1), . . . , (pkµ1

, skµ1)) of key
pairs instead (pk , sk). Then the adversary is given (pk1, . . . , pkµ1

). The adversary
then outputs m0 = (m0,1,1, . . . ,m0,µ1,µ2) and m1 = (m1,1,1, . . . ,m1,µ1,µ2). Finally,
the encryption oracle computes c← (Epk i

(mb,i,j))
µ1,µ2

i=1,j=1 instead of a single cipher-
text Epk (mb). The following lemma follows by a straightforward hybrid argument.

Lemma 10.2.8. If CS is polynomially indistinguishable, then for all adversaries
A ∈ PT∗ the absolute value |Pr[Exp

µ1−µ2−ind−0
CS,A (κ) = 1]−Pr[Exp

µ1−µ2−ind−1
CS,A (κ) =

1]| is negligible in κ.

The ElGamal Encryption Scheme

The ElGamal [42] public key encryption scheme can be defined in any cyclic group,
but we consider only groups Gq as defined above, i.e., p = 2q + 1 and Gq is the
unique subgroup of order q in Z∗

p.

We write Kgelg for the key generation algorithm that takes as input a prime
q such that 2q + 1 is prime and a generator g in Gq. It then chooses a random

146CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

private key x ∈ Zq, computes a public key (g, y), where y = gx, and outputs
(q, (g, y), x). The encryption and decryption algorithm below are given q as part of
their input, but this is omitted throughout the thesis to simplify notation. When
invoked on a public key (g, y) and messagem ∈ Gq the encryption algorithm chooses

r ∈ Zq randomly and outputs (gr, yrm). We denote this Eelg

(g,y)(m, r) = (gr, yrm),

or Eelg
y (m, r) = (gr, yrm) when g is fixed. Sometimes we also write Eelg

(g,y)(m),

when we do not care about the random input. To decrypt a ciphertext (u, v)
using the private key x the decryption algorithm outputs vu−x. We denote this
Delg
x (u, v) = vu−x.

Note that the plaintext m must be contained in Gq. Thus, to encrypt an
arbitrary bit-string there must exist an efficient algorithm that encodes an arbitrary
fixed-size bit-string as an element in Gq. There must of course also exist an efficient
way to recover the message from the encoding. The group we use is in fact equal to
the subgroup of squares in Z∗

p, or differently phrased the quadratic residues modulo
p. To encode a bit-string s ∈ {0, 1}κ−t−1 into an element in Gq with log2 q = κ
we repeatedly choose r ∈ [0, 2t − 1] randomly and check if 2κ−tr + s is a quadratic
residue. Checking for quadratic residuosity can be done efficiently [63]. It is of
course easy to decode an element as a bit-string. In practice the encoding works
well, since heuristically we expect that the probability that 2κ−tr+ s is a quadratic
residuosity should be roughly 1/2 for each s.

We are not aware of any encoding that can be analyzed rigorously, so strictly
speaking the message space of the ElGamal encryption scheme in Gq can not be
taken to be the set {0, 1}κ−t for some small t. A similar problem is encountered if
Gq is taken to be an elliptic curve. This is not a problem in practice and we ignore
this issue in the remainder of the thesis.

An interesting property of the ElGamal encryption scheme is that it is homo-
morphic. This means that if (u0, v0) = Eelg

(g,y)(m0, r0) and (u1, v1) = Eelg

(g,y)(m1, r1)

then (u0u1, v0v1) = Eelg

(g,y)(m0m1, r0 + r1). This is a straightforward consequence of

the definition, but it implies that a ciphertext (u, v) can be re-encrypted by com-
puting (ugr, vyr). All ElGamal based mix-nets in the literature are based on this
observation, but in the second part of this thesis we present an alternative.

The following proposition is almost immediate. A proof is given in Tsiounis and
Yung [85].

Proposition 10.2.9. Let k be a constant and define Kg
elg
k,i to be the algorithm that

on input 1κ computes (q0, . . . , qk−1) = CunnGenk(1
κ), chooses gi ∈ Gqi randomly

and outputs Kgelg(qi, gi). Then the ElGamal encryption scheme (Kg
elg
k,i, E

elg, Delg)
is polynomially indistinguishable under the DDH-assumption.

The Cramer-Shoup Encryption Scheme

Cramer and Shoup [39] introduced the first practical encryption scheme which
is CCA2-secure under standard assumptions. The encryption scheme CCAH =

10.2. BUILDING BLOCKS 147

(KgCCA, ECCA, DCCA), is defined as follows.
Let F = (Fi)

∞
i=1 be a collision-free family of functions. Assume that Di ⊃

Gq × Gq and that fi(Di) ⊂ Zq for all i ∈ {0, 1}log2 q. An example of this is
the Chaum-van Heyst-Pfitzmann function in Section 10.2 with suitable modified
security parameter.

The key generation algorithm KgCCA
F takes as input a prime q such that 2q + 1

is prime. It generates random g1, g2 ∈ Gq and x1, x2, y1, y2, z ∈ Zq and computes
c = gx1

1 gx2
2 , d = gy11 g

y2
2 , and h = gz1 . Then it computes f ←R Fκ and outputs

((f, q, g1, g2, c, d, h), (f, q, x1, x2, y1, y2, z)). Encryption of a message m ∈ Gq using
the public key Y = (f, q, g1, g2, c, d, h) and randomness r ∈ Zq is given by

ECCA
Y (m, r) = (u, µ, v, ν) = (gr1 , g

r
2, h

rm, crdrf(u,µ,v)) .

Note that (u, v) is an ElGamal ciphertext of the message m using the ElGamal
public key (g1, h), so decryption of a ciphertext (u, µ, v, ν) using the private key
X = (i, q, x1, x2, y1, y2, z) is given by DCCA

X (u, µ, v, ν) = Delg
z (u, v) = m for valid

ciphertexts. A ciphertext is considered valid if the predicate

T CCA
X (u, µ, v, ν) = (ux1+x2f(u,µ,v)µy1+y2f(u,µ,v) = ν)

is satisfied. An invalid ciphertext decrypts to ⊥. Throughout the thesis we abuse
notation and omit f and q from the public and private keys when they are clear
from the context.

Theorem 10.2.10. Let k be a constant and define KgCCA
k,i,CF to be the algorithm that

on input 1κ computes (q0, . . . , qk−1) ← CunnGenk(1
κ) and outputs KgCCA

CF (qi). The
Cramer-Shoup encryption scheme (KgCCA

k,i,CF , E
CCA, DCCA) is CCA2-secure under the

DDH-assumption if CF is collision-free.

A proof is given in [39]. Note that Proposition 10.2.6, and the obvious fact that
the first statement of the DL-assumption is true if the DDH-assumption is true,
imply that the encryption scheme is secure under the DDH-assumption if we in-
stantiate the collision-free hash function CF with the Chaum-van Heĳst-Pfitzmann
hash function CHP.

The Strong RSA-Assumption

To simplify some of the proofs in the thesis we prove a useful lemma that gives
alternative ways to view the strong RSA-assumption. The proof of the lemma
below follows the proof in Damgård and Fujisaki [41], but our lemma is slightly
stronger. In their analysis it is essential that the bit-size of η0 is smaller than κ/2.
We show that this restriction is not necessary.

Lemma 10.2.11 (Variants of Strong RSA-Assumption). Assume the strong RSA-
assumption. Let p and q be randomly chosen κ/2-bit safe primes, define N = pq,

148CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

and let g,h ∈ SQN be random. Then for all adversaries A ∈ PT∗ the probabilities

Pr[A(N,g,h) = (b, η0, η1, η2) ∧ η0 6= 0 ∧ (η0 ∤ η1 ∨ η0 ∤ η2)

∧ bη0 = gη1hη2 mod N]

Pr[A(N,g,h) = (b, η1, η2) ∧ (η1, η2) 6= (0, 0) ∧ gη1 = hη2 mod N]

are negligible in κ.

Before we prove the lemma we introduce a relation. We define RSRSA to consist
of the pairs ((N,g,h), (b, η0, η1, η2)) such that either η0 ∤ η1 or η0 ∤ η2 and bη0 =
gη1hη2 , or η0 = 0 and (η1, η2) 6= (0, 0) and gη1 = hη2 , or η0 | N and |η0| < N.

Proof of Lemma 10.2.11. Denote by extgcd the extended Euclidean algorithm, i.e.,
given input (η0, η1) it outputs a tuple of integers (f, a, b), where f = gcd(η0, η1)
and f = aη0 + bη1.

Suppose that there exists an adversary A ∈ PT∗, a constant c, and an infinite
index set N such that

Pr[A(N,g,h) = (b, η0, η1, η2) ∧ η0 6= 0 ∧ (η0 ∤ η1 ∨ η0 ∤ η2)

∧ bη0 = gη1hη2 mod N]

for κ ∈ N . Consider the adversary A′ to the strong RSA-experiment defined as
follows. Denote by κr an additional security parameter large enough to make 2−κr

negligible. The adversary A′ accepts (N,g) as input, chooses e ∈ [0, 2κ+κr − 1]
randomly and defines h = ge mod N. Then it computes (b, η0, η1, η2)← A(N,g,h)
and (f, a, b)← extgcd(η0, η1 + eη2). Finally, it outputs (gabb, η0/f). Note that

(gabb)η0/f = (gaη0gb(η1+eη2))1/f = g(aη0+b(η1+eη2))/f = g .

Thus, we must argue that f 6= ±η0 with non-negligible probability.
We analyze the output conditioned on the event that the output of A has the

property that η0 6= 0 and that η0 does not divide both η1 and η2 and that bη0 =
gη1hη2 . We argue that for any fixed (h, η0, η1, η2) the probability that η0 ∤ (η1+eη2)
is at least 1/4 over the random choice of e, conditioned on h = ge.

To start with we note that if η0 | (η1 + eη2) and η0 | η2 then clearly η0 | η1 as
well, which is a contradiction. Thus, if η0 | η2, the probability that η0 ∤ (η1 + eη2)
is one. Consider now the case where η0 ∤ η2.

Define p′ ← (p − 1)/2, q′ ← (q − 1)/2, and t ← p′q′. We argue that there
exists a prime r such that r | η0 and gcd(r, t) = 1. If this is not the case we may
assume that η0 is on the form ±(p′)a(q′)b for some natural numbers a and b. If
a, b > 0, then we have gη0+1 = g and we could have defined A to simply output
(g, η0 +1). If a = 0 (or b = 0), then we could have defined A to simply take the lth
root of η0 for a polynomially bounded number of l, check for primality, and thus
extract p′ (or q′). Finally, it could compute t← p′(N/(2p′ + 1)− 1)/2 and output
(g, t). We conclude that there exists a prime r such that r | η0 and gcd(r, t) = 1
with overwhelming probability.

10.2. BUILDING BLOCKS 149

Let ri such that ri | η0 but ri ∤ η2. It follows from the Chinese remainder
theorem that

Pr
e

[η0 | (η1 + eη2) | h = ge] ≤ Pr[η1 + eη2 = 0 mod ri | h = ge] .

We write e = e′t+ (e mod t). Since gcd(t, ri) = 1 we know that t is a generator in
Zri . This implies that

Pr
e

[η1 + eη2 = 0 mod ri | h = ge]

= Pr
e

[η1 + (e mod t)η2 + e′t = 0 mod ri | h = ge] .

Note that η1 + (e mod t)η2 is constant for a fixed (h, η0, η1, η2), but since t is
a generator in Zri the probability that e′t takes on any given value is at most
1/ri+1/κr ≤ 3/4. It follows that A′ outputs an RSA-root with probability at least
1
4κ

−c.
Suppose that there exists an adversary A ∈ PT∗, a constant c, and an infinite

index set N such that

Pr[A(N,g,h) = (η1, η2) ∧ (η1, η2) 6= (0, 0) ∧ gη1 = hη2 mod N]

for κ ∈ N . Consider the adversary A′ defined as follows. On input (N,g) it chooses
e ∈ [0, 2κ+κr − 1] randomly and defines h = ge mod N. Then it chooses d ∈ {0, 1}
randomly and defines

(g′,h′) = (gdh1−d,g1−dhd) ,

and computes (η1, η2)← A(N,g′,h′). If η1 = ±η2 it outputs (g, η1 +1). Otherwise
it computes (f, a, b)← extgcd(η1, η2) and outputs

((g′)b(h′)a, (dη1 + (1 − d)η2)/f) .

If η1 = ±η2 6= 0 and (g′)η1 = (h′)η2 then (h′/g′)η1 = 1 or (h′g′)η1 = 1. Note that
the probability that g′/h′ or g′h′ does not generate SQN is negligible. This means
that η1 is a multiple of t = (p− 1)(q− 1)/4, and we have gη1+1 = g. We conclude
that the probability that η1 = ±η2 6= 0 and (g′)η1 = (h′)η2 is negligible.

Suppose that η1 6= ±η2 and (g′)η1 = (h′)η2 . Then we have

((g′)b(h′)a)(dη2+(1−d)η1)/f =

{

(hbga)η1/f = g(aη1+bη2)/f = g if d = 0

(gbha)η2/f = g(aη1+bη2)/f = g if d = 1
.

We observe that the distributions of the conditional random variables (N,g′,h′ |
d = 0) and (N,g′,h′ | d = 1) are statistically close. Since d is randomly chosen we
conclude that the probability that (dη1 + (1 − d)η2)/f equals one is at most 3/4.
Thus, A′ outputs a non-trivial RSA-root with probability at least 1

4κ
−c. This is a

contradiction, so the second probability in the lemma is negligible.

150CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

A Simplifying Convention

Consider any computation involving an RSA-modulus N where the inverse of an
element a ∈ ZN must be computed. In principle, it could happen that a is not a unit
in ZN. However, if such an element is encountered with non-negligible probability
in a computation where the factorization of N is not known, we have of course
found one of the factors of N and the strong RSA-assumption is broken.

To simplify the exposition of the protocols and their analysis we assume, without
loss, that all elements in ZN that appear in the simulations in the security analyses
always can be inverted.

The Shamir Hash Function

Consider the collection of functions (ISh, FSh) defined as follows. Let ISh be the
set of pairs (N,g), where N is a product of two safe primes of the same bit-size
and g is a generator of SQN, and define FSh = {f(N,g) : D(N,g) → {0, 1}∗} by
setting D(N,g) = {0, 1}4κ and f(N,g)(x) = gx mod N, where log2 N = κ. The three

algorithms (Shg, DSh, HSh) required by the definition of a polynomial collection of
functions are defined in the obvious way.

The idea to use this construction as a collision-free hash function was proposed
by Shamir. To simplify the exposition we omit N and g from our notation when
they are clear from the context.

Lemma 10.2.12. The function collection SH = (Shg, DSh, HSh) is collision-free
under the strong RSA-assumption.

Proof. Suppose that there exists an adversary A ∈ PT∗ such that

Pr[A(N,g) = (x1, x2) ∧ x1 6= x2 ∧ gx1 = gx2]

< is non-negligible. Then we can define A′ to be the adversary that on input
(N,g) computes (x1, x2) = A(N,g) and defines (b, η) equal to (g, x1 − x2 + 1)
or (g, x2 − x1 + 1) depending on if x1 > x2 or x1 < x2 respectively. Finally, A′

outputs (b, η). Note that this implies that η 6= ±1 and bη = 1 with non-negligible
probability and A′ breaks the strong RSA-assumption.

Remark 10.2.13. The Shamir hash function is in fact secure under the factoring
assumption, but in our application we need the strong RSA-assumption anyway.
Thus, there is little point in introducing another assumption and proving a stronger
result.

10.3 The Algorithms of The Scheme

We are now ready to describe the details of our construction following the in-
formal description above. We denote our scheme by HGS = (HGKg, HGSig, HGVf,
HGOpen), and define algorithms HGKg, HGSig, HGVf, and HGOpen below.

10.3. THE ALGORITHMS OF THE SCHEME 151

Denote by κc and κr two additional security parameters that are defined as
functions of κ such that 2−κc and 2−κr are negligible.

Key Generation

The key generation phase proceeds as follows. Each group manager is given an
ElGamal key pair, and each signer is given a Cramer-Shoup signature of the public
keys of the group managers on the path from the root to the signer.

Algorithm 10.3.1 (Key Generation, HGKg(1κ, T)).

1. Run (q0, . . . , q3) ← CunnGen4(1
κ) to generate a Cunningham chain, and let

gi, yi ∈ Gqi be random elements for i = 1, 2, 3.

2. Let δ be the depth of the tree T , and run

HCHP = (h1, . . . , hδ)← CHPg(q2, δ)

to generate a collision-free Chaum-van Heĳst-Pfitzmann hash function.

3. Run (X,Y) ← KgCCA(q3) to generate keys for a Cramer-Shoup encryption
scheme over Gq3 .

4. Run ((HCHP,g,N,h, z, e′), (HCHP,g,N,h, z, e′,p′,q′))← SSKgcs
CHPg,Shg(1

κ)
and choose y ∈ SQN randomly to generate keys for a Cramer-Shoup signature
scheme employed with the collision-free hash functions HCHP and HSh

(N,g) and

for a commitment scheme. We sometimes write (spk , ssk) for the above keys
to simplify notation.

5. Compute the integer a < κ such that P = apq + 1 is prime. Recall from
Section 10.2 that there exists such a prime. Choose gN, yN ∈ GN randomly.

6. For each node β ∈ V(T), generate keys

(hpk (β), hsk (β))← (yβ , xβ) = Kgelg(q3, g3)

for an ElGamal encryption scheme over Gq3 .

7. For each leaf α ∈ L(T) let α0, . . . , αδ be the path from the root to α, where
α0 = ω and αδ = α, and compute

(eα,σα,σ
′
α)← Sigcs

HCHP,HSh
(N,g)

,ssk (yα1 , . . . , yαδ) .

Then redefine hsk (α)← (eα,σα,σ
′
α).

8. Let ω be the root of T . Redefine the public key hpk (ω) of the root ω to be

(hpk (ω),N,h, z, e′,g,y, q0, g1, y1, g2, y2, g3, y3, H
CHP, Y, gN, yN, κc, κr)

and output (hpk , hsk).

152CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

Remark 10.3.1. The security parameters κc and κr are used in the proof of know-
ledge and decide its completeness, soundness, and the statistical distance between
a real and simulated view of the protocol.

(y{{α,β},{γ,δ}}, . . .), x{{α,β},{γ,δ}}

y{α,β}, x{α,β}

yα, (eα,σα,σ
′
α)

yβ , (eβ,σβ ,σ
′
β)

y{γ,δ}, x{γ,δ}

yγ , (eγ ,σγ ,σ
′
γ)

yδ, (eδ,σδ,σ
′
δ)

Figure 10.1: An illustration of the output of HGKg for a three-level tree. The
common group parameters, i.e., key size, generators etc., are not explicit.

Computing, Verifying, and Opening a Signature

In this section we give a detailed description of the signing algorithm, the verific-
ation algorithm, and the opening algorithm of the scheme. Denote by LRHGS the
language consisting of tuples

((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C)

in G4δ
q3 ×G4

q3 × SQ5
N such that there exists

((τ0, τ
′
0, . . . , τδ−1, τ

′
δ−1, τδ), (τ , ζ, τ

′, ζ′,ψ, ε))

in Z2δ+1
q3 × [0, 2κrN− 1]5 × [2κ, 2κ+1 − 1] such that

γ0 = yα0 ,

(ul, vl, u
′
l, v

′
l) = (Eelg

(γl,g)
(γl+1, τl), E

elg

(γl,g)
(1, τ ′l)) for l = 0, . . . , δ − 1 ,

Cδ = ECCA
Y (γδ, τδ) ,

u = yζgτ , u′ = yζ
′

gτ
′

, C = yψgε , and

VfcsHCHP,HSh,spk ((γ1, . . . , γδ), (ε,v/y
τ ,v′/yτ

′

)) = 1 .

In Section 10.5 we construct a zero-knowledge proof of knowledge denoted by πhgs =
(Phgs, Vhgs) for this relation.

Algorithm 10.3.2 (Signing, HGSig(m,T, hpk , hsk (α))). Let α0, . . . , αδ with
ω = α0 and αδ = α be the path to the signer Sα, and write (eα,σα,σ

′
α) = hsk(α)

10.3. THE ALGORITHMS OF THE SCHEME 153

1. Choose r0, r
′
0, . . . , rδ−1, r

′
δ−1, rδ ∈ Zq3 randomly and compute (ul, vl, u

′
l,

v′l) ← (Eelg

(yαl ,g3)(yαl+1
, rl), E

elg

(yαl ,g3)(1, r
′
l)), for l = 0, . . ., δ − 1, and Cδ =

ECCA
Y (yαδ , rδ). This is the list of ciphertexts.

2. Choose r, s, r′, s′, t←R [0, 2κrN−1] and set (u,v)← (ysgr,yrσα), (u′,v′)←
(ys

′

gr
′

,yr
′

σ′
α), and C ← ytgeα . This is a commitment of the signature

(eα,σα,σ
′
α).

3. Compute a non-interactive proof

π ← P
O(m,·)
hgs

(

((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C),

((τ0, . . . , τδ), (τ , ζ, τ
′, ζ′,ψ, ε))

)

in the random oracle model using the message m as a prefix.

4. Output the signature
(

(ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

.

Remark 10.3.2. Note that we switch the order of the components in the ElGamal
encryption scheme in order to simplify the construction of the proof of knowledge.
For example, Delg

1/xω
(u0, v0) = yα1 .

The construction of the proof of knowledge πhgs is involved and postponed until
Section 10.5. The verification algorithm consists simply of verifying the proof of
knowledge contained in a signature.

Algorithm 10.3.3 (Verification, HGVf(T, hpk ,m, σ)). On input a candidate signa-

ture σ = (c, π) =
((

(ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C

)

, π
)

return V
O(m,·)
hgs (c, π).

To open a signature a group manager on depth l first verifies that the signature
is valid and that its public key was used to form (ul, vl). Only then does it decrypt
(ul, vl).

Algorithm 10.3.4 (Open, HGOpen(T, hpk , hsk(β),m, σ)). On input a candidate
signature σ =

(

(ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

, if HGVf(T, hpk ,m, σ) =
⊥ or if u′l 6= (v′l)

xβ and β 6= ω, then return ⊥. Otherwise compute yα ←
Delg

1/xβ
(ul, vl) and return α.

Remark 10.3.3. To ensure that the protocol satisfies the new and stronger definition
instead of the one presented in [84], the elements (u′l, v

′
l) are added. The role played

by these elements is to let a group manager verify, given a signature, that no other
group manager can open the signature.

The Complexity of the Scheme

The main computational cost of the protocol lies in computing the zero-knowledge
proof of knowledge πhgs. Thus, we postpone the complexity analysis to Section
10.6.

154CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

10.4 Proof of Security

We analyze the security of the scheme and prove the following theorem.

Theorem 10.4.1. The hierarchical signature scheme HGS is secure in the random
oracle model under the DL-assumption, the DDH-assumption, and the strong RSA-
assumption.

Proof. The proof proceeds by contradiction. We show that an adversary that
breaks the hierarchical group signature scheme breaks the DL-assumption, the
DDH-assumption, or the strong RSA-assumption.

We can not use the Cramer-Shoup signature scheme as a blackbox and reach
a contradiction to its security. The problem is that we use the RSA-modulus of
the signature scheme also for commitments. Fortunately, Cramer and Shoup [40]
describe a simulator running an adversaryA as a blackbox. The simulator simulates
the CMA-experiment to the adversary in a way that is statistically indistinguishable
from the real experiment. Furthermore, if in the simulation the adversary with non-
negligible probability can output a signature of a message on which it never queried
the simulated signature oracle, then the strong RSA-assumption is broken.

When invoking the zero-knowledge simulator we must program the random
oracle O at some points. In principle it could be the case that the adversary
has already asked for the value at the point we need to program, and this would
prohibit programming. A standard observation is that an adversary can only query
the random oracle at a polynomial number of points, and the point on which the
random oracle is programmed is always chosen randomly from an exponentially
large space. Thus, it is easy to see that programming the oracle fails with negligible
probability. Similarly, in principle it could be the case that the adversary guesses
the value of the random oracle at some point, on which the random oracle is never
queried. It is easy to see that also this happens with negligible probability. Thus,
in the remainder of the proof we assume without loss that the adversary has never
queried the random oracle O at any point x on which we must give O(x) a specific
value, and that the adversary never outputs a point x and a corresponding value
O(x) without querying the oracle on x. This convention simplifies our exposition.

We consider hierarchical anonymity and hierarchical traceability separately.

Hierarchical Anonymity. Let A be any adversary. Denote by Hb the machine
that simulates the hierarchical anonymity experiment Expanon−b

HGS,A(κ, T) using A as
a blackbox.

Denote by Hb
o the machine that is identical to Hb except that the open oracle

HGOpen(T, hpk , hsk(·), ·, ·) is simulated as follows. Consider a query on the form
(α,m, σ), where α is on depth l. If HGVf(T, hpk ,m, σ) = 0, return ⊥. Otherwise
assume that the signature is on the form

σ =
(

(ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, π

)

.

10.4. PROOF OF SECURITY 155

The machine Hb
o computes DCCA

X (Cδ) and if the result does not equal yαδ for some
αδ ∈ L(T), the HGOpen(T, hpk , hsk(·), ·, ·)-oracle is instructed to return ⊥. Suppose
now that yαδ is on the expected form. Then there is a path α0, . . . , αδ in the tree
T corresponding to αδ and the HGOpen(T, hpk , hsk (·), ·, ·)-oracle is instructed to
return αl+1 if β = αl and ⊥ otherwise. In principle this answer could be incorrect,
but we prove that it is not.

Claim 1. The absolute value |Pr[Hb = 1] − Pr[Hb
o = 1]| is negligible under the

DL-assumption and the strong RSA-assumption.

Proof. Assume that the claim is false. Then with non-negligible probability some
query to the open oracle HGOpen(T, hpk , hsk(·), ·, ·) is answered incorrectly.

Let p(κ) denote the running time of A. Then it follows that A asks the sim-
ulated HGOpen(T, hpk , hsk(·), ·, ·) oracle at most p(κ) queries. Denote by Tl the
machine that simulates Hb

o until l− 1 queries have been answered by the simulated
HGOpen(T, hpk , hsk(·), ·, ·)-oracle, and then halts outputting the lth query. We say
that a query is difficult if it is answered incorrectly. We show that Tl outputs a
difficult query with negligible probability for l = 0, . . . , p(κ). The union bound then
implies that all queries are answered correctly with overwhelming probability and
the claim follows.

The statement is clearly true for T0, since its output is empty. Suppose now
that the statement is true for Tl for l < s, but false for Ts. Thus, Ts outputs a
difficult query with non-negligible probability.

Consider a query (α,m, σ) such that

σ = ((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, (γ, c, e)) .

There are two sorts of difficult queries. Either

((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C)

does not belong to LRHGS, or it does, but (ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ is not a chain on

the form (Eelg
yα0

(yα1), E
elg
yα0

(1), . . . , Eelg
yαδ−1

(yαδ), E
elg
yαδ−1

(1)), ECCA
Y (yαδ) for any path

α0, . . . , αδ from the root ω = α0 in T to a leaf α = αδ ∈ L(T).

Note that if the tuple above does belong to LRHGS , then (u′l, v
′
l) = Eelg

(yαl ,g)
(1, r′l)

for some r′l and there exists no β ∈ V(T) with β 6= αl such that (v′l)
xβ = u′l.

Suppose first that Ts outputs a query of the first type with non-negligible prob-
ability. Then the soundness of the computationally convincing proof of knowledge
πhgs is broken by the interactive prover P ∗

hgs defined as follows. It accepts special
parameters

Λ = ((N,g,y), (q0, g1, y1, g2, y2, g3, y3, gN, yN))

as input. Then it chooses k ∈ SQN randomly, and invokes the simulator from
the proof of the Cramer-Shoup signature scheme on (N,k) to generate spk . The
remaining parameters of the experiment simulated to A are generated as in the real

156CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

experiment, except the signatures (eα,σα,σ
′
α). They are computed by invoking

the simulated signature oracle of the Cramer-Shoup signature simulator.
The prover P ∗

hgs chooses a random index 1 ≤ i ≤ p(κ) and simulates Ts until
A makes its ith query to the random oracle O. Denote the ith new query by
((ul, vl, u

′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ). The prover P ∗

hgs then outputs the ith
query as its choice of common input and the first message γ in the proof and waits
for a challenge c from the honest verifier Vhgs of protocol πhgs. It instructs O to
output c and continues the simulation of Ts until it gives output (α,m, σ). Note
that here we only program the oracle on new queries. If σ is on the form

σ = ((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, (γ, c, e))

it outputs e, and otherwise 0. Note that the index i is chosen independently at
random. Thus, the probability that the challenge value c in the final output of Ts
corresponds to the ith query to O conditioned on the event that the final output of
Ts is a difficult query is at least 1/p(κ).

It is proved in [40] that the distributions of the key spk and the signatures
(eα,σα,σ

′
α) are statistically close to the distributions of a real public key and real

signatures. Thus, we conclude that

Pr[AccVhgs
(view

Vhgs

P∗
hgs

(Λ, rp, rv)) = 1 ∧ IP∗
hgs

(Λ, rp) 6∈ LRHGS]

is non-negligible. This contradicts the soundness of the protocol πhgs. Formally, the
contradiction follows from combining Proposition 10.5.21 with Proposition 8.5.5.

Assume now that Ts outputs a query of the second type with non-negligible
probability.

The idea is to execute the extractor of the proof of knowledge of the πhgs protocol
to find a Cramer-Shoup signature of a list of public keys that does not correspond to
a signer for which the adversary has requested the secret key. This would contradict
the CMA-security of the Cramer-Shoup signature scheme.

The problem is that, although the extractor will output a witness in expected
polynomial time with non-negligible probability and part of the witness is indeed a
Cramer-Shoup signature of a list of public keys, the definition of a computationally
convincing proof of knowledge gives no guarantee that the extracted signature is
not a signature of list of public keys already given to the adversary.

We resolve this technicality by describing a special hypothetical protocol π′
hgs in

Section 10.5 of the next section, and show that it is a computationally convincing
proof of knowledge. The protocol is identical to πhgs except that the verifier only
accepts a proof corresponding to no signer. We show that a prover in the π′

hgs

protocol defined in Section 10.5 can be constructed from Ts. Then we invoke the
extractor and conclude that the extracted Cramer-Shoup signature implies that the
CMA-security of the Cramer-Shoup signature scheme is broken.

Denote by P ∅
hgs the prover in the protocol π′

hgs identical to P ∗
hgs except for the

following changes. It accepts as input

Λ′ = ((N,g,y), (q0, g1, y1, g2, y2, g3, y3, gN, yN), (xα, yα)α∈V(T)) .

10.4. PROOF OF SECURITY 157

It chooses k ∈ SQN randomly and invokes the simulator from the proof of the
Cramer-Shoup signature scheme on (N,k) to generate spk . Finally, it interacts
with the honest verifier V ′

hgs of the π′
hgs protocol instead of the honest verifier Vhgs

of the πhgs protocol.
It follows that there exists a constant c1 and an infinite index set N such that

for κ ∈ N
κ−c1 ≤ Pr[AccVhgs

(view
V ′
hgs

P∅
hgs

(Λ′, rp, rv)) = 1]

≤ Pr[AccVhgs
(view

V ′
hgs

P∅
hgs

(Λ′, rp, rv)) = 1 | δV
′
hgs

P∅
hgs

(Λ′, rp) ≥ 1

2
κ−c1]

·Pr[δ
V ′
hgs

P∅
hgs

(Λ′, rp) ≥ 1

2
κ−c1]

+
1

2
κ−c1 .

Thus, Pr[δ
V ′
hgs

P∅
hgs

(Λ, rp) ≥ 1
2κ

−c1] ≥ 1
2κ

−c1 and from Proposition 10.5.22 we conclude

that there exists an extractor XP∅
hgs and a polynomial p(κ) such that

Pr[(IP∅
hgs

(Λ′, rp),XP∅
hgs(Λ′, rp)) ∈ R′

HGS | δ
V ′
hgs

P∅
hgs

(Λ′, rp) ≥ 1

2
κ−c1] ≥ 1− ε(κ)

for some negligible function ε(κ), and such that the expected running time of XP∅
hgs

on inputs (Λ′, rp) such that δ
V ′
hgs

P∅
hgs

(Λ′, rp) ≥ 1
2κ

−c1 is bounded by some polynomial

t(κ).
Denote by Asig the algorithm that on input (N,k) generates the remainder of

the parameters in Λ′, chooses rp ∈ {0, 1}∗ randomly and simulates XP∅
hgs on these

inputs except that P ∅
hgs uses the value of k instead of generating it. Furthermore,

XP∅
hgs is simulated for at most 4κc1t(κ) steps. Note that on inputs such that the

expected running time is t(κ), Markov’s inequality implies that the the probability
that the simulation is not completed is bounded by 1

4κ
−c1 .

If the simulation is completed it interprets the common input IP∅
hgs

(Λ, rp) as

(

(ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C

)

∈ G4δ
q3 ×G4

q3 × SQ5
N

and it interprets the output of XP∅
hgs as a tuple

((τ0, τ
′
0, . . . , τδ−1, τ

′
δ−1, τδ), (τ, ζ, τ

′, ζ′, ψ, ε))

in Z2δ+1
q3 × [0, 2κrN − 1]5 × [2κ, 2κ+1 − 1]. Finally, it outputs (ε,v/yτ ,v′/yτ

′

). If
on the other hand the simulation is not completed it outputs ⊥.

We conclude that Asig outputs a Cramer-Shoup signature of (γ1, . . . , γδ) that
does not equal (yα1 , . . . , yαδ) for any path α0, . . . , αδ in T with probability at least

1

2κc1

(

1

2κc1
− 1

4κc1
− ε(κ)

)

158CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

which is non-negligible. Note that by construction, the simulated Cramer-Shoup
signature oracle has never been queried on (γ1, . . . , γδ). It follows from [40] that
this contradicts the strong RSA-assumption, or the collision-freeness of SH or CHP.
From Proposition 10.2.12 we know that finding a collision in SH contradicts the
strong RSA-assumption, and from Proposition 10.2.6 we know that finding a colli-
sion in CHP contradicts the DL-assumption.

Denote by Hb
o,g the machine that is identical to Hb

o except that it chooses two

leaves β
(0)
δ and β

(1)
δ randomly. Let β

(0)
δ , . . . , β

(0)
t and β

(1)
δ , . . . , β

(1)
t be the paths to

their least common ancestor β
(0)
t = β

(1)
t . The machine Hb

o,g outputs 0 if A requests

x
β

(b)
l

for some b ∈ {0, 1} and t ≤ l ≤ δ. It also outputs 0 if (α(0), α(1)) 6= (β
(0)
δ , β

(1)
δ).

Claim 2. Pr[Hb
o = 1] = Pr[Hb

o,g = 1]/|L(κ)|2.

Proof. If A does not output indices α(0), α(1) ∈ L(T) the output is 0 in both

simulations. Suppose it does and let α
(0)
δ , . . . , α

(0)
t′ and α

(1)
δ , . . . , α

(1)
t′ be the paths

to their least common ancestor α
(0)
t′ = α

(1)
t′ . If A ever asks for the secret key of x

α
(b)
l

for any l = t, . . . , δ the output is 0 in both simulations. Suppose it does not ask

for such keys. Then we have (α(0), α(1)) = (β
(0)
δ , β

(1)
δ) with probability 1/|L(κ)|2,

since the indices β
(0)
δ and β

(1)
δ are chosen independently at random. The claim

follows.

Denote by Hb
o,g,nddh the machine that is identical to Hb

o,g except for the fol-
lowing. In Step 6 in the key generation algorithm is simulated honestly except
that y

β
(b)
l

, for l = t, . . . , δ, are instead defined as follows using a randomly chosen

elements (D1,l, D2,l, D3,l, D
′
2,l, D

′
3,l) ∈ G5

q3 for l = t, . . . , δ − 1. The public keys are
defined by

y
β

(b)
l

= D1,l .

Note that the simulated hierarchical group signature of m is only computed if

(α(0), α(1)) = (β
(0)
δ , β

(1)
δ). The single query m to the HGSig(T, hpk , hsk(α(b)), ·)

oracle is simulated as follows. To simplify the exposition we write αl instead of α
(b)
l

as in Experiment 8.2.1. The machine Hb
o,g,nddh chooses τ , ζ, τ ′, ζ′,ψ ∈ [0, 2κ+κr−1]

randomly and computes

(ul, vl, u
′
l, v

′
l) = (D2,l, yαl+1

D3,l, D
′
2,l, D

′
3,l), for l = 0, . . . , δ − 1 ,

Cδ = ECCA
Y (yαδ , r) , and

(u,v) = (gζ ,gτ), (u′,v′) = (gζ
′

,gτ
′

), C = gψ .

To construct the proof π, Hb
o,g,nddh simply invokes the simulator for the proof of

knowledge. This is guaranteed to exist by Proposition 10.5.20. To do this the
random oracle O is programmed. As explained at the beginning of the proof this

10.4. PROOF OF SECURITY 159

is not a problem since the input to the random oracle is chosen randomly from an
exponentially large space.

Claim 3. The absolute value |Pr[Hb
o,g = 1]− Pr[Hb

o,g,nddh = 1]| is negligible under
the DL-assumption.

Proof. Recall the definition of the variant DDH-assumption from Section 10.2. A
tuple (D1, D2, D3, D

′
2, D

′
3) is called a DDH-tuple if logg3 D3 = logg3 D1 logg3 D2

and logg3 D
′
3 = logg3 D1 logg3 D

′
2.

Denote by Hb,i
o,g,nddh the machine that simulates Hb

o,g,nddh except that it uses
random triples only for t ≥ l > i. The distributions of the simulated (u,v), (u′,v′),
and C are statistically close to those in the real experiment. From Proposition
10.5.20, i.e., the statistical zero-knowledge property of the protocol πhgs, we have

that |Pr[Hb,−1
o,g,nddh = 1]−Pr[Hb

o,g = 1]| is negligible. It follows that the distributions

of Hb,−1
o,g,nddh and Hb,δ−1

o,g,nddh are statistically close to the distributions of Hb
o,g and

Hb
o,g,nddh respectively.

Suppose that |Pr[Hb
o,g = 1] − Pr[Hb

o,g,nddh = 1]| is non-negligible. Then it
follows from a hybrid argument that there exists a fixed i such that

|Pr[Hb,i
o,g,nddh = 1]− Pr[Hb,i+1

o,g,nddh = 1]|

is non-negligible.
Denote by A′ the adversary in the variant DDH-experiment of Lemma 10.2.7

that proceeds as follows. On input (q3, g3, D1, D2, D3, D
′
2, D

′
3) it computes q0, q1, q2

from q3 and then simulates Hb,i
o,g,ddh on these values except that instead of generat-

ing (D1,l, D2,l, D3,l, D
′
2,l, D

′
3,l) it uses (D1, D2, D3, D

′
2, D

′
3). We conclude that the

distribution of the variable A′(q3, g3, D1, D2, D3, D
′
2, D

′
3) is identical to the distribu-

tion of Hb,i+1
o,g,nddh or Hb,i

o,g,nddh depending on if (D1, D2, D3, D
′
2, D

′
3) is a DDH-tuple

or not. Thus, by Lemma 10.2.7, A′ contradicts the DDH-assumption, and the claim
holds.

Claim 4. The absolute value |Pr[H0
o,g,nddh = 1] − Pr[H1

o,g,nddh = 1]| is negligible
under the DDH-assumption.

Proof. Suppose that the claim is false. Then the CCA2-security of the Cramer-
Shoup encryption scheme is broken by the adversary A′ taking part in Experi-
ment 2.4.9 and defined as follows. It simulates H0

o,g,nddh except that it waits for
a Cramer-Shoup public key Y over Gq3 , computes q0, q1, q2, and uses these values
in the simulation. Thus, it does not know the private key X to the Cramer-Shoup
encryption scheme. Instead of computing DCCA

X (Cδ) to simulate the answer to a
query to the HGOpen(T, hpk , hsk (·), ·, ·)-oracle, it queries its decryption oracle to
find this value. When computing the hierarchical group signature of m, it hands
y
β

(0)
δ

and y
β

(1)
δ

to the encryption oracle and receives a challenge ciphertext Cδ. It

then uses this challenge ciphertext to construct the simulated hierarchical group
signature.

160CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

It follows that Expcca2−b
CCAH ,A′(κ) is identically distributed to Hb

o,g,nddh, and the
CCA2-security of the Cramer-Shoup encryption scheme is broken. This contradicts
Proposition 10.2.10 and the claim holds.

The hierarchical anonymity now follows immediately from Claims 1–4.

Hierarchical Traceability. Let A be any adversary. Denote by H the machine
that simulates the experiment Exptrace

HGS,A(κ, T). Denote by Hp the machine that is
identical to H except that it simulates the HGSig(·, T, hpk , hsk(·))-oracle as follows.
The first step is simulated honestly. In Step 2 (u,v), (u′,v′) and C are replaced
by (gζ ,gτ), (gζ

′

,gτ
′

) and gψ respectively with randomly chosen ζ, τ , ζ′, τ ′,ψ ∈
[0, 2κ+κr−1]. In Step 3, the simulator of the proof of knowledge guaranteed to exist
by Proposition 10.5.20 is invoked to construct π. This requires that the random
oracle O is programmed, but this is not a problem, since the query to the random
oracle is chosen randomly from an exponentially large space.

Claim 5. The absolute value |Pr[H = 1]− Pr[Hp = 1]| is negligible.

Proof. The distributions of (u,v), (u′,v′), and C in simulated hierarchical signa-
tures are statistically close to those in the real experiment. The statistical zero-
knowledge simulator guaranteed to exist by Proposition 10.5.20 implies that the
distributions of the simulated proofs are statistically close to those in the experi-
ment. The claim follows.

Claim 6. The probability Pr[Hp = 1] is negligible.

Proof. The idea of the proof is to execute the extractor of the πhgs protocol to find
a Cramer-Shoup signature on a list of public keys that does not correspond to a
signer for which the adversary has requested the private key.

The problem is that the extractor does not guarantee that the extracted witness
has any particular properties, and we need a witness that contains not just any
Cramer-Shoup signature, but a signature on a message on which the simulated
Cramer-Shoup oracle has never been queried. Note that this problem is similar
to the problem we encountered when proving that the simulated opening oracle
behaved correctly in the proof of hierarchical anonymity. We resolve the problem
in a similar way and use the extractor of the slightly modified protocol π′

hgs.
Denote by Tβ the tree T except that a leaf β is removed. We also write T∅ for

the tree T . This allows us to consider two different cases at once. Denote by p(κ)

the running time of A. We construct a prover P βhgs to the π′
hgs protocol. The prover

P βhgs is given the special parameter

Λ′ = ((N,g,y), (q0, g1, y1, g2, y2, g3, y3, gN, yN), (xα, yα)α∈V(Tβ))

as input. If a leaf is removed it extends Tβ to T if β 6= ∅ and generates xβ and yβ
honestly. It also chooses k ∈ SQN randomly and invokes the simulator from the

10.4. PROOF OF SECURITY 161

proof of the Cramer-Shoup signature scheme on (N,k) to generate spk . Then it
simulates Hp on these values except for the following.

Whenever A requests hsk(α) for a leaf α ∈ L(T) with α 6= β, P βhgs invokes the
simulated Cramer-Shoup signature oracle on input (yα1 , . . . , yαδ), where α0, . . . , αδ
is the path from the root ω = α0 to the leaf αδ = α. The simulated Cramer-Shoup
signature oracle then returns a signature (eα,σα,σ

′
α), which is handed to A. If A

requests hsk (β) it is handed ⊥.

The prover P βhgs chooses a random index 1 ≤ i ≤ p(κ) and simulates Hp until A
makes the ith new query to the random oracle O. Let the ith query to O be given
by ((ul, vl, u

′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ). The prover P βhgs outputs

((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ)

and waits for a challenge c from the honest verifier V ′
hgs of the protocol π′

hgs.

The prover P βhgs programs O to output c and continues the simulation of Hp

until A outputs a pair (m,σ). Programming O is not a problem since only new
queries are considered. If σ is on the form

((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ, c, d)

it outputs d, and otherwise 0. Note that the index i is chosen independently
at random. Thus, the probability that the challenge value c in the final out-
put of A corresponds to the ith query to O conditioned on the event that c =
O((ul, vl, u

′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ) is at least 1/p(κ). Recall from the be-

ginning of the proof of the theorem that we do not worry that the adversary guesses
the value of the random oracle at any point. This completes the description of P βhgs.

Suppose first that the probability that A outputs (m,σ) and

Vhgs((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C, γ, c, d) = 1 and still

((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C) 6∈ LRHGS

is non-negligible. This implies that

Pr[AccVhgs
(view

Vhgs

Pβhgs

(Λ′, rp, rv)) = 1 ∧ IPβhgs
(Λ′, rp) 6∈ LRHGS]

is non-negligible. This contradicts the soundness of the protocol πhgs. Formally, the
contradiction follows from combining Proposition 10.5.21 with Proposition 8.5.5.

Consider a σ such that ((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C) ∈ LRHGS . Then

we have (ul, vl) = Eelg

(γl,g)
(γl+1, rl) and (u′l, v

′
l) = Eelg

(γl,g)
(1, r′l) for some γl, γl+1,

rl and r′l. Thus, there does not exist any α′ ∈ V(T) with yα′ 6= γl such that
(v′l)

xα′ = u′l.
We conclude that if Pr[Hp = 1] is non-negligible, then there also exists a

β such the probability that ((ul, vl, u
′
l, v

′
l)
δ−1
l=0 , Cδ, (u,v), (u′,v′),C) ∈ LRHGS and

162CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

HGVf(T, hpk ,m, σ) = 1 and αδ = β and A is never given hsk (β) 6= ⊥ is non-
negligible. Remember that we allow β to be either the index of a signer or equal

to ∅. This implies that Pr[AccVhgs
(view

V ′
hgs

Pβhgs

(Λ′, rp, rv)) = 1] is non-negligible, since

the distributions of the simulated public key spk and the simulated signatures
(eα,σα,σ

′
α) are statistically close to the corresponding distributions in the simula-

tion of Hp.
More precisely there exists a constant c1 and an infinite index set N such that

for κ ∈ N

κ−c1 ≤ Pr[AccVhgs
(view

V ′
hgs

Pβhgs

(Λ′, rp, rv)) = 1]

≤ Pr[AccVhgs
(view

V ′
hgs

Pβhgs

(Λ′, rp, rv)) = 1 | δV
′
hgs

Pβhgs

(Λ′, rp) ≥ 1

2
κ−c1]

·Pr[δ
V ′
hgs

Pβhgs

(Λ′, rp) ≥ 1

2
κ−c1]

+
1

2
κ−c1 .

Thus, Pr[δ
V ′
hgs

Pβhgs

(Λ, rp) ≥ 1
2κ

−c1] ≥ 1
2κ

−c1 and from Proposition 10.5.22 we conclude

that there exists an extractor XP
β
hgs and a polynomial t(κ) such that

Pr[(IPβhgs
(Λ′, rp),XP

β

hgs(Λ′, rp)) ∈ R′
HGS | δ

V ′
hgs

Pβhgs

(Λ′, rp) ≥ 1

2
κ−c1] ≥ 1− ε(κ)

for some negligible function ε(κ), and such that the expected running time of XP
β
hgs

on inputs (Λ′, rp) such that δ
V ′
hgs

Pβ
hgs

(Λ′, rp) ≥ 1
2κ

−c1 is bounded by some polynomial

t(κ). Denote by A′ the algorithm that on input (N,k) generates the remainder of

the parameters in Λ′, chooses rp ∈ {0, 1}∗ randomly and simulates XP
β
hgs on these

inputs for at most 4κc1t(κ) steps. Note that if the expected running time of XP
β
hgs is

t(κ) on a given input (Λ′, rp), Markov’s inequality implies that the the probability
that the simulation is not completed is bounded by 1

4κ
−c1 .

Using the union bound we conclude that A′ outputs a Cramer-Shoup signature
of a message (γ1, . . . , γδ) that does not equal (yα1 , . . . , yαδ) for any path α0, . . . , αδ
in Tβ with probability at least

1

2κc1

(

1

2κc1
− 1

4κc1
− ε(κ)

)

which is non-negligible. By construction the simulated Cramer-Shoup signature or-
acle has never been queried on the list of public keys (yα1 , . . . , yαδ) corresponding to
the path to Sβ. Thus, A′ breaks the CMA-security of the Cramer-Shoup signature
scheme. Proposition 10.2 implies that this contradicts the strong RSA-assumption,

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 163

or the collision-freeness of the Shamir hash function SH or the Chaum-van Heĳst-
Pfitzmann hash function CHP. From Proposition 10.2.12 we know that the first
event contradicts the strong RSA-assumption, and from Proposition 10.2.6 we know
that the second event contradicts the DL-assumption. Thus, the claim holds.

Conclusion of Proof. To conclude the proof it suffices to note that we have
proved that both Advanon

HGS,A(κ, T) and Advtrace
HGS,A(κ, T) are negligible.

Remark 10.4.2. It is shown in [9] that it is necessary to use a CCA2-secure encryp-
tion scheme to form a group signature scheme. Still we only use a CCA2-secure
encryption scheme for the leaves. This apparent contradiction is resolved by noting
that since the public keys yα are distinct, and we may identify the leaves with their
paths in the tree, any query to the HGOpen(T, hpk , hsk (·), ·, ·)-oracle for intermedi-
ate levels of the tree can be answered using a single query to the decryption oracle
for the CCA2-secure Cramer-Shoup encryption scheme used to encrypt leaves.

Remark 10.4.3. The exposition here differs from the exposition in [84]. There it is
not taken into account that the protocol πhgs is a computationally convincing proof
of knowledge and not a proof of knowledge. Furthermore, it is not clear from the
proof in [84] that it is safe to use the RSA-modulus of the Cramer-Shoup signature
scheme to form integer commitments and to use it as a one-way hash function in
the signature scheme. This inter-dependency could potentially be dangerous. These
deficiencies are eliminated here and this will be reflected in the final full version of
the paper as well.

10.5 Construction of the Proof of Knowledge

In this section we describe the proof of knowledge needed in Chapter 10. We give
zero-knowledge proofs of knowledge for a number of subprotocols which combined
gives the proof of knowledge we need to apply the Fiat-Shamir heuristic to get a
signature scheme in the random oracle model.

Our protocols are based on a variety of proof techniques including: proofs of
knowledge of exponents, double-decker exponentiation, equality of exponents over
distinct groups, interval proofs, and equality of integer exponents over an RSA-
modulus.

The exposition is divided into a number of subsections. First we describe the
protocols that execute in the groupsGq1 , Gq2 , andGq3 . Then we describe a protocol
that executes in both Gq1 (or GN) and in Z∗

N. This is followed descriptions of the
protocols that execute in Z∗

N. Finally, the combined protocol is described. For
intuition on how the proof is constructed we refer the reader to Section 10.1.

Although we focus on efficiency, in some cases we have chosen to divide the
protocol into subprotocols for clarity, thus sacrificing some efficiency. Since the by
far most time-consuming part of the protocol are the proofs of exponential relations,
where to our knowledge the most efficient known method is based on cut-and-choose

164CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

techniques, saving a few exponentiations in other parts of the protocol yields little
in terms of overall performance.

In some protocols we use the additional security parameters κc and κr. The
first parameter normally decides the number of bits in a challenge, and the second
parameter is used to pad exponents with additional random bits to achieve statist-
ical zero-knowledge, when the order of a group is not known. For example, if we
wish to compute a commitment yrgb of a bit b using randomness r, where N is a
κ-bit RSA-modulus and g and y are random elements in SQN, then the random
exponent should be chosen in [0, 2κ+κr−1] to achieve a statistically hiding commit-
ment scheme. The parameter κr also decides the completeness of several protocols.
It suffices if 2−κc and 2−κr are negligible in the main security parameter κ.

Sometimes it is more convenient to keep the committed number in the base
rather than in the exponent. In this case a commitment to an element z ∈ SQN

can be computed as

(yrgs,yrz) ,

where r, s ∈ [0, 2κrN − 1] are randomly chosen. We use this trick also over the
groups Gq1 , Gq2 , and Gq3 .

Remark 10.5.1. The exposition here differs from the exposition in the preliminary
full version of [84] in one important aspect. In [84] the various special cases above
are treated rather informally. It is never clearly stated that the protocols are in
fact computationally convincing proofs of knowledge, and not proofs of knowledge.
This deficiency is eliminated here and this will be reflected in the final full version
of the paper as well.

A Simplifying Convention

Most subprotocols below are strictly speaking not proofs of knowledge of their
private input from the prover. It may happen that an extractor finds elements
on the form listed below instead of a witness. To simplify the exposition we do
not state this explicitly in each lemma. Instead we point to one of the special
cases below whenever such a case occurs in the analysis of each protocol. Then
when we combine all subprotocols we state explicitly the dependence on the special
parameters.

We stress that we do not expect any adversary to find a witness of the type
below. In fact if an adversary finds a witness of the type below with non-negligible
probability, then the adversary can be used to break either the DL-assumption or
the strong RSA-assumption. Thus, each subprotocol is in fact a computationally
convincing proof of knowledge of the private input of the prover as stated in the
protocol for some special input.

Another simplifying assumption is that we assume that any element A ∈ ZN

can be inverted modulo N. Note that if this is not the case A is a non-trivial factor

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 165

of N, i.e., Case 7 is satisfied. We do not mention this case explicitly every time we
invert an element.

1. An element η ∈ Zq1 such that y1 = gη1 .

2. An element η ∈ Zq2 such that y2 = gη2 .

3. An element η ∈ Zq3 such that y3 = gη3 .

4. An element η ∈ ZN such that yN = gηN.

5. Integers η0 6= 0 and η1, η2 not both zero and b ∈ Z∗
N such that η0 does not

divide both η1 and η2, and bη0 = gη1yη2 .

6. Integers η0, η1 not both zero such that gη0yη1 = 1.

7. An integer η such that 1 < |η| < N and η | N.

For simplicity we also assume that each protocol is given the representation of
the appropriate group as common input, i.e., if the protocol executes in Gq1 , Gq2 ,
or Gq3 it is given q0 as input, and if it executes in SQN or GN it is given N as
input. We do not state this explicitly to avoid cluttering the exposition.

Protocols in Groups of Known Prime Order

The goal of this section is to provide subprotocols that can be used to prove know-
ledge of γ1, . . . , γδ and τ0, τ

′
0, . . . , τδ−1, τ

′
δ−1, τδ satisfying the parts of the relation

RHGS that are defined exclusively over Gq1 , Gq2 , and Gq3 . Most of the ideas we
use in this section have appeared in various forms in the literature.

We begin our program by considering a problem related to that of proving that
a list of ciphertexts is chained properly.

Protocol 10.5.1 (Chained Ciphertexts).

Common Input: y0, g, y ∈ Gq and
(

(ul, vl, u
′
l, v

′
l), (µl, νl)

)δ−1

l=0
∈ G6δ

q

Private Input: rl, r
′
l, sl, tl ∈ Zq for l = 0, . . . , δ − 1 and yl ∈ Gq for l = 1, . . . , δ

such that (ul, vl, u
′
l, v

′
l) = (Eelg

(yl,g)
(yl+1, rl), E

elg

(yl,g)
(1, r′l)) = (yrll , g

rlyl+1, y
r′l
l , g

r′l)

and (µl, νl) = (ytlgsl , yslyl+1).

1. The prover chooses al, a
′
l, a

′′
l ∈ Zq randomly and computes

A1,l ← ya
′
lgalµ

rl+1

l , A2,l ← yalν
rl+1

l , and A3,l ← ya
′′
l grl+1

for l = 0, . . . , δ − 2.

2. The prover chooses bl, b
′
l, b

′′
l , el, fl, hl, il, jl, wl, w

′
l, kl, k

′
l ∈ Zq randomly and

computes B0 ← ye00 ,

B1,l ← gelyil and B2,l ← gilyjl

166CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

for l = 0, . . . , δ − 1, and

B3,l ← yb
′
lgblµ

el+1

l , B4,l ← yblν
el+1

l ,

B5,l ← yhlgfl , B6,l ← yfl ,

B7,l ← yb
′′
l gel+1 , B8,l ← (u′l+1)

kl ,

B9,l ← yw
′
l(v′l+1)

kl , B10,l ← gwl

for l = 0, . . . , δ − 2. Then it hands
(

B0, (B1,l, B2,l)
δ−1
l=0 ,

(A1,l, A2,l, A3,l, B3,l, B4,l, B5,l, B6,l, B7,l, B8,l, B9,l, B10,l)
δ−2
l=0

)

to the verifier.

3. The verifier chooses c ∈ Zq randomly and hands c to the prover.

4. The prover computes

d1,l ← crl + el , d2,l ← −csl + il , and d3,l ← −ctl + jl (10.3)

for l = 0, . . . , δ − 1 and

d4,l ← cal + bl , d5,l ← ca′l + b′l , (10.4)

d6,l ← c (al + slrl+1) + fl , d7,l ← ctlrl+1 + hl , (10.5)

d8,l ← ca′′l + b′′l , d9,l ← ca′′l + w′
l , (10.6)

d10,l ← c(rl+1/r
′
l) + kl , d11,l ← cr′l + wl (10.7)

for l = 0, . . . , δ − 2. Then it hands

((d1,l, d2,l, d3,l)
δ−1
l=0 , (d4,l, d5,l, d6,l, d7,l, d8,l, d9,l, d10,l, d11,l)

δ−2
l=0)

to the verifier.

5. The verifier checks that
uc0B0 = y

d1,0
0 (10.8)

and

(vl/νl)
cB1,l = gd1,lyd2,l and B2,l = µcl y

d3,lgd2,l , (10.9)

(10.10)

for l = 0, . . . , δ − 1 and

Ac1,lB3,l = yd5,lgd4,lµ
d1,l+1

l , Ac2,lB4,l = yd4,lν
d1,l+1

l , (10.11)

Ac1,lB5,l = gd6,lyd7,l , (A2,l/ul+1)
cB6,l = yd6,l , (10.12)

Ac3,lB7,l = yd8,lgd1,l+1 , uclB8,l = (u′l+1)
d10,l , (10.13)

Ac3,lB9,l = yd9,l(v′l+1)
d10,l , (v′l+1)

cB10,l = gd11,l (10.14)

for l = 0, . . . , δ − 2.

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 167

Intuitively the proof works by first showing that (ul, vl) encrypts the key yl+1

that is committed to in (µl, νl) and then by showing that key yl+1 in the commit-
ment (µl, νl) is the encryption key used to produce (ul+1, vl+1). Based on these

relations it is then proved that (u′l, v
′
l) is on the form (y

r′l
l , g

r′l).

This is depicted in Figure 10.2.

(u0, v0, u
′
0, v

′
0)OO

��

(u1, v1, u
′
1, v

′
1)OO

��

· · · (uδ−1, vδ−1, u′δ−1, v
′
δ−1)OO

��
(µ0, ν0)

vv

66mmmmmmmmmmmm

(µ1, ν1)
yy

99sssssssssss

· · · ww

77nnnnnnnnnnnnnn
(µδ−1, νδ−1)

Figure 10.2: The protocol for a chain of ciphertexts. The elements B1,l and B2,l

are used to prove the lth vertical relation. The elements B3,l, B4,l, B5,l, B6,l are
used to prove the lth diagonal relation. This explains why there are fewer element
of the second type than the first. Finally, B7,l, B8,l, B9,l, B10,l is used to prove that
(u′l, v

′
l) is on the correct form.

Lemma 10.5.2. Protocol 10.5.1 is a Zq3 -Σ-protocol.

Proof. It is straightforward to see that the protocol has perfect completeness. We
now prove special soundness. Suppose we have a list (B0, (B1,l, B2,l)

δ−1
l=0 ,

(A1,l, A2,l, A2,l, B3,l, B4,l, B5,l, B6,l, B7,l, B8,l, B9,l)
δ−2
l=0) and ((d1,l, d2,l, d3,l)

δ−1
l=0 ,

(d4,l, d5,l, d6,l, d7,l, d8,l, d9,l, d10,l)
δ−2
l=0) that satisfy the Equations (10.8)–(10.14), and

c′ 6= c and ((d′1,l, d
′
2,l, d

′
3,l)

δ−1
l=0 , (d

′
4,l, d

′
5,l, d

′
6,l, d

′
7,l, d

′
8,l, d

′
9,l, d

′
10,l)

δ−2
l=0) that satisfies

the same equations.

We solve the equation systems corresponding to Equations (10.3)–(10.7) to ex-
tract ρl, ζl, and τl for l = 0, . . . , δ − 1 such that

u0 = yρ00 ,

vl/νl = gρly−ζl and µl = yτlgζl

and αl, α
′
l, α

′′
l , λl, ωl, ω

×
l , ρ×l , and ρ+

l for l = 0, . . . , δ − 2 such that

A1,l = yα
′
lgαlµ

ρl+1

l , A2,l = yαlν
ρl+1

l ,

A1,l = yλlgωl , A2,l/ul+1 = yωl ,

A3,l = yα
′′
l gρl+1 , ul = (u′l+1)

ρ×
l ,

A3,l = yω
×
l (v′l+1)

ρ×
l , v′l+1 = gρ

+
l

168CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

From this we can compute ζ∗l ← (ωl − αl)/ρl+1 and τ∗l ← (λl − α′
l)/ρl+1 for

l = 0, . . . , δ − 2 such that µl = yτ
∗
l gζ

∗
l since

yτ
∗
l gζ

∗
l =

(

yλl−α
′
lg(wl−αl)

)1/ρl+1

=

(

A1,l

yα′gαl

)1/ρl+1

= µl .

We have νl = yζ
∗
l γl+1 for some γl+1, i.e., (µl, νl) = (yτ

∗
l gζ

∗
l , yζ

∗
l γl+1), for l =

0, . . . , δ − 2. This implies that

ul+1 = A2,ly
−ωl = yαlν

ρl+1

l y−ωl = yαlyζ
∗
l ρl+1γ

ρl+1

l+1 y
−ωl

= yαl−ωl+ζ
∗
l ρl+1γ

ρl+1

l+1 = γ
ρl+1

l+1 .

Define γ∗l+1 by vl = gρlγ∗l+1, i.e., (ul, vl) = Eelg

(γl,g)
(γ∗l+1, ρl), for l = 0, . . . , δ − 1.

What remains is to argue that ζ∗l = ζl, τ
∗
l = τl, and γ∗l+1 = γl+1 for l = 0, . . . , δ− 2

to connect the “links in the chain”.

If one of the first two types of equalities does not hold, then we have gζlyτl =
µl = gζ

∗
l yτ

∗
l and we can define η = (ζl− ζ∗l)/(τ∗l − τl) such that y = gη. In the main

protocol this protocol is executed in Gq3 . Thus, if the equality does not hold Case
3 in Section 10.5 is satisfied. Thus, we assume that the first two types of equalities
hold. Next we note that

gρly−ζl = vl/νl = gρlγ∗l+1y
−ζ∗l γ−1

l+1 = gρly−ζl(γ∗l+1/γl+1) ,

which implies that γ∗l+1 = γl+1. To summarize, we have found elements ρ0, . . .,
ρδ−1, τ0, . . ., τδ−1, ζ0, . . ., ζδ−1, and γ1, . . ., γδ such that

(u0, v0) = (yρ00 , gρ0γ1) (µ0, ν0) = (yτ0gζ0 , yζ0γ1)

(u1, v1) = (γρ11 , gρ1γ2) (µ1, ν1) = (yτ1gζ1 , yζ1γ2)

...
...

(uδ−1, vδ−1) = (γ
ρδ−1

δ−1 , g
ρδ−1γδ) (µδ−1, νδ−1) = (yτδ−1gζδ−1 , yζδ−1γδ) .

Thus, we have

u′l+1 = u
1/ρ×

l

l+1 = γ
ρl+1/ρ

×
l

l+1

v′l+1 = (yα
′′
l gρl+1y−ω

×
l)1/ρ

×
l = y(α′′

l −ω
×
l

)/ρ×
l gρl+1/ρ

×
l .

If α′′
l 6= ω×

l , then we define η = (ρl + −ρl+1/ρ
×
l)/((α′′

l − ω×
l)/ρ+

l) and conclude
that y = gη and Case 3 in Section 10.5 is satisfied, since in the main protocol this
subprotocol is invoked in the group Gq3 .

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 169

To summarize we may define ρ′l+1 = ρl+1/ρ
×
l and have

(u′1, v
′
1) = (γ

ρ′1
1 , gρ

′
1)

(u′2, v
′
2) = (γ

ρ′2
2 , gρ

′
2)

...

(u′δ−1, v
′
δ−1) = (γ

ρ′δ−1

δ−1 , g
ρ′δ−1) .

We conclude that the protocol is special-sound.
The special zero-knowledge simulator is defined as follows. Given the challenge

c ∈ Zq it chooses A1,l, A2,l, A3,l ∈ Gq, and

((d1,l, d2,l, d3,l)
δ−1
l=0 , (d4,l, d5,l, d6,l, d7,l, d8,l, d9,l, d10,l, d11,l)

δ−2
l=0)

with di,l ∈ Zq randomly and defines

(B0, (B1,l, B2,l)
δ−1
l=0 , (B3,l, B4,l, B5,l, B6,l, B7,l, B8,l, B9,l, B10,l)

δ−2
l=0)

by Equations (10.8)–(10.14). It is easy to see that the resulting simulation is
perfectly distributed. Thus, the protocol is special honest verifier perfect zero-
knowledge.

Next we consider the problem of proving that the values yα ∈ Gq3 and gyα2 ∈ Gq2
committed to in two commitments (µ, ν) = (yt3g

s
3, ys3yα) and (µ′, ν′) = (yt

′

2 g
s′

2 ,
ys

′

2 h
yα) respectively satisfy an exponential relation. Stadler [82] studied a simpler

problem, namely, given a ciphertext Eelg

(g,y)(m) with g, y ∈ Gq3 and gm2 , prove that

an exponential relation holds between the plaintext and the exponent. Although
we consider a more complex problem, our protocol is based on his ideas. Note
that proving that our relation holds is equivalent to proving knowledge of s, t ∈
Zq2 and s′, t′ ∈ Zq3 such that (θ, ω, φ) = ((µ′)ν

−1

, (ν′)ν
−1

, µ−1) is on the form

(yt
′

2 g
s′

2 , y
s′

2 h
ys3 , yt3g

s
3). For clarity we state this observation as a protocol below.

As stated the two next protocols execute in the groups Gq3 and Gq2 , but we
invoke the protocol also in the similarly related groups Gq2 and Gq1 . It is trivial to
see that the security properties of the protocols are not changed by this.

Protocol 10.5.2 (Exponential Relation Between Committed Values).
Common Input: g3, y3, µ, ν ∈ Gq3 and g2, y2, h, µ

′, ν′ ∈ Gq2 .
Private Input: t, s ∈ Zq3 such that (µ, ν) = (yt3g

s
3, y

s
3yα) and t′, s′ ∈ Zq2 such

that (µ′, ν′) = (yt
′

2 g
s′

2 , y
s′

2 h
yα).

1. Invoke Protocol 10.5.3 on common input g3, y3, φ ∈ Gq3 and g2, y2, h, θ, ω ∈
Gq2 , where (θ, ω, φ) = ((µ′)ν

−1

, (ν′)ν
−1

, µ−1), and private input −t,−s ∈ Zq3
and t′ν−1, s′ν−1 ∈ Zq2 .

Lemma 10.5.3. Protocol 10.5.2 is a {0, 1}κc-Σ-protocol.

170CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

Proof. This follows directly from Lemma 10.5.4 below.

We now give the double-decker exponentiation protocol called from within the
protocol above.

Protocol 10.5.3 (Double-Decker Exponentiation).
Common Input: g3, y3, φ ∈ Gq3 and g2, y2, h, θ, ω ∈ Gq2 .

Private Input: t, s ∈ Zq3 and t′, s′ ∈ Zq2 with (θ, ω, φ) = (yt
′

2 g
s′

2 , y
s′

2 h
ys3 , yt3g

s
3).

1. The prover chooses el, fl ∈ Zq3 and e′l, f
′
l ∈ Zq2 randomly for l = 1, . . . , κc,

computes F1,l ← y
e′l
2 g

f ′
l

2 , F2,l ← y
f ′
l

2 h
y
fl
3 , and Al ← yel3 g

fl
3 . Then it hands

(F1,l, F2,l, Al)
κc
l=1 to the verifier.

2. The verifier chooses b = (b1, . . . , bκc) ∈ {0, 1}κc randomly and hands b to the
prover.

3. The prover computes d1,l ← el − blt, d2,l ← fl− bls, d3,l ← f ′
l − bly

d2,l
3 s′, and

d4,l ← e′l − bly
d2,l
3 t′, and hands (d1,l, d2,l, d3,l, d4,l)

κc
l=1 to the verifier.

4. The verifier checks for l = 1, . . . , κc that

θbly
d2,l
3 y

d4,l
2 g

d3,l
2 = F1,l , y

d3,l
2 (ωblh(1−bl))y

d2,l
3 = F2,l , and (10.15)

φbly
d1,l
3 g

d2,l
3 = Al . (10.16)

Lemma 10.5.4. Protocol 10.5.3 is a {0, 1}κc-Σ-protocol.

Proof. It is easy to see that the protocol has perfect completeness. Consider now
special soundness. Suppose that we are given the outputs from two executions
(F1,l, F2,l, Al)

κc
l=1, b, (d1,l, d2,l)

κc
l=1 and b′, (d′1,l, d

′
2,l)

κc
l=1 with b 6= b′ that satisfy Equa-

tions (10.15)–(10.16). Thus, for some l we have bl 6= b′l.
Let (ε, τ) and (ψ, ζ) ∈ Zq3 be solutions to the equation systems

{

d1,l = el − blt
d′1,l = el − b′lt

}

and

{

d2,l = fl − bls
d′2,l = fl − b′ls

}

,

This implies that φ = yτ3g
ζ
3 . Consider next the equation system
{

d3,l = f ′
l − bly

d2,l
3 s′

d′3,l = f ′
l − b′ly

d′2,l
3 s′

}

.

Note that bly
d2,l
3 is zero if bl = 0 and non-zero otherwise. Thus, the system is

solvable. Let (ψ′, ζ′) be a solution and assume without loss that b′l = 0. Then we
have

F2,l = y
d3,l
2 ωy

d2,l
3 = y

ψ′−y
d2,l
3 ζ′

2 ωy
d2,l
3 = y

ψ′−yψ−ζ
3 ζ′

2 ωy
ψ−ζ
3 and

F2,l = y
d′3,l
2 hy

d′2,l
3 = yψ

′

2 hy
d′2,l
3 = yψ

′

2 hy
ψ
3 .

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 171

Solving for ω gives ω = yζ
′

2 h
yζ3 . Finally, let (ε′, τ ′) be the solution to

{

d4,l = e′l − bly
d2,l
3 t′

d′4,l = e′l − b′ly
d′2,l
3 t′

}

.

Then we have

F1,l = θy
d2,l
3 y

d4,l
2 g

d3,l
2 = θy

d2,l
3 y

ε′−y
d2,l
3 τ ′

2 g
ψ′−y

d2,l
3 ζ′

2 and

F1,l = y
d′4,l
2 g

d′3,l
2 = yε

′

2 g
ψ′

2 .

Solving for θ gives θ = yτ
′

2 g
ζ′

2 . We conclude that the protocol is special-sound.
The special zero-knowledge simulator is defined as follows. Given b ∈ {0, 1}κc

it chooses d1,l, d2,l ∈ Zq3 and d3,l, d4,l ∈ Zq2 randomly for l = 1, . . . , κc and defines
(F1,l, F1,l, Al) by Equations (10.15)–(10.16). We conclude that the protocol is spe-
cial honest verifier perfect zero-knowledge.

Our next protocol shows that the plaintext of an ElGamal encryption is the
value hidden in a commitment. Since the protocol is used in conjunction with
Cramer-Shoup ciphertexts, we use a notation that is consistent with the notation
we use for the Cramer-Shoup encryption scheme in the main protocol.

Protocol 10.5.4 (Equality of Committed and Encrypted Plaintexts).
Common Input: g3, y3, µ, ν, ḡ1, h̄, ū, v̄ ∈ Gq3 .
Private Input: t, s, r such that (µ, ν) = (yt3g

s
3, y

s
3m) and (ū, v̄) = (ḡr1, h̄

rm).

1. The prover chooses a, e, f ∈ Zq3 randomly, computes A1 ← ya3g
e
3, A2 ← ye3h̄

f ,

A3 ← ḡf1 , and hands (A1, A2, A3) to the verifier.

2. The verifier chooses c ∈ Zq3 randomly and hands it to the verifier.

3. The prover computes d1 ← ct + a, d2 ← cs + e, d3 ← −cr + f and hands
(d1, d2, d3) to the verifier.

4. The verifier checks that

µcA1 = yd13 g
d2
3 , (ν/v̄)cA2 = yd23 h̄

d3 , A3/ū
c = ḡd31 . (10.17)

Lemma 10.5.5. Protocol 10.5.4 is a Zq3 -Σ-protocol.

Proof. It is straightforward to see that the protocol has perfect completeness. Con-
sider special soundness. Given (A1, A2, A3), (c, d1, d2, d3), and (c′, d′1, d

′
2, d

′
3), with

c 6= c′, that satisfy Equation (10.17) above, we can solve the corresponding equation
systems to find τ, ζ, ρ ∈ Zq3 such that

(µ, ν/v̄, ū) = (yτ3g
ζ
3 , y

ζ
3 h̄

ρ, ḡ−ρ1) .

172CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

This implies that the ciphertext and commitment holds the same value v̄/h̄τ as
prescribed. Thus, the protocol is special-sound.

Given the challenge c the special zero-knowledge simulator chooses d1, d2, d3 ∈
Zq3 randomly and defines A1, A2, A3 by Equation (10.17). It is easy to see that the
resulting distribution is distributed exactly like that in a real execution. Thus, the
protocol is special honest verifier perfect zero-knowledge.

Our next protocol shows that a Cramer-Shoup ciphertext is valid. Here H
denotes the representation of a collision-free hash function.

Protocol 10.5.5 (Validity of Cramer-Shoup Ciphertext).
Common Input: H : G3

q3 → Zq3 , ḡ1, ḡ2, c̄, d̄ ∈ Gq3 , and ū, µ̄, v̄, ν̄ ∈ Gq3 .

Private Input: r ∈ Zq3 such that (ū, µ̄, v̄, ν̄) = (ḡr1, ḡ
r
2 , v̄, c̄

rd̄rH(ū,µ̄,v̄)).

1. The prover chooses a ∈ Zq3 randomly and computes B1 ← ḡa1 , B2 ← ḡa2 ,
B3 ← (c̄d̄H(ū,µ̄,v̄))a and hands (B1, B2, B3) to the verifier.

2. The verifier chooses c ∈ Zq3 randomly and hands c to the prover.

3. The prover computes d← cr + a and hands d to the verifier.

4. The verifier checks that ūcB1 = ḡd1 , µ̄cB2 = ḡd2 and ν̄cB3 = (c̄d̄H(ū,µ̄,v̄))d.

Lemma 10.5.6. Protocol 10.5.5 is a Zq3 -Σ-protocol.

Proof. It is straightforward to see that the protocol has perfect completeness. As-
suming the output of two executions B1, B2, B3, c, d and B1, B2, B3, c

′, d′ for c 6= c′

both satisfying the verification of Step 4, we can compute ρ← (d−d′)/(c− c′) such
that (ū, µ̄, ν̄) = (ḡρ1 , ḡ

ρ
2 , c̄

ρd̄ρH(ū,µ̄,v̄)). Thus, the protocol is special-sound.

Given the challenge c the special zero-knowledge simulator chooses d ∈ Zq3
randomly and defines B1, B2, and B3 by the equations in Step 4. It follows that
the protocol is special honest verifier perfect zero-knowledge.

The next protocol combines the protocols above and provides a solution to the
goal of this section, i.e., proving the relations in Step 3 in Algorithm 10.3.2 involving
only elements from Gq1 , Gq2 , and Gq3 .

Protocol 10.5.6 (Commitment to Hash of Chained Keys).
Common Input: g3, y3, yα0 ∈ Gq3 , g2, y2 ∈ Gq2 , g1, y1 ∈ Gq1 , HCHP = (h1, . . . , hδ)
∈ Gδq2 , (ul, vl, u

′
l, v

′
l)
δ−1
l=0 ∈ G2δ

q3 , (µ′′, ν′′) ∈ G2
q1 , ḡ1, ḡ2, c̄, d̄, h̄ ∈ Gq3 ,

Cδ = (ū, µ̄, v̄, ν̄) ∈ G4
q3 .

Private Input: r0, r
′
0, . . . , rδ−1, r

′
δ−1, rδ ∈ Zq3 , yα1 , . . . , yαδ ∈ Gq3 , and s′′, t′′ ∈

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 173

Zq2 such that

(ul, vl) =← Eelg

(yαl ,g3)(yαl+1
, rl) for l = 0, . . . , δ − 1 ,

(u′l, v
′
l) = Eelg

(yαl ,g3)(1, r
′
l) for l = 0, . . . , δ − 1 ,

Cδ = ECCA
Y (yαδ , rδ) , and

(µ′′, ν′′) = (yt
′′

1 g
s′′

1 , ys
′′

1 g
HCHP(yα1 ,...,yαδ)

1) .

1. The prover chooses sl, tl ∈ Zq2 randomly, computes commitments

(µl, νl)←
(

ytl3 g
sl
3 , y

sl
3 yαl+1

)

for l = 0, . . . , δ − 1, and hands (µl, νl)
δ−1
l=0 to the verifier.

2. The prover chooses s′l, t
′
l ∈ Zq3 randomly, computes commitments (µ′

l, ν
′
l) ←

(y
t′l
2 g

s′l
2 , y

s′l
2 h

yαl+1

l+1) for l = 0, . . . , δ − 1, and hands (µ′
l, ν

′
l)
δ
l=1 to the verifier.

3. The prover and verifier computes (µ′, ν′)←
(

∏δ−1
l=0 µ

′
l,

∏δ−1
l=0 ν

′
l

)

. The prover

computes s′ ←∑δ−1
l=0 s

′
l and t′ ←∑δ−1

l=0 t
′
l.

4. Invoke the following protocols in parallel:

a) Protocol 10.5.1 on public input yα0 , g3, y3,
(

(ul, vl, u
′
l, v

′
l), (µl, νl)

)δ−1

l=0
,

and private input (rl, r
′
l, sl, tl)

δ−1
l=0 to show that the chain is a valid chain

of encrypted keys and commitments.

b) Protocol 10.5.2 for l = 0, . . . , δ − 1 on public input g3, y3, µl, νl ∈ Gq3
and g2, y2, hl, µ

′
l, ν

′
l ∈ Gq2 , and private input sl, tl ∈ Zq3 and s′l, t

′
l ∈ Zq2 .

This “lifts” each committed public key up into the exponent.

c) Protocol 10.5.2 on public input g2, y2, µ
′, ν′ ∈ Gq2 and g1, y1, g1, µ

′′, ν′′ ∈
Gq1 , and private input s′, t′ ∈ Zq2 and s′′, t′′ ∈ Zq1 . This “lifts” the
Chaum-van Heĳst-Pfitzmann hash value of the public keys along the
chain up into the exponent.

d) Protocol 10.5.4 on common input g3, y3, µδ−1, νδ−1 ∈ Gq3 and ḡ1, h̄, ū,
v̄ ∈ Gq3 , and private input tδ−1, sδ−1, rδ ∈ Zq3 to show that Cδ is an
encryption of the value yαδ committed to in (µδ−1, νδ−1).

e) Protocol 10.5.5 on common input H , and ḡ1, ḡ2, c̄, d̄, h̄ ∈ Gq3 , Cδ =
(ū, µ̄, v̄, ν̄) ∈ G4

q3 , and private input rδ ∈ Zq3 to show that Cδ is correctly
formed.

Lemma 10.5.7. Protocol 10.5.6 is a {0, 1}κc × Zq3-Σ-protocol.

174CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

Proof. The perfect completeness of the protocol follows from the perfect complete-
ness of the subprotocols.

From the Observations 8.5.1 and 8.5.2 it follows that Step 4 may be considered
a single combined {0, 1}κc × Zq3 -Σ-protocol. Given two satisfying transcripts the
special soundness of each subprotocol can be used to find suitable values, but we
must also show that the values found this way for the different subprotocols are
consistent to prove special soundness.

Using Lemma 10.5.2 we can find τl, τ
′
l , ζl, ψl ∈ Zq3 , γl ∈ Gq3 such that

(ul, vl) = Eelg

(γl,g3)
(γl+1, τl) = (γτll , g

τl
3 γl+1) ,

(u′l, v
′
l) = Eelg

(γl,g3)
(1, τ ′l) = (γ

τ ′
l

l , g
τ ′
l

3) , and

(µl, νl) = (yψl3 gζl3 , y
ζl
3 γl+1)

for l = 0, . . . , δ − 1. Using Lemma 10.5.3 we can find τ∗l , ζ
∗
l , ψ

∗
l ∈ Zq3 , γ∗l ∈ Gq3 ,

and ζ′l , ψ
′
l ∈ Zq2 such that

(µl, νl) = (y
ψ∗
l

3 g
ζ∗l
3 , y

ζ∗l
3 γ∗l+1) and (µ′

l, ν
′
l) = (y

ψ′
l

2 g
ζ′l
2 , y

ζ′l
2 h

γ∗
l+1

l)

for l = 0, . . . , δ − 1. If γ∗l+1 6= γl+1, then either ψ∗
l 6= ψl or ζ∗l 6= ζl. Then we define

η = (ζl−ζ∗l)/(ψ∗
l −ψl) and conclude that y3 = gη3 . In other words Case 3 in Section

10.5 is satisfied. Thus, we assume that γ∗δ = γδ, ψ
∗
δ = ψδ, and ζ∗δ = ζδ.

Using Lemma 10.5.3 we can find ζ′, ψ′ ∈ Zq2 , ζ′′, ψ′′ ∈ Zq1 , and Γ ∈ Gq2 such
that

(µ′, ν′) = (yψ
′

2 gζ
′

2 , y
ζ′

2 Γ) and (µ′′, ν′′) = (yψ
′′

1 gζ
′′

1 , yζ
′′

1 gΓ
1) .

If
∏δ
l=1 h

γl
l 6= Γ, then either ψ′ 6= ∑δ−1

l=0 ψ
′
l or ζ′ 6= ∑δ−1

l=0 ζ
′
l . Then we define

η = ψ′−∑δ−1
l=0 ψ

′
l and

∑δ−1
l=0 ζ

′
l− ζ′ and conclude that y2 = gη2 . In other words Case

2 in Section 10.5 is satisfied. Thus, we assume that
∏δ
l=1 h

γl
l ← Γ, ψ′ =

∑δ−1
l=0 ψ

′
l,

and ζ′ =
∑δ−1
l=0 ζ

′
l .

Using Lemma 10.5.5 we can find ψ×
δ−1, ζ

×
δ−1, τ ∈ Zq3 and γ×δ ∈ Gq3 such that

(µδ−1, νδ−1) = (y
ψ×
δ−1

3 g
ζ×
δ−1

3 , y
ζ×
δ−1

3 γ×δ) and (ū, v̄) = (ḡτ1 , h̄
τγ×δ) .

If γ×δ 6= γδ, then either ψ×
δ−1 6= ψδ−1 or ζ×δ−1 6= ζδ−1. Then we define η = (ψ×

δ−1 −
ψδ−1)/(ζδ−1 − ζ×δ−1) and conclude that y3 = gη3 . In other words Case 3 in Section

10.5 is satisfied. Thus, we assume that γ×δ = γδ, ψ
×
δ−1 = ψδ−1 and ζ×δ−1 = ζδ−1.

Using Lemma 10.5.6 we can find τ ∈ Zq3 such that (ū, µ̄, v̄, ν̄) = ECCA
Y (γδ, τ),

where Y is the public key Y = (H, ḡ1, ḡ2, c̄, d̄, h̄) to the Cramer-Shoup encryption
scheme over Gq3 . This concludes the proof of special soundness of the protocol.

Given a challenge (b, c) ∈ {0, 1}κc × Zq3 the special zero-knowledge simulator
chooses µl, νl ∈ Gq3 and µ′

l, ν
′
l ∈ Gq2 randomly and invokes the special zero-

knowledge simulator of each invoked subprotocol. Since the commitments (µl, νl)
and (µ′

l, ν
′
l) are perfectly distributed and each subprotocol is special honest verifier

perfect zero-knowledge, then so is the combined protocol.

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 175

Protocols in Two Distinct Groups

In this section we consider the problem of proving equality of exponents over distinct
groups. This is used as a bridge between the two parts of the main protocol. Two
Pedersen commitments are given: one over Gn denoted C = ys

′

ge, with e, s′ ∈ Zn
and one over SQN denoted C = ysge with s ∈ [0, 2κ+κr − 1]. In our application
Gn is a group Gq of prime order q or a group GN with order equal to the RSA
modulus N.

This problem has been studied by Boudot and Traoré [19] as well as by Camen-
isch and Michels [28]. We use Boudot’s protocol [18] for proving that a committed
value is contained in a certain interval. Instead of giving the complete protocol, we
only give the interface and refer the reader to [18] for details.

Protocol Head 10.5.7 (A Committed Number Lies in an Interval).
Common Input: g,y,C ∈ SQN and a, b ∈ Z.
Private Input: e ∈ [a, b] and s ∈ [0, 2κrN− 1] such that C = ysge.

Lemma 10.5.8. Protocol 10.5.7 is a {0, 1}κc-Σ-protocol.

Proof. Boudot [18] essentially shows that either e ∈ [a, b] or Case 5 in Section 10.5
is satisfied.

We now give the proof of equality of exponents over distinct groups using the
protocol above.

Protocol 10.5.8 (Equality of Exponents Over Distinct Groups).
Common Input: g,y,C ∈ Z∗

N and g, y, C ∈ Gn.
Private Input: e ∈ [0, n− 1], s ∈ [0, 2κrN− 1], and s′ ∈ Zn. such that C = ysge

and C = ys
′

ge.

1. The prover chooses a ∈ [0, 2κc+κrn − 1], b ∈ [0, 2κc+2κrN − 1] and b′ ∈ Zn
randomly, computes

A← ybga and A = yb
′

ga

and hands (A, A) to the verifier.

2. Protocol 10.5.7 is executed in parallel with the protocol below on common
input g,y,C and using the interval [0, n− 1] and private input e and s.

3. The verifier chooses c ∈ [0, 2κc − 1] and hands it to the prover.

4. The prover computes

d1 ← ce+ a mod 2κc+κrn , (10.18)

d2 ← cs+ b mod 2κc+2κrN , and (10.19)

d3 ← cs′ + b′ mod n , (10.20)

and hands (d1, d2, d3) to the verifier.

176CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

5. The verifier checks that yd2gd1 = CcA and yd3gd1 = CcA.

Lemma 10.5.9. Protocol 10.5.8 with n = q or n = N is a [0, 2κc − 1]-Σ-protocol.

Proof. If the prover is honest the verifier accepts if there is no modular reduction
in the computation of d1, d2. By the union bound this happens with probability
not more than 2 · 2−κr , which is negligible. Thus, the protocol has overwhelming
completeness.

To prove that the protocol is special-sound, assume we have A, A, c, d1, d2, d3 as
well as c′ 6= c, d′1, d

′
2, d

′
3, each list satisfying the equations of Step 5. Then we have

yd2−d
′
2gd1−d

′
1 = Cc−c′ and yd3−d

′
3gd1−d

′
1 = Cc−c

′

.

If c−c′ does not divide both d1−d′1 and d2−d′2 we define η0 ← c−c′, η1 ← d1−d′1,
η2 ← d2 − d′2, and b← C and conclude that Case 5 in Section 10.5 is satisfied.

If n = q, then c − c′ is obviously invertible in Zn. If n = N and c − c′ is not
invertible, we know that gcd(c − c′,N) is a non-trivial factor of N, and Case 7 in
Section 10.5 is satisfied.

Thus, we assume that c − c′ divides both d1 − d′1 and d2 − d′2 and define ε ←
(d1−d′1)/(c−c′) and ζ ← (d2−d′2)/(c−c′) over the integers and ζ′ ← (d3−d′3)/(c−c′)
over Zn. This gives

C = yζgε and C = yζ
′

gε .

Finally, using Lemma 10.5.8 we can find ε∗ ∈ [0, n− 1] and ζ∗ such that

C = yζ∗gε∗ .

We may assume that ε∗ = ε, since otherwise we can define η0 ← ε−ε∗, η1 ← ζ−ζ∗,
and b← C and conclude that Case 6 in Section 10.5 is satisfied.

Given the challenge c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses
d1 ∈ [0, 2κc+κrn − 1], d2 ∈ [0, 2κc+2κrN − 1], and d3 ∈ Zn randomly and defines
A and A by the equations in Step 5. This gives the same distribution as an
execution of the protocol. Thus, the protocol is special honest verifier perfect zero-
knowledge.

Protocols in the Squares Modulo An RSA-modulus

Zero-knowledge proofs of knowledge of logarithms of elements in SQN have been
studied by Fujisaki and Okamoto [47] and Damgård and Fujisaki [41]. We use
similar techniques. More precisely we the consider Pedersen commitments ysge

over SQN and the problem of proving relations between the committed values in
such commitments.

Protocol 10.5.9 (Knowledge of Committed Value).
Common Input: g,y ∈ SQN and u,v ∈ Z∗

N.
Private Input: s, t ∈ [0, 2κrN− 1], r ∈ SQN such that (u,v) = (ysgt,ytr).

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 177

1. The prover chooses a, b ∈ [0, 2κc+2κrN − 1] randomly, computes µ ← yagb,
and hands µ to the verifier.

2. The verifier chooses c ∈ [0, 2κc − 1] randomly and hands it to the prover.

3. The prover computes

d1 ← cs+ a mod 2κc+2κrN and d2 ← ct+ b mod 2κc+2κrN

and hands (d1, d2) to the verifier.

4. The verifier checks that ucµ = yd1gd2 .

Lemma 10.5.10. Protocol 10.5.9 is a [0, 2κc − 1]-Σ-protocol.

Proof. It is easy to check that the verifier accepts when there is no modular reduc-
tion in the computation of d1 or d2. Such a reduction occurs with probability at
most 2 ·2κr , which is negligible. Thus, the protocol has overwhelming completeness.

For the extraction of s, t and r to prove special soundness, assume that we have
two lists (µ, c, d1, d2) and (µ, c′, d′1, d

′
2), where c 6= c′, that satisfy the equations in

Step 4. Thus, we have

uc−c
′

= yd1−d
′
1gd2−d

′
2 .

If (c−c′) does not divide (d1−d′1) and (d2−d′2) we define η0 ← c−c′, η1 ← d1−d′1,
η2 ← d2 − d′2, and b← u and conclude that Case 5 in Section 10.5 is satisfied.

Thus, we assume that (c − c′) divides (d1 − d′1) and (d2 − d′2) and define ζ ←
(d1 − d′1)/(c− c′) and τ ← (d2 − d′2)/(c− c′). This gives

u = yζgτ .

On input a challenge c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses
d1, d2 ∈ [0, 2κc+2κrN− 1] randomly and defines µ by the equation in Step 4. The
resulting transcript is identically distributed to that in the real protocol and we
conclude that the protocol is special honest verifier perfect zero-knowledge.

Next we give a protocol that shows that two committed values are equal. Note
that we parameterize the protocol on a positive integer z to allow for different sizes
of the exponents.

Protocol 10.5.10 (Equality of Committed Values).
Common Input: g,y,∈ SQN and u,v,u′,v′ ∈ Z∗

N.
Private Input: s, t, s′, t′ ∈ [−2κrz + 1, 2κrz − 1] and r ∈ SQN such that (u,v) =
(ysgt,ytr) and (u′,v′) = (ys

′

gt
′

,yt
′

r).

1. The prover chooses a, b, a′, b′ ∈ [0, 2κc+2κrz − 1] randomly, computes

(α,β,γ)← (yagb,yby−b′ ,ya
′

gb
′

)

and hands (α,β,γ) to the verifier.

178CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

2. The verifier chooses c ∈ [0, 2κc − 1] randomly and hands it to the prover.

3. The prover computes

d1 ← cs+ a mod 2κc+2κrz ,

d2 ← ct+ b mod 2κc+2κrz ,

d3 ← cs′ + a′ mod 2κc+2κrz , and

d4 ← ct′ + b′ mod 2κc+2κrz ,

and hands (d1, d2, d3, d4) to the verifier.

4. The verifier checks that

(ucα, (v/v′)cβ, (u′)cγ) = (yd1gd2 ,yd2y−d4 ,yd3gd4) .

Lemma 10.5.11. Protocol 10.5.10 is a [0, 2κc − 1]-Σ-protocol.

Proof. An honest prover fails to convince the verifier if there is a modular reduction
in the computation of d1, d2, d3, and d4. It is easy to see that this happens with
negligible probability. Thus, the protocol has overwhelming completeness.

To show special soundness assume that we have (α,β,γ), c and (d1, d2, d3, d4)
satisfying the equations of Step 4 as well as c′ 6= c and (d′1, d

′
2, d

′
3, d

′
4) satisfying the

same equations. We have

(uc−c
′

, (v/v′)c−c
′

, (u′)c−c
′

) = (yd1−d
′
1gd2−d

′
2 ,yd2−d

′
2y−(d4−d

′
4),yd3−d

′
3gd4−d

′
4) .

If (c−c′) does not divide (d1−d′1) and (d2−d′2) we define η0 ← c−c′, η1 ← d1−d′1,
η2 ← d2 − d′2, and b = u and conclude that Case 5 in Section 10.5 is satisfied. We
do correspondingly if (c− c′) does not divide (d3 − d′3) and (d4 − d′4).

Thus, we assume that (c−c′) divides (d1−d′1), (d2−d′2), (d3−d′3), and (d4−d′4),
and define ζ = (d1− d′1)/(c− c′), τ = (d2− d′2)/(c− c′), ζ′ = (d3− d′3)/(c− c′), and
τ ′ = (d4 − d′4)/(c− c′). This gives

(u,v/v′,u′) = (yζgτ ,yτy−τ ′

,yζ
′

gτ
′

) .

On input a challenge c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses
d1, d2, d3, d4 ∈ [0, 2κc+2κrz − 1] randomly and defines (α,β,γ) by the equations in
Step 4. The resulting distribution is equal to the distribution of the transcript of
an honest execution of the protocol. Thus, the protocol is special honest verifier
perfect zero-knowledge.

The above protocol can also be used to prove that a pair u,v is a commitment to
a public value w. For clarity we state this as a protocol, also this time parameterized
on z:

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 179

Protocol 10.5.11 (Specific Committed Value).
Common Input: g,y ∈ SQN and u,v,w ∈ Z∗

N.
Private Input: s, t ∈ [−2κrz + 1, 2κrz − 1] such that (u,v) = (ysgt,ytw).

1. Invoke protocol 10.5.10 on common input g,y, (u,v), (1,w) and private ex-
ponents s, t, 0, 0.

Lemma 10.5.12. Protocol 10.5.11 is a [0, 2κc − 1]-Σ-protocol.

Proof. This follows directly from Lemma 10.5.11.

In Protocol 10.5.2 we showed how to prove that two committed values have
an exponential relation. We need to be able to do this also over ZN. We use a
protocol for double-decker exponential relations similar to Protocol 10.5.3. Once
again we use the fact that proving that (u, v) and (u,v) are on the forms (u, v) =
(yt

′

Ng
s′

N, y
s′

Ng
r
N) and (u,v) = (ytgs,ysr) is equivalent to proving that (θ, ω,φ) =

(uv−1

, vv
−1

,u−1) is on the form (yt
′

Ng
s′

N, y
s′

Ng
yt

N ,ytgs).

Protocol 10.5.12 (Basic Double-Decker Exponentiation).
Common Input: g,y,φ ∈ SQN and gN, yN, θ, ω ∈ GN.
Private Input: t, s ∈ [−2κrN + 1, 2κrN− 1] and t′, s′ ∈ ZN such that

(θ, ω,φ) = (yt
′

Ng
s′

N, y
s′

Ng
ys

N ,ytgs).

1. The prover chooses el, fl ∈ [0, 22κrN − 1] and e′l, f
′
l ∈ ZN randomly for l =

1, . . . , κc. Then it computes

(F1,l, F2,l,Al)← (y
e′l
Ng

f ′
l

N , y
f ′
l

Ng
yfl

N ,yelgfl)

and hands (F1,l, F2,l,Al)
κc
l=1 to the verifier.

2. The verifier randomly chooses b = (b1, . . . , bκc) ∈ {0, 1}κc and hands b to the
prover.

3. The prover computes

d1,l ← el − blt mod 22κrN ,

d2,l ← fl − bls mod 22κrN ,

d3,l ← f ′
l − blyd2,ls′ mod N , and

d4,l ← e′l − blyd2,lt′ mod N ,

and hands (d1,l, d2,l, d3,l, d4,l)
κc
l=1 to the verifier.

4. The verifier checks for l = 1, . . . , κc that

θbly
d2,l

y
d4,l
N g

d3,l
N = F1,l ,

y
d3,l
N (ωblg1−bl

N)y
d2,l

= F2,l , and

φblyd1,lgd2,l = Al .

180CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

Lemma 10.5.13. Protocol 10.5.12 is a {0, 1}κc-Σ-protocol.

Proof. If there is no reduction in the computations of d1,l and d2,l the verifier will
accept if the prover is honest. It is easy to see that a reduction occurs with negligible
probability. Thus, the protocol has overwhelming completeness.

Now we prove special soundness. For this we follow the proof of Lemma 10.5.3,
taking into account that the order of Z∗

N is unknown.
Suppose that we are given two outputs (F1,l, F2,l, Al)

κc
l=1, b, (d1,l, d2,l)

κc
l=1 and

b′, (d′1,l, d
′
2,l)

κc
l=1 with b 6= b′ that satisfy the equations of Step 4. Thus, for some l,

bl 6= b′l.
Let (ε, τ) and (ψ, ζ) be solutions to the equation systems

{

d1,l = el − blt
d′1,l = el − b′lt

}

and

{

d2,l = fl − bls
d′2,l = fl − b′ls

}

,

i.e., τ =
d1,l−d

′
1,l

bl−b′l
and ζ =

d2,l−d
′
2,l

bl−b′l
. Since |bl − b′l| = 1 this gives integral values of

τ, ζ when the system is solved over Z. We now have that φ = yτgζ .
Consider next the equation system

{

d3,l = f ′
l − blyd2,ls′

d′3,l = f ′
l − b′lyd

′
2,ls′

}

.

Note that bly
d2,l is zero if bl = 0 and non-zero otherwise. Thus, the system is

solvable. Let (ψ′, ζ′) be a solution and assume without loss that b′l = 0. Then we
have

F2,l = y
d3,l
N ωy

d2,l
= yψ

′−y
d2,lζ′

N ωy
d2,l

= yψ
′−yψ−ζζ′

N ωyψ−ζ

and

F2,l = y
d′3,l
N gy

d′2,l

N = yψ
′

N gy
d′2,l

N = yψ
′

N gy
ψ

N .

Solving for ω gives ω = yζ
′

Ng
yζ

N . Finally, let (ε′, τ ′) be the solution to

{

d4,l = e′l − blyd2,l t′
d′4,l = e′l − b′lyd

′
2,l t′

}

.

Then we have

F1,l = θy
d2,l

y
d4,l
N g

d3,l
N = θy

d2,l
yε

′−y
d2,lτ ′

N gψ
′−y

d2,lζ′

N and

F1,l = y
d′4,l
N g

d′3,l
N = yε

′

Ng
ψ′

N .

Solving for θ gives θ = yτ
′

Ng
ζ′

N. We conclude that the protocol is special-sound.
On input b ∈ {0, 1}κc the special zero-knowledge simulator chooses random

elements d1,l, d2,l, d3,l, d4,l ∈ [0, 22κrN−1] and defines (F1,l, F2,l,Al) by the equation
in Step 4. The resulting distribution is identical to that in a real execution protocol.
Thus, the protocol is special honest verifier perfect zero-knowledge.

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 181

Unfortunately, the protocol does not give us exactly what we need. Although
we have moved the committed value into the exponent the commitment (u, v) is
defined over GN. We need a corresponding commitment over SQN. To achieve this
we combine the above protocol with a protocol for proving equivalence of exponents
over distinct groups. This is illustrated in Figure 10.3.

GN

��
SQN

;;wwwwwwww

SQN

Figure 10.3: Double-decker exponentiation proof over an RSA-modulus.

Protocol 10.5.13 (Double-Decker Exponentiation).
Common Input: g,y,h ∈ SQN, (u,v), (u′,v′) ∈ (Z∗

N)2, and gN, yN ∈ GN.
Private Input: r ∈ SQN, s, t, s′, t′ ∈ [0, 2κrN− 1] such that (u,v) = (ysgt,ytr)
and (u′,v′) = (ys

′

gt
′

,yt
′

hr).

1. The prover chooses s′′, t′′ ∈ ZN randomly, computes (u, v) = (ys
′′

N gt
′′

N , y
t′′

N g
r
N)

and hands (u, v) to the verifier.

2. The following two protocols are executed in parallel:

a) Protocol 10.5.12 on common input g,y,φ ∈ SQN and gN, yN, θ, ω ∈ GN

where (θ, ω,φ) = (uv−1

, vv
−1

, u−1) and private input t′′v−1, s′′v−1 ∈
ZN and −t,−s ∈ [−2κrN + 1, 2κrN− 1].

b) Protocol 10.5.8 on common input y,h,v′ ∈ SQN, gN, yN, v ∈ GN and
private input r, t′, t′′.

Lemma 10.5.14. Protocol 10.5.13 is a {0, 1}κc-Σ-protocol.

Proof. The completeness follows from the completeness of the subprotocols.
We now prove special soundness. Using Lemma 10.5.13 we can find ζ′′, τ ′′, ζ, τ

such that

(θ, ω,φ) = (yτ
′′

N gζ
′′

N , yζ
′′

N gy
ζ

N ,yτgζ) .

Thus, we can compute ρ such that

(u,v) = (gζyτ ,gτρ) and (u, v) = (gζ
′′

N yτ
′′

N , gτ
′′

N yρN) .

Using Lemma 10.5.9 we can find ζ′, τ ′′∗ and ρ ∈ [0,N− 1] such that

v′ = gζ
′

hρ and v = y
τ ′′
∗

N gρN .

182CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

We may assume that (τ ′′∗ , ρ) = (τ ′′,ρ), since otherwise we can define η0 = τ ′′ − τ ′′∗
and η1 = ρ− ρ and Case 4 in Section 10.5 is satisfied.

On input c ∈ {0, 1}κc the special zero-knowledge simulator chooses u, v ∈ GN

randomly and invokes the special zero-knowledge simulators of the subprotocols on
input c. The generated pair (u, v) is identically distributed as in a real execution.
Thus, it follows from Lemma 10.5.13 and Lemma 10.5.9 that the protocol is special
honest verifier perfect zero-knowledge.

Protocol 10.5.14 (Knowledge of a Root of a Committed Value).
Common Input: g,y ∈ SQN and u,v,u′,v′,C ∈ Z∗

N.
Private Input: s, t, s′, t′, s′′, e ∈ [0, 2κrN − 1] and r ∈ SQN such that (u,v) =
(ysgt,ytr), (u′,v′) = (ys

′

gt
′

,yt
′

re) and C = ys
′′

ge.

1. The prover chooses a, b ∈ [0, 2κrN− 1] and f, h, i, j ∈ [0, 2κc+2κrN− 1] ran-
domly and computes

(A1,A2) ← (yagbue,ybve) , (10.21)

(B1,B2) ← (yfghui,yhvi) , and (10.22)

B3 ← yjgi . (10.23)

Then it hands (A1,A2,B1,B2,B3) to the verifier. The following protocols
are executed in parallel with the protocol below:

a) Protocol 10.5.10 parameterized with z = (2κcN)2 + 2κc+2κrN on public
input g, y, (A1,A2), (u′,v′) and private input se+ a, te+ b, s′, t′, and
re.

b) Protocol 10.5.9 on public input g,y, (u,v) and private input s, t, r.

2. The verifier chooses c ∈ [0, 2κc − 1] randomly and hands it to the prover.

3. The prover computes

d1 ← ca+ f mod 2κc+2κrN , (10.24)

d2 ← cb+ h mod 2κc+2κrN , (10.25)

d3 ← ce+ i mod 2κc+2κrN , and (10.26)

d4 ← cs′′ + j mod 2κc+2κrN . (10.27)

4. The verifier checks that

Ac
1B1,A

c
2B2 = (yd1gd2ud3 ,yd2vd3) , and (10.28)

CcB3 = yd4gd3 . (10.29)

Lemma 10.5.15. Protocol 10.5.14 is a [0, 2κc − 1]-Σ-protocol.

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 183

Proof. The verifier rejects if one of the three subprotocols fails or if there is a
modular reduction in the computation of d1, d2, d3 or d4. It is easy to see that
this happens with negligible probability. Thus, the protocol has overwhelming
completeness.

We prove that the protocol is special sound. Suppose we have two transcripts
(A1,A2,B1,B2,B3, c, d1, d2, d3, d4) and (A1,A2,B1,B2,B3, c

′, d′1, d
′
2, d

′
3, d

′
4) with

c 6= c′ satisfying the equations in Step 4. Then we have

Ac−c′

1 = yd1−d
′
1gd2−d

′
2ud3−d

′
3 ,

Ac−c′

2 = yd2−d
′
2vd3−d

′
3 , and

Cc−c′ = yd4−d
′
4gd3−d

′
3 .

If c− c′ does not divide d1− d′1, d2− d′2, d3− d′3, and d4− d′4 we conclude similarly
to previous proofs that Case 5 in Section 10.5 is satisfied.

Thus, we assume that c − c′ divides d1 − d′1, d2 − d′2, d3 − d′3, and define
α ← (d1 − d′1)/(c − c′), β ← (d2 − d′2)/(c − c′), ε ← (d3 − d′3)/(c − c′), and
ζ′′ ← (d4 − d′4)/(c− c′). This gives

A1 = yαgβuε ,

A2 = yβvε , and

C = yζ
′′

gε .

Using Lemma 10.5.10 we can find ζ, τ, r such that

(u,v) = (yζgτ ,yτr) .

If we combine the equations we have

(A1,A1) = (yζε+αgτε+β,yζτ+βrε) .

Using Lemma 10.5.11 we can find α∗, β∗, ζ
′, τ ′ such that

(A1,A2/u
′,v′) = (yα∗gβ∗ ,yβ∗y−τ ′

,yζ
′

gτ
′

) .

If (ζε+α, τε+β) 6= (α∗, β∗) then we set η0 = ζε+α−α∗ and η1 = τε+β−β∗ and
conclude that Case 6 in Section 10.5 is satisfied. Thus, we assume that equality
holds and have

(u′,v′) = (yζ
′

gτ
′

,yτ
′

rε) .

This concludes the proof of special-soundness.
On input a challenge c ∈ [0, 2κc − 1] the special zero-knowledge simulator

chooses A1,A2 ∈ SQN and d1, d2, d3, d4 ∈ [0, 2κc+2κrN− 1] randomly and defines
B1,B2,B3 by the equations in Step 4. Finally, the simulator invokes the spe-
cial zero-knowledge simulators of the subprotocols on input c. The distribution of
(A1,A2) is statistically close to the distribution of this pair in a real execution,
and both subprotocols are special honest verifier perfect zero-knowledge. Thus, the
protocol is special honest verifier statistical zero-knowledge.

184CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

Protocol 10.5.15 (Equality of Exponents of Committed Values).
Common Input: g,y,h,u,v,C ∈ SQN

Private Input: r, s, t, w ∈ [0, 2κrN − 1] such that (u,v) = (yrgs,yshw) and
C = ytgw.

1. The prover chooses a, b, e, f ∈ [0, 2κc+2κrN − 1], sets (µ,ν) ← (yagb,ybhe)
and B← geyf and hands (µ,ν,B) to the verifier.

2. The verifier randomly chooses c ∈ [0, 2κc − 1] and hands it to the prover.

3. The prover computes

d1 ← cr + a mod 2κc+2κrN ,

d2 ← cs+ b mod 2κc+2κrN ,

d3 ← ct+ e mod 2κc+2κrN , and

d4 ← cw + f mod 2κc+2κrN ,

and hands (d1, d2, d3, d4) to the verifier.

4. The verifier checks that ucµ = yd1gd2 , vcν = yd2hd4 and CcB = yd3gd4 .

Lemma 10.5.16. Protocol 10.5.15 is a [0, 2κc − 1]-Σ-protocol.

Proof. An honest verifier will convince the verifier except possibly when there is
a modular reduction in the computation of d1, d2, d3, or d4. It is easy to see
that this happens with negligible probability. Thus, the protocol has overwhelming
completeness.

Now we show that the protocol is special-sound. Assume that we have two lists
(µ,ν,B, c, d1, d2, d3, d4) and (µ,ν,B, c′, d′1, d

′
2, d

′
3, d

′
4) with c 6= c′ both satisfying

the equations of Step 4. Then we have

(uc−c
′

,vc−c
′

) = (yd1−d
′
1gd2−d

′
2 ,yd2−d

′
2hd4−d

′
4) , and

Cc−c′ = yd3−d
′
3gd4−d

′
4 .

If c− c′ does not divide d1− d′1, d2− d′2, d3− d′3, and d4− d′4 we conclude similarly
to previous proofs that Case 5 in Section 10.5 is satisfied.

Thus, we assume that c − c′ divides d1 − d′1, d2 − d′2, d3 − d′3, and d4 − d′4
and define ρ ← (d1 − d′1)/(c − c′), ζ ← (d2 − d′2)/(c − c′), τ ← (d3 − d′3)/(c − c′),
ω ← (d4 − d′4)/(c− c′). This gives

(u,v) = (yρgζ ,yζ ,hω) , and

C = gωyτ .

This concludes the proof of special-soundness.
On input a challenge c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses

d1, d2, d3, d4 ∈ [0, 2κc+2κr − 1] randomly and defines µ, ν and C by the equations
of Step 4. This gives a distribution equal to that of an honest execution. Thus, the
protocol is special honest verifier perfect zero-knowledge.

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 185

The following is a protocol, parameterized on k and l, is used to show that a
committed value can be written as ka+ l for some a.

Protocol 10.5.16 (A Committed Value Can Be Written as ka+ l).
Common Input: g,y ∈ SQN and C ∈ Z∗

N.
Private Input: a, t ∈ [0, 2κrN− 1] such that C = ytgka+l.

1. The prover selects e, f, h ∈ [0, 2κc+2κrN−1], i ∈ [0, 2κc+2κrkN−1] at random,
computes

A ← yega , (10.30)

B1 ← yhgf , and (10.31)

B2 ← yi , (10.32)

and hands (A,B1,B2) to the verifier.

2. The verifier randomly chooses c ∈ [0, 2κc − 1] and hands it to the prover.

3. The prover computes

d1 ← ca+ f mod 2κc+2κrN , (10.33)

d2 ← ce+ h mod 2κc+2κrN , and (10.34)

d3 ← c(ek − t) + i mod 2κc+2κrkN , (10.35)

and hands (d1, d2, d3) to the verifier.

4. The verifier checks that AcB1 = yd2gd1 and (glAk/C)cB2 = yd3 .

Lemma 10.5.17. Protocol 10.5.16 is a [0, 2κc − 1]-Σ-protocol.

Proof. The prover succeeds to convince the verifier unless there is a modular re-
duction in the computation of d1, d2, or d3. It is easy to see that this happens with
negligible probability. Thus, the protocol has overwhelming completeness.

Consider now special soundness. Assume we have lists (A,B1,B2, c, d1, d2, d3)
and (A,B1,B2, c

′, d′1, d
′
2, d

′
3), with c 6= c′, satisfying the equations of Step 4. We

have

Ac−c′ = yd2−d
′
2gd1−d

′
1 and

(glAk/C)c−c
′

= yd3−d
′
3 .

If c − c′ does not divide d1 − d′1, d2 − d′2, and d3 − d′3 we conclude similarly to
previous proofs that Case 5 in Section 10.5 is satisfied.

Thus, we assume that c − c′ divides d1 − d′1, d2 − d′2, and d3 − d′3 and define
α ← (d1 − d′1)/(c − c′), ε ← (d2 − d′2)/(c − c′), and ζ ← (d3 − d′3)/(c − c′). This
gives

A = yεgα and glAk/C = yζ

186CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

and we conclude that

C = ykε−ζgkα+l .

On input c ∈ [0, 2κc−1] the special zero-knowledge simulator chooses A ∈ SQN,
d1, d2 ∈ [0, 2κc+2κrN− 1], d3 ∈ [0, 2κc+2κrkN− 1] randomly and defines B1,B2 by
the equations in Step 4. This gives a distribution that is statistically close to that
in the real protocol. Thus, the protocol is special honest verifier statistical zero-
knowledge.

From these building blocks we can now present the proof that a committed
signature is valid.

Protocol 10.5.17 (Validity of Committed Signature from Hash).
Common Input: g,y,h, z ∈ SQN, u,v,u′,v′,C,C′ ∈ Z∗

N, e′ ∈ [2κ, 2κ+1 − 1].
Private Input: r, s, r′, s′, t, t′ ∈ [0, 2κrN − 1], e ∈ [2κ, 2κ+1 − 1], and wα ∈ Zq2
such that

(u,v) = (ysgr,yrσ) ,

(u′,v′) = (ys
′

gr
′

,yr
′

σ′) ,

C = ytge ,

C′ = yt
′

gwα , and

Vfcsid,HSh
(N,g)

,(N,h,z,e′)(wα, (e,σ,σ
′)) = 1 .

In other words (e,σ,σ′) is a valid Cramer-Shoup signature of wα if the first hash
function is the identity map.

1. Let z′ denote (σ′)e
′

h−wα . The prover chooses ζ, τ , ζ′, τ ′, ζ′′, τ ′′, ζ′′′, τ ′′′,
ζ′′′′, τ ′′′′ ∈ [0, 2κrN− 1] and sets

(µ,ν) ← (yζgτ ,yτh−wα) ,

(µ′,ν′) ← (yζ
′

gτ
′

,yτ
′

z′) ,

(µ′′,ν′′) ← (yζ
′′

gτ
′′

,yτ
′′

σe) ,

(µ′′′,ν′′′) ← (yζ
′′′

gτ
′′′

,yζ
′′′

HSh
(N,g)(z

′)) , and

(µ′′′′,ν ′′′′) ← (yζ
′′′′

gτ
′′′′

,yζ
′′′′

h−HSh
(N,g)(z

′)) .

Then it hands (µ,ν), (µ′,ν ′), (µ′′,ν ′′), (µ′′′,ν ′′′), and (µ′′′′,ν′′′′) to the
verifier.

2. The following protocols are run in parallel

a) Protocol 10.5.9 on the public input g,y, (u,v) and private input s, r,σ
to show that the prover knows how to open the commitment (u,v).

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 187

b) Protocol 10.5.9 on the public input g, y, (u′,v′) and private input s′, r′,
σ′ to show that the prover knows how to open the commitment (u′,v′).

c) Protocol 10.5.15 on public input g,y,h, (µ,ν), (C′)−1 and private input
ζ, τ , −t′, −wα to show that (µ,ν) is a commitment of h−wα .

d) Protocol 10.5.10 with z ← N + N2κ+1 on public input g, y, (µ′, ν ′),
(µ(u′)e

′

, ν(v′)e
′

) and private input ζ′, τ ′, ζ + s′e′, τ + r′e′ to show that
(µ′,ν ′) is a commitment of z′.

e) Protocol 10.5.14 on public input g,y, (u,v), (µ′′,ν′′),C and private ex-
ponents s, r, ζ′′, τ ′′, t, e. This shows that (µ′′,ν′′) hides the value hidden
in (u,v) to the power of the value hidden in C.

f) Protocol 10.5.13 on public input g,y,g, (µ′,ν ′), (µ′′′,ν′′′), gN, yN and
ζ′, τ ′, ζ′′′, τ ′′′ as private input to show that (µ′′′,ν′′′) is a commitment
of a Shamir hash of z′.

g) Protocol 10.5.13 on public input g,y,h−1, (µ′′′,ν ′′′), (µ′′′′,ν ′′′′), gN, yN
and private input ζ′′′, τ ′′′, ζ′′′′, τ ′′′′ to show that (µ′′′′,ν ′′′′) commits to
h to the power of −HSh

(N,g)(z
′).

h) Protocol 10.5.11 with z ← 2N on public input g,y, (µ′′µ′′′′,ν′′ν′′′′), z
with private input ζ′′ + ζ′′′′, τ ′′ + τ ′′′′ to finally show that the signature
is valid.

i) Protocol 10.5.16 with k ← 4 and l ← 3 on public input g,y,C and
private input e, t to prove that e is odd and different from e′.

j) Protocol 10.5.7 on public input g,y,C, 2κ, 2κ+1 − 1 and private input
e, t to prove that e belongs to the correct interval.

Lemma 10.5.18. Protocol 10.5.17 is a [0, 2κc − 1]-Σ-protocol.

Proof. Since there is a natural bĳection between [0, 2κc − 1] and {0, 1}κc, the res-
ulting protocol is a [0, 2κc − 1]-Σ-protocol. The completeness follows from the
completeness of the subprotocols.

Consider now special soundness. Using Lemma 10.5.10 we can find ζ, ρ, r and
ζ′, ρ′, r′ such that

(u,v) = (yζgρ,yρr) and (10.36)

(u′,v′) = (yζ
′

gρ
′

,yρ
′

r′) . (10.37)

Using Lemma 10.5.16 we can find ζ1, ρ1, ω, τ such that

(µ,ν) = (yζ1gρ1 ,yρ1h−ω) and (10.38)

C′ = y−τgω . (10.39)

Using Lemma 10.5.11 we can find ζ1, τ1, r1, ζe, τe, re such that

(µ′,ν′) = (yζ1gρ1 ,yρ1r1) and (10.40)

(µ(u′)e
′

,ν(v′)e
′

) = (yζegρe ,yρer1) . (10.41)

188CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

If we combine Equations (10.36), (10.38), and (10.41) we get

(yζ1+ζ′e′gρ1+ρ
′e′ ,yρ1+ρ′e′h−ωr′e

′

) = (yζegρe ,yρer1) .

We may assume that (ζ1 + ζ′e′, ρ1 + ρ′e′) = (ζe, ρe) and thus re = h−ωr′e
′

, since
otherwise Case 6 in Section 10.5 is satisfied. Thus, we have

(µ′,ν ′) = (yζ1gρ1 ,yρ1h−ωr′e
′

) .

Using Lemma 10.5.15 we can find ζ2, τ2, r2, ζ
′
2, τ

′
2, ε, ζ

′′
2 such that

(u,v) = (yζ2gρ2 ,yρ2r2) ,

(µ′′,ν′′) = (yζ
′
2gρ

′
2 ,yρ

′
2rε2) , and

C = yζ
′′
2 gε .

We may assume that (ζ2, ρ2) = (ζ, ρ) and thus r2 = r, since otherwise Case 6 in
Section 10.5 is satisfied.

Using Lemma 10.5.14 we can find ζ3, τ3, r3, ζ
′
3, τ

′
3 such that

(µ′,ν′) = (yζ3gρ3 ,yρ3r3) and

(µ′′′,ν′′′) = (yζ
′
3gρ

′
3 ,yρ

′
3hr3) .

We may assume that (ζ3, ρ3) = (ζ′1, ρ
′
1) and thus r3 = h−ωr′e

′

, since otherwise Case
6 in Section 10.5 is satisfied.

Using Lemma 10.5.14 we can find ζ4, τ4, r4, ζ
′
4, τ

′
4 such that

(µ′′′,ν′′′) = (yζ4gρ4 ,yρ4r4) and

(µ′′′′,ν′′′′) = (yζ
′
4gρ

′
4 ,yρ

′
4hr4) .

We may assume that (ζ4, ρ4) = (ζ′3, ρ
′
3) and thus r4 = hr3 , since otherwise Case 6

in Section 10.5 is satisfied.
Using Lemma 10.5.12 we can find ζ5, τ5 and z such that

(µ′′µ′′′′,ν′′ν′′′′) = (yζ5gρ5 ,yρ5z) .

We may assume that (ζ5, ρ5) = (ζ′2 + ζ′4, ρ
′
2 + ρ′3) and thus we have

z = rεhhr3
= rεhH

Sh
(N,g)(h

−ωr′e
′
), since otherwise Case 6 in Section 10.5 is satisfied.

Using Lemma 10.5.17 we can find α, τ ′ such that

C = yτ
′

g4α+3 .

We may assume that ε = 4α+ 3, since otherwise Case 6 in Section 10.5 is satisfied.
Using Lemma 10.5.8 we can find ζ6, ε6 ∈ [2κ, 2κ+1 − 1] such that

C = yζ6gε6 .

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 189

We may assume that ε6 = ε, since otherwise Case 6 in Section 10.5 is satisfied.

To summarize we have found ζ, ρ, ζ′, ρ′, τ, ζ′′2 and ω, (ε, r, r′), with ε ∈ [2κ, 2κ+1−
1] and ε = 3 mod 4, and ζ, ρ, such that

(u,v) = (yζgρ,yρr) ,

(u′,v′) = (yζ
′

gρ
′

,yρ
′

r′) ,

C′ = y−τgω ,

C = yζ
′′
2 gε , and

Vfcsid,HSh
(N,g)

,(N,h,z,e′)(ω, (ε, r, r
′)) = 1 .

This concludes the proof of special-soundness.

On input a challenge c ∈ {0, 1}κc the special zero-knowledge simulator chooses
random elements µ′,µ′′,µ′′′,µ′′′′,ν ′,ν ′′,ν ′′′,ν ′′′′ ∈ SQN and invokes the special
zero-knowledge simulator of each subprotocol on input c. The distribution of the
above elements is statistically close to their distribution in the real protocol. Since
all subprotocols are special honest verifier statistical zero-knowledge, so is the com-
bined protocol.

The Complete Protocol

We are finally ready to give the complete proof of a correct signature corresponding
to the proof in Step 3 of Algorithm 10.3.2. The common input consists of a chain of
ciphertexts and commitments of a SScs signature of the public keys corresponding
to the path of the signer in the tree.

Protocol 10.5.18 (Valid HGS Signature).
Common Input:

HCHP = (h1, . . . , hδ) ∈ Gδq2 (ul, vl, u
′
l, v

′
l)
δ−1
l=0 ∈ G4δ

q3

g1, y1 ∈ Gq1 , g2, y2 ∈ Gq2 , g3, y3 ∈ Gq3 Cδ ∈ G4
q3

yα0 ∈ Gq3 , Y ∈ G5
q3 u,v,u′,v′,C ∈ SQN

e′ ∈ [2κ, 2κ+1 − 1]

g,y,h, z ∈ SQN

Private Input: (r0, . . . , rδ) ∈ Zδ+1
q3 , (yα1 , . . . , yαδ) ∈ Gδq3 , e ∈ [2κ, 2κ+1 − 1], and

190CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

(r, s, r′, s′, t) ∈ [0, 2κrN− 1]5 such that

(ul, vl)E
elg

(yαl ,g3)
(yαl+1

, rl) for l = 0, . . . , δ − 1 ,

(u′l, v
′
l) = Eelg

(yαl ,g3)(1, r
′
l) for l = 0, . . . , δ − 1 ,

Cδ = ECCA
Y (yαδ , rδ) ,

u = ysgr ,

u′ = ys
′

gr
′

,

C = ytge , and

VfcsHCHP,HSh
(N,g)

,(N,h,z,e′)((yα1 , . . . , yαδ), (e,v/y
r ,v′/yr

′

)) = 1 .

1. The prover chooses s, t ∈ Zq2 and t′ ∈ [0, 2κrN− 1] randomly and computes

(µ, ν) ← (ys1g
t
1, y

t
1g
HCHP(yα1 ,...,yαδ)

1), C′ ← yt
′

gH
CHP(yα1 ,...,yαδ). The prover

hands (µ, ν) and C′ to the verifier.

2. The following protocols are executed in parallel

a) Protocol 10.5.6 on public input g3, y3, yα0 , g2, y2, g1, y1, H
CHP,

(ul, vl, u
′
l, v

′
l)
δ−1
l=0 , (µ, ν), Y, Cδ and private input r0, r

′
0, . . . , rδ−1, r

′
δ−1, rδ,

yα1 , . . . , yαδ , s, t.

b) Protocol 10.5.8 on public input g,y,C′, g1, y1, ν and private input
HCHP(yα1 , . . . , yαδ), t

′, and t.

c) Protocol 10.5.17 on public input g,y,h, z, (u,v), (u′,v′),C,C′, e′ and
private input r, s, r′, s′, t, t′, e,HCHP(yα1 , . . . , yαδ).

Lemma 10.5.19. Protocol 10.5.18 is a [0, 2κc − 1]× Zq2 -Σ-protocol.

Proof. The completeness follows from the completeness of the subprotocols.
Using Lemma 10.5.7 we can find ρ0, ρ

′
0, . . . , ρδ−1, ρ

′
δ−1, ρδ, γ0, . . . , γδ with γ0 =

yα0 , and ζ′′, τ ′′ such that

(ul, vl, u
′
l, v

′
l) = (Eelg

(γl,g3)
(γl+1, ρl), E

elg

(γl,g3)
(1, ρ′l)) for l = 0, . . . , δ − 1 ,

Cδ = ECCA
Y (γδ, ρδ) , and

(µ, ν) = (yζ
′′

1 gτ
′′

1 , yτ
′′

1 g
HCHP(γ1,...,γδ)
1) .

Using Lemma 10.5.9 we can find ω, ζ′′′, τ ′′′ such that

C′ = yζ
′′′

gω and ν = yτ
′′′

1 gω1 .

We may assume that ω = HCHP(γ1, . . . , γδ), since otherwise Case 1 in Section 10.5
is satisfied. Using Lemma 10.5.18 we can find ρ, ζ, ρ′, ζ′, τ, τ ′, ε, ω∗ and r, r′ ∈ SQN

10.5. CONSTRUCTION OF THE PROOF OF KNOWLEDGE 191

such that

(u,v) = (gζyρ,gρr) ,

(u′,v′) = (gζ
′

yρ
′

,gρ
′

r′) ,

C = yτgε ,

C′ = yτ
′

gω
∗

, and

Vfcsid,HSh
(N,g)

,(N,h,z,e′)(ω, (ε, r, r
′)) = 1 .

We may assume that ω = ω∗, since otherwise Case 5 in Section 10.5 is satisfied.
This concludes the proof of special-soundness.

On input (b, c) ∈ [0, 2κc − 1]×Zq2 the special zero-knowledge simulator chooses
µ, ν ∈ Gq1 and C′ ∈ SQN randomly and invokes the special zero-knowledge sim-
ulator of each subprotocol on input b or c as appropriate. Since the distribution
of (µ, ν,C′) is statistically close to the corresponding elements in a real execution
and the subprotocols are special honest verifier statistical zero-knowledge, then so
is the combined protocol.

A Computationally Convincing Proof of Knowledge

We are finally ready to prove the main results of this section.

Proposition 10.5.20. Protocol 10.5.18 is honest verifier statistical zero-knowledge.

Proof. This is an immediate consequence of 10.5.19.

Proposition 10.5.21. Protocol 10.5.18 is a computationally convincing proof of
knowledge with regards to the distribution of the special parameters Γ = (N, g, y,
gN, yN) and g = (q0, g1, y1, g2, y2, g3, y3), under the DL-assumption and the
strong RSA-assumption.

Proof. We know from Lemma 10.5.19 that the protocol is a Σ-protocol for the
relation R = RHGS ∨RDL ∨RSRSA. From Lemma 8.5.11 follows that the protocol
is a proof of knowledge for the relationRHGS∨RDL∨RSRSA. Let X be the extractor.
Then we have for every prover P ∗ and constant c that if Pr(Γ,g),rp [δ

V
P∗((Γ, g), rp) ≥

κ−c] ≥ κ−c then

Pr[(IP∗((Γ, g), rp),XP∗

((Γ, g), rp)) ∈ R | δVP∗((Γ, g), rp) ≥ κ−c] (10.42)

is overwhelming.

We argue that X is an extractor for a computationally convincing proof of
knowledge for the relation RHGS. The requirement on the running time of X in
Definition 8.5.1 follows immediately. Suppose that the requirement on the output of
X in Definition 8.5.1 does not hold. Then there exists an adversary P ∗, a constant

192CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

c, and an infinite index set N such that

Pr
(Γ,g),rp

[δVP∗((Γ, g), rp) ≥ κ−c] ≥ κ−c

Pr[(IP∗((Γ, g), rp),XP∗

((Γ, g), rp)) 6∈ RHGS | δVP∗((Γ, g), rp) ≥ κ−c] ≥ κ−c .

The union bound and the fact that the probability in Equation (10.42) is over-
whelming implies that

Pr[(IP∗((Γ, g), rp),XP∗

((Γ, g), rp)) ∈ RDL ∨RSRSA | δVP∗((Γ, g), rp) ≥ κ−c]

is at least 1
2κc and we conclude that Pr[(IP∗((Γ, g), rp),XP∗

((Γ, g), rp)) ∈ RDL ∨
RSRSA] ≥ 1

2κ2c .

Denote by t(κ) the expected running time of XP∗

. We define an adversary A
that given input (Γ, g) simulates XP∗

except that it halts after 4κ2ct(κ) steps. If
the simulation is not completed it outputs ⊥. Otherwise it outputs the output of
XP∗

. Thus, the running time of A is polynomial.

Markov’s inequality implies that the probability that the simulation is interrup-
ted is at most 1

4κ2c . The union bound then implies that

Pr[A(Γ, g) ∈ RDL ∨RSRSA] ≥ 1

4κ2c
.

It follows from Lemma 10.2.11 and Lemma 10.2.5 that this contradicts either the
DL-assumption, Definition 10.2.4, or the strong RSA-assumption, Definition 2.3.2,
and the proposition follows.

It turns out that in the analysis of the hierarchical group signature scheme we
need a somewhat stronger statement. Consider the protocol where the prover and
verifier are given as special input not only (Γ, g), but also a tree T , a pair of maps
sk : V(T)→ Zq3 and pk : V(T)→ Gq3 and a set of leaves L ⊂ L(T). The protocol
is identical to πhgs except that the verifier checks that there does not exist a path
α0, . . . , αδ in the tree T such that

(Delg

1/sk(α0)(u0, v0), . . . , D
elg

1/sk(αδ−1)(uδ−1, vδ−1)) = (pk (α1), . . . , pk(αδ)) .

Denote the resulting protocol by π′
hgs. The following result follows similarly to the

proposition above.

Proposition 10.5.22. Let T be a tree with all leaves at the same depth. Then
Protocol 10.5.18 is a computationally convincing proof of knowledge with regards to
the distribution of Γ = (N,g,y, gN, yN), g = (q0, g1, y1, g2, y2, g3, y3), and (pk , sk),
under the DL-assumption and the strong RSA-assumption.

10.6. COMPLEXITY ANALYSIS 193

Prot. Prover Verifier Setup

10.5.1 25δ − 2 30δ − 3
10.5.2 2 + (10.5.3) 2 + (10.5.3)
10.5.3 7.5κc 7.5κc 2 bases
10.5.4 5 8
10.5.5 3 6

10.5.6
7δ + 2 + (10.5.1)+ (10.5.1)+
(δ + 1) · (10.5.2) (δ + 1) · (10.5.2)+
(10.5.4) + (10.5.5) (10.5.4) + (10.5.5)

10.5.8 10 18
10.5.9 2 3
10.5.10 2 3
10.5.11 (10.5.10) (10.5.10)
10.5.13 6 + (10.5.8) + (10.5.12) (10.5.8) + (10.5.12)
10.5.12 7.5κc 7.5κc 2 bases
10.5.14 12 + 2 · (10.5.9) + (10.5.10) 8 + 2 · (10.5.9) + (10.5.10)
10.5.15 4 9
10.5.16 7 7
10.5.7 6 12

10.5.17

20 + 2 · (10.5.9)+ 2 · (10.5.9)+
(10.5.10) + (10.5.11)+ (10.5.10) + (10.5.11)+
2 · (10.5.13) + (10.5.14)+ 2 · (10.5.13) + (10.5.14)+
(10.5.15) + (10.5.16)+ (10.5.15) + (10.5.16)+
(10.5.7) (10.5.7)

10.5.18
6 + δ + (10.5.6)+ δ + (10.5.6)+
(10.5.8) + (10.5.17) (10.5.8) + (10.5.17)

Table 10.1: Number of exponentiations in each subprotocol

10.6 Complexity Analysis

We now analyze the number of exponentiations needed for some typical parameters.
Table 10.1 shows the number of exponentiations necessary for each protocol.

Since Protocol 10.5.18 corresponds to the proof of a signature, this is what we
need to evaluate to find the number of exponentiations of the complete protocol.
Since the bulk of computations stem from the (δ+3) executions of the double-decker
exponentiation proofs that are based on cut-and-choose techniques we consider how
to speed up these exponentiations. It can be noted that all exponentiations in
these protocols are fixed-based exponentiations. In [22] a technique to use pre-
computation to speed up such computations is given. The idea is to represent the
exponent in basis b and pre-compute gb

i

for i = 1, 2, . . . , logbm where m is the

194CHAPTER 10. A CONSTRUCTION UNDER STANDARD ASSUMPTIONS

maximum value of the exponent, in our case usually 2κ. By pre-computing also
cross-products gbigbj we can speed up the algorithm by a factor of (almost) two by
paying in larger storage requirements.

For each call to Protocol 10.5.3 or 10.5.12 the verifier will need to perform
precomputations for two new bases. All other bases in these two cut-and-choose
protocols are fixed throughout the execution, and thus only requires one precom-
putation phase, which also may be stored between executions.

A realistic example may be κ = 1024 and κc = 160. By choosing parameters
appropriately, one fixed-base exponentiation then takes about 0.075 of the time
for a general exponentiation, and the setup phase takes about 4

310 general expo-
nentiations with a storage requirement of about 2.5 Mb per base involved. By
evaluating the expressions in Table 10.1 and adding a setup phase for 10 bases, we
get that generating and verifying a signature takes time equivalent to about 1000
general exponentiations. This can be improved by using more efficient exponenti-
ation algorithms, see, e.g., [67]. We have, for example, not used the fact that many
exponentiations are simultaneous multiple exponentiations.

We now look at the size of a signature. Also here the cut-and-choose protocols
contribute the most. For each protocol execution, 7κc values need to be stored,
each of which has κ bits. This gives a total of 7κc(δ + 3) κ-bit numbers. With the
same parameters as above this gives a signature size of about 1 Mb.

In the above computations we have ignored the fact that some computations
involve exponents slightly larger than κ bits, but the numbers still gives a good
picture of the amount of computation necessary. One can conclude that on a
standard PC a signature can be created in about a minute.

Chapter 11

An Optimistic Construction

11.1 About the Construction

The two constructions of proper hierarchical group signature of this thesis are both
more or less impractical, although the second one can be implemented and run on
a modern workstation.

In this chapter we provide an optimistic construction for hierarchical group
signatures HGS that is more efficient and satisfies Definition 8.3.4 under the strong
RSA assumption and the.decisional Diffie-Hellman assumption in the random oracle
model. For an honest signer S, the group managers on the path to S can open the
signature. A dishonest signer can produce a signature that cannot be opened by
some or all group managers on the path, but such a signature can be opened by
a trusted party. Put differently, a corrupt signer can force the group managers
to perform extra work, but it will still be identified in the process. This is the
optimistic property of the scheme. We stress that also in the optimistic scheme no
group manager not on the path to S can open the signature. Hence no dishonest
signer can frame another signer even temporarily.

The following proposition captures the security of our construction.

Proposition 11.1.1. The optimistic hierarchical group signature scheme HGS is
secure under the strong RSA assumption and the DDH assumption in the random
oracle model.

Although our construction bears some resemblance to the constructions given
earlier in this part, there are important differences. Thus, before we give details we
explain the key ideas.

The Basic Idea of the Construction

Each group manager Mβ holds a public key yβ and a corresponding secret key xβ of
an ElGamal cryptosystem over GQ. Each party Mβ (or Sβ) is assigned an element

195

196 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

heβ , where the integers eβ are chosen such that no parties on the same level have
identical elements.

Let us first consider the problem of hiding the identity of the signer such that
no group manager can extract more information from a signature than it should be
able to. Let α0, . . . , αδ be a path from the root ω = α0 to a leaf αδ = α. The idea
is that the signer Sα encrypts the chain heα1 , . . . , heαδ using the keys of the group
managers along this chain, i.e., it computes

((u0, v0), . . . , (uδ−1, vδ−1)) = (Eelg
yα0

(heα1), . . . , Eelg
yαδ−1

(heαδ)) ,

and includes this as part of the signature. This ensures that no group manager can
extract more information than it should be able to from a signature.

We must also guarantee that only legitimate signers can compute a signature.
To do this an RSA-modulus N and random elements g,h,y ∈ SQN are used. Each
signer Sα is given as its secret key a pαth root zα of y modulo N, where pα is a
prime. Recall that under the strong RSA assumption it is infeasible to compute such
a root without knowledge of the factorization of N. When computing a signature
it forms a commitment of its secret key (u,v) = (gtht

′

,htzα), using some random
exponents t and t′, and proves knowledge of how to open the commitment to a
non-trivial root of y. Although proving knowledge of a root guarantees that the
signer is legitimate, there is no mechanism for enforcing a relation between the
plaintexts encrypted in the chain of ciphertexts and power of the root. To ensure
this the signer essentially proves that if the integers eαi are concatenated, then the
result equals the prime pα. We now take a closer look at how the integers eαi are
generated and concatenated.

The Identifiers

The short identification string, denoted by eβ , is assigned to each group manager
Mβ by simply enumerating the group managers on each level in the tree. Formally,
this gives a map IM : V(T) \L(T)→ [0, 2tM − 1] for some integer tM such that 2tM

bounds the number of group managers on each level in the tree. The identifier of the
root is always 2tM −1 to ensure that its string begins with a one. Each signer Sα is
also assigned a short identification string eα. This string is not assigned in the same
way as for group managers, but it is chosen such that no two signers on the same
level have identical strings. Formally, this gives a map IS : L(T) → [0, 2tM − 1],
where 2tM also upper bounds the number of signers. It is straightforward to modify
our construction to be more efficient by using different values of tM for different
levels of the tree, in particular for the signers. We use a single value to simplify the
presentation.

Before we define the map IS we consider how the maps can be combined. Sup-
pose that α0, . . . , αδ is a path from the root ω = α0 to some leaf αδ = α in the tree.
Then due to the uniqueness property of the identification strings, the signer Sα is
uniquely identified by the concatenation eα1 |eα2 | · · · |eαδ of the strings eαi corres-
ponding to its path. For technical reasons we introduce a string on the form 100 . . .0

11.1. ABOUT THE CONSTRUCTION 197

between each pair of identification strings. More precisely, we define λ = 2tM+tP+1,
where tP = κr + κc is a parameter of the construction, and view the concatenation
procedure as the map

ιδ : [−(λ/2− 1), λ/2− 1]δ → [0, λδ − 1]

ιδ : (e1, . . . , eδ) 7→
δ−1
∑

i=0

λδ−i−1(λ/2 + ei) .

It is not hard to see that the map has the following property.

Lemma 11.1.2. The function ιδ is injective.

Lemma 11.1.2. The proof follows by induction on δ. For δ = 1 the claim fol-
lows by inspection. Suppose that the claim holds for some δ > 1, and note that
ιδ+1(e1, . . . , eδ+1) = λδ(λ/2+ e1)+ ιδ(e2, . . . , eδ+1). Suppose now that ιδ+1(e1, . . .,
eδ+1) = ιδ+1(e

′
1, . . ., e′δ+1). We know that ιδ(e2, . . ., eδ+1), ιδ(e

′
2, . . ., e′δ+1) ∈ [0,

λδ − 1] and by the induction hypothesis we have (e2, . . . , eδ+1) = (e′2, . . . , e
′
δ+1).

Thus, we conclude that e1 = e′1 and the claim follows.

We now define the function IS such that for each signer Sα the unique integer
pα = ιδ(α) assigned to it is prime. However, we still need to say a word on how
such primes are found. We need an assumption stating that, given an integer in
[0, 2κm − 1], an integer s ∈ [0, 2κp − 1] can be found such that e = 2κpm + s is
prime. In practice this is not really a problem if the parameters κm and κp are
chosen appropriately, since, loosely speaking, there are primes everywhere.

Definition 11.1.3 (f -Embedding Assumption). The f -embedding assumption, for
a function f : N → N, states that there exists a probabilistic polynomial time
algorithm Embf that on input 1κ and m ∈ [0, 2κ− 1] with overwhelming probability
outputs an integer s ∈ [0, 2f(κ) − 1] such that e = 2f(κ)m+ s is a positive prime.

Construction of the Proof of Knowledge

In addition to the chain of ciphertexts ((u0, v0), . . ., (uδ−1, vδ−1)), the signer com-
putes a list (c0, . . ., cδ−1) of Fujisaki-Okamoto commitments [47] on the form

ci = gtih
eαi+1

i mod N, where

(h0, . . . ,hδ−3,hδ−2,hδ−1) = (hλ
δ−1

, . . . ,hλ
2

,hλ,h) .

Then for i = 0, . . . , δ−1 the signer proves that the same integer eαi+1 is used to form
both (ui, vi) and ci using a standard Schnorr-like proof of knowledge over groups of
unknown order. In addition to showing that the same integer is used, this protocol
also ensures that eαi ∈ [−λ/2+1, λ/2−1] and eαδ ∈ [−λ/2+1, λ/2−1]. The purpose

of doing this is that if the signer is honest the product c =
∏δ−1
i=0 h

λ/2
i ci mod N is

on the form gthpα mod N. On the other hand, if the integers eαi do not correspond

198 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

to a path to one of the signers, then the product of the commitments is on the form
gthn mod N, where n is distinct from pα for every signer Sα due to Lemma 11.1.2.

The proof that the eαi exponents are identical in the commitments and the
ciphertexts may not disclose which public key (g, yαi) is used to form the ciphertext
(ui, vi), since this would disclose that the signer is contained in the subtree rooted

at αi. To avoid this, the signer uses a randomized key (g′i, y
′
i) = (gr

′
i , y

r′i
αi) for some

random r′i ∈ ZQ of the public key (g, yαi) it uses, and gives the proof relative to
this key instead. It is at this point the scheme is optimistic, since it is not ensured
that the signer does not use some other arbitrary public key instead of (g, yαi).

11.2 The Algorithms of the Scheme

We are now ready to describe the details of the construction.

Algorithm 11.2.1 (Key Generation, HGKg(1κ, T)).

1. Assign a short identification string eα to each group manager Mα or signer
Sα as described above. Formally, this assignment is part of hpk .

2. Choose a random κ-bit safe prime P = 2Q + 1, let GQ be the group of
squares modulo P , and choose g, h, y ←R GQ randomly. For each group
manager Mβ choose xβ ←R ZQ randomly, compute yβ ← gxβ , and define
(hpk (β), hsk (β)) ← (yβ , xβ). For the trusted party, choose xT ←R ZQ ran-
domly, compute yT ← gxT , and define skT ← (xT, xω).

3. Choose two random κ/2-bit safe primes p and q, define N ← pq, and choose

g,h,y←R SQN randomly. Then define (h0, . . . ,hδ−3,hδ−2,hδ−1) = (hλ
δ−1

,

. . ., hλ
2

, hλ, h). For each signer Sα, compute zα ← y1/pα , where pα = ιδ(α).
Then define (hpk (α), hsk (α))← (pα, zα).

4. Redefine hpk (ω) to include ((P, g, h, y), (N,g,h,y), yT), and output (hpk , hsk ,
skT).

Before we describe the signature algorithm we introduce some notation. Denote
by SigBody the deterministic algorithm that takes two inputs, a common input
scom and a secret input ssec. The common input consists of an integer δ > 0, a
safe prime P = 2Q+1, g, h, yT ∈ GQ, an integer N, and g,h,y ∈ SQN. The secret
input consists of yi ∈ GQ, r, ri, r

′
i, r

′′
i ∈ ZQ and ei, ti ∈ Z. If the inputs are not

on the expected form the algorithm outputs sout = ⊥. Otherwise the algorithm
computes e = ιδ(e1, . . . , eδ),

11.2. THE ALGORITHMS OF THE SCHEME 199

(u′0, v
′
0) ← Eelg

(g,y0)(h
e1 , r′′0) // For root group manager

c0 ← gt0he10

(g′i, y
′
i) ← (gr

′
i , y

r′i
i)

δ−1

i=1

// Randomized public key

(ui, vi) ← Eelg

(g,y)(yi, ri) // Commitment of public key

(u′i, v
′
i) ← Eelg

(g′i,y
′
i)

(hei+1 , r′′i) // For group manager on level i

(u′′i , v
′′
i) ← Eelg

(g,yT)(h
ei+1 , r′′i) // For trusted party

ci ← gtih
ei+1

i

(u, v) ← Eelg

(g,y)(h
e, r)

and outputs sout = ((u′0, v
′
0), c0,

(

(g′i, y
′
i), (ui, vi), (u

′
i, v

′
i), (u

′′
i , v

′′
i), ci

)δ−1

i=1
, (u, v)).

Denote by RHGSig the relation consisting of pairs

(

(δ, P, g, h, yT,N,g,h,y, sout , (u,v)), (r, (yi, ri, r
′
i, r

′′
i , ei, ti)i, t, t

′)
)

such that sout = SigBody(scom , (r, (yi, ri, r
′
i, r

′′
i , ei, ti)i)), ei ∈ [−λ/2 + 1, λ/2 − 1],

u = gtht
′

mod N, and (u/ht)ιδ(e1,...,eδ) = y mod N. In Appendix 11.4 we con-
struct a public-coin honest verifier zero-knowledge proof of knowledge (Phgs, Vhgs)

for RHGSig.1 We use the notation (P
O(m,·)
hgs , V

O(m,·)
hgs) for the signature scheme con-

structed by applying the Fiat-Shamir heuristic to (Phgs, Vhgs).

Algorithm 11.2.2 (Signing, HGSig(m,T, hpk , hsk(α))). Let (α0, . . . , αδ) be the
path from the root ω = α0 to α = αδ in T and let scom = (δ, P, g, h, yT,N,g,h,y).

1. Choose r, ri, r
′
i, r

′′
i ∈ ZQ, and t, t′, ti ∈ [0, 2κrN− 1] randomly and compute

sout ← SigBody(scom , (r, (yαi , ri, r
′
i, r

′′
i , eαi , ti)i)) and (u,v)← (gtht

′

,htzα).

2. Compute a proof π = P
O(m,·)
hgs

(

(scom , sout , (u,v)), (r, (yαi , ri, r
′
i, r

′′
i , eαi , ti)i,

t, t′)
)

, and output the signature σ = (sout , (u,v), π).

Note that, although for an honest signer eαi ∈ [0, 2tM−1], the proof of knowledge
only guarantees that it lies in the larger interval [−2tP+tM + 1, 2tP+tM − 1]. This
is sufficient for the scheme to be secure, and allows a more efficient construction of
the proof of knowledge.

Algorithm 11.2.3 (Verification, HGVf(T, hpk ,m, σ)). Let scom = (δ, P , g, h,
yT, N, g, h, y). On input a candidate signature σ = (sout , (u,v), π) it outputs

V
O(m,·)
hgs ((scom , sout , (u,v)),π).

Algorithm 11.2.4 (Optimistic Opening, HGOptOpen(T, hpk , hsk(β),m, σ)).

1. If HGVf(T, hpk ,m, σ) = 0 or β 6∈ V(T) \ L(T), then return ⊥.

1Strictly speaking this is not true, but given that g, h, y are squares we can extract a witness

with overwhelming probability over the choice of N under the strong RSA assumption. The reader

is referred to Appendix 11.4 for details.

200 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

2. Let l ← levelT (β) and compute a ← Delg
xβ (u

′
l, v

′
l). If l > 0 and (g′l)

xβ 6= y′l,
then return ⊥.

3. If there exists α ∈ β such that a = heα , then return α and otherwise return
⊥.

We remind the reader that due to the optimistic nature of our scheme the output
of the opening algorithm may be ⊥, despite that the signer belongs to the subtree
rooted at the group manager Mβ that tries to open the signature.

Algorithm 11.2.5 (Trusted Opening, HGTrustOpen(T, hpk , skT, β,m, σ)).

1. If HGVf(T, hpk ,m, σ) = 0 or β 6∈ V(T) \ L(T), then return ⊥. Parse skT as
(xT, xω).

2. Let l ← levelT (β). If l = 0, then let a ← Delg
xω(u′0, v

′
0), and otherwise let

a← Delg
xT

(u′′l , v
′′
l).

3. If there exists α ∈ β such that a = heα , then return α and otherwise return
⊥.

On Distributing the Trusted Party

It may be desirable to execute the trusted opening algorithm as a distributed pro-
tocol, where only the initiating group manager learns the answer. Although we do
not detail a solution to this problem it is easy to achieve using known techniques.
To see this consider the following alternative way of implementing the trusted open-
ing algorithm when the initiating group manager is not the root group manager,
i.e., l > 0 in Step 2.

1. If HGVf(T, hpk ,m, σ) = 0 or β 6∈ V(T) \ L(T), then return ⊥.

2. Let l ← levelT (β). Choose r ∈ ZQ randomly and output Delg
xT

(

ul(u
′′
l−1)

r,

vl(v
′′
l−1h

−eβ)r
)

.

Note that if β is allowed to open σ, then Delg
xT

(

ul(u
′′
l−1)

r, vl(v
′′
l−1h

−eβ)r
)

=

Delg
xT

(ul, vl). However, if β should not be able to open the signature, then the

decryption Delg
xT

(

ul(u
′′
l−1)

r, vl(v
′′
l−1h

−eβ)r
)

is randomly distributed in GQ. Thus,
the algorithm either outputs heα or a random element, corresponding to an output
α or an output ⊥ in the original formulation.

Note that the algorithm consists of simply randomly re-encrypting and then
decrypting an ElGamal ciphertexts. A group of parties can jointly verifiably re-
encrypt a ciphertext by simply re-encrypting it one after the other and proving
knowledge of the used randomness. Decryption can be implemented in a distributed
way using the scheme by Jarecki and Lysyanskaya [54] with two minor modifica-
tions. The first modification is a simplification due to the presence of a trusted key

11.3. PROOF OF SECURITY 201

generator. Instead of jointly generating a key, the trusted key generator generates
the key and distributes the shares. The second modification is that the plaintext
is not revealed to the involved trusted parties, but only to the initiating group
manager.

When the initiating is the root manager Mω, then the implementation as a
protocol is trivial. Since trusted opening for the root uses only xω which is known
to Mω, no interaction is necessary.

11.3 Proof of Security

Sketch of Proof of Security

Traceability. Given an adversary that breaks traceability, we simulate the trace-
ability experiment and break the strong RSA assumption. For the simulation we
need to handle queries to corrupt signers and simulate the signature oracle. The
signature oracle is easily simulated without any non-trivial root in the standard way
by programming the random oracle, and how the corruptions are handled depends
on the type of forger.

The first case in the traceability experiment never occurs, since there is only one
root group manager and Delg

xT
(u′′l , v

′′
l) = heβ holds for at most one group manager

Mβ. If the second case occurs, then due to the knowledge extractor we can find an
element z and an integer ιδ(ε1, . . . , εδ) > 2 such that zιδ(e1,...,eδ) = y. A breaker
of the strong RSA assumption taking input (N,y′) is then constructed. There are
two subcases: either ιδ(e1, . . . , eδ) identifies an honest signer or it does not. In the
former subcase we guess the signer Sα′ under attack. Using a standard trick we
then prepare all the roots needed to simulate the traceability experiment without
the factorization of N (given that we guessed correctly). More precisely, we define
y = (y′)

Q

α pα , where the product is taken either over all signers Sα except Sα′ or
over all signers depending on the case. Then if we guessed correctly, the relative
primality of ιδ(e1, . . . , eδ) and

∏

α pα imply that we can compute integers a and
b such that aιδ(e1, . . . , eδ) + b

∏

α pα = 1 and ((y′)azb)ιδ(e1,...,eδ) = y′. Under
the strong RSA assumption this is infeasible. The third case in the traceability
experiment never occurs, since there is at most one group manager Mβ such that
(g′l)

xβ = y′l.

Anonymity. Given an adversary that breaks anonymity, we construct a ma-
chine A′ that simulates the anonymity experiment to the adversary and breaks
the decision Diffie-Hellman assumption by breaking the semantic security or the
anonymity of the ElGamal encryption scheme. This can be explained informally
as follows. A′ first guesses which two signers Sα(0) and Sα(1) the adversary will
choose. With non-negligible probability the guess is correct. The two paths to
the root from α(0) and α(1) are identical up to their least common ancestor, where
they split. Taking part in an attack against the ElGamal encryption scheme, A′

202 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

inserts the ElGamal keys as keys for the group managers below the split. Since
the commitments contained in a signature are statistically hiding, the distributions
of signatures computed by Sα(0) and Sα(1) differ only in what chain of identities is
encrypted and which keys are used. Guessing the signer with non-negligible prob-
ability implies breaking either the anonymity or the semantic security of the the
ElGamal cryptosystem, which in turn can be used to break the DDH assumption.

Let us now describe how to simulate the opening oracle for the group managers
below the split, for which the secret keys are not known to A′, using the ciphertexts
(u, v) and (ui, vi). The ciphertext (u, v) contains all the information needed to
answer a trusted opening query. Thus, we are implicitly using the Naor-Yung
double ciphertext trick [70] here to simulate the trusted opening oracle. Similarly,
the ciphertexts (ui, vi) contain all the information needed to simulate the optimistic
opening oracle.

Another, more intuitive, way to understand the need for the (ui, vi) ciphertexts
is that otherwise an adversary could ask an opening query using a signature σ
formed using any public key (g′i, y

′
i). This would make it infeasible to simulate

the optimistic opening algorithm correctly on queries (β,m, σ) with levelT (β) = i
without the secret key xβ , i.e., a contradiction could not be reached.

The Full Proof

The security of the scheme follows from Lemma 11.3.1 and Lemma 11.3.3 below.

Lemma 11.3.1. The optimistic hierarchical group signature scheme HGS has
traceability under the strong RSA assumption in the random oracle model.

Proof. Consider any adversary A and polynomial size tree T . We describe a reduc-
tion such that if Pr[Exptrace

HGS,A(κ, T) = 1] is negligible, i.e., A breaks traceability,
then there exists an adversary Arsa that breaks the strong RSA assumption. We
first modify the traceability experiment using “game hopping” and then describe
the adversary Arsa.

Denote by E0 the traceability experiment Exptrace
HGS,A(κ, T). Denote by E1 the

experiment E0, except that the HGSig(·, T, hpk , hsk (·))-oracle is modified as follows:

1. If not all keys xα for α ∈ V(T) are distinct, then output collision .

2. When a signature is computed, the values u,v ∈ SQN are chosen randomly.

3. Instead of computing π = P
O(m,·)
hgs

(

(scom , sout , (u,v)), (r, (yαi , ri, r
′
i, r

′′
i , eαi ,

ti)i, t, t
′)
)

, a random challenge c ∈ [0, 2κc − 1] is chosen and the special stat-
istical zero-knowledge simulator is invoked on input (scom , sout , (u,v)) and c
to produce a transcript π = (C, c, d). If the random oracle has been queried
on ((scom , sout , (u,v)), C) the experiment outputs collision and otherwise it
defines O((scom , sout , (u,v)), C) = c and continues the simulation.

Claim 1. |Pr[E0 = 1]− Pr[E1 = 1]| < ε for some negligible function ε of κ.

11.3. PROOF OF SECURITY 203

Proof. We clearly have Pr[E0 = collision] = 0. We also have that Pr[E1 = collision]
is negligible, since v ∈ SQN and xα ∈ ZQ are chosen randomly. (In fact other
elements are chosen randomly as well.) Finally the statistical zero-knowledge prop-
erty of (Phgs, Vhgs) implies that |Pr[E1 = 1 | E1 6= collision] − Pr[E0 = 1]| is
negligible.

Denote by E2 the experiment E1, except that it chooses γ ∈ L(T)∪ {nosigner}
and y′ ∈ SQN randomly and defines y as follows

y← (y′)
Q

α∈L(T)\{γ} pα .

The roots zα for α ∈ L(T) are left undefined to start with. If A requests hsk(α)
then E2 does the following. If α = γ, then it returns badguess . If α ∈ L(T) \ {γ},
then it computes zα = y1/pα as zα = (y′)

Q

γ∈L(T)\{α} pγ and returns zα. If α 6∈ L(T)
then it returns ⊥.

After A has output its signature, define DxT
(uδ−1, vδ−1) = heαδ where αδ is set

equal ⊥ if αδ 6∈ L(T). If γ = nosigner and αδ ∈ L(T), or if γ ∈ L(T) and γ 6= αδ,
then it return badguess .

Claim 2. Pr[E2 = 1 | E2 6= badguess] = Pr[E1 = 1] and Pr[E2 6= badguess] ≤
1/(|L(T)|+ 1).

Proof. Since
∏

α∈L(T)\{γ} pα is relatively prime to the order of SQN, the distribu-
tions of y in the simulations of E1 and E2 are identical. This implies the first claim,
since unless A requests zα for an α = γ the distributions of E1 and E2 are then
identical. The second claim follows from independence of the distribution of y and
the distribution of γ.

Denote by (m, (sout , (u,v), π)) the message-signature pair output by A in the
experiment E2, and write π = (C, c, d) for the random oracle proof. Denote by
E3 the experiment E2 except that if A never queried the random oracle O on
(m, scom , sout , (u,v), C), but A’s output is still a valid signature, then E3 halts
with output pureluck .

Claim 3. Pr[E3 = 1] ≥ Pr[E2 = 1]− 2−κc .

Proof. The probability that O(m, scom , sout , (u,v), C) equal c is 2−κc over the
random choice of O conditioned on A not having asked this query before, so
Pr[E2 = pureluck] ≤ 2−κc . The claim then follows from the union bound. Note
that if the output of A is a forgery, then the experiment has not asked this question
either so we may think of the output of O as undefined until the verification of the
experiment is executed.

We now construct a machine P ∗ that takes input (N,g,h,y′), chooses a common
input, and then interacts with the honest verifier Vhgs on that common input. Note
that without loss we may assume that A never asks the same query twice in the

204 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

simulation of E3, since it can keep all its previous queries and the corresponding
answers in a table. Denote by QA an upper bound on the number of queries A
makes to the random oracle O in the simulation of E3. The prover P ∗ simulates E3

except that it chooses an integer 0 < l ≤ QA randomly and instead of simulating
the random oracle O on the lth query query l = (ml, scom , soutl , (ul,vl), Cl), it first
outputs (scom , sout,l, (ul,vl)) as the common input. Then it outputs Cl as its first
message in a protocol executed on this common input and waits for a challenge c
from Vhgs and defines O(query l) = c. Finally, when the simulation of E3 ends, it
replies failed to Vhgs if the result is 0. Otherwise it interprets the signature and
message pair output by A on the form (m, (sout , (u,v), π)) with π = (C, c, d), and
replies d to Vhgs. Denote the list of input RSA parameters by Γ = (N,g,h,y′).

Claim 4. Pr[〈Vhgs(s), P
∗(r,Γ)〉 = 1] ≥ Pr[E3 = 1]/QA, where the probability is

taken over Γ and the internal randomness s and r of P ∗ and Vhgs respectively.

Proof. The claim is implied by the following observations:

1. The simulated experiment E3 never outputs 1 if the signature output by A
in the simulation was received from the HGSig(·, T, hpk , hsk(·))-oracle. This
is easy to see from the description of the experiment.

2. If in the simulation of P ∗ the events E3 = 1 and query l = (m, scom , sout ,
(u,v), C) occurs, then the verifier accepts,

3. Conditioned on the event E3 = 1 in the simulation carried out by P ∗ the
probability that query l = (m, scom , sout , (u,v), C) is at least 1/QA, since l is
independently distributed to all intermediate values of E3.

Denote by r the internal random tape of P ∗. Define φ = Prs,r,Γ[〈Vhgs(s), P
∗(r,

Γ)〉 = 1] and let Sgood be the set of pairs (Γ, r) such that Prs[〈Vhgs(s), P
∗(r,Γ)〉 =

1] ≥ 1
2φ.

Claim 5. φ ≥ 1
QA

(

1
|L(T)| (Pr[E0 = 1]− ε)− 2−κc

)

and Prr,Γ[(r,Γ) ∈ Sgood] ≥ 1
2φ.

Proof. The first claim follows from the previous claims. The second follows by a
simple averaging argument.

Denote by Arsa the algorithm that on input Γ simulates P ∗ on input (r,Γ)
using a random tape r, and then invokes the knowledge extractor on P ∗ and the
common input (scom , sout,l, (ul,vl)) it generates. We now consider only executions
where (r,Γ) ∈ Sgood . By definition the knowledge extractor runs in expected time
p′(κ)/(φ/2− ε) for some polynomial p′(κ) and negligible function ε, and extracts a
witness w such that ((scom , sout,l, (ul,vl)), w) ∈ RHGSig ∨ RSRSA. (Here we abuse
notation and assume that the components in the instance are ordered such that it
starts with the Fujisaki-Okamoto parameters (N,g,h,y).) Thus, we either have

11.3. PROOF OF SECURITY 205

directly a pair (((N,g,h,y), . . .), w) ∈ RSRSA, which case the witness is simply
output, or we have a witness (r, (yi, ri, r

′
i, r

′′
i , ei, ti)i, t, t

′) such that
(

(scom , sout , (u,v)), (r, (yi, ri, r
′
i, r

′′
i , ei, ti)i, t, t

′)
)

∈ RHGSig

where

scom = (δ, P, g, h, yT,N,g,h,y)

sout = ((u′0, v
′
0), c0,

(

(g′i, y
′
i), (ui, vi), (u

′
i, v

′
i), (u

′′
i , v

′′
i), ci

)δ−1

i=1
, (u, v))

and such that one of the three events listed in the traceability experiment is satisfied.
If ιδ(e1, . . . , eδ) and

∏

α∈L(T)\{γ} pα are relatively prime, then the adversary Arsa

computes a and b such that aιδ(e1, . . . , eδ) + b
∏

α∈L(T)\{γ} pα = 1 and outputs

((g′)azb, ιδ(e1, . . . , eδ)). Note that ((g′)azb)ιδ(e1,...,eδ) = g′.

Claim 6. If the extractor finds a witness (r, (yi, ri, r
′
i, r

′′
i , ei, ti)i, t, t

′), then ιδ(e1, . . .,
eδ) and

∏

α∈L(T)\{γ} pα are relatively prime.

Proof. Each prime pα is contained in [2(δ+1)tM−1−1, 2(δ+1)tM] by construction, and
by assumption ei ∈ [−λ/2 + 1, λ/2 − 1] so 2 < ιδ(e1, . . . , eδ) < 2(δ+1)tM . Thus, it
suffices to show that ιδ(e1, . . . , eδ) 6= pα for all γ 6= α ∈ L(T).

Define the values αi as in the traceability experiment. If αi+1 6∈ αi for some
0 ≤ i ≤ δ, then the fact that ei ∈ [−λ/2 + 1, λ/2 − 1] and Lemma 11.1.2 imply
that ιδ(e1, . . . , eδ) 6= pα for all α ∈ L(T). Thus, we assume that αi+1 ∈ αi for
i = 0, . . . , δ − 1. Under this assumption Event 1 can not occur, since the short
identifier strings are unique on each level in the tree. Furthermore, if we define a =
Dlogg′

l
y′
l
(u′l, v

′
l), then Event 3 in the experiment can only occur if a 6= DxT

(u′′l , v
′′
l),

but then the extracted witness can not be a witness for the relation RHGSig.

We conclude from Claim 5 and Claim 6 that φ must be negligible, since otherwise
the strong RSA assumption is broken. This implies that Pr[E0 = 1] is negligible
and the proposition holds.

In proving security, we use the standard list generalization of the Diffie-Hellman
assumption. For completeness we provide a proof.

Experiment 11.3.1 (m-List Decision Diffie-Hellman, Expddh−list−b
Gn,m,A

(κ)). g ←R

Gn
for i = 1, . . . ,m do

αi, βi, γi ←R Zn
(Xi, Yi, Zi)← (gαi , gβi , g(bγi+(1−b)αiβi))

end for

return A(g, (Xi, Yi, Zi)
m
i=1)

The advantage of the adversary is

Advddh−list
Gn,m,A

(κ) = |Pr[Expddh−list−0
Gn,m,A

(κ) = 1]− Pr[Expddh−list−1
Gn,m,A

(κ) = 1]| .

206 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

Lemma 11.3.2. If there exists a probabilistic T -time machine A such that the
advantage Adv

ddh−list
Gn,m,A

(κ) = c, then there exists a probabilistic T -time machine

Addh with Advddh
Gn,A(κ) ≥ c/m.

Proof. Let A be a Turing machine with advantage c in the experiment on an m-
list. Let Dl be the distribution of the output of A when the input is a list with m
elements of which the first l are DDH triples and the rest are random triples. By
assumption dist(Dm, D0) = c. Therefore, by an averaging argument, there exists
t ∈ [0,m− 1] such that dist(Dt, Dt+1) ≥ c/m.

We now construct Addh. On input (X,Y, Z) it constructs a list L where the first
t elements are DDH triples, (X,Y, Z) is inserted as the (t+1)th triple, and the rest
of the triples are random. It invokes A on input L, and outputs the answer from
Addh.

If (X,Y, Z) is a random triple, then the output is distributed according to Dt,
and if (X,Y, Z) is a DDH triple, the output is distributed according to Dt+1. Since
the distance between the two distribution is at least c/m, Addh has advantage at
least c/m.

Lemma 11.3.3. The optimistic hierarchical group signature scheme HGS has an-
onymity under the DDH assumption and the strong RSA assumption in the random
oracle model.

Proof. We proceed similarly as in the proof of the previous lemma. Consider any
adversary A and polynomial size tree T . We describe a reduction such that if the
advantage Adv

anon
HGS,A(κ, T) of the adversary in the anonymity is non-negligible,

then there exists an adversary Addh that breaks the DDH assumption. We do this
by step-wise modifying the anonymity experiment until it is independent of its bit
parameter.

Denote by Eb0 the anonymity experiment Expanon−b
HGS,A(κ, T). Denote by Eb1 the

experiment Eb0 except that the HGSig(·, T, hpk , hsk(·))-oracle is modified as follows:

1. When a signature is computed, the values u,v ∈ SQN are chosen randomly.

2. Instead of computing π = P
O(m,·)
hgs

(

(scom , sout , (u,v)), (r, (yαi , ri, r
′
i, r

′′
i , eαi ,

ti)i, t, t
′)
)

, a random challenge c ∈ [0, 2κc − 1] is chosen and the special stat-
istical zero-knowledge simulator is invoked on input (scom , sout , (u,v)) and c
to produce a transcript π = (C, c, d). If the random oracle has been queried
on ((scom , sout , (u,v)), C) the experiment outputs collision and otherwise it
defines O((scom , sout , (u,v)), C) = c and continues the simulation.

Claim 1. |Pr[Eb0 = 1]− Pr[Eb1 = 1]| < ε0 for some negligible function ε0 of κ.

Proof. This follows similarly as Claim 1 in the proof of Lemma 11.3.1 above.

Denote by E2 the experiment E1 except that instead of computing (ui, vi) and
(u, v) of the challenge signature given to A, these values are chosen randomly in
GQ.

11.3. PROOF OF SECURITY 207

Claim 2. |Pr[Eb1 = 1]− Pr[Eb2 = 1]| < ε1 for some negligible function ε1 of κ.

Proof. Denote by Addh the algorithm that takes as input a description of a group
GQ, an generator g of the group, and a triple (ȳ, ū, v̄). The task is to decide if
logg ȳ logg ū = logg v̄ or not, i.e., decide if the input is a DDH-triple or not.

It simulates the experiment Eb1, except that during key generation it sets y =
ȳ, and instead of computing (ui, vi) and (u, v) of the challenge signature, it re-
places these values by (gri ūsi , yri v̄siyαi) and (grūs, yrv̄shpα) respectively, where
r, ri, s, si ∈ ZQ are chosen randomly. Note that this does not change the distribu-
tion of y. Furthermore, the resulting challenge signature is identically distributed
to the challenge signature in the experiment Eb1 or Eb2 depending on if (ȳ, ū, v̄) is a
DDH triple or not. Thus, if Pr[Eb1 = 1] − Pr[Eb2 = 1]| is non-negligible, then Addh

breaks the DDH assumption.

Consider the indices α(0) and α(1) chosen by A. Note that if either index is
not contained in L(T), the experiment outputs 0. Furthermore, if B is defined as
in the anonymity experiment and B ∩ C 6= ∅, then the experiment also outputs
0. Thus, we may assume that an adversary always outputs α(0), α(1) ∈ L(T) and
that B ∩ C 6= ∅. Formally, this can be seen by replacing A by a new adversary A′

that encapsulates the original, satisfies our requirements and outputs the guess 0
whenever A violates our restriction.

Denote by Eb3 the experiment Eb2 except that before the simulation starts an
index β(b) ∈ L(T) is chosen randomly and if A requests hsk (β(b)) or if α(b) 6= β(b),
then the experiment halts with output badguess .

Claim 3. Pr[Eb3 = 1 | Eb3 6= badguess] = Pr[Eb2 = 1] and Pr[Eb3 6= badguess] ≤
1/|L(T)|.

Proof. The first claim follows by the independent choice of β(b). The second claim
follows from our assumption on the adversary A above, and the independence of
β(b).

Denote by Eb4 the experiment Eb3 except that the way oracle queries are answered
is changed as follows. The element y is generated as y = gx for a random x ∈ GQ,
where x is stored by the simulator.

Given a query (β,m, σ) the HGTrustOpen(T, hpk , skT, ·, ·, ·)-oracle never reads
skT. This means that it can not decrypt (ul, vl). Instead it computes a′ = Dx(u, v)
and if possible the list (e1, . . . , eδ) such that a′ = hιδ(e1,...,eδ). Finally, it defines
a = hel .

Given a query (β,m, σ) to the HGOptOpen(T, hpk , hsk (·), ·, ·)-oracle defines a
above, but it also computes yi = Dx(ui, vi). Then if l > 0 and yi 6= yβ it returns ⊥
and otherwise it proceeds as in the original definition.

Claim 4. |Pr[Eb3 = 1]− Pr[Eb4 = 1]| < ε3 for some negligible function ε3 of κ.

208 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

Proof. Assume there is a non-negligible difference between Eb3 and Eb4. We follow
the paradigm of Claim 1 of the proof of Lemma 11.3.1 and construct an interactive
proof of knowledge. Let q(κ) be a polynomial which upper-bounds the number of
calls to the oracles. First l ←R [q(κ) is chosen randomly. Informally we guess that
the lth oracle call will yield an incorrect answer. For the lth oracle call, we proceed
as in Claim 1 and construct a prover as follows. It outputs the lth query as theorem
to prove, and after the challenge c is received from the verifier, the random oracle is
programmed to return c when queried on the lth query. Thus we have constructed
an interactive prover.

If the lth query is answered incorrectly in the simulation experiment, then the
corresponding interactive prover will prove a false statement. By the soundness
of the proof of knowledge such a prover can be used to break the strong RSA
assumption of the decision Diffie-Hellman. Since with probability at least 1/p(κ)
the query is indeed malformed, the claim follows.

At this point we are almost done. The only difference between the experiments
E0

4 and E1
4 is how the ciphertexts (g′i, y

′
i), (u′i, u

′
i) and (u′′i , u

′′
i) in the challenge

signature are formed.

Define la to be the depth of the least common ancestor of α(0) and α(1). Denote
by Eb5 the experiment Eb4 except that g′i, y

′
i, u

′
i, v

′
i ∈ GQ are chosen randomly. Define

α
(b)
i as in the anonymity experiment.

Claim 5. |Pr[Eb4 = 1]− Pr[Eb5 = 1]| < ε4 for some negligible function ε4 of κ.

Proof. Denote by Addh the adversary that accepts a list ((ȳi, ūi, v̄i))
δ−1
la

as input

and simulates Eb4 except that it defines y
α

(b)
i

= ȳi, (g′i, y
′
i) = (ūi, v̄i), and (u′i, v

′
i) =

(gri ūsii , y
ri

α
(b)
i

v̄sii h
e
α
(b)
i+1), where ri, si ∈ ZQ are randomly chosen. Note that if the

input list is a list of DDH triples, then the simulation is identically distributed to
Eb4 and otherwise it is identically distributed to Eb5. From the generalized DDH
assumption, Lemma 11.3.2, we conclude that the claim holds.

Denote by Eb5 the experiment Eb4 except that u′′i , v
′′
i ∈ GQ are chosen randomly.

Claim 6. |Pr[Eb5 = 1]− Pr[Eb6 = 1]| < ε5 for some negligible function ε5 of κ.

Proof. Denote by Addh the adversary that accepts (ȳ, ū, v̄) and simulates Eb5 except

that it defines yT = ȳ and (u′′i , v
′′
i) = (gri ūsi , yri

T
v̄sii h

e
α
(b)
i+1), where ri, si ∈ ZQ

are randomly chosen. Again, if the input is a DDH triple, then the simulation is
identically distributed to Eb5 and otherwise it is identically distributed to Eb5. We
conclude from the DDH assumption that the claim holds.

By construction the experiments E0
6 and E1

6 are identical. Thus, the above
claims imply the lemma.

11.4. PROOF OF KNOWLEDGE 209

11.4 Proof of Knowledge

Here we give the full details of the proof of knowledge used to generate the signature.

A Computationally Convincing Proof of Knowledge

The proof of knowledge we will describe is not a proof of knowledge in the strict
sense. It is possible for a prover to produce proofs such that no algorithm is able to
extract the private input. However, if such a prover exists it can be used to break
the strong RSA assumption. The proofs can be seen as a proof of either the private
input or an RSA root. Such proofs are called computationally convincing proofs
of knowledge and are described in Section 8.5. Under the strong RSA assumption
they can be treated as a proof of knowledge if the prover is polynomially bounded.

More precisely, we will show that a prover which constructs a valid proof that
cannot be extracted, the prover can be used to compute one of the following:

1. Integers x1 6= 0 and x2, x3, at least one of which non-zero, and b ∈ SQN such
that bx1 = gx2hx3 and x1 does not divide both x2 and x3.

2. Integers x1, x2, at least one non-zero, such that gx1hx2 = 1.

Both cases imply that the strong RSA assumption is broken.

Protocol 11.4.1.
Common Input: g, h, y ∈ GQ,g,h ∈ SQN, (u, v) ∈ G2

Q, c ∈ SQN.

Private Input: ρ ∈ ZQ, τ ∈ [0, 2κrN− 1], ε ∈ [0, 2tM − 1] such that

(u, v) = Eelg

(g,y)(h
ε, ρ)

c = gτhε

Intervals Shown: ε ∈ [−2κc+κr+tM + 1, 2κc+κr+tM − 1].

1. The prover randomly selects a ←R ZQ, b1 ←R [0, 2κc+2κrN − 1], b2 ←R

[0, 2κc+κr+tM − 1] and computes

(A1, A2) ← (ga, yahb2)

A ← gb1hb2 .

The prover hands (A1, A2,A) to the verifier.

2. The verifier randomly selects c←R [0, 2κc − 1] and hands to the prover.

3. The prover computes

d1 ← cρ+ a1 mod Q (11.1)

d2 ← cτ + a2 mod 2κc+2κrN (11.2)

d3 ← cε+ a3 mod 2κc+κr+tM (11.3)

and hands (d1, d2, d3) to the verifier.

210 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

4. The verifier accepts if

(A1u
c, A2v

c)
?
= (gd1 , yd1hd3) (11.4)

Acc
?
= gd2hd3 (11.5)

Lemma 11.4.1. Protocol 11.4.1 is a [0, 2κc − 1]-Σ-protocol.

Proof. It is easily checked that the verifier accepts unless there is a reduction in
the computation of d2 or d3. The probability of a reduction in each computation is
2−κr , and the union bound gives a probability of 2 · 2−κr for a reduction in either
d2 or d3. Since this negligible, the protocol has overwhelming completeness.

We now show special soundness. Given two accepting executions (A1, A2, A,
c, d1, d2, d3) and (A1, A2, A, c′, d′1, d′2, d′3) where c 6= c′ the extractor can

solve Equations (11.1 – 11.3) for ρ∗ =
d1−d

′
1

c−c′ ∈ ZQ, τ∗ =
d2−d

′
2

c−c′ ∈ Z, ε∗ =
d3−d

′
3

c−c′ ∈
[−2κc+κr+tM+1, 2κc+κr+tM−1]. The interval constraint on ε∗ holds since |d3−d′3| <
2κc+κr+tM .

Since the computation of τ∗ and ε∗ are over the integers, one must show that
both (d2 − d′2) and (d′3 − d3) are divisible by (c− c′). Assume this is not the case.
Then Case 1 holds by setting b = c and x1 = c−c′, x2 = d2−d′2, and x3 = d3−d′3.

It follows that either the extractor produces ρ, τ, ε such that (u, v) = Eelg

(g,y)(h
ε∗ , ρ∗)

and c = gτ
∗

hε
∗

or it breaks the strong RSA assumption.
Showing special zero-knowledge is straight-forward. Given c the simulator ran-

domly selects d1, d2, d3 and computes A1, A2,A from Equations (11.4 – 11.5). This
gives a distribution which is identical to that of an honest execution.

Protocol 11.4.2.
Common Input: g, h, y, z ∈ GQ,g,h ∈ SQN, (g′, y′) ∈ G2

Q, (u, v) ∈ G2
Q, (u′, v′) ∈

G2
Q, (u′′, v′′) ∈ G2

Q, c ∈ SQN.

Private Input: ρ, ρ′, ρ′′ ∈ ZQ, τ ∈ [0, 2κrN − 1], ε ∈ [0, 2tM − 1], υ ∈ GQ such
that

(g′, y′) = (gρ
′

, υρ
′

)

(u, v) = Eelg

(g,y)(υ, ρ)

(u′, v′) = Eelg

(g′,y′)(h
ε, ρ′′)

(u′′, v′′) = Eelg

(g,z)(h
ε, ρ′′)

c = gτhε

Intervals Shown: ε ∈ [−2κc+κr+tM + 1, 2κc+κr+tM − 1].

1. The prover selects s←R ZQ and computes B1 ← gs (v/yr).

11.4. PROOF OF KNOWLEDGE 211

2. The prover selects a1, a2, a3, a4 ←R ZQ, b1 ←R [0, 2κc+2κrN − 1], b2 ←R

[0, 2κc+κr+tM − 1] and computes

A1 ← ga1y−a2

A2 ← ga1(y′)a3

A3 ← ga2

A4 ← (g′)a3

(A5, A6) ←
(

(g′)a4 , (y′)a4hb2
)

(A7, A8) ←
(

ga4 , za4hb2
)

A ← gb1hb2 .

It hands B1, B2, A1, A2, A3, A4, A5, A6, A7, A8,A to the verifier.

3. The verifier chooses c←R [0, 2κc − 1] and hands to the prover.

4. The prover computes

d1 ← cs+ a1 mod Q (11.6)

d2 ← cρ+ a2 mod Q (11.7)

d3 ← c/ρ′ + a3 mod Q (11.8)

d4 ← cρ′′ + a4 mod Q (11.9)

d5 ← cτ + b1 mod 2κc+2κrN (11.10)

d6 ← cε+ b2 mod 2κc+κr+tM (11.11)

and hands (d1, d2, d3, d4, d5, d6, d7) to the verifier.

5. The verifier checks that

A1(B1/v)
c ?

= gd1y−d2 (11.12)

A2B
c
1

?
= gd1(y′)d3 (11.13)

A3u
c ?

= gd2 (11.14)

A4g
c ?

= (g′)d3 (11.15)

A5(u
′)c

?
= (g′)d4 (11.16)

A6(v
′)c

?
= (y′)d4hd6 (11.17)

A7(u
′′)c

?
= gd4 (11.18)

A8(v
′′)c

?
= zd4hd6 (11.19)

Acc
?
= gd5hd6 (11.20)

and accepts if all equalities hold.

212 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

Lemma 11.4.2. Protocol 11.4.2 is a [0, 2κc − 1]-Σ-protocol.

Proof. The verifier accepts if there is no reduction in the computation of d5 and
d6. Hence the protocol has overwhelming completeness.

Now consider the special soundness of the protocol. Assume the extractor is
given the output of two accepting executions (B1, A1, A2, A3, A4, A5, A6, A7, A8,
A, c, d1, d2, d3, d4, d5, d6) and (B1, A1, A2, A3, A4, A5, A6, A7, A8, A, c′, d′1, d′2,
d′3, d′4, d′5, d′6). The extractor solves Equations (11.6 – 11.11) for s∗, ρ∗, ρ′∗, ρ′′∗,
τ∗, ε∗.

From Equation (11.12) it follows that B1 = g
d1−d′1
c−c′ y−

d2−d′2
c−c′ v = gs

∗

yρ
∗

, and from

Equation (11.13) that B1 = g
d1−d′1
c−c′ (y′)

d3−d′3
c−c′ = gs

∗

(y′)ρ
′∗

, which implies
(

v
yρ∗

)ρ′∗

=

y′. From Equations (11.14) and (11.15) it follows that g′ = gρ
′∗

and u = gρ
∗

. By

setting υ∗ = v
yρ∗

it holds that y′ = υ∗ρ
′∗

and v = yρ
∗

υ∗. It is straight-forward to

show that the extracted values satisfy the remaining equalities. As in the previous
protocol it can also be seen that ε∗ ∈ [−2κc+κr+tM + 1, 2κc+κr+tM − 1], and that
either the computations of τ∗ and ε∗ yield integers, or Case 1 holds.

To show special zero-knowledge, we describe how to build a simulator which is
given c as input. It chooses B1 as well as d1, d2, d3, d4, d5, d6 at random and
computes A1, A2, A3, A4, A5, A6, A7, A8, A from Equations (11.12 – 11.20). This
gives a distribution identical to that of an honest execution.

Protocol 11.4.3.
Common Input: g, h, y ∈ GQ,g,h ∈ SQN, (u, v) ∈ G2

Q, (u,v) ∈ SQ2
N, c ∈ SQN.

Private Input: ρ ∈ ZQ, σ, τ, τ
′ ∈ [0, 2κrN−1], π ∈ [0, 2(tP+tM)(δ−1)−1] such that

(u, v) = Eelg

(g,y)(h
π , ρ) (11.21)

c = gσhπ (11.22)

(u,v) = (gτhτ
′

,hτg1/π) (11.23)

In the description of this protocol we let tπ = (tP + tM)(δ − 1).

1. The prover selects s, t←R [0, 2κrN− 1] and sets

(B1,B2)← (gshtuπ,hsvπ)

2. The prover selects a1 ←R ZQ, a2 ←R [0, 2κc+κr+tπ − 1], a3, a4 ←R [0,
2κc+2κrN−1], a5, a6 ←R [0, 2κc+2κr+tπN−1], a7, a8, a9 ←R [0, 2κc+2κrN−1]
and computes

(A1, A2) ← (ga1 , ya1ha2) (11.24)

(A3,A4) ← (ga3ha4ua2 ,ha3va2) (11.25)

(A5,A6) ← (ga5ha6 ,ha5) (11.26)

A7 ← ga7ha8 (11.27)

A8 ← ha9ga2 . (11.28)

11.4. PROOF OF KNOWLEDGE 213

The prover hands (B1,B2, A1, A2,A3,A4,A5,A6,A7,A8) to the verifier.

3. The verifier selects c←R [0, 2κc − 1] and hands to the verifier.

4. The prover computes

d1 ← cρ+ a1 mod Q (11.29)

d2 ← cπ + a2 mod 2κc+κr+tπ (11.30)

d3 ← cs+ a3 mod 2κc+2κrN (11.31)

d4 ← ct+ a4 mod 2κc+2κrN (11.32)

d5 ← c(πτ + s) + a5 mod 2κc+2κr+tπN (11.33)

d6 ← c(πτ ′ + t) + a6 mod 2κc+2κr+tπN (11.34)

d7 ← cτ + a7 mod 2κc+2κrN (11.35)

d8 ← cτ ′ + a8 mod 2κc+2κrN (11.36)

d9 ← cσ + a9 mod 2κc+2κrN (11.37)

and hands (d1, d2, d3, d4, d5, d6, d7, d8, d9) to the verifier.

5. The verifier accepts if

(ucA1, v
cA2)

?
= (gd1 , yd1hd2) (11.38)

(Bc
1A3,B

c
2A4)

?
= (gd3hd4ud2 ,hd3vd2) (11.39)

(Bc
1A5, (B2/g)cA6)

?
= (gd5hd6 ,hd5) (11.40)

ucA7
?
= gd7hd8 (11.41)

ccA8
?
= hd9gd2 (11.42)

Lemma 11.4.3. Protocol 11.4.3 is a [0, 2κc − 1]-Σ-protocol.

Proof. The verifier accepts if there is no reduction is the computation of d2, d3,
d4, d5, d6, d7, d8, or d9. Such a reduction happens with negligible probability, and
hence the protocol has overwhelming completeness.

We now show special soundness. Assume an extractor is given the transcript of
two accepting executions (B1, B2, A1, A2, A3, A4, A5, A6, A7, A8, c, d1, d2, d3,
d4, d5, d6, d7, d8, d9) and (B1, B2, A1, A2, A3, A4, A5, A6, A7, A8, c′, d′1, d′2,
d′3, d′4, d′5, d′6, d′7, d′8, d′9) where c 6= c′.

The extractor first computes τ∗ ← d7−d
′
7

c−c′ , τ ′∗ ← d8−d
′
8

c−c′ such that

u = gτ
∗

hτ
′∗

.

It extracts s∗ =
d3−d

′
3

c−c′ , t∗ =
d4−d

′
4

c−c′ , π∗ =
d2−d

′
2

c−c′ such that

(B1,B2) = (gs
∗

ht
∗

uπ
∗

,hs
∗

vπ
∗

) .

214 CHAPTER 11. AN OPTIMISTIC CONSTRUCTION

It also computes γ∗ =
d5−d

′
5

c−c′ , γ′∗ =
d6−d

′
6

c−c′ such that

(B1,B2) = (gγ
∗

hγ
′∗

,hγ
∗

g) .

We now show that γ∗ = π∗τ∗ + s∗ and γ′∗ = π∗τ ′∗ + t∗. Assume this is
not the case. Since B1 = gs

∗

ht
∗

uπ
∗

= gπ
∗τ∗+s∗hπ

∗τ ′∗+t∗ this would give two
representations of B1 and fulfill Case 2.

Next we show that v is a commitment to a root of g. We have B2 = hs
∗

vπ
∗

and B2 = hγ
∗

g, which gives vπ
∗

= hπ
∗τ∗

g. This implies v = hτ
∗

g1/π∗

.

It is easily verified that ρ∗ =
d1−d

′
1

c−c′ satisfies (u, v) = Eelg

(g,y)(h
π∗

, ρ∗). We conclude

that the protocol is special-sound.
It remains to show that the protocol has special zero-knowledge by describing a

simulator which on input c produces a transcript distributed as an honest execution
of the protocol. It selects B1,B2 as well as d1, d2, d3, d4, d5, d6, d7, d8, d9 randomly
and computes A1, A2,A3,A4,A5,A6,A7,A8 from Equations (11.38 – 11.42). This
gives a distribution that is identical to an honest execution. This concludes the
proof.

We are now ready to use the above subprotocols to construct the complete
protocol.

Protocol 11.4.4.
Common Input: g, h, y, yα0, yT ∈ GQ,g,h ∈ SQN, (u, v) ∈ G2

Q, (u,v) ∈ SQ2
N, c ∈

SQN, (u′0, v
′
0) ∈ G2

Q, c0 ∈ SQN, ((g′i, y
′
i), (ui, vi), (u

′
i, v

′
i), (u

′′
i , v

′′
i), ci) ∈ G8

Q × SQN

for i = 1, . . . , δ − 1, (u, v) ∈ G2
Q and (u,v) ∈ SQN.

Private Input: ρ, ρi, ρ
′
i, ρ

′′
i ∈ ZQ, τ, τ ′, τi ∈ Z, εi ∈ [0, 2tM − 1], υi ∈ GQ for

i = 1, . . . , δ − 1, and ζ ∈ SQN such that

(u′0, v
′
0) = Eelg

(g,yα0)(h
ε1 , ρ′′0)

c0 = hτ0gε10

(g′i, y
′
i) = (gρ

′
i , υ

ρ′i
i)

(ui, vi) = Eelg

(g,y)(υi, ρi)

(u′i, v
′
i) = Eelg

(g′i,y
′
i)

(hεi+1 , ρ′′i)

(u′′i , v
′′
i) = Eelg

(g,yT)(h
εi+1 , ρ′′i)

ci = gτih
εi+1

i

δ−1

i=1

(u, v) = Eelg

(g,y)(h
π, ρ)

(u,v) = (gτhτ
′

,hτζ)

ζπ = g .

where

π =

δ−2
∑

i=0

εi+12
(tM+tP)i + εδ2

(tM+tP)(δ−1)

11.5. COMPLEXITY ANALYSIS 215

Intervals Shown: π ∈ [−2tπ + 1, 2tπ − 1].
The following protocols are executed in parallel, using a common challenge

c ∈ [0, 2κc − 1]:

• Protocol 11.4.1 on common input g, h, yα0 ,g0,h, c0 and private input ρ′′0 , τ0,
ε1.

• Protocol 11.4.2 on common input g, h, y, yT, gi, h, (g′i, y
′
i), (ui, vi), (u′i, vi),

(u′′i , v
′′
i), ci and private input ρi, ρ

′
i, ρ

′′
i , τi, εi+1, υi for i = 1, . . . , δ − 1.

• Protocol 11.4.3 on common input g, h, y, g, h, (u, v), (u,v), c =
∏δ−1
i=0 ci

and private input ρ,
∑δ−1

i=0 τi, τ , τ ′, π.

Lemma 11.4.4. Protocol 11.4.4 is a [0, 2κc − 1]-Σ-protocol.

Proof. The protocol has overwhelming completeness since all the sub-protocols have
overwhelming completeness.

To show special soundness, we begin by observing that ρ, ρi, ρ
′
i, ρ

′′
i , τ , τ ′,

τi, υi, εi can be extracted by the special soundness of the subprotocols. What
remains to be shown is that π∗ extracted in Protocol 11.4.3 equals the sum π =
∑δ−2
i=0 εi+12

(tM+tP)i+εδ2
(tM+tP)(δ−1). Assume this is not the case. By construction

c = gτhπ. If π 6= π∗, this would give two representations of c, which fulfills Case
2. The interval constraint on π is satisfied due to do the interval constraints on εi
imposed by the subprotocols. Hence the protocol is special-sound.

Special zero-knowledge follows since the sub-protocols have special zero-know-
ledge.

11.5 Complexity Analysis

Let us now examine the number of exponentiations for a tree of depth δ. The part
sout requires 4 + 9(δ − 1) exponentiations, and the proof needs 3 exponentiations
for Protocol 11.4.1, Protocol 11.4.2 needs 9(δ − 1) exponentiations, and Protocol
11.4.3 requires 10 exponentiations, which gives a total of 17 + 18(δ− 1) exponenti-
ations for a signature, where we have counter dual-base exponentiations as a single
exponentiations, but without using any other tricks. For a typical example with a
three-level hierarchy, a total of 71 exponentiations are required. Since many of these
exponentiations are fixed-base exponentiations, similar tricks as those mentioned
in Section 10.6 can be used to reduce the running time.

As comparison the scheme in Chapter 10 requires an equivalent of about 1000
general exponentiations for a three-level hierarchy.

Chapter 12

Universally Composable

Hierarchical Group Signatures

In this section we define the notion of a hierarchical group signature scheme as an
ideal functionality. We relate this functionality to the definition of security given
in Chapter 8, and discuss the advantages and disadvantages of casting hierarchical
group signatures in the UC-framework. Then we proceed by giving a slightly weaker
functionality which is securely realized by the optimistic protocol in Chapter 11.

12.1 Notation

We use a model where the ideal functionality is linked to the players through a
communication network CI . The communication network forwards a message m
from a player P as (P,m) to the ideal functionality. When CI receives (P,m) from
the functionality, it forwards the message m to player P . Except for immediate
functions, defined as a message from a player P immediately followed by a response
to the same player P , the ideal adversary S is informed of when a message is sent,
but not of the content. The ideal adversary is allowed to delay the delivery of such
a message, but not change its content.

12.2 Proper Hierarchical Group Signatures

The ideal functionality must capture the anonymity expected from a secure scheme.
We solve this by generating signatures that do not depend on the signer, and
therefore do not reveal any information about who the signer is. However, if a
group manager is corrupt, the environment is able to distinguish between certain
signers. Below we describe how to construct the private keys to handle this issue.

Given a map hsk : T → {0, 1}∗ and a subset C of T , we define two new maps
hskC : T → {0, 1}∗ and hpkC : T → {0, 1}∗ as follows. We start with hskC ← hsk ,
hpkC ← hpk and then repeatedly redefine hskC , hpkC according to the following

217

218
CHAPTER 12. UNIVERSALLY COMPOSABLE HIERARCHICAL GROUP

SIGNATURES

simple rule for j = 1, . . . , δ. As long as there exist nodes α
(0)
i and α

(1)
i in T \C such

that

α
(0)
j ∈ α

(0)
j−1 ∈ α

(0)
j−2 ∈ . . . ∈ α

(0)
t+1 ∈ αt ∋ α

(1)
t+1 ∋ . . . ∋ α

(1)
j−2 ∋ α

(1)
j−1 ∋ α

(1)
j , (12.1)

and α
(0)
j is before α

(1)
j in the lexicographical order, redefine (hpkC(α

(1)
j), hskC(α

(1)
j))

to equal (hpk C(α
(0)
j), hskC(α

(0)
j)). This is illustrated in Figure 12.1.

Figure 12.1: Nodes grouped together on the same level are given identical keys by
the ideal functionality.

Ideal functionalities for signature schemes may either make the public key an
explicit part of the protocol, as in [31] and [5], or the public key can be hidden from
the environment. Here we use the second approach, since it makes the exposition
easier to follow.

An Ideal Functionality for Hierarchical Group Signatures

In Figure 12.2 we give an ideal functionality for hierarchical group signatures.

Let us discuss why the functionality given in Figure 12.2 captures the notion of
hierarchical group signatures. Consider the anonymity requirement. An adversary
should not be able to distinguish two signatures σ0 and σ1 of some message m
computed by honest S

α
(0)
δ

and S
α

(1)
δ

respectively, provided that all Mβ for all indices

β in the chains in Equation (12.1) are honest. The construction of hskC and hpkC

ensures that signatures of a messagem of all such signers are identically distributed.
Thus, no information on the identity of the signer is leaked by the signatures.

Next we consider the traceability property. As explained in Canetti [31] a signa-
ture functionality must accept any signature computed with the key of a corrupted
party. In the hierarchical group signature setting this corresponds to accepting all
signatures that traces to a corrupted party if the keys hsk are used. Thus, the
functionality accepts a signature if and only if a signer has previously requested
a signature from FHGS and it has stored it or the signature traces to a corrupted
signer. The opening of a signature is handled similarly, but here we must take care
to find the index related to the index of the party requesting the opening.

12.2. PROPER HIERARCHICAL GROUP SIGNATURES 219

Functionality 12.2.1 (Hierarchical Group Signatures). The ideal hierarchical
group signature functionality FHGS running with parties {Mα}α∈T for a tree
T with all leaves at the same depth, and ideal adversary S which corrupts Mα

with α ∈ C.

1. Execute (hpk , hsk) ← HGKg(T, 1κ) and hand ((S, Keys, hpk , hsk(C))) to
CI .

2. Then handle incoming messages as follows.

• Sign. Upon reception of (Mα, Sig,m) with Mα ∈ L(T), com-
pute σ ← HGSig(m,T, hpkC , hskC(α)) and store (m,σ, (α0, . . . , αδ)),
where the third component is the path from the root α0 = ρ to a
leaf αδ = α. Then hand (Mα, Sig,m, σ) to CI .

• Verify. Upon reception of (Mβ , Vf,m, σ), check if (m,σ, (· · ·)) is
stored. If so set b← 1.

If not, compute b ← HGVf(T, hpk ,m, σ). If b = 1, then pro-
ceed as follows: Let α0 ← ρ. For j = 0, . . . , δ − 1 set αj+1 ←
HGOpen(T, hpk , hsk (αj),m, σ) and set αj+1 ← ⊥ if αj+1 /∈ αj . If
αδ ∈ C, then store (m,σ, (α0, . . . , αδ)). Otherwise set b← 0.

Hand (Mβ , Vf,m, σ, b) to CI .

• Open. Upon reception of (Mβ, Open,m, σ) with Mβ /∈ L(T), ex-
ecute (Vf,m, σ). Then check if (m,σ, (α0, . . . , αδ)) is stored for a
path (α0, . . . , αδ) in T where β = αt. If so, set α ← αt+1, and
otherwise set α← ⊥.

Hand (Mβ , Open,m, σ, α) to CI .

Figure 12.2: The definition of FHGS .

It may seem contrived to let the functionality output real signatures instead
of random strings, since this requires that we give a new functionality for each
construction of a HGS. However, the functionality must output random strings
that are indistinguishable from real signatures since otherwise the environment can
trivially distinguish the functionality from the real protocol. Thus, in one way or
another the ideal signature functionality must depend on the signature scheme we
wish to model. For standard signatures, Canetti [30, 31] solves this problem by
allowing the adversary to compute the signature. This reveals to the adversary
at what time every message is signed, and this is information which the protocol
should not leak. Note that the functionality also depends on the set of parties which
are corrupted by S. This may seem odd at first, but a functionality is nothing more
than a conceptual model, and in any simulation the ideal adversary knows precisely
which parties are corrupted by A, so this is not a problem.

220
CHAPTER 12. UNIVERSALLY COMPOSABLE HIERARCHICAL GROUP

SIGNATURES

We conclude that the above definition captures the notion of hierarchical group
signatures.

It is natural to ask how the definition of a secure hierarchical group signature
scheme given in Trolin and Wikström [84] relates to the above definition, i.e., if
it is the “right definition”. Suppose we are given a hierarchical group signature
scheme HGS = (HGKg,HGSig,HGVf,HGOpen) as defined in [84]. In Section 12.4
we describe an ideal functionality FHKg that corresponds to the key generation
algorithm HGKg. We also give a straight-forward protocol πHGS which essentially
consists of the three algorithms HGSig, HGVf, and HGOpen. Then we prove the
following theorem.

Theorem 12.2.1. Let HGS = (HGKg, HGSig, HGVf, HGOpen) be a secure hier-
archical group signature scheme according the definition in [84]. Then πHGS se-
curely realizes FHGS in the FHKg-hybrid model for a static adversary.

Thus, security according to the definition in [84] implies UC-security in the
FHKg-hybrid model, if we ignore some minor technical modifications. It is not
clear that the opposite implication holds, since the in the original definitions the
adversary is adaptive. On the other hand the adaptivity is restricted and seems
not strong enough to allow an adaptive adversary in the UC-framework.

Adaptive vs. Static Adversaries. One of the obstacles when trying to con-
struct a functionality that is secure against an adaptive adversary can be formulated
as follows. The signatures which the functionality creates should be intuitively an-
onymous, i.e., should contain no knowledge about the signer. On the other hand,
if group manager β is corrupted, it may leak its key to the environment, Therefore,
signers belonging to different subtrees of β must be distinguishable with regard to
β’s secret key, which contradicts the requirement that the signatures should be in-
distinguishable. For an adaptive adversary, the functionality does not know which
group managers will be corrupted after the signature has been constructed.

At its best the UC-framework allows simple and intuitive functionalities that can
also be realized. In contrast to what was originally claimed [30], signature schemes
[31], and even more so (hierarchical) group signature schemes require complicated
definitions as functionalities. It has been argued [81] that such functionalities are
better understood using classical experiments such as those in our original defini-
tions. On the other hand we need a composability theorem to use these schemes as
building blocks in a rigorous way. Theorem 12.2.1 allows us to use the more intu-
itively appealing original definitions, and still have the guarantee that the result is
universally composable.

12.3 Optimistic Hierarchical Group Signatures

Next we consider how the functionality can be modified such that it supports an
optimistic protocol. We modify the ideal functionality to accommodate for optim-
istic opening, which may fail but never points out an innocent signer, and joint

12.3. OPTIMISTIC HIERARCHICAL GROUP SIGNATURES 221

Functionality 12.3.1 (Optimistic Hierarchical Group Signatures). The ideal

optimistic hierarchical group signature functionality FOpt
HGS running with parties

{Mα}α∈T for a tree T with all leaves at the same depth, and ideal adversary
S which corrupts Mα with α ∈ C.

1. Execute (hpk , hsk , skT) ← HGKg(T, 1κ) and hand (S, Keys, hpk , skT) to
CI .

2. Then handle incoming messages as follows.

• Sign. Upon reception of (Mα, Sig,m) with Mα ∈ L(T), com-
pute σ ← HGSig(m,T, hpkC , hskC(α)) and store (m,σ, (α0, . . . , αδ)),
where the third component is the path from the root α0 = ω to a
leaf αδ = α. Then hand (Mα, Sig,m, σ) to CI .

• Verify. Upon reception of (β, Vf,m, σ), check if (m,σ, (· · ·)) is
stored. If so set b = 1.

If not, compute b ← HGVf(T, hpk ,m, σ). If b = 1, then proceed
as follows: Let α0 ← ω. For j = 0, . . . , δ − 1 compute αj+1 ←
HGTrustOpen(T, hpk , skT,m, σ). If αj+1 /∈ αj , then set αj+1 ← ⊥.
If αδ ∈ C, then store (m,σ, (α0, . . . , αδ)). Otherwise set b← 0.

Hand (β, Vf,m, σ, b) to CI .

• OptOpen. Upon reception of (β, OptOpen,m, σ) with Mβ ∈ T \
L(T), execute (⊥, Vf,m, σ). Then check if (m,σ, (α0, . . . , αδ)) is
stored for a path (α0, . . . , αδ) in T where β = αt. If so set α ←
HGOptOpen(T, hpk , hsk (αt),m, σ) and set α← ⊥ if α 6= αt+1.

Hand (β, OptOpen,m, σ, α) to CI .

• TrustedOpen. Upon reception of (β, TrustOpen,m, σ), execute
(·, Vf, σ,m).

Let α be such that (σ,m, (. . . , β′, β, α, . . .)) for β ∈ β′ is stored, and
set α← ⊥ if no such chain is found.

Return ((T, TrustOpen,m, σ, α), (S, TrustOpen, β,m, σ)) to CI .

Figure 12.3: The definition of FOpt
HGS .

opening, which answers correctly. We also include a mechanism for a group man-
ager to prove that it has opened a signature correctly. The functionality is given
in Figure 12.3.

The functionality FOpt
HGS is identical to FHGS if the function HGOpen is replaced

by HGTrustOpen, and a call HGOptOpen with the property that it always outputs
either the same as HGTrustOpen or ⊥ is added.

We define the protocol πOpt
HGS from the five algorithms HGKg, HGSig, HGVf,

222
CHAPTER 12. UNIVERSALLY COMPOSABLE HIERARCHICAL GROUP

SIGNATURES

HGOptOpen, HGTrustOpen in the obvious way and prove the following theorem.

Theorem 12.3.1. Let HGS = (HGKg, HGSig, HGVf, HGOptOpen, HGTrustOpen)
be a secure optimistic hierarchical group signature scheme according to Definition
8.3.4. Then πOpt

HGS securely realizes FOpt
HGS in the FOpt

HKg ,F
Opt
TrOpen-hybrid model for a

static adversary.

Hence also in the case of optimistic hierarchical group signatures security in the
classical sense implies security in the UC-model.

12.4 The Real Protocols

We now describe the complete protocols using the algorithms defined previously.

Hierarchical Group Signatures

We begin by defining the ideal key generator, and the we proceed by giving the full
protocol.

Functionality 12.4.1 (Ideal HGS Key Generator FHKg). The ideal HGS key gen-
erator functionality FHKg running with parties {Mα}α∈T for a tree T with all leaves
at the same depth, and ideal adversary S.

• Execute (hpk , hsk) ← HGKg(T, 1κ). Then hand ((S, Keys),(Mα, Keys, hpk ,
hsk (α))α∈T) to CI .

Then we simply translate the three algorithms HGSig, HGVf, and HGOpen into
a single protocol.

Protocol 12.4.1 (Generic UC-HGS Protocol).
The protocol πHGS = {Mα}α∈T running with functionality FHKg and parties Mα

in a tree T with all leaves at the same depth is defined as follows.
First all parties wait for (Keys, hpk , hsk (α)) from FHKg. Then they do as follows.

All Parties

• Upon reception of (Mα, Vf,m, σ), compute b = HGVf(T, hpk ,m, σ) and out-
put (Vf,m, σ, b).

Leaves Mα ∈ L(T).

• Upon reception of (Mα, Sig,m) compute σ = HGSig(m,T, hpk , hsk(α)) and
output (Sig,m, σ).

Group Managers Mβ /∈ L(T).

• Upon reception of (Mβ, Open,m, σ), compute α = HGOpen(T , hpk , hsk(β),
m, σ) and output (Open, m, σ, α).

12.4. THE REAL PROTOCOLS 223

Optimistic Hierarchical Group Signatures

Using the algorithms defined above we describe the complete protocol. First we
need to define the ideal key generator and the ideal trusted open functionality. We
choose to separate the two, since the trusted opening appears to be possible to
realize as a distributed protocol using known techniqueswhereas we are not aware
of any such protocol (except by using general methods) for the key generation.

Functionality 12.4.2 (Ideal Optimistic HGS Key Generator FOpt
HKg).

The ideal optimistic HGS key generator functionality FOpt
HKg running with parties

{Mα}α∈T for a tree T with all leaves at the same depth, and ideal adversary S.

• Execute HGKg(1κ, T) except for the generation of the trusted key of Step 2
and store the result as (hpk , hsk). Then hand ((S, Keys), (Mα, Keys, hpk ,
hsk (α))α∈T) to CI .

Functionality 12.4.3 (Ideal Trusted Open Functionality FOpt
TrOpen).

The ideal optimistic HGS trusted open functionality FOpt
TrOpen running with parties

denoted {Mα}α∈T for a tree T with all leaves at the same depth, and ideal adversary
S.

• Execute Step 2 of HGKg(1κ, T) and store the result as (pkT, skT). Then hand
((S, TrustedKey, pkT, skT), (Mα, TrustedKey, pkT)α∈T) to CI .

• Then handle incoming messages as follows.

– Trusted Open. Upon reception of (β, TrustOpen, m, σ), execute α←
HGTrustOpen(T , hpk , skT, β, m, σ). Hand ((S, TrustOpen, m, σ), (β,
TrustOpen, m, σ, α)) to CI .

Note that the keys for trusted opening is generated by FOpt
TrOpen rather than by

FOpt
HKg .

Protocol 12.4.2 (Optimistic HGS Protocol).

The optimistic hierarchical group signature protocol πOpt
HGS running with ideal func-

tionalities FOpt
HKg , FOpt

TrOpen and parties ((Mβ)β∈T for a tree T is defined as follows.

First all parties wait for a message (Keys, hpk , hsk(α)) from FOpt
HKg and for a

message(TrustedKey, pkT) from FOpt
TrOpen. They incorporate pkT into hpk . Then

they do as follows.

All Parties

• On input (Mα, Vf, m, σ), compute b = HGVf(T , hpk , m, σ) and output (Vf,
m, σ, b).

Leaves Mα ∈ L(T).

224
CHAPTER 12. UNIVERSALLY COMPOSABLE HIERARCHICAL GROUP

SIGNATURES

• On input (Mα, Sig, m) compute σ = HGSig(m, T , hpk , hsk(α)) and output
(Sig,m, σ).

Group Managers Mβ /∈ L(T).

• On input (Mβ , OptOpen, m, σ), compute α ← HGOptOpen(T , hpk , hsk(β),
m, σ) and output (OptOpen, m, σ, α).

• On input (Mβ , TrustOpen, m, σ), hand (FOpt
TrOpen, TrustOpen, m, σ) to CI .

Upon reception of (Mβ, TrustOpen, m, σ, α), output (TrustOpen, m, σ, α).

12.5 The Proofs of Security

Hierarchical Group Signatures

Here we prove Theorem 12.2.1.

Proof. We describe an ideal adversary S(·) that runs any hybrid adversary A′ as a
black-box. Then we show that if S does not imply that the protocol is UC-secure
then we can break the security of HGS.

The Ideal Adversary S. Let C be the set of indices of participants corrupted by
A. The ideal adversary S corrupts the dummy participants M̃α for which α ∈ C,
returning (hpk , hsk (α)) to A. The ideal adversary is best described by starting
with a copy of the original hybrid ITM-graph of the real protocol and replacing Z
with a machine Z ′. The adversary S simulates all machines in V except those in
A′, and the corrupted machines Mα for α ∈ C under A′s control. We now describe
how each machine is simulated.

Simulation of Links (Z,A), (Z,Mα) for α ∈ C. S simulates Z ′ and M̃α for α ∈ C,
such that it appears as if Z and A, Z and Mα for α ∈ C are linked directly.

1. When Z ′ receives m from A, m is written to Z, by S. When S receives m
from Z, m is written to A by Z ′. This is equivalent to Z and A being linked
directly.

2. When Z ′ receives m from Mα for α ∈ C, m is written to Z by M̃α. When
M̃α, α ∈ C, receives m from Z, m is written to Mα by Z ′. This is equivalent
to Z and Mα being linked directly for α ∈ C.

Note that since the protocol is completely non-interactive the honest simulated
parties Mα for α /∈ C need actually not do anything, since they do not communicate
with the corrupted parties at all.

The adversary waits until it receives (Keys, hpk , hsk(C)) from FHGS . Then it
simulates FHKg except that it outputs the keys (hpk , hsk (C)) instead of generating
new keys.

12.5. THE PROOFS OF SECURITY 225

Reaching a Contradiction. Suppose that S does not imply that FHGS is
secure. Then there exists an adversary A′, an environment Z with auxiliary input
z = {zn}, a constant c > 0 and an infinite index set N ⊂ N such that for n ∈ N
the advantage in of Z on auxiliary input z when distinguishing between the real
protocol and the ideal functionally is non-negligible.

We define a sequence of hybrids as follows. Define π0 to be the ideal protocol.
We let πj be identical to πj−1 except that in the ith signing request, with i ≤ j,
FHGS computes a signature σ with hsk(α) instead of with hskC(α). The number
of signing requests is bounded by a polynomial q(κ). We let Hi be the output of
Zz when interacting with πi.

Claim 7. There exists a negligible function ε(κ) such that

|Pr[H0 = 1]− Pr[Hq(κ) = 1]| < ε(κ) .

Proof. If the claim is false a hybrid argument implies that |Pr[Hj−1 = 1]−Pr[Hj =
1]| is non-negligible for some 0 < j ≤ q(κ).

We construct an adversary H that breaks hierarchical anonymity of HGS. H
is identical to Hj−1 except that FHKg does not generate any keys, but use the keys
from the hierarchical anonymity experiment. It also requests the secret keys of all
of the corrupted group managers to be able to hand these to the corrupted parties
run as black boxes. Every invocation of the HGOpen-algorithm is replaced by a call
to the HGOpen-oracle.

The jth sign request to FHGS must come from an honest dummy party, since
otherwise Hj and Hj−1 would be identically distributed. Let Sα(1) be the signer
which requests the jth signature on some message m, and let Sα(0) be a signer such
that hskC(α(1)) = hsk(α(0)).

The adversary H does not decide whether to simulate πj−1 or πj . Instead it
outputs (state, α(0), α(1),m), where state is its internal state. The random variable
Expanon−b

HGS,H(κ, T) is identically distributed to Hj−1 or Hj depending on if b = 0 or

b = 1 respectively. Thus, |Pr[Expanon−0
HGS,H(κ, T) = 1]− Pr[Expanon−1

HGS,H(κ, T) = 1]| is
non-negligible which contradicts the hierarchical anonymity of HGS and the claim
follows.

Next we consider another family of hybrids. Define π′
0 to be equal to πq(κ).

Let π′
j be identical to π′

j−1 except that in the ith verify or open request, with
i ≤ j, FHGS defines b← HGVf(T, hpk ,m, σ) for a verification request and it defines
α← HGOpen(T, hpk , hsk (β),m, σ) for an open request. The number of verification
or open requests is bounded by a polynomial q′(κ).

Claim 8. There exists a negligible function ε′(κ) such that

|Pr[H ′
0 = 1]− Pr[H ′

q′(κ) = 1]| < ε′(κ) .

Proof. If the claim is false a hybrid argument implies that |Pr[H ′
j−1 = 1]−Pr[H ′

j =
1]| is non-negligible for some 0 < j ≤ q′(κ).

226
CHAPTER 12. UNIVERSALLY COMPOSABLE HIERARCHICAL GROUP

SIGNATURES

We construct an adversary H ′ that breaks the hierarchical traceability of HGS.
H ′ simulates π′

j , except that the simulated FHKg does not generate any keys, but
use the keys from the hierarchical traceability experiment. Instead it requests the
secret keys of all of the corrupted signers to be able to hand these to the corrupted
parties run as black boxes. Every invocation of the HGSig-algorithm is also replaced
by a call to the HGSig-oracle.

When the jth verify, (Mβ , Vf,m, σ), or open, (Mα, Open,m, σ), is handed to
FHGS , H ′ simply outputs (m,σ). Let p = |Pr[H ′

j−1 = 1] − Pr[H ′
j = 1]|. The jth

query must be answered differently for πj−1 and πj with at least probability p,
which is non-negligible.

If the jth query is a verify query, the only way the answer can differ is that
(m,σ) is a signature such that HGVf(T, hpk ,m, σ) = 1, although no signing query
for m has been given. Then H ′ wins the experiment for hierarchical traceability
with advantage p.

If the jth query is an open query, HGOpen(T, hpk , hsk (β),m, σ) can differ from
the ideal functionality in one of the following two ways.

1. The signature opens to ⊥.

2. The signature σ opens to a corrupt party and the functionality has not been
asked to sign the message m on behalf of the corrupted party.

In both these cases H ′ wins the experiment for hierarchical traceability with prob-
ability p.

By construction we have that H ′
q′(κ) is identically distributed the output of Z

when it executes the real protocol. Thus, we reached a contradiction, since the
distance between H0 and H ′

q′(κ) is assumed to be non-negligible, but at the same
time it is at most the some of a polynomial number of negligible functions.

This concludes the proof.

Optimistic Hierarchical Group Signatures

Here we prove Theorem 12.3.1.

Proof. Defining the Hybrids. We prove the theorem with a hybrid argument. We
build a polynomial-size chain of protocols π0, π1, . . . , πt such that π0 = FOpt

HGS and

πt = πOpt
HGS . Then we show that if there exists an adversary A which can distinguish

between πt and πt+1 for some t, then A can be used to break the security of the
hierarchical group signature scheme.

We let π0 = π. We define πt0 to be πt−1
0 with the difference that the tth call

to Sig produces a valid signature rather than a signature by a dummy signer. Let
π0

1 = πm0 , and define πt1 to be πt−1
1 with the difference that OptOpen runs according

to the protocol rather than according to the ideal functionality. π0
2 = πm1 , and πt2 is

πt−1
2 with the difference that the tth call to TrustOpen runs according to the real

protocol rather than according to the ideal protocol.

12.5. THE PROOFS OF SECURITY 227

FOpt
HGS

CI

P̃1 P̃2 P̃3 P1 P2 P3

FOpt
HKgFOpt

TrOpen

A

Z ′

Z

S

Figure 12.4: The simulator S for a protocol with three players where P2 is corrupted.
The dashed edges represent simulated connections.

Building the Simulator. By assumption Z distinguishes between FOpt
HGS and

πOpt
HGS for any ideal adversary. In particular it distinguishes between the two proto-

cols for the adversary defined as follows.

For each player Pi that the real-world adversary A corrupts, the ideal adversary
S corrupts the corresponding dummy player P̃i and outputs the internal state of
Pi containing the public and the private key. When a corrupted dummy player
P̃i receives a message m from Z, the simulator S lets Z ′ send m to Pi. When
a corrupted Pi outputs a message m to Z ′, then S instructs the corrupted P̃i to
output m to Z. This corresponds to Pi being linked directly to Z.

The simulated real-world adversary A is connected to Z, i.e., when Z sends
m to S, Z ′ hands m to A, and when A outputs m to Z ′, S hands m to Z. All
non-corrupted players are simulated honestly. The corrupted players run according
to their respective protocols.

The adversary waits until it receives (Keys, hpk , hsk (C)) from FOpt
HGS . It then

simulates FOpt
HKg and FOpt

TrOpen with the difference that the keys (hpk , hsk(C)) and pkT

are used.

If S receives the message (TrustOpen, β,m, σ) from FOpt
HGS , then it instructs Z ′

to send (TrustOpen,m, σ) to β. All other functions are local and need not be
simulated for A.

Assume Z distinguishes between πt−1
0 and πt0. We show how to use Z to break

the hierarchical anonymity of HGS by constructing a machine A that participates

228
CHAPTER 12. UNIVERSALLY COMPOSABLE HIERARCHICAL GROUP

SIGNATURES

in Experiment 8.3.2 using Z as a black box. There is no key generation performed
by the functionality, but instead the keys (hpk , hsk(L(T)), pkT) received from the
experiments are used. For each β ∈ C A requests the group manager key in the
corrupt phase. During the execution A simulates signature generation calls hon-
estly using the signing keys it received in the experiment. Opening is performed
honestly using oracle queries in the experiment. FOpt

TrOpen is simulated by querying
the HGTrustOpen oracle of the experiment.

Let α be the signer that receives the tth Sig query, and let the query be to sign
m. A then returns (α, α′,m) on the choose query, where α′ is a signer given the
same key as α in the ideal functionality. The challenge σ is returned as result to the
Sig query. Note that if the σ is produced by α, the protocol is πt0, and otherwise
the protocol is πt−1

0 . Since by assumption Z is able to distinguish between the two
with non-negligible probability, A has a non-negligible advantage in its experiment.

Assume Z distinguishes between πt−1
1 and πt1. We show how to construct a

machine A which takes part in Experiment 8.3.1 and breaks the hierarchical trace-
ability of HGS. Rather than constructing the keys itself, the keys (hpk , hsk (T \
L(T)), pkT) are taken as the are taken from the experiment. For each β ∈ C, A re-
quests the private signing key in corrupt phase. The queries OptOpen and TrustOpen

are answered honestly using the group manager keys given to A in the experiment.
Signing queries are answered using the signing oracle provided to A in the exper-
iment, and FOpt

TrOpen uses skT from the experiment. Let (σ,m) be the tth OptOpen

query, and let β be the recipient. By assumption there is a non-negligible probab-
ility p that the response differs between πt−1

1 and πt1, which implies that (σ,m) are
opened differently by the table lookup in the ideal functionality and the HGOptOpen

algorithm. A honestly computes (β′, τ) = HGOptOpen(T, hpk , hsk (β), σ,m), and
returns (m,σ, β′, τ,⊥) as response to the choose query. Since the signature (σ,m)
is opened differently by the ideal functionality and the protocol the signature, the
ideal functionality has not created σ and β′ is not corrupt. Therefore the advantage
of A is p, and hence A breaks the hierarchical traceability of HGS.

Assume Z distinguishes between πt−1
2 and πt2. Proceeding as in the paragraph

above, A intercepts the tth TrustOpen query, runs HGTrustOpen honestly and out-
puts the result. The advantage of A in Experiment 8.3.1 is the same as the advant-
age of Z, which by assumption is non-negligible.

Chapter 13

Conclusion of Part III

We have introduced a generalization of group signatures which we call hierarch-
ical group signatures. We have suggested the definitional framework for the new
notion as well as three constructions. Our first construction is secure assuming
only the existence of a trapdoor permutation, but it is very inefficient. Our second
construction requires the strong RSA assumption, the decisional Diffie-Hellman as-
sumption and the random oracle model, but is more efficient. Our last construction
is practical and requires the strong RSA assumption, the decisional Diffie-Hellman
assumption and the random oracle model, but is secure under a relaxed defini-
tion, where additional interaction between parties may be necessary in case of a
corrupted signer.

There are different ways to improve our results. As it stands now, there is a
scheme which is secure under plausible number theoretic assumptions, but which is
not as efficient as one could wish, and there is a scheme which is practical for use
on ordinary PCs, but which is secure only under a relaxed definition. One would
want a scheme which satisfies the stronger security definition and is practical.

Our definitions and schemes are only for static groups. It would be desirable to
extend these to cover also dynamic groups by elminating the trusted key generator.
Most likely such definitions would be quite cumbersome.

229

Bibliography

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). In Theoretical Computer Science,
Exploring New Frontiers of Theoretical Informatics IFIP TCS 2000, volume
1872 of Lecture Notes in Computer Science. Springer Verlag, 2000.

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair ex-
change. In 4th ACM Conference on Computer and Communications Security
– CCS, pages 7–17. ACM Press, 1997.

[3] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology
– CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages
255–270. Springer Verlag, 2000.

[4] G. Ateniese and G. Tsudik. Some open issues and directions in group signa-
tures. In Financial Cryptography ’99, volume 1648 of Lecture Notes in Com-
puter Science, pages 196–211. Springer Verlag, 1999.

[5] M. Backes and D. Hofheinz. How to break and repair a universally compos-
able signature functionality. In Information Security Conference – ISC 2004,
volume 3225 of Lecture Notes in Computer Science, pages 61–74. Springer
Verlag, 2004. Full version at http://eprint.iacr.org/2003/240.

[6] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-
key encryption. In Advances in Cryptology – ASIACRYPT 2001, volume 2248
of Lecture Notes in Computer Science. Springer Verlag, 2001.

[7] M. Bellare and O. Goldreich. On defining proofs of knowledge. In Advances in
Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer Science,
pages 390–420. Springer Verlag, 1992.

[8] M. Bellare and S. Micali. How to sign given any trapdoor permutation. SIAM
Journal on Computing, 39(1):214–233, 1992.

[9] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on gen-
eral assumptions. In Advances in Cryptology – EUROCRYPT 2003, volume

231

232 BIBLIOGRAPHY

2656 of Lecture Notes in Computer Science, pages 614–629. Springer Verlag,
2003.

[10] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In 1st ACM Conference on Computer and Com-
munications Security – CCS, pages 62–73. ACM Press, 1993.

[11] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case
of dynamic groups. In RSA Conference 2005, Cryptographers’ Track 2005,
volume 3376 of Lecture Notes in Computer Science, pages 136–153. Springer
Verlag, 2005. Full version at http://eprint.iacr.org/2004/077.

[12] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In Theory of Cryptography Conference
– TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 60 – 79.
Springer Verlag, 2006. Full version at http://eprint.iacr.org/2005/304.

[13] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

[14] M. Blum. How to exchange (secret) keys. ACM Transactions on Computer
Systems – TOCS, 1(2):175–193, 1983.

[15] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its
applications. In 20th ACM Symposium on the Theory of Computing – STOC,
pages 103–118. ACM Press, 1988.

[16] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM Journal on Computing, 13:850–864, 1984.

[17] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances
in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science. Springer Verlag, 2004.

[18] F. Boudot. Efficient proofs that a committed number lies in an interval. In
Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes
in Computer Science, pages 431–444. Springer Verlag, 2000.

[19] F. Boudot and J. Traoré. Efficient publicly veriable secret sharing schemes with
fast or delayed recovery. In 2nd International Conference on Information and
Communication Security – ICICS, volume 1726 of Lecture Notes in Computer
Science, pages 87–102. Springer Verlag, 1999.

[20] S. Brands. Untraceable off-line cash in wallets with observers. In Advances in
Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Science,
pages 302–318. Springer Verlag, 1994.

233

[21] E. Brickell, P. Gemmell, and D. Kravitz. Tracing extensions to anonymous cash
and the making of anonymous change. In 6th Annual ACM-SIAM Symposium
on Discrete Algorithms – SODA, pages 457–466. ACM Press, 1995.

[22] E.F. Brickell, D.M. Gordon, K.S. McCurly, and D.B. Wilson. Fast exponen-
tiation with precomputation. In Advances in Cryptology – EUROCRYPT’92,
volume 658 of Lecture Notes in Computer Science, pages 200–207. Springer
Verlag, 1992.

[23] J. Camenisch. Efficient and generalized group signatures. In Advances in
Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer
Science, pages 465–479. Springer Verlag, 1997.

[24] J. Camenisch and J. Groth. Group signatures: Better efficiency and new
theoretical aspects. In Security in Communication Networks – SCN 2004,
volume 3352 of Lecture Notes in Computer Science. Springer Verlag, 2005.

[25] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 302–321. Springer Verlag, 2005. Full version at
http://eprint.iacr.org/2005/060.

[26] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Advances in Cryptology – CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science. Springer Verlag, 2004.

[27] J. Camenisch and M. Michels. A group signature scheme with improved effi-
ency. In Advances in Cryptology – ASIACRYPT’98, volume 1514 of Lecture
Notes in Computer Science, pages 160–174. Springer Verlag, 1999.

[28] J. Camenisch and M. Michels. Separability and efficiency for generic group
signature schemes. In Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 413–430. Springer Verlag, 1999.

[29] J. Camenisch and M. Stadler. Efficient group signature schemes for large
groups. In Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture
Notes in Computer Science, pages 410–424. Springer Verlag, 1997.

[30] R. Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd IEEE Symposium on Foundations of Com-
puter Science – FOCS. IEEE Computer Society Press, 2001. Full version at
http://eprint.iacr.org/2000/067.

[31] R. Canetti. Universally composable signature, certification, and authentic-
ation. In 17th IEEE Computer Security Foundations Workshop – CSFW,
pages 219–235. IEEE Computer Society Press, 2004. Full version at http:

//eprint.iacr.org/2003/239.

234 BIBLIOGRAPHY

[32] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model revisited. In
30th ACM Symposium on the Theory of Computing – STOC, pages 209–218.
ACM Press, 1998.

[33] M. Chase and A. Lysyanskaya. On signatures of knowledge. In Advances
in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in Computer
Science, pages 78–96. Springer Verlag, 2006. Full version at http://eprint.

iacr.org/2006/184.

[34] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances in
Cryptology – CRYPTO’88, volume 403 of Lecture Notes in Computer Science,
pages 319–327. Springer Verlag, 1990.

[35] D. Chaum, E. van Heĳst, and B. Pfitzmann. Cryptographically strong undeni-
able signatures, unconditionally secure for the signer. In Advances in Crypto-
logy – CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages
470–484. Springer Verlag, 1991.

[36] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology
– EUROCRYPT’91, volume 547 of Lecture Notes in Computer Science, pages
257–265. Springer Verlag, 1991.

[37] L. Chen and T.P. Pedersen. New group signature schemes. In Advances in
Cryptology – EUROCRYPT’94, volume 950 of Lecture Notes in Computer
Science, pages 171–181. Springer Verlag, 1994.

[38] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Advances in Cryptology
– CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages 174–
187. Springer Verlag, 1994.

[39] R. Cramer and V. Shoup. A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack. In Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25.
Springer Verlag, 1998.

[40] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assump-
tion. In 6th ACM Conference on Computer and Communications Security –
CCS, pages 46–51. ACM Press, 1999.

[41] I. Damgård and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Advances in Cryptology – ASIAC-
RYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 125–
142. Springer Verlag, 2002.

[42] T. ElGamal. A public key cryptosystem and a signiture scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

235

[43] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28,
1999.

[44] N.T. Ferguson. Single term off-line coins. In Advances in Cryptology – EURO-
CRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 318–328.
Springer Verlag, 1993.

[45] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Advances in Cryptology – CRYPTO’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer
Verlag, 1987.

[46] M. Fischlin. Round-optimal composable blind signatures in the common refer-
ence string model. In Advances in Cryptology – CRYPTO 2006, volume 4117
of Lecture Notes in Computer Science, pages 60–77. Springer Verlag, 2006.

[47] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove mod-
ular polynomial relations. In Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 16–30. Springer Verlag,
1997.

[48] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions.
In 21st ACM Symposium on the Theory of Computing – STOC, pages 25–32.
ACM Press, 1989.

[49] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions.
In 21st ACM Symposium on the Theory of Computing – STOC, pages 25–32.
ACM Press, 1989.

[50] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[51] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[52] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[53] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-
way permutations. In Advances in Cryptology – CRYPTO’88, volume 600 of
Lecture Notes in Computer Science, pages 8–26. Springer Verlag, 1990.

[54] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography:
Introducing concurrency, removing erasures. In Advances in Cryptology –
EUROCRYPT2000, volume 1807 of Lecture Notes in Computer Science, pages
221–242. Springer Verlag, 2000. See also http://eprint.iacr.org/2000/019.

236 BIBLIOGRAPHY

[55] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Advances in
Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science. Springer Verlag, 2004.

[56] A. Kiayias and M. Yung. Group signatures: Provable security, efficient con-
structions and anonymity from trapdoor-holders. Cryptology ePrint Archive,
Report 2004/076, 2004. http://eprint.iacr.org/2004/076.

[57] A. Kiayias and M. Yung. Efficient secure group signatures with dynamic joins
and keeping anonymity against group managers. In Mycrypt 2005, volume
3715 of Lecture Notes in Computer Science, pages 151–170. Springer Verlag,
2005.

[58] S. Kim, S. Park, and D. Won. Group signatures for hierarchical multigroups.
In Information Security Workshop – ISW’97, volume 1396 of Lecture Notes in
Computer Science, pages 273–281. Springer Verlag, 1998.

[59] N. Koblitz. Algebraic Aspects of Cryptography. Springer Verlag, 1998.

[60] A. Lindgren. Mästerdetektiven Blomkvist. Rabén & Sjögren, 1946. Title in
English: Bill Bergson, Master Detective.

[61] M. Liskov and S. Micali. Amortized e-cash. In Financial Cryptography 2001,
volume 2339 of Lecture Notes in Computer Science, pages 1–20. Springer Ver-
lag, 2001.

[62] A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable
solution to electronic cash. In Financial Cryptography ’98, volume 1465 of
Lecture Notes in Computer Science, pages 184–197. Springer Verlag, 1998.

[63] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[64] R. Merkle. Protocols for public key cryptosystems. In 1980 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 1980.

[65] S. Micali, M. Rabin, and J. Kilian. Zero-knowledge sets. In 44th IEEE Sym-
posium on Foundations of Computer Science – FOCS, pages 80–91. IEEE Com-
puter Society Press, 2003.

[66] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic
cryptosystems. SIAM Journal on Computing, 17(2):412–426, 1988.

[67] B. Möller. Public-Key Cryptography – Theory and Practice. PhD thesis, Tech-
nische Universität Darmstadt, 2003.

237

[68] T. Nakanishi, M. Shiota, and Y. Sugiyama. An efficient online electronic
cash with unlinkable exact payments. In Information Security Conference –
ISC 2004, volume 3225 of Lecture Notes in Computer Science, pages 367–378.
Springer Verlag, 2004.

[69] T. Nakanishi and Y. Sugiyama. Unlinkable divisible electronic cash. In In-
formation Security Workshop – ISW 2000, volume 1975 of Lecture Notes in
Computer Science, pages 121–134. Springer Verlag, 2000.

[70] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd ACM Symposium on the Theory of Com-
puting – STOC, pages 427–437. ACM Press, 1990.

[71] A. M. Odlyzko. Discrete logarithms: The past and the future. Designs, Codes,
and Cryptography, 19(2/3):129–145, 2000.

[72] T. Okamoto and K. Ohta. Disposable zero-knowledge authentication and
their application to untraceable electronic cash. In Advances in Cryptology
– CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 481
– 496. Springer Verlag, 1990.

[73] T. Okamoto and K. Ohta. Universal electronic cash. In Advances in Cryptology
– CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages 324–
337. Springer Verlag, 1992.

[74] The prime pages. http://primes.utm.edu, March 2004.

[75] The proth search page. http://www.prothsearch.net, March 2004.

[76] J. Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In 22nd ACM Symposium on the Theory of Computing – STOC, pages
387–394. ACM Press, 1990.

[77] A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In 40th IEEE Symposium on Foundations of Computer
Science – FOCS, pages 543–553. IEEE Computer Society Press, 1999.

[78] T. Sander and A. Ta-Shma. Auditable, anonymous electronic cash. In Advances
in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 555–572. Springer Verlag, 1999.

[79] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Ro-
bust non-interactive zero knowledge. In Advances in Cryptology – CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 566–598.
Springer Verlag, 2001.

238 BIBLIOGRAPHY

[80] A. De Santis and G.Persiano. Zero-knowledge proofs of knowledge without
interaction (extended abstract). In 33rd IEEE Symposium on Foundations
of Computer Science – FOCS, pages 427–436. IEEE Computer Society Press,
1992.

[81] V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.

org/2004/332.

[82] M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology –
EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages
190–199. Springer Verlag, 1996.

[83] M. Trolin. A universally composable scheme for electronic cash. In Advances in
Cryptology – INDOCRYPT 2005, volume 3797 of Lecture Notes in Computer
Science, pages 347 – 360. Springer Verlag, 2005. Full version at http://

eprint.iacr.org/2005/341.

[84] M. Trolin and D. Wikström. Hierarchical group signatures. In International
Colloquium on Automata, Languages and Programming – ICALP 2005, volume
3580 of Lecture Notes in Computer Science, pages 446 – 458. Springer Verlag,
2005. Full version at http://eprint.iacr.org/2004/311.

[85] Y. Tsiounis and M. Yung. On the security of elgamal based encryption. In
Public Key Cryptography – PKC’98, volume 1431 of Lecture Notes in Computer
Science, pages 117–134. Springer Verlag, 1998.

[86] V. Varadharajan, K.Q. Nguyen, and Y. Mu. On the design of efficient RSA-
based off-line electronic cash schemes. Theoretical Computer Science, 226:173–
184, 1999.

[87] V. Wei. More compact e-cash with efficient coin tracing. Cryptology ePrint
Archive, Report 2005/411, 2005. http://eprint.iacr.org/2005/411.

[88] A. Young and M. Yung. Finding length-3 positive Cunningham chains and
their cryptographic significance. In Algorithmic Number Theory – ANTS-III,
volume 1423 of Lecture Notes in Computer Science, pages 289–298. Springer
Verlag, 1998.

[89] C. Zamfir, A. Damian, I. Constandache, and V. Cristea. An efficient ecash
platform for smart phones. In E_COMM_LINE 2004, pages 5–9, 2004. Also
available at http://linux.egov.pub.ro/~ecash/.

