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The pancreatic β-cell secretes insulin in response to a raised blood glucose
level. Deficiencies in this control system are an important part of the etiology
of diabetes. The biochemical basis of glucose-stimulated insulin secretion is
incompletely understood, and a more complete understanding is an important
component in the quest for better therapies against diabetes.

In this thesis, mathematical modeling has been employed in order to in-
crease our understanding of the biochemical principles that underlie glucose-
stimulated insulin secretion of the pancreatic β-cell. The modeling efforts in-
clude the glycolysis in the β-cell with particular emphasis on glycolytic oscilla-
tions. The latter have earlier been hypothesized to be the cause of normal pul-
satile insulin secretion. This model puts this hypothesis into quantitative form
and predicts that the enzymes glucokinase and aldolase play important roles
in setting the glucose concentration threshold governing oscillations. Also pre-
sented is a model of the mitochondrial metabolism in the β-cell, and of the
mitochondrial shuttles that connect the mitochondrial metabolism to the gly-
colysis. This model gives sound explanations to what was earlier thought to be
paradoxical behavior of the mitochondrial shuttles during certain conditions.
Moreover, it predicts a strong signal from glucose towards cytosolic NADPH
formation, a putative stimulant of insulin secretion. The model also identifies
problems with earlier interpretations of experimental results regarding the β-
cell mitochondrial metabolism. As an aside, an earlier proposed conceptual
model of the generation of oscillations in the TCA cycle is critically analyzed.

Further, metabolic control analysis has been employed in order to obtain
mathematical expressions that describe the control by pyruvate dehydrogenase
and fatty acid oxidation over different aspects of the mitochondrial metabolism
and the mitochondrial shuttles. The theories developed explain recently ob-
served behavior of these systems and provide readily testable predictions.

The methodological aspects of the work presented in the thesis include the
development of a new generic enzyme rate equation, the generalized reversible
Hill equation, as well as a reversible version of the classical general modifier
mechanism of enzyme action.
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Abbreviations

The following frequently used abbreviations are also given in the text. Very
commonly known biochemical compounds, e.g. ATP, NAD(H), etc. are given
without explanation.

PDH Pyruvate Dehydrogenase
NIDDM Non-Insulin Dependent Diabetes Mellitus
ODE Ordinary Differential Equation
MCA Metabolic Control Analysis
GRH Generalized Reversible Hill (equation)
TCA Tricarboxylic Acid (cycle)
GSIS Glucose-Stimulated Insulin Secretion
GO Glucose Oxidation
FO Fatty acid Oxidation
GK Glucokinase
PFK Phosphofructokinase
F6P Fructose-6-Phosphate
FBP Fructose-1,6-Bisphosphate
GPDH Glyceraldehyde-3-Phosphate Dehydrogenase
PC Pyruvate Carboxylase
CS Citrate Synthase
MDH Malate Dehydrogenase
IDH Isocitrate Dehydrogenase, NAD-reducing
IDHP Isocitrate Dehydrogenase, NADP-reducing
AAT Amino Aspartate Transaminase
ACS ATP-Citrate Synthase
MA Malate-Aspartate (shuttle)
G3DH Glyceraldehyde-3-phosphate Dehydrogenase
ME Malic Enzyme
GDH Glutamate Dehydrogenase
LC-CoA Long-Chain Acyl-CoA
m (as in MDHm) mitochondrial (as in mitochondrial MDH)
c cytosolic
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Chapter 1

Introduction: Modeling the
Biochemistry of the β-cell

This thesis is written mainly from a biochemical viewpoint. By that I mean
that the problems that were explored are biochemical. On the other hand, the
methods of exploration are mathematical and computational. The biochemi-
cal subject is the metabolism of the pancreatic β-cell, or more specifically, the
metabolic events behind the glucose-stimulated insulin secretion (GSIS) these
cells are specialized for. I have had the privilege of formulating mathematical
models of the two most well-known biochemical pathways: the glycolysis and
the tricarboxylic acid (TCA) cycle, which are important parts of GSIS, since the
β-cell senses the need for insulin secretion via an increase in its basic glucose
metabolism. The entire biochemical background is presented briefly in section
1.1 and more in detail in paper III.

The general subject of this thesis, referred to as theoretical biology, bio-
physics, or computational systems biology, is often regarded as multidisci-
plinary. I believe that this is about to change. As quantitative methods from
physics, chemistry, mathematics and computer science prove more and more
practically useful in biology and medicine, these disciplines will assimilate
quantitative methods to an extent that they will be regarded as indispensable
parts of the subjects, not as interdisciplinary excursions from the mainstream.
Every human being is occupied with building models of his of her surround-
ings, consciously or not. Also the empirical biochemist uses conceptual models
and corresponding assumptions when interpreting and presenting the infor-
mation he or she gathers. There is no naive or unfiltered eye. Certainly, any
kind of scientific thinking involves making explicit, in one way or another, the-
oretical models, which serve to make us understand the reality, and to predict
future events. In practical scientific work, theory is indispensable in interpret-
ing empirical observations, and guiding the scientist when figuring out which
experiments to conduct in the future. In a broader perspective, theory repre-
sents an integral part of the reductionist paradigm, in the sense that it defines
the rules which explain how phenomena observed at one level of description
relate to phenomena at another level. Usually, one may pose this as the rules
for how the behaviour of the parts relates to the behavior of the whole, and
vice versa.

1



2

The means with which theories are made explicit vary. Traditionally, biol-
ogists use plain language (English) to formulate biological theories. However,
symbolic reasoning is not well suited for making sense of the way the behavior
of the parts relates to the behavior of the whole. How entities like enzymes
and metabolites relate to the dynamical behavior of a system consisting of sets
of these entities is best analyzed with mathematical methods. Thus, in this the-
sis, mathematics is employed to formulate the core of the theoretical models.
It is my conviction that formulating a biological model in quantitative mathe-
matical terms gives it qualitatively superior predictive power. It also forces the
biologist to make explicit many assumptions usually not needed to address
when using plain language, simply because plain language lacks the precision
needed to lure these assumptions out of their dwellings. This, especially in the
biological and medical sciences, can be quite painful but healthy.

As an example, consider a simple model system consisting of an enzyme
which is activated by its product (this kind of enzyme is unusual but probably
plays an important role in GSIS, see paper I). Its substrate is produced with a
constant rate, and its product is removed with a rate proportional to its con-
centration. The biochemist inclined to use verbal descriptions may imagine a
scenario where the substrate and product concentrations attain a steady-state.
He or she may also imagine a scenario where the concentrations vary cyclically.
The product activation of the enzyme causes the product to accumulate and
the substrate to deplete until the point where the substrate concentration is too
low to uphold any significant product formation. The product concentration
will now fall, the substrate concentration will rise, and product activation of
the enzyme will again occur. Nothing in this verbal description tells us which
conditions that will make each one of the scenarios occur. However, by formu-
lating this description mathematically (see paper I) we learn that steady-states
occur at both low and high substrate production rates, while an oscillatory
state occurs at intermediate production rates.

The way to a useful mathematical model is however anything but easy or
quick. I would like to address two, sometimes contradicting, virtues of a theo-
retical model:

• The model should be as simple as possible

• The model should relate to empirical data in a clear and unambiguous
way

Both these virtues are problematic and difficult to assess. The first builds on a
tradition in western art, science and poetry, well summarized by Horace in Ars
Poetica (circa 18 BC):

Denique sit quod vis, simplex dumtaxat et unum

— “Let [the work] be what you will, at least let it be simple and one”. Espe-
cially in physics, Horace’s maxim is still an aesthetic guiding principle. One
may even regard Occam’s razor as a rationalized formulation of this principle.
Regardless of the aesthetic aspects, simplicity makes the important assump-
tions clear and helps reveal the underlying principles and logic of a model. A
model does not necessarily gain sophistication if it adds details that do not con-
tribute essentially to its logical structure or qualitative behavior. A more practi-
cal aspect in the field or biochemical modeling is simplicity in the sense that the
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number of parameters often has to be kept as low as possible, since measured
biochemical parameters usually are marred with significant uncertainties. An
exploration of parameter space quickly becomes practically impossible as the
number of parameters rises. This is the “curse of dimensionality”.

Here, however, it is pertinent to consider the second virtue. The quest for
simplification may clash with the desire for a description that is in line with
empirical observations. One may drive simplifications too far and discard vi-
tal empirical knowledge. It is an advantage if the parameters of the equations
one uses are directly observable or at least derived unambiguously from ob-
servable entities. In this case it is, even though the parameters are uncertain,
straightforward to estimate probable physiological ranges of them. From these,
one may infer extreme cases or scenarios, and with the aid of methods from ex-
perimental design [1] find good strategies to tackle the curse of dimensionality.

This is a possible starting point for attempts to rationalize the level of detail
of models. However, in the biological sciences, the optimal level of detail varies
from question to question, from system to system, and to my mind it is at this
stage of the scientific development mostly a matter of judgement or simply
taste. During such circumstances, an open mind is a valuable asset.

1.1 Biochemical Background

The human body needs to maintain a steady blood glucose level. In response
to raised blood glucose, the pancreatic β-cells secrete insulin into the blood-
stream, which acts as a signal for tissues to take up and break down glucose.
Failure of this control system to work properly may result in a state of chronic
hyperglycemia commonly known as diabetes mellitus. The most common
form of diabetes is type 2 or non-insulin dependent diabetes mellitus (NIDDM),
which is estimated to affect 3–4% of the Swedish population [2], and in a global
perspective more than 6% of the population of the developed world and about
3.5% of the population of developing countries [3]. The etiology of NIDDM is
complex. Two main factors behind the disease emerge: first, insulin resistance,
the impairment of tissue sensitivity to insulin, and second, insulin deficiency,
an impaired capability of the β-cells to secrete insulin in response to glucose
and other secretagogues. Both these factors may have both genotypic and
phenotypic origins. The successive progression of a healthy subject towards
a diabetic state may be divided into four steps [4]: 1) Normal glucose home-
ostasis. 2) Disturbed glucose homeostasis. There is insulin resistance, which
is compensated by an increased secretory response by the β-cells, due to an
increased total β-cell mass and possibly an increased insulin secretion per cell.
3) Impaired glucose homeostasis. The blood glucose level is increased, due to
both insulin resistance and insulin deficiency, due to loss of β-cell mass and
impaired glucose sensitivity of the remaining β-cells, which exhibit an attenu-
ated first or acute insulin secretion phase. 4) The chronic diabetic state, with a
roughly 50% reduced β-cell mass and an even more impaired secretory capac-
ity of the remaining β-cells. The pulsatility of the insulin secretion (see below)
is here distorted. Common to stages 3 and 4 is the dedifferentiation of the
β-cells, i.e. the loss of important peculiarities in the gene expression profile.
In conclusion, the importance of insulin deficiency in the etiology of NIDDM
makes the understanding of the biochemistry of GSIS a high priority.
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Figure 1.1: The KATP -dependent pathway comprises glucose increasing the
ATP/ADP ratio which closes ATP-sensitive K+ channels. This results in a depolar-
ization of the cell membrane (V indicates membrane potential). In response to this,
voltage-sensitive Ca2+ channels open, which leads to an increased [Ca2+]i, which in
turn stimulates insulin secretion. A KATP -independent pathway acts synergistically.

The β-cells are localized in small clusters of about 2000–3000 cells: the
islets of Langerhans. These clusters are scattered throughout the pancreas and
amount to about a million, comprising a few percent of the total pancreatic
mass [5]. The cells in an islet are coupled electrically and chemically via gap-
junctions to form a syncytium. The β-cells quickly equilibrate their intracellu-
lar glucose concentration with that of the surrounding blood, and are able to
gauge their insulin secretion rate accordingly. The intracellular events leading
from a raised intracellular glucose level to insulin secretion are interconnected
in an intricate biochemical network. Much is now known about the parts of
this network, less is known about how the parts determine its functioning as
a whole. The ambition behind all the works in this thesis has been to gain a
better understanding of the relation between the parts and the whole of the
biochemistry of GSIS.

Our basic understanding of β-cell GSIS is depicted in figure 1.1. The β-
cell “senses” the glucose level via its metabolic rate. The key is that an in-
creased glucose concentration will increase the glycolytic flux. This will in-
crease the cytosolic ATP/ADP ratio, which closes ATP sensitive K channels
(KATP-channels). This causes the cell membrane to depolarize, which leads to
Ca2+ influx into the cytosol via voltage-sensitive Ca2+-channels. Secretion of
insulin via secretory vesicles is now stimulated by the increased Ca2+ concen-
tration. This signalling pathway is usually referred to as the KATP-dependent
pathway and is today thought to be necessary for insulin secretion [6].
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Complex dynamical patterns The electrical activity of the β-cell exhibits
complex temporal dynamics. The ATP-induced depolarization of the mem-
brane potential is not tonic, instead it has the form of repetitive bursting. The
bursts consist of depolarized plateaus of about −30 to −40 mV, on which
spikes (action potentials) of about 10–20 mV are superimposed. Between these
bursts are hyperpolarized phases of about −60 to −50 mV [7]. To complicate
matters further, there are two different main characteristic burst frequencies:
“Medium bursting”, with a period of 10–60 s and “slow bursting” with a pe-
riod of 2–4 min. These are seen in both single cells and in whole islets, syn-
chronized throughout the syncytium. Synchronized with this bursting activity
are oscillations in intracellular Ca2+ concentration ([Ca2+]i). Crucially, insulin
secretion is oscillatory as well, both in vivo [8] and in vitro [9], with a period
of several minutes, and synchronized with slow bursting and corresponding
[Ca2+]i oscillations [10].

It is clear that the pulsatory insulin release pattern is of importance for the
action of insulin on its target organs and tissues, especially the liver glucose
metabolism [11]. Pulsatory release is the most common release mode for hor-
mones [12] which has prompted some investigators to probe the reason for
such release patterns. Receptor desensitization has been proposed as a molec-
ular mechanism involved in an interplay with oscillatory hormone levels in
the cases of gonadotropin-releasing hormone in humans and cAMP signaling
in Dictyostelium discoideum [13], and it is plausible that a similar mechanism is
at work in the case of hepatic insulin receptors [14]. However, the effects of
insulin pulsatility on different aspects of hepatic metabolism are still to be elu-
cidated fully. A recent study indicates that insulin pulsatility has little effect on
liver glucose uptake [15], which would lead to the tentative conclusion that the
effect rather is on liver glucose production.

A hypothesis that has been advocated the last decade [16] is that oscilla-
tions in the glycolysis underlie these minute-scale oscillations. A mathematical
model of the β-cell glycolysis was created and analyzed during the course of
this project, this is reported below (section 5.1) and in paper I.

A second signalling pathway The KATP-dependent pathway has been
known for more than 20 years (see paper III for a review). An interesting
development took place during the last decade, when it was revealed that
there is a second pathway of GSIS which does not involve the KATP channel:
the KATP-independent pathway. This pathway acts synergistically with the
KATP-dependent pathway, and exhibits a slower response to a glucose bolus.
The overall result is a biphasic insulin response to glucose: a first secretion
pulse beginning in seconds after a glucose bolus, followed by a second sus-
tained phase of pulses of insulin secretion with a higher basal secretory rate,
as both pathways are fully operative.

The nature of the KATP-independent pathway is widely debated. Thought
to be crucial is the concept of anaplerosis, i.e. the net influx of carbons to the
TCA cycle. Anaplerosis is believed to occur mainly via the carboxylation of
pyruvate accomplished by the enzyme pyruvate carboxylase (PC). This reac-
tion produces oxaloacetate. The anaplerosis must, to avoid the catastrophic ac-
cumulation of TCA cycle intermediates, be counterbalanced by cataplerosis, the
net removal of TCA cycle carbons. Different cataplerotic products are thought
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Figure 1.2: The mitochondria relay the glycolytic signals (pyruvate and NADH) to
ATP (the KATP -dependent pathway) as well as to the KATP -independent pathway. The
latter pathway consists of a yet unresolved signal, perhaps LC-CoA, NADPH, gluta-
mate, or a combination of these compounds. Several feedback loops exist in this system.
ATP and citrate inhibit glycolysis. Ca2+ stimulates ATPases and has a disputed effect
on mitochondrial metabolism and oxidative phosphorylation.

to act as signals in the KATP-independent pathway. Three main hypotheses
involving anaplerosis emerge from the recent literature on the subject:

1. There is a cataplerotic export of the TCA cycle intermediate citrate from
the mitochondria. The citrate is in the cytosol cleaved to oxaloacetate and
ac-CoA by the enzyme ATP-citrate synthase (ACS). The ac-CoA is trans-
formed to malonyl-CoA, which inhibits the mitochondrial long-chain
acyl-CoA (LC-CoA) transporter. This increases cytosolic LC-CoA levels,
which augments the Ca2+ stimulated insulin release via protein acyla-
tion [17, 6] as well as via DAG formation [18] which via protein kinase C
activation promotes insulin secretion [19].

2. There is a cataplerotic export of the TCA cycle intermediate malate from
the mitochondria. The malate is decarboxylated to pyruvate by the malic
enzyme (ME) in the cytosol, under the reduction of cytosolic NADP to
NADPH. NADPH is proposed to augment the Ca2+ stimulated insulin
release either via direct action on the insulin secretory granules [20] or
via further metabolism [21, 22] of NADPH.

3. There is a cataplerotic conversion of the TCA cycle intermediate 2-
oxoglutarate to glutamate by the enzyme glutamate dehydrogenase
(GDH). The glutamate is exported to the cytosol, where it is proposed
to augment the Ca2+ stimulated insulin release via uptake by the insulin
secretory granules [23, 24].

These three hypotheses are summarized in figure 1.2. The hypotheses are all
controversial; counter-evidence to the first and third exist [25, 26] and no direct
evidence has yet been found for the second hypothesis.
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1.2 Overview of the Thesis

The general aim of the present thesis is to fill gaps in the theoretical under-
standing of the biochemistry of the β-cell. Specifically, the β-cell glycolysis
has been modeled and the hypothesis of an oscillatory β-cell glycolysis has
been given a quantitative form. Moreover, the mitochondrial metabolism has
been modeled and analyzed both numerically and analytically. The signaling
from an increased glycolytic flux to the three putative messengers of the KATP-
independent pathway outlined above has been simulated. A general aim has
been to propose biochemically meaningful predictions based on the models,
predictions that are experimentally testable with today’s technology. Finally,
the toolbox of metabolic modeling has been extended with a new generic rate
equation.

The structure of this thesis is as follows. In chapter 2, the theoretical foun-
dation for the understanding of the kinetics of single enzymes is outlined. In
addition to established theory, this chapter includes a summary of the results
of paper II, where a new generic rate equation is derived.

In chapter 3, the general reversible Hill equation is applied to the enzyme
phosphofructokinase. These results were published in paper II. Also, a spe-
cific rate equation for mitochondrial malate dehydrogenase is developed. The
results can partially be found in paper IV, although this section contains a sig-
nificant deal of original results not presented elsewhere.

Chapter 4 takes the step towards a view from a higher systemic level. The
state of the art in the theory of modeling metabolic networks is introduced.
Specific topics include metabolic control analysis (MCA), stability analysis and
the numerical method called continuation. Also included is a section describ-
ing five seldom mentioned but often implicitly made assumptions that are, to
this writer’s mind, critical.

Chapter 5 is long and includes summaries of the model of β-cell glycolysis
created in paper I, of the model of mitochondrial metabolism that is the subject
of paper IV, and of the analytic treatment of the interface between the glycoly-
sis and the mitochondrial metabolism presented in paper V. Main conclusions
and predictions of these works are summarized. Furthermore, the chapter con-
tains some original unpublished work that cannot be found in the five original
papers of the thesis: a modular metabolic control analysis of the model pre-
sented in paper IV, as well as a theoretical evaluation of a recent hypothesis
of the mechanism behind the generation of oscillations in the mitochondrial
metabolism.

The thesis ends with chapter 6 where a general summary is given, together
with suggestions for future work.



Chapter 2

Theory: Chemical
Thermodynamics and
Kinetics

This chapter presents the natural laws from chemical thermodynamics and ki-
netics that constitute the foundation of the models in this thesis, and of a great
deal of the entire scientific field of metabolic and electrophysiological modeling
for that matter. The principles of thermodynamics set the constraints that de-
termine the direction of chemical reactions, i.e. the sign of the net reaction rate,
while kinetics determine the absolute value of the reaction rate. The core of the
models of β-cell biochemistry presented in this thesis are quantitative descrip-
tions of different enzymes. These are generic models (rate equations) describ-
ing the action of single enzymes, and these rate equations build on the basic
principles of chemical thermodynamics and kinetics. In addition to the estab-
lished theory, a new generic rate equation, the general reversible Hill equation,
derived in paper II, is described.

2.1 Basic Chemical Thermodynamics

A rigid requirement for a quantitative model of a set of chemical reactions is
that the basic laws of thermodynamics are followed. Let us consider a system
composed of n chemical species. The law of mass action allows us to write the
equilibrium constant Keq for any chemical reaction:

Keq =
n

∏
i=1

S−νi
i , (2.1)

where Si usually is the equilibrium concentration of species i (in order for equa-
tion (2.1) to be exact, Si should represent the activity of species i, which often
is well approximated by the concentration), and where νi is the stoichiometric
number of reactant i, positive for substrates and negative for products. The
equilibrium constant is related to the standard Gibb’s free energy change ∆G◦
of the reaction through the relation

8
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∆G◦ = −RT ln Keq, (2.2)

where R is the gas constant, T is the temperature, and where ∆G◦ is related to
the standard Gibb’s free energies of formation ∆fGi

◦of the species involved in
the reaction:

∆G◦ = ∑
i

νi∆fGi
◦ (2.3)

In general, the reactions of living systems are far from equilibrium, i.e. equa-
tion 2.1 is not fulfilled. Still, in case of, for instance, biochemical reactions tak-
ing place within the cytosol of a living cell where concentration gradients are
not too large and where reactive collisions between molecules are sufficiently
rare, a local entropy may be defined [27], and the molar free energy change of
a reaction may be written

∆G = ∆G◦ + RT ln Γ = RT ln
Γ

Keq
, (2.4)

where Γ is the mass action ratio (the quotient of the actual concentrations of the
species), written in the same form as for Keq above. Equation 2.4 determines in
which direction a reaction will proceed (macroscopically) given the concentra-
tions of substrates and products, that is, the second law of thermodynamics is
valid in this local thermodynamic picture: the local entropy always increases
if we are not in equilibrium. If ∆G < 0, the reaction will favor consumption of
substrates and production of products. If ∆G > 0, the opposite holds.

Thus, biochemical reactions can be said to be under a potential, a fact which
greatly facilitates the theoretical understanding of them. The signs of the rate
equations that describe the rates of the chemical reactions in a cell must sat-
isfy equation 2.4, which, as we will see, leads to equation 2.8. Hence, given
the concentrations of the reactants of a reaction together with the equilibrium
constant, we may be sure of the direction in which the net reaction takes place.
Most importantly, the ∆fGi

◦ values of many common metabolites found inside
a cell have been tabulated [28, 29, 30]. The modeling efforts in this thesis have
made extensive use of these tables in order to obtain consistent sets of equilib-
rium constants.

2.2 Enzyme Kinetics

While the laws of thermodynamics determine the direction of chemical reac-
tions in a given environment, reaction rates are determined by the laws of
chemical kinetics and are almost always determined in part by the concen-
trations of the reactants and possibly other compounds present. The core of
the metabolic models in this thesis are rate equations which, using arguments
from the theory of chemical kinetics, describe the flux-concentration relation-
ships of enzyme catalyzed reactions while at the same time strictly adhering to
the laws of thermodynamics. Here I give a survey of the methods and mod-
els of enzyme kinetics that have been put to use in the present thesis. I limit
myself to describe generic rate equations that are applicable to a wide range
of enzymes. These rate equations are in turn the reversible Michaelis-Menten
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model, the reversible Hill equation and the generalized reversible Hill equa-
tion which was derived in paper II. A common trait of these equations is that
their parameters are operationally well-defined — they reflect unambiguously
the degrees of freedom often empirically found in the flux-concentration rela-
tionships. This comes at the expense of mechanistic detail: the equations build
on simplified models of the enzymatic reactions. However, estimations of the
values of parameters in more complicated rate equations are seldom available,
and I find it imperative that quantitative descriptions in biophysical modeling
are kept on a level where empirical data exist.

The Michaelis-Menten and Hill Equations

As a starting point, consider the following scheme of an enzyme catalyzed
reaction:

E + S
k01

k10

E + P

k−a »º ka qa ¼¹ q−a

ES
kcat

qcat

EP

(2.5)

where E denotes enzyme, S denotes substrate, P denotes product and ES and
EP denotes enzyme-substrate and enzyme-product complex, respectively, and
where the ks and qs are conventional rate constants.

The Reversible Michaelis-Menten Model We now follow Briggs and Hal-
dane [31] and make the quasi-steady-state assumption that the condition

dES
dt

=
dEP
dt

= 0

is attained on a much faster time-scale than that of the overall reaction. In this
picture, we consider two steady-state fluxes, one from S to P, jf, and one from
P to S, jr. One finds that the net reaction flux j = jf − jr can be expressed as

j =
E0

1 + S/KmS + P/KmP

(
S

kcat

KmS
− P

qcat

KmP

)
, (2.6)

where KmS = (kcat + k−a) /ka and KmP = (qcat + q−a) /qa are the Michaelis
constants for the forward and reverse reactions, respectively, and where E0 =
E + ES + EP is the total concentration of the enzyme. Introducing the param-
eters Vf = E0kcat, Vr = E0qcat, σ = S/KmS and π = P/KmP we can write the
equation more compactly as

j =
Vfσ −Vrπ

1 +σ + π
. (2.7)

We can elegantly relate equation (2.7) to the equilibrium constant Keq of the
reaction (which depends solely of the ∆fG◦ values of the substrates and prod-
ucts) by noticing that j = 0 at equilibrium, which means that Vfσ = Vrπ which
in turn can be rearranged to the important Haldane relationship:
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VfKmP

VrKmS
= Keq. (2.8)

Using the Haldane relationship we write (2.7) in normalized form:

j
Vf

=

(
1− Γ

Keq

)
σ

1 +σ + π
. (2.9)

This equation explicitly states that the reaction rate drops to zero at equilib-
rium, when Γ/Keq = 1. In the irreversible case (i.e. in the limit when π → ∞),
j/Vf = 1/2 when S = KmS. This point is referred to as the half-saturation point
which may be used as an operational definition of KmS.

The Michaelis-Menten equation is quite general, and applies to any reaction
that is first order in the enzyme-substrate (and/or enzyme-product) complex;
kcat may in reality be a constant representing several steps of catalysis lumped
together. Further, the mathematical form of the Michaelis-Menten equation is
indistinguishable from the equation obtained if assuming that E + S and ES,
as well as EP and E + P, attain equilibrium instantaneously, which was the
assumption originally made by Michaelis and Menten [32]. The Michaelis con-
stants are then interpreted as dissociation constants. Indeed, this assumption
of quasi-equilibrium is quite fruitful and was formalized by Cha [33], and it is
the assumption made in most of the following derivations of rate equations.

The Hill Equation We may generalize equation 2.9 to a situation where the
enzyme can bind the substrate at n sites, each binding of a substrate molecule
facilitating the binding of the next one, a behaviour called positive cooperativ-
ity. This would yield the following scheme

E + n · S
K1
 ES1 + (n− 1) · S

K2
 · · ·

Kn
 ESn

kc
→ E + n · P (2.10)

where we require that the equilibrium constants satisfy K1 < K2 < · · · < Kn in
order to have positive cooperativity throughout the reaction. In the extreme,
all intermediary steps can be ignored which yields the important Hill equation
of enzyme action

j
V

=
σn

1 +σn (2.11)

When n 6= 1, the term Michaelis constant is not used, and we instead only
use the term half-saturation point S0.5. Note that the parameters V and S0.5
have the same operational meaning as in the Michaelis-Menten model, but
although the physical interpretation in terms of equilibrium constants made
above (scheme 2.10) is possible it is not necessarily true: the Hill equation is
usually regarded as a purely empirical equation, and we may let n assume
non-integer values, in which case we use the Hill coefficient h in place of n.
The relationship between substrate concentration and flux for the Hill equa-
tion is shown in figure 2.1.
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Figure 2.1: The relationship between substrate concentration and reaction flux ex-
hibited by the Hill equation for different values of the parameter n. Note that j = V/2
when S = S0.5 for all values of n and that the sigmoid curve is steeper with increasing
n. We may use h, which may have non-integer values, instead of n.

We see that the flux-concentration curve is sigmoid-shaped, a sigmoid
which becomes steeper with increasing n. The curve approaches a step func-
tion as n approaches infinity. It is also important to note that the Hill equation
reduces to the irreversible Michaelis-Menten equation if n = 1, which thus op-
erationally can be regarded as a special case of the more general Hill equation.

The Reversible Hill Equation In 1997, a reversible generalization of the irre-
versible Hill equation was derived [34]. This rate equation addresses the mod-
ulation of enzyme activity by modifiers, which can be any chemical species
capable of binding to the enzyme and by doing so alters the enzyme’s proper-
ties with respect to its substrates and products: modifiers may be inhibitors or
activators. There are many different molecular mechanisms that can produce
activation or inhibition. The reversible Hill equation only accounts for mod-
ifiers that affect the binding properties of the substrates and products to the
enzyme. Denoting the modulator X, the dissociation constant for the binding
of X to the enzyme X0.5 and denoting the normalized modulator concentration
ξ = X/X0.5, the reversible Hill equation is written

j =
Vfσ

(
1− Γ

Keq

)
(σ + π)h−1

(σ + π)h + 1+ξh

1+αξh

, (2.12)

where α is inversely related to the factor a by which the modulator changes the
affinity of the substrate for the enzyme: α = a−2h. The operational meaning
of the parameter α was elucidated in paper I and II: limξ→∞ 1+ξh

1+αξh = 1/α. In
the irreversible case (i.e. Keq → ∞ and π → 0), the modifier simply alters
the effective half-saturation point with a factor α−1/h. This makes it easy to
identify the factor α directly from empirically found flux-concentration curves.
In the important case that α = 0, we have competitive inhibition, which is the
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case if the inhibitor only binds to enzyme molecules that have not bound any
substrate molecules. This is the case if the substrate and modulator compete
for the same binding site on the enzyme.

The Generalized Reversible Hill Equation

The reversible Hill equation derived by Hofmeyr and Cornish-Bowden [34]
only accounts for reactions with one substrate and one product. Also, the re-
versible Hill equation lacks the ability to account for modifiers affecting the
catalytic properties (i.e. modifiers altering the limiting rate V) — the modula-
tors are assumed only to alter the affinities of substrates and products for the
enzyme. In paper II, a generalization of the reversible Hill equation, namely
the generalized reversible Hill (GRH) equation, was derived. This was done in
order to alleviate the limitations of the reversible Hill equation. The motiva-
tion for this was the desire for a general equation able to describe the flux-rate
relationships for the broad class of enzymes for which the catalytic mecha-
nism is unknown or ambiguous, or for which the known mechanism leads to
too complicated rate equations with parameters that have not been measured.
The GRH equation describes modulator effects using parameters that are op-
erationally well defined in the sense that they usually are easy to infer from
experimental data. Another way to state this is that the parameters in an un-
ambiguous way reflect the degrees of freedom usually observed. To the list of
parameters of the reversible Hill equation: V, Keq, S0.5, P0.5, X0.5, α and h, we
add one more: γ, which represents the factor by which the modulator changes
the apparent limiting rate of the reaction.

We start by considering enzyme E consisting of two subunits, each capable
of binding a substrate molecule S or product molecule P, as well as binding an
allosteric modifier X. This is exactly the same situation as that considered by
Hofmeyr and Cornish-Bowden [34], with the exception that we here allow the
allosteric modifier to alter the catalytic properties of the enzyme as well as the
binding of the substrate and product molecules. We thus arrive at the generic
scheme in figure 2.2.

We assume quasi-equilibrium of the different reactions in figure 2.2, apply
the venerable method of Cha [33], which is still going strong [35], and obtain
for the rate of product formation j (see paper II for methods of derivation):

j =
1+γαξ2

1+αξ2 Vfσ
(

1− Γ
Keq

)
(σ + π)

(σ + π)2 + 1+ξ2

1+αξ2

For an arbitrary Hill coefficient h,

j =
1+γαξh

1+αξh Vfσ
(

1− Γ
Keq

)
(σ + π)h−1

(σ + π)h + 1+ξh

1+αξh

. (2.13)

One may note that limξ→∞ 1+γαξh

1+αξh = γ. Thus, the modifier simply alters the
effective limiting rate with a factor γ. Just as in the case of the parameter α,
the parameter γ is easy to infer from experimental flux-concentration curves.
The estimation of the parameter X0.5 is unfortunately more difficult to obtain.
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Figure 2.2: The reaction scheme considered in the generalized reversible Hill equa-
tion. The different equilibrium constants are indicated, as well as the catalytic constants
(kf and kr). The factor a represents altering of the equilibrium constants by the modifier
X, while the factor γ represents altering of the catalytic constants by the modifier. The
intermediate binding steps (e.g. the ES complex) are neglected in order to obtain simple
equations.

Unless h = 1, it is generally not possible to find plots from which it is possible
to estimate this parameter directly. Some strategies for the estimation of this
parameter are discussed in paper I and II. I also remark that if we let Vr → 0
and p0.5 → ∞, and set γ = 0 and h = 1, we obtain

j =
Vfσ

σ(1 +αξ) + 1 +ξ
,

which is the well-known rate equation for linear mixed inhibition [36, 37].
Generalizing equation 2.13 to account for an arbitrary number of modifiers,

some of which may share the same site, leads to1:

j =

(
∏i

1+∑ j γi jαi jξ
h
i j

1+∑ j αi jξ
h
i j

)
Vfσ

(
1− Γ

Keq

)
(σ + π)h−1

(σ + π)h + ∏i
1+∑ j ξ

h
i j

1+∑ j αi jξ
h
i j

, (2.14)

where modifier site i may be acted upon by several modifiers Xi j. It should
be noted that it is assumed that modifiers that bind to different sites do so
independently.

We may generalize equation 2.12 further to let it describe reactions with
several substrates and products, if no modifiers are considered. We assume
that a substrate-product pair S1 and P1 may bind to their corresponding sites

1The reader may note that regrettably, the summation signs were erroneously placed in paper
II.
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independently of another substrate-product pair S2 and P2 and vice versa. The
forward reaction is assumed to take place only when all substrates have bound
to their sites, and vice versa for the backward reaction and products. Account-
ing for an arbitrary number of substrate and product pairs, we write

j =
Vf ∏i σi

(
1− Γ

Keq

) (
∏i σi + ∏ j π j

)h−1

∏i
(
1 + (σi + πi)h

) .

Unfortunately, there is no compact expression if we include modifier ef-
fects since the denominator becomes impossible to factorize. In the special
case when each modifier affects the binding and catalysis of one substrate and
product pair only, we may write

j =
∏k

(
∏i

1+∑ j γki jαki jξ
h
ki j

1+∑ j αki jξ
h
ki j

)
Vf ∏k σk

(
1− Γ

Keq

)
(∏k σk + ∏l πl)

h−1

∏k

(
∏i

1+∑ j ξ
h
ki j

1+∑ j αki jξ
h
ki j

+ (σk + πk)h
) . (2.15)

To summarize, the rate equations outlined in this chapter represent ideal-
ized cases. Their main advantage is that the degrees of freedom in their param-
eter spaces are well mapped to the degrees of freedom that are usually directly
observable in experimental data. Uncertainties and natural variability in the
empirical data are then possible to incorporate into the modeling enterprise in
a straightforward manner. Because of this, I believe that the equations are suit-
able starting points for modeling work on multienzyme systems representing
an in vivo situation, where kinetic detail of the single enzyme is of less interest
than the collective behavior at the systemic level.



Chapter 3

Application: Modeling the
Action of Single Enzymes

The theory outlined in chapter 2 is here given concrete form: the catalytic ac-
tions of two enzymes, phosphofructokinase (PFK) and malate dehydrogenase
(MDH) are given quantitative descriptions. PFK is part of the glycolysis, and
it turned out to be particularly challenging to find a rate equation for this en-
zyme. MDH is part of the TCA cycle, and of the enzymes in this pathway,
MDH was the most difficult one to describe quantitatively. The single enzyme
models described here were developed in paper II (PFK) and paper IV (MDH).
The latter model is described in greater detail here below and is somewhat
elaborated on.

3.1 Phosphofructokinase

In the introduction, I mentioned the hypothesis of the periodicity of the in-
sulin secretion of glucose-stimulated β-cells being due to oscillations in the
glycolysis, which in turn may be due to product activation of PFK. In order to
theoretically investigate this, a model of the flux-concentration relationship of
muscle-type PFK, which is the PFK isozyme present in β-cells, is needed. Here,
we will show that the GRH equation is adequate for describing the kinetics of
muscle-type PFK.

PFK catalyzes the reaction

F6P + ATP → FBP + ADP.

The enzyme is affected by many allosteric modifiers; it has well-characterized
activating sites for AMP and fructose bisphosphates, as well as inhibitory sites
for citrate and ATP [38]. As a source for experimental data on the kinetics of
PFK, we used the study of Tornheim and Lowenstein [39]. In this study the
effects of the modulators FBP, AMP and ATP on the kinetics were examined.
Assuming a saturating concentration of ATP and a constant citrate concentra-
tion, the PFK GRH equation is written

16
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Figure 3.1: Experimental data of muscle PFK is indicated as follows: (a) AMP 50 µM,
◦ AMP 20 µM, × AMP 1 µM. (b) M FBP 0.3 µM AMP 20 µM, FBP 1.4 µM AMP 20 µM,
O FBP 7.9 µM AMP 20 µM, ◦ FBP 32 µM AMP 20 µM, • FBP 84 µM AMP 20 µM, ×
FBP 32 µM AMP. (c) M ATP 0.2 mM AMP 1 µM FBP 32 µM, ◦ ATP 0.2 mM AMP 20 µM
FBP 32 µM, • ATP 0.5 mM AMP 20 µM FBP 32 µM, N ATP 0.5 mM AMP 20 µM FBP 1.4
µM. Unless noted otherwise above or in the figures, concentrations were F6P 0.1 mM,
ATP 0.5 mM, MgCl 8 mM. The reaction velocities v are in µM per minute. The solid
lines are the corresponding theoretical curves calculated from equation . The optimized
parameter set was S0.5 = 0.26 mM, XFBP = 4.1 µM, XAMP = 39 µM, XATP = 0.034
mM, h = 2.6, αFBP = 30, αAMP = 880, αATP = 8.8 × 10−5, γFBP = 1.4, γAMP = 1.3,
γATP = 0, V = 2.9 µM/min.

v =
∏i

1+γiαiξ
h
i

1+αiξ
h
i

Vσh

σh + ∏i
1+ξh

i
1+αiξ

h
i

, (3.1)

where σ = F6P/S0.5, ξi = [i]/Xi and where i may represent FBP, AMP or ATP.
Flux is here denoted v; in the following j will be used to indicate steady-state
fluxes in multi-enzyme systems only.

Experimental data from the study of Tornheim and Lowenstein [39] were
scanned manually and are given in figure3.1 as symbols. The operationally
well-defined parameters of the GRH equation makes it easy to come up with
starting guesses for the parameters. Thus, one expects h,αFBP, αAMP, γFBP, and
γAMP to be greater than one, while αATP and γATP should be less than one.
An optimization in least squares sense yielded the parameter set presented
in caption of figure 3.1. In the figure, the solid lines are the rates calculated
according to equation 3.1 using the optimized parameter set.
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Figure 3.2: A model of a one-
substrate one-product enzyme
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The experimentally found rate can be seen to be quite well described by
the GRH equation. Still, this equation has fewer parameters than any other
equation that has earlier been used to describe muscle-type PFK (see paper II).

3.2 Malate Dehydrogenase

Ironically, shortly after having finished paper II, I was faced with the task of
describing an enzyme whose behaviour definitely cannot be captured by the
GRH equation. The enzyme malate dehydrogenase (MDH) is part of the TCA
cycle and of the MA shuttle and catalyzes the reaction

malate + NAD+  oxaloacetate + NADH.

Citrate acts upon the mitochondrial isozyme, MDHm, as an allosteric modi-
fier, increasing the forward limiting rate Vf roughly with a factor three, while
leaving the backward limiting rate Vr unchanged [40]. This behaviour is fun-
damentally alien to e.g. equation 2.13, which assumes that both Vf and Vr are
modified by the same factor. As a first step towards a solution of this problem,
consider a simple one-substrate, one-modifier enzyme acting according to the
minimal scheme presented in figure 3.2.

We have here assumed that the modifier affects the forward and backward
catalytic constants differently. When traversing the square formed by ES, EP,
EXP, and EXS, detailed balance [41] implies that

γ+

γ−
=

a
b

=
β

α
.

Again using the method of Cha [33], we arrive at the rate equation

v =
V (1 + γ+αξ)σ

(
1− Γ

Keq

)

1 +ξ + (1 +αξ)σ + (1 + βξ) π
.
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Figure 3.3: A model of a two-
substrate two-product enzyme with a
modifier X affecting the forward and
backward catalytic rates differently.

Note that for the backward reaction, limξ→∞
1+γ+αξ

1+βξ = limξ→∞
1+γ−βξ

1+βξ = γ−.
In fact, we have here derived a reversible version of the classical general mod-
ifier mechanism of Botts and Morales [42].

It is straightforward to extend this model to a two-substrate two-product
enzyme, which has to be done in order to obtain an equation for MDHm. We
now have two normalized substrate concentrations σ1 and σ2, whose normal-
ization constants (i.e. dissociation constant) are modified by factors α1 and
α2, respectively, when the modifier X is bound to the enzyme. We also have
normalized product concentrations π1 and π2 together with factors β1 and β2,
and we assume that the dissociation constants are independent of the order by
substrates and products bind to the enzyme. A simplified scheme represent-
ing this model is presented in figure 3.3. Detailed balance at equilibrium now
yields:

γ+

γ−
=

β1β2

α1α2
(3.2)

and we arrive at the following rate equation:

v =
V (1 + γ+α1α2ξ)σ1σ2

(
1− Γ

Keq

)
[
(1 +α1ξ)σ1 + (1 +α2ξ)σ2 + (1 + β1ξ) π1 +

.

+ (1 + β2ξ) π2 +ξ1 (α1σ1 + β1π1) (α2σ2 + β2π2) + (3.3)

+ 1 +ξ + (σ1 + π1) (σ2 + π2)
]

Unfortunately, since the αs and βs may attain different values, there is no way
to factorize the denominator as elegantly as we have done prior to this point.
Be that as it may, how do we estimate the parameters of this equation? Con-
sider an experimental situation where the amount of product is small enough
to be neglected, i.e. π1 = π2 = Γ = 0. If we now invert equation 3.3 and collect
the terms containing 1/σ1, we obtain

1
v

=
1
σ1
× 1 +σ2 +ξ (1 +α2σ2)

Vσ2 (1 + γ+α1α2ξ)
+

1 +ξ (α1 +α1α2σ2)
Vσ2 (1 + γ+α1α2ξ)

.



3.2 Malate Dehydrogenase 20

This equation is commonly used to estimate V and s0.5 from double-reciprocal
plots of 1/S1 vs. 1/v. The situation is clearest if S2 is present in a saturating
amount, i.e. σ2 → ∞. Then, if ξ = 0,

1
v
→ 1

σ1
× 1

V
+

1
V

,

and if ξ → ∞,
1
v
→ 1

γ+α1σ1
× 1

V
+

1
γ+V

. (3.4)

Thus, from two double-reciprocal plots made under these conditions, it is pos-
sible to obtain V, S1

0.5, γ+ and α1 from the slopes and intersections with the
1/v-axis.

We now turn to the kinetics of MDHm. We let 1 represent the malate-
oxaloacetate substrate-product pair and 2 represent the NAD+-NADH
substrate-product pair. The modifier X is of course citrate. The constant
γ+ represents the factor by which citrate increases the forward limiting rate
and as noted earlier, γ+ ≈ 3. There is also a factor γ1− representing the factor
by which citrate increases the backwards limiting rate, and which, since citrate
does not affect the backwards limiting rate, is equal to one. But is the detailed
balance condition 3.2 satisfied? The data of Gelpí et al. [40] suggest that citrate
increases the product half-activation point for NADH roughly by a factor
ten, i.e. β2 ≈ 0.1. The product half-activation point for oxaloacetate appears
unaffected, thus β1 ≈ 1. These investigators further noted that citrate may
act both as an activator and as an inhibitor in the forward reaction, depending
on the NAD+ concentration. The catalytic constant of the enzyme is certainly
increased, but at the same time, the half-activation point with respect to NAD+

is increased roughly by a factor three – i.e. α2 ≈ 0.1 (cf. equation 3.4). Remark-
ably, the data of Gelpí et al. [40] suggest that α1 ≈ 0.3 which is compatible with
equation 3.2. Thus, the simple scheme of figure 3.3 indeed seems to be roughly
compatible with the kinetics of MDHm. I let equation 3.3 reproduce figure 4b
in the study of Gelpí et al. [40] and present the results in figure 3.4. The reader
should note the two distinct regions in the 1/NAD+-dimension where citrate
either inhibits or activates. The regions are separated by an intersection point
where the rate is insensitive to citrate. This point may in the case of saturating
concentrations of malate be determined by taking the derivative

d
(

1
v

)

dξ
=

1 +α1σ1 +α2σ2 +α1α2σ1σ2 −γ+α1α2 (1 +σ1 +σ2 +σ1σ2)
Vσ2 (1 + γ+α1α2ξ)2 ,

which vanishes for all values of ξ if

σ2 =
1 +α1σ1 −γ+α1α2 (1 +σ1)

γ+α1α2 (1 +σ1)−α2 −α1α2σ1
.

As σ1 → ∞, this equation produces a positive (i.e. physical) σ2 only when

γ+ − 1
1−γ+α2

> 0,

which then is the condition determining whether the modifier is able to act
both as an inhibitor and as an activator.
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Figure 3.4: Reproduction of the experimental data presented in figure 4b in the study
of Gelpí et al. [40]. We see in this double-reciprocal Lineweaver-Burk plot that citrate
activates MDH at high NAD+ levels, but inhibit MDH at low NAD+ levels. Malate is
here constant at 10 mM and no products are assumed to be present. Parameters used:
VMDHm = 0.36 µM/min, Smalate

0.5 = 3 mM, SNAD
0.5 = 0.06 mM, Xcitrate

0.5 = 0.9 mM,
αmalate = 0.3, αNAD = 0.1, and γ+ = 3.



Chapter 4

Theory: From the Parts to the
Whole. Modeling, Analysis
and Simulation of
Biochemical Reaction Systems

We will now consider networks of biochemical reactions. We will primarily
consider reactions taking place between different species in the cytosol, and
start with the hypothesis of an isotropic (“well-stirred”) cell. When formulat-
ing a model to use for simulating any real world system, it is practical to try to
formulate an abstraction of the features of this system, to facilitate the model
construction. When considering a set of biochemical reactions in a living cell,
an attempt to such a formulation could be to consider the reactions to comprise
a network, or graph, with:

• Pools of species, nodes in the graph, which are here denoted with the
vector of metabolites x = (x1, x2, ...)T (unit: mM).

• Reactions or fluxes denoted (v1, v2, ...)T = v (unit: mM/s) between these
species, which can be considered as arrows or directed edges between
nodes. Steady-state fluxes are denoted ( j1, j2, . . .)T = j. We will usually
consider each flux as catalyzed by one enzyme and the rate given by a
suitable rate equation, which often is a function of the concentration of
the enzyme’s substrates and products. Further, species other than the
substrates and products of an enzyme may modulate its catalytic rate.

The fluxes may be translated to derivatives by the elementary linear transfor-
mation

ẋ = Nv, (4.1)

where N denotes the stoichiometric matrix. The network’s behavior over time
may be obtained by integrating this system of (usually) nonlinear ODEs.
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4.1 Critical Assumptions

The ansatz for a description of the cellular metabolism, or part thereof, that is
described above is dependent on several critical assumptions and simplifica-
tions that are often implicit in the literature of metabolic modeling. I suggest
five of the, to my mind, most important of these assumptions below. The reader
is certainly encouraged to question these assumptions and their justifications
as I have often done myself.

1. In cellular metabolism, enzyme catalyzed biochemical reactions are gen-
erally not considered to be diffusion controlled [43], i.e. diffusion occur
on a much faster time scale than the reactions. Thus, any spatial inho-
mogeneities in a cellular compartment may in a limit sense considered
to be evened out before any reactions modify the chemical composition
of it. This justifies the use of the “well-stirred cell” approximation made
above.

2. I have ignored the intrinsic fluctuations in reaction rates and concentra-
tion of species, which are due to the stochastic nature of biochemical re-
actions [27]. Fluctuations must be considered when the concentrations
are so low that the averages of the number of molecules are not represen-
tative because of broad and skewed non-Poissonian probability distribu-
tions. However, the β-cell volume is in the order of pl [44]. The metabo-
lites considered in this thesis are usually present in concentrations at least
in the order of µM, corresponding to at least about 105 molecules per cell
which is a regime that should justify a deterministic description. Still,
fluctuations may be significant when the system is not asymptotically
stable in the continuous macroscopic description (for instance at a Hopf
bifurcation, see section 4.4) [27]. However, I have investigated systems in
asymptotically stable regimes, which justifies a deterministic continuous
description.

3. The metabolites of the central β-cell metabolism considered in this thesis
are much smaller than the enzymes that catalyze the biochemical reac-
tions. This justifies not considering effects of so-called macromolecular
crowding [45], which limits the diffusion of large molecules.

4. I have not considered the possible biochemical effect of metabolite channel-
ing which is proposed to occur in parts of the glycolysis and TCA cycle.
Metabolite channeling is thought to occur when two or more enzymes,
catalyzing two or more reactions occurring in chain, associate and chan-
nel the product of the first enzyme in the chain directly to the next en-
zyme, without letting the metabolite diffuse via the cytosol. The effect of
metabolite channeling on overall reaction rates is probably marginal in
most cases [37].

5. A potentially serious issue is the question whether the quasi-steady-state
assumption made when deriving the enzyme rate equations (see section
2.2) really is justifiable for an in vivo situation. The question has recently
been addressed both for global steady state conditions [46] and for pe-
riodic influxes [47] to networks of enzyme catalyzed reactions. These
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investigations revealed that the errors stemming from the quasi-steady-
state assumption are not necessarily significant even when the assump-
tion is not strictly valid, for example when the system is oscillatory. I have
focused more on principles than on the exact replication of experimental
observations, hence I have not pursued this matter further.

4.2 Metabolic Control Analysis (MCA)

As in other natural sciences, sensitivity analysis provides important insights
into biochemical regulatory networks. The approach to sensitivity analysis for
biochemical systems used in this thesis is termed Metabolic Control Analysis
(MCA). On a basic level, MCA is a framework concerning steady-state fluxes j
and concentrations as functions, putting the derivatives of these functions with
respect to enzyme concentrations into the center stage as control coefficients.

The subject of MCA is covered in excellent textbooks [48, 49], and it is not
possible to give a thorough introduction to the subject on these few pages.
Instead, I will compactly describe one particular approach to MCA introduced
by Reder [50] which was used in paper V and in the analysis in section 5.2.
Here, only steady-state solutions to equation 4.1, i.e. concentrations x such
that Nj = 0, are considered, although during the last couple of years MCA has
been extended to non-steady-state as well as spatially heterogeneous systems
too [51, 52].

First, let L be the link matrix, used to decompose the stoichiometry matrix
in order to remove linear dependencies between its rows so that

N = LN̄,

where N̄ has full rank and where L is the identity matrix if N has full rank. Let
D be the matrix of unscaled elasticities

D =
∂v
∂x

.

We now take interest in the steady-state solutions to Nv = ẋ. We may, via
implicit partial differentiation and using the steady-state condition Nj = 0,
calculate the control matrices

Cx =
(

∂x
∂p

) (
∂v
∂p

)−1
= −L (N̄DL)−1 N̄

Cj =
(

∂j
∂p

) (
∂v
∂p

)−1
= I−DL (N̄DL)−1 N̄. (4.2)

Here, I is the identity matrix and p is a vector of parameters so that ∂v/∂p is
square and non-singular. Cx is the concentration control matrix and Cj is the
flux control matrix. These matrices tell us how strong control each enzyme
has over each steady-state concentration and flux. Even more, these systemic
properties are expressed solely in terms of local properties, i.e. the components
of D, which only contains partial derivatives of the different rate equations
with respect to the concentrations.
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4.3 The Method of Numerical Continuation

Much of the work in the thesis concerns how steady-state solutions to equation
4.1 vary with different parameters, e.g. enzyme activities. Mathematically, this
means investigating solutions x to

Nj (x, λ) = 0 (4.3)

as a function of the parameter λ. This is usually only feasible using numerical
methods.

A brute-force method to compute solutions to equation 4.3 would be to just
vary λ and successively compute solutions using standard Newton methods
for solving nonlinear equations. This is however unnecessary time-consuming.
We may view equation 4.3 as a function F(x) : Rn+1 → Rn, where F(x) =
Nj (x) and x=

(
xT , λ

)T . The brute force method may be a viewed as a predictor-
corrector method, which makes the stupid choice of making predictions only
in the λ direction. A better method is Moore-Penrose continuation [53]. This
algorithm allows us to make predictions in any direction, which significantly
speeds up the calculations if the solutions x do not vary much with λ.

1. Prediction. Given a point xk on the solution curve and a tangent vector vk
to the curve at this point, make a first prediction X0:

X0 = xk + hvk ,

where h is a stepsize that needs to be sufficiently small and may be
changed during the course of several iterations.

2. Correction. Since the Jacobian J(X) of F(X) is not square, we have to add
an equation in order to be able to use Newton iterations to find a point
xk+1 on the solution curve. We choose to aim for the point closest to
the point X0, making the vector

(
xk+1 − X0) orthogonal to the tangent

vector vk+1 to the solution curve at the point xk+1. This is our additional
equation, and we now have:

F (xk+1) = 0

vT
k+1

(
xk+1 − X0

)
= 0.

Now, starting with a first estimation V0 = vk of vk+1, a Newton algorithm
solving this problem for sufficiently small h is

Xk+1 = Xk − H−1
x

(
Xk , Vk

)
H

(
Xk , Vk

)

Vk+1 = Vk − H−1
x

(
Xk , Vk

)
R

(
Xk, Vk

)
,

where H(X, V) =
(

F(X)
0

)
, Hx(X, V) =

(
J(X)
VT

)
and R(X, V) =

(
J(X)V

0

)
.

The stability of the steady-state solutions represented by the solution curve of
equation 4.3 is of critical interest, which is the subject I address next.
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4.4 More Complex Behavior: from Steady State to
Prolonged Oscillations

Mathematically, a steady-state solution to 4.1 is a fixpoint of the ODE system.
According to the principle of linearized stability, the stability of a fixpoint may
be determined via the the eigenvalues of the Jacobian J . If the real parts of all
eigenvalues are negative, the fixpoint is stable in the sense that all solutions in
a neighbourhood of it converge to it as t → ∞. Otherwise, it is unstable and
all solutions in a neighbourhood of it diverge from it. In the particular case
of a two-dimensional system, the stability is quite simple to analyze, and one
arrives at the classification summarized in table 4.1.

In two-dimensional systems where the solutions are bounded inside a re-
gion of the two-dimensional state space, periodic solutions or limit cycles may
exist. If the bounded region only contains repellors, the Poincaré-Bendixson
Theorem [54] dictates that the solutions converge towards a limit cycle as
t → ∞. Therefore, when searching for periodic solutions to a two-dimensional
system, the investigation of the stability of fixpoints is important. In paper I,
these principles were made use of when analyzing the stability properties of
the glycolysis in the β-cell. There it is shown that the steady-state solution to
a model of β-cell glycolysis undergoes a transition from a spiral node to a spi-
ral repellor — this transition is a so-called Hopf bifurcation — as the glucose
concentration is raised from a low value to a higher value.

Table 4.1: The stability of a fixpoint of a two-dimensional dynamical system. There
are six cases (excluding borderline cases), which are determined by the trace of the
Jacobian, TrJ , and by the determinant of the Jacobian, ∆.

TrJ < 0 TrJ > 0

∆ > 1
4 (TrJ )2 spiral node spiral repellor

0 < ∆ < 1
4 (TrJ )2 node repellor

∆ < 0 saddle point saddle point



Chapter 5

Application: The Glycolysis,
NADH Shuttles and TCA
Cycle

5.1 The Glycolysis

The glycolysis has a very crucial role in the GSIS of the β-cell and was therefore
chosen as an object for my theoretical investigations (paper I). This pathway,
ancient and ubiquitous in the biosphere as it is, operates just as in any cell type
or organism, seen just to the sequence of reactions and to the stoichiometry:
per one molecule entering the glycolysis, two molecules of pyruvate comes out,
along with two molecules ATP and NADH (of course ignoring pesky complica-
tions like the pentose phosphate shunt, but the activity of this pathway seems
to be low in the β-cell [55]). However, when looking into the kinetic peculiari-
ties, two special traits of the set of isozymes in the β-cell grant its glycolysis a
unique kinetic profile:

1. The hexokinase isozyme is type IV, usually called glucokinase (GK).

2. The phosphofructokinase isozyme is the muscle type (M-type).

The first trait has for 35 years motivated β-cell investigators to identify GK
as the glucose sensor of the β-cell [56]. The reasons for this is twofold; first,
the reaction is at physiological levels of metabolites nearly irreversible (since
it consumes ATP, the reader may verify this by consulting thermodynamical
tables [28, 29, 30] along with data on metabolite levels [57, 58]). There does
not seem to be any significant product inhibition of the reaction [56]. In a lin-
ear pathway with an irreversible first step without product inhibition, this step
solely determines the steady-state flux through the pathway. This is very un-
usual but appears to be the case in the β-cell. Second, the S0.5 for glucose is
5–10 mM, which is just around the physiological glucose concentration, and
the concentration-rate curve is sigmoidal with a Hill coefficient just below 2
[56]. Thus, GK, and ultimately the glycolytic rate, seems to be optimized to
have its rate quite tightly controlled by glucose. Keeping things simple and
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straightforward, I write

vGK =
VGKσhGK

1 +σhGK
,

where σ = [glucose]/SGK
0.5 .

The second trait gives the glycolysis in the β-cell an ability to oscillate.
Oscillations in glycolysis have been demonstrated in several organisms and
model systems of which yeast is the most well-studied and the oscillations in
all systems have been attributed as due to autocatalysis of PFK [59, 60, 61]. The
time scale of glycolytic oscillations is typically in the range of minutes, which
has prompted the hypothesis that they might be the mechanism behind the
pulsatile insulin secretion. During the last decade, indications of an oscillatory
glycolysis in the β-cell have accumulated, with observations of oscillations in
cytosolic NAD(P)H concentration, oxygen consumption, glucose-6-phosphate
concentration and the ATP/ADP ratio [62, 63, 64, 65, 66, 67, 68, 69]. Impor-
tantly, the oscillations of the latter parameter correlates with insulin secretion
and [Ca2+]i [70]. Therefore, a minimal hypothesis is that the glycolytic oscilla-
tions are due to the autocatalysis of the PFK reaction [16, 70], and further, that
this is the cause of slow bursting and corresponding insulin secretion. Clini-
cally, it has been shown that an inherited PFK deficiency results in loss of the
oscillations of insulin secretion [71], which motivates thorough investigations
of the role of PFK in the β-cell. Here, I ask the reader to ponder the discussion
in the introduction, regarding the enzyme that is activated by its product and
may cause the system that it is a part of to oscillate, or the system might attain
a steady-state. Soon, the time has come to do the mathematical analysis of this
system, but first, l give a rate equation for PFK:

vPFK =
VPFKσhPFK

σhPFK + 1+(qπ)hPFK

1+α(qπ)hPFK

.

Here, σ = [F6P]/SPFK
0.5 , π = [FBP]/SFBA

0.5 and q = SFBA
0.5 /XFBA

0.5 . Again I have
kept things as simple as possible and have hence ignored the slight increase of
the effective limiting rate of the product/modifier FBP. Note that this equation
is valid only in the limit of nearly constant ATP and AMP levels – it is thus an
even simpler equation than that presented in paper II.

The time is now ripe to set up a minimal model of β-cell glycolysis, and
we will here follow the construction path of the simplest of the two mod-
els presented in paper I. The activities of the different enzymes in the β-
cell glycolysis have been measured in two studies [72, 73] and the activi-
ties of glucose-6-phosphate isomerase (GPI) and the enzymes downstream of
fructose-bisphosphate aldolase (FBA) were found to have at least an order of
magnitude higher activities than this enzyme. This motivates a minimal model
based on the scheme in figure 5.1. Assuming that the FBA rate may be approx-
imated by a simple rate equation of Michaelis-Menten form:

vFBA =
VFBA π

1 + π
,

the scheme in figure 5.1 may be translated to an ODE system accordingly:
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Glc G6P F6P FBP
GK eq. PFK FBA

+

Figure 5.1: A core model of β-cell glycolysis. The dashed box surrounds metabolites
considered to be in pseudo-equilibrium. The dashed arrow indicates the positive feed-
back elicited by the PFK product FBP. In the simplest case presented here, the removal
of mass from the glycolysis is controlled solely by FBA.

σ̇ =
f

SPFK
0.5

(vGK − vPFK)

π̇ =
1

SFBA
0.5

(vPFK − vFBA), (5.1)

The glucose-6-phosphate isomerase (GPI) catalyzed reaction has been assumed
to be in quasi-equilibrium with an equilibrium constant KGPI

eq = [F6P]/[G6P]
which enters the expression f = KGPI

eq /(1 + KGPI
eq ). It is now of interest to cal-

culate the steady-state solutions of the ODE system 5.1 and to investigate the
possibility of an unstable steady-state. An unstable steady-state sets the scene
for periodic limit-cycle solutions to 5.1, which, as may be realized from the dis-
cussion above, are of greatest interest. Let us immediately assess the stabilities
of the fixpoints of equation 5.1. We may write the Jacobian J accordingly:

J =

( −k1
∂vPFK

∂σ −k1
∂vPFK

∂π

k2
∂vPFK

∂σ k2

(
∂vPFK

∂π
− ∂vFBA

∂π

)
)

where k1 = f /SPFK
0.5 and k2 = 1/SFBA

0.5 . We now consult table 4.1 to find out
what can be said. We find out that ∆ > 0 and thus a fixpoint will not be a
saddle-point; it may only be a repellor or node. Which one is determined by
the trace:

TrJ = k2

(
∂vPFK

∂π
− ∂vFBA

∂π

)
− k1

∂vPFK

∂σ
.

This expression explicitly states that the activation of PFK by its product, i.e. a
positive ∂vPFK

∂π
, may yield an unstable steady-state of the system. The stability is lost

when the expression in the parentheses becomes sufficiently positive. It is here
pertinent to remind the reader that such product activation of β-cell PFK has
been directly measured [74]. The fixpoint(s) of the system 5.1 are located where
the nullclines of the system, given by the two curves σ̇ = 0 and π̇ = 0, intersect
in the (σ , π) plane. Glucose concentration alters only the σ̇ = 0 nullcline. As
shown in paper I, the following holds on the π̇ = 0 nullcline:

dσ

dπ
= −

(
∂vPFK

∂π
− ∂vFBA

∂π

)
/

∂vPFK

∂σ
.

Thus, the slope of the π̇ = 0 nullcline has to be sufficiently negative at the
fixpoint in order for it to be unstable.
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Figure 5.2: The glycolysis model represented by the ODE system (5.1) was solved
using the following parameters: [glucose]= 10 mM; VGK = 10 U/min, VPFK = 100
U/min, VFBA = 25 U/min; SGK

0.5 = 8 mM, SPFK
0.5 = 4 mM, SFBA

0.5 = 5 µM; KGPI
eq = 0.3,

hGK = 1.7, hPFK = 2.5− 1.5qπ/(1 + qπ), αPFK = 5hPFK , q = 0.5. Tissue concentrations
(U) were converted to mM by dividing with a factor of 180. (a). The time course of the
solution of system (5.1). The solid and dotted lines represent σ and π , respectively. (b).
Two-dimensional bifurcation diagram with VGK and VFBA as bifurcation parameters.
(c). Dependence of the oscillation period on VPFK. The dashed line was obtained when
taking into account the equilibrium between different polymeric forms of PFK.

It is now time for numerical investigations of the system, its nullclines and
fixpoints. Numerical values for the parameters of the rate equations were in-
ferred via an extensive literature survey and are given in the legend of figure
5.2. The nullclines were computed and are shown in figure 5.2A. The σ̇ = 0
nullcline is translated as the glucose concentration is raised (dotted to solid
curve). At the intersection with the π̇ = 0 nullcline (curve with circles) lies the
fixpoint. It is stable for low glucose concentrations (dotted curve) but becomes
unstable for higher glucose concentrations (solid curve, the intersection is on
an interval where the slope of the π̇ = 0 nullcline is negative). Here, a stable
limit cycle has appeared (thick solid closed curve).

Another view of the situation is presented in figure 5.2B. This diagram
shows the steady-state (in the variable σ) as a function of the activity of GK.
The curve was calculated using Moore-Penrose continuation. The thicker part
of the curve represents a stable steady-state which becomes unstable at the
filled square. The dotted part of the curve represents an unstable steady-state,
which at very high GK activities again becomes stable. At the filled square, a
limit cycle is born. This limit cycle, marked as the upper and lower limits of the
periodic variations in σ with thin solid curves, persists throughout the region
where the steady-state is unstable. The squares represent Hopf bifurcations.
It is of interest to investigate how the Hopf bifurcations are affected by varia-
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tions in different enzyme activities. This may yield predictions of how different
experimental model systems and genotypes may behave with respect to gly-
colytic oscillations. In figure 5.2C, the locations of the Hopf bifurcations in the
(vFBA, vGK) plane are plotted. It is evident that both GK and FBA exert control
over this region. This prediction was new and may have significance in the
understanding of β-cell glycolytic oscillations. It was found that PFK does not
have any significant control over the locations of the bifurcations. On the other
hand, VPFK does influence the oscillation period, as seen in figure 5.2D. The
dashed line was calculated also taking into consideration the fact that altering
VPFK probably also alters the distribution between different oligomeric forms
of PFK. The solid line was calculated while not taking this into consideration.
The results indicate that the equilibria between different oligomeric forms sta-
bilizes the oscillation frequency with respect to perturbations and fluctuations
in the concentration of the enzyme.

In summary, the minimal model of the β-cell glycolysis presented in paper
I strengthens the hypothesis that glycolytic oscillations occur. It also gives ex-
perimentally testable predictions concerning the control of the occurrence and
frequency of these oscillations.

5.2 NADH Shuttles and TCA Cycle

The study in paper I raised important questions on how to proceed with the
modeling enterprise. The glycolysis was studied as an isolated module. In re-
ality, this module is coupled to the rest of the cellular metabolism — not least
to mitochondrial ATP production. In fact, the hypothesis of the glycolysis as
a generator of the minute scale oscillations in insulin secretion is critically de-
pendent on the assumption that glycolytic oscillations spur oscillations in the
ATP/ADP ratio. We hence chose to boldly proceed in a direction where no the-
oretical investigator had gone before — to study the coupling of the glycolysis
to the mitochondrial metabolism (paper IV). When doing so, it became natu-
ral also to investigate how glycolytic flux affects the putative GSIS coupling
signals other than the ATP/ADP ratio: NADPH, malonyl-CoA and glutamate.
A word of warning: this section by necessity contains a lot of abbreviations of
enzyme names. The abbreviations are defined in the text and can also be found
in the table of abbreviations in the preamble, as well as in paper IV.

The glycolytic flux is coupled to the mitochondrial metabolism via:

• Charge transfer: the GPDH reaction produces cytosolic NADH. The
NADH is shuttled to the mitochondria via the glycerol-3-phosphate de-
hydrogenase (G3DH) and malate-aspartate (MA) shuttles.

• Carbon transfer: glycolytically produced pyruvate is transported into the
mitochondria, where it is further metabolized in the TCA cycle.

The β-cell has some peculiar traits also in this part of the cellular metabolism:
pyruvate is not only decarboxylated via pyruvate dehydrogenase (PDH), but
also carboxylated via pyruvate carboxylase (PC). This anaplerosis has to be coun-
terbalanced by cataplerosis – reactions that remove carbon from the metabolite
pool of the TCA cycle. One such reaction is in the β-cell the reaction catalyzed
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by ME, which produces the putative coupling factor NADPH. Another candi-
date is the reaction catalyzed by GDH, which, depending on the direction of the
reaction, may produce the putative coupling factor glutamate. An overview of
the mitochondrial metabolism is presented in figure 5.3. The coupling between
the glycolysis and the mitochondrial metabolism was addressed by Eto et al.
[75] in a thorough study. The authors showed that the two NADH shuttles
constitute a redundant system. The blocking of either one of the shuttles (the
G3DH shuttle was blocked via a knock-out of G3DH and the MA shuttle was
blocked via inhibition of amino aspartate transaminase (AAT)) did not produce
any significant effect, while the blocking of both shuttles did reduce the TCA
cycle flux at the level of isocitrate dehydrogenase (IDH) and 2-oxoglutarate
dehydrogenase (OGDH) by about 50%. At the same time the glycolytic rate
remained unchanged. Since the shuttles were blocked, the authors argued, the
glycolytically produced NADH had to be reoxidized by an unknown factor.
A candidate is lactate dehydrogenase (LDH), but this enzyme seems to have
a low activity in β-cells. An overview of the reaction network we studied is
given in figure 5.3. We represented this reaction network by the following ODE
system:

ẋ1 = f1 × (vCS − vIDHm − vIDHPm − c× vIDHPc − c× vACS) /S1
IDHm

ẋ2 = f2 ×
(
vIDHm + vIDHPm + c× vIDHPc − vOGDH − c× vAATc−

− vAATm − v8
GDH − v10

GDH
)
/S2

OGDH

ẋ3 = f3 × (vOGDH − vMDHm − c× vMDHc − c× vME) /S3
MDHm

ẋ4 = (vPC + vMDHm + vAATm − vCS) /S4
CS

ẋ5 = (vAATc + vMDHc + vACS) /P5
MDHc

ẋ6 = f6 × (c× vGPDH + c× vME − c× vLDH − vPDH − vPC) /S6
PDH

ẋ7 = (vCS − vPDH − vFO) / [CoA]tot

ẋ8 =
(
vresp + v8

GDH − vPDH − vFO − vIDHm − vOGDH−
− vMDHm

)
/ [NADHm]tot

ẋ9 = (vG3DH − vMDHc − vGPDH) / [NADHc]tot

ẋ10 =
(

v10
GDH − vIDHPm

)
/ [NADP]tot .

The factor c is the ratio between the volumes of the cytosolic and mitochondrial
compartments (≈ 20). The different factors fi follow from the quasi-equilibria
that are assumed in the model, which are described in detail in the appendix
in paper IV. Also, the different rate equations are given in the appendix of this
paper. The rate equations were derived according to the principles outlined in
chapter 2.2, where also the rate equation for MDH is discussed in detail. The
parameters were inferred from an extensive literature survey (see paper IV for
references). This system was analyzed in terms its steady-state solutions, i.e.

ẋ1 = 0
... (5.2)

ẋ10 = 0.
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Figure 5.3: The model studied in paper IV. The numbers refer to metabolites: 1,
isocitrate; 2, 2-oxoglutarate; 3, malate; 4, mitochondrial oxaloacetate; 5, cytosolic ox-
aloacetate; 6, pyruvate; 7, CoA; 1-7, acetyl-CoA; 8, mitochondrial NAD(H); 9, cytosolic
NAD(H); 10, mitochondrial NADP(H). The reactions are represented as arrows. The
corresponding enzymes are written with standard abbreviations, see the preamble and
paper IV for a table of these. A bracketed number (e.g. [8]) after an enzyme abbre-
viation indicates that the reaction produces NAD(P)H, a bracketed number before the
abbreviation indicates that the reaction consumes NAD(P)H. Dashed arrows represent
irreversible enzymes, solid arrows represent reversible enzymes. The thicker arrows
represent the reactions of the classical TCA cycle. Metabolites transported between the
mitochondrial and cytosolic compartments are assumed to do so quickly, so that these
transport processes may be approximated by their thermodynamic equilibrium condi-
tion.
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We also define the gain, denoted γ, as

γx =
∆x
x

,

which represents the change in the steady-state level of an output signal x
(a steady-state flux or concentration) in response to a raised glycolytic flux
VGPDH, usually from 0.005 mM/s to 0.015 mM/s.

The first question we addressed was whether the model, that nota bene does
not include an unknown factor capable of reoxidizing cytosolic NADH, is com-
patible with the results of Eto et al. [75]. The blocking of the shuttles may be
simulated by setting VG3DH = 0, and by reducing VAATc and VAATm. Our strat-
egy for dealing with the overwhelming dimensionality of the parameter space
of the model was first, to focus on the most uncertain parameter family: the
limiting rates V [76], and second, to identify the limiting rates with the largest
flux control coefficients and analyze the model in terms of these parameters.
The steady-state behavior of the model for almost 3000 combinations of limit-
ing rates were examined. It turned out that the results of Eto et al. [75] were
compatible only with a high activity of VACS (see paper IV for details). A repro-
duction of the results of Eto et al. [75] are shown in figure 5.4. In this scenario,
no unknown factor is needed, since ACS is able to compensate for lost AAT
activity, which makes it possible for MDHc to keep up its reoxidation of cy-
tosolic NADH. This is clarified in figure 5.5, which shows the magnitude of the
different fluxes in the steady state, with and without blocking of the NADH
shuttles.

Having established a model that well describes the coupling between the
glycolysis and the TCA cycle in terms of experimental data obtained from β-
cells, we examined the input-output relationships between the glycolytic input
signal and the different putative output signals: the ATP/ADP ratio (assumed
to be proportional to the NADH consumption by respiration), the cytosolic
NADPH production (assumed to be proportional to the rate of the IDHP and
ME reactions) and malonyl-CoA (assumed to be proportional to the rate of the
ACS reaction). This was analyzed in terms of the gains of these output signals.
The model predicts significant gains in all three cases (see paper IV). The gain
in NADPH production is especially strong. Moreover, the gains are attenuated
by an increased fatty acid oxidation rate. This phenomenon has been observed
experimentally [77], but it is to this date unclear to what extent acute metabolic
effects and genetic regulation are responsible for the effect. Our study predicts
a significant acute metabolic contribution in this context. The theoretical basis
of this is further analyzed in paper V in the context of MCA.

Our model furthermore predicts that the flux distribution is dominated by
a cycle consisting of, in turn, PC, AAT, AATc, MDHc, and ME. This is seen in
the visualisation of the flux distribution in figure 5.6A. The TCA cycle is thus
not the main pathway of the β-cell mitochondrial metabolism. If VME is suffi-
ciently large, the MDH reaction may even proceed in the backward direction
(figure 5.6B). This has implications for the interpretation of NMR spectra from
13C-labeled intermediates of the mitochondrial metabolism, a technique that
has been used frequently during the last few years to investigate the putative
output signals of the KATP-independent pathway, notably in the studies on the
β-cell biochemistry by Schuit et al. [55] and Lu et al. [78].
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Figure 5.4: Simulation of the experiments of Eto et al. [75]. Panels A and B: as the
inhibition of the AAT enzymes is increased, jDH falls only when there is no G3DH
activity. The glycolytic rate jGO is less affected. Panels C and D shows snapshots of
panels A and B, taken at 0% inhibition and at 96% inhibition (dotted line). Panels C and
D may be directly compared to figure 2 in the paper of Eto et al. [75].
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Figure 5.5: Distribution of fluxes in the simulations of the experiments of Eto et al.
[75]. Panel A shows the case with 0% inhibition of the AATs and with no G3DH activity.
Panel B shows the case with 96% inhibition of the AATs and also with no G3DH activity.
The fluxes are proportional to the line thickness; as a reference, the GPDH flux is 0.3
mM.

Figure 5.6: In the general (non-mouse) case, there is ME activity, and the MDH reac-
tion may go backwards. In both panels, VGPDH = 0.015 and in panel A, VGDH = 0.5
while in panel B, VGDH = 0.1. The thickness of the arrows correspond to the magnitude
of the fluxes; as a reference, jGPDH is about 0.3 µM in the diagrams.
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Modular MCA of the NADH Shuttle System

In the work presented in paper IV, a model describing, among other things,
the coupling between the glycolysis and mitochondrial metabolism was an-
alyzed numerically in the steady-state and the results of Eto et al. [75] were
reproduced. As a complement to this study, I will here make an attempt at an
analytical approach to the description of the NADH shuttles, with the help of
MCA (described in section 4.2). MCA allows one to express global flux con-
trol coefficients in terms of local elasticities, which is a remarkable strength. In
practice, however, this is not feasible for a model of our size, since it would
require the inversion of a 19× 19 matrix of elasticities. This does not mean that
theoretical insights into the control of fluxes and steady state concentrations of
species are impossible to gain. Consider the scheme in figure 5.7. This is the
model described in the previous section and in paper IV, with the mitochon-
dria and part of the cytosolic system replaced by a black box, which may be
viewed as a “super enzyme”. We will here skip our ambition for a theoretical
understanding of the super enzyme, but instead venture to examine the rest
of the system as outlined in the figure analytically. We will use the method-
ology outlined by Schuster et al. [79] and in line with these authors name the
super enzyme module 1, and the rest of the system, which is to be investigated
analytically, module 2.

We denote NADHc as x1 and NADc as x2. The system depicted in figure
5.7 attains steady-state according to the equation Nj = ẋ = 0, where j =
( jMDH, jGPDH, jG3DH)T and the stoichiometry is described by:

N =
( −1 1 −1

1 −1 1

)
.

The stoichiometry matrix is reduced to the full-rank matrix NR via a link matrix
L:

NR =
( −1 1 −1

)
and L =

(
1
−1

)
.

We further write the matrix of unscaled elasticities D as

D =




DMDHc∗
1 DMDHc∗

2
DGPDH∗

1 DGPDH∗
2

DG3DH
1 DG3DH

2


 .

Here, the asterisks indicate overall elasticities, where it is assumed that module
1 is allowed to attain steady state and the concentrations of module 2 metabo-
lites are considered to be clamped.

We consider unscaled elasticities, defined Dv
2 = ∂v

∂S2
, and we define Dv

12 =
∂v
∂x1

− ∂v
∂x2

. We may draw a couple of conclusions already from these simple
expressions by using equation 4.2. First, we note that

CMDHc
G3DH = −DMDHc∗

12 /K, (5.3)

where K is defined K = DG3DH
12 + DMDHc∗

12 − DGPDH∗
12 > 0. If DMDHc∗

12 is posi-
tive (i.e. the rate of the MDHc reaction as defined in figure 5.7 increases with
increased cytosolic NADH levels), equation 5.3 contains one of the intuitive
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NADH

NAD

GPDH MDHc

G3DH

module 2

module 1

Figure 5.7: Scheme for modular MCA of the shuttle model. Metabolites considered
explicitly are cytosolic NADH and NAD (module 2), while the rest of the system is a
“black box” (module 1). GPDH and MDHc represent bridge reactions. I here omit the
LDH reaction which in the numerical investigations (cf. figures 5.5, 5.6 and paper IV)
exhibits a low flux.
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Figure 5.8: Scheme for modular MCA of the enzymes ACS, AATc and MDHc in
the model presented in paper IV. Here, only cytosolic oxaloacetate is studied explic-
itly (module 2), while the rest of the model is considered as a “black box” (module 1).
Oxaloacetate is abbreviated “oxa”.

reciprocal relationship between the shuttles, we will call it the first shuttle re-
lationship. If the activity of G3DH is increased, the flux through the MDHc
reaction is decreased. Conversely, we have that

CG3DH
MDHc = −DG3DH

12 /K, (5.4)

which expresses the second shuttle relationship; if the rate of the MDHc reaction
is increased, the flux through the G3DH reaction is decreased.

Next, we consider the influences of the activity of the shuttles on the flux
through the GPDH reaction. We have that CGPDH

G3DH = CGPDH
MDHc = −DGPDH∗

12 /K.
This quantity is, judged from intracellular NAD(H)c levels together with es-
timations of the binding constants (presented in paper IV), quite low. Thus,
the NADHc/NADc ratio would have to be raised immensely before, e.g., an
abolishment of the shuttles would influence the glycolytic flux via catastrophic
inhibition of GPDH. It is plausible that a close to normal NADHc/NADc ratio
may be maintained in spite of G3DH and AATc being inactivated, by means
of flux through the ACS and MDHc reactions. I argue that this is an attractive
alternative to the assumption of an unknown NADHc consumer [80].

In order to relate how an abolishment of the AATc reaction affects the
MDHc and ACS reactions, I performed the same type of analysis of the re-
action scheme defined by figure 5.8. All elasticities in this analysis are overall
elasticities, which have to be evaluated letting all variables in module 1 attain
steady state. Let us make the following assumptions: DMDH

1 > 0, DACS
1 < 0

and DAATc
1 < 0, where 1 refers to oxaloacetate. Then we may draw some con-

clusions: first, we have
C1

AATc = 1/K > 0,

where K = DMDH
1 −DACS

1 −DAATc
1 > 0. Thus, the cytosolic oxaloacetate levels
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will always follow that of the AATc activity. Second, we have

CACS
AATc = DACS

1 /K < 0.

This expression tells us to which extent ACS compensates for lost AATc activ-
ity. We may note here that AATc, ACS, and MDHc operate at different points if
G3DH is active or not — G3DH affects MDHc according to the first shuttle rela-
tionship (equation 5.3). This may explain the differences in TCA cycle activities
observed by Eto et al. [75], when G3DH is present or not, since ACS and AATc
are linked to the TCA cycle via the metabolites citrate and 2-oxoglutarate.

Third, we have
CMDHc

AATc = DMDHc
1 /K > 0.

If DMDHc
1 is normally very close to zero — i.e. the MDHc reaction is satu-

rated with respect to oxaloacetate — the second and third conclusions together
quantitatively express our hypothesis that during normal conditions, ACS is
able to compensate for lost AATc activity. This allows MDHc to continue to
reoxidize NADH; a modulation of AATc activity reciprocally affects the ACS
flux but leaves the MDHc flux virtually unchanged. However, ultimately, as
VAATc is decreased, the cytosolic oxaloacetate level, which follow the activity
of AATc as stated above, might sink to sufficiently low levels that DMDHc

1 will
become significant. Then it would be reasonable to assume that, according to
the second shuttle relationship (equation 5.4), the G3DH reaction will increase
its rate to compensate. This is impossible in the case G3DH is abolished. In this
case, the NADHc/NADc ratio would start to rise dramatically, and the shuttle
system would break down, resulting in a halted glycolysis. However, this does
not seem to be the case in the experiments of Eto et al. [75], which suggests
that the cytosolic oxaloacetate concentration never reaches these low levels,
and that ACS is able to compensate and maintain a sufficiently high cytosolic
oxaloacetate level so that CMDH

AATc stays low even at very low AATc rates.
Fourth, and finally, we note that

CAATc
MDH = −DAAT

1 /K > 0,

and that
CACS

MDH = −DACS
1 /K > 0.

Let us recall that a modulation of the G3DH rate mainly affects the MDHc rate
(since the NADc/NADHc influence on the GPDH rate is small). Then, we
have arrived at an approximate quantitative description of the experimentally
noted compensatory effects between the NADH shuttles; if the G3DH reaction
is abolished, resulting in an increase of the rate of the MDHc reaction mediated
by the NADc/NADHc levels, the ACS and AATc together compensate for the
increased flux through the malate-aspartate shuttle.

MCA of the Anaplerosis

The results presented in paper IV indicated that the fatty acid oxidation (FO)
via the metabolism, i.e. without any genetic regulation, may affect GSIS by in-
creasing the mitochondrial metabolism, while blunting the response to a raised
glycolytic flux. This has indeed been seen experimentally. It constitutes a part
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Figure 5.9: The carbon influx to the mitochondrial metabolism. The numbers refer to
four variables which represent different metabolites; x1 = oxaloacetate, x2 = pyruvate,
x3 = ac-CoA, x4 = CoA. The solid arrows represent mass flux. The dashed arrows
represent modulation of enzyme activity by the metabolites; the open circle represents
ac-CoA activation of PC, while the filled circles/bars represent product inhibition of
PC, CS, FO, and PDH. The MDH flux is here the lumped together with the AAT flux
without loss of generality.

of the development of insulin deficiency called lipotoxicity [81]. In this context,
the so-called Randle cycle, which defines an inhibitory influence by FO on glu-
cose oxidation, is thought to be operative, via fatty acid inhibition of PDH and
citrate inhibition of PFK [82]. Especially PDH is thought to be crucial in this
respect, since it is heavily regulated both via metabolite modulation and by
phosphorylation and dephosphorylation.

In the study presented in paper V, the objective was to gain a better the-
oretical understanding of the interface between the glycolysis, FO, and the
mitochondrial metabolism. Also, we investigated how FO may influence the
anaplerotic flux, something that to our knowledge still has to be done exper-
imentally. Further, we investigated the effect of PDH regulation on FO and
anaplerosis. For this, we considered the enzymatic reactions depicted in figure
5.9, which constitute a part of the larger system of paper IV. Here, however,
we employed the methods of MCA for the analysis. This enables the exact
expression of different control coefficients in terms of elasticities. The analyti-
cal results thus obtained are more general than the numerical results of paper
IV, since they are not hampered by the inexhaustive inventory of a huge pa-
rameter space. The drawback is that they are limited to a smaller part of the
metabolism.

The steady-states of this system are solutions to the equation Nj = ẋ = 0,
where x = (x1, x2, x3, x4)

T , and j = ( jPDH, jPC, jCS, jM/A, jGPDH, jFO)T , where
M/A denotes MDH/AAT. The stoichiometry is described by

N =




0 1 −1 1 0 0
−1 −1 0 0 1 0
1 0 −1 0 0 1
−1 0 1 0 0 −1


 .
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The matrix N is reduced to the full-rank matrix NR, via a the link matrix L so
that N = LNR, accordingly:

NR =




0 1 −1 1 0 0
−1 −1 0 0 1 0
1 0 −1 0 0 1


 and L =




1 0 0
0 1 0
0 0 1
0 0 −1


 .

We write the matrix D of unscaled elasticities as (see figure 5.9):

D =




0 DPDH
2 DPDH

3 DPDH
4

DPC
1 DPC

2 DPC
3 0

DCS
1 0 DCS

3 DCS
4

DM/A
1 0 0 0
0 0 0 0
0 0 DFO

3 DFO
4




.

We may make the signs of the elasticities explicit, according to the mass flow
and modulatory interactions defined in figure 5.9:

sgn (D) =




0 1 −1 1
−1 1 1 0
1 0 1 −1
−1 0 0 0
0 0 0 0
0 0 −1 1




.

Here it is assumed that DM/A
1 < 0. Strictly, DM/A

1 should be viewed as an
overall elasticity which should be measured by varying x1 while keeping x2,
x3 and x4 constant. It is not entirely trivial to determine the sign of DM/A

1 ;
cf. paper V. Note also that we have neglected any feedback on the rate of the
glucose oxidation rate.

I will here account for a representative selection of the results presented
in paper V. Proceeding with the differentiation according to equation 4.2 and
taking sgn (D) into consideration, we find that

CPDH
FO = (−DCS

1 DPDH
2 DPC

3 + DPC
1 DPDH

2 DCS
34 + DM/A

1 DPC
2 DPDH

34 +

+ DM/A
1 DPDH

2 DPC
3 − DCS

1 DPC
2 DPDH

34 )/K < 0, (5.5)

where

K = −DM/A
1 DPDH

2 DPC
3 − DM/A

1 DPC
2 DFO

34 − DM/A
1 DPDH

2 DCS
34 −

− DPC
1 DPDH

2 DFO
34 + DCS

1 DPDH
2 DFO

34 + 2DCS
1 DPC

2 DPDH
34 −

− 2DPC
1 DPDH

2 DCS
34 − DM/A

1 DPDH
2 DFO

34 + DCS
1 DPC

2 DFO
34 −

− DM/A
1 DPC

2 DPDH
34 − DM/A

1 DPC
2 DCS

34 + 2DCS
1 DPDH

2 DPC
3 > 0.

Further,
CPC

FO = −CPDH
FO > 0, (5.6)
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and

CCS
FO = (DCS

1 DPDH
2 DPC

3 + DCS
1 DPC

2 DPDH
34 − DM/A

1 DPDH
2 DCS

34 −
− DM/A

1 DPC
2 DCS

34 − DPC
1 DPDH

2 DCS
34 )/K > 0. (5.7)

Equation 5.5 ascertains that an increased FO flux will decrease the flux via PDH
by means of acute metabolic regulation. The expression contains five terms, all
negative, only two of which contain the factor representing ac-CoA inhibition
of PDH: DPDH

34 . This is the feedback interaction usually thought to constitute
a metabolic cause of the Randle effect of FO on PDH. Two of the remaining
terms contain the factor DPC

3 and thus represent regulation via (dependent on)
ac-CoA activation of PC. There is also the term containing the factors DPC

1 DCS
34 ,

which represent regulation of PC by oxaloacetate and regulation of CS by CoA
and ac-CoA. These three latter terms contribute to FO down-regulation of PDH
activity, although this is not intuitively clear from a quick inspection of the vi-
sual representation of the system (figure 5.9). Hence, these interactions have
(to our knowledge) never been pointed out when discussing FO regulation of
the PDH flux. Furthermore, phosphorylation of PDH, which is activated by
ac-CoA, will further down-regulate the PDH activity on a longer timescale.
Equation 5.6 asserts that the PC flux is increased by FO, while the PDH flux
is decreased. Thus, the anaplerotic flux is increased by FO. This is also quali-
tatively in agreement with the numerical results presented in paper IV, which
pertain to the larger model depicted in figure 5.3. This prediction has important
implications for the β-cell. Since the anaplerotic flux is positively correlated to
insulin secretion via the KATP-independent pathway, an increased FO should
potentiate this pathway. Also, equation 5.7 tells us that an increased FO in-
creases the total flux via CS regardless of whether CS is sensitive to CoA and
ac-CoA.

We furthermore find that

CPC
PDH = DPC

2 (DM/A
1 DCS

34 − DCS
1 DFO

34 + DM/A
1 DFO

34 )/K < 0, (5.8)

and that
CFO

PDH = DPC
2 DFO

34 (DM/A
1 − 2DCS

1 )/K < 0.

Thus, an increased PDH activity will lower the anaplerotic flux and the FO. The
latter is precisely along the conventional thinking of this part of the mitochon-
drial metabolism. PDH is thought to be down-regulated via phosphorylation
during starvation, in order to stimulate FO and lower the glucose usage. The
reciprocal relationship between PDH and PC flux expressed by equation 5.8
suggests that the anaplerosis is attenuated by an activation of PDH. Whether
this property of the part of the mitochondrial metabolism analyzed here is
valid in the intact β-cell should be analyzed experimentally.

Several more derivations like the ones described above were made in paper
V. I here summarize the main conclusions from the study:

• PDH exerts negative control over FO, but not on GO.

• PDH exerts negative control over the anaplerosis.

• FO exerts control over PDH via several interactions in addition to the
regulation by CoA and ac-CoA.
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• Increased FO will increase anaplerosis, but not necessarily so-called
pyruvate cycling.

• Increased Ca2+ concentration does not stimulate anaplerosis.

• PDH exerts positive control over the M/A reaction, while PC exerts neg-
ative control over it.

• CS and FO are interregulated via a negative feedback loop.

• The intracellular milieu in the β-cell is optimized for control by PDH.

• Ultrasensitivity in the regulation by GO over the anaplerosis is possible.

On Oscillations in the TCA Cycle

Recently, MacDonald et al. [83] made the remarkable observation of sustained
minute-scale oscillations in citrate levels in isolated mitochondria from liver,
pancreatic islets, and INS-1 insulinoma cells and in intact INS-1 cells. The bio-
chemical mechanism behind these oscillation is unknown, but since they oc-
curred in isolated mitochondria, a glycolytic origin is ruled out. The authors
proposed a putative mechanism for the generation of these oscillations, and I
cite from their paper:

“A plausible explanation for the regulation of citrate oscillations can be
formulated on the basis of our current data plus what is known from
decades of research on the citric acid cycle. Within an individual os-
cillation, as the citrate level increases and then plateaus, its rate of
synthesis should begin to decrease because citrate synthase is inhibited
by its product citrate and also by succinyl-CoA, the product of the α-
ketoglutarate dehydrogenase reaction. In addition, the citrate level should
decrease via its metabolism. A high NAD level should favor increased
flux through the reactions catalyzed by NAD-isocitrate dehydrogenase
and α-ketoglutarate dehydrogenase, thus increasing the rate of citrate
metabolism. The fact that the citrate profile exactly mirrors the NAD(P)
profile in INS-1 cell mitochondria is consistent with this idea. Concomi-
tantly with the metabolism of citrate, the NAD level will decrease from
its reduction to NADH, and the NADH level will increase. The resulting
lower NAD/NADH ratio will decrease flux through the dehydrogenase
reactions. As the citrate and the NAD/NADH ratio reach their nadirs,
the low citrate level will permit its rate of synthesis to increase, and the
low NAD/NADH ratio will slow the rate of citrate metabolism. This will
contribute to the ascending part of the citrate profile.”

This is a striking example of how the verbal expression of a dynamical model
may be insufficient for the assessment of its behavior, as mentioned in the in-
troduction of this thesis. Let us reformulate the model described above as a
two-dimensional dynamical system, as schematically depicted in figure 5.10.
This model is a condensed version of the verbal model cited above. The only
thing not included is the inhibition by succinyl-CoA of CS, which we will re-
turn to later. The reaction “ox” is the NAD consumption by other dehydroge-
nases than IDH, and NADH consumption lumped together, i.e.

vox = vNADH cons. − vNAD cons..
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Figure 5.10: Scheme of the metabolites and reactions proposed by MacDonald et al.
[83] to generate oscillations in the mitochondrial metabolism. IDH stands for isocitrate
dehydrogenase, while Kaco is the equilibrium constant of the aconitase catalyzed reac-
tion.

Denoting the citrate concentration as σ and the NAD concentration as ν, the
model may be formulated as an ODE system:

σ̇ = f × (vcs (σ)− f × vIDH (σ , ν))
ν̇ = vox (ν)− vIDH (σ , ν) . (5.9)

where, just as in the model described in paper IV, the aconitase reaction, which
converts citrate to isocitrate, is considered to be in quasi-equilibrium with equi-
librium constant Kaco, which yields the factor f = 1/ (1 + Kaco). We use the
theory described in section 4.4 and examine the trace of the Jacobian J of the
system:

TrJ = f ×
(

∂vCS

∂σ
− ∂vIDH

∂σ

)
+

∂vox

∂ν
− ∂vIDH

∂ν
< 0.

The trace has to be negative, since all its terms are negative. This is fairly easy
to see. In the case of ∂vox

∂ν
, we note that vNADH cons. has to decrease with an

increasing NAD concentration, if the pool NAD + NADH is assumed to be
constant and the NADH consumption is assumed to be positively influenced
by NADH and possibly negatively influenced by NAD. Also, vNAD cons. should
increase with increasing NAD concentration if product inhibition by NADH of
the dehydrogenase reactions has not taken over completely. We also examine
the determinant ∆ of the Jacobian:

∆ = f ×
(

∂vox

∂ν

(
∂vCS

∂σ
− ∂vIDH

∂σ

)
− ∂vCS

∂σ
∂vIDH

∂ν

)
> 0.

From table 4.1 it immediately becomes clear that a fixpoint of system 5.9 is sta-
ble; either a node or a spiral node. The description of MacDonald et al. [83]
cited above concerns only the case when the fixpoint is a spiral node. The
verbal description is correct in its logic but not sufficient to explain the whole
picture. It misses the fact that the fixpoint is an attractor. The oscillations it de-
scribes will eventually vanish, and thus, if we forget the inhibition by succinyl-
CoA of CS which was mentioned only in passing in the verbal description, the
proposed model of MacDonald et al. [83] is not a plausible candidate for gen-
erating sustained oscillations in the citrate concentration. Now, if we consider
also the inhibition by succinyl-CoA of CS, the picture actually becomes slightly
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different. A negative feedback with delay, i.e. from a metabolite several enzy-
matic steps away from the inhibited enzyme, may form the core of an oscillator
[84]. This grants the possibility that the inhibition of CS by succinyl-CoA may
cause the system to oscillate. An investigation of the plausibility of this given
the peculiarities of the TCA cycle is certainly warranted.



Chapter 6

Conclusions: Summary of
Results and Suggestions for
Further Investigations

The β-cell is beginning to emerge as a classic in the field of biophysical mod-
eling. The field of theoretical β-cell research dates back to when the complex
dynamical patterns of its electrophysiology was examined in a mathematical
model by Chay and Keizer [85]. This classic paper is a showcase of how the
interplay between quantitative theory and experimental research is vital to sci-
entific progress. The model predicted sawtooth-shaped fast Ca2+ oscillations.
The shape of the oscillations were subsequently shown to resemble square-
waves, which led to refinements of the theoretical model and a better under-
standing of the mechanisms behind the fast electrical activity (see paper III
for a review of the early β-cell models). Since the appearance of this paper,
there has been a continuous stream of modeling studies concerning the β-cell
electrophysiology [86], see also paper III.

This thesis addresses a research area previously poorly covered by theo-
retical modeling: the metabolism of the β-cell. The models developed here
cover the glycolysis and the mitochondrial metabolism and address crucial hy-
potheses concerning GSIS such as oscillations in the glycolysis and cataplerotic
fluxes. Below, I suggest how the models could be developed further, and how
they could be connected to other models of the β-cell. In fact, the GSIS of the
β-cell presents a peculiar challenge for the scientific community in the sense
that it involves both metabolic and electrical events. To my knowledge, few
biophysical modeling studies have integrated these two areas. The study of
Bertram et al. [87] is one of those few. This study integrates an earlier gly-
colysis model [88] with an unvalidated phenomenological model for the cou-
pling between the glycolysis and mitochondrial ATP production [89], where
dATP/dt ∝ ATP − ADP × e(1+vGPDH) f (Ca2+)/τ , with f

(
Ca2+

)
being nega-

tively proportional to the Ca2+ concentration and τ being a time constant. It
is hoped that the models presented in this thesis fills some of the gaps in those
models. I here take the opportunity to summarize the main conclusions of the
present thesis.

47
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• The theoretical model of β-cell glycolysis (paper I) supports the notion
that the glycolysis is inherently oscillatory at sufficiently high glucose in-
flux. The enzyme aldolase is proposed to be important for the glucose in-
flux threshold between the stationary and oscillatory states. The enzyme
phosphofructokinase is proposed to control the oscillation frequency.

• The generalized reversible Hill equation derived in paper II is shown to
describe the complex kinetics of mammalian muscle type phosphofruc-
tokinase (the type found in the β-cell) better than, to my knowledge, any
previously proposed equation. Yet, the generalized reversible Hill equa-
tion has fewer and operationally more well-defined parameters than any
previous equation concerning this enzyme.

• A model of the mitochondrial metabolism of the β-cell was presented
in paper IV. The model, sporting ten dynamic variables, describes the
TCA cycle, glycolytic pyruvate production, and the NADH shuttles.
The model successfully reproduces much empirical data. It predicts a
particularly strong glucose induced signal to cytosolic NADPH produc-
tion, which encourages further experimental investigation of this puta-
tive coupling factor of GSIS (see figure 1.2). The model further predicts
that the mitochondrial malate dehydrogenase reaction may be pulled in
the backwards direction by the malic enzyme reaction.

• A metabolic control analysis of the interface between the glycolysis and
the mitochondrial metabolism (paper V) reveals that fatty acid oxidation
always will stimulate the anaplerosis. Pyruvate dehydrogenase, a heav-
ily regulated enzyme, exerts negative control over the fatty acid oxidation
rate and the anaplerosis, and the biochemical milieu of the β-cell seems
to be optimized for PDH to exert its control.

• The biochemical design of the β-cell allows for ultrasensitivity of the
anaplerosis to the GO rate (paper V).

• The numerical results of paper IV concerning the NADH shuttles and
the experimental results of Eto et al. [75] have been given a theoretical
explanation based on modular metabolic control analysis (section 5.2).

• The notion that citrate inhibition of citrate synthase is the basis of the
oscillations in mitochondrial metabolism found recently [83] is proposed
to be flawed (section 5.2).

A consistent ambition of the work that constitute this thesis has been to, based
on the modeling work, generate experimentally testable predictions (falsifiable
in the language of Popper). This has been done in the hope that the theories
may give ideas to experimental work whose outcome leads to the refinement
(or revolutionary refutal) of the theoretical model: in other words to spawn the
fruitful interplay between theory and experiments, which has such a venerable
history in other natural sciences such as chemistry, physics and meteorology.

I finally want to remark on a more general methodological topic. In this
thesis, I have presented analyses not of the biochemistry of the entire β-cell,
but of different modules thereof: the glycolysis, NADH shuttles/TCA cycle, the
entry point of carbons into the TCA cycle, and of citrate/isocitrate formation
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and degradation. This was certainly done in the belief that an understanding
of these modules is valuable also in the context of understanding an entire β-
cell. This belief was elegantly rationalized by Simon [90] who envisioned the
interactions of the cellular metabolism as described by an interaction matrix,
which supposedly could be put in something close to block-diagonal form. The
author argues that the entire metabolism may be possible to understand via the
more fundamental understanding of the modules that constitute it. A more
recent discussion on this matter [91] reaches basically the same conclusions.

6.1 Proposals for Further Research

During the course of the studies presented in this thesis, several ideas have
come to my mind that I have not had time to pursue. I briefly list some of
these below. The list is focused on the synthesis of the existing models to new
models with a somewhat broader scope, i.e. to connect parts or modules aim-
ing for a better understanding of “the whole”. I want to emphasize that this
probably is not the same as literally connecting the models in the sense that all
variables and parameters are retained. Rather, intelligent simplifications need
to be made. The level of description suitable when analysing the behaviour
of a module is probably not the same level suitable for analysis of the whole.
The list below will take hard work and a long time to complete for the serious
scientists who aim for scientific quality and clarity. But last but not least it also
has the potential to be a genuinely fun and stimulating work.

• A model of the ATP production and the control thereof by the mitochon-
drial metabolism and Ca2+needs to be developed — perhaps using the
model of Magnus and Keizer [92] as a template. This model could be
connected to the TCA cycle model presented in chapter 5.2 and paper
IV to form a more complete picture of the mitochondrial metabolism. In
particular, the controversial question whether Ca2+ activates or inhibits
ATP production (see figure 6.1) should be addressed. Another path of
investigation may be to analyze how Ca2+ feedback on the regulation of
PDH affects the anaplerosis (c.f. the discussion in section 5.2). The search
for a possible mechanism responsible for the generation of citrate oscilla-
tions in isolated mitochondria could also be pursued with the aid of such
a model.

• The model of mitochondrial metabolism could be connected with the ex-
isting glycolysis model. A central question is then how feedback by ATP,
AMP and citrate influence the control of slow glycolytic oscillations.

• The unified model of the glycolysis and mitochondria may then be con-
nected with existing models of β-cell electrophysiology. Important con-
nection points will be the intracellular calcium concentration (which af-
fects the metabolism e.g. via the mitochondria) and the ATP/ADP ratio.
Also, a possible feedback of calcium on the glycolytic oscillation genera-
tor, PFK, may be operative via calmodulin [94].

• Probably only about 50 insulin granules are organized in a “readily re-
leasable pool” [95], whilst recruiting of “dormant” granules is necessary
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Figure 6.1: The scheme in figure 1.2 is here elaborated. The influence of Ca2+ on the
ATP homeostasis is complex, with Ca2+ either inhibiting or activating mitochondrial
ATP production and activating ATP consumption by ATPases. Citrate and ATP inhibit
PFK [39], and LC-CoA may affect the KATP-channel [93].

for normal insulin secretion. How should this insulin release system be
modeled? Insulin release was modeled as long as thirty years ago by
Grodsky [96, 97]. It is time for the theories developed in these studies to
be updated.

• The glycolysis model of paper I is certainly amenable for further devel-
opment. For instance, how might PFK-2 [98], which converts FBP to
fructose-2,6-bisphosphate, an activator of PFK, affect the behavior of the
β-cell glycolysis?

• The FO and, specifically, the feedback loop via malonyl-CoA and CPT-1
is a suitable subject for further modeling studies.

• The creatine/phosphocreatine system can be viewed as spatial and tem-
poral buffers both in the cytosol as well as in the mitochondria and is
operative in the β-cell [99]. Its role in regulating β-cell ATP/ADP ratio
and activation of the K+-ATP channels should be investigated theoreti-
cally.

• The critical reader has noted that the models in this thesis pertain to sin-
gle β-cells. While individual β-cells exhibit a great deal of variability in
the frequency of e.g. Ca2+ oscillations, β-cells within an islet are synchro-
nized, and the frequency of whole islet oscillations vary to a lesser degree.
Since the cells within an islet are electrically and chemically coupled, a
fuller understanding of the behavior of islets demands modeling studies
executed on a multicellular level. Early studies on this subject [100] were
fruitful, and it should soon be time to integrate the metabolism into this
kind of models. Recent experimental data points towards ATP being an
important player in the synchronization of β-cell oscillations [101] which
should be taken into consideration in the modeling work. Yet another
question is how different islets synchronize to generate the insulin pulses
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seen on a physiological level. There is here room for the employment of
general theories for the synchronization of biological oscillators [102].
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