
Logics of Knowledge and Cryptography

Completeness and Expressiveness

MIKA COHEN

Doctoral Thesis in Teleinformatics

Stockholm, Sweden 2007

TRITA-CSC-A 2007:11
ISSN-1653-5723
ISRN-KTH/CSC/A–07/11–SE
ISBN 978-91-7178-705-7

School of Computer Science and Communication
KTH

SE-100 44 Stockholm
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i teleinforma-
tik fredagen den 15 juni 2007 kl. 10.00 i E2, Lindstedtsvägen 3, Kungl Tekniska
högskolan, Stockholm.

© Mika Cohen, maj 2007

Tryck: Universitetsservice US AB

iii

Abstract

An understanding of cryptographic protocols requires that we examine the knowledge
of protocol participants and adversaries: When a participant receives a message, does she
know who sent it? Does she know that the message is fresh, and not merely a replay of
some old message? Does a network spy know who is talking to whom?

This thesis studies logics of knowledge and cryptography. Specifically, the thesis ad-
dresses the problem of how to make the concept of knowledge reflect feasible computability
within a Kripke-style semantics. The main contributions are as follows.

• A generalized Kripke semantics for first-order epistemic logic and cryptography,
where the later is modeled using private constants and arbitrary cryptographic op-
erations, as in the Applied Pi-calculus.

• An axiomatization of first-order epistemic logic which is sound and complete re-
lative to an underlying theory of cryptographic terms, and to an omega-rule for
quantifiers. Besides standard axioms and rules from first-order epistemic logic, the
axiomatization includes some novel axioms for the interaction between knowledge
and cryptography.

• Epistemic characterizations of static equivalence and Dolev-Yao message deduction.

• A generalization of Kripke semantics for propositional epistemic logic and symmetric
cryptography.

• Decidability, soundness and completeness for propositional BAN-like logics with re-
spect to message passing systems. Completeness and decidability are generalised to
logics induced from an arbitrary base of protocol specific assumptions.

• An epistemic definition of message deduction. The definition lies between weaker
and stronger versions of Dolev-Yao deduction, and coincides with weaker Dolev-Yao
regarding all atomic messages. For composite messages, the definition withstands a
well-known counterexample to Dolev-Yao deduction.

• Protocol examples using mixes, a Crowds style protocol, and electronic payments.

Sammanfattning

För att kunna förstå kryptografiska protokoll behöver vi fråga oss vilken kunskap
protokolldeltagare och angripare tillägnar sig under protokollets gång. När en protokoll-
deltagare tar emot ett meddelande, behöver vi fråga oss: Vet hon vem som har skickat
det? Vet hon om meddelandet är nytt eller återanvänt? Vet en nätverksspion vilka proto-
kolldeltagare som just nu kommunicerar med varandra?

I den här avhandlingen undersöker vi logiker för kunskap och kryptografi. Vi behandlar
frågan hur man kan få kunskapsbegreppet att reflektera praktisk beräkningsbarhet inom
en Kripkeliknande semantik. Vi presenterar följande bidrag:

• En generaliserad Kripkesemantik för första ordningens epistemisk logik och krypto-
grafi, där den senare representeras av privata konstanter och godtyckliga kryptogra-
fiska operationer, liksom i tillämpad pi-kalkyl.

• En axiomatisering av första ordningens epistemisk logik som är sund och fullständig
relativt dels en underliggande teori om kryptografiska termer, dels en omega-regel för
kvantifikatorer. Utöver standardaxiom och regler från första ordningens epistemisk
logik inkluderar axiomatiseringen några nya axiom för samspelet mellan kunskap
och kryptografi.

• Epistemisk karakterisering av statisk ekvivalens och Dolev-Yao meddelandededuk-
tion.

• En generalisering av Kripkesemantik för epistemisk satslogik och symmetrisk kryp-
tografi.

• Avgörbarhet, sundhet och fullständighet för BAN-liknande satslogik. Fullständighet
och avgörbarhet lyfts till logik härledd från en godtycklig bas av protokoll antagan-
den.

• En epistemisk definition av meddelandededuktion. Definitionens omfång ligger mitt
emellan svagare och starkare versioner av Dolev-Yao deduktion. För atomära medde-
landen, sammanfaller definitionen med den svagare varianten av Dolev-Yao, medan
den för sammansatta meddelanden motstår ett välkänt motexempel mot Dolev-Yao-
deduktion.

• Protokollexempel som använder mixar, ett Crowds-liknande protokoll och elektronisk
betalning.

v

As we know, there are known knowns; there are things we
know we know. We also know there are known unknowns; that is
to say we know there are some things we do not know. But there
are also unknown unknowns - the ones we don’t know we don’t
know.

Donald Rumsfeld, former United States Secretary of Defense

vii

viii

Acknowledgements

First of all, I would like to thank Mads Dam, who has been an outstandingly good
supervisor: Dynamic and effectual, yet always flexible and open. On a personal
level, Mads’s genial and relaxed style and his good sense of humor has made working
together a great pleasure.

I also wish to thank the whole formal methods team for providing a friendly
and enjoyable atmosphere as well as many interesting discussions over lunch. More
specifically I would like to thank: Dilian Gurov for stepping in for Mads during
his sabbatical in Australia, and for helping me to structure my work. Dilian has
also become a good friend during the years. Irem Aktug, with whom I have been
fortunate enough to share an office for almost four years. A supreme roommate
and a reliable unix and tex support. In between the daily toils we have had many
laughs. I have also, at different times, enjoyed sharing offices with Thom Birkeland,
Wen Xu and Andreas Lundblad.

I am particularly grateful to my wife, Katie Asplund Cohen, for extensive and
valuable discussions on how to clarify and formulate ideas; Without her help, my
thesis would certainly be (even) less comprehensible. In every way, I am lucky to
have such an extraordinary wife.

I am also grateful to my undergraduate supervisor Krister Segerberg for in-
spiring me to continue studying after my masters and for introducing me to the
world of modal logic, and to Johan van Benthem for many intriguing and lengthy
discussions during my visit as an undergraduate at ILLC.

I would further like to thank Karl Meinke for critical help on first-order logic,
Michael O. Rabin for asking productive questions, Joachim Parrow for helping me to
plan my research at an early stage, Simon Kramer for lengthy discussions regarding
epistemic logic, Torben Braüner for prompt replies to my email bombardments and
Mårten Trolin for taking time to answer my questions on cryptography.

I would like to thank my supervisor Mads, my wife Katie and my father Ian
Cohen for comments and feedback on earlier drafts of this thesis.

Finally, I would like to thank both my parents for their generous support and
encouragement.

ix

Contents

Contents xi

1 Introduction 1

1.1 Security Protocols . 1

1.2 Formal Cryptography . 3

1.3 Message Deduction, Indistinguishability and Epistemic Logic 4

1.4 Standard Multi-Agent Semantics . 5

1.5 The Local State Omniscience Problem 6

1.6 BAN Logic . 7

1.7 Dolev-Yao Indistinguishability . 7

1.8 The Logical Omniscience Problem 9

1.9 Syntactic Approach to Knowledge 10

1.10 Knowledge De Re and Knowledge De Dicto 11

1.11 First-Order Epistemic Logic . 12

1.12 The Cryptographic Omniscience Problem 13

1.13 Contributions . 14

1.14 Publications . 15

I Propositional Epistemic Logic and Symmetric Encryption 17

2 Language and System 19

2.1 Language . 19

2.2 System . 20

2.3 Anonymity Example . 22

3 Kripke Semantics and Cryptography 27

3.1 The Logical Omniscience Problem 27

3.2 Classical Multi-Agent Knowledge . 29

3.3 AT-Style Semantics . 30

xi

xii CONTENTS

4 Permutation-Based Semantics 33

4.1 Relativized AT-style Indistinguishability 33

4.2 Permutation-Based Truth Condition 37

4.3 Weak Normality . 40

5 Message Deduction 43

5.1 Dolev-Yao Deduction . 43

5.2 Duck-Duck-Goose Counterexample 46

5.3 Message Deduction Reduced to Modality 49

5.4 Relationship to Weak Dolev-Yao . 53

6 Completeness for BAN-Like Theories 57

6.1 Classical BAN Logic . 57

6.2 BAN Theories . 59

6.3 Embedding of Classical BAN Logic 62

6.4 Theory Base . 64

6.5 Extended Message Passing Systems 65

6.6 Soundness, Completeness and Decidability 67

6.7 Completeness Construction . 68

II First-Order Epistemic Logic and Feasibly Computable Func-
tions 81

7 Relativized Static Equivalence 83

7.1 Static Equivalence . 83

7.2 Indistinguishability under Permutation 85

8 Generalized First-Order Kripke Semantics 87

8.1 Systems and Statements . 87

8.2 Counterpart Semantics Based on Static Equivalence 89

8.3 Interaction Between Knowledge and Cryptography 91

9 Security Protocol Examples 93

9.1 Mix . 93

9.2 Crowds . 95

9.3 Dual Signature . 96

10 Expressiveness Results 99

10.1 Characterization of Message Deduction and Static Equivalence . . . 99

10.2 Undefinability of the De Dicto Quantifier 100

10.3 Preservation Result for Non-normal Modality 101

10.4 Abstract Correspondence Results . 102

xiii

11 Axiomatization 105
11.1 Proof System . 105
11.2 Soundness and Completeness . 107
11.3 Abstract Counterpart Model . 108
11.4 Canonical Kripke Model . 109
11.5 Anonymous Non-inferred Items . 111
11.6 Rigid Operators . 112
11.7 Canonical Interpreted System . 114

12 Embedding of BAN and SVO 117
12.1 BAN-Like Modality . 117
12.2 SVO-Like Modality . 120

13 Concluding Remarks 121

14 List of Symbols for Part I 124

15 List of Symbols for Part II 127

Bibliography 129

Chapter 1

Introduction

Communication over the internet involves many security risks. When you order
an item from a web store, there is a risk that your credit card details leak to
unauthorized parties. When you download a piece of software or receive an e-mail,
there is a risk that the software or e-mail does not originate from the party from
which it purports to be. When you post a message through an instant messaging
service, there is a risk that someone can track the message back to you, even if you
yourself did not disclose your identity.

Security protocols are special programs that protect us against the security
threats posed by “adversaries” present on a communication network. For example,
a security protocol might ensure that the submitted credit card details remain
confidential, or that the downloaded software originates from the source from which
it claims to originate, or that messages cannot be tracked back to their sender.

However, it is not easy to design a security protocol: The designer has no
prior knowledge of the way adversaries on the network will act, and therefore must
consider how the protocol functions under all possible adversary behaviours. Some
possible adversary strategies can easily be overlooked.

There is a need, therefore, for mathematical tools that will assist software de-
velopers in analysing security protocols and in uncovering otherwise unforeseen
attacks. In this thesis, we contribute to the foundations for such tools.

1.1 Security Protocols

Security protocols are small distributed programs that provide security services
to network communication. Most security protocols rely on one-way functions,
i.e., functions that are easy to compute but infeasible to invert without additional
information. In other words, infeasible computational resources are required to
find the input which yields a given output. For example, a symmetric encryption
scheme consists of two one-way functions, encryption enc and decryption dec, such

1

2 CHAPTER 1. INTRODUCTION

that:

dec(enc(M, K), K) = M (1.1)

The encryption function takes a plaintext message M and a parameter, called the
key, K, and produces a ciphertext enc(M, K). The decryption function reverses
the process, and recovers the original plaintext M from enc(M, K) and the key K.
Thus, if you see the ciphertext enc(M, K) and you know the key K, you can extract
the plaintext M from the ciphertext.

Using the symmetric encryption scheme, two agents A and B can communicate
over a public network in a way that prevents any eavesdropping spy from learning
what is being said. Assume that A and B share a secret key K. To send a secret
message M to agent B over the network, agent A first encrypts M under K, and
then sends the encryption to B:

A −→ B : enc(M, K)

(The notation A −→ B : M means that agent A sends message M to agent B over
the public network.) Upon receiving the encryption, agent B can decrypt it using
K, and recover message M . A spy, who eavesdrops on the network traffic, might
observe the encryption enc(M, K) on the wire. But, since the spy does not know
the key K, the spy cannot (with feasible computational resources) recover M from
the encryption. Thus, M remains secret:

Secrecy Goal If B receives enc(M, K), the spy does not know that B sees M .

Of course, if the spy eavesdrops on the whole network route between agents A and
B, the spy can track the encryption enc(M, K) travel from A to B. Consequently,
the spy knows that A is talking to B; Their conversation is not anonymous.

However, more high-level security services, such as anonymity, can also be
achieved by the same means, namely one-way functions. But, it may require a
more complex communication protocol. As an illustration, consider the following
protocol for anonymous communication within a group of agents sharing a secret
key K. The group includes a special forwarding server, the mix, that receives as
input a sequence of encryptions from group members A1, . . . , An:

A1 −→ mix : enc(M1 to B1, K)

...

An −→ mix : enc(Mn to Bn, K)

where the encryption content Mi toBi signifies that the message Mi is intended for
agent Bi. Using the shared key K, the mix decrypts each input enc(Mi toBi, K)
and recovers the content Mi toBi. Once the mix has received n encryptions, it
sends each Mi to its specified destination Bi. But, the messages are sent in random

1.2. FORMAL CRYPTOGRAPHY 3

order:

mix −→ Bπ(1) : Mπ(1)

...

mix −→ Bπ(n) : Mπ(n)

for some random permutation π on {1, . . . , n}. The eavesdropping spy observes the
encryption enc(Mi toBi, K) travel from agent Ai to the mix, and later observes Mi

travel from the mix to agent Bi. But, since the spy lacks the key K, the spy cannot
decrypt enc(Mi toBi, K) to recover Mi. Therefore - this is the idea behind the
protocol - the spy is unable to link mix input enc(Mi toBi, K) to mix output Mi.
If so, the protocol allows group member Ai to send message Mi to group member
Bi, without the spy knowing who sent the message Mi:

Anonymity Goal 1 If agent B received message M , the spy does not know that
M originated from A.

Anonymity Goal 2 If agent B received message M , the spy does not know that
M did not originate from A.

1.2 Formal Cryptography

Security protocols are notoriously error prone. Even for simple protocols, like the
mix-based protocol sketched above, it is extremely difficult to foresee all possible
ways in which the adversary may act in order to subvert the protocol. For example,
unless you have seen a similar protocol before, you may easily overlook the fact that
the above protocol fails to meet its goals if the mix accepts the same input twice: If
the spy replays an input, exactly two inputs and exactly two outputs are identical,
hence the spy can link the two inputs to the two outputs, and consequently the
anonymity goals fail.

Over the past decades a number of mathematical techniques have been de-
veloped that help protocol designers analyze the security of their designs. In the
so-called computational approach to security, protocol analysis is based on com-
plexity and probability theory (cf. [13, 38]): A protocol is secure if an attacker,
in the form of an arbitrary randomized polynomial-time Turing machine, has only
negligible probability of success. Proofs in this approach are, however, often subtle
and error-prone, and intuition is easily lost in mathematical details.

The formal approach to security protocols, also known as the Dolev-Yao ap-
proach was initiated in [28]. Here, one-way functions, such as encryption and
decryption, are idealized in order to obtain models that are more intuitive and
tractable, with potentially better support for automation. Roughly, cryptography
is treated as an abstract data type: It is assumed that cryptographic objects can
only be manipulated using a restricted set of operations, which are governed by

4 CHAPTER 1. INTRODUCTION

some simple algebraic laws. For instance, in the case of symmetric cryptography,
it might be assumed that messages are only manipulated through the encryption
function enc and the decryption function dec, which satisfy the equation (1.1). Of
course, real encryption and decryption functions satisfy other equalities, besides
those induced by (1.1), and real encryptions (bitstrings) can be manipulated by
any number of different operations. On the other hand, many attacks on protocols
do not depend on the mathematical details of the cryptographic functions employed
in the protocol, but instead are due to the way these functions are used in com-
munication between agents, i.e., due to the protocol logic, as is the case with the
above replay attack (cf. [18]). A well-known example is the man-in-the-middle at-
tack on the Needham-Schroeder Public Key Protocol, found by Gawin Lowe more
than fifteen years after the protocol was introduced [61].

This thesis belongs primarily to the latter school of formal, as opposed to com-
putational, security protocol analysis. However, recent work has begun to bridge
the gap between the formal and computational approaches, with results showing
that protocols that are secure in a certain formal model are also secure in a certain
computational model (cf. [1, 5, 6, 8, 25, 63, 64] and section 1.7 below).

1.3 Message Deduction, Indistinguishability and Epistemic

Logic

An understanding of security protocols requires that we examine the knowledge of
agents: When an agent receives a message, does she know who sent it? Does she
know that the message is fresh, and not merely a replay of some old message? Does a
network spy know who is communicating with whom on the network? Consequently,
a definition of knowledge is a central concept in several formal approaches to security
protocol analysis.

A simple and frequently used notion of knowledge is Dolev-Yao message deduc-
tion [28]. Here, the information content is messages: An agent A deduces (“knows”)
a message M , if agent A on its own can obtain M through feasibly computable oper-
ations, starting from directly observed messages (such as messages that A received
and keys that A generated). For example, if agent A observes both the symmetric
encryption enc(M, K) and the key K then A deduces the message M . Some secur-
ity services can be formulated directly in terms of message deduction. For instance,
the secrecy goal in section 1.1 might be approximated:

B receives enc(M, K) → ¬spy deduces M

However, message deduction is a very limited form of knowledge. Security
services, besides some simple forms of secrecy, are not easily formalized in terms
of message deduction. Consider, for instance, the anonymity goals in section 1.1.
Clearly, anonymity does not mean that the spy cannot deduce the transmitted
message M or deduce the agent name A, since by assumption, the spy sees the
message on the wire and agent names are public knowledge.

1.4. STANDARD MULTI-AGENT SEMANTICS 5

A richer notion of knowledge can be obtained using indistinguishability rela-
tions. In process algebra (cf. [4, 32, 71]) and information flow analysis (cf. [73]),
knowledge is commonly defined in terms of an observational equivalence of pro-
grams: A program successfully hides a condition if varying the condition has no
observable effect. For example, the anonymity goals in section 1.1 may be captured
by stating that, roughly speaking, an instance of the protocol where agent A sends
message M to agent B and agent A′ sends message M ′ to agent B′ is observation-
ally equivalent (from the point of view of the spy) to an instance where agent A
sends M ′ to B′ and A′ sends M to B.

Indistinguishability-based knowledge is used also in opacity theory (cf. [15, 49]),
where knowledge is defined in terms of indistinguishability of protocol runs: A
condition F is opaque (“hidden”) to an observer if for every protocol run s satisfying
the condition F there is another protocol run s′ which does not satisfy the condition
F , yet s is indistinguishable from s′ (to the observer). For instance, the first
anonymity goal in section 1.1 means that the condition:

B received M ∧ A originated M (1.2)

is opaque to the spy, i.e., for every protocol run s satisfying (1.2), there is a run s′,
indistinguishable from s to the spy, that fails (1.2).

Epistemic logic – “the logic of knowledge” – is closely related to opacity theory
(cf. [31, 66]). Epistemic logic extends classical logic with a so called epistemic
modality 2A expressing knowledge of agent A: The formula 2AF is true if agent A
knows that condition F holds. Formally, 2AF holds at a protocol run s if condition
F holds at all indistinguishable runs s′:

s |= 2AF ⇔ ∀s′ : s ∼A s′ ⇒ s′ |= F (1.3)

where s and s′ range over runs (computation points) of the given protocol, and
s ∼A s′ means that runs s and s′ are indistinguishable to agent A. A protocol is said
to satisfy a logical formula if every run of the protocol satisfies the formula. Thanks
to the epistemic modalities, informal, high-level descriptions of security services
translate directly to epistemic logic. (We refer to [55] for a comprehensive dictionary
of security specifications in epistemic logic.) For instance, the two anonymity goals
in section 1.1 can be formalized, respectively, as follows:

B received M → ¬2spyA originated M (1.4)

B received M → ¬2spy¬A originated M (1.5)

In this thesis, we investigate the relationship between message deduction, indis-
tinguishability and epistemic modalities in contexts that involve cryptography.

1.4 Standard Multi-Agent Semantics

The semantics (1.3), known as Kripke semantics, is the standard semantics for the
epistemic modality. Clearly, if epistemic logic is to be used for describing security

6 CHAPTER 1. INTRODUCTION

protocols, i.e., programs, its Kripke semantics needs to be grounded [84], in the
sense that when a program (for instance, a distributed JAVA program) and a logical
formula are given, the semantics determines if the program satisfies the formula.
In effect, this means that the indistinguishability relation ∼A needs to be defined
in terms of runs (computations) of programs, rather than taken as a primitive.

Kripke semantics (1.3) has a standard form of grounded instantiation:

s ∼A s′ ⇔ s|A = s′|A (1.6)

where s|A is the local state of agent A at the run (computation point) s. Intuitively,
the local state s|A contains the evidence available to agent A at s. The precise
definition of a local state may vary somewhat depending on the notion of run
(computation point) used. For example, if runs s are sequences of input and output
actions, the local state s|A might be the sub-trace of s of those actions performed
by agent A. Combining the Kripkean truth condition (1.3) with (1.6), we obtain

s |= 2AF ⇔ ∀s′ : s|A = s′|A ⇒ s′ |= F (1.7)

where s and s′ range over computation points (runs) of the underlying protocol.
Thus, an agent knows a fact if its local evidence forces the fact to hold in the given
set of computations.

Today, the standard multi-agent semantics (1.7) is a mature research area; There
are many results and tools for model checking, i.e., for determining if (the set of
runs of) a given program satisfies a logical formula (cf. [35, 50, 58, 67, 80, 82]),
and there are numerous completeness results (cf. [33, 46, 81]). In fact, most model
checking techniques and completeness results concern epistemic logics extended
with temporal modalities, such as next-time modalities for “Next it will be the case
that” and future-time modalities for “It will always be the case that”. Axioms for
the interaction between epistemic and temporal modalities depend on the specifics
of the local state projection | (for instance, whether the local state grows over time),
but also on other factors, such as whether communication is synchronous or not.

Starting in the early 90’s, the standard multi-agent semantics (1.7) has been
applied extensively to computer security (cf. [12, 41, 42, 43, 44, 45, 82, 60, 75]).
The focus has been on anonymity properties, formalized in the manner of (1.4) and
(1.5) above.

1.5 The Local State Omniscience Problem

However, the standard multi-agent semantics (1.6) is problematic for security pro-
tocols that rely on one-way functions, such as encryption. Such protocols concern
knowledge in the sense of resource bounded knowledge, i.e., knowledge which is re-
stricted by limited computational powers for cryptographic calculations. Thus, in
specifications (1.4) and (1.5), the intended meaning of the epistemic modality 2spy

is something like “With feasible computational resources for cryptographic calcu-
lations, the spy can infer that”. The standard semantics does not reflect resource

1.6. BAN LOGIC 7

limitations for cryptographic calculations, since in the standard semantics, agents
know every property of their own local state, even those properties that require
infeasible cryptographic resources to calculate; Agents in the standard semantics
are local state omniscient. For example, assume that the local state of agent A
records the messages A sends and receives. Then, agent A knows if message M is
the encryption-content of some received encryption:

A received enc(M, K) |= 2A∃x.A received enc(M, x)

But, if A lacks the relevant key K, it might require infeasible computational re-
sources for A to calculate that M is part of a received encryption.

1.6 BAN Logic

Due to local state omniscience in the standard multi-agent semantics, applications
of epistemic logic to cryptography have mostly been based on proof systems, rather
than semantics. The first proof system combining epistemic logic and cryptography,
known as BAN logic, appeared in the late 80’s. Since then, BAN logic has spawned
many extensions and variations (cf. [7, 9, 27, 39, 51, 52, 57, 74, 77, 78, 83]). In
BAN-style analyses of a security protocol, the security goal – in most cases an
authentication goal – is formulated as a statement in epistemic logic. For instance:

2bank customer sent M

2bank 2merchantcustomer sent M

The security goal is then derived in the proof system, starting from more self-
evident assumptions about what happens during protocol execution, such as what
messages are sent, received or generated:

bank received M, bank generated nonce N

However, a BAN-style proof system with no semantics is unsatisfactory. Without
a semantics, it is unclear what is established by a derivation in the proof system:
A proof system is merely a definition, and as such it needs further justification.
Moreover, the restriction to proof system based protocol analysis is unfortunate.
Indeed, elsewhere in epistemic logic, semantically based techniques for analysing
protocols, for instance model checking (section 1.4), are preferred (cf. [47]).

1.7 Dolev-Yao Indistinguishability

There have been a few attempts at adjusting the standard multi-agent semantics
(1.7) to BAN-like logics. The style of adjustment was introduced in AT semantics
[7], which replaces the test for local state identity in (1.6) by a test for local state
indistinguishability:

s ∼A s′ ⇔ s|A ∼ s′|A (1.8)

8 CHAPTER 1. INTRODUCTION

where ∼ is an indistinguishability relation on local states, each local state being,
essentially, a sequence of messages. Approximately, two message sequences are
indistinguishable if they are identical up to content inside encryptions for which
the decryption key cannot be deduced. For instance, for symmetric cryptography,
the sequences K ·enc(”Y es”, K) and K ·enc(”No”, K) are distinguishable, since the
decryption key K can be (trivially) deduced from each sequence. On the other hand,
the sequences enc(”Y es”, K) · enc(”No”, K) and enc(”No”, K) · enc(”Y es”, K) are
indistinguishable, since the encryptions cannot be opened.

The original indistinguishability ∼ in [7] applies to symmetric cryptography
only. But, some later variants extend the relation to forms of asymmetric crypto-
graphy (cf. [15, 24, 77, 83]). Collectively, these indistinguishability relations are
referred to as Dolev-Yao indistinguishability relations, since they are all based on
formal (i.e., Dolev-Yao style) cryptography.

The common intuition behind Dolev-Yao indistinguishability relations is that
two message configurations are indistinguishable if every experiment — based on
a restricted set of available operations – produces the same result at both message
configurations. This intuition is made explicit in static equivalence [32], a general
form of indistinguishability which has recently received special focus. Static equi-
valence is a relation between stores, i.e., mappings from store locations l1, l2, l3, . . .
to messages. Two stores σ and σ′ are statically equivalent if they satisfy the same
equality tests. I.e., σ and σ′ are statically equivalent, σ ≈ σ′, if

• σ(l1) = σ(l2) ⇔ σ′(l1) = σ′(l2).

• hash(σ(l1)) = σ(l3) ⇔ hash(σ′(l1)) = σ′(l3).

• decrypt(σ(l1), σ(l2)) = σ(l4) ⇔ decrypt(σ′(l1), σ
′(l2)) = σ′(l4).

• And similarly, for all equality tests built from store locations and feasibly
computable operations.

Static equivalence is defined with respect to an arbitrary collection of feasibly
computable operators – symmetric encryption and decryption, asymmetric encryp-
tion and decryption, random encryption and decryption, digital signatures, hash
functions, etc. – given by an equational theory. To model random asymmetric en-
cryption, for example, one might assume the weakest equational theory satisfying
the following equation:

dec(enc(M, pk(K), N), K) = M

Informally, pk produces a public key from a private seed K, enc encrypts the first
argument M using the second pk(K) as encryption key and the third argument N
as a random seed, and dec decrypts the first argument using the second argument
as decryption key. Depending on the specific choice of equational theory, static
equivalence can be decidable (cf. [2]).

Recently, computational soundness results linking Dolev-Yao indistinguishabil-
ity relations to computational models of cryptography have received attention (cf.

1.8. THE LOGICAL OMNISCIENCE PROBLEM 9

[1, 5, 6, 8, 25, 63, 64]). Roughly, it is shown that, given some assumptions on the
cryptographic primitives, if two message configurations are Dolev-Yao indistinguish-
able, then their interpretations in the computational setting are indistinguishable
to a computational adversary. This line of work was initiated in [6] with a com-
putational soundness result for the original AT-indistinguishability [7]. Recently,
computational soundness results have been obtained also for static equivalence, for
instance [1] for a language involving symmetric and asymmetric cryptography.

The AT-indistinguishability was first introduced in the context of Kripke se-
mantics, to provide a semantics for a BAN-like logic; Combining the Kripkean
truth condition (1.3) with (1.8), one obtains:

s |= 2AF ⇔ ∀s′ : s|A ∼ s′|A ⇒ s′ |= F (1.9)

Subsequent work on Dolev-Yao indistinguishability relations has, with a few ex-
ceptions (cf. [77, 83]), been outside the framework of epistemic logic. There are
some (sketched) soundness results for BAN logic derivates ([7, 77, 83]) with respect
to AT-style semantics (1.9), but no more substantial results. Most critically, there
are no completeness results; Completeness for BAN-like logics has remained an
open problem. Completeness results are important, even if we are not interested in
proof system based protocol analysis, since completeness results constitute strong
evidence that the semantics behaves as expected.

1.8 The Logical Omniscience Problem

Any Dolev-Yao indistinguishability might serve as a basis for Kripke semantics
(1.3). For instance, assuming that local states s|A are stores, we can consider
two computation points s and s′ indistinguishable to agent A if s|A and s′|A are
statically equivalent:

s ∼A s′ ⇔ s|A ≈ s′|A (1.10)

However, no matter what indistinguishability relation ∼A is used in Kripke se-
mantics – be it AT-style indistinguishability (1.8), static equivalence based indis-
tinguishability (1.10) or whatever - Kripke semantics (1.3) is subject to the so
called logical omniscience problem. In Kripke semantics (1.3), agents know all the
logical consequences of what they know, whether or not these consequences can be
computed with feasible resources for cryptographic computations:

F |= F ′ =⇒ 2AF |= 2AF ′ (1.11)

For instance, from the validity:

|= enc(M, K)contains M

logical omniscience yields:

|= 2Aenc(M, K)contains M (1.12)

10 CHAPTER 1. INTRODUCTION

Logical omniscience is problematic for security specifications such as (1.4) and (1.5),
even though they do not directly describe knowledge of cryptographic relationships.
Consider an instance of the anonymity protocol where the message Mi is hidden
from the spy under the shared key K:

A1 −→ mix : enc(enc(M1, K) toB1, K)

...

An −→ mix : enc(enc(Mn, K) toBn, K)

mix −→ Bπ(1) : enc(Mπ(1), K)

...

mix −→ Bπ(n) : enc(Mπ(n), K)

for some random permutation π on {1, . . . , n}. Anonymity goal (1.4) now becomes:

B received enc(M, K) → ¬2spyA originated enc(M, K) (1.13)

As the replay attack on the protocol illustrates, even if the protocol implementation
achieves secrecy:

B received enc(M, K) → ¬2spyexists M

the protocol implementation may still fail to provide anonymity, i.e., specification
(1.13) could fail. However, logical omniscience contradicts these intuitions, since
logical omniscience produces:

2spyA originated enc(M, K) |= 2spyexists M

from the validity:
A originated enc(M, K) |= exists M

As the logical omniscience problem highlights, accounting for the epistemic mod-
ality in cryptographic contexts is not merely a question of finding an appropriate
indistinguishability relation; Logical omniscience follows in Kripke semantics, no
matter which indistinguishability relation is chosen.

1.9 Syntactic Approach to Knowledge

The most common response to logical omniscience in epistemic logic is to abandon
Kripke-style semantics for a more syntactic account of knowledge (cf. [31]):

s |= 2AF ⇔ F ∈ χ(s|A) (1.14)

where the function χ associates a set χ(s|A) of statements to each local state s|A.
The knowledge function χ is left open, to be adjusted for each specific protocol
under consideration.

1.10. KNOWLEDGE DE RE AND KNOWLEDGE DE DICTO 11

There are a few different intuitions motivating (1.14) in the literature. In some
cases, the intuition is simply that χ(s|A) is the “knowledge base” available at s|A,
given as an explicit list of statements (cf. [29]). In other instances, the intuition
is that (s|A) is the set of statements that A is “aware” of at s, perhaps generated
from a base of primitive statements of which the agent is aware (cf. [30]). In these
instances, an agent is considered to explicitly know a statement if the agent is
aware of the statement and the agent knows the statement in the sense of standard
multi-agent semantics (1.7). In [59], completeness is shown for a logic combining
the awareness-modality (1.14), interpreted by arbitrary χ, the standard multi-agent
modality (1.7) and temporal modalities. In yet other cases, the intuition is that
χ(s|A) reflects the knowledge algorithm available at s|A: An agent knows a fact if
the agent can compute the fact using the available knowledge algorithm (cf. [40]).

Often, the knowledge function χ is defined by way of an inference relation (cf.
[54, 69]): χ(s|A) is the set of statements inferable from the base s|A. For certain
statements F that are about the local state s|A itself, it seems possible to provide
an inference relation for F ∈ χ(s|A) which is, at least approximately, intuitively
complete. In [43, 60], for instance, the knowledge function χ lifts the Dolev-Yao
message deduction relation (section 1.3) to statements approximately along the
following lines:

s |= A received M =⇒ A has M ∈ χ(s|A)

A has pair(M, M ′) ∈ χ(s|A) =⇒ A has M ∈ χ(s|A)

A has pair(M, M ′) ∈ χ(s|A) =⇒ A has M ′ ∈ χ(s|A)

A has enc(M, K), A has K ∈ χ(s|A) =⇒ A has M ∈ χ(s|A)

where A has M means that M occurs (as a sub-message) inside the local state of
agent A.

However, as soon as we are interested in what one part (agent) of a system knows
about another part (agent), the knowledge function χ has no generally applicable
definition (which even approximately is intuitively complete). We argue that leaving
the interpretation of χ open, begs to some extent the verification question the
logic is supposed to help us with, namely to determine what facts agents (protocol
participants and adversaries) are able to infer during the execution of the protocol.
Consider, for example, the anonymity specification (1.4) for the mix-based protocol
in section 1.1. To apply the semantics (1.14), we need to first to lay down the
conditions (for the given protocol) under which A originated M ∈ χ(s|spy). In
other words, we need to know the truth of the specification (1.4) itself.

1.10 Knowledge De Re and Knowledge De Dicto

In philosophical logic, a distinction is made between two ways in which terms can
refer inside the scope of an epistemic modality. To illustrate the distinction, say
that agent A receives the value enc(c, c′), where either of c, c′ may be unknown

12 CHAPTER 1. INTRODUCTION

to A. Is it then true that “A knows that A received enc(c, c′)”? Under the de
re interpretation (cf. [14]), the answer is yes: The value (“bitstring”) denoted by
enc(c, c′) is known by A to be received. On the other hand, under the de dicto
interpretation, the statement is about the term “enc(c, c′)” itself. In this case, the
statement might be false: Agent A need not know that the term used, “enc(c, c′)”,
applies to the value received. In previous sections, we have assumed that all terms
refer de re. Thus, A received M → 2AA received M has been considered intuitively
valid for all terms M . This assumption that all terms refer de re is common to
most combinations of epistemic logic and cryptography.

However, logical omniscience (1.11) contradicts resource-bounded knowledge
only if complex terms are assumed to refer de re. For instance, (1.12) ascribes un-
limited decryption power only if term enc(M, K) refers de re. Thus, if we instead
let complex terms refer de dicto, we regain logical omniscience as an acceptable rule.
This is attractive, since logical omniscience (also known as the rule of normality)
is fundamental to many results in modal logic.

Some mechanism to refer de re, however, is needed, since security goals may
concern knowledge of partly undecryptable messages (cf. anonymity goals 1 and 2
in section 1.1, where the spy might be unable to decrypt M). In philosophical logic
(cf. [14]), it is customary to let variables x, y, z, . . . refer de re while letting closed
terms (terms built from constants and function symbols, but with no variables)
refer de dicto. Following this custom, the de re statement:

A received x → 2AA received x

is intuitively valid, while the corresponding de dicto schema:

A received M → 2AA received M, all terms M

is intuitively invalid.

1.11 First-Order Epistemic Logic

It can be argued that quantifiers are so natural and convenient for program spe-
cifications that they should be brought explicitly into specification languages based
on epistemic logic (cf. [10]). In a security protocol setting, the combination of
quantifiers and epistemic modalities allows nuanced descriptions about knowledge
of cryptographic structure. Indeed, understanding what agents know of crypto-
graphic structure is sometimes essential for understanding a security protocol. For
instance, in the mix-based protocol in section 1.1, we need to determine if the spy
can link an encryption x which the mix inputs to an output y, i.e., if the spy can
know that the input x contains the output y. As another example (to be developed
in more detail in section 9.3), consider a protocol for secure electronic payments
involving three parties: A customer, a merchant, and a bank. To place an order,
the customer sends a message xM containing two sections:

1.12. THE CRYPTOGRAPHIC OMNISCIENCE PROBLEM 13

• An order section containing a list xO of the products to be purchased.

• A payment section containing payment details xP (credit card number, etc.).

The message xM is intended to be asymmetrically opaque: The merchant should
be able to determine only the order instruction xO, and the bank should be able to
determine only the payment instruction xP . Thus, we might wish to check if:

• The merchant knows that xM contains order details xO.

• The merchant does not know that xM contains payment details xP .

• The bank knows that there exists some order details yO such that the mer-
chant knows that xM contains order details yO.

and inversely for the banks knowledge.
Moreover, quantifiers allow an embedding of the propositional language where

complex cryptographic terms, such as enc(M, K), refer de re into the first-order
language where only variables x refer de re. To illustrate the embedding, the
propositional statement

2A2BA received enc(M, K)

where the term enc(M, K) refers de re can be translated to:

∃x.x = enc(M, K) ∧ 2A2BA received x

where only x refers de re.
While completeness for first-order modal logic is an active research area in philo-

sophical logic (cf. [14, 23, 34, 36]), completeness for first-order epistemic logic with
respect to semantics that are grounded, i.e., semantics without abstract epistemic
primitives, has not received much attention in the literature. In [10], completeness
with respect to standard multi-agent indistinguishability (1.6) is shown for a first-
order epistemic logic, but we are not aware of any other grounded completeness
results.

1.12 The Cryptographic Omniscience Problem

If we let variables refer de re and closed terms refer de dicto, logical omniscience is
intuitively valid. However, an aspect of the logical omniscience problem remains.
For languages with variables, the basic Kripke semantics generalizes (1.3) in the
straightforward way ([14]):

s, V |= 2AF ⇔ ∀s′ : s −→A s′ ⇒ s′, V |= F (1.15)

where V is an assignment of messages M to variables x. If the semantics is groun-
ded, mathematical operations do not depend on the current run (computation state)
s, and so term equalities depend only on the assignment:

s, V |= t = t′ =⇒ s′, V |= t = t′

14 CHAPTER 1. INTRODUCTION

for any open terms t and t′ built from one-way operations and variables x. For
instance,

s, V |= x = dec(y, z) =⇒ s′, V |= x = dec(y, z)

Consequently, in basic Kripke semantics (1.15), agents know all cryptographic
equalities, which makes them cryptographically omniscient :

t = t′ |= 2A t = t′ (1.16)

For example,

x = decrypt(y, z) |= 2Ax = decrypt(y, z)

Thus, knowledge of an equality does not reflect that the equality is feasible to com-
pute. Instead, the epistemic modality is vacuous on cryptographic equations. In
fact, all counterexamples to logical omniscience (for languages with de re reference
of complex cryptographic terms) translate directly into counter examples to cryp-
tographic omniscience (for languages with de re reference of variables and de dicto
reference of complex terms).

1.13 Contributions

In this thesis, we study the combination of epistemic logic and formal cryptography.
We address the problem of how to reflect feasible computability within a Kripke-
style framework. The contributions are as follows.

1. A generalized Kripke semantics for first-order epistemic logic and crypto-
graphy, the latter modeled using private constants and arbitrary crypto-
graphic operations, as in the Applied Pi-calculus [32]. First-order Kripke
semantics is generalized by updating the assignment (of data to logical vari-
ables) as we follow the epistemic accessibility relation from a system state
to an indistinguishable system state. As a result, cryptographic omniscience
is avoided. The epistemic accessibility relation and the update to assign-
ments are determined by static equivalence [32], as reformulated in a manner
reminiscent of framed bisimulation [3].

2. An axiomatization of first-order epistemic logic which is sound and complete
relative to an underlying theory of cryptographic terms, and to an omega-
rule for quantifiers. Besides standard axioms and rules from first-order epi-
stemic logic, the axiomatization includes some novel axioms for the interaction
between knowledge and cryptography. The axiomatization is illustrated by
an embedding of BAN-like [16] proof rules.

3. Epistemic characterizations of static equivalence and Dolev-Yao message de-
duction [28].

1.14. PUBLICATIONS 15

4. A generalization of propositional Kripke semantics for symmetric crypto-
graphy. While the above first-order semantics updates the assignment, the
propositional semantics updates the predicated term M inside the evaluated
statement F (M). As a result, logical omniscience is avoided. The epistemic
accessibility relation used is in the tradition of AT-indistinguishability [7].

5. Decidability, soundness and completeness for propositional BAN-like [16] lo-
gics with respect to message passing systems. Completeness and decidability
are generalized to logics induced from an arbitrary base of protocol specific
assumptions.

6. A novel epistemic definition of message deduction. The definition lies between
weaker and stronger versions of Dolev-Yao deduction, and coincides with
weaker Dolev-Yao regarding all atomic messages. For composite messages,
the definition withstands the well-known Duck-Duck-Goose counterexample
[43] to Dolev-Yao deduction.

7. Protocol examples using mixes [17], a Crowds [70] style protocol, and elec-
tronic payments [62].

The completeness result (2) above is the main technical result in the thesis. Result
(5) (excluding soundness) depends on a restriction to a finite message space, on a
somewhat artificial definition of message passing system and on a quasi-semantic
proof rule. Still, the completeness result (5) is the first attempt in the literature at
completeness for BAN-like logics. In contrast to result (5), the completeness result
(2) has no such ad hoc limitations.

The thesis is divided into two parts, which can be read independently. The first
part includes results (4), (5) and (6) above, while the second part includes results
(1), (2) and (3). The protocol examples (result (7)) are shared between the two
parts.

1.14 Publications

The thesis is based on the results originally presented in the following publications
(The numbers are from the bibliography at the end of the thesis):

[20] Mika Cohen and Mads Dam. Logical Omniscience in the Semantics of BAN
Logic. In Foundations of Computer Security Workshop (FCS), 2005, 121-132.

Chapters 2 - 5 are based on the above paper. In addition, these chapters
include the following results and examples which are not to be found in the
above paper: Lemma 4.1.6, example 4.1.2, lemma 4.1.8, example 4.1.6, ex-
ample 4.2.3, proposition 4.2.5, proposition 4.2.7, lemma 4.2.8, proposition
5.1.3, corollary 5.1.4, proposition 5.1.6, proposition 5.2.1, proposition 5.2.2,
proposition 5.2.3, proposition 5.3.6, lemma 5.4.1, corollary 5.4.2, lemma 5.4.4,
lemma 5.4.5, theorem 5.4.6, corollary 5.4.7.

16 CHAPTER 1. INTRODUCTION

[19] Mika Cohen and Mads Dam. A Completeness Result for BAN Logic. In
Methods for Modalities Workshop (M4M), 2005, 202-219.

Chapter 6 is based on the above paper. The completeness result in chapter
6 adjusts the axiomatization and completeness construction from the above
paper: Message passing systems no longer involve a special agent, the envir-
onment, which is not part of the logical language.

[21] Mika Cohen and Mads Dam. A Complete Axiomatization of Knowledge and
Cryptography. To appear in Logic in Computer Science (LICS), 2007.

Part II of this thesis is based on this paper. Part II includes the omitted
proofs from this paper, some results for the mix based example (section 9.1)
and some correspondence results (section 10.4).

The above papers are jointly authored with my supervisor, Mads Dam. Mads’s
role has mostly been that of an active supervisor: Mads has suggested results to
pursue and participated in developing proof strategies. The details of definitions
and proofs have been worked out by the present author.

Part I

Propositional Epistemic Logic and

Symmetric Encryption

17

Chapter 2

Language and System

In this chapter, we define the language and the systems to be used in part I of the
thesis.

2.1 Language

The set T of messages (terms) is defined by:

M, K ::= c | M · K | {M}K

where c ranges over a countable set C of message atoms (“constants”), · represents
pairing and {−}− represents symmetric encryption. Assume a finite subset A ⊆ C
of agent names A, B, C, . . . The sub-message relation ≤ is the smallest reflexive and
transitive relation on messages such that M ≤ {M}K, K ≤ {M}K , M ≤ M · M ′

and M ′ ≤ M · M ′.

Let p range over a countable set P of predicates with arities. We assume that P
includes the special unary predicates exists and A infers for each A ∈ A. Informally,
A infers M if agent A deduces (“knows”) the message M and can use it as decryption
key, and M exists if M is a sub-message of some message some agent or other acted
upon (for instance, sent, received or generated). The set F of statements F is
generated by:

F ::= p(M1, ..., Mn) | 2AF | F ∧ F | ¬F

where p has arity n. For practical reasons, we assume n ≥ 1. Epistemic possibility
3A, read “Agent A considers it possible that”, abbreviates ¬2A¬. Define disjunc-
tion (∨), implication (→), equivalence (↔) and truth (⊤) in the usual way. Write∧
1≤i≤n

Fi for the nested conjunction F1 ∧ · · · ∧ Fn, and let
∧

1≤i≤0

Fi be ⊤.

19

20 CHAPTER 2. LANGUAGE AND SYSTEM

2.2 System

We assume a standard form of multi-agent system [31, 66].1 A system is a set of
execution histories, intuitively the set of executions of some underlying program.
Each execution history is a finite sequence of actions, such as actions for sending
to and receiving from a common network. An agent observes some actions, but
not others. For instance, an agent might observe its own sending and receiving
actions, but not the sending and receiving of other agents. On the other hand, if
the agent is a spy who eavesdrops on the network, the agent might observe also the
communication actions of other agents.

The details are as follows. An execution history is a sequences h of the form:

h ::= i | h · π(M)

where π ranges over a primitive, non-empty set Π of actions, i : A −→ 2T and
· is sequence concatenation. The initialization i assigns a finite set i(A) of mes-
sages to agent A, the messages A possesses when execution begins. The expression
π(M) represents the action π applied to message M . For instance, if π represents
the action “Agent A outputs” then the expression π(M) represents that “agent A
outputs message M”. A system is a triple S = 〈Π, H, |〉 of an action vocabulary
Π, a non-empty set H of execution histories over Π and an observation function
| : A −→ 2Π. Informally, H is the set of executions of some underlying program.
Since H need not be closed under prefixing, H may consist of only completed pro-
gram executions. The value of A under |, written Π|A, is the set of actions observed
directly by agent A. Observation functions lift naturally to execution histories. The
local history of A in h, written h|A, is defined by:

i|A = init i(A)

(h · π(M))|A = (h|A) · π(M), π ∈ Π|A

(h · π(M))|A = (h|A), π 6∈ Π|A

where init κ represents a local initialization which generates the set κ of messages.

Example 2.2.1 (Message Passing System) In a message passing system, the
agents take turns to send and receive messages on a common network. We say that
system S is a message passing system if Π = {A sends, A receives | A ∈ A}, and
Π|A = {A sends, A receives}. In message passing systems, thus, the observation

1The definitions and results in chapters 3, 4 and 5 are easily transferred to other variants of
multi-agent systems (cf. [31]).

2.2. SYSTEM 21

function lifts to histories as follows:

i|A = init i(A)

(h · A sendsM)|A = (h|A) · A sendsM

(h · B sendsM)|A = (h|A), B 6= A

(h · A receivesM)|A = (h|A) · A receivesM

(h · B receivesM)|A = (h|A), B 6= A

Example 2.2.2 (Message Passing System with Spying) Assume a function
realm : A −→ 2A assigning a set realm(A) of agents that A observes ("spies on").
Assume that A ∈ realm(A) for each A ∈ A. System S is a message passing system
with spying based on realm, if Π = {A sends, A receives | A ∈ A}, and

Π|A = {B sends, B receives | B ∈ realm(A)}

Thus, for message passing systems with spying, we have:

i|A = init i(A)

(h · B sendsM)|A = (h|A) · B sendsM, B ∈ realm(A)

(h · B sendsM)|A = (h|A), B 6∈ realm(A)

(h · B receivesM)|A = (h|A) · B receivesM, B ∈ realm(A)

(h · B receivesM)|A = (h|A), B 6∈ realm(A)

If realm(A) = {A} then S is simply a message passing system. Write A −→ B : M
to abbreviate the sequence: (A sendsM) · (B receivesM).

We introduce the auxiliary notion of action trace. An action trace is a finite,
possibly empty sequence θ of initializations, local initializations and actions:

θ ::= ǫ | θ · i | θ · initκ | θ · π(M)

where ǫ is the empty sequence and κ ⊆ T . Thus, histories h and local histories h|A
are action traces. Write messages(θ) for the set of the messages initially possessed
or acted upon in θ:

messages(ǫ) = ∅

messages(θ · i) = messages(θ) ∪
⋃

ran(i)

messages(θ · initκ) = messages(θ) ∪ κ

messages(θ · π(M)) = messages(h) ∪ {M}

22 CHAPTER 2. LANGUAGE AND SYSTEM

where ran(i) is the range of i. Write actions(θ) for the set of actions occurring in
action trace θ:

actions(ǫ) = ∅

actions(θ · i) = actions(θ) ∪ {i}

actions(θ · initκ) = actions(θ) ∪ {initκ}

actions(θ · π(M)) = actions(θ) ∪ {π(M)}

Interpretation of Predicates A predicate interpretation I on a system S =
〈Π, H, |〉 assigns, to each predicate p and history h ∈ H , a relation I(p, h) in T
(matching the arity of p). An interpreted system based on S is a pair I = 〈S, I〉,
where I is an interpretation on S. For predicate exists, we assume the following
fixed interpretation:

I(exists, h) = {M | ∃M ′ ≥ M. M ′ ∈ messages(h)}

The interpretation of special predicate A infers is left open until chapter 5, where
various choices are considered.

Example 2.2.3 Assume an interpreted system I based on a message passing sys-
tem (example 2.2.1) or a message passing system with spying (example 2.2.2). If P
includes any of the unary predicates A received, A sent, A rec or A sen, we assume
the following fixed interpretation:

I(A sent, h) = {M | (A sendsM) ∈ actions(h)}

I(A received, h) = {M | (A receivesM) ∈ actions(h)}

I(A rec, h) = {M | ∃M ′ ≥ M. A receivesM ′ ∈ actions(h)}

I(A sen, h) = {M | ∃M ′ ≥ M. A sendsM ′ ∈ actions(h)}

Thus, A rec M holds if M is part of something A received, and A sen M holds if M
is part of something A sent.

2.3 Anonymity Example

Prima facie, anonymity is an epistemic notion: An action is anonymous if an ob-
server cannot know who performed the action. Indeed, several recent papers analyse
anonymity in terms of epistemic logic (cf. [42, 49, 76, 82]).

Specification Template

In [42], a simple template for anonymity specifications is proposed. Adapted to
our language, the template looks as follows. Assume an anonymity set X ⊆ A
of agents, and assume an n-ary (primitive or defined) predicate pA for each agent

2.3. ANONYMITY EXAMPLE 23

A ∈ X . Informally, pA(M1, ..., Mn) expresses that agent A has performed action p
on message arguments M1, ..., Mn. We say that p is anonymous with respect to an
observer spy ∈ A and anonymity set X if:

pA(M1, ..., Mn) → ¬2spypA(M1, ..., Mn) (2.1)

pA(M1, ..., Mn) → 3spypB(M1, ..., Mn) (2.2)

for all A, B ∈ X and all messages Mi. For instance, to express anonymity in a
voting protocol, let pA be the unary predicate Avoted, expressing that agent A
voted for the argument:

A voted M → ¬2spyA voted M

A voted M → 3spyB voted M

for all A, B in the anonymity set X of voters.

Crowds-Style Protocol

We illustrate specification template (2.1) - (2.2) in a protocol for anonymized mes-
sage delivery in the style of Crowds [70]. The protocol allows members of a crowd
to communicate without non-crowd members knowing who is talking to whom.
The agents of a set Crowd share a symmetric key K. Crowd member A sends a
message M anonymously to crowd member B, by sending {toB : M}K to some
random crowd member C1, where toB : M abbreviates, say, B · M . Agent C1, in
turn, sends the received ciphertext to B or to a random forwarder C2 ∈ Crowd,
and so on, until the message reaches its intended destination B:

A −→ C1 : {toB : M}K

C1 −→ C2 : {toB : M}K

...

Cn −→ B : {toB : M}K

In addition to crowd members, there are some spies, each spy eavesdropping on
part of the network. Assume that Crowd ⊆ A and assume a set Spies ⊆ A, disjoint
from Crowd. Assume a function realm : A −→ 2A such that:

realm(A) = {A}, A ∈ Crowd

spy ∈ realm(spy), spy ∈ Spies

Informally, realm(A) is the set of agents that A observes; Crowd members observe
only their own actions, while a spy might observe the actions of some crowd mem-
bers. Let Xspy = {A ∈ Crowds | A 6∈ realm(spy)} be the set of all crowd members
outside the observation domain of spy ∈ Spies.

24 CHAPTER 2. LANGUAGE AND SYSTEM

Sender anonymity means that a spy cannot tell the originator of a given message:

A originated M → ¬2spyA originated M, A ∈ Xspy (2.3)

A originated M → 3spyB originated M, A, B ∈ Xspy (2.4)

Receiver anonymity, on the other hand, means that the spy cannot tell the intended
destination of a given message:

M is for A → ¬2spyM is for A, A ∈ Xspy (2.5)

M is for A → 3spyM is for B, A, B ∈ Xspy (2.6)

where M is for A holds if the intended final destination of M is agent A. Note that
(2.3) and (2.4) instantiate templates (2.1) and (2.2), with pA set to the predicate
A originated and X set to Xspy. Similarly, (2.5) and (2.6) instantiate templates
(2.1) and (2.2), with pA set to the predicate is for A, although, here, the predicate
pA does not express that A performed some specific action p.

Protocol Implementation

We implement the protocol in a message passing system with spying (example
2.2.2). Assume that Crowd contains at least three members. Assume also that for
each spy ∈ Spies, there are at least two crowd members A, B ∈ Crowd unobserved
by spy, i.e., A, B 6∈ realm(spy). Let S = 〈Π, H, |〉 be the message passing system
with spying based on realm and where H consists of all histories of the form:

i · (A1 −→ A2 : {An · M}K) · · · (An−1 −→ An : {An · M}K)

for any initialization i, any natural number n, any agents A1, ..., An and any mes-
sages M and K such that

• n > 1

• A1, ..., An ∈ Crowd

• M, K ∈ C −A

• i(A1) = {K, M}, i(A) = {K} for A ∈ Crowd − {A1}, i(spy) = ∅ for spy ∈
Spies

In initialization i, each crowd member obtains the shared key K, and the protocol
initiator, A1, obtains, in addition, the message payload M . The ciphertext {An ·
M}K travels from A1 to A2, from A2 to A3, and so on until it reaches its intended
destination An.

Let I = 〈S, I〉 be an interpreted system, based on the above implementation S,
such that:

M ∈ I(A originated, h) ⇔ ∃i.∃θ.h = i · (A sendsM) · θ

M ∈ I(is for A, h) ⇔ ∃θ.h = θ · (A receivesM)

2.3. ANONYMITY EXAMPLE 25

where θ ranges over action traces and i over initializations. Thus, agent A origin-
ated a message if the first action, after initialization, was A sending that message. A
message is for agent A if the last action is agent A receiving that message. Clearly,
these definitions are specific to system S. If messages could be lost – say spies
were active and sometimes blocked messages – then the predicate is for A would
have to be interpreted in terms of message structure, and not in terms of where
M eventually ends up: M is for A if someone sent M and M contains destination
field A.2 In the current system S, however, messages are not lost. For the predic-
ate A originated, a more generally applicable definition is possible, but our simple
interpretation suffices for the specifications here.

2I.e., M = {to A : M ′}K for some M ′ and K.

Chapter 3

Kripke Semantics and

Cryptography

Epistemic logic has a standard semantical framework, Kripke semantics [48]. In
this chapter, we review some existing combinations of Kripke semantics and formal
cryptography.

3.1 The Logical Omniscience Problem

In Kripke semantics, the epistemic modality 2A is interpreted through an epistemic
possibility relation ∼A between states, in our case histories. The agent knows a
fact F , if F holds at all epistemically possible histories.

Definition 3.1.1 (Kripke Semantics)

h |=I 2AF ⇔ ∀h′ ∈ H : h ∼A h′ ⇒ h′ |=I F

Informally, h ∼A h′ means that at history h agent A, given all it knows, could
just as well be at h′. In computer science applications of epistemic logic, ∼A is
typically an equivalence relation, the intuition being that h ∼A h′ if h and h′

are indistinguishable to A. Truth conditions for Boolean operators and atomic
statements are the usual:

h |=I p(M1, ..., Mn) ⇔ 〈M1, ..., Mn〉 ∈ I(p, h)

h |=I F ∧ F ′ ⇔ h |=I and h |=I F ′

h |=I ¬F ⇔ h 6|=I F

Entailment and validity are also defined as usual. For a set ∆ of statements, write
h |=I ∆ if h |=I F for all F ∈ ∆. A set ∆ entails a statement F in interpreted
system I, written ∆ |=I F , if for all histories h ∈ H , if h |=I ∆ then h |=I F .
The set ∆ entails F in system S, written ∆ |=S F , if ∆ entails F in all interpreted

27

28 CHAPTER 3. KRIPKE SEMANTICS AND CRYPTOGRAPHY

systems based on S. The set ∆ entails F , in symbols ∆ |= F , if ∆ entails F in all
interpreted systems. A statement F is valid in I/S if the empty set entails F in
I/S. The statement F is valid if the empty set entails F .

In Kripke semantics, no matter what epistemic possibility relation ∼A is chosen,
agents know all the logical consequences of what they know, they are logically
omniscient. Writing 2A∆ for the set {2AF | F ∈ ∆}, we have:

Fact 3.1.2 (Logical Omniscience) ∆ |=I F ⇒ 2A∆ |=I 2AF

Elsewhere in modal logic, i.e., outside epistemic logic, logical omniscience is known
as the rule of normality, and we shall use the terms interchangeably.

Logical omniscience does not agree with our use of the epistemic modality. In
particular, it goes against the intended meaning of anonymity templates (2.1) and
(2.2) for cryptographic terms M . Consider the implementation I of the Crowds-
style protocol in section 2.3. For any two crowd members A 6= B, we have:

|=I ¬{toB : M}K is for A (3.1)

By logical omniscience, we obtain:

|=I 2spy¬{toB : M}K is for A

for any spy. Consequently, receiver anonymity specification (2.6) fails in I. But,
intuitively, receiver anonymity should not fail merely due to (3.1). As another
example, sender anonymity specification (2.3) is also problematic under logical
omniscience. Assume a global eavesdropper spy, observing all network traffic. In-
tuitively, the global eavesdropper can trace a message from its origination to its
final destination. Thus, sender anonymity (2.3) should fail for spy:

A originated {toB : M}K |=I 2spyA originated {toB : M}K (3.2)

However, from the triviality:

A originated {toB : M}K |=I exists M

logical omniscience yields:

2spyA originated {toB : M}K |=I 2spyexists M (3.3)

Combining (3.2) and (3.3), we get:

A originated {toB : M}K |=I 2spyexists M

stating that the message payload M is leaked to the global eavesdropper. Again,
this is counterintuitive; We expect that M remains confidential.

More generally, logical omniscience is incompatible with the combination of two
assumptions: On the one hand, the assumption of feasible computability, or, more

3.2. CLASSICAL MULTI-AGENT KNOWLEDGE 29

precisely, the assumption that the epistemic modality reflects that agents can only
perform feasibly computable cryptographic calculations. On the other hand, the
assumption that message terms refer de re, i.e., “by value”. De re reference means,
for instance, that the statement

2spyA originated {toB : M}K (3.4)

expresses that the spy knows that A originated a given value (“bitstring”). The
statement (3.4) leaves it open to what extent the spy can decrypt that value and
determine its message content and encryption key. Therefore, if the spy has only
limited decryption power and term {toB : M}K refers de re, then statement (3.4)
should not entail

2spyexists M

although it does so under logical omniscience.
Kripke semantics is quite frequently used for languages where the modality is

intended to reflect feasible computability and cryptographic terms M are intended
to refer de re (cf. [7, 45, 75, 76]), even if, as we have seen, it can lead to unreasonable
conclusions about the knowledge of agents.

3.2 Classical Multi-Agent Knowledge

The Kripkean accessibility relation has a default definition in multi-agent systems
[31, 66]: h ∼A h′ if A’s local observations are the same in h and h′. In our setting,
this translates to the following.

Definition 3.2.1 (Classical Indistinguishability)

h ∼A h′ ⇔ h|A = h′|A

As it happens, the classical semantics is problematic even if we drop the assumption
that terms refer de re: In the classical semantics, agents are local state omniscient,
i.e., agents know every property of their own local state, including properties that
require infeasible cryptographic resources to calculate. We say that F is about A
in I, if F only depends on the local history of A, i.e., if

h |=I F, h|A = h′|A =⇒ h′ |=I F

Corollary 3.2.2 (Local State Omniscience) The following is valid in I, as-
suming that F is about A:

F → 2AF

Example 3.2.3 Continuing example 2.2.3, the statements A rec M and A sen M
are about agent A in any interpreted system I based on a message passing system.
By corollary 3.2.2, I validates:

A rec M → 2AA rec M

A sen M → 2AA sen M

30 CHAPTER 3. KRIPKE SEMANTICS AND CRYPTOGRAPHY

which goes against the assumption of limited decryption power of agents, even if
terms do not refer de re.

3.3 AT-Style Semantics

The so called AT semantics [7], named after Abadi and Tuttle, weakens the classical
indistinguishability relation (definition 3.2.1) so as to avoid local state omniscience.1

The intuition is that, due to the limited decryption power of agents, data h|A and
h′|A can carry the same information, even if h|A 6= h′|A. Approximately, two local
states have the same information content if they are identical except for content
inside unopened encryptions. For instance, the local states init∅ · π({A}K) and
init ∅ ·π({B}K) have the same information content. On the other hand, assuming
that A 6= B, the local states init{K} · π({A}K) and init{K} · π({B}K) have
different information content, since the decryption key K is known at each local
state. AT semantics is defined using a Dolev-Yao definition of inferred (“known”)
messages (cf. sections 1.3 and 5.1), but here we leave the definition of I(A infers, h)
open. However, throughout section 3.3, we assume that the set of known keys
depends just on the local history, i.e., h|A = h′|A′ implies that I(A infers, h) =
I(A′ infers, h′).

The details are as follows. Write structκ(M) for the structure of message M
discernable through a set κ ⊆ T of decryption keys:

structκ({M}K) = ⊥, K 6∈ κ

structκ({M}K) = {structκ(M)}structκ(K), K ∈ κ

structκ(M · M ′) = structκ(M) · structκ(M ′)

structκ(c) = c, c ∈ C

where ⊥ is a fixed dummy symbol. For instance, struct{c}({c
′ · {M}K}c) = {c′ ·⊥}c

if K 6= c. Discernable structure lifts to local histories by pointwise application:

structκ(initκ) = init{structκ(M) | M ∈ κ}

structκ(h|A · π(M)) = structκ(h|A) · π(structκ(M))

Definition 3.3.1 (Information Content) The information content in local state
h|A, written content(h|A), is structI(A infers,h)(h|A)

Definition 3.3.2 (AT Indistinguishability)

h ∼A h′ ⇔ content(h|A) = content(h′|A)

Arguably, the AT semantics respects an assumption of limited decryption power.
In particular, local state omniscience fails if the interpretation of predicate A infers
is reasonable, as the following example illustrates.

1Avoiding local state omniscience was not explicitly stated as a goal in [7], but we speculate
that this was a motivation for the semantics.

3.3. AT-STYLE SEMANTICS 31

Example 3.3.3 Assume an interpreted message passing system I containing two
histories h and h′ such that:

h|A = init∅ · A receives{c}K

h′|A = init∅ · A receives{c′}K′

Assuming that K 6∈ I(A infers, h) and K ′ 6∈ I(A infers, h′), we obtain that

content(h|A) = init∅ · (A receives⊥) = content(h′|A)

i.e., h ∼A h′. Assuming that c 6≤ {c′}K′ , it follows that h 6|=I 2AA rec c, i.e.,
A rec c 6|=I 2AA rec c, even though statement A rec c is about agent A in I.

The AT semantics has some successors (cf. [77, 83]). Most notably, SVO [77]
adjusts AT so that the identity of an unopened ciphertext is discernable.2 In AT,
where all unopened messages reduce to a single dummy ⊥, agents are unable to
track unopened ciphertexts.

Example 3.3.4 Consider the following message passing system I with spies. There
are four different agents A, B, C and spy. The latter is a global eavesdropper:
realm(spy) = {A, B, C, spy}. The set H of execution histories contains all histories
of the form:

i · A sendsMA · B sendsMB · C receivesM

for any initialization i and any messages MA, MB and M such that M = MA or
M = MB. Thus, agent A talks to agent C if M = MA. Intuitively, since the spy
observes all network traffic and can track messages as they travel from one agent
to the next, the spy knows if A is talking to C:

Atalks toC → 2spyAtalks toC (3.5)

However, in AT semantics (3.5) might fail in I. Pick h, h′ ∈ H such that:

h = i · A sends{MA}KA
· B sends{MB}KB

· C receives{MA}KA

h′ = i · A sends{MA}KA
· B sends{MB}KB

· C receives{MB}KB

Assume that KA, KB 6∈ I(spy infers, h) and KA, KB 6∈ I(spy infers, h′). We obtain:

content(h|spy) = init κ · A sends⊥ · B sends⊥ · C receives⊥ = content(h′|spy)

for some set κ ⊆ T . I.e., in AT semantics, h ∼spy h′. Assuming {MA}KA
6=

{MB}KB
, we have h′ 6|=I Atalks toC, i.e., h 6|=I 2spyAtalks toC. Thus, (3.5)

fails in I.

2SVO also extends the crypto algebra to asymmetric encryption. Here, we restrict ourselves
to symmetric encryption.

32 CHAPTER 3. KRIPKE SEMANTICS AND CRYPTOGRAPHY

In SVO, each unopened ciphertext M is replaced by a distinct dummy ⊥M ; Two
histories h and h′ are considered indistinguishable to agent A if, after unopened
ciphertexts have been replaced by dummies, there is a substitution of dummies that
transforms the local history h|A into the local history h′|A. In effect, therefore,
agents can compare undecrypted messages for identity.

Since AT, and its successors, follow Kripke semantics, they do not support de
re reference of message terms (see section 3.1), although at least the original AT
semantics was intended to do so.3 We illustrate with a simple example.

Example 3.3.5 Consider any interpreted system I based on a message passing
system. Under AT semantics, the following implications need not be valid in I:

A received M → 2AA received M

A sent M → 2AA sent M

although, intuitively, they should be valid in I if term M refers de re: If an agent
received/sent a value (“bitstring”), the agent knows it received/sent that value. As
a counterexample in AT, assume that H contains, at least, execution histories h
and h′ such that:

h|A = init∅ · (A receives{M}K) · (A sends{M}K)

h′|A = init∅ · (A sends{M ′}K′) · (A sends{M ′}K′)

where M 6= M ′ and K 6= K ′. Assume that K 6∈ I(A infers, h) and assume also that
K ′ 6∈ I(A infers, h′). Then,

content(h|A) = init∅ · (A receives⊥) · (A sends⊥) = content(h′|A)

I.e., h ∼A h′. Since h′ 6|=I Areceived {M}K, it follows h 6|=I 2AA received {M}K.
But, h |=I A received {M}K. Similarly, we obtain h 6|=I 2AA sent {M}K and h |=I

A sent {M}K.

3See section 6.1.

Chapter 4

Permutation-Based Semantics

In this chapter, we generalize AT-style semantics by updating the predicated data
as we follow the indistinguishability relation.

4.1 Relativized AT-style Indistinguishability

In AT-style semantics, data (i.e., messages) is substituted for other data as we
follow ∼A from a history h to an epistemically possible history h′: If h ∼A h′, and

h|A = init{M0} · π1(M1) · · ·πn(Mn),

then, for some possibly different messages M ′
0, ..., M

′
n, we have:

h′|A = init{M ′
0} · π1(M

′
1) · · ·πn(M ′

n)

Intuitively, message Mi at history h corresponds to (“is a counterpart of”) M ′
i

at h′, in the sense that everything that agent A observes of Mi at h, agent A
also observes of M ′

i at h′. Agent A observes, in particular, feasibly computable
properties and relationships. For instance, if M1 = {M2}M3

then agent A can
compute this relationship (since A is given the decryption key M3), and so M ′

1 =
{M ′

2}M ′

3
.

Also intuitively, message correspondences extend to messages besides those the
agent acted upon, in other words, besides those in messages(h|A) and messages(h′|A).
For instance, if h ∼A h′, and

h|A = init{K} · π1({M}K) · · ·

then for some K ′, M ′, etc.,

h′|A = init{K ′} · π1({M
′}K′) · · ·

and M corresponds to M ′, even if M 6∈ messages(h|A) and M ′ 6∈ messages(h′|A).

33

34 CHAPTER 4. PERMUTATION-BASED SEMANTICS

To make ∼A keep track of message correspondences, we relativize ∼A to a
permutation ρ on T . Informally, if h ∼ρ

A h′ then for agent A, any message M at
h corresponds to ρ(M) at h′. For h ∼ρ

A h′ to hold, we require that ρ respects the
actions of A in h, i.e., we require that

ρ(h|A) = h′|A

where ρ is extended to local histories by pointwise application:

ρ(init κ) = init {ρ(M) | M ∈ κ}

ρ(h|A · π(M)) = ρ(h|A) · π(ρ(M)))

Moreover, for h ∼ρ
A h′ to hold, we require that ρ is consistent with the keys avail-

able to agent A at h, i.e., I(A infers, h). Informally, ρ is consistent with a set of
keys if ρ respects all the message structure accessible through the keys. Formally,
permutation consistency is defined as follows.

Definition 4.1.1 (Consistent Permutation) Permutation ρ is consistent with
κ ⊆ T , in symbols ρ ⊳ κ, if and only if,

1. K ∈ κ ⇒ ρ({M}K) = {ρ(M)}ρ(K)

2. ρ(M · M ′) = ρ(M) · ρ(M ′)

3. ρ(c) = c, for c ∈ C

For M 6≥ M ′ and M ′ 6≥ M , we write [M − M ′] for the substitution on messages
that exchanges M and M ′: [M − M ′](M ′′) is the result of exchanging M and M ′

in M ′′.

Lemma 4.1.2 K, K ′ 6∈ κ =⇒ [{M}K − {M ′}K′] ⊳ κ

Proof Let ρ = [{M}K − {M ′}K′]. (1) Trivially, ρ is a permutation. (2) If N ′ ∈ κ
then {N}N ′ is neither {M}K nor {M ′}K′ , and so, ρ({N}N ′) = {ρ(N)}ρ(N ′). (3)
ρ(N · N ′) = ρ(N) · ρ(N ′), since N · N ′ is neither {M}K nor {M ′}K′ . (4) ρ(c) = c,
since atomic c is neither {M}K nor {M ′}K′ . 2

We lift permutations to sets κ ⊆ T in the expected way (ρ(κ) = {ρ(M) | M ∈ κ}):

Lemma 4.1.3 The following hold:

• ρ ⊳ κ, κ ⊇ κ′ =⇒ ρ ⊳ κ′ (Monotonicity)

• id ⊳ κ (Reflexivity)

• ρ ⊳ κ, ρ′ ⊳ ρ(κ) =⇒ (ρ′ ◦ ρ) ⊳ κ (Transitivity)

• ρ ⊳ κ =⇒ ρ−1 ⊳ ρ(κ) (Symmetry)

4.1. RELATIVIZED AT-STYLE INDISTINGUISHABILITY 35

Proof Monotonicity and reflexivity: Immediate. Transitivity: Assume that ρ ⊳ κ
and ρ′ ⊳ ρ(κ). We show that ρ′ ◦ρ respects encryption with keys in κ (i.e., condition
1 in definition 4.1.1), showing that r′ ◦ r respects clear text (i.e., conditions 2 and 3
in definition 4.1.1) is trivial. Assume that K ∈ κ. By the assumptions, ρ({M}K) =
{ρ(M)}ρ(K) and ρ′({ρ(M)}ρ(K)) = {ρ′(r(M))}ρ′(ρ(K)). Thus, (ρ′ ◦ ρ)({M}K) =
ρ′(ρ({M}K)) = ρ′({ρ(M)}ρ(K)) = {ρ′(r(M))}ρ′(ρ(K)) = {(ρ′ ◦ ρ)(M)}(ρ′◦ρ)(K).
Symmetry: Assume that ρ ⊳ κ. We show that ρ−1 respects encryption with keys in
ρ(κ) (i.e., condition 1 in definition 4.1.1), showing that ρ−1 respects clear text (i.e.,
conditions 2 and 3 in definition 4.1.1) is analogous. Assume that K ∈ ρ(κ), i.e.,
ρ−1(K) ∈ κ. By the assumption, ρ({ρ−1(M)}ρ−1(K)) = {ρ ◦ ρ−1(M)}ρ◦ρ−1(K) =
{M}K. Thus, ρ−1({M}K) = ρ−1 ◦ ρ({r−1(M)}ρ−1(K)) = {ρ−1(M)}ρ−1(K). 2

Conjoining the two requirements on ∼ρ
A, we stipulate that h ∼ρ

A h′ if ρ carries
h|A to h′|A and ρ is consistent with the keys available to A at h.

Definition 4.1.4 (Relativized Indistinguishability) h ∼ρ
A h′ in I, if and only

if,

• ρ(h|A) = h′|A

• ρ ⊳ I(A infers, h)

Lemma 4.1.5 h ∼id
A h (Reflexivity)

Proof From reflexivity of ⊳ (lemma 4.1.3). 2

Example 4.1.6 Consider the implementation I of the Crowds-style protocol in
section 2.3. Pick two execution histories h, h′ ∈ H such that:

h = i · (A −→ B : {B · M}K)

h′ = i′ · (A −→ C : {C · M ′}K′)

for three distinct crowd members A, B and C and some initializations i and i′. In
h, agent A sends a message directly to B, while in h′, agent A sends a message
directly to C. Assume that spyA ∈ Spies eavesdrops on A but not on B or C, i.e.,
A ∈ realm(spyA) but B, C 6∈ realm(spyA). Assume that the interpretation I is such
that:

K, K ′ 6∈ I(spyA infers, h) (4.1)

We proceed to show that:
h ∼ρ

spyA
h′ (4.2)

where ρ is the permutation exchanging {B · M}K and {C · M ′}K′ , in other words,
ρ = [{B · M}K − {C · M ′}K′]. First,

h|spyA = init∅ · A sends{B · M}K

h′|spyA = init∅ · A sends{C · M ′}K′

36 CHAPTER 4. PERMUTATION-BASED SEMANTICS

Thus,
ρ(h|spyA) = h′|spyA (4.3)

From (4.1) and lemma 4.1.2, we get:

ρ ⊳ I(spyA infers, h) (4.4)

since, by construction of I, we have M, M ′ ∈ C, i.e. {B · M}K 6≥ {C · M ′}K′ and
{C · M ′}K′ 6≥ {B · M}K. But, (4.2) follows from (4.3) and (4.4).

Under certain interpretations of the predicate A infers, reflexivity, transitivity
and symmetry of ⊳ transfer to the relativized indistinguishability relation.

Definition 4.1.7 (Introspective Interpreted System) Interpreted system I is
introspective if, and only if,

h ∼ρ
A h′ =⇒ ρ(I(A infers, h)) = I(A infers, h′)

Lemma 4.1.8 Assume that I is introspective.

• h ∼ρ
A h′, h′ ∼ρ′

A h′′ =⇒ h ∼ρ′◦ρ
A h′′ (Transitivity)

• h ∼ρ
A h′ =⇒ h′ ∼ρ−1

A h (Symmetry)

Proof Symmetry: Assume that h ∼ρ
A h′, i.e. ρ(h|A) = h′|A and ρ ⊳ I(A infers, h).

By symmetry of ⊳ (lemma 4.1.3), ρ−1 ⊳ ρ(I(A infers, h)). Since I is introspective,

ρ−1 ⊳ I(A infers, h′). But, ρ−1(h′|A) = h|A. Thus, h′ ∼ρ−1

A h. Transitivity follows
similarly from transitivity of ⊳ (lemma 4.1.3). 2

The relativized indistinguishability relation implicitly defines an AT-like indis-
tinguishability relation:

h ∼A h′ ⇔ ∃ρ : h ∼ρ
A h′ (4.5)

With the existential quantification over permutations ρ, we loose the information
about how cipher texts at h may correspond for A to cipher texts at h′.

The consistency relation ⊳ is related to the states of knowledge and belief of
[11, 79]. The definition 4.1.1 of ⊳ is not intended to be canonical: There are
alternative, equally reasonable, definitions. Most obviously, requirement (3), which
reflects the assumption that atoms are “plain text”, could be restricted to atoms
in A. As another example, it might, perhaps, be reasonable to restrict requirement
(2) to messages in the given set κ:

M ∈ κ, M ′ ∈ κ ⇒ ρ(M · M ′) = ρ(M) · ρ(M ′)

M · M ′ ∈ κ ⇒ ρ(M · M ′) = ρ(M) · ρ(M ′)

However, with this restriction, soundness for classical BAN (chapter 6) would fail.
(Specifically, BAN rules R7 and R8 would be unsound.) As regards the requirement
that ρ must be a permutation, we note that symmetry of ⊳ in lemma 4.1.3, and
indirectly symmetry of ∼ρ

A in lemma 4.1.8, depend on this requirement.

4.2. PERMUTATION-BASED TRUTH CONDITION 37

4.2 Permutation-Based Truth Condition

In AT-style semantics, data inside h|A is transformed into other data as we follow
∼A from a history h to an indistinguishable history h′. However, in the Kripkean
truth condition 3.1.1, predicated data, i.e., data inside the evaluated statement F ,
is left unchanged by the move from h to h′. Thus, the history and the statement
are not “syncronized”. Here, by contrast, we depart from AT-style semantics,
and Kripke semantics in general, by updating the evaluated statement F to the
corresponding statement ρ(F) for each transition h ∼ρ

A h′.
First, permutations are lifted to statements in the obvious way as follows:

ρ(p(M)) = p(ρ(M))

ρ(F ∧ F ′) = ρ(F) ∧ ρ(F ′)

ρ(¬F) = ¬ρ(F)

ρ(2AF) = 2Aρ(F)

Intuitively, if h ∼ρ
A h′ then, for agent A, F at h corresponds to ρ(F) at h′.

Example 4.2.1 Continuing example 4.1.6, permutation ρ maps statement

A sent {B · M}K (4.6)

to statement
A sent {C · M ′}K′ (4.7)

Thus, for spyA, statement (4.6) at h corresponds to statement (4.7) at h′.

We stipulate that an agent knows a statement if corresponding statements hold at
indistinguishable histories.

Definition 4.2.2 (Truth Condition for Knowledge)

h |=I 2AF ⇔ ∀ρ : ∀h′ ∈ H : h ∼ρ
A h′ ⇒ h′ |=I ρ(F) (4.8)

Thus, we check a corresponding statement ρ(F) at h′, and not the original statement
F , as in Kripke semantics (definition 3.1.1). Remaining truth conditions, as well
as the notion of validity, are preserved from section 3.1.

Example 4.2.3 Consider the history h in example 4.1.6. For all that spyA knows,
the value {B · M}K goes to agent C:

h |=I 3spyA
C received {B · M}K

This follows from (4.2) in example 4.1.6 and from h′ |=I C received ρ({B · M}K).

Proposition 4.2.4 (Modal Axioms K and T) The following are valid:

1. 2A(F → F ′) → 2AF → 2AF ′

38 CHAPTER 4. PERMUTATION-BASED SEMANTICS

2. 2AF → F

Proof (1): Straightforward. (2): Follows directly from lemma 4.1.5. 2

Proposition 4.2.5 (Modal Axioms 4 and 5) The following are valid in intro-
spective interpreted systems:

1. 2AF → 2A2AF

2. ¬2AF → 2A¬2AF

Proof From lemma 4.1.8. 2

Proposition 4.2.6 (Receive and Send Introspection) The following are valid
in any interpreted system based on a message passing system:

1. A received M → 2AA received M

2. A sent M → 2AA sent M

Proof Receive introspection: Assume that h |=I A received M and h ∼ρ
A h′ in

I. From the first assumption, A receivesM ∈ Actions(h|A), so by the second
assumption, A receivesρ(M) ∈ Actions(h′|A), i.e., h′ |=I A received ρ(M). Since
h′ and ρ are arbitrary, h |=I 2AA received M . Send introspection: Analogous. 2

Proposition 4.2.6 can be generalized to arbitrary systems. If an operation π ∈ Π is
observable to an agent, the agent knows when π is applied to a message:

Proposition 4.2.7 (Action Introspection) Assume that Π ⊆ P. Assume that
an interpreted system I such that: I(π, h) = {M | π(M) ∈ actions(h)}. The
following is valid in I:

π(M) → 2Aπ(M), π ∈ Π|A

Proof Assume that π ∈ Π|A and h |=I π(M) and h ∼ρ
A h′ in I. From the first and

second assumption, π(M) ∈ Actions(h|A), so by the third assumption, π(ρ(M)) ∈
Actions(h′|A), i.e., h′ |=I π(ρ(M)). Since h′ and ρ are arbitrary, h |=I 2Aπ(M).2

We recall the implementation of the Crowds-style protocol in section 2.3. It
depends on the interpretation of the predicate spy infers, of course, whether or not
the model satisfies its specifications.

Lemma 4.2.8 (Crowds-Style Protocol) Let I be the protocol implementation
in section 2.3. Specifications (2.3), (2.4), (2.5) and (2.6) are valid in I, assuming:

C ∩ I(spy infers, h) = ∅

for all protocol executions h ∈ H.

4.2. PERMUTATION-BASED TRUTH CONDITION 39

Proof For specification (2.6): Assume that spy ∈ Spies. Assume that A, B 6∈
realm(spy). Assume also that h |=I M ′ is for A. By construction of H , we have i,
A1, . . . , An, M and K such that h is:

i · (A1 −→ A2 : {An · M}K) · · · (An−1 −→ An : {An · M}K)

where An = A and M ′ = {An · M}K . By construction of H , there is h′ ∈ H such
that h′ is:

i · (A1 −→ A2 : {B · M}K) · · · (An−1 −→ An : {B · M}K) · (An −→ B : {B · M}K)

Let ρ = [{A ·M}K − {B ·M}K] be the substitution that exchanges {A ·M}K and
{B · M}K . Since i(spy) = ∅ and since A = An, B 6∈ realm(spy), we have:

ρ(h|spy) = h′|spy (4.9)

By construction of H , K ∈ C. Thus, by assumption, K 6∈ I(spy infers, h). By
lemma 4.1.2:

ρ ⊳ I(spy infers, h) (4.10)

From (4.9) and (4.10):
h ∼ρ

spy h′ in I (4.11)

Since ρ(M ′) = {B · M}K :
h′ |=I ρ(M ′) is for B (4.12)

From (4.11) and (4.12), h |=I 3spyM
′ is for B. This completes the proof of specific-

ation (2.6).
For specification (2.5): Assume that spy ∈ Spies. Assume that A 6∈ realm(spy).

By construction of H , there exists B 6∈ realm(spy) such that A 6= B. Assume that
h |=I M ′ is for A. By the same reasoning as for (2.6), we obtain h ∼ρ

spy h′ in I
and h′ |=I ρ(M ′) is for B. Since A 6= B, h′ 6|=I ρ(M ′) is for A. Consequently,
h 6|=I 2spyM

′ is for A.
For specification (2.4): Assume that spy ∈ Spies. Assume that A, B 6∈ realm(spy).

Assume that h |=I A originated M ′. By construction of H , there are i, A1, . . . , An, M
and K such that h is:

i · (A1 −→ A2 : {An · M}K) · · · (An−1 −→ An : {An · M}K)

where A1 = A and M ′ = {An · M}K . By construction of H , there is h′ ∈ H and
initialization i′ such that h′ is:

i′ · (B −→ A1 : {An · M}K) · (A1 −→ A2 : {An · M}K) · · ·

· · · (An−1 −→ An : {An · M}K)

Since A, B 6∈ realm(spy) and i(spy) = i′(spy) = ∅, we have h|spy = h′|spy. So,
by lemma 4.1.3, h ∼id

spy h′ in I. But, h′ |=I B originated id(M ′). Consequently,
h |=I 3spyB originated M ′. This completes the proof of specification (2.4).

Specification (2.3) is obtained from the proof of (2.4) in the same way that (2.5)
is obtained above from the proof of (2.6). 2

40 CHAPTER 4. PERMUTATION-BASED SEMANTICS

4.3 Weak Normality

As the following example illustrates, the permutation-based semantics avoids logical
omniscience (the rule of normality).

Example 4.3.1 Continuing example 4.1.6, assume a binary predicate, contains,
interpreted in I as follows: I(contains, h) = {〈M, M ′〉 | M ≥ M ′}. Trivially,
|=I {B ·M}K contains B. However, 6|=I 2spyA

{B ·M}K contains B, since by (4.2),
we have h ∼ρ

spyA
h′ and h′ 6|=I ρ({B · M}K) contains ρ(B). (We assume that

M ′ 6≥ B and K ′ 6≥ B.)

Thus, knowledge is not closed under all entailments. Still, knowledge is closed
under entailments that depend only on accessible structure. Let A infers κ =
{A infers K | K ∈ κ}.

Lemma 4.3.2 (Permutation Normality)

ρ(F) |=I ρ(F ′), ∀ρ ⊳ κ =⇒ A infers κ, 2AF |=I 2AF ′

Proof From monotonicity of ⊳ (lemma 4.1.3). Assume that the left hand side of the
implication. Pick any h ∈ H such that h |=I A infers κ and h |=I 2AF . Then, κ ⊆
I(A infers, h). Pick any ρ and h′ ∈ H such that h ∼ρ

A h′. Then, ρ ⊳ I(A infers, h).
By monotonicity of ⊳, ρ ⊳ κ. By assumption, ρ(F) |=I ρ(F ′). Since, h′ |=I ρ(F),
it follows that h′ |=I ρ(F ′). Since ρ and h′ were chosen arbitrarily, h |=I 2AF ′. 2

Obviously, lemma 4.3.2 generalizes to a set of statements in place of F .
The weakening of normality in lemma 4.3.2 quantifies over the domain of ⊳.

However, we can weaken lemma 4.3.2 by substituting the left-hand side of the
implication (=⇒) by a statement schema. To this end, we introduce some notation.
To begin with, terms are extended with variables. Let open terms t be generated
by:

t, t′ ::= x | c | t · t′ | {t}t′

where x ranges over a countable set of variables, and as before, c ∈ C. Let Keys(t)
be the set of open terms applied as keys in t. For example, Keys({x · {c, A}y}c′) =
{y, c′}. In detail:

Keys({t}t′) = {t′} ∪ Keys(t) ∪ Keys(t′)

Keys(t · t′) = Keys(t) ∪ Keys(t′)

Keys(c) = ∅

Keys(x) = ∅

If X is a set of open terms, let Keys(X) =
⋃

t∈X

Keys(t). An assignment is a function

V from variables to messages. Write |t|V for the result of replacing each variable x
in t with its assigned image V (x). Write |{t1, . . . , tn}|V for the set {|t1|V , . . . , |tn|V }.

4.3. WEAK NORMALITY 41

Lemma 4.3.3 If ρ ⊳ |Keys(t)|V , then ρ(|t|V) = |t|ρ◦V

Proof By induction over the structure of t. For the base step, t is a variable or an
atom. The case when t is a variable is immediate. If t is an atom c, then |t|V = c,
i.e., ρ(|t|V) = ρ(c) = c by requirement (3) in the definition 4.1.1. But, c = |c|ρ◦V .
For the induction step, assume that the property holds for open terms t1 and t2,
i.e. ρ ⊳ |Keys(t1)|V ⇒ |t1|ρ◦V = ρ(|t1|V) and ρ ⊳ |Keys(t2)|V ⇒ |t2|ρ◦V = ρ(|t2|V).
Assume that ρ ⊳ |Keys({t1}t2)|V . Then, ρ ⊳ |Keys(t1)|V ∪|Keys(t2)|V ∪{|t2|V }. By
monotonicity of ⊳ (lemma 4.1.3),

ρ ⊳ |Keys(t1)|V and ρ ⊳ |Keys(t2)|V and ρ ⊳ {|t2|V } (4.13)

From (4.13) and requirement (1) in the definition 4.1.1, we get ρ({|t1|V }|t2|V) =
{ρ(|t1|V)}ρ(|t2|V), i.e., ρ(|{t1}t2 |V) = {ρ(|t1|V)}ρ(|t2|V). Also from (4.13), by the in-
duction assumption, ρ(|t1|V) = |t1|ρ◦V and ρ(|t2|V) = |t2|ρ◦V . Thus, ρ(|{t1}t2 |V) =
{|t1|ρ◦V }|t2|ρ◦V

= |{t1}t2 |ρ◦V . In a similar way, we can show that also pairing pre-
serves the property. 2

Open statements α are statements with messages M replaced by open terms t:

α, α′ ::= p(t1, ..., tn) | 2Aα | α ∧ α′ | ¬α

The function Keys is lifted to open statements in the expected way: Keys(α) =
Keys(Terms(α)), where Terms(α) is the set of open terms occurring in α. Assign-
ments are also extended to open statements in the expected way: |α|V is the result
of replacing each variable x in α with its assigned image V (x). Write α |=I β
if |α|V |=I |β|V , for all assignments V . Finally, by combining lemma 4.3.2 with
lemma 4.3.3, we get the following weakening of normality.

Theorem 4.3.4 (Weak Normality)

α |=I α′ =⇒ A infers Keys(α, α′), 2Aα |=I 2Aα′

Proof Assume that α |=I α′. Pick any assignment V and any permutation
ρ ⊳ |Keys(α, α′)|V . By monotonicity of ⊳ (lemma 4.1.3), ρ ⊳ |Keys(α)|V and
ρ ⊳ |Keys(α′)|V . By lemma 4.3.3, ρ(|α|V) = |α|ρ◦V and ρ(|α′|V) = |α′|ρ◦V .
Thus, ρ(|α|V) |=I ρ(|α′|V) is an instance of the assumption that α |=I α′. Since
ρ was chosen arbitrarily, lemma 4.3.2 implies A infers |Keys(α, α′)|V , 2A|α|V |=I

2A|α′|V . Since V is arbitrary, A infers Keys(α, α′), 2Aα |=I 2Aα′. 2

Again, weak normality generalizes to a set of open statements in the place of α.
Like permutation normality (lemma 4.3.2), weak normality formalizes the intuition
that knowledge is closed under feasibly computable entailments.

Example 4.3.5 In any interpreted system I, we have: exists {x}y |=I exists x.
Since Keys({{x}y, x}) = {y}, weak normality (theorem 4.3.4) yields:

A infers y, 2Aexists {x}y |=I 2Aexists x

I.e., A infers K, 2Aexists {M}K |=I 2Aexists M , for any M and K.

42 CHAPTER 4. PERMUTATION-BASED SEMANTICS

Example 4.3.6 Continuing example 4.3.1, we have: |=I {x}y contains x. By weak
normality (theorem 4.3.4),

A infers y |=I 2A{x}y contains x

since Keys({{x}y, x}) = {y}.

As example 4.3.6 illustrates, an agent knows what is inside an encryption if the
agent knows the key to the encryption. However, as suggested by the replay attack
on the mix in section 1.2, sometimes an agent knows what is inside an encryption
even though the agent cannot decrypt it. The following example illustrates this
point.

Example 4.3.7 Consider an interpreted system I based on a message passing sys-
tem that implements the Needham Schröder Shared Key Protocol [65] between two
principals A and B and a key server.1 If principal A receives a message of the form
{N · B · K · x}KA

, where KA is A:s server key, then the message must originate
from the server and x must be the ticket intended for principal B:

A receives {N · B · K · x}KA
, KA server key of A |=I x contains K · A

(We leave the interpretation I(server key of A, h) unspecified.) By weak normality
(theorem 4.3.4),

2AA receives {N · B · K · {K · A}KB
}KA

, A infers KA, 2A KA server key of A

|=I 2A{K · A}KB
contains K · A

By receive introspection (proposition 4.2.6),

A receives {N · B · K · {K · A}KB
}KA

, A infers KA, 2A KA server key of A

|=I 2A{K · A}KB
contains K · A

Thus, if principal A receives {N · B · K · {K · A}KB
}KA

from the server then A
knows that K · A is the content of the ticket {K · A}KB

, even though A does not
know the decryption key KB.

1The details of the protocol are not important.

Chapter 5

Message Deduction

The notion of deduced messages (“known messages”) plays a central role in formal
analysis of security protocols. Some simple forms of secrecy goals can be formu-
lated directly in terms of message deduction: A value is secret if an unauthorized
party cannot deduce the value. Moreover, message deduction is used to define
indistinguishability relations, for instance in AT-style semantics (section 3.3), but
also outside epistemic logic (cf. [6, 15]). In section 4.1, the relativized indistin-
guishability ∼ρ

A was defined in terms of messages deduced by agent A. In this
chapter, we examine alternative definitions of message deduction and their effect
on the epistemic modality.

5.1 Dolev-Yao Deduction

The set of known messages (in our setting: the interpretation of predicate A infers)
is customarily defined through a Dolev-Yao style message inference relation [28]: An
agent knows a message if the agent has observed the message (typically: received
it), or if the message can be obtained from already known messages through a set of
feasible computable operations. For message spaces based on pairing and symmetric
cryptography, there are two versions of Dolev-Yao style message inference, one
weaker than the other. According to the weaker definition, an agent knows a
message if the agent can obtain the message by un-pairing and decryption, starting
from directly observed messages.

Definition 5.1.1 (Weak Dolev-Yao) An interpreted system I is weak Dolev-
Yao, if and only if, I(A infers, h) is the least set of messages such that:

1. messages(h|A) ⊆ I(A infers, h)

2. M · M ′ ∈ I(A infers, h) =⇒ M ∈ I(A infers, h)

3. M · M ′ ∈ I(A infers, h) =⇒ M ′ ∈ I(A infers, h)

43

44 CHAPTER 5. MESSAGE DEDUCTION

4. {M}K , K ∈ I(A infers, h) =⇒ M ∈ I(A infers, h)

According to the stronger definition, an agent knows a message if the agent can
obtain the message by un-pairing, decryption, pairing and encryption, starting
from directly observed messages.

Definition 5.1.2 (Strong Dolev-Yao) An interpreted system I is strong Dolev-
Yao, if and only if, I(A infers, h) is the least set of messages such that:

1. messages(h|A) ⊆ I(A infers, h)

2. M · M ′ ∈ I(A infers, h) =⇒ M ∈ I(A infers, h)

3. M · M ′ ∈ I(A infers, h) =⇒ M ′ ∈ I(A infers, h)

4. {M}K , K ∈ I(A infers, h) =⇒ M ∈ I(A infers, h)

5. M, M ′ ∈ I(A infers, h) =⇒ M · M ′ ∈ I(A infers, h)

6. M, K ∈ I(A infers, h) =⇒ {M}K ∈ I(A infers, h)

Thus, in weak Dolev-Yao, only de-constructing (“analysing”) operations – un-
pairing and decryption – are used in the message inference, while in strong Dolev-
Yao, also “synthesizing” operations - pair forming and encryption – are used. We
say that I is Dolev-Yao, if I is either weak Dolev-Yao or I is strong Dolev-Yao.

Proposition 5.1.3 If I is Dolev-Yao then I is introspective.

Proof Assume that I is weak Dolev-Yao and h ∼ρ
A h′. We show ρ(I(A infers, h))

⊆ I(A infers, h′) by induction on the inference length to reach M ∈ I(A infers, h).
Base case, M is inferred in one step, i.e., M ∈ messages(h|A). By assumption,
ρ(h|A) = h′|A, and so ρ(M) ∈ messages(h′|A). Induction step: Assume that M ∈
I(A infers, h) is inferred in n steps. Case (1), the last inference step in the derivation
to M was left un-pairing, i.e., (2) in definition 5.1.1. Then, M ·M ′ ∈ I(A infers, h)
is derived in less than n steps, for some M ′. By induction assumption ρ(M ·M ′) ∈
I(A infers, h′). By assumption, ρ ⊳ I(A infers, h). By condition (2) in definition
4.1.1, ρ(M · M ′) = ρ(M) · ρ(M ′). So, ρ(M) · ρ(M ′) ∈ I(A infers, h′). By left-un-
pairing, i.e., (2) in definition 5.1.1, ρ(M) ∈ I(A infers, h′). Case (2), the last infer-
ence step in the derivation to M was right-un-pairing: Similar to case (1). Case (3),
the last inference step in the derivation to M was decryption, i.e., (4) in definition
5.1.1: Similar to case (1), but using condition (1) in the definition 4.1.1. This com-
pletes the proof that ρ(I(A infers, h)) ⊆ I(A infers, h′). Continuing, we show that
ρ−1(I(A infers, h′)) ⊆ I(A infers, h) by induction on the inference length to reach
M ∈ I(A infers, h′). Base case, M is inferred in one step, i.e., M ∈ messages(h′|A).
By assumption, ρ−1(h′|A) = h|A, and so ρ−1(M) ∈ messages(h|A). Induction step:
Assume that M ∈ I(A infers, h′) is inferred in n steps. Case (1), the last inference
step in the derivation to M was left-un-pairing, i.e., (2) in definition 5.1.1. Then,
M ·M ′ ∈ I(A infers, h′) is derived in less than n steps, for some M ′. By induction

5.1. DOLEV-YAO DEDUCTION 45

assumption, ρ−1(M · M ′) ∈ I(A infers, h). By assumption, ρ ⊳ I(A infers, h). By
symmetry of ⊳ (lemma 4.1.3), ρ−1 ⊳ ρ(I(A infers, h)). By condition (2) in definition
4.1.1, ρ−1(M · M ′) = ρ−1(M) · ρ−1(M ′). So, ρ−1(M) · ρ−1(M ′) ∈ I(A infers, h).
By left unpairing, i.e., (2) in definition 5.1.1, ρ−1(M) ∈ I(A infers, h). Case (2),
the last inference step in the derivation to M was right un-pairing: Similar to
case (1). Case (3), the last inference step in the derivation to M was decryption,
i.e., (4) in definition 5.1.1: Then, for some K, both {M}K ∈ I(A infers, h′) and
K ∈ I(A infers, h′) are derived in less than n steps. By induction assumption,
ρ−1({M}K), ρ−1(K) ∈ I(A infers, h), i.e.,

K ∈ ρ(I(A infers, h)) (5.1)

By assumption, ρ ⊳ I(A infers, h). By symmetry of ⊳ (lemma 4.1.3), we obtain
that ρ−1 ⊳ ρ(I(A infers, h)). So, by (5.1) and monotonicity of ⊳ (lemma 4.1.3),
ρ−1 ⊳ {K}. By condition (1) in definition 4.1.1, ρ−1({M}K) = {ρ−1(M)}ρ−1(K).
Thus, {ρ−1(M)}ρ−1(K) ∈ I(A infers, h). By decryption, i.e., (4) in definition 5.1.1,
ρ−1(M) ∈ I(A infers, h). The proposition is shown for strong Dolev-Yao I in the
same way. 2

Corollary 5.1.4 The following are valid in Dolev-Yao systems I:

1. 2AF → 2A2AF

2. ¬2AF → 2A¬2AF

Proof From propositions 4.2.5 and 5.1.3. 2

Lemma 5.1.5 Let I be the protocol implementation in section 2.3. Assume that
I is Dolev-Yao. For all protocol executions h ∈ H:

C ∩ I(spy infers, h) = ∅

Proof By routine induction. Pick h ∈ H . Then, messages(h|spy) = {{M0}K0
}

for some M0 ∈ T and some K0 ∈ C. Case (A), I is weak Dolev-Yao: We show
that I(spy infers, h) ⊆ {{M0}K0

}, by induction on the derivation length to reach
M ∈ I(A infers, h). Base case: Immediate. Induction step: Assume that M ∈
I(spyA infers, h) is inferred in n steps. Sub-case (1), the last inference step in the
derivation to reach M ∈ I(spy infers, h) was decryption, i.e., (4) in definition 5.1.1.
Then, for some K, {M}K ∈ I(spy infers, h) and K ∈ I(spy infers, h) are derived
in less than n steps. By induction assumption, {M}K , K ∈ {{M0}K0

}. This is
impossible, since K 6= {M}K. Thus, the last derivation step was not decryption.
Similarly, we obtain that the last inference step cannot have been un-pairing. This
completes the induction step. Case (B), I is strong Dolev-Yao: We show that
I(spy infers, h) is the set of messages generated by:

M, M ′ ::= {M0}K0
| M · M ′ | {M}M ′ (5.2)

46 CHAPTER 5. MESSAGE DEDUCTION

The proof is by induction on the derivation length to reach M ∈ I(A infers, h).
Base case: immediate. Induction step: Assume that M ∈ I(spyA infers, h) is
inferred in n steps. Case (1), the last inference step in the derivation to reach
M ∈ I(spy infers, h) was decryption, i.e., (4) in definition 5.1.2. Then, for some K,
{M}K ∈ I(spy infers, h) and K ∈ I(spy infers, h) are derived in less than n steps.
By induction assumption, {M}K and K are generated by (5.2). Since K0 ∈ C, K0

is not generated by (5.2), i.e., M is generated by (5.2). Case (2), the last inference
step in the derivation to reach M ∈ I(spy infers, h) was left-un-pairing, i.e., (2) in
definition 5.1.2. Then, for some M ′, M · M ′ ∈ I(spy infers, h) is derived in less
than n steps. By induction assumption, M · M ′ is generated by (5.2), i.e., M is
generated by (5.2). Case (3), right-un-pairing: Similar to case (2). Case (4), the
last inference step in the derivation to reach M ∈ I(spy infers, h) was pairing, i.e.,
(4) in definition 5.1.2. Then, M = M ′ · M ′′ for some M ′, M ′′ ∈ I(spy infers, h)
derived in less than n steps. By induction assumption, M ′ and M ′′ are generated
by (5.2), i.e., M ′ ·M ′′ is generated by (5.2). Case (5), the last inference step in the
derivation to reach M ∈ I(spy infers, h) was encryption, i.e., (5) in definition 5.1.2:
Similar to case (4). 2

Corollary 5.1.6 (Crowds-Style Protocol) Let I be the protocol implementa-
tion in section 2.3. If I is Dolev-Yao, it satisfies specifications (2.3), (2.4), (2.5)
and (2.6).

Proof From lemma 5.1.5 and lemma 4.2.8. 2

5.2 Duck-Duck-Goose Counterexample

It has been argued that Dolev-Yao style message inferences can yield counter in-
tuitive results (cf. [43]). The counterexample is the following (artificial) style of
protocol, which, following [43], we refer to as the Duck-Duck-Goose Protocol. An
agent A generates a random bit sequence bit1, · · · , bitn, and sends the sequence, bit
by bit, to another agent B. When B has received all n bits, B sends a fresh nonce
N to a third agent C, encrypted using the bit sequence bit1 · · · bitn as encryption
key. Agent C merely forwards the message to A:

A −→ B : bit1
...

A −→ B : bitn

B −→ C : {N}(bit1···bitn)

C −→ A : {N}(bit1···bitn)

where the encryption key bit1 · · · bitn abbreviates the iterated pairing construction
pair(bit1, pair(bit2, . . . bitn) . . .) We assume two local spies, spyA and spyC , who

5.2. DUCK-DUCK-GOOSE COUNTEREXAMPLE 47

observe the network traffic in and out of agent A and agent C respectively. In-
tuitively, spyA deduces the key (bit1 · · · bitn), since spyA observes each bit being
sent from agent A to agent B. On the other hand, spyB does not deduce the key
(bit1 · · · bitn), since spyC observes only the encryption sent via agent B. As we
show next, Dolev-Yao deduction does not respect these intuitions.

We implement the protocol in a message passing system with spying (see ex-
ample 2.2.2). Fix two different bits 0, 1 ∈ C. Fix a key-length n > 1. Assume
that A contains, at least, five agents: A, B, C, spyA and spyC . Assume a function
realm : A −→ 2A such that:

realm(spyA) = {A, spyA},

realm(spyC) = {C, spyC}

(Assume also that A′ ∈ realm(A′) for every A′ ∈ A.) According to realm, spyA

observes the sending and receiving of agent A, while spyC observes the actions of
C. Let SDDG = 〈Π, H, |〉 be the message passing system with spying based on realm
and where the set H consists of all histories of the form:

i · (A −→ B : bit1) · · ·

· · · (A −→ B : bitn) · (B −→ C : {N}(bit1···bitn)) · (C −→ A : {N}(bit1···bitn))

for any initialization i and any messages bit1, . . . , bitn, N such that:

• bit1, . . . , bitn ∈ {0, 1}

• N ∈ C − {0, 1}

• i(A) = {bit1 · · · bitn}, i(B) = {N, 0, 1}, i(C) = i(spyA) = i(spyC) = {0, 1}

In initialization i, agent A creates the “secret” key bit1 · · · bitn. The initialization
provides other agents with the two bits 0 and 1, but not the specific bit sequence
that A creates.1 Let IDDG be an interpreted system based on SDDG. As the following
two propositions illustrate, we obtain counter intuitive results if IDDG is Dolev-Yao.

Proposition 5.2.1 The following is valid in IDDG, if it is weak Dolev-Yao:

A received {N}bit1···bitn
→ ¬spyA infers (bit1 · · · bitn)

Proof Pick h ∈ H . Then, messages(h|spyA) = {0, 1, {N}(bit1···bitn)} for some
bit1, ..., bitn ∈ {0, 1} and N ∈ C. We show that (spyA infers, h) ⊆ messages(h|spyA),
by induction on the derivation length to reach M ∈ I(A infers, h). Base case, im-
mediate. Induction step: Assume that M ∈ I(spyA infers, h) is inferred in n steps.
Case (1), the last inference step in the derivation to reach M ∈ I(spyA infers, h) was

1In part I of this thesis, there are no “public” constants, atomic messages that are known to
all agents by default. To make the bits 0 and 1 “public”, the initialization provides each agent
with the values 0 and 1.

48 CHAPTER 5. MESSAGE DEDUCTION

decryption, i.e., (4) in definition 5.1.1. Then, for some K, {M}K ∈ I(spyA infers, h)
and K ∈ I(spyA infers, h) are derived in less than n steps. By induction assump-
tion, {M}K , K ∈ messages(h|spyA). This is impossible, since n > 1. Thus, the
last derivation step was not decryption. Similarly, we obtain that the last inference
step cannot have been un-pairing. 2

Proposition 5.2.1 is counter intuitive, since the spy on A should be able to infer the
key bit1 · · · bitn used; The spy on A observes as each bit is sent by agent A and the
spy knows that agents A, B and C are following the protocol.

Proposition 5.2.2 The following is valid in IDDG, if it is strong Dolev-Yao:

C received {N}bit1···bitn
→ spyC infers (bit1 · · · bitn)

Proof Pick h ∈ H . By construction, {0, 1} ⊆ messages(h|spyC). By (1) in
definition 5.1.2 and successive applications of (5) in definition 5.1.2, we obtain
bit1 · · · bitn ∈ I(spyC infers, h), since biti ∈ {0, 1}. 2

Proposition 5.2.2 is counter intuitive: The spy on C only observes the encryption C
receives, and so should not be able to infer the key bit1 · · · bitn. Unintended results
for the predicate A infers transfer to unintended results for the modality 2A, as the
following two propositions illustrate.

Proposition 5.2.3 The following is valid in IDDG, if it is weak Dolev-Yao:

A received {N}bit1···bitn
→ ¬2spyA

A rec N

Proof Assume that h |=IDDG
A received {N}bit1···bitn

. Pick N ′ ∈ C such that
N ′ 6∈ {N, 0, 1}. Let h′ = [N−N ′](h). (See section 4.1 for the notation [N−N ′].) By
construction of H , we have h′ ∈ H . Let ρ = [{N}bit1···bitn

−{N ′}bit1···bitn
]. We have

h′|spyA = ρ(h|spyA). From lemma 4.1.2 and proposition 5.2.1, ρ ⊳ I(spyA infers, h).
Thus, h ∼ρ

spyA
h′. Since ρ(N) = N 6∈ {N ′, 0, 1}, h′ 6|=IDDG

A rec ρ(N). Thus,
h 6|=IDDG

2spyA
A rec N . 2

Proposition 5.2.4 The following is valid in IDDG, if it is strong Dolev-Yao:

C received {N}bit1···bitn
→ 2spyC

C rec N

Proof Assume that h |=IDDG
C received {N}bit1···bitn

. Assume that h ∼ρ
spyC

h′.
Then, C receivesρ({N}bit1···bitn

) ∈ actions(h′|spyC) and ρ ⊳ I(spyC infers, h). By
proposition 5.2.2, ρ({N}bit1···bitn

) = {N}bit1···bitn
. Thus, h′ |=IDDG

C rec N , i.e.,
h′ |=IDDG

C rec ρ(N). Since h′ and ρ are arbitrary, h |=IDDG
2spyC

C rec N . 2

The Duck-Duck-Goose Protocol shows that weak Dolev-Yao deduction can be
too restrictive, since it excludes messages that, intuitively, can be inferred by pro-
tocol specific dependencies. On the other hand, the protocol suggests that strong
Dolev-Yao deduction can be too inclusive: As long as an adversary knows bits 0

5.3. MESSAGE DEDUCTION REDUCED TO MODALITY 49

and 1, the adversary knows every finite bit-sequence (of 0 and 1). This seems to
contradict the assumption that agents have only limited computational powers.

The Duck-Duck-Goose protocol is artificial, and by itself, perhaps, not sufficient
reason to abandon Dolev-Yao style interpretations of the predicate A infers. Indeed,
in part II of this thesis, we shall use a Dolev-Yao style interpretation.2 On the other
hand, the Duck-Duck-Goose counterexample is theoretically interesting.

5.3 Message Deduction Reduced to Modality

Intuitively, an agent knows a message if the agent knows about the message, i.e.,
knows some relevant facts about the message. This suggests the following definition:

A infers K ↔ 2A

∨

p

p(K) (5.3)

where p ranges over a selected set of relevant predicates. For instance, if exists is
the only relevant predicate:

A infers K ↔ 2Aexists K (5.4)

For simplicity, we only consider requirement (5.4); The results in this section gen-
eralize to requirement (5.3) and a set of relevant predicates.

However, the stipulation (5.4) requires a recursive definition, since the epistemic
modality 2A is defined through the interpretation of A infers (section 4.2).

Definition 5.3.1 (Fixed Point Interpretation) An interpretation function I is
a fixed point on a system S, if condition (5.4) holds in the interpreted system
I = 〈S, I〉.

An inductive, rather than a co-inductive interpretation of A infers is appropriate,
since I(A infers, h) should assign the set of keys that agent A has gathered some
positive information about at history h. We introduce some terminology. Two
interpretation functions I and I ′ on system S are variants of each other if they
agree on all predicates except infers, i.e., if I(p, h) = I ′(p, h) for all predicates
p ∈ P − {A infers | A ∈ A} and all h ∈ H . Variant I is smaller than I ′, I ≤ I ′

if I(A infers, h) ⊆ I ′(A infers, h) for all A ∈ A and all h ∈ H . I is strictly smaller
than I ′ if I is smaller than I ′ and I ′ is not smaller than I.

Definition 5.3.2 (Inductive Interpretation) Interpretation I is inductive on
system S, if I is a fixed point on S and there is no strictly smaller variant of I
which is a fixed point on S.

Theorem 5.3.3 There is a unique inductive interpretation on every system, i.e.,
every interpretation I on a system S has exactly one inductive variant.

2Although, generalized to arbitrary one-way functions.

50 CHAPTER 5. MESSAGE DEDUCTION

Proof From monotonicity of ⊳ (lemma 4.1.3). Assume an interpretation Iorig on
a system S. Let f be a function in the set of variants of Iorig, such that for each
variant I of Iorig, f(I) is the variant of Iorig such that:

f(I)(A infers, h) = {K | h |=〈S,I〉 2Aexists K}

An inductive variant of Iorig is, by definition, a least fixed point of the function f .
To see that f is monotone, assume that I is smaller than I ′, i.e., I(A infers, h) ⊆
I ′(A infers, h) for all A ∈ A and h ∈ H . Assume that K ∈ f(I)(A infers, h),
i.e., h |=〈S,I〉 2Aexists K. We proceed to show that h |=〈S,I′〉 2Aexists K. Pick any
h′ ∈ H and permutation ρ such that h ∼ρ

A h′ in 〈S, I ′〉, i.e., such that ρ(h|A) = h′|A
and ρ ⊳ I ′(A infers, h). By monotonicity of ⊳ (lemma 4.1.3), ρ ⊳ I(A infers, h). Thus,
h ∼ρ

A h′ in 〈S, I〉. By assumption, h′ |=〈S,I〉 exists ρ(K), i.e., h′ |=〈S,I′〉 exists ρ(K).
Since h′ and ρ were chosen arbitrary, it follows that h |=〈S,I′〉 2AK, i.e., K ∈
f(I ′)(A infers, h). This establishes that f is monotone, and therefore has a unique
least fixed point. 2

Theorem 5.3.4 If I is inductive then I is introspective.

Proof Assume an inductive interpreted system I based on system S. We prove,
using fixed point induction, that:

h ∼ρ
A h′ ⇒ ρ(I(A infers, h)) ⊇ I(A infers, h′)

Subset inclusion, i.e., ρ(I(A infers, h)) ⊆ I(A infers, h′), is shown analogously. Let
Ij be the interpretation function at step j in the fixed point construction of the proof
of theorem 5.3.3, such that I0(A infers, h) = ∅, Ij+1 = f(Ij), and Iλ(A infers, h) =⋃
j<λ

Ij(A infers, h), if λ is a limit ordinal. We show for all j that

ρ ⊳ Ij(A infers, h) ∧ ρ(h|A) = h′|A ⇒ ρ(Ij(A infers, h)) ⊇ Ij(A infers, h′) (5.5)

The property holds for I0, since I0(A infers, h′) = ∅. For successor ordinals, assume
that (5.5) holds for j. Assume that ρ(h|A) = h′|A and ρ ⊳ Ij+1(A infers, h). By
monotonicity of ⊳ (lemma 4.1.3), since Ij(A infers, h) ⊆ Ij+1(A infers, h):

ρ ⊳ Ij(A infers, h) (5.6)

From (5.6), by induction assumption, ρ(Ij(A infers, h)) ⊇ Ij(A infers, h′). Thus,
since ρ is 1-1,

ρ−1(Ij(A infers, h′)) ⊆ Ij(A infers, h) (5.7)

Also from (5.6), ρ−1 ⊳ ρ(Ij(A infers, h)), by symmetry of ⊳ (lemma 4.1.3). Thus,
by monotonicity of ⊳ (lemma 4.1.3):

ρ−1 ⊳ Ij(A infers, h′) (5.8)

5.3. MESSAGE DEDUCTION REDUCED TO MODALITY 51

Pick any K ′ ∈ Ij+1(A infers, h′). Since ρ is 1-1, there is some K such that K ′ =
ρ(K). Thus, ρ(K) ∈ Ij+1(A infers, h′), i.e.,

h′ |=〈S,Ij〉 2Aexists ρ(K) (5.9)

We proceed to show that K ∈ Ij+1(A infers, h), i.e., h |=〈S,Ij〉 2Aexists K. Pick any
permutation ρ′ and any h′′ ∈ H such that ρ′(h|A) = h′′|A and ρ′ ⊳ Ij(A infers, h).
Thus, by (5.7) and monotonicity of ⊳ (lemma 4.1.3), ρ′ ⊳ ρ−1(Ij(A infers, h′)).
From this and (5.8) and transitivity of ⊳ (lemma 4.1.3), ρ′ ◦ ρ−1 ⊳ Ij(A infers, h′).
But ρ′ ◦ ρ−1(h′|A) = ρ′(ρ−1(h′|A)) = ρ′(h|A) = h′′|A. By (5.9), we obtain that
h′′ |=〈S,Ij〉 exists ρ′(K). Since ρ′ and h′′ are arbitrary, it follows that h |=〈S,Ij〉

2Aexists K, which completes the successor part of the induction argument. The
limit case is routine. 2

Corollary 5.3.5 The following are valid in inductive interpreted systems I:

1. 2AF → 2A2AF

2. ¬2AF → 2A¬2AF

Proof From proposition 4.2.5 and theorem 5.3.4. 2

In contrast to Dolev-Yao interpretations, the inductive interpretation behaves
as intended for the Duck-Duck-Goose protocol. Let IDDG be an interpreted system
based on the implementation SDDG of the Duck-Duck-Goose protocol (in section
5.2).

Proposition 5.3.6 The following are valid in IDDG, if it is inductive:

1. A received {N}bit1···bitn
→ spyA infers (bit1 · · · bitn)

2. C received {N}bit1···bitn
→ ¬spyC infers (bit1 · · · bitn)

Proof (1): Assume that h |=IDDG
A received {N}bit1···bitn

. By construction of H ,
we have initialization i such that history h is:

i · (A −→ B : bit1) · · ·

· · · (A −→ B : bitn) · (B −→ C : {N}(bit1···bitn)) · (C −→ A : {N}(bit1···bitn))

Since realm(spyA) = {A, spyA}, local history h|spyA is:

init i(spyA) · (A sends bit1) · · ·

· · · (A sends bitn) · (A receives{N}(bit1···bitn))

Pick any h′ ∈ H and any permutation ρ such that h ∼ρ
spyA

h′. Then, local history
h′|spyA is:

initρ(i(spyA)) · (A sendsρ(bit1)) · · ·

· · · (A sendsρ(bitn)) · (A receivesρ({N}(bit1···bitn)))

52 CHAPTER 5. MESSAGE DEDUCTION

i.e., since biti ∈ C, h′|spyA is:

initρ(i(spyA)) · (A sends bit1) · · ·

· · · (A sends bitn) · (A receivesρ({N}(bit1···bitn)))

i.e., by construction of H , h′|spyA is:

initρ(i(spyA)) · (A sends bit1) · · ·

· · · (A sends bitn) · (A receives{N ′}(bit1···bitn))

for some N ′ ∈ A. Thus, h′ |=IDDG
exists bit1 · · · bitn, i.e., since ρ(bit1 · · · bitn) =

ρ(bit1) · · · ρ(bitn) = bit1 · · · bitn, we have h′ |=IDDG
exists ρ(bit1 · · · bitn). Since h′

and ρ are arbitrarily chosen, we obtain h |=IDDG
2spyA

exists bit1 · · · bitn, i.e., since
IDDG is inductive, we have h |=IDDG

spyA infers bit1 · · · bitn. (2): Assume that

h |=IDDG
C received {N}bit1···bitn

(5.10)

Let Ii be the interpretation function at step i in the fixed point construction
of the proof of theorem 5.3.3, such that I0(A infers, h) = ∅, Ii+1 = f(Ii), and
Iλ(A infers, h) =

⋃
i<λ

Ii(A infers, h), if λ is a limit ordinal. We show that for each

ordinal i: (bit1 · · · bitn) 6∈ Ii(spyC infers, h). Base case: I0 = ∅. Induction step, for
successor ordinals: Assume that (bit1 · · · bitn) 6∈ Ii(spyC infers, h). From (5.10), by
construction of H , there is initialization i such that h is:

i · (A −→ B : bit1) · · ·

· · · (A −→ B : bitn) · (B −→ C : {N}(bit1···bitn)) · (C −→ A : {N}(bit1···bitn))

and i(spyC) = ∅. Since realm(spyC) = {C, spyC}, h|spyC is:

init i(spyC) · (C receives{N}(bit1···bitn)) · (C sends{N}(bit1···bitn))

Pick any bit′1, . . . , bit
′
n ∈ {0, 1} such that (bit1 · · · bitn) 6= (bit′1 · · · bit

′
n). By con-

struction of H , h 6|= exists (bit′1 · · · bit
′
n), i.e., by proposition 4.2.4, (bit′1 · · · bit

′
n) 6∈

Ii(spyC infers, h). Let ρ = [{N}(bit1···bitn) − {N}(bit′
1
···bit′n)]. By lemma 4.1.2,

ρ ⊳ Ii(spyC infers, h) (5.11)

By construction of H , there is h′ ∈ H and initialization i′ such that h′ is:

i′ · (A −→ B : bit′1) · · ·

· · · (A −→ B : bit′n) · (B −→ C : {N}(bit′
1
···bit′n)) · (C −→ A : {N}(bit′

1
···bit′n))

I.e.,

h′|spyC = init i′(spyC) · (C receives{N}(bit′
1
···bit′n) · (C sends{N}(bit′

1
···bit′n)))

5.4. RELATIONSHIP TO WEAK DOLEV-YAO 53

I.e., since i(spyC) = i′(spyC) = ∅:

h′|spyC = ρ(h|spyC) (5.12)

From (5.11) and (5.12):
h ∼ρ

spyC
h′ in 〈SDDG, Ii〉 (5.13)

By construction of h′, we have h′ 6|= exists (bit1 · · · bitn), i.e., since ρ(bit1 · · · bitn) =
ρ(bit1) · · · ρ(bitn) = bit1 · · · bitn,

h′ 6|=〈SDDG,Ii〉 exists ρ(bit1 · · · bitn) (5.14)

From (5.13) and (5.14):

h 6|=〈SDDG,Ii〉 2spyC
exists bit1 · · · bitn

I.e., (bit1 · · · bitn) 6∈ Ii+1(spyC infers, h). The induction step for limit ordinals is
immediate. 2

5.4 Relationship to Weak Dolev-Yao

Any fixed point interpretation is at least as inclusive as weak Dolev-Yao.

Proposition 5.4.1 Assume that IDY is a weak Dolev-Yao interpretation and I is
a fixed-point interpretation on system S. Then, IDY(A infers, h) ⊆ I(A infers, h).

Proof By induction on the derivation length to reach M ∈ IDY(A infers, h). Base
case, M ∈ messages(h|A): Assume that h ∼ρ h′ then ρ(M) ∈ messages(h′|A),
i.e., h′ |=〈S,I〉 exists ρ(M). Since ρ and h′ are arbitrary, h |=〈S,I〉 2Aexists M ,
i.e., M ∈ I(A infers, h) since I is fixed point. Induction step: Assume that M ∈
IDY(A infers, h′) is inferred in n steps. Case (1), the last inference step in the
derivation to M was left-un-pairing, i.e., (2) in definition 5.1.1. Then, M · M ′ ∈
IDY(A infers, h) is derived in less than n steps, for some M ′. By the induction
assumption, M ·M ′ ∈ I(A infers, h), i.e., h |=〈S,I〉 2Aexists M ·M ′. By theorem 4.3.4
(since exists M ·M ′ |= exists M), h |=〈S,I〉 2Aexists M , i.e, M ∈ I(A infers, h). Case
(2), the last derivation step to M was right-un-pairing: Similar to case (1). Case (3),
the last derivation step to M was decryption: Then, {M}K ∈ IDY(A infers, h) and
K ∈ IDY(A infers, h) are derived in less than n steps, for some K. By the induction
assumption, {M}K , K ∈ I(A infers, h), i.e., h |=〈S,I〉 2Aexists {M}K and h |=〈S,I〉

A infers K. By theorem 4.3.4, h |=〈S,I〉 2Aexists M , i.e., M ∈ I(A infers, h). 2

Corollary 5.4.2 Assume that IDY is a weak Dolev-Yao interpretation and I is an
inductive interpretation on system S. Then, IDY(A infers, h) ⊆ I(A infers, h).

Proof From proposition 5.4.1. 2

By propositions 5.2.1 and 5.3.6, the converse of proposition 5.4.1 fails, i.e., weak
Dolev-Yao interpretations need not be inductive. However, weak Dolev-Yao and

54 CHAPTER 5. MESSAGE DEDUCTION

inductive interpretations coincide on atomic messages in systems where atoms are
interchangeable, as we show below. The following example illustrates why the
agreement fails if atoms are not interchangeable.

Example 5.4.3 Assume two distinct agents A and B. Fix an atom K ∈ C, and
define an initialization action i such that:

i(A) = ∅

i(B) = {K}

Let the set of histories be H = {i}. For a weak Dolev-Yao interpretation I on H,
we have: K 6∈ I(A infers, i). By contrast, for any fixed point interpretation I on H,
we have: K ∈ I(A infers, i), since:

i |=I 2Aexists K (5.15)

for any interpreted system I based on H. (5.15) follows from the fact that i ∼ρ
A i

implies that ρ(K) = K.

Thus, an agreement between the weak Dolev-Yao and the inductive interpretation
can only be obtained in systems where atoms are interchangeable. A set H of
execution histories is parametric, if it is closed under any swapping of atoms from
(C − A), i.e., if h ∈ H then [c0 − c1](h) ∈ H for any c1, c1 ∈ (C − A). (See section
4.1 for the notation [c0 − c1].) An interpreted system is parametric if it is based on
a parametric set H of histories.

Write [c0 − c1/κ](M) for the result of swapping c0 and c1 in those parts of M
which are hidden from κ:

• If K 6∈ κ then [c0 − c1/κ]({M}K) = {[c0 − c1](M)}[c0−c1](K)

• If K ∈ κ then [c0 − c1/κ]({M}K) = {[c0 − c1/κ](M)}[c0−c1/κ](K)

• [c0 − c1/κ](M · M ′) = [c0 − c1/κ](M) · [c0 − c1/κ](M ′)

• [c0 − c1/κ](c) = c, for c ∈ C

Lemma 5.4.4 If c0, c1 6∈ κ, then [c0 − c1/κ] ⊳ κ.

Proof (1) [c0 − c1/κ] is a message permutation: By induction on the structure of
messages, we get [c0 − c1/κ]([c0 − c1/κ](M)) = M if c0, c1 6∈ κ. (2) [c0 − c1/κ]
satisfies conditions 1, 2 and 3 in definition 4.1.1: Immediate. 2

Let Keys(h) = Keys(messages(h)) and Keys(H) =
⋃

h∈H

Keys(h). (The set Keys(κ),

for κ ⊆ T , is defined in section 4.3.)

Lemma 5.4.5 Let I be a weak Dolev-Yao interpretation. Let κ ∩ Keys(h) ⊆
I(A infers, h). Assume that c0, c1 6∈ I(A infers, h). Then, [c0 − c1/κ](h|A) =
[c0 − c1](h|A).

5.4. RELATIONSHIP TO WEAK DOLEV-YAO 55

Proof Let h|A = {M1, · · · , Mm} · σ1(Mm+1) · · ·σn(Mn). Then, for each 1 ≤
i ≤ n, every occurrence of c0 or c1 in Mi is hidden from κ, since κ ∩ Keys(h) ⊆
I(A infers, h). Therefore, [c0 − c1/κ](Mi) = [c0 − c1](Mi). 2

Theorem 5.4.6 (Agreement on Atoms) Assume a system S based on paramet-
ric H. Assume that Keys(H) ⊆ (C −A). Let IInd be an inductive interpretation on
S, and let IDY be a weak Dolev-Yao interpretation on S. For any K ∈ (C − A):

K ∈ IInd(A infers, h) ⇒ K ∈ IDY(A infers, h)

Proof By corollary 5.4.2, K ∈ IDY(A infers, h) ⇒ K ∈ IInd(A infers, h). For the
converse, let Ii be the interpretation function at step i in the fixed point construction
of the proof of theorem 5.3.3, such that I0(A infers, h) = ∅, Ii+1 = f(Ii), and
Iλ(A infers, h) =

⋃
i<λ

Ii(A infers, h), if λ is a limit ordinal. We show that for each

ordinal i and each c0 ∈ (C − A):

c0 ∈ Ii(A infers, h) ⇒ c0 ∈ IDY(A infers, h) (5.16)

Base case: I0 = ∅. Induction step, for successor ordinals: Assume that c0 6∈
IDY(A infers, h). Since messages(h) is finite3, so is I(exists, h). Therefore, there
is c1 ∈ (C − A) such that c1 6∈ I(exists, h). Let h′ = [c0 − c1](h). Since H is
parametric, h′ ∈ H . Since IDY(A infers, h) ⊆ I(exists, h), c1 6∈ IDY(A infers, h).
By the induction assumption, Ii(A infers, h) ∩ Keys(h) ⊆ IDY(A infers, h). Let ρ =
[c0 − c1/Ii(A infers, h)]. By lemma 5.4.5,

ρ(h|A) = [c0 − c1](h|A) = h′|A (5.17)

By lemma 5.4.4,
ρ ⊳ Ii(A infers, h) (5.18)

From (5.17) and (5.18),
h ∼ρ

A h′ in 〈S, Ii〉 (5.19)

By construction of h′, c0 6∈ I(exists, h′), i.e.,

h′ 6|=〈S,Ii〉 exists ρ(c0) (5.20)

since ρ(c0) = c0, as c0 ∈ A. From (5.19) and (5.20):

h 6|=〈S,Ii〉 2Aexists c0

I.e., c0 6∈ Ii+1(A infers h). The induction step for limit ordinals is immediate. 2

The agreement on atomic messages (theorem 5.4.6) can be used to evaluate the
epistemic modality in inductive systems. The following corollary illustrates this.

Corollary 5.4.7 (Crowds-Style Protocol) Let I be the protocol implementa-
tion in section 2.3. If I is inductive, it satisfies specifications (2.3), (2.4), (2.5)
and (2.6).

Proof From lemma 4.2.8, theorem 5.4.6 and lemma 5.1.5. 2

3An initialization action assigns a finite set of messages to each agent.

Chapter 6

Completeness for BAN-Like

Theories

Ever since the inception of BAN logic [16], there has been much confusion concern-
ing the semantics for its epistemic modality. While several semantics have been
proposed, only soundness results – not completeness results – have been attemp-
ted. In this chapter, we use the semantics from previous sections to interpret BAN’s
modality on message passing systems, and we prove soundness, completeness and
decidability for BAN-like logics. Completeness and decidability are generalized to
logics induced by an arbitrary theory base. The theory base may express how par-
ticipants in a specific protocol are expected to behave, or state general assumptions
about the network.

6.1 Classical BAN Logic

BAN logic, named after Burrows, Abadi and Needham, is the first, and, perhaps,
the most practically succesful, proof system combining epistemic logic and formal
cryptography. BAN appeared in the late 80’s, and soon spawned many extensions
and variations (cf. [7, 9, 27, 39, 51, 52, 57, 74, 77, 78, 83]). In BAN-style analyses
of a security protocol, the security goal – in most cases an authentication goal – is
formulated as an epistemic logic statement. For instance:

2A Bsent M

2B 2AB sent M

The authentication goal is then derived in the proof system, starting from more
self-evident assumptions about what happens during protocol execution, such as
what messages are sent, received or generated.

We introduce rules of original BAN logic [16] as requirements on theories. A
theory is a set L of statements such that L contains all Boolean tautologies and

57

58 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

R1 A sees {from B : M}K , 2AK secret of G ⊢ 2A B said M , B ∈ G

R2 A sees M · M ′ ⊢ A sees M

R3 A sees M · M ′ ⊢ A sees M ′

R4 A sees {M}K , 2AK secret of G ⊢ A sees M

R5 2AB said M · M ′ ⊢ 2AB said M

R6 2AB said M · M ′ ⊢ 2AB said M ′

R7 2Afresh M ⊢ 2Afresh M · M ′

R8 2Afresh M ′ ⊢ 2Afresh M · M ′

R9 2Afresh M, 2AK secret of G ⊢ 2Afresh {M}K

R10 2AF ⊢ F

Table 6.1: Classical BAN

L is closed under modus ponens, i.e., if F → F ′ ∈ L and F ∈ L then F ′ ∈ L. A
statement F is derivable from a set ∆ of statements in theory L, ∆ ⊢L F , if there
is a finite number of statements F1, ..., Fn ∈ ∆ such that (

∧
1≤i≤n

Fi) → F ∈ L. As

usual, we write ⊢L F for ∅ ⊢L F , and we omit the subscript L whenever L is clear
from the context.

Assume that P contains unary predicates A sees , A said , fresh and secret of G,
for A ∈ A and ∅ ⊂ G ⊆ A. The intended meaning of each predicate is as follows:
Agent A sees a message if A can infer that message from something A received, and
A said a message if A can infer that message from something A sent. A message is
fresh if it is not a sub-message of some message sent long ago. Finally, a message is
a secret of a non-empty group G of agents if the message is known only to members
of that group. Let from B : M abbreviate, say, B · M .

Definition 6.1.1 (Classical BAN) A theory is a classical BAN logic if it satis-
fies all conditions in table 6.1.

Note that rule R1, the well-known message meaning rule, assumes that agents
are honest, in the sense that the first component inside a cipher text, if locked with
a secret key, is a reliable sender field.

In definition 6.1.1, we define a class of logics, rather than a single logic, since
the original BAN logic is open ended and leaves out rules that are intuitively valid.

6.2. BAN THEORIES 59

For instance, seeing introspection:

A sees M ⊢ 2AA sees M (6.1)

is not part of the original BAN logic, even though it is clearly implicit in requirement
R1. As another illustration, all requirements may be generalized to iterated mod-
alities. For instance, requirement R2 may be generalized to 2A2B C sees M ·M ′ ⊢
2A2BC sees M .

While the definition 6.1.1 keeps close to the original definition of BAN logic
in [16], it nonetheless simplifies the original definition. Firstly, original BAN has
language constructs and proof rules for asymmetric cryptography. Secondly, the
original BAN paper [16] reads the epistemic modality as “Agent A believes that”,
rather than as “Agent A knows that”. As in [68, 75], we adopt the latter inter-
pretation, adding the rule R10. The BAN predicate jurisdiction thereby becomes
superfluous, and is removed. Thirdly, we drop the BAN predicate good, since it is
analogous to secret. Finally, original BAN includes so called “idealized” messages,
messages with logical statements inside, and a rule to the effect that agents only
say (send) statements they know to be true. We refer to [78] for a comprehensive
presentation of original BAN.

It is clear that BAN logic intends complex terms to refer de re (“directly”) and
the epistemic modality to reflect the extent to which cryptographic calculations are
feasible. If either of these two assumptions are dropped, then rule R9, for instance,
is unnecessarily weak: The premiss 2AK secret of G could be removed. Note also
that if terms are not intended to refer de re, but the modality is intended to reflect
limited decryptability, rule R1 would be intuitively invalid when M is an encryption
{M ′}K′ .

The semantics for the epistemic modality in BAN have long been a source
of confusion. The AT semantics (section 3.3) and some instantiations (cf. [68,
75]) of classical multi-agent semantics (section 3.2) have been proposed for BAN’s
modality. Since reception introspection

A received M ⊢ 2AA received M (6.2)

is invalid in AT-style semantics (see example 3.3.5), seeing introspection (6.1) also
fails, and consequently, rule R1. On the other hand, BAN logic is sound in the
proposed classical multi-agent semantics. However, in section 3.1, we found that
when complex terms refer de re and the modality reflects limited decryptability
(as in BAN logic), Kripke semantics yields unintended validities, due to the logical
omniscience problem. As a result, no BAN-like logic is complete with respect to
classical multi-agent semantics, or any other Kripke semantics. Indeed, in the
literature on BAN-like logics, the question of completeness is largely ignored.

6.2 BAN Theories

Since the definition 6.1.1 of classical BAN logics leaves out intuitively valid rules (as
does original BAN logic itself), we should not expect completeness for an arbitrary

60 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

classical BAN logic; We need stronger proof rules.

In the remainder of chapter 6, we shall restrict messages to a finite message
space, i.e., a finite, non-empty set of messages closed under ≥ (in other words, if
M ≥ M ′ then the space contains M ′ if it contains M); A message M is, from now
on, a message in the fixed message space. Also, from now on, we assume that P
contains exactly the following unary predicates:

p ::= A received | A rec | A sent | A sen | A infers | unfresh | exists

Recall that A rec M if M is a sub-message of some message A received, and ana-
logously for A sen and A sent. Write ∃M ′ ≥ M.F (M) for the finite1 disjunction∨
M ′≥M

F (M ′).

In a sense, the language isolates epistemic content to the epistemic modality:
None of the primitive predicates involve the notion of “feasible cryptographic com-
putation” – except, of course, the predicate A infers. But, this predicate will be
eliminable in the theories we consider, and is kept for presentation purposes only.
By contrast, predicates in original BAN (and its successors), for instance sees, said
and secret, do depend on a model of “feasible decryptability”. Instead, “epistemic”
predicates from classical BAN (section 6.1) are introduced as abbreviations, similar
to [68]:2

• A sees M =df 2AA rec M

• A said M =df 2AA sen M

• M secret of G =df (
∨

A∈G

A infers M) ∧ (
∧

A 6∈G

¬A infers M)

Definition 6.2.1 (BAN Theory) A theory L is a BAN theory, if and only if, L
contains the axioms and is closed under the rules in table 6.2.

The permutation necessitation rule PNec, which weakens the standard rule of
necessitation, formalizes the intuition that an agent knows all “feasibly computable”
theorems. The rule PNec is quasi-semantic in that it uses the consistency relation
⊳. But, since there are finitely many permutations, rule PNec is finitary, i.e.,
involves a finite set of premises. When combined with axiom K, PNec yields a
weakening of normality, according to which an agent knows “feasibly computable”
logical implications of what the agent knows:

Lemma 6.2.2 (Permutation Normality) Assume that L is a BAN theory and
assume that ρ(∆) ⊢L ρ(F) for all ρ ⊳ κ. Then, A infers κ, 2A∆ ⊢L 2AF .

1The message space is finite.
2The similar abbreviations found in [68] use a syntactically defined modality (cf. section 1.9).

6.2. BAN THEORIES 61

Weakening of S5

PNec
ρ(F), ∀ρ ⊳ κ

A infers κ → 2AF

K 2A(F → F ′) → 2AF → 2AF ′

T 2AF → F

4 2AF → 2A2AF

5 ¬2AF → 2A¬2AF

Introspection

I pA(M) → 2ApA(M), pA ∈ {A received, A sent}

Infers Reduction

Red A infers K ↔ 2Aexists K

Global Clock

GC unfresh M → ∃M ′ ≥ M.
∨

A∈A

(A sent M ′ ∧ 2Aunfresh M ′)

Monotonicity

Mono p(M) → p(M ′), M ≥ M ′, p ∈ {exists, A rec, A sen, unfresh}

Predicates Mix

M1 A received M → A rec M

M2 A sent M → A sen M

M3 A received M → exists M

M4 A sent M → exists M

M5 A rec M → ∃M ′ ≥ M.A received M ′

M6 A sen M → ∃M ′ ≥ M.A sent M ′

M7 exists M → ∃M ′ ≥ M.
∨

A∈A

A infers M ′

Table 6.2: BAN Theory

62 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

Proof Assume that ρ(∆) ⊢L ρ(F), ∀ρ ⊳ κ. Since the message space is finite, there
are only finitely many permutations. Let ρ1, ..., ρn be all permutations ρ such that
ρ ⊳ κ. For each i ∈ {1, ..., n} there is a finite ∆i ⊆ ∆ such that ρi(∆i) ⊢L ρi(F).
Thus for each i ∈ {1, ..., n}: ρi(∆1, ..., ∆n) ⊢L ρi(F). Since ∆1, ..., ∆n is finite,
by rule PNec and axiom K : A infers κ, 2A(∆1, ..., ∆n) ⊢L 2AF . Since ∆i ⊆ ∆:
A infers κ, 2A∆ ⊢L 2AF . 2

As its proof shows, lemma 6.2.2 depends on the restriction to a finite message space.
Axioms K, T, 4 and 5 are standard for introspective knowledge. The intro-

spection axiom I says that an agent knows if it sent or received a message. Axiom
Red states that an agent infers a message precisely if the agent knows it exists.
According to axiom GC, any unfresh message M is part of some message M ′ some
agent A sent long ago. The axiom reflects the assumption that the time is, to some
extent, common knowledge: If agent A sent message M ′ long ago, then agent A
knows it sent M ′ long ago, and so knows that M ′ is unfresh. In a temporal lo-
gic extension, axiom GC would reduce to sending introspection (axiom I), general
epistemic-temporal interaction axioms and non-epistemic axioms for predicates.
The remaining axioms are non-epistemic and straightforward. Axiom Mono says
that A rec, A sen, exists and unfresh are monotone with respect to the sub-message
relation ≥.

At first sight, it might appear as if predicates A rec and A sen are superfluous:
By axioms Mono, M1, M2, M5 and M6 it follows that every BAN theory contains:

A rec M ↔ ∃M ′ ≥ M.A received M ′

A sen M ↔ ∃M ′ ≥ M.A sent M ′

Nonetheless, the predicates are not eliminable. For instance, BAN theories need
not contain any of the following:3

2A∃M ′ ≥ M.A received M ′ → 2AA rec M

2A∃M ′ ≥ M.A sent M ′ → 2AA sen M

(Recall that ∃M ′ ≥ M.F (M ′) is just an abbreviation of
∨

M ′≥M

F (M ′).)

6.3 Embedding of Classical BAN Logic

By way of the definitions in section 6.2 of classical BAN predicates sees, said and
secret, as well as the obvious abbreviation fresh M =df ¬unfresh M , the conditions
of classical BAN can be derived using the following lemma.

Lemma 6.3.1 Assume that L is a BAN theory. Assume that ρ(∆) ⊢L ρ(F) for all
ρ ⊳ {K}.

3Soundness theorem 11.2.1 can be used to show this.

6.3. EMBEDDING OF CLASSICAL BAN LOGIC 63

1. 2A K secret of G, 2A∆ ⊢L 2AF .

2. A sees K 2A∆ ⊢L 2AF .

Proof (1): From axiom Red and axiom T, K secret of G ⊢ exists K, i.e., by
lemma 6.2.2, 2AK secret of G ⊢ 2Aexists K, i.e., by axiom Red, 2AK secret of G ⊢
A infers K. By assumption and lemma 6.2.2, we reach (1). (2): From axioms Mono,
M3 and M5, A rec K ⊢ exists K, i.e., by lemma 6.2.2, 2AA rec K ⊢ 2Aexists K, i.e.,
by axiom Red, A sees K ⊢ A infers K. By assumption and lemma 6.2.2, we reach
(2). 2

Theorem 6.3.2 BAN theories satisfy classical BAN conditions R2 - R10.

Proof From axiom Mono and lemma 6.3.1. 2

In fact, through successive application of lemma 6.3.1, theorem 6.3.2 can be gen-
eralized to classical BAN conditions with iterated modalities. For instance, BAN
theories satisfy the following generalization of condition R9 :

2A2Bfresh M, 2A2BK secret of G ⊢ 2A2Bfresh {M}K

To obtain classical BAN condition R1, we add an origination axiom:

K secret of G → A rec {from B : M}K → (6.3)

B said {from B : M}K ∧ B sees K

Theorem 6.3.3 Any BAN theory that contains the origination axiom (6.3) satis-
fies classical BAN condition R1.

Proof From axiom Mono, B sen {from B : M}K ⊢ B sen M . By lemma 6.3.1.2,
we obtain 2BB sen {from B : M}K , B sees K ⊢ 2BB sen M , i.e., B said {from B :
M}K , B sees K ⊢ B said M . By lemma 6.3.1.1, we get 2AB said {from B : M}K ,
2AB sees K, 2AK secret of G ⊢ 2AB said M . Condition R1 follows by lemma
6.3.1.1 applied to (6.3). 2

Of course, axiom (6.3) is only applicable to a group G of honest agents who supply
sender fields inside their ciphertexts. But, a weaker form of origination axiom is
more generally applicable:

K secret of G → (A rec {M}K →
∨

B∈G

(B said {M}K ∧ B sees K) (6.4)

Proposition 6.3.4 Any BAN theory that contains the weaker origination axiom
(6.4) satisfies the condition:

• A sees {M}K , 2AK secret of G ⊢ 2A

∨
B∈G

B said M

64 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

Proof From axiom Mono, B sen {M}K ⊢ B sen M . By lemma 6.3.1.2, we get
B said {M}K , B sees K ⊢ B said M , i.e., we obtain

∨
B∈G

(B said {M}K∧B sees K)

⊢
∨

B∈G

B said M . By lemma 6.3.1.1, 2AK secret of G, 2A

∨
B∈G

(B said {M}K ∧

B sees K) ⊢ 2A

∨
B∈G

B said M . The proposition follows by lemma 6.3.1.1 applied

to (6.4). 2

Theorems 6.3.2 and 6.3.3 and proposition 6.3.4 provide some justification to our
definition of sees and said. The following proposition lends some further support.

Corollary 6.3.5 Any BAN theory contains:

1. A sees M → 2AA sees M

2. ¬A sees M → 2A¬A sees M

3. A said M → 2AA said M

4. ¬A said M → 2A¬A said M

5. A received M → A sees M

6. A sent M → A said M

Proof (1): Axiom 4. (2): Axiom 5. (3): Axiom 4. (4): Axiom 5. (5): From
axiom M1 and lemma 6.2.2, 2AA received M → 2AA rec M , i.e., by axiom I,
A received M → A sees M . (6): From axiom M2 and lemma 6.2.2, 2AA sent M →
2AA sen M , i.e., by axiom I, A sent M → A said M . 2

6.4 Theory Base

Theorem 6.3.3 and proposition 6.3.4 suggest that we might be interested in BAN
theories generated from a base of “extra axioms”. In fact, BAN-style protocol
analysis normally add protocol specific rules.4

Example 6.4.1 Consider the Needham-Schröder Shared Key Protocol [65] between
principals A and B and with key server S. If the server sends the cipher text
{N · B · K · M}KA

, and KA is A:s server key, then the server generated K for A
and B:

S said {N ·B·K ·M}KA
, KA secret of {A, S}, fresh N → K secret of {A, B, S} (6.5)

Furthermore, agent A does not send the kind of cipher texts sent by the key server
S:

KA secret of {A, S} → ¬A said {N · B · K · M}KA
(6.6)

4Either explicitly (cf. [53, 77, 83]) or implicitly by substituting “idealized” messages for
messages in the protocol description.

6.5. EXTENDED MESSAGE PASSING SYSTEMS 65

Assume a BAN theory that contains protocol specific axioms (6.5) and (6.6), for
all keys N , K and Ka and all messages M , and contains the weaker origination
axiom (6.4) for G ={A, S}. Then, the BAN theory also contains the following
authentication specification:

A received {N · B · K · {K · A}KB
}KA

, 2AKAsecret of {A, S}, 2Afresh N
→ 2AK secret of {A, B, S}

stating that if A sees the message {N ·B·K ·{K ·A}KB
}KA

from the server, knows the
key KA to this message, and knows that the nonce N inside is fresh, then A knows
that the key K provided inside is secret between A, B and S. The derivation proceeds
as follows. From (6.6), KA secret of {A, S},

∨
A′∈{A,S}

A′ said {N · B · K · M}KA
⊢

S said {N · B · K · M}KA
. By lemma 6.3.1,

2AKA secret of {A, S}, 2A

∨

A′∈{A,S}

A′ said {N · B · K · M}KA
(6.7)

⊢ 2AS said {N · B · K · M}KA

From weak origination axiom (6.4) and lemma 6.3.1, we get 2AKA secret of {A, S},
A sees {N ·B ·K ·M}KA

⊢ 2A

∨
A′∈{A,S}

A′ said {N ·B ·K ·M}KA
. By corollary 6.3.5.5,

2AKA secret of {A, S}, A received {N · B · K · M}KA
(6.8)

⊢ 2A

∨

A′∈{A,S}

A′ said {N · B · K · M}KA

Combining (6.7) and (6.8),

2AKA secret of {A, S}, A received {N ·B ·K ·M}KA
⊢ 2AS said {N ·B ·K ·M}KA

The specification follows from this and the application of lemma 6.3.1 on (6.5).

We define the BAN theory induced by a finite set A of statements, in symbols
LA, as the smallest BAN theory containing the finite set A; We shall refer to A

as the theory base of LA. Note that the origination schemata (6.3) and (6.4), as
well as the protocol specific axiom schemata in example 6.4.1, are finite, since the
message space is finite.

6.5 Extended Message Passing Systems

Next, we define the extended message passing systems with respect to which we
obtain soundness and completeness for BAN theories. The action vocabulary of
message passing systems (example 2.2.1) is extended with an action begin epoch

that signals the start of a new time period (“epoch”); This action will be used

66 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

to interpret the predicate unfresh, along the lines of [7]. To aid the completeness
construction, we also add a set of internal (“silent”) actions; These will be used to
enforce message correlations in the canonical countermodel to non-theorems.

The set Π now contains the actions:

A sends, A receives, A int, begin epoch

for A ∈ A, and where int ranges over a finite set of primitive internal actions,
and begin epoch is an action that takes no message argument. Agents observe the
“global time” and their own communication actions and internal actions:

Π|A = {A sends, A receives, A int, beginepoch | Internal action int}

The observation function | is lifted to execution histories as usual. In details, we
have:

i|A = init i(A)

(h · A sendsM)|A = (h|A) · A sendsM

(h · B sendsM)|A = (h|A), B 6= A

(h · A receivesM)|A = (h|A) · A receivesM

(h · B receivesM)|A = (h|A), B 6= A

(h · A int M)|A = (h|A) · A int M

(h · B int M)|A = (h|A), B 6= A

(h · beginepoch)|A = (h|A) · begin epoch

Throughout the rest of chapter 6, the action vocabulary Π and the observation
function | are fixed according to the above definitions. Thus, each system S =
〈Π, H, |〉 can be identified with its underlying set H of histories.

The interpretation of predicates is also fixed. To begin with, the predicates
A received, A sent, A rec and A sen are interpreted as before:

I(A sent, h) = {M | (A sendsM) ∈ actions(h)}

I(A received, h) = {M | (A receivesM) ∈ actions(h)}

I(A rec, h) = {M | ∃M ′ ≥ M. (A receivesM ′) ∈ actions(h)}

I(A sen, h) = {M | ∃M ′ ≥ M. (A sendsM ′) ∈ actions(h)}

The predicate unfresh is interpreted along the lines of [7], through the beginepoch

action: I(unfresh, h) contains sub-messages of messages sent prior to the latest
epoch: M ∈ I(unfresh, h), if and only if,

h = θ− · begin epoch · θ+ and M ∈ I(A sen, θ−)

for some A ∈ A and some action traces θ− and θ+. The interpretation of unfresh
is not critical: Other accounts can be dealt with by routine changes.

6.6. SOUNDNESS, COMPLETENESS AND DECIDABILITY 67

The interpretation of predicate exists is now modified so that internal actions
do not effect what messages exist. Write purge(h) for the result of removing all
internal actions from history h:

purge(i) = i

purge(h · A int M) = purge(h)

purge(h · σ) = purge(h) · σ, if σ is not of the form A int M

A message is now said to exist if it is a sub-message in the purged history:

I(exists, h) = {M | ∃M ′ ≥ M.M ′ ∈ messages(purge(h))}

Admittedly, the new interpretation of exists makes requirement (5.4) for inductive
interpretations of predicate A infers slightly ad hoc. Even so, we assume that I is
inductive. Trivially, the proofs of theorems 5.3.3 and 5.3.5 carry over to the new
interpretation of exists.

Under the fixed interpretation of predicates, each system H determines a unique
interpreted system 〈H, I〉, and we say that statement F is valid in H , in symbols
|=H F , if |=〈H,I〉 F for the unique permitted interpretation I on H .

6.6 Soundness, Completeness and Decidability

Write ‖∆‖ for the set of all systems H validating all statements in ∆. The set ∆
is sound with respect to a class C of systems, if C ⊆ ‖∆‖. The set ∆ is complete
with respect to C, if ∆ contains all statements valid in all systems in C.

Theorem 6.6.1 (Soundness) LA is sound with respect to ‖A‖.

Proof Boolean tautologies and modus ponens: Routine. PNec: Lemma 4.3.2.
K and T : Proposition 4.2.4. 4 and 5 : Corollary 5.3.5 (which remains valid for
the modified exists predicate). I : Proposition 4.2.6. Red : Induction property
(5.4). GC : Since begin epoch ∈ Π|A and A sends ∈ Π|A. Non-epistemic axioms:
Routine. 2

Theorem 6.6.2 (Completeness) LA is complete with respect to ‖A‖.

Proof Section 6.7. 2

Thus, the protocol base A semantically guarantees a specification only if the spe-
cification is a theorem of LA. Contrast this with the usual verification practice in
BAN, based on an open ended proof system: If the specification is unprovable, it can
be concluded that either the protocol assumptions do not ensure the specification
or the base logic needs to be extended (cf. [16, 78]).

Completeness theorem 11.2.2 is evidence that our notion of validity is faithful to
BAN. In fact, since the protocol base is freely chosen, the theorem suggests not only

68 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

that validity with respect to all systems is faithful to BAN, but also that validity
with respect to selected classes of systems is faithful. Clearly, applications such as
model checking require the latter and stronger form of faithfulness.

Theorem 6.6.3 (Decidability) LA is decidable.

Proof Section 6.7. 2

6.7 Completeness Construction

We shall reach completeness and decidability by way of a finite model property: If
F is not a theorem of LA, then there is a finite system HF ∈ ‖A‖ such that HF

invalidates F . To construct the countersystem HF , we first lift the semantics from
systems to a more general class of structures, counterpart models (section 6.7). We
then build a canonical counterpart model CLA that validates precisely the theorems
of LA (section 6.7). Finally, we transform CLA, while preserving validity of A and
non-validity of F , into a finite system HF (section 6.7).

Counterpart Model

We abstract from our semantics on systems to a semantics on abstract counterpart
models [56]. A counterpart model is a triple C = 〈W,−→, Int〉, where W is a
set of worlds (states), −→ρ

A⊆ W × W for each agent A ∈ A and each message
permutation ρ, and Int(p, w) is a set of messages, intuitively the set of messages
satisfying predicate p at w.5 Intuitively, w −→ρ

A w′ says that any M at w, could,
for all A knows, be ρ(M) at w′. The semantics of section 4.2 is generalized in the
obvious way:

w |=C 2AF ⇔ ∀ρ : ∀w′ ∈ W : w −→ρ
A w′ ⇒ w′ |=C ρ(F)

w |=C p(M) ⇔ M ∈ Int(p, w)

Truth conditions for boolean operators are standard.
Counterpart models are used in counterpart semantics [56], a semantics for first

order modal logic. However, in counterpart semantics, one renames the assignment
to variables as one moves along the possibility relation from one state to another,
rather than, as we do here, rename the evaluated statement F . We return to
counterpart semantics in part II (cf. section 11.3).

Canonical Counterpart Model

Next, we build a canonical counterpart model that validates precisely the theorems
of a given BAN theory. Assume a BAN theory L. A set ∆ of statements is consistent

5In this chapter, all predicates are unary.

6.7. COMPLETENESS CONSTRUCTION 69

if there is no statement ¬F such that ∆ ⊢ ¬F and ∆ ⊢ F .6 ∆ is maximal consistent
if there is no consistent set ∆′ such that ∆′ ⊃ ∆. Using the standard Lindenbaum
construction we obtain:

Lemma 6.7.1 (Extension Lemma) If ∆ 6⊢ F , there is a maximal consistent set
∆′ ⊇ ∆ such that F 6∈ ∆′.

The canonical counterpart model for BAN theory L is CL = 〈WL,−→
L

, IntL〉, where

• WL is the set of all maximal consistent sets

• IntL(w, p) = {M | p(M) ∈ w}

• w −→ρ
A

L

w′ ⇔ ρ ⊳ IntL(A infers, w) and ∀F : 2AF ∈ w ⇒ ρ(F) ∈ w′

Lemma 6.7.2 (Truth lemma) w |=CL
F ⇔ F ∈ w.

Proof By induction in (the number of statement operators in) F , using permuta-
tion normality (Lemma 6.2.2). The base case, for atomic F , is immediate. The
induction step, for boolean operators, uses standard properties of maximal consist-
ent sets. For the epistemic modality let w|A be the set {F | 2AF ∈ w}. For the
only-if direction first:

2AF 6∈ w

⇒ ρ(w|a) 6⊢ ρ(F) & ρ ⊳ IntL(a uses, w), ∃ρ (By permutation normality) (6.9)

⇒ ρ(w|a) ⊆ w′ & ρ(F) 6∈ w′, ∃w′ ∈ WL (By lemma 6.7.1) (6.10)

⇒ w′ 6|=CL
ρ(F) (By the ind. hyp.) (6.11)

⇒ ∀F : 2AF ∈ w ⇒ ρ(F) ∈ w′ (By (6.10)) (6.12)

⇒ w −→ρ
A

L

w′ (By (6.9) and (6.12)) (6.13)

⇒ w 6|=CL
2AF (By (6.11) and (6.13))

For the if-direction:

2AF ∈ w & w −→ρ
A

L

w′ & w′ ∈ WL

⇒ ρ(F) ∈ w′

⇒ w′ |=CL
ρ(F) (By the ind. ass.)

⇒ w |=CL
2AF (By the assumptions)

2

The canonical counterpart model validates precisely all theorems.

Corollary 6.7.3 (Canonical Model Corollary) |=CL
F ⇔⊢L F .

6Since the BAN theory L is clear from the context, we drop the subscripted L from ⊢L.

70 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

Proof From extension lemma 6.7.1 and truth lemma 6.7.2. 2

If w is related to w′ under permutation ρ, then ρ transforms what the agent knows
in w to what the agent knows in w′.

Lemma 6.7.4 If w −→ρ
A

L

w′, then 2AF ∈ w ⇔ 2Aρ(F) ∈ w′.

Proof From axioms 4 and 5. Assume that w −→ρ
A

L

w′.

2AF ∈ w

⇒ 2A2AF ∈ w (Axiom 4)

⇒ 2Aρ(F) ∈ w′ (Since w −→ρ
A

L

w′)

For the converse:

2AF 6∈ w

⇒ ¬2AF ∈ w

⇒ 2A¬2AF ∈ w (Axiom 5)

⇒ ¬2Aρ(F) ∈ w′ (Since w −→ρ
A

L

w′)

⇒ 2Aρ(F) 6∈ w′

2

Filtration

In the section following this one, we transform the canonical model into a system,
while preserving validity of theorems and non-validity of a given non-theorem F . In
this section, we lay down conditions that assure that such a transformation succeeds:
We define a notion of filtration from a counterpart model to an interpreted system,
such that the filtration preserves truth values in a set Γ of statements.

Assume a set Γ of statements, a counterpart model C = 〈W,−→, Int〉 and an
interpreted system I = 〈H, I〉. A relation ⊆ W × H is a Γ-filtration from C to
I if whenever w h then

1. Int(p, w) = I(p, h)

2. w −→ρ
A w′ ⇒ ∃h′ ∈ H : w′

 h′, h ∼ρ
A h′

3. h ∼ρ
A h′ ⇒ ∃w′ ∈ W : w′

 h′, w |=C 2AF ⇒ w′ |=C ρ(F), if 2AF ∈ Γ

From now on, we assume that Γ is closed in two respects: Γ is closed under sub-
statements, i.e., if F ∈ Γ and F ′ is a sub-statement of F then F ′ ∈ Γ, and Γ
is closed under message permutations, i.e., if F ∈ Γ and ρ is any permutation of
messages then ρ(F) ∈ Γ.7

7Since the message space is finite, there are finitely many permutations.

6.7. COMPLETENESS CONSTRUCTION 71

Lemma 6.7.5 (Filtration Lemma) Assume that is a Γ-filtration from C to
I, w h and F ∈ Γ. Then, w |=C F ⇔ h |=I F .

Proof By induction on F . The base case, for atomic F , is filtration condition (i).
The induction step, for boolean operators, is immediate. The induction step, for
the epistemic modality: Assume, first, h |=I 2AF .

w −→ρ
A w′

⇒ w′
 h′ ∧ h ∼ρ

A h′, ∃h′ ∈ H (Filt.cond. (ii))

⇒ h′ |=I ρ(F) (Since h |=I 2AF)

⇒ w′ |=C ρ(F) (Induct. assum., Γ is closed)

⇒ w |=C 2AF (w′ and r are arbitrary)

For the converse, assume that w |=C 2AF .

h ∼ρ
A h′

⇒ w′
 h′ ∧ (w |=C 2AF ⇒ w′ |=C ρ(F)), ∃w′ (Filt.cond. (iii))

⇒ w′ |=C ρ(F) (Since w |=C 2AF)

⇒ h′ |=I r(F) (Induct. assum., Γ is closed)

⇒ h |=I 2AF (h′ and ρ are arbitrary)
2

Canonical System

We build a filtration from the canonical counterpart model CL = 〈WL,−→
L

, IntL〉

into an interpreted system, transforming each maximal consistent set w into one or
more histories h. To this end, we first transform an arbitrary set ∆ of statements
into two actions sets, a set Actions−(∆) of “old” actions and a set Actions+(∆) of
“recent” actions:

Actions−(∆) =
⋃

A∈A

Actions−(∆, A)

Actions+(∆) =
⋃

A∈A

Actions+(∆, A)

where Actions−(∆, A) is the set:

1 {A sends M : (A sent M) ∈ ∆ ∧ (2Aunfresh M) ∈ ∆}

and Actions+(∆, A) is the union of three sets:

2 {A receives M : (A received M) ∈ ∆}

3 {A sends M : (A sent M) ∈ ∆ ∧ (2Aunfresh M) 6∈ ∆}

4 {A int F : (2AF) ∈ ∆}

72 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

In (4), we assume that internal actions are of the form a int F , where F is any
statement.8

Assume a set Γ of statements. We relate a state w in the canonical counterpart
model to a history h, in symbols w h, if and only if, for some initialization i and
some action traces θ− and θ+:

• h = i · θ− · begin epoch · θ+

• i(A) = {M | (A infers M) ∈ w ∩ Γ}, A ∈ A

• Actions(θ−) = Actions−(w ∩ Γ)

• Actions(θ+) = Actions+(w ∩ Γ)

In order to obtain a finite system, we exclude any history that repeats actions, i.e.,
contains at least two occurrences of the same action π(M). Thus, we define the
canonical system – the system that we filter the canonical counterpart model into
– as the set HL of all repetition-free histories obtained from states in WL:

HL = {h : ∃w ∈ WL s.t. w h and h is repetition-free}

Let the canonical interpretation IL interpret predicates A sent , A received , A rec,
A sen and exists according to the requirements in section 6.5:

IL(A sent, h) = {M | (A sendsM) ∈ actions(h)},

and so on for the other predicates. For the remaining predicate, A infers, let:

IL(A infers, i · θ) = i(A)

Finally, set the canonical interpreted system to IL = 〈HL, IL〉. We proceed to show
that is a Γ-filtration from CL to IL, under certain assumptions on Γ: We assume,
from now on, that Γ is finite and contains all atomic statements and contains
2AA received M , 2AA sent M , 2AA infers M , 2Aexists M and 2Aunfresh M for
all A ∈ A and messages M .9 As before, we also assume that Γ is closed under
sub-statements and message permutations ρ.

Lemma 6.7.6 (Filtration Condition 1) If w h, then IntL(p, w) = IL(p, h).

Proof Assume that w h. Case p = A received:

M ∈ IntL(A received, w)

⇔ A received M ∈ w

⇔ A received M ∈ w ∩ Γ (Since Γ contains atomic statements)

⇔ A receives M ∈ Actions+(w ∩ Γ)

⇔ A receives M ∈ Actions(h) (Since w h)

⇔ M ∈ IL(A received, h)

8This assumes a slightly different definition of internal action than that of Section 6.5. Altern-
atively, we could introduce a int F as an abbreviation for an internal action of the form a int M .

9Recall that the message space is finite.

6.7. COMPLETENESS CONSTRUCTION 73

Case p = A rec:

M ∈ IntL(A rec, w)

⇔ A rec M ∈ w

⇔ A received M ′ ∈ w, ∃M ′ ≥ M (By M1, M5, Mono)

⇔ M ′ ∈ IntL(A received, w), ∃M ′ ≥ M

⇔ M ′ ∈ IL(A received, h), ∃M ′ ≥ M (By case p = A received)

⇔ M ∈ IL(A rec, h)

Cases p = A sent and p = A sen are analogous. Case p = unfresh:

M ∈ IntL(unfresh, w)

⇔ unfresh M ∈ w

⇔ A sent M ′, 2Aunfresh M ′ ∈ w, ∃A.∃M ′ ≥ M (By GC, T, Mono)

⇔ A sent M ′, 2Aunfresh M ′ ∈ w ∩ Γ, ∃A.∃M ′ ≥ M (By conditions on Γ)

⇔ A sends M ′ ∈ Actions−(w ∩ Γ), ∃A.∃M ′ ≥ M

⇔ M ∈ IL(unfresh, h) (Since w h)

Case p = exists: Let Actions(∆) = Actions−(∆) ∪ Actions+(∆).

M ∈ IntL(exists, w)

⇔ exists M ∈ w

⇔ (A sent M ′ ∨ A received M ′ ∨ A infers M ′) ∈ w, (By M7, M3, M4, Mono,

∃A.∃M ′ ≥ M and Red, T)

⇔ A sent M ′ ∈ w ∩ Γ

or A received M ′ ∈ w ∩ Γ

or A infers M ′ ∈ w ∩ Γ, ∃A.∃M ′ ≥ M (By conditions on Γ)

⇔ A sends M ′ ∈ Actions(w ∩ Γ)

or A receives M ′ ∈ Actions(w ∩ Γ)

or A infers M ′ ∈ w ∩ Γ, ∃A.∃M ′ ≥ M

⇔ M ′ ∈ messages(purge(h)), ∃M ′ ≥ M (Since w h)

⇔ M ∈ IL(exists, h)

Case p = A infers:

M ∈ IntL(A infers, w)

⇔ A infers M ∈ w

⇔ A infers M ∈ w ∩ Γ (By conditions on Γ)

⇔ M ∈ IL(A infers, h) (Since w h)

2

Lemma 6.7.7 (Filtration Condition 2) If w h and w −→ρ
A

L

w1, there is

h1 ∈ HL such that w1 h1 and h ∼ρ
A h1 in IL.

74 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

Proof Assume that w h and w −→ρ
A

L

w1. From the latter assumption, ρ ⊳

IntL(A infers, w), i.e., by lemma 6.7.6 and the first assumption, ρ ⊳ IL(A infers, h).
Pick some h1 ∈ HL such that w1 h1. Let:

h|A = (initκ) · θ− · begin epoch · θ+

h1|A = (initκ1) · θ
−
1 · begin epoch · θ+

1

for some action traces θ−, θ+, θ−1 , θ+
1 and sets κ, κ1 ⊆ T . We shall show that:

ρ(κ) = κ1 (6.14)

ρ(Actions(θ−)) = Actions(θ−1) (6.15)

ρ(Actions(θ+)) = Actions(θ+
1) (6.16)

The lemma then follows by shuffling the inside of θ−1 and the inside of θ+
1 : After

shuffling, we obtain ρ(h|A) = h1|A, and so h ∼ρ
A h1, but still h1 ∈ HL and w1 h1.

For (6.14):

M ∈ κ

⇔ (A infers M) ∈ w ∩ Γ (Since w h)

⇔ (A infers M) ∈ w (By conditions on Γ)

⇔ (2Aexists M) ∈ w (By Red)

⇔ (2Aexists ρ(M)) ∈ w1 (By lemma 6.7.4, w −→ρ
A

L

w1)

⇔ (A infers ρ(M)) ∈ w1 (By Red)

⇔ (A infers ρ(M)) ∈ w1 ∩ Γ (By conditions on Γ)

⇔ ρ(M) ∈ κ1 (Since w1 h1)

For (6.15):

A sends M ∈ Actions(θ−)

⇔ A sends M ∈ Actions−(w ∩ Γ) (Since w h)

⇔ (A sent M) ∈ w ∩ Γ

and (2Aunfresh M) ∈ w ∩ Γ

⇔ (2AA sent M) ∈ w ∩ Γ

and (2Aunfresh M) ∈ w ∩ Γ (By I, T , conditions on Γ)

⇔ (2AA sent ρ(M)) ∈ w1 ∩ Γ

and (2Aunfresh ρ(M)) ∈ w1 ∩ Γ (By lemma 6.7.4, w −→ρ
A

L

w1)

⇔ (A sent ρ(M)) ∈ w1 ∩ Γ

and (2Aunfresh ρ(M)) ∈ w1 ∩ Γ (By I, T)

⇔ A sends ρ(M) ∈ Actions−(w1 ∩ Γ)

⇔ A sends ρ(M) ∈ Actions(θ−1) (Since w1 h1)

6.7. COMPLETENESS CONSTRUCTION 75

To establish (6.16), we show that A receives M ∈ Actions(θ+) iff A receives ρ(M) ∈
Actions(θ+

1), and similarly for internal and send actions. For receive actions:

A receives M ∈ Actions(θ+)

⇔ A receives M ∈ Actions+(w ∩ Γ) (Since w h)

⇔ A received M ∈ w ∩ Γ

⇔ 2AA received M ∈ w ∩ Γ (By I, T , conditions on Γ)

⇔ 2AA received ρ(M) ∈ w1 ∩ Γ (By lemma 6.7.4 and

w −→ρ
A

L

w1 and conditions on Γ)

⇔ A received ρ(M) ∈ w1 ∩ Γ (By I, T , conditions on Γ)

⇔ A receives ρ(M) ∈ Actions+(w1 ∩ Γ)

⇔ A receives ρ(M) ∈ Actions(h1) (Since w1 h1)

⇔ A receives ρ(M) ∈ Actions(θ+
1)

The proof for internal actions is similar and left to the reader. For send actions:

A sends M ∈ Actions(θ+)

⇔ A sends M ∈ Actions+(w ∩ Γ) (Since w h)

⇔ (A sent M) ∈ w ∩ Γ

and (2Aunfresh M) 6∈ w ∩ Γ

⇔ (2AA sent M) ∈ w ∩ Γ

and (2Aunfresh M) 6∈ w ∩ Γ (By I, T , conditions on Γ)

⇔ (2AA sent ρ(M)) ∈ w1 ∩ Γ

and (2Aunfresh ρ(M)) 6∈ w1 ∩ Γ (By lemma 6.7.4, w −→ρ
A

L

w1)

⇔ (A sent ρ(M)) ∈ w1 ∩ Γ

and (2Aunfresh ρ(M)) 6∈ w1 ∩ Γ (By I, T)

⇔ A sends ρ(M) ∈ Actions+(w1 ∩ Γ)

⇔ A sends ρ(M) ∈ Actions(θ+
1) (Since w1 h1)

2

Lemma 6.7.8 (Filtration Condition 3) Assume that h ∼ρ
A h′ in IL and w

h. Then, there is w′ ∈ WL such that w′
 h′, and for all (2AF) ∈ Γ: w |=CL

2AF ⇒ w′ |=CL
ρ(F).

Proof Assume that w h and h ∼ρ
A h′ in IL. Then, h′ ∈ HL, i.e., w′

 h′ for
some w′ ∈ WL. Assume (2AF) ∈ Γ. Then,

w |=CL
2AF

⇒ (2AF) ∈ w ∩ Γ (By lemma 6.7.2)

⇒ A int F ∈ Actions+(w ∩ Γ)

⇒ A int F ∈ Actions(h) (By w h)

76 CHAPTER 6. COMPLETENESS FOR BAN-LIKE THEORIES

⇒ A int ρ(F) ∈ Actions(h′) (By h ∼ρ
A h′)

⇒ A int ρ(F) ∈ Actions+(w′ ∩ Γ) (By w′
 h′)

⇒ 2Aρ(F) ∈ w′

⇒ ρ(F) ∈ w′ (By axiom T)

⇒ w′ |=CL
ρ(F) (By lemma 6.7.2)

2

Having thus established all three filtration conditions, we know that is a filtra-
tion.

Corollary 6.7.9 is a Γ-filtration from the canonical counterpart model to the
canonical interpreted system.

Proof From lemmas 6.7.6, 6.7.7 and 6.7.8. 2

To reach completeness theorem 11.2.2, it remains to be shown that IL is in-
ductive.

Lemma 6.7.10 The canonical interpreted system is inductive.

Proof We show first that the canonical interpretation function IL is fixed point.
Assume that w h.

h |=IL
A infers K

⇔ Ainfers K ∈ w (Lemma 6.7.6)

⇔ 2Aexists K ∈ w (Axiom Red)

⇔ h |=IL
2Aexists K (Lemmas 6.7.2 + 6.7.5, corollary 6.7.9

and 2Aexists K ∈ Γ)

To show that IL is minimal among fixed point variants, we show that if K ∈
IL(A infers, h) then h |=〈HL,I′〉 2Aexists K for any variant I ′ of IL.

K ∈ IL(A infers, h) and h ∼ρ
A h′ in 〈HL, I ′〉 (6.17)

⇒ K ∈ messages(purge(h|A)) (From (6.17)) (6.18)

⇒ ρ(h|A) = h′|A (From (6.17)) (6.19)

⇒ ρ(K) ∈ messages(purge(h′|A)) (From (6.18) + (6.19))

⇒ ρ(K) ∈ I ′(exists, h′)

⇒ h′ |=〈HL,I′〉 exists ρ(K)

⇒ h |=〈HL,I′〉 2AexistsK (Since h′ and ρ are arbitrary)

2

Lemma 6.7.11 (Finite Model Property) If 6⊢LA F , there is a finite system
H ∈ ‖A‖ such that 6|=H F .

6.7. COMPLETENESS CONSTRUCTION 77

Proof From canonical model corollary 6.7.3, filtration lemma 6.7.5, lemma 6.7.9
and lemma 6.7.10. Assume that 6⊢LA F . From canonical model corollary 6.7.3,
6|=CLA

F and |=CLA
A. Let Γ be the smallest set closed under message permuta-

tions and sub-statements, and containing F and A, and containing all atomic state-
ments, containing 2AA received M , 2AA sent M , 2Aexists M , 2AA infers M and
2Aunfresh M , for all A ∈ A and messages M . Γ is finite, since A is finite. By fil-
tration lemma 6.7.5, lemma 6.7.9 and lemma 6.7.10, 6|=HLA

F and |=HLA
A, where

HLA is the canonical system for theory LA and filtration set Γ. By construction,
HLA is finite, as Γ is finite. 2

From Finite Model Property 6.7.11, we immediately get completeness theorem
11.2.2. By soundness and the proof of completeness it is not difficult to find a
bound n such that F ∈ LA, if and only if, F is valid in all systems in ‖A‖ with at
most n histories, each of size less than n. This is sufficient to establish Decidability
Theorem 6.6.3.

Those are my principles, and If you don’t like them ... well, I
have others.

Groucho Marx

79

Part II

First-Order Epistemic Logic and

Feasibly Computable Functions

81

Chapter 7

Relativized Static Equivalence

In this chapter, cryptography is modeled using private constants and arbitrary
feasibly computable operations, as in the Applied Pi-calculus [32]. A relativized
indistinguishability relation based on static equivalence [32] is introduced.

7.1 Static Equivalence

In process algebra based analysis of security protocols, security goals – often con-
fidentiality goals – are defined in terms of an observational equivalence of programs
(cf. [4, 32, 71]): A program successfully hides a condition if varying the condi-
tion has no observable effect. For example, an electronic voting protocol ensures
voter anonymity if, approximately, reshuffling the votes among the voters preserves
observational equivalence.

For security protocols that rely on one-way functions, the choice of observational
equivalence is a delicate matter. Intuitively, not every difference in observable
behavior makes a difference to what the external observer is able to infer, at least
not with feasible computational resources. For instance, even if two instances of
the electronic voting protocol output different encryptions on a public channel, the
two instances might be indistinguishable to an observer, as long as the observer
cannot (with feasible resources) decrypt the output.

Static equivalence [32] has recently emerged as a natural starting point for
observational equivalences with respect to formal cryptography. In this section, we
define a variant of static equivalence. Let f range over a countable set Σ of public,
feasibly computable operators, each equipped with an arity. Let A, B, ... range over
a finite, non-empty set A ⊆ Σ of 0-arity operators, representing public names of
distinct agents. Let c range over a countably infinite set SEC of secret constants,
and x, y, z... range over a countably infinite set VAR of variables. Message terms t
are:

t ::= x | c | f(t1, ..., tn)

83

84 CHAPTER 7. RELATIVIZED STATIC EQUIVALENCE

where f has arity n. Write VAR(t) for the set of variables in t. Let M, K, N, ... range
over the set T of ground terms (terms with no occurrences of variables). An abstract
model of cryptography is given as a congruence ≡ over ground terms, typically via
an equational theory. The set of messages is the set T≡ of all equivalence classes
with respect to ≡. Overloading the notation, we write M for the equivalence class
[M]≡, and f for its induced operation on classes.

Example 7.1.1 To model pairing and asymmetric encryption, we assume the least
congruence over ground terms satisfying the following equations:

fst(pair(M, M ′)) ≡ M (7.1)

snd(pair(M, M ′)) ≡ M ′ (7.2)

dec(enc(M, pk(K)), K) ≡ M

Informally, fst/snd picks out first/second components, pk produces a matching en-
cryption key and enc/dec encrypts/decrypts the first argument using the second as
key. To model pairing and random asymmetric encryption, we assume the least con-
gruence over ground terms satisfying (7.1) and (7.2), in addition to the following
equation:

dec(enc(M, pk(K), N), K) ≡ M

The encryption operation enc now takes a third argument, N , as a random seed.

Throughout this part of the thesis, we assume that agent names in A are non-
equivalent. In some results, we assume there is a special unary operator h ∈ Σ,
with h(h(M)) 6≡ M and such that if h(M) ≡ h(M ′) then M ≡ M ′; We call such
an operator a hash function.

Assume a non-empty, countable set LOC of store locations l. A state (“store”)
over LOC is a partial function s from LOC to T≡. A message is inferable (“dedu-
cible”) from a state if the message is directly given by the state, i.e., belongs to the
range, or if the message can be obtained from already inferred messages through
some f ∈ Σ.

Definition 7.1.2 Inferable(s), the messages inferable from s, is the least extension
of ran(s) closed under all f ∈ Σ.

Constant c need not be in Inferable(s), but 0-arity f must.
We introduce a second kind of term, s-terms:

α ::= l | f(α1, ..., αn)

where f ∈ Σ and l ∈ dom(s), i.e., l is a store location in the domain of s. Each
s-term represents an inference path available at s. We extend s to a mapping on
s-terms, i.e., s(f(α1, ..., αn) = f(s(α1), ..., s(αn)). The following corollary corres-
ponds to proposition 1 in [2].

7.2. INDISTINGUISHABILITY UNDER PERMUTATION 85

Corollary 7.1.3 Inferable(s) = {s(α) : α ∈ s-terms}.

Proof ⊆: By induction on the inference length. ⊇: By induction on α. 2

Two states are statically equivalent if they satisfy the same equality tests:

Definition 7.1.4 States s and s′ are statically equivalent, written s ≈ s′, if and
only if, dom(s) = dom(s′) and:

s(α) = s(α′) ⇔ s′(α) = s′(α′), all s-terms α, α′

Intuitively, for any s-terms α and α′, the equality α = α′ represents an experiment
available at state s; Two states are equivalent if expermients yield the same result
at both states.

Relating the above definitions to [32], constants c corresponds to private/fresh
names, states s correspond to frames, Inferable(s) corresponds to messages deduc-
tion (⊢) from the frame s, and s ≈ s′ is static equivalence between (finite) frames
s and s′.

7.2 Indistinguishability under Permutation

Static equivalence ≈ is based on the the intuition that the message s(α) at s cor-
responds to the message s′(α) at s′, in the sense that both messages are reached
through the same computation α:

• s(l) at s corresponds to s′(l) at ′.

• enc(s(l1), s(l2)) at s corresponds to enc(s′(l1), s
′(l2)) at s′.

• enc(pair(s(l1), s(l2)), s(l3)) at s corresponds to enc(pair(s′(l1), s
′(l2)), s

′(l3))
at s′.
...

In this section, we reformulate static equivalence in terms of message correspond-
ences. The reformulation, which makes message correspondences an explicit part
of the equivalence, is reminiscent of framed bisimulation [3].

We define an indistinguishability ∼ between states which is relativized to a
permutation on T≡. Informally, if s ∼ρ s′, then s is statically equivalent to s′ and
any message M at s corresponds to ρ(M) at s′. To qualify as a witness for state
indistinguishability, a permutation ρ must respect locations as well as all operations
in Σ on inferable messages:

Definition 7.2.1 s ∼ρ s′, if and only if, dom(s) = dom(s′) and:

1. ρ ◦ s = s′.

2. ρ(f(M)) = f(ρ(M)), if all Mi ∈ Inferable(s).

86 CHAPTER 7. RELATIVIZED STATIC EQUIVALENCE

Lemma 7.2.2 If s ∼ρ s′ then ρ(Inferable(s)) = Inferable(s′).

Proof By induction on inference length. 2

Proposition 7.2.3 The following hold:

1. s ∼Id s

2. If s ∼ρ s′ and s′ ∼ρ′

s′′ then s ∼ρ′◦ρ s′′.

3. If s ∼ρ s′ then s′ ∼ρ−1

s.

Proof (1) Immediate. (2) From lemma 7.2.2. (3) From lemma 7.2.2. 2

Write Inferable(s) for the complement of Inferable(s). Messages in Inferable(s) are
anonymous in that every permutation of Inferable(s) is “epistemically possible”:

Corollary 7.2.4 Assume a permutation π on Inferable(s). Extend π to a permuta-
tion ρ on T≡ such that ρ(M) = M for M ∈ Inferable(s). Then, s ∼ρ s.

A state s is normal if s has countably infinite many non-inferred messages, i.e.,
Inferable(s) is countably infinite. This corresponds to the assumption in [32] that
there always are fresh private names available. In the remainder of this section, we
assume states are normal.

Lemma 7.2.5 s ∼ρ s′ if, and only if, dom(s) = dom(s′) and ρ(s(α)) = s′(α) for
all s-terms α.

Proof From corollary 7.1.3. 2

We reach the following permutation-based characterization of static equivalence.

Theorem 7.2.6 (Permutation-Based Characterization) s ≈ s′, if and only
if, there is a permutation ρ such that s ∼ρ s′.

Proof Assume that s ≈ s′. Define ρ by: (i) ρ(s(α)) = s′(α), for all s-terms α,
and (ii) ρ(Mi) = Ni where M1, M2, ... is an enumeration (without repetitions) of
Inferable(s) and N1, N2, ... is an enumeration (without repetitions) of Inferable(s′).
By corollary 7.1.3, s ∼ρ s′. The converse is immediate from lemma 7.2.5. 2

Chapter 8

Generalized First-Order Kripke

Semantics

In this chapter, we generalize first-order Kripke semantics by updating the assign-
ment (of data to logical variables) as we move from a state to an indistinguishable
state. The update to the assignment is determined by the relativized indistin-
guishability of section 7.2.

8.1 Systems and Statements

Multi-Agent System We instantiate the multi-agent system framework [31, 66]
to our notion of state. A state space is a non-empty set S of states s over LOC,
intuitively the set of possible states of some underlying program. An observation
function | assigns a set LOC|A ⊆ LOC of locations observed (accessed) by agent A.
The observation function is lifted to states: s|A is the restriction of s to locations in
LOC|A. A multi-agent system, or simply a system, is a structure S = 〈LOC, S, |〉
of a set LOC of store locations, a state space S and an observation function |.

Example 8.1.1 We model a system where either agent A or agent B posts a mes-
sage, but agent C cannot observe whom. Assume the message congruence for
pairing and asymmetric encryption from example 7.1.1. Assume two locations:
LOC = {sender, post}. The state space is S = {s : LOC → T≡ | s(sender) ∈
{A, B}}. Agent C observes only the post location: LOC|C = {post}. The system is
S = 〈LOC, S, |〉.

Inference and indistinguishability naturally relativize to an agent A:

• Inferable(A, s) =df Inferable(s|A)

• s ∼ρ
A s′, if and only if, s|A ∼ρ s′|A.

87

88 CHAPTER 8. GENERALIZED FIRST-ORDER KRIPKE SEMANTICS

Statements Statements F ∈ F are defined by:

F ::= t = t′ | p(t1, ..., tn) | ∀x.F | ∀m.F [m/x] | 2AF | F ∧ F ′ | ¬F

where p is from a countable set P of predicates, A is an agent identifier in A,
m is from a countably infinite set of “place holders”, and F [m/x] is the result of
uniformly replacing free occurrences of variable x by place holder m throughout
F . Note that a statement may contain unbound variables, but not unbound place
holders. Informally, the statement ∀m.F [m/x] expresses the countably infinite
conjunction: ∧

M∈T

F [M/x]

For instance, the statement

∀m.(A received m → 2AA received m) (8.1)

informally expresses the conjunction:
∧

M∈T

(A received M → 2AA received M)

The distinction between variables x and place holders m reflects the de re/de
dicto dichotomy (cf. section 1.10): Variables x ∈ VAR refer de re, while closed
terms M ∈ T refer de dicto. For instance, statement (8.1) expresses knowledge de
dicto and is intuitively invalid; Agent A need not know the structure of messages
received, i.e., A need not know what terms are applicable to the messages received.
By contrast, the the statement:

∀x.(A received x → 2AA received x)

expresses knowledge de re and is intuitively valid: Every value agent A receives is
known by A to be received (cf. proposition 4.2.6). To highlight their respective
use, we refer to the ∀x-quantifier and the ∀m-quantifier as, respectively, the de re
quantifier and the de dicto quantifier.

Although we believe that the use of the de dicto quantifier is of independent in-
terest, its motivation here is mainly technical. To obtain a complete axiomatization,
we need an axiom stating that each variable x refers to some message M . Using
the de dicto quantifier, we can express this grounding by the statement ∃m.x = m.
In section 10.2, we show that the de dicto quantifier cannot be reduced to the de
re quantifier.

Interpreted System A predicate interpretation I on a system S assigns, to
each predicate p and state s ∈ S, a relation I(p, s) in T≡ (matching the arity
of p). An interpreted system based on a system S = 〈LOC, S, |〉 is a structure
I = 〈LOC, S, |, I〉 where I is an interpretation on S.

In some examples and propositions, we explicitly introduce the special unary
predicates A infers and @l, for A ∈ A and l ∈ LOC. When we do so, we implicitly
require that I(A infers, s) = Inferable(A, s) and I(@l, s) = {s(l)}.

8.2. COUNTERPART SEMANTICS BASED ON STATIC EQUIVALENCE 89

8.2 Counterpart Semantics Based on Static Equivalence

In this section, we interpret the epistemic modality through a counterpart semantics
[56] based on the relativized indistinguishability of section 7.2: An agent knows
a statement if the statement holds with respect to corresponding assignments at
indistinguishable states. Assume an interpreted system I, and an assignment V :
VAR −→ T≡. Assignments are extended homomorphically to terms in the usual
way, and V [x 7→ M] is V except that x is assigned M .

Definition 8.2.1 (Truth)

s, V |=I 2AF ⇔ ∀s′ ∈ S : ∀ρ : s ∼ρ
A s′ ⇒ s′, ρ ◦ V |=I F

s, V |=I t = t′ ⇔ V (t) = V (t′)

s, V |=I p(t1, ..., tn) ⇔ 〈V (t1), ..., V (tn)〉 ∈ I(p, s)

s, V |=I ∀x.F ⇔ ∀M ∈ T≡ : s, V [x 7→ M] |=I F

s, V |=I ∀m.F [m/x] ⇔ ∀M ∈ T : s, V |=I F [M/x]

For Boolean operators we assume standard truth conditions. Validity is defined
as usual: A statement F is valid in interpreted system I, written |=I F , if for all
s ∈ S and all assignments V , we have s, V |=I F . Statement F is valid in system
S, written |=S F , if F is valid in all interpreted systems based on S. Statement F
is valid, in symbols |= F , if F is valid in all systems. Statement F is valid at a state
s, written s |= F , if s, V |=I F for all assignments V and all interpreted systems I
containing s.

Example 8.2.2 As an illustration of the difference between the de re quantifier
and the quantifier, we have:

|= ∀x.(@l x → 2A@l x), l ∈ Π|A

6|= ∀m.(@l m → 2A@l m), l ∈ Π|A

Example 8.2.3 Consider the interpreted system I from example 8.1.1. Since
sender 6∈ LOC|C, agent C does not know the sender:

|=I ∀x.(@sender x → ¬2C@sender x)

However, since post ∈ LOC|C, agent C knows (as “bitstring”) what message is
posted:

|=I ∀x.(@post x → 2C@post x) (8.2)

On the other hand, C need not know the structure of the posted message:

6|=I ∀m.(@post m → 2C@post m) (8.3)

90 CHAPTER 8. GENERALIZED FIRST-ORDER KRIPKE SEMANTICS

The truth condition for the epistemic modality follows counterpart semantics in
that it checks F at s′ with respect to the corresponding assignment ρ ◦ V instead
of the original assignment V . By contrast, in basic Kripke semantics (cf. [14]), the
assignment is unchanged by the move from state s to state s′:

s, V |= 2AF ⇔ ∀s′ : s ∼A s′ ⇒ s′, V |= F (8.4)

The departure from basic Kripke semantics should not be over-stressed. The relativ-
ized indistinguishability relation ∼ρ

A induces a two-dimensional indistinguishability
relation between evaluation points, i.e., pairs s, V :

Definition 8.2.4 s, V ∼A s′, V ′, if and only if, there is a permutation ρ such that
s ∼ρ

A s′ and V ′ = ρ ◦ V .

Corollary 8.2.5 (Two-Dimensional Reformulation)

s, V |=I 2AF ⇔ ∀s′ ∈ S : ∀V ′ : s, V ∼A s′, V ′ ⇒ s′, V ′ |=I F

Thus, the semantics might be described as a “two-dimensional” generalization of
basic Kripke semantics. As expected, the two-dimensional ∼A is an equivalence.

Corollary 8.2.6 The two-dimensional ∼A is an equivalence on evaluation points:

• s, V ∼A s, V

• If s, V ∼A s′, V ′ and s′, V ′ ∼A s′′, V ′′ then s, V ∼A s′′, V ′′

• If s, V ∼A s′, V ′ then s′, V ′ ∼A s, V

Proof From proposition 7.2.3. 2

In turn, the two-dimensional ∼A can be reformulated using static equivalence and
s-terms, without quantifying over permutations ρ. In the following proposition,
assume that local states s|A and s′|A are normal.

Proposition 8.2.7 s, V ∼A s′, V ′, if and only if,

1. s|A ≈ s′|A

2. V (x) = s|A(α) ⇔ V ′(x) = s′|A(α), s|A-terms α

3. V (x) = V (y) ⇔ V ′(x) = V ′(y)

Proof Assume s, V ∼A s′, V ′. (1) By theorem 7.2.6. (2) ⇒: By lemma 7.2.5. ⇐:
By proposition 7.2.3.3 and lemma 7.2.5. (3) Immediate. Conversely, assume (1),
(2) and (3). By (1) and lemma 7.2.6, s ∼ρ

A s′ for some ρ. By (2) and corollary
7.1.3 and lemma 7.2.5, V ′(x) = ρ ◦ V (x) for all V (x) ∈ Inferable(A, s). By (3),
there is permutation π on Inferable(A, s) such that V ′(x) = ρ ◦ π ◦ V (x) for all
V (x) 6∈ Infers(A, s).1 Thus, V ′ = ρ ◦ π ◦ V . But, s ∼ρ◦π

A s′, since s ∼ρ
A s′. 2

1π is extended to a permutation on T≡ in the expected way: π(M) = M if M ∈ Inferable(A, s).

8.3. INTERACTION BETWEEN KNOWLEDGE AND CRYPTOGRAPHY 91

8.3 Interaction Between Knowledge and Cryptography

The use of counterpart semantics (definition 8.2.1) provides a handle on the no-
torious issue of mathematical omniscience in epistemic logic. Under basic Kripke
semantics (truth condition (8.4)), agents know all the cryptographic equalities,
agents are cryptographically omniscient :

t = t′ → 2A t = t′ (8.5)

For example,

x = enc(y, z) → 2Ax = enc(y, z)

Validity of cryptographic omniscience (8.5) follows under truth condition (8.4) from
the fact that term equalities depend only on the assignment, i.e.,

s, V |=I t = t′ =⇒ s′, V |=I t = t′

Under cryptographic omniscience (8.5), knowledge of an equality does not reflect
that the equality is feasible to compute. Instead, the epistemic modality is vacuous
on cryptographic equations. In fact, all counterexamples to logical omniscience
(cf. sections 1.8 and 3.1) – for languages with de re reference of closed terms
M – translate directly into counter examples to cryptographic omniscience – for
languages with de re reference of variables x and de dicto reference of closed terms
M (cf. section 9.2).

By contrast, cryptographic omniscience (8.5) fails in our counterpart semantics
(definition 8.2.1), since V (t) = V (t′) need not imply that (ρ◦V)(t) = (ρ◦V)(t′). For
instance, say V (x) = V (M) = M . Then, (ρ ◦ V)(x) = ρ(M), but (ρ ◦ V)(M) = M .

Example 8.3.1 Continuing example 8.2.3, from (8.2) and (8.3), we obtain:

6|=I x = M → 2Cx = M

i.e., cryptographic omniscience (8.5) fails in I

Even though cryptographic omniscience is invalid, a weaker form still holds.

Corollary 8.3.2 The following schema is valid:

y = f(x) → A infers x → 2Ay = f(x) (8.6)

According to (8.6), an agent knows, at least, feasible computable relationships
between inferred messages. By contrast, we obtain that an agent knows almost
nothing about non-inferred messages. More precisely, we obtain that the agent
knows a property of some non-inferred values x only if this property holds for any
non-inferred values z with the same pattern of identities.

92 CHAPTER 8. GENERALIZED FIRST-ORDER KRIPKE SEMANTICS

Corollary 8.3.3 The following schema is valid:2

2AF (x) → ¬A infers x, z →
∧

i,j

(xi = xj ↔ zi = zj) → F [z/x] (8.7)

Proof From corollary 7.2.4. 2

According to corollary 8.3.3, if agent A cannot infer any of the messages x nor
any of the messages z, and x and z have the same pattern of identities, then
2AF (x) → F [z/x].

2Recall that F (x) signifies that the list x consists precisely of all variables free in F .

Chapter 9

Security Protocol Examples

In this chapter, we illustrate the language on various security protocols. All logical
specifications considered depend on the absence of cryptographic omniscience.

9.1 Mix

Consider a mix in the style of [17], which decrypts and shuffles a sequence of random
asymmetric ciphertexts (cf. example 7.1.1). There is a decryption key Kmix which is
only known to the mix, while the corresponding encryption key pk(Kmix) is publicly
known. The mix inputs a sequence of encryptions:

enc(M1, pk(Kmix), N1), . . . , enc(Ml, pk(Kmix), Nl)

with some arbitrary content M1, . . . , Ml and arbitrary random seeds N1, . . . , Nl.
The mix outputs the encryption content in random order:

Mπ(1), . . . , Mπ(l)

for some random permutation π on {1, ..., l}.
The goal of the mix is that an eavesdropping spy should be unable to infer which

input contains which output:

mix inputs x ∧ mix outputs y → ¬2spyx contains y (9.1)

mix inputs x ∧ mix outputsy → 3spyx contains y (9.2)

where
x contains y =def ∃z.∃z′.x = enc(y, z, z′)

It might be that our primary interest is that the mix detects, rather than prevents,
information leakage, i.e., whenever the spy determines a link, the mix knows this:

mix inputs x ∧ mix outputs y → 2spyx contains y → 2mix2spyx contains y (9.3)

93

94 CHAPTER 9. SECURITY PROTOCOL EXAMPLES

We check the above security goals in an interpreted system implementing the
protocol. Let ≡ be the congruence for pairing and random asymmetric encryption
in example 7.1.1. Write M1 · · ·Mn for the list pair(M1, pair(M2, · · ·)). Fix an
integer l > 2 as the size of message buffer of the mix. For any k ∈ SEC as the
private decryption key of the mix, we assume an input-output relation InOutk
which relates any input list:

enc(m1, pk(k), n1) · · · enc(ml, pk(k), nl)

where ni, mi ∈ SEC and mi 6= k and mi 6= nj , to each output list of the form:

mπ(1) · · ·mπ(l)

where π is an arbitrary permutation on {1, ..., l}. We assume four store locations,
LOC = {in, out, priv, pub}, where in stores the input list, out stores the output list,
priv stores the private key of the mix, and pub stores the public key of the mix.
The state space, induced by the input-output relation, is:

S1 = {s : LOC → T≡ | 〈s(in), s(out)〉 ∈ InOuts(priv) ∧ s(pub) = pk(s(priv))}

The mix observes all store locations, i.e., LOC|mix = LOC, while the spy does
not observe priv : LOC|spy = {in, out, pub}. The multi-agent system is S1 =
〈LOC, S1, |〉. We assume location predicates @l, for l ∈ LOC, and introduce some
abbreviations:

mix inputs x =def ∃y1...∃yl.@in (y1 · · · yl) ∧
∨

i

x = yi

mix outputs x =def ∃y1...∃yl.@out (y1 · · · yl) ∧
∨

i

x = yi

Proposition 9.1.1 S1 satisfies (9.3), but neither (9.1) nor (9.2).

Proof (i): S1 satisfies (9.3): Since s|spy ⊆ s|mix, |=S1
2spyF → 2mixF . But,

|= 2spyF → 2spy2spyF by proposition 7.2.3.2. (ii) S1 does not satisfy (9.1): Pick
a system state s ∈ S1 were all inputs are identical: s(in) = M · · ·M and s(out) =
N · · ·N for some messages M and N . Pick any s′ ∈ S1 and a permutation ρ such
that s ∼ρ

spy s′. Since ρ ◦ s|spy = s′|spy, we have s′(in) = ρ ◦ s(in) = ρ(M · · ·M) =
(By the equations for pairing and since ρ is a homomorphism from inferred mes-
sages) = ρ(M) · · · ρ(M). Similary, s′(out) = ρ(N) · · · ρ(N). But, since s′ ∈ S1,
each output in state s′ is part of some input, i.e., s′, V [x := ρ(M), y := ρ(N)] |=
x contains y. I.e., s′, ρ ◦ V [x := M, y := N] |= x contains y. Since s′ and ρ were
chosen at random, s, V [x := M, y := N] |= 2spyx contains y. Thus, (9.1) fails in S1.
(iii): S1 does not satisfy (9.2): Pick a system state s ∈ S1 were exactly two inputs
are identical. (9.2) fails at s, since l > 2. 2

9.2. CROWDS 95

We modify the implementation so that the mix checks for replays and the spy
performs size-comparisons. To achieve the latter, we add a length-computing op-
erator len, and equations:

len(enc(M, K, N)) ≡ len(M)

len(c) ≡ len(c′), c =len c′

where =len is a fixed equivalence in SEC. (We assume there are at least l constants
of different length.) The length of pairs is irrelevant. We disallow replays by adding
a restriction on the domain of the input-output relation InOutk:

enc(mi, pk(k), ni) 6= enc(mj , pk(k), nj), i 6= j (9.4)

Let S2 be the resulting new state space and let S2 = 〈LOC, S2, |〉 be the new
multi-agent system.

Proposition 9.1.2 S2 satisfies (9.3), but neither (9.1) nor (9.2).

Proof (i): S2 satisfies (9.3): See proof of proposition 9.1.1. (ii) S2 does not
satisfy (9.1): Pick s ∈ S2 and assignment V such that s(in) = V (x1) · · ·V (xl)
and s(out) = V (y1) · · ·V (yl) and len(V (xi)) 6= len(V (xj)) for all i 6= j. Assume
s, V |=S2

xi contains yj. By equations for length, len(V (xi)) = len(V (yj)). Assume
s ∼ρ

spy s′. Since V (xi), V (yj) ∈ Inferable(spy, s) and since ρ is a homomorphism
from inferred messages, we get len(ρ ◦ V (xi)) = len(ρ ◦ V (yj)). By the above
assumption that all inputs have different sizes, we get s′, ρ ◦ V |=S2

xi contains yj.
Since s′ and ρ are aritrary, s, V |=S2

2spyxi contains yj . (iii) S2 does not satisfy
(9.2): Shown similarly to (ii). 2

In both S1 and S2, the spy determines what is inside an input enc(mi, pk(k), ni)
although the spy cannot infer the matching secret key k. Instead, the spy determines
what is inside based on knowledge of the state space (and, in the case of S2, by
performing size-comparisons). In particular, the spy knows that at every possible
state, each output is part of some input.

9.2 Crowds

We recall the Crowds-style protocol from section 2.3, which allows members of
a crowd to communicate without non-crowd members knowing who is talking to
whom. The agents of a set Crowd share a symmetric key K. Crowd member A
sends a message M anonymously to crowd member B, by sending the symmetric
encryption enc(pair(B, M), K) to some random crowd member C1, who in turn
sends the ciphertext to B or to a random forwarder C2, and so on until the cipher-
text reaches B. In addition to crowd members, there are local spies. Each spy
observes and controls the traffic in some part of the network.

96 CHAPTER 9. SECURITY PROTOCOL EXAMPLES

Receiver anonymity means that a spy cannot tell the intended destination of a
given message x:

x is for A → ¬2spyx is for A

x is for A → 3spyx is for B

for crowd members A and B who are outside the domain of the local spy spy,
i.e., spy does not observe the traffic in and out of A or B. Since spies can block
messages that crowd members send, the statement x is for A must be defined in
terms of message structure, and not in terms of where x eventually ends up:

x is for A =def ∃y.fst(dec(x, y)) = A ∧
∨

B

B sent x

where B ranges over crowd members. (B sent might be a primitive predicate.)
Sender anonymity, on the other hand, means that a spy cannot tell the originator
of a message:

A originated x → ¬2spyA originated x (9.5)

A originated x → 3spyB originated x (9.6)

for crowd members A and B who are outside the reach of spy. (A originated might
be a primitive predicate.)

Although specifications (9.5) and (9.6), unlike the other specifications in chapter
9, do not directly specify knowledge of cryptographic structure, cryptographic om-
niscience is problematic also for these specifications. Assume, for instance, an
implementation of the protocol where each message M has a source field; Say, M
has the form pair(A, M ′) , where the first component indicates A as the source of
the message. Assume source fields are reliable:

x has source field A → ¬B originated x, B 6= A

where
x has source field A =def ∃y.fst(snd(dec(x, y))) = A

By the rule of normality (i.e., the necessitation rule together with axiom K) and
cryptographic omniscience,

x has source field A → 2spy¬B originated x, B 6= A

Thus, (9.6) necessarily fails, contrary to intuition. Specification (9.6) is similarly
problematic under cryptographic ommniscience.

9.3 Dual Signature

Consider a purchasing protocol involving three parties, a customer C, a merchant
M , and a bank B.1 To order an item xi using payment data (credit card number,

1This example is inspired by [9].

9.3. DUAL SIGNATURE 97

etc.) xp, the customer produces a dual signature [62] using the private signing key
xs:

dual(xi, xp, xs) =def sign(pair(h(xi), h(xp)), xs)

Both the merchant and the bank receive the dual signature dual(xi, xp, xs). The
merchant receives, in addition, the order item xi and the hash h(xp) of the payment
data. Conversely, the bank receives the payment data xp and the hash h(xi) of
the order item. The idea is that the dual signature hides the order item xi from
the bank, and the payment data xp from the merchant, but nonetheless the dual
signature links xi to xp so that their correspondence cannot later be disputed. We
now consider in more detail what the bank learns during protocol execution. Let
variable xd = dual(xi, xp, xs) refer to the dual signature that the customer creates
in the current run. At the end of the protocol, the bank knows that the dual
signature was produced by the customer’s private signing key:

2BC signed xd

where
C signed xd =def ∃xs.∃y.xd = sign(y, xs) ∧ xs sign key of C

(sign key of C might be a primitive predicate.) Using h(xi) and xp, the bank can
determine the payment data xp inside:

2Bxd contains payment xp

where
xd contains payment xp =def ∃xi.∃xs.xd = dual(xi, xp, xs)

But, the bank cannot determine the order item:

¬2Bxd contains item xi

where
xd contains item xi =def ∃xp.∃xs.xd = dual(xi, xp, xs)

Finally, the bank is assured that the merchant can determine the order item:

2B∃xi.2Mxd contains item xi

Chapter 10

Expressiveness Results

In this chapter, we collect various results concerning the expressiveness of the lan-
guage: A definition of message deduction in terms of the epistemic modality; A
logical characterization of static equivalence; An undefinability result for the de
dicto quantifier; A preservation result for the non-normal modality of part I of the
thesis; And, finally, correspondence results for conditions on substitutions ρ.

10.1 Characterization of Message Deduction and Static

Equivalence

As corollaries 8.3.2 and 8.3.3 show, there are strong interactions between the epi-
stemic modality and message deduction. In fact, if the background equational
theory contains a hash function h, message deduction reduces to the epistemic
modality. Assume that for each s ∈ S, there are at least two messages that A
cannot infer at s, i.e., |Inferable(A, s)| ≥ 2.

Theorem 10.1.1 (Characterization of Inference) The following is valid in S:

A infers x ↔ ∃y.2Ay = h(x)

Proof Assume that s, V |=I A infers x. By corollary 7.1.3, if s ∼ρ
A s′ then

ρ(h(V (x)) = h(ρ(V (x)), i.e., s, V [y 7→ h(V (x))] |=I 2Ay = h(x), i.e., s, V |=I

∃y.2Ay = h(x). Conversely, assume V (x) 6∈ Inferable(A, s). Assume V (y) =
h(V (x)) for some given y. Pick a message M such that M 6∈ Inferable(A, s) and
V (x) 6= M . (There are at least two non-inferred messages, by our restriction on
systems.) Let permutation ρ be the identity on T≡, except that ρ(V (x)) = M
and ρ(M) = V (x). By corollary 7.2.4, s ∼ρ

A s. We consider two cases. Case 1:
M 6= h(V (x)). Then, ρ ◦V (y) = V (y) = h(V (x)) 6= h(M), by the requirement that
h is injective and, by assumption above, V (x) 6= M . Since ρ ◦ V (x) = M , we have
s, ρ ◦ V 6|=I y = h(x), and so s, V 6|=I 2Ay = h(x). Case 2: M = h(V (x)). Then
ρ ◦ V (y) = V (x) and ρ ◦ V (x) = M . Thus, h(ρ ◦ V (x)) = h(M) = h(h(V (x))) 6=

99

100 CHAPTER 10. EXPRESSIVENESS RESULTS

V (x) = ρ ◦ V (y), by the requirement that h(h(M ′)) 6= M ′ for all M ′. Thus,
s, ρ ◦ V 6|=I y = h(x), i.e., s, V 6|=I 2Ay = h(x). 2

According to theorem 10.1.1, the agent deduces value x just in case the agent can
recognize the hash of x as being the hash of x. (Recall that the interpretation
of predicate A infers at state s is Inferable(A, s)). In light of theorem 10.1.1, we
introduce 2A x, read “A knows x”, as an abbreviation of the statement:

∃y.2Ay = h(x)

We write 2A x for
∧
i

2A xi, and we write ¬2A x for
∧
i

¬2A xi. Theorem 10.1.1 is

related to a result in [2], which reduces message deduction to static equivalence,
while assuming a hash function.

In the remainder of section 10.1, we assume that local states s|A and s′|A are
normal and that predicates P includes @l, for l ∈ LOC. The following result
provides a logical characterization of static equivalence.

Theorem 10.1.2 (Logical Characterization of ≈) The following are equival-
ent:

1. s|A ≈ s′|A.

2. s |= 2AF iff s′ |= 2AF , for all statements F .

Proof (1) ⇒ (2): By proposition 7.2.3 and theorem 7.2.6. (2) ⇒ (1): Assume
(1) fails. Then, there is a statement F =df ∃x.t = t′ ∧

∧
i

@li(xi), where locations

li ∈ LOC|A and t and t′ are built only from variables xi and operators in Σ, such
that s |= F but s′ 6|= F . But, s |= F → 2AF , since: s |= @li(xi) → 2A@li(xi), and
s |= t = t′ → 2A VAR(t) → 2At = t′. The latter can be shown directly, or from
lemma 11.1.1.10 and soundness theorem 11.2.1. 2

The logical characterization of static equivalence, though immediate, gives added
credence to the semantics, and allows the transfer of computational soundness res-
ults, such as that of [1], to the epistemic logic. It follows, for instance, that if the
same properties are known by agent A in global states s and s′ then A’s local states
in s and s′ are computationally indistinguishable.

10.2 Undefinability of the De Dicto Quantifier

We show that the de dicto quantifier adds to the expressive power. Assume a set
Γ of statements, free from de dicto quantifiers and closed under sub-statements.
Assume two multi-agent systems S and S′, with state spaces S and S′ respectively.
A Γ-morphism from S to S′ is a pair w, d such that:

1. w : S −→ S′ is a surjective map

10.3. PRESERVATION RESULT FOR NON-NORMAL MODALITY 101

2. ds is a permutation on T≡, for each s ∈ S

3. V (t) = V (t′) ⇔ (ds ◦ V)(t) = (ds ◦ V)(t′), for all (t = t′) ∈ Γ and all
assignments V in S

4. w(s) ∼ρ
A w(s′) in S′ iff s ∼ρ′

A s′ in S, where ρ′ = d−1
s′ ◦ ρ ◦ ds

Morphism condition (3) might appear tautological, but this is not so. As explained
in section 8.3, V (t) = V (t′) need not imply that (ρ ◦ V)(t) = (ρ ◦ V)(t′).

Lemma 10.2.1 s, V |=S F iff w(s), (ds ◦ V) |=S′ F , for F ∈ Γ.

Proof Straightforward induction on F . 2

Next, we show that lemma 10.2.1 fails if Γ contains de dicto quantifiers. Approx-
imately, if Γ contains de dicto quantifiers, the above proof fails because the induction
step for statement ∀m.F [m/x] requires the induction assumption for F [M/x], for
each ground term M . But, F [M/x] need not be in Γ.

Let Σ = A = {A}, i.e., there is only one public operator, the agent identifier A.
Let ≡ be identity on ground terms. For any distinct c, d ∈ SEC, we construct two
multi-agent systems Scd = 〈LOC, S, |〉 and S′

cd = 〈LOC, S′, |〉, defined as follows:
LOC = LOC|A = {l1, l2}; S = {s1, s2}, where s1(l1) = c, s1(l2) = d, s2(l1) = d and
s2(l2) = c; Finally, S′ = {s1}.

Lemma 10.2.2 If no statement in Γ contains c or d then there is a Γ-morphism
from Scd to S′

cd.

Proof We can define a Γ-morphism w, d as follows. Define w : S −→ S′ such that
w(s1) = w(s2) = s1. Let ds1

be identity on T≡. Let ds2
be the permutation on

T≡ which maps c to d and conversely maps d to c, but leaves all other messages
unchanged. 2

Corollary 10.2.3 S′
cd but not Scd satisfies ∃m.∃x.x 6= A ∧ 2Ax = m.

Theorem 10.2.4 No statement free of the de dicto quantifier is equivalent to
∃m.∃x.x 6= A ∧ 2Ax = m.

Proof Pick any ∀m-free statement F . Pick distinct c, d ∈ SEC which do not occur
in F . Let Γ be the set of sub-statements of F . By lemma 10.2.1 and lemma 10.2.2,
F does not distinguish between S′

cd and Scd. But, by corollary 10.2.3, the statement
∃m.∃x.x 6= A ∧ 2Ax = m does distinguish the two systems. 2

10.3 Preservation Result for Non-normal Modality

The present first-order language preserves the expressiveness of the form of pro-
positional, non-normal language in part I, in which all terms refer de re. Let a
propositional statement be any statement β containing no variables, no quantifiers
and no equality symbol. Define a translation τ from propositional statements to
(first-order) statements as follows.

102 CHAPTER 10. EXPRESSIVENESS RESULTS

Definition 10.3.1 (Translation τ)

(β(M))τ = ∃x.(x = M ∧ β(x))

where M is a list 〈M1, ..., Mn〉 of all ground terms occurring as arguments to pre-
dicates in β, β(x) is the result of substituting xi for Mi, ∃x abbreviates ∃x1...∃xn,
and x = M abbreviates

∧
i

xi = Mi.

For instance, τ translates 2A2BA received enc(M, K) to ∃x.x = enc(M, K) ∧
2A2BA received x. Write s |=τ

I β for s |=I (β)τ .

Proposition 10.3.2 The following are equivalent:

• s |=τ
I 2Aβ(M)

• ∀s′ ∈ S : ∀ρ : s ∼ρ
A s′ ⇒ s′ |=τ

I β(ρ(M))

Proof s |=I (2Aβ(M))τ iff s, V [x 7→ M] |=I 2Aβ(x) iff ∀s′ ∈ S : ∀ρ : s ∼ρ
A s′ ⇒

s′, ρ ◦ V [x 7→ M] |=I β(x). But, s′, ρ ◦ V [x 7→ M] |=I β(x) iff s′ |=I β(ρ(M))τ . 2

Again, proposition 10.3.2 is rather immediate. Still, it shows that the present
normal semantics preserves the expressiveness of the non-normal semantics of part I
of the thesis: The translation τ induces the form of propositional semantics studied
in part I, where instead of updating the assignment, terms inside the evaluated
statement are updated as one follows the indistinguishability relation from a state
s to another state s′. Of course, the relativized indistinguishability relation ∼ρ

A

used in part I is different, the main difference being a restriction to pairing and
symmetric encryption.

10.4 Abstract Correspondence Results

The relativized indistinguishability relation ∼ρ
A was defined by certain conditions

on message substitutions ρ. In this section, we provide correspondence results for
these, and some other, conditions. Throughout section 10.4, we assume a system
S = 〈LOC, S, |〉 and an arbitrary accessibility ∼A⊆ S × (T≡ −→ T≡) × S.

Proposition 10.4.1 s ∼ρ
A s′ implies that

1. ρ is injective

2. ρ is surjective

3. ρ(f(M)) = f(ρ(M)), if each Mi ∈ Inferable(s|A)

4. ρ ◦ s|A = s′|A

respectively, if and only if,

10.4. ABSTRACT CORRESPONDENCE RESULTS 103

1. |=S x 6= y → 2Ax 6= y

2. |=S ∀x.2AF → 2A∀x.F

3. |=S y = f(x), A infers x → 2Ay = f(x)

4. |=S @l x → 2A@l x, l ∈ LOC|A

respectively.

Proof Routine. 2

Refer to the schema in proposition 10.4.1.4 as local state introspection. The third
schema is the weakening of cryptographic omniscience (8.5) that first appeared in
corollary 8.3.2. The first two correspondences above are well-known in counterpart
semantics (cf. [22]).

The following correspondence for cryptographic omniscience (8.5) is also well-
known.

Proposition 10.4.2 s ∼ρ
A s′ implies ρ(M) = M , if and only if, S satisfies (8.5).

Proof Routine. 2

By proposition 10.4.1.4 and proposition 10.4.2, we obtain an instance of classical
multi-agent semantics (section 3.2), if we define the relativized accessibility relation
for A as the most inclusive ∼A which validates cryptographic omniscience (8.5) as
well as local state introspection (i.e., the schema in proposition 10.4.1.4). The
combination of cryptographic omniscience and local state introspection leads to
local state omniscience:

@l M → 2A@l M, l ∈ LOC|A (10.1)

which goes against the assumption of limited decryption power of agents, even if
variables do not intend de re reference. For instance, (10.1) leads to:

@l enc(M, K) → 2A∃x.@l enc(M, x), l ∈ LOC|A

In classical multi-agent semantics based on message passing systems (section 2.2),
local state omniscience manifests itself in similar counter intuitive validities, for
example (cf. section 3.2):

A received enc(M, K) → 2A∃x.A received enc(M, x)

Finally, we provide a correspondence result for schema (8.7), which was used
in corollary 8.3.3. We say that non-deducible messages are anonymous, if s ∼π

A s

whenever π is a permutation on X ⊆ Inferable(A, s) and X is finite; Here, s ∼π
A s

means that π can be extended to a substitution ρ, defined on all messages, such
that s ∼ρ

A s.

104 CHAPTER 10. EXPRESSIVENESS RESULTS

Proposition 10.4.3 Non-deducible messages are anonymous, if and only if, S
satisfies schema (8.7).

Proof Only-if direction: Straightforward. If direction: Assume that non-deducible
messages are not anonymous, i.e., there is a state s ∈ S and finite X ⊆ Infers(A, s)
and permutation π on X such that s 6∼π

A s. Pick x1, ..., xn, z1, ...zn ∈ VAR and
assignment V such that dom(π) = {V (x1), ..., V (xn)} and V (zi) = π(V (xi)) and
V (xi) 6= V (xj) for all i 6= j. Choose an interpretation I and n-ary predicate p
such that every n-tuple of messages satisfies p at every state s′ ∈ S, except that
〈V (z1), ..., V (zn)〉 6∈ I(p, s). Let I be the interpreted system based on S and I.
Since s 6∼π

A s, we have s, V |=I 2Ap(x1, ..., xn). Also, s, V |=I ¬A infers x, z.
Since V (xi) 6= V (xj), we have s, V |=I

∧
i,j

(xi = xj ↔ zi = zj). But, s, V 6|=I

p(z1, ..., zn). 2

Chapter 11

Axiomatization

In this chapter, we provide the main result of part II, a sound and complete ax-
iomatization of validity. The axiomatization extends the background equational
theory with standard axioms and rules from first-order modal S5, an omega-rule
for quantifiers, plus some novel axioms for the interaction between the epistemic
modality and the equational theory.

11.1 Proof System

In table 11.1, we define a Hilbert-style axiomatization, relative to a message con-
gruence ≡ with a hash function h. The first group of axioms and rules is inherited
from first-order logic, and includes the less standard axiom (m x), connecting the
two kinds of quantifier. The second group is modal S5, as expected for introspective
knowledge. The third group contains five axioms for the interaction between know-
ledge and cryptography. While axiom (22) is well-known from first-order modal
logic, the other four axioms are new. Axiom (21) reflects the assumption that each
operator f is feasible to compute. Axiom (23) states that inferred messages are
closed under operators f . Axiom (24) reflects the assumption that non-inferred
values are “anonymous”: The agent knows a property of some non-inferred values
x only if this property holds for any non-inferred values z with the same pattern
of identities.1 Axiom (25) reflects the restriction on systems needed for theorem
10.1.1, namely that there are at least two messages that agent A does not infer.
Propositions 10.4.1 and 10.4.3 provide correspondence results related to axioms
(21) and (24). The fourth group includes all equalities and inequalities from ≡
and an omega-rule for the de dicto quantifier. The omega-rule is unfortunate, since
it produces infinite branching proof trees. But, since the equational theory is ar-
bitrary, some infinitary machinery is needed.2 Write ⊢ F when F is a derivable

1Recall that F (x, y) signifies that the list x, y consists precisely of all variables free in F .
2By incompleteness of arithmetic, no finitary axiomatization is possible, not even for the

modality-free fragment.

105

106 CHAPTER 11. AXIOMATIZATION

First-Order

(Ins x) ∀x.F → F [y/x]
(Ins m) ∀m.F [m/x] → F [M/x]
(Bound x) ∀x.F ↔ F , if x is not free in F
(Bound m) ∀m.F [m/x] ↔ F , if x is not free in F
(Dist x) ∀x.(F → F ′) → ∀x.F → ∀x.F ′

(Dist m) ∀m.(F [m/x] → F ′[m/x]) → ∀m.F [m/x] → ∀m.F ′[m/x]
(Subst) t = t′ → F [t/x] → F [t′/x], if F has no modality
(Ins t) ∀x.F → F [t/x], if F has no modality
(Eq) t = t
(m x) ∃m.x = m
(Taut) F , if F is truth functional tautology

(Gen x)
F

∀x.F

(MP)
F → F ′, F

F ′

Modal S5

(K) 2A(F → F ′) → (2AF → 2AF ′)
(T) 2AF → F
(4) 2AF → 2A2AF
(5) ¬2AF → 2A¬2AF

(Nec)
F

2AF

Knowledge and Cryptography

(21) 2A x → (y = f(x) → 2Ay = f(x))
(22) x = y → 2Ax = y
(23) y = f(x) → 2A x → 2A y
(24) 2AF (x, y) → 2Ay → ¬2Ax, z →

∧
i,j

(xi = xj ↔ zi = zj) → F [z/x]

(25) ∃x.∃y.x 6= y ∧ ¬2A x ∧ ¬2A y

Omega

(≡) M = M ′, if M ≡ M ′

(6≡) M 6= M ′, if M 6≡ M ′

(Gen m)
F [M/x], all M ∈ T

∀m.F [m/x]

Figure 11.1: Axioms and Rules

11.2. SOUNDNESS AND COMPLETENESS 107

theorem.

Lemma 11.1.1 The following are theorems:

1. ∀x.2AF ↔ 2A∀x.F

2. ∀m.2AF [m/x] ↔ 2A∀m.F [m/x]

3. 2A x → 2A2A x

4. ¬2A x → 2A¬2A x

5. x 6= y → 2Ax 6= y

6. x = f → 2A x, if f is 0-arity

7. x = y → (F [x/z] → F [y/z])

8. ∃x.x = t

9. 2AF (x, y) → 2Ay → ¬2Ax, z →
∧
i,j

(xi = xj ↔ zi = zj) → 2AF [z/x]

10. x = t → 2A VAR(t) → 2Ax = t, if t ∩ SEC = ∅

Proof (1), (2), (3) and (4): First-order and S5. (5): S5 and axiom (22). (6):
Axiom (23). (7): First-order, S5 and axiom (22). (8): Axioms (Ins t) and (Eq).
(9): Axioms (4), (22) and (24), Lemma 11.1.1.3, 11.1.1.4 and 11.1.1.5. (10): By
induction on t. Base case: Axiom (22). Induction step: Axiom (21). 2

For a message congruence ≡ without a hash function, we obtain a sound and
complete axiomatization if we take 2A x as a primitive unary predicate and add the
schema in lemma 11.1.1.3 as an additional axiom. The completeness construction
in the following sections is not affected.

11.2 Soundness and Completeness

We arrive at the main results for part II. We consider only systems where, for all
s ∈ S and all A ∈ A, |Inferable(A, s)| ≥ 2.

Theorem 11.2.1 (Soundness) ⊢ F ⇒ |= F

Proof (21): Theorem 10.1.1 and corollary 8.6. (22): Since ρ is a function. (23):
Theorem 10.1.1. (24): Corollary 7.2.4 and theorem 10.1.1. (25): Theorem 10.1.1
and our restriction on systems. (T), (4) and (5): Proposition 7.2.3. (K) and (Nec):
Independent of the definition of the relativized ∼A. Non-epistemic axioms and rules
are routine. 2

Theorem 11.2.2 (Completeness) |= F ⇒ ⊢ F

108 CHAPTER 11. AXIOMATIZATION

In the rest of this chapter, we build the completeness construction. The chapters
that follow afterwards can be read independently. The completeness construction
uses abstract counterpart models, with arbitrary states (“possible worlds”) w, ar-
bitrary domain of quantification, arbitrary accessibility relation −→ρ

A and arbitrary
(non-rigid) interpretation of function symbols. The first step is a standard canonical
Kripke model K, which is transformed into a counterpart model K⋆ by adding some
epistemic transitions. For each transition w −→A w′ in K, a transition w −→π

A w′

is added, where π is any permutation of non-inferred items at w, i.e., items satis-
fying ¬2A x at w. Continuing, we define a morphism d, which morphs K⋆ into a
counterpart model d(K⋆) with a rigid interpretation of function symbols f , given by
the background message equivalence ≡. Finally, a morphism w transforms d(K⋆)
into a counterpart model w(d(K⋆)), which is equivalent to an interpreted system.

11.3 Abstract Counterpart Model

We review some basics from (a variant of) counterpart semantics (cf. [34]). An
abstract counterpart model is a structure C = 〈W, D,−→, I〉, defined as follows.
W is a non-empty set of worlds w, and D is a non-empty domain of objects d.
For A ∈ A, −→A⊆ W × (D −→ D) × W is the epistemic accessibility relation.
Informally, w −→ρ

A w′ means that for A, w and w′ are indistinguishable, and
for A, each d ∈ D at w corresponds to ρ(d) at w′. I is a world-relative inter-
pretation, i.e., I(c, w) is a member of D, I(f, w) is an operation in D matching
the arity of f , and I(p, w) is a relation in D matching the arity of p. Thus,
the interpretation of f and c is left open, and need not be rigid. An assign-
ment in C is a function V : VAR −→ D. Assignments are extended to arbitrary
terms with respect to a world w as usual: V (x, w) = V (x), V (c, w) = I(c, w),
V (f(t1, ..., tn), w) = I(f, w)(V (t1, w), ..., V (tn, w)). Truth conditions are as follows:

w, V |=C 2AF ⇔ ∀w′ ∈ W : ∀ρ : w −→ρ
A w′ ⇒ w′, ρ ◦ V |=C F

w, V |=C t = t′ ⇔ V (t, w) = V (t′, w)

w, V |=C p(t1, ..., tn) ⇔ 〈V (t1, w), ..., V (tn, w)〉 ∈ I(p, w)

w, V |=C ∀x.F ⇔ ∀d ∈ D : w, V [x 7→ d] |=C F

w, V |=C ∀m.F [m/x] ⇔ ∀M ∈ T : w, V |=C F [M/x]

where ρ ranges over mappings D −→ D. Any interpreted system I = 〈LOC, S, |, I〉
determines a counterpart model CI = 〈S, T≡,∼, I ′〉, where ∼A is defined as in
section 8.1 and I ′(p, s) = I(p, s) and I ′(f, w) = f and I ′(c, w) = c. We say that CI
is induced by I.

Corollary 11.3.1 s, V |=I F iff s, V |=CI
F .

A counterpart model C is Kripkean if w −→ρ
A w′ implies that ρ = Id, where Id is the

identity on D. When C is Kripkean, we omit the index Id, and write w −→A w′ for

11.4. CANONICAL KRIPKE MODEL 109

the transition w −→Id
A w′. We say that substitutions are bĳective in C, if w −→ρ

A w′

implies ρ is a permutation on D.
Assume a counterpart model C = 〈W, D,−→, I〉. Assume a set W ′ of worlds

and a domain D′. A morphism from C to W ′ and D′ is a pair w, d such that:

• w : W −→ W ′ is a bĳective map

• dw : D −→ D′ is a bĳective map, for each w ∈ W

The morphism w, d is a domain-morphism, if W = W ′ and w is identity on W .
The morphism w, d is a world-morphism, if D = D′ and dw is the identity on
D. For domain-morphisms, we leave the identity w implicit. Similarly, for world-
morphisms, we leave the mapping d implicit. Let w, d be a morphism from C to W ′

and D′. The application of w, d on C is wd(C) = 〈W ′, D′,
wd
−→, Iwd〉, where

• w(w)
wd
−→

ρ

A w(w′) iff w −→ρ′

A w′ where ρ′ = d−1
w′ ◦ ρ ◦ dw.

• Iwd(o, w(w)) = dw(I(o, w)), o ∈ SEC ∪ Σ ∪ P .

Thus, wd(C) is the result of pointwise “relabeling” C through w and d.

Lemma 11.3.2 w, V |=C F ⇔ w(w), dw ◦ V |=wd(C) F .

Proof By induction on t, (dw◦V)(t, w(w)) = dw(V (t, w)). The lemma then follows
by induction on F . 2

11.4 Canonical Kripke Model

In this section, we obtain the truth lemma for a canonical Kripke model in a
standard way [37]. A statement F is derivable from a set Γ of statements, in
symbols Γ ⊢ F , if there is a finite number of statements F1, ..., Fn ∈ Γ such that
⊢ F1, ..., Fn → F . The set Γ is consistent if Γ 6⊢ ⊥, and Γ is maximal consistent
if it is consistent and no larger set is. The set Γ is omega-complete if whenever
Γ ⊢ F [y/x] for all y ∈ VAR then Γ ⊢ ∀x.F and, also, whenever Γ ⊢ F [M/x] for all
M ∈ T then Γ ⊢ ∀m.F [m/x]. The set Γ is saturated if it is maximal consistent and
omega-complete. We obtain standard lemmas for omega-completion and saturation.

Lemma 11.4.1 ∅ is omega-complete.

Proof Immediate from axioms (Gen m) and (Gen x). 2

Lemma 11.4.2 If Γ is omega-complete then so is Γ ∪ {F}.

Proof Omega-completion for de re quantifiers: Standard. Assume that Γ is
omega-complete w.r.t. de dicto quantifiers. Assume that Γ, F0 ⊢ F [M/x] all
M ∈ T , i.e., Γ ⊢ F0 → F [M/x] all M ∈ T . Pick x′ not free in F0. Then,
F0 → F [M/x] is (F0 → F [x′/x])[M/x′]. So, Γ ⊢ (F0 → F [x′/x])[M/x′] all M ∈ T .

110 CHAPTER 11. AXIOMATIZATION

By omega-completeness of Γ, we get Γ ⊢ ∀m.(F0 → F [x′/x])[m/x′], i.e., Γ ⊢
∀m.(F0[m/x′] → F [x′/x][m/x′]), i.e., Γ ⊢ ∀m.(F0 → F [m/x]), i.e., by axiom (Dist
m), Γ ⊢ ∀m.F0 → ∀m.F [m/x], i.e., by axiom (Bound m), Γ ⊢ F0 → ∀m.F [m/x],
i.e., Γ, F0 ⊢ ∀m.F [m/x]. 2

Lemma 11.4.3 If Γ is omega-complete then so is Γ|A.

Proof Omega-completion for de re quantifiers: Standard. Assume that Γ is omega-
complete w.r.t. de dicto quantifiers. Assume that Γ|A ⊢ F [M/x] all M ∈ T . By
axiom (K) and rule (Nec), 2AΓ|A ⊢ 2AF [M/x] all M ∈ T , i.e., Γ ⊢ 2AF [M/x]
all M ∈ T . By omega-completeness of Γ, Γ ⊢ ∀m.2AF [m/x]. By lemma 11.1.1.2,
Γ ⊢ 2A∀m.F [m/x], i.e., Γ|A ⊢ ∀m.F [m/x]. 2

Lemma 11.4.4 (Extension Lemma) Every consistent and omega-complete set
can be extended to a saturated set.

Proof We follow a standard generalization of the Lindenbaum construction. As-
sume a consistent and omega-complete set Γ. Assume an enumeration F1, F2, ... of
all statements. We define a sequence of extensions of Γ as follows:

• Γ0 = Γ.

• If Γn−1, Fn ⊢ ⊥, Fn = ∀m.F [m/x],
then Γn = Γn−1 ∪ {¬∀m.F [m/x], ¬F [M/x]}

• else if Γn−1, Fn ⊢ ⊥, Fn = ∀x.F ,
then Γn = Γn−1 ∪ {¬∀x.F, ¬F [y/x]}

• else if Γn−1, Fn ⊢ ⊥, then Γn = Γn−1 ∪ {¬Fn}

• else Γn = Γn−1 ∪ {Fn}.

where M and y are chosen so that Γn is consistent; We show that there are such
M and y. Assume that Γn−1 is consistent. Assume that Γn−1, ∀m.F [m/x] ⊢ ⊥. As-
sume that there is no appropriate M , i.e., assume that Γn−1, ¬∀m.F [m/x], ¬F [M/x] ⊢
⊥ for all M , i.e., Γn−1, ¬∀m.F [m/x] ⊢ F [M/x] all M . By lemma 11.4.2, the set
Γn−1∪{¬∀m.F [m/x]} is omega-complete. Thus, Γn−1, ¬∀m.F [m/x] ⊢ ∀m.F [m/x],
i.e., Γn−1 ⊢ ∀m.F [m/x]. By assumptions, Γn−1, ∀m.F [m/x] ⊢ ⊥, and so, Γn−1 ⊢
⊥, contrary to assumptions. In the same way, lemma 11.4.2 tells us that there is an
appropriate y. Thus, Γn is consistent,and, consequently, Γ⋆ =

⋃
n
Γn is a maximal

consistent set. Trivially, Γ⋆ is omega-complete. Thus, Γ⋆ is saturated and Γ ⊆ Γ⋆.2

Given a saturated set w0, the canonical Kripke model K = 〈W, D,→, I〉 is
defined as follows. The set W of worlds is the set of all saturated sets which
contain x = y just in case w0 does. The domain D is the set of equivalence classes
|x| = {y : x = y ∈ w0}. The epistemic accessibility is given by: w −→A w′ ⇔
w|A ⊆ w′, where w|A is {F : 2AF ∈ w}. Finally, the interpretation is defined as
follows: I(f, w)(|x1|, ..., |xn|) = |y| iff (f(x1, ..., xn) = y) ∈ w, and I(c, w) = |y| iff
(c = y) ∈ w. The canonical assignment VK assigns |x| to variable x.

11.5. ANONYMOUS NON-INFERRED ITEMS 111

Lemma 11.4.5 (Truth Lemma for K) w, VK |=K F ⇔ F ∈ w

Proof From lemmas 11.4.2, 11.4.3 and 11.4.4. The proof is standard. 2

Corollary 11.4.6 w −→A w′ ⇔ w|A = w′|A

Proof S5. 2

11.5 Anonymous Non-inferred Items

We transform K into a model where non-inferred items, i.e., items satisfying ¬2A x,
are anonymous in the sense that every permutation of such items is “epistemically
possible”. The transformation relies on axiom (24). Assume a counterpart model
C = 〈W, D −→, I〉. Write InferableC(A, w) for the set of items inferred by agent
A at world w, i.e, InferableC(A, w) is {d ∈ D | w, V [x 7→ d] |=C 2A x}. The

anonymization of C is the model C⋆ = 〈W, D
⋆

−→, I〉, where
⋆

−→ is the least extension
of −→ such that

w
⋆

−→
ρ

A w′ ⇒ w
⋆

−→
ρ◦π

A w′

for every permutation π on InferableC(A, w). (π is extended to the whole domain
D in the expected way: π(d) = d if d ∈ InferableC(A, w).)

Corollary 11.5.1 w
⋆

−→
ρ

A w′, if and only if, there is ρ′ and π such that ρ = ρ′ ◦ π

and w −→ρ′

A w′ and π is a permutation on InferableC(A, w).

Proof Immediate. 2

Lemma 11.5.2 Assume that C validates the schema in lemma 11.1.1.9. Assume
that substitutions are bĳective in C. Then, w, V |=C F ⇔ w, V |=C⋆ F .

Proof By induction on the complexity of F . Base case, and induction step for
Boolean operators and quantifiers: Immediate. Induction step for modal operators:
If w, V |=C⋆ 2AF then w, V |=C 2AF , since

⋆
−→A⊇−→A, from corollary 11.5.1. For

the converse, assume
w, V |=C 2AF (11.1)

Let x1, ..., xm, y1, ..., yn be a listing of all free variables in F such that

w, V |=C ¬2Axi (11.2)

w, V |=C 2Ayi (11.3)

Assume that w
⋆

−→
ρ

A w′. By corollary 11.5.1, there is ρ′ and π such that ρ = ρ′ ◦ π

and w −→ρ′

A w′ and π is a permutation on InferableC(A, w). Thus,

ρ′(V (yi)) = ρ(V (yi)) (11.4)

112 CHAPTER 11. AXIOMATIZATION

Since ρ, ρ′ and π are bĳective, there are d1, ..., dm ∈ D such that: .

ρ′(di) = ρ(V (xi)) (11.5)

and
di = dj ⇔ V (xi) = V (xj) (11.6)

Pick fresh variables z1, ..., zm (i.e., fresh w.r.t. F). By (11.6),

w, V [z1 7→ d1, ...zm 7→ dm] |=C zi = zj ↔ xi = xj (11.7)

We have:
w, V [z1 7→ d1, ...zm 7→ dm] |=C ¬2Azi (11.8)

To see this, assume that di ∈ InferableC(A, w). Then, ρ(di) = ρ′ ◦ π(di) = ρ′(di)
= (by (11.5)) = ρ(V (xi)). Since ρ is bĳective, di = V (xi), contradicting (11.2).
From (11.1), (11.2), (11.3), (11.7) and (11.8) and the assumption that C validates
the schema in lemma 11.1.1.9,

w, V [z1 7→ d1, ...zmm] |=C 2AF [z/x]

Thus,
w′, ρ′ ◦ V [z1 7→ d1, ...zm 7→ dm] |=C F [z/x]

By induction assumption,

w′, ρ′ ◦ V [z1 7→ d1, ...zm 7→ dm] |=C⋆ F [z/x]

By (11.4) and (11.5), we get w′, ρ◦V |=C⋆ F . Since w′ and ρ were chosen arbitrarily,
we conclude that w, V |=C⋆ 2AF . 2

Lemma 11.5.3 w, V |=K F ⇔ w, V |=K⋆ F .

Proof From lemma 11.5.2, since the assumptions for that lemma hold: Substitu-
tions are bĳective in K: By construction of K, w −→ρ

A w′ implies that ρ is the
identity on D, i.e., a bĳection. K validates the schema in lemma 11.1.1.9: Lemma
11.1.1.9 and lemma 11.4.5. 2

11.6 Rigid Operators

We define a domain-morphism d, which morphs K⋆ into a model d(K⋆) where
operators f and constants c have their intended, rigid denotation, given by the
background equivalence ≡. The transformation relies on axioms (m x), (≡) and
(6≡). For each w ∈ W , we relate D and T≡ by the relation:

dw = {〈|x|, M〉 | x = M ∈ w}

Lemma 11.6.1 d is a morphism from K⋆ to W and T≡.

11.6. RIGID OPERATORS 113

Proof From axioms (m x), (≡), (6≡) and (Subst), and lemma 11.1.1.8. 2

Let d(K⋆) = 〈W, T≡
d

−→, Id〉 be application of d on K⋆.

Lemma 11.6.2 Id(f, w) = f and Id(c, w) = c.

Proof From axioms (≡), (6≡) and (Subst) and lemma 11.6.1. 2

We end this section with two lemmas that will be used in the final transformation
step. We say that ρ respects Σ on X ⊆ T≡ if

ρ(f(M)) = f(ρ(M)), if all Mi ∈ X and f ∈ Σ

Lemma 11.6.3 Assume that w
d

−→
ρ

A w′. Then,

1. ρ is a permutation on T≡.

2. ρ respects Σ on d(InferableK(w, A)).

3. ρ(M) = dw′ ◦ d
−1
w (M) if M ∈ d(InferableK(w, A)).

Proof Assume that w
d

−→
ρ

A w′. (1): From corollary 11.5.1 and lemma 11.6.1.

(3): By construction of
d

−→A, w
⋆

−→
ρ′

A w′ where ρ′ = d−1
w′ ◦ ρ ◦ dw. By corollary

11.5.1, ρ′(|x|) = |x| for |x| ∈ InferableK(w, A). Thus, ρ(M) = dw′ ◦ d−1
w (M) if

M ∈ d(InferableK(w, A)). (2): Assume that M1, ..., Mn ∈ d(InferableK(w, A)). I.e.,
there are variables x1, ...xn such that 2A xi ∈ w and xi = Mi ∈ w. Pick vari-
able y such that y = f(x1, ...xn) ∈ w. By axiom (21), 2Ay = f(x1, ...xn) ∈
w. By corollary 11.4.6, y = f(x1, ...xn) ∈ w′. By lemma 11.6.2, dw′(|y|) =
f(dw′(|x1|, ..., dw′(|xn|))) and dw(|y|) = f(dw(|x1|), ..., dw(|xn|)). By axiom (23),
2A y ∈ w. By (3), ρ(dw(|y|)) = dw′(|y|). But, from above, we have that dw′(|y|) =
f(dw′(|x1|), ..., dw′(|xn|))) = f(ρ(dw(|x1|)), ..., dw(|xn|)). Thus, ρ(f(M1, ..., Mn)) =
f(ρ(M1), ..., ρ(Mn)), since dw(|y|) = f(M1, ..., Mn) from axiom (Subst) and the fact
that y = f(X1, ...xn) ∈ w. 2

Lemma 11.6.4 Assume that

1. w −→A w′.

2. ρ is a permutation on T≡.

3. ρ(M) = dw′ ◦ d
−1
w (M) if M ∈ d(InferableK(w, A)).

Then, w
d

−→
ρ

A w′.

Proof Let ρ′ = d−1
w′ ◦ ρ ◦ dw. By assumptions (2) and (3) and lemma 11.6.1, ρ′

is identity on InferableK(w, A) and permutes InferableK(w, A). By assumption (1)

and corollary 11.5.1, w
⋆

−→
ρ′

A w′. By construction of
d

−→A, w
d

−→
ρ

A w′. 2

114 CHAPTER 11. AXIOMATIZATION

11.7 Canonical Interpreted System

Finally, we define a world-morphism w, which morphs d(K⋆) into a model w(d(K⋆))
induced by an interpreted system. The transformation step relies on axioms (21)
and (25). We assume the following set of store locations:

LOC = F ∪ ((D ∪ F) ×A)

(where D is the domain in K and K⋆). Each agent observes store locations indexed
by itself:

LOC|A = (D ∪ F) × {A}

The morphism w maps W to states over LOC defined by:

1. w(w)(〈|x|, A〉) = dw(|x|), if |x| ∈ InferableK(w, A).

2. w(w)(〈|x|, A〉) = ⊥, if |x| 6∈ InferableK(w, A).

3. w(w)(〈F, A〉) = ⊤, if 2A F ∈ w.

4. w(w)(〈F, A〉) = ⊥, if 2A F 6∈ w.

5. w(w)(F) = ⊤, if F ∈ w.

6. w(w)(F) = ⊥, if F 6∈ w.

where ⊥ and ⊤ are two non-equivalent 0-arity operators from Σ. (If there is only one
such operator, i.e., the single agent A, then let ⊥ = A and ⊤ = h(A).) Requirements
(3) and (4) on w encode the knowledge state w|A inside the local state w(w)|A.
Requirements (5) and (6) ensure injectivity. Requirements (1) and (2), together
with (3) and (4), ensure that the same permutations ρ are possible between w(w)

and w(w′) in ∼A as between w and w′ in
d

−→A.

Corollary 11.7.1 w is a morphism from d(K⋆) to S and T≡.

Proof Since w is injective. 2

Lemma 11.7.2 Inferable(A, w(w)) = dw(InferableK(A, w)).

Proof Inferable(w(w), A) ⊇ dw(InferableK(w, A)): From condition (1) in the defin-
ition of w. Inferable(w(w), A) ⊆ dw(InferableK(w, A)): By induction on length of
the derivation that establishes M ∈ Inferable(w(w), A). Base case. Assume that
M ∈ ran(w(w)|A). If M ∈ {⊤,⊥} then M ∈ dw(InferableK(w, A)), by lemma
11.1.1.6. On the other hand, if M is dw(|x|) and |x| ∈ InferableK(w, A), then,
trivially, M ∈ dw(InferableK(w, A)). Induction step. Assume that M1, ..., Mn ∈
Inferable(w(w), A). By induction assumption, M1, ..., Mn ∈ dw(InferableK(w, A)).
I.e., there are |x1|, ..., |xn| ∈ InferableK(w, A) such that dw(|xi|) = Mi. By axiom
(Subst), 2A xi ∈ w. Since ⊢ ∃y.y = f(x1, ..., xn), we have y = f(x1, ..., xn) ∈ w

11.7. CANONICAL INTERPRETED SYSTEM 115

for some y ∈ VAR. By lemma 11.6.2, dw(|y|) = f(dw(|x1|), ..., dw(|xn|)). By axiom
(23), 2A y ∈ w, i.e., |y| ∈ InferableK(w, A), i.e., dw(|y|) ∈ dw(InferableK(w, A)),
i.e., f(dw(|x1|), ..., dw(|xn|)) ∈ dw(InferableK(w, A)), i.e., we obtain f(M1, ..., Mn)
∈ dw(InferableK(w, A)). 2

Lemma 11.7.3 w
d

−→
ρ

A w′, if and only if, w(w) ∼ρ
A w(w′).

Proof ⇒-direction: Assume that w
d

−→
ρ

A w′. We need to show that ρ is a permuta-
tion on T≡, ρ respects Σ on Inferable(w(w), A) and ρ respects LOC|A between w(w)
and w(w′), i.e., ρ◦w(w)|A = w(w′)|A. (i) ρ is a permutation on T≡: Lemma 11.6.3.1.
(ii) ρ respects Σ on Inferable(w(w), A): Lemma 11.6.3.2 and lemma 11.7.2. (iii) ρ
respects LOC|A between w(w) and w(w′), i.e., ρ(w(w)|A) = w(w′)|A: We show that
ρ(w(w)(〈|x|, A〉)) = w(w′)(〈|x|, A〉); Respect for other locations is is shown similarly.

By construction of
d

−→A, we have w −→A w′. Assume that |x| ∈ InferableK(w, A).
By corollary 11.4.6, |x| ∈ InferableK(w′, A). By lemma 11.6.3.3 and condition
(1) in the construction of w, ρ(w(w)(〈|x|, A〉)) = w(w′)(〈|x|, A〉). Assume that
|x| 6∈ InferableK(w, A). By corollary 11.4.6, |x| 6∈ InferableK(w′, A). By condition
(2) in the construction of w, w(w)(〈|x|, A〉) = w(w′)(〈|x|, A〉) = ⊥. But, from
lemma 11.6.3.2 and lemma 11.7.2, ρ(⊥) = ⊥.

⇐-direction: Assume that w(w) ∼ρ
A w(w′). We show conditions (1), (2) and

(3) in lemma 11.6.4, from which it follows that w
d

−→
ρ

A w′. Condition (1): Since ρ
respects Σ on Inferable(w(w), A), ρ(⊥) = ⊥ and ρ(⊤) = ⊤. Thus, since ρ respects
LOC|A between w(w) and w(w′), we have w|A = w′|A, from conditions (3) and
(4) in the construction of w. By corollary 11.4.6, w −→A w′. Condition (2):
By construction of −→A. Condition (3): Since w −→A w′, by corollary 11.4.6,
|x| ∈ InferableK(w, A) iff |x| ∈ InferableK(w′, A). Let |x| ∈ InferableK(w, A). Since
ρ respects Σ on Inferable(w(w), A), ρ(dw(|x|)) = d w′(|x|), from condition (1) in the
construction of w. 2

Let the canonical interpreted system be I = 〈LOC, S, |, I〉, where S = {w(w) : w ∈
W} and I(p, w(w)) = {〈M1, ..., Mn〉 | w(w)(p(M1, ..., Mn)) = ⊤}.

Lemma 11.7.4 I(p, w(w)) = Id(p, w).

Proof From axiom (Subst). 2

Lemma 11.7.5 w(d(K⋆)) is induced by I.

Proof From lemmas 11.6.1, 11.6.2, 11.7.3 and 11.7.4. 2

Lemma 11.7.6 w(w), dw ◦ VK |=I F ⇔ F ∈ w.

Proof F ∈ w iff (lemma 11.4.5) w, VK |=K F iff (lemma 11.5.3) w, VK |=K⋆ F iff
(lemmas 11.3.2 and 11.6.1) w, dw ◦ VK |=d(K⋆) F iff (lemma 11.3.2 and corollary
11.7.1) w(w), dw ◦ VK |=w(d(K⋆)) F iff (lemmas 11.3.1 and 11.7.5) w(w), dw ◦ VK |=I

F . 2

116 CHAPTER 11. AXIOMATIZATION

Lemma 11.7.7 Inferable(w(w), A)) has at least two members.

Proof By axiom (25), InferableK(w, A) has at least two members |x| and |y|. By
lemmas 11.6.1 and 11.7.2, Inferable(w(w), A)) has at least the two members dw(|x|)
and dw(|y|). 2

Theorem 11.7.8 Every consistent statement is satisfiable in some interpreted sys-
tem.

Proof Assume that 6⊢ ¬F . By lemmas 11.4.1, 11.4.2 and 11.4.4, there is saturated
set w0 containing F . Starting from w0, build the canonical assignment VK and
the canonical interpreted system I. By lemma 11.7.6, w(w0), dw0

◦ VK |=I F . By
lemma 11.7.7, I satisfies our requirement on systems. 2

From theorem 11.7.8, we get completeness theorem 11.2.2.

Chapter 12

Embedding of BAN and SVO

In this chapter, we illustrate the axiomatization by embedding characteristic rules
from BAN logic [16] and SVO logic [77].

12.1 BAN-Like Modality

By translation τ (definition 10.3.1) the axiomatization contains a propositional
logic with de re reference of complex terms. We illustrate how the embedded
propositional logic forms a BAN-like logic.

Recall from section 6.1 that BAN logic has no general proof rules for the epi-
stemic modality, only rules specific to each predicate. In section 4.3, two weakenings
of the rule of normality were introduced, and one of them later used in section 6.2
for a completeness result for BAN-like logics. These weakenings of normality arose
in a context where the crypto algebra is the term algebra formed from operators
for pairing and symmetric encryption. In the present context, the crypto algebra
is given by an equational theory of feasible computable operators. For this more
general context, we propose that the following omega-weakening of the rule of ne-
cessitation is faithful to BAN:

β[M/c], all M

2A M → 2Aβ[M/c]
(WNec)

where c is all constants from SEC occurring in β. For instance:

enc(M, K) contains M, all M, K

2A M, K → 2A enc(M, K) contains M

Let WNecτ be the τ -translations of WNec.

Proposition 12.1.1 WNecτ is a derived rule.

117

118 CHAPTER 12. EMBEDDING OF BAN AND SVO

Proof Pick a statement β(M) with message terms M . Let c be all constants from
SEC in M . Assume that

⊢ (β(M)[N/c])τ , all N

i.e.,
⊢ x = M [N/c] → β(x), all N

By infinitary rule (Gen m),

⊢ ∀m.(x = M [m/c] → β(x))

By rule (Nec) and lemma 11.1.1.2,

⊢ ∀m.2A(x = M [m/c] → β(x))

By axiom (m x),
⊢ ∀y.2A(x = M [y/c] → β(x))

i.e.,
⊢ 2Ax = M [y/c] → 2Aβ(x)

By lemma 11.1.1.10, since c includes all constants from SEC in M ,

⊢ 2Ay → x = M [y/c] → 2Aβ(x)

i.e.,
⊢ y = N → 2Ay → x = M [N/c] → 2Aβ(x)

i.e.,
⊢ (2A N → 2Aβ(M)[N/c])τ

2

Using WNecτ , we proceed to derive the τ -translation of the following two BAN-style
axioms:

A sees enc(M, K) → 2AK good for G → 2A

∨
B∈G

B saidM (WMMR)

fresh M → 2AK good for G → 2A fresh enc(M, K) (Fresh)

Schema (WMMR) weakens BAN’s message meaning rule (R1 in table 6.1), ab-
stracting from the assumption that encryptions contain a reliable sender field (cf.
proposition 6.3.4).1 Schema (Fresh) is BAN rule R9 (in table 6.1). Other BAN-
style axioms can be derived similarly. Let BAN be the conjunction of the following
four assumptions:

∀x.A sees x → 2AA sees x

1Schema WMMR also replaces the predicate secret in R1 by good, with the intended meaning
that a key is good for a group of agents if no one but group members send messages encrypted
with that key. Original BAN logic [16] includes both predicates.

12.1. BAN-LIKE MODALITY 119

∃x.¬2A x ∧ ¬x good for G

∃x.¬2A x ∧ ¬A sees x

∃x.¬2A x ∧ ¬fresh x

Trivially, an interpreted system I satisfies the first conjunct of BAN if, and only
if, ρ(I(A sees, s)) ⊆ I(A sees, s′) whenever s ∼ρ

A s′ in I. Following [7], we assume
the following abbreviation:

x good for G =df ∀y.
∨

A∈A

Asees enc(y, x) →
∨

B∈G

B said y

Corollary 12.1.2 The following are theorems:

1. BAN → (A sees M → 2AA sees M)τ

2. BAN → (A sees M → 2A M)τ

3. BAN → (2Afresh M → 2A M)τ

4. BAN → (2AK good for G → 2A K)τ

Proof (1) Immediate. (2), (3) and (4) From axiom 24. 2

Proposition 12.1.3 ⊢ BAN → (WMMR)τ , assuming dec(enc(M, K), K) ≡ M .

Proof By proposition 12.1.1,

(2A enc(M, K) → 2A A sees enc(M, K) → 2A

∨

A′

A′ sees enc(M, K))τ

is a theorem. By corollary 12.1.2.1 and corollary 12.1.2.2,

BAN → (A sees enc(M, K) → 2A

∨

A′

A′ sees enc(M, K))τ

is a theorem. By the definition of good, BAN → (WMMR)τ is a theorem. 2

Proposition 12.1.4 ⊢ BAN → (Fresh)τ , if we add an additional axiom: fresh t →
fresh enc(t, t′).

Proof By assumption,

(fresh M → fresh enc(M, K))τ

is a theorem, for all M, K. By proposition 12.1.1,

(2A M, K → 2A(fresh M → fresh enc(M, K)))τ

is a theorem. By corollary 12.1.2.3 and corollary 12.1.2.4, ⊢ BAN → (Fresh)τ . 2

120 CHAPTER 12. EMBEDDING OF BAN AND SVO

12.2 SVO-Like Modality

Protocol derivations in SVO [77], a successor to BAN named after Syverson and
van Oorschot, uses variables (represented as stars: ⋆, ⋆x, ⋆y, etc.) to refer de re to
possibly undecrypted content. The derivations assume that seeing implies know-
ledge of seeing to the extent that the seen message can be decrypted. For instance,
for the equational theory for asymmetric encryption and pairing in example 7.1.1,

A sees enc(pair(x, x′), pk(z)), A infers z → 2AA sees enc(pair(x, x′), pk(z)) (12.1)

Implications from seeing to knowledge of seeing, such as (12.1), are not justified by
the proof system in [77], but the authors remark that it would be straightforward
to capture such implications in an axiom. We propose the following axiom:

A sees T → 2A VAR(T) → 2AA sees T (SEE)

where T is any term without constants from SEC. The semantics in [77] does not
support (12.1) or SEE. More generally, the semantics there does not support de re
reference of variables. We show, however, that our semantics fits (12.1) and SEE.
Let SVO be the conjunction of thw following two statements:

∀x.(A sees x → 2AA sees x)

∃x.(¬2A x ∧ ¬A sees x)

Proposition 12.2.1 The following hold:

1. ⊢ SV O → A sees x → 2A x.

2. ⊢ SVO → SEE

3. ⊢ SVO → (12.1)

Proof (1): By axiom (24). (2): From lemma 11.1.1.10. (3): By equations in
example 7.1.1, and axioms (≡) and (23) and proposition 12.2.1.1,

SV O, A sees enc(pair(x, x′), pk(z)), 2A z → 2Ax, x′, z

is a theorem. By proposition 12.2.1.2, ⊢ SVO → (12.1). 2

Chapter 13

Concluding Remarks

Our semantics in part II is formulated in a counterpart semantics framework, al-
though the choice of framework is, to some extent, a matter of taste. It is possible
to reformulate the semantics in the framework of first-order intensional logic [14].
In such a framework, variables denote intensions, i.e., functions from states to in-
dividuals. In our setting, individuals are messages, and intensions are terms built
from store locations and operators, such as the s-terms of section 7.1. Such inten-
sions refer non-rigidly, in that they pick out a different message at different states.
However, reformulating our logic as a first-order intensional logic would, it seems,
make security specifications more complex. A statement 2AF (x) in our logic would
appear to translate to something of the form:

∃y.x = y ∧ A-term (y) ∧ 2AF (y)

where A-term is a predicate which applies to an intension if that intension is built
from feasibly computable operators and store locations A can observe. An addi-
tional intension y is needed, since the intension x might be built from store locations
not observed by A. As a result, the translation induces extra nesting of quantifiers
and modalities. To illustrate this, the statement 2B2AF (x) translates to

∃y.(x = y ∧ B-term(y) ∧ 2B∃z.(z = y ∧ A-term(z) ∧ 2AF (z)))

One issue left open is the role of the de dicto quantifier ∀m. We have been unable
to obtain completeness for a compact logic which does not use this quantifier. A
candidate omega-rule is:

x = M → F, all M ∈ T

∀x.F
.

However, using only this rule, it is difficult to see how to obtain a lemma corres-
ponding to lemma 11.4.3 (with a suitably adjusted definition of omega-completion).
In any case, the de dicto quantifier may have independent interset. (According to

121

122 CHAPTER 13. CONCLUDING REMARKS

theorem 10.2.4, the de dicto quantifier adds to the expressive power.) In an ongoing
work with Mads Dam, it would appear that de dicto quantifiers, in combination
with de re quantifiers, enable epistemic characterizations of knowledge concepts in
information flow security, such as delimited release [72].

In the future, we plan to extend the completeness result (theorem 11.2.2) to
include temporal modalities. It is known that first-order temporal logics (excluding
some weak variants) are not finitely axiomatizable (cf. [26]). However, in our case,
adding temporal modalities need not incur much extra cost, since even the modal-
free first-order fragment required an infinitary proof rule. One possibility would
be to add a binary next-time modality ©, taking a statement F and a term t as
arguments: ©tF expresses that after t time steps, fact F will hold. Assuming
that the equational theory includes a successor operator suc and the constant 0 one
could add the axiom:

©suc(t)F ↔ ©1 ©t F

(where 1 abbreviates suc(0)) in addition to standard next-time axioms for modality
©1, standard axioms for the interaction between next-time and knowledge and a
standard rigidity axiom:

t = t′ → ©1t = t′

The modality 2 for “It will always be the case that” can be introduced by abbre-
viation:

2F =df ∀x. ©x F

Assuming that the equational theory allows for the definition of a smaller-than
relation <, the until modality can also be introduced by abbreviation:

F UNTIL F ′ =df ∃x. ©x F ′ ∧ ∀y.(y < x → ©yF)

There is, of course, a question of what ©tF should mean when t is not a number
(i.e., when t is not equal to any of 0, suc(0), suc(suc(0)), . . .). One option would be
to rule out such statements, by introducing sorts into the language.

Finally, it would be interesting to combine the completeness result (theorem
11.2.2) with computational completeness results for static equivalence (cf. [63]),
thereby obtaining axiomatizations which are complete with respect to computa-
tional models of cryptography.

123

124 CHAPTER 14. LIST OF SYMBOLS FOR PART I

Chapter 14

List of Symbols for Part I

Messages

T Set of all message terms
C Set of all message atoms
A Set of all agents
M, K Message
c Message atom
A, B, C Agent
· Pairing
{} Symmetric encryption
κ Set of messages
x, y, z Variable
t Open message term

Language

F Statement
P Set of all predicates
F Set of all statements
∆, Γ Set of statements

System

Π Action vocabulary
π Action
i Initialization
h History
| Observation function
θ Action trace
S (Multi-agent) system
I Predicate interpretation
I Interpreted system

125

Indistinguishability

∼A Indistinguishability w.r.t. agent A
∼ρ

A Indistinguishability w.r.t. A relativized to ρ
ρ Permutation of messages
[M − M ′] Permutation exchangingM and M ′

[c − c′/κ] Permutation exchanging c and c′ in parts inaccessible to κ
⊳ Consistency of permutation w.r.t. set of messages

Canonical Counterpart Model

L BAN theory
LA BAN theory genereated from A

CL Canonical counterpart model
WL Set of all maximal consistent sets
−→ρ

A
L

Accessibility between maximal consistent sets

IntL Interpretation function on maximal consistent sets
w Maximal consistent set
 Filtration from counterpart model to interpreted system

Canonical System

IL Canonical interpreted system
HL Set of histories in IL

IL Interpretation function in IL

Chapter 15

List of Symbols for Part II

Message terms/Messages

T Set of all ground message terms
A Set of all agents
VAR Set of variables
SEC Set of all secret constants
Σ Set of all feasibly computable operators
M, K Ground message term/Message
c Secret constant
A, B, C Agent
f Feasibly computable operator
enc (Symmetric/Asymetric/Random) encryption function
dec Decryption function
h Hash function
len Length function
x, y, z Variable
t Open term
≡ Congruence on ground terms
T≡ Set of all messages

Static Equivalence

LOC Set of store locations
l Location
s Store
α s-term built from dom(s) and Σ
≈ Static equivalence
ρ Permutation of messages
∼ρ Indistinguishability relativized to ρ

127

128 CHAPTER 15. LIST OF SYMBOLS FOR PART II

Multi-agent System

S (Multi-agent) system
S Set of stores
| Observation function
I Predicate interpretation
I Interpreted system
∼ρ

A Indistinguishability w.r.t. A relativized to ρ

Canonical Kripke Model

K Canonical Kripke model
W Set of all saturated sets
D Domain of all equivalence classes |x|
−→A Accessibility between saturated sets
I Interpretation function on saturated sets
w Saturated set
VK Canonical assignment

Anonymized Canonical Model

K⋆ Canonical model with anonymous non-inferred items
⋆

−→ Accessibility in K⋆

Rigid Anonymized Canonical Model

d(K⋆) Canonical model with rigid operators
d

−→ Accessibility in d(K⋆)
Id Interpretation function in d(K⋆)

Grouned Canonical Model

w(d(K⋆)) Canonical model grounded by an interpreted system

Bibliography

[1] M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the computational
soundness of static equivalence. In L. Aceto and A. Ingólfsdóttir, editors, Founda-
tions of Software Science and Computation Structures, 9th International Conference
(FOSSACS 2006), volume 3921 of Lecture Notes in Computer Science, pages 398–
412. Springer, 2006.

[2] M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational
theories. Theor. Comput. Sci., 367(1-2):2–32, 2006.

[3] M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocols.
Nordic J. of Computing, 5(4), 1998.

[4] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The Spi calcu-
lus. Inf. Comput., 148(1):1–70, 1999.

[5] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpreta-
tion. In N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer
Software, 4th International Symposium (TACS 2001), volume 2215 of Lecture Notes
in Computer Science, pages 82–94. Springer, 2001.

[6] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). In J. van Leeuwen, O. Watanabe, M. Hagiya, P. D.
Mosses, and T. Ito, editors, Theoretical Computer Science, Exploring New Frontiers
of Theoretical Informatics, International Conference (IFIP TCS 2000), volume 1872
of Lecture Notes in Computer Science, pages 3–22. Springer, 2000.

[7] M. Abadi and M. Tuttle. A semantics for a logic of authentication. In PODC’91,
pages 201–216, 1991.

[8] M. Abadi and B. Warinschi. Password-based encryption analyzed. In L. Caires, G. F.
Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Automata, Languages
and Programming, 32nd International Colloquium (ICALP 2005), volume 3580 of
Lecture Notes in Computer Science, pages 664–676. Springer, 2005.

[9] N. Agray, W. van der Hoek, and E. P. de Vink. On ban logics for industrial security
protocols. In B. Dunin-Keplicz and E. Nawarecki, editors, From Theory to Practice in
Multi-Agent Systems, Second International Workshop of Central and Eastern Europe
on Multi-Agent Systems (CEEMAS 2001), volume 2296 of Lecture Notes in Computer
Science, pages 29–36. Springer, 2001.

[10] F. Belardinelli and A. Lomuscio. A quantified epistemic logic for reasoning about
multi-agent systems. In Proceedings of the 6th International Conference on Autonom-
ous Agents and Multi-Agent systems (AAMAS07), pages 115–132. ACM Press, 2007.

[11] P. Bieber. A logic of communication in hostile environments. In Third IEEE Com-
puter Security Foundations Workshop (CSFW’90), pages 14–22. IEEE Computer
Society Press, 1990.

129

130 BIBLIOGRAPHY

[12] P. Bieber and F. Cuppens. A definition of secure dependencies using the logic of
security. In 4th IEEE Computer Security Foundations Workshop (CSFW’91), pages
2–11, 1991.

[13] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo
random bits. In 23rd Annual Symposium on Foundations of Computer Science, 3-5
November 1982, Chicago, Illinois, USA, pages 112–117. IEEE, 1982.

[14] T. Brauner and S. Ghilardi. First-order modal logic. In F. W. Patrick Blackburn,
Johan van Benthem, editor, Handbook of Modal Logic: Volume III. Elsevier, 2006.

[15] J. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan. Opacity generalised to trans-
ition systems. In T. Dimitrakos, F. Martinelli, P. Y. A. Ryan, and S. A. Schneider,
editors, Formal Aspects in Security and Trust (FAST 2005), volume 3866 of Lecture
Notes in Computer Science, pages 81–95. Springer, 2005.

[16] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. ACM Trans.
Comput. Syst., 8(1):18–36, 1990.

[17] D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–90, 1981.

[18] J. A. Clark and J. L. Jacob. A survey of authentication protocol literature. Technical
Report 1.0, 1997.

[19] M. Cohen and M. Dam. A completeness result for BAN logic. In 2005 International
Workshop on Methods for Modalities (M4M-05), pages 202–219, 2005.

[20] M. Cohen and M. Dam. Logical omniscience in the semantics of BAN logic. In
Foundations of Computer Security (FCS’05), pages 121–132, 2005.

[21] M. Cohen and M. Dam. A complete axiomatization of knowledge and cryptography.
In 22th IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE Com-
puter Society, 2007. To appear.

[22] G. Corsi. Counterpart semantics. a foundational study on quantified modal logics.
Research reprt PP-2002-20, ILLC, 2002.

[23] G. Corsi. A unified completeness theorem for quantified modal logics. Journal of
Symbolic Logic, 67:1483–1510, 2002.

[24] V. Cortier. Observational equivalence and trace equivalence in an extension of Spi-
calculus. Application to cryptographic protocols analysis. Technical Report LSV-02-
3, Lab. Specification and Verification, ENS de Cachan, 2002.

[25] V. Cortier, S. Kremer, R. Küsters, and B. Warinschi. Computationally sound sym-
bolic secrecy in the presence of hash functions. In S. Arun-Kumar and N. Garg,
editors, Foundations of Software Technology and Theoretical Computer Science, 26th
International Conference (FSTTCS 2006), volume 4337 of Lecture Notes in Com-
puter Science, pages 176–187. Springer, 2006.

[26] I. M. H. D. M. Gabbay and M. A. ReynoldsR. Temporal Logic: Mathematical Found-
ations and Computational Aspects, volume 1. Clarendon Press, 1994.

[27] A. H. Dekker. C3P0: A tool for automatic sound cryptographic protocol analysis. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW’00),
pages 77–87. IEEE Computer Society Press, 2000.

[28] D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE Transac-
tions on Information Theory, 29(2):198–207, 1983.

[29] R. A. Eberle. A logic of believing, knowing and inferring. Synthese, 26:356–382,
1974.

[30] R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning. . Artif. Intell.,
34(1), 1987.

131

[31] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

[32] C. Fournet and M. Abadi. Mobile values, new names, and secure communication.
In The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ACM SIGPLAN Notices 36(3), pages 104–115, 2001.

[33] T. French, R. van der Meyden, and M. Reynolds. Axioms for logics of knowledge
and past time: Synchrony and unique initial states. In R. A. Schmidt, I. Pratt-
Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal Logic (AiML),
pages 53–72. King’s College Publications, 2004.

[34] D. Gabbay, V. Shehtman, and D. Skvortsov. Quantification in nonclassical logic.
2006. Manuscript.

[35] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.
In R. Alur and D. Peled, editors, Computer Aided Verification, 16th International
Conference, CAV 2004, volume 3114 of Lecture Notes in Computer Science, pages
479–483. Springer, 2004.

[36] J. Garson. Unifying quantified modal logic. Journal of Philosophical Logic, 34:621–
649, 2005.

[37] J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic: Volume II. Reidel, 1984.

[38] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[39] L. Gong, R. M. Needham, and R. Yahalom. Reasoning about belief in cryptographic
protocols. In IEEE Symposium on Security and Privacy, pages 234–248. IEEE Com-
puter Society Press, 1990.

[40] J. Y. Halpern, Y. Moses, and M. Y. Vardi. Algorithmic knowledge. In R. Fagin,
editor, 5th Conference on Theoretical Aspects of Reasoning about Knowledge (TARK),
pages 255–266. Morgan Kaufmann, 1994.

[41] J. Y. Halpern and K. R. O’Neill. Secrecy in multiagent systems. In 15th IEEE
Computer Security Foundations Workshop (CSFW-15 2002), pages 32–, 2002.

[42] J. Y. Halpern and K. R. O’Neill. Anonymity and information hiding in multiagent
systems. In 16th IEEE Computer Security Foundations Workshop (CSFW-16 2003),
pages 75–88, 2003.

[43] J. Y. Halpern and R. Pucella. Modeling adversaries in a logic for security protocol
analysis. In A. E. Abdallah, P. Ryan, and S. Schneider, editors, Formal Aspects of
Security, First International Conference (FASec 2002), volume 2629 of Lecture Notes
in Computer Science, pages 115–132. Springer, 2002.

[44] J. Y. Halpern and R. Pucella. On the relationship between strand spaces and multi-
agent systems. ACM Trans. Inf. Syst. Secur., 6(1):43–70, 2003.

[45] J. Y. Halpern, R. Pucella, and R. van der Meyden. Revisiting the foundations of
authentication logics. Manuscript, 2003.

[46] J. Y. Halpern, R. van der Meyden, and M. Y. Vardi. Complete axiomatizations for
reasoning about knowledge and time. SIAM J. Comput., 33(3):674–703, 2004.

[47] J. Y. Halpern and M. Y. Vardi. Model checking vs. theorem proving: A manifesto.
In KR, pages 325–334, 1991.

[48] J. Hintikka. Knowledge and Belief: An Introduction into the logic of the two notions.
Cornell University Press, Ithaca, 1962.

[49] D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: a modular
approach. Journal of Computer Security, 12(1):3–36, 2004.

132 BIBLIOGRAPHY

[50] M. Kacprzak, A. Lomuscio, T. Lasica, W. Penczek, and M. Szreter. Verifying
multi-agent systems via unbounded model checking. In M. G. Hinchey, J. L. Rash,
W. Truszkowski, and C. Rouff, editors, Formal Approaches to Agent-Based Systems,
Third International Workshop (FAABS 2004), volume 3228 of Lecture Notes in Com-
puter Science, pages 189–212. Springer, 2004.

[51] R. Kailar. Accountability in electronic commerce protocols. IEEE Trans. Software
Eng., 22(5):313–328, 1996.

[52] V. Kessler and G. Wedel. AUTLOG - an advanced logic of authentication. In Seventh
IEEE Computer Security Foundations Workshop (CSFW’94), pages 90–99, 1994.

[53] D. Kindred and J. Wing. losing the idealization gap with theory generation. In
Proceedings of the DIMACS Workshop on Cryptographic Protocol Design and Veri-
fication, pages 3–5. Rutgers, May 1997.

[54] K. Konolige. A Deduction Model of Belief. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1986.

[55] S. Kramer. Logical concepts in cryptography. Cryptology ePrint Archive, Report
2006/262, 2006.

[56] D. Lewis. Counterpart theory and quantified modal logic. Journal of Philosophy,
65:113–126, 1968.

[57] H. Liu and M. Li. SVO logic based formalisms of GSI protocols. In K.-M. Liew,
H. Shen, S. See, W. Cai, P. Fan, and S. Horiguchi, editors, Parallel and Distributed
Computing: Applications and Technologies, 5th International Conference (PDCAT
2004), volume 3320 of Lecture Notes in Computer Science, pages 744–747. Springer,
2004.

[58] A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems.
In H. Hermanns and J. Palsberg, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 12th International Conference (TACAS 2006), volume 3920
of Lecture Notes in Computer Science, pages 450–454. Springer, 2006.

[59] A. Lomuscio and B. Wozna. A combination of explicit and deductive knowledge with
branching time: Completeness and decidability results. In M. Baldoni, U. Endriss,
A. Omicini, and P. Torroni, editors, Declarative Agent Languages and Technologies
III, Third International Workshop (DALT 2005), volume 3904 of Lecture Notes in
Computer Science, pages 188–204. Springer, 2005.

[60] A. Lomuscio and B. Wozna. A complete and decidable security-specialised logic and
its application to the TESLA protocol. In H. Nakashima, M. P. Wellman, G. Weiss,
and P. Stone, editors, 5th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2006), pages 145–152. ACM, 2006.

[61] G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett., 56(3):131–133, 1995.

[62] Mastercard and VISA. SET Secure Electronic Transaction Specification. 1997.

[63] D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway
language of encrypted expressions. Journal of Computer Security, 12(1):99–130, 2004.

[64] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In M. Naor, editor, Theory of Cryptography, First Theory of
Cryptography Conference (TCC 2004), volume 2951 of Lecture Notes in Computer
Science, pages 133–151. Springer, 2004.

[65] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978.

133

[66] R. Parikh and R. Ramanujam. Distributed processes and the logic of knowledge.
In R. Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in Computer
Science, pages 256–268. Springer, 1985.

[67] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundam. Inform., 55(2):167–185, 2003.

[68] R. Pucella. Reasoning about Resource-Bounded Knowledge: Theory and Application
to Security Protocol Analysis. Ph.D. Thesis, Cornell University, 2004.

[69] R. Pucella. Deductive algorithmic knowledge. J. Log. Comput., 16(2):287–309, 2006.

[70] M. K. Reiter and A. D. Rubin. Crowds: anonymity for web transactions. ACM
Trans. Inf. Syst. Secur., 1(1), 1998.

[71] P. Y. A. Ryan and S. A. Schneider. Process algebra and non-interference. Journal
of Computer Security, 9(1/2):75–103, 2001.

[72] A. Sabelfeld and A. C. Myers. A model for delimited information release. In K. Futat-
sugi, F. Mizoguchi, and N. Yonezaki, editors, Software Security - Theories and Sys-
tems, Second Mext-NSF-JSPS International Symposium (ISSS 2003), volume 3233
of Lecture Notes in Computer Science, pages 174–191. Springer, 2003.

[73] A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential
programs. Higher Order Symbol. Comput., 14(1):59–91, 2001.

[74] S. G. Stubblebine and R. N. Wright. An authentication logic with formal semantics
supporting synchronization, revocation, and recency. IEEE Trans. Softw. Eng.,
28(3):256–285, 2002.

[75] P. F. Syverson. Towards a strand semantics for authentication logics. In Electronic
Notes in Theoretical Computer Science, 20,2000.

[76] P. F. Syverson and S. G. Stubblebine. Group principals and the formalization of
anonymity. In J. M. Wing, J. Woodcock, and J. Davies, editors, FM’99 - Formal
Methods, World Congress on Formal Methods in the Development of Computing Sys-
tems, volume 1708 of Lecture Notes in Computer Science, pages 814–833. Springer,
1999.

[77] P. F. Syverson and P. C. van Oorschot. A unified cryptographic protocol logic. NRL
Publication 5540-227, Naval Research Lab, 1996.

[78] W. Teepe. Proving possession of arbitrary secrets while not giving them away. new
protocols and a proof in GNY logic. Synthese - Knowledge, Rationality and Action,
49(2):409–443, 2006.

[79] M.-J. Toussaint and P. Wolper. Reasoning about cryptographic protocols. In J. Fei-
genbaum and M. Merritt, editors, Distributed Computing and Cryptography, volume 2
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
245–262. American Mathematical Society, 1989.

[80] R. van der Meyden and N. V. Shilov. Model checking knowledge and time in sys-
tems with perfect recall (extended abstract). In C. P. Rangan, V. Raman, and
R. Ramanujam, editors, Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), volume 1738 of Lecture Notes in Computer Science, pages
432–445. Springer, 1999.

[81] R. van der Meyden and K. shu Wong. Complete axiomatizations for reasoning about
knowledge and branching time. Studia Logica, 75(1):93–123, 2003.

[82] R. van der Meyden and K. Su. Symbolic model checking the knowledge of the dining
cryptographers. In 17th IEEE workshop on Computer Security Foundations (CSFW
’04), page 280, Washington, DC, USA, 2004. IEEE Computer Society.

134 BIBLIOGRAPHY

[83] G. Wedel and V. Kessler. Formal semantics for authentication logics. In E. Bertino,
H. Kurth, G. Martella, and E. Montolivo, editors, Computer Security - ESORICS 96,
4th European Symposium on Research in Computer Security, volume 1146 of Lecture
Notes in Computer Science, pages 219–241. Springer, 1996.

[84] M. Wooldridge. Computationally grounded theories of agency. In 4th International
Conference on Multi-Agent Systems (ICMAS 2000), pages 13–22. IEEE Computer
Society, 2000.

