
Robot Task Learning from Human Demonstration

STAFFAN EKVALL

Doctoral Thesis
Stockholm, Sweden 2007

TRITA-CSC-A 2007:01
ISSN-1653-5723
ISRN-KTH/CSC/A–07/01–SE
ISBN 978-91-7178-570-1

KTH School of Computer Science and Communication
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till
offentlig granskning för avläggande av teknologie doktorsexamen i datalogi fredagen den
23 februari 2007 klockan 10.00 i sal E2, Lindstedtsvägen 3 entreplan, Kungl Tekniska
högskolan, Stockholm.

© Staffan Ekvall, februari 2007

Tryck: Universitetsservice US AB

iii

Abstract

Today, most robots used in the industry are preprogrammed and require a well-
defined and controlled environment. Reprogramming such robots is often a costly pro-
cess requiring an expert. By enabling robots to learn tasks from human demonstration,
robot installation and task reprogramming are simplified. In a longer time perspective,
the vision is that robots will move out of factories into our homes and offices. Robots
should be able to learn how to set a table or how to fill the dishwasher. Clearly, robot
learning mechanisms are required to enable robots to adapt and operate in a dynamic
environment, in contrast to the well defined factory assembly line.

This thesis presents contributions in the field of robot task learning. A distinction
is made between direct and indirect learning. Using direct learning, the robot learns
tasks while being directly controlled by a human, for example in a teleoperative set-
ting. Indirect learning, however, allows the robot to learn tasks by observing a human
performing them. A challenging and realistic assumption that is decisive for the indi-
rect learning approach is that the task relevant objects are not necessarily at the same
location at execution time as when the learning took place. Thus, it is not sufficient to
learn movement trajectories and absolute coordinates. Different methods are required
for a robot that is to learn tasks in a dynamic home or office environment. This thesis
presents contributions to several of these enabling technologies. Object detection and
recognition are used together with pose estimation in a Programming by Demonstra-
tion scenario. The vision system is integrated with a localization module which enables
the robot to learn mobile tasks. The robot is able to recognize human grasp types, map
human grasps to its own hand and also evaluate suitable grasps before grasping an ob-
ject. The robot can learn tasks from a single demonstration, but it also has the ability
to adapt and refine its knowledge as more demonstrations are given. Here, the ability
to generalize over multiple demonstrations is important and we investigate a method
for automatically identifying the underlying constraints of the tasks.

The majority of the methods have been implemented on a real, mobile robot, fea-
turing a camera, an arm for manipulation and a parallel-jaw gripper. The experiments
were conducted in an everyday environment with real, textured objects of various
shape, size and color.

Acknowledgements

There are many people who have inspired and supported me on this thesis. First I would
like to thank my supervisor Danica Kragic, for your enthusiasm, our fruitful discussions
and for your extraordinary guidance, support and encouragement which pushed me to per-
form my very best. Thank you Frank Hoffmann, for inspiring me to pursue research in the
first place. My thanks also goes to Jan-Olof Eklundh and Stefan Carlsson for providing a
stimulating research environment.

The many friendly people at CAS/CVAP have also contributed to this thesis by creating
a nice atmosphere filled with interesting discussions. In particular, thank you Daniel Aarno
for our research discussions, for sharing your deep programming knowledge and for your
great patience with my Unix frustration. Thank you Patric Jensfelt, for your never ending
patience, helpful attitude and support on technical matters. You keep CAS running! Many
thanks to all the other people at CAS/CVAP. Thank you Babak, for the challenging coffee
breaks. Hugo, always fun to talk with. Johan S, for the fun of sharing a room with you.
Christian, you can truly discuss anything. Frank L, was ist los? Paul, you are an optimal
friend. Andreas, for our pizza days. Johan T and Oscar, for our productive discussions.
And to all others at CAS/CVAP, thank youall, you all contributed to this thesis in some
way.

Finally, I would like to express my gratitude to my family for your interest and encour-
agement. Special thanks to my beloved wife Marika. Thank you, for your endless love and
support.

This work has in part been funded by the Swedish Research Council. The funding is
gratefully acknowledged.

v

Contents

Contents vi

1 Introduction 1
1.1 Direct and Indirect Learning . 2
1.2 Supervised and Unsupervised Learning 3
1.3 Outline and Contributions . 4
1.4 List of Publications . 5

2 Machine-Assisted Task Execution Using Direct Learning 7
2.0.1 Human Machine Collaborative Systems 8

2.1 System Overview . 8
2.2 Theoretical Background . 10

2.2.1 Hidden Markov Models . 10
2.2.2 Probability Estimators for Hidden Markov Models 11
2.2.3 Support Vector Machines . 11

2.3 Related Work . 13
2.4 Trajectory Analysis . 14

2.4.1 Retrieving Measurements . 14
2.4.2 Estimating Lines in the Demonstrated Trajectories 14
2.4.3 Estimating Observation Probabilities Using Support Vector Machines 15
2.4.4 State Sequence Analysis Using Hidden Markov Models 16

2.5 Experimental Evaluation . 16
2.5.1 Experiment 1: Trajectory Following 18
2.5.2 Experiment 2: Changed Workspace 19
2.5.3 Experiment 3: Unexpected Obstacle 21

2.6 Discussion . 21

3 Robot Vision for Indirect Learning 23
3.1 System Overview . 24
3.2 Related Work . 25
3.3 Color Cooccurrence Histograms . 26

3.3.1 Image Normalization . 26
3.3.2 Image Quantization . 27

vi

vii

3.3.3 Histogram Matching . 27
3.3.4 Object Detection and Segmentation 28

3.4 Receptive Field Cooccurrence Histograms 29
3.4.1 Image Descriptors . 29
3.4.2 Image Quantization . 30
3.4.3 An Alternative Segmentation Approach 30
3.4.4 Complexity . 32

3.5 Object Detection Evaluation . 32
3.5.1 CODID - CVAP Object Detection Image Database 33
3.5.2 Training . 33
3.5.3 Detection Results . 34
3.5.4 Segmentation Results . 35
3.5.5 Free Parameters . 36
3.5.6 Scale Robustness . 38
3.5.7 Conclusion . 38

3.6 Pose Estimation . 39
3.6.1 Model Based Pose Estimation 40
3.6.2 Experimental Evaluation . 42
3.6.3 Object Recognition and Rotation Estimation 42
3.6.4 Full 6-DoF Pose Estimation . 45

3.7 Discussion . 46

4 Grasp Mapping, Recognition and Execution 49
4.0.1 GraspIt! . 50

4.1 Mapping Human Grasps to Robot Grasps 50
4.1.1 Measuring the Hand Posture . 51
4.1.2 Using an Artificial Neural Network for Grasp Mapping 53
4.1.3 Evaluation . 54
4.1.4 Object Grasping . 57
4.1.5 Conclusion . 59

4.2 Autonomous Grasping Based on Human Advice 59
4.3 Grasp Recognition . 62

4.3.1 Applications . 63
4.3.2 Related Work on Grasp Recognition 63
4.3.3 Grasp Recognition: Two Methods 64
4.3.4 Grasp Classification Based on Fingertip Positions 64
4.3.5 Grasp Classification Based on Arm Movement Trajectories 66
4.3.6 Experimental Evaluation . 68
4.3.7 Conclusion . 72

4.4 Autonomous Grasping Inspired by Human Demonstration 73
4.4.1 Related Work on Grasping . 74
4.4.2 Grasp Mapping . 75
4.4.3 Grasp Controllers . 76
4.4.4 Grasp Planning . 77

viii CONTENTS

4.4.5 Experimental Evaluation . 78
4.4.6 Conclusion . 82

4.5 Discussion . 83

5 Task Level Learning from Demonstration 85
5.1 Motivation and Related Work . 86
5.2 System Description . 88

5.2.1 Experimental Platform . 89
5.3 Task Level Planning . 89

5.3.1 Pose Estimation . 92
5.3.2 Detecting Object Collisions . 92
5.3.3 Finding Free Space . 95
5.3.4 Taking Profit from Human Advice 96

5.4 Automatic Generalization from Multiple Examples 96
5.4.1 Example Task . 97
5.4.2 State Generation . 98
5.4.3 Task Generalization . 99

5.5 Experimental Evaluation . 100
5.5.1 Planning Example . 100
5.5.2 Imitation Learning . 101
5.5.3 Learning from Human Advice 103
5.5.4 Generalizing from Multiple Examples 104

5.6 Discussion . 107

6 A Service Robot Application 109
6.1 Motivation and Related Work . 109

6.1.1 Active Vision . 111
6.2 Building a Map of the Environment . 112
6.3 Active Object Recognition . 112

6.3.1 Active Object Learning from Demonstration 113
6.3.2 Hypotheses Generation . 114
6.3.3 Hypotheses Evaluation Strategy 114

6.4 Integrating SLAM and Object Recognition 116
6.5 Experimental Evaluation . 116

6.5.1 Evaluating the Search Effectiveness 117
6.5.2 Searching for Objects in Several Rooms 119
6.5.3 Fetching Objects . 120

6.6 Discussion . 122

7 Summary and Future Work 123
7.1 Summary . 123
7.2 Future Work and Perspective . 125

Bibliography 127

Chapter 1

Introduction

Today, most robots used in the industry are preprogrammed and require a well-defined and
controlled environment. Reprogramming such robots is often a costly process requiring an
expert. Enabling the robot to learn tasks by demonstrating them would simplify the robot
installation and task reprogramming. In a longer time perspective, the vision is that robots
will move out of factories into our homes and offices. Robots should be able to learn how to
set a table, or how to fill the dishwasher. Clearly, robot learning mechanisms are required
to enable robots to adapt and operate in a dynamic environment, in contrast to the well
defined factory assembly line. That is why robot learning is one of the key research areas in
robotics. However, constructing a robot that is able to learn what is shown is a challenging
problem. Although prototype platforms for robot learning by demonstration have been
around for more than 10 years, the many difficulties have restrained the robots to only
operate in lab environments. Some of the key challenges areperception and task/object
recognition, task generalization, planningandobject manipulation. This thesis presents
various contributions in each of these fields and also gives several examples of robotic task
learning solutions.

An example task which robots should be able to learn issetting the table. It involves
moving plates and cutlery to the correct positions on the table. This task has to be learned
on site since a preprogrammed robot cannot know the size and shape of the table, among
other things. Despite the simple appearance of the task, it is actually very complicated.
The robot has to learn to recognize plates, knives, pots and napkins, to name a few items.
Then, it has to learn how to grasp them in a robust manner, and transport them to the
correct location on the table. Some items may block each other so that the robot cannot
grasp them. It has to create a plan on how to achieve the task goals despite these obstacles.
Thus, the robot has to understand the task goals from a demonstration.

As shown in the above example, robot learning is utilized on many different levels,
from simple parameter tuning to high-level task learning. Fig. 1.1 shows some examples
of different levels of learning.

1

2 CHAPTER 1. INTRODUCTION

Learning Object

Representations

Learning Low−

Motions

Level Primitive

Parameter Tuning

Level of Learning

 Skill Acquisition Task Learning

Figure 1.1: Some examples of different levels of robot learning. On the left we find simple
parameter tuning and learning of low-level primitive motions, while on the right high-level
learning systems such as skill acquisition(e.g object manipulation) and task learning are
situated.

1.1 Direct and Indirect Learning

We consider two ways for a robot to learn from demonstration, direct learning and indirect
learning.

• Direct Learning
A human performs the task by directly controlling the robot through a joystick or
similar device. The robot records sensory information during the demonstration and
is then able to reproduce the task. The robot can generalize over multiple demonstra-
tions and gain ability to perform the task even better than the human. This approach
has the advantage that no mapping from human to robot kinematics is needed. Also,
the robot can expect about the same sensor readings during execution. The disadvan-
tage with direct learning is that controlling a high degree-of-freedom robot is quite
hard, and some tasks are not be possible to demonstrate using the robot.

• Indirect Learning
In this approach, the robot learns by observing a human performing the task. This
method is much more difficult to realize, as it requires the robot to have remote sens-
ing(vision), and reasoning about what it is observing. The trajectory of the demon-
stration cannot be mapped directly to the robot because of the different kinematics.
The low-level sensory information must be transformed to high-level situation-action
descriptors (Friedrichet al., 1996), and then mapped back to low-level motor con-
trols dependent of the world state at run-time. The advantages of this approach are
both that the operator can demonstrate the task in a natural way, and that it results in
a much more flexible system. Learning a concept rather than low-level trajectories
allows the robot to adapt its knowledge to new situations, never encountered before.

Fig. 1.2 shows what sensors and methods are required for a complete learning system
in a dynamic environment. The contributions of this thesis lie more in the development of
enabling technologiesfor robot task learning from demonstration, than actual task learning
techniques, although we present some in Chapter 5.

1.2. SUPERVISED AND UNSUPERVISED LEARNING 3

Navigation

Grasp/Action Recognition

Generalization from

Multiple Examples

Automatic Grasping

PlanningHuman−Robot Mapping

Object Detection Object Recognition

Pose Estimation

For mobile

applications

Sensors:

Robot Vision

Camera Force/Tourque Sensors Laser Scanner

Odometry

Sonar Sensors

Indirect Robot Learning Direct Robot Learning

Data Glove

 Magnetic

Servoing
Visual

Figure 1.2: From sensors to complete learning systems. As seen, the direct method mostly
operates on raw sensor data, while the indirect method require many high-level learning
modules. The dotted lines represent possible connections that are not used in this thesis.

1.2 Supervised and Unsupervised Learning

In the field of machine learning, it is common to distinguish betweensupervisedandun-
supervisedlearning. In supervised learning, the learning agent is provided with the correct
answers to the problems faced. Often the answers are in the form of target output vectors
yi , which is the desired output for each input vectorxi . These targets can be learned by
observing a human performing the task. On the other hand, unsupervised learning models
a set of inputs when labeled examples are not available. In this thesis, mostly supervised
learning methods are utilized. One example of an unsupervised approach is the clustering
technique which is frequently used throughout the thesis. Here, the challenge is to find
structures inn-dimensional data sets without anya priori information.

A popular machine learning method which falls in between the two above categories is
Reinforcement Learning, (Sutton and Barto, 1998). Instead of providing a target for each
input vector, the robot is guided by rewards and penalties. This has the advantage the robot
can find an optimal solution to a problem using trial and error, just given the desired goal
state. However, robot tasks have often huge state spaces and since most tasks cannot be
simulated, the robot has to perform many time-consuming trials when exploring the state
space. It must also be able to detect all changes to the environment that is caused by each

4 CHAPTER 1. INTRODUCTION

trial. Due to these problems, we have chosen not to use reinforcement learning in this
work.

1.3 Outline and Contributions

This thesis presents background and contributions several of the methods shown in Fig. 1.2.

• Chapter 2: Machine-Assisted Task Execution Using Direct Learning
In this chapter, a human-machine collaborative system is considered. Such systems
are useful when the task requires high precision or power, but cannot be automated
due to the need for human decision making. It has been demonstrated in a number of
robotic areas how the use ofvirtual fixturesimproves task performance both in terms
of execution time and overall precision, (Kuanget al., 2004). However, the fixtures
are typically inflexible, resulting in a degraded performance in cases of unexpected
obstacles or incorrect fixture models. In Chapter 2, we presentadaptive virtual
fixturesthat enable us to cope with the above problems.

• Chapter 3: Robot Vision for Indirect Learning
To enable indirect learning, the robot must be able to learn by observing a demonstra-
tion instead of learning as it performs the task. In Chapter 3, we present techniques
for autonomous object detection and pose estimation, which are some of the key
modules to enable indirect learning. The methods are designed with the learning
scenario in mind; the robot is to operate in cluttered home and office environments.

• Chapter 4: Grasp Mapping, Recognition and Execution
Some other necessary modules for indirect learning are grasp recognition and map-
ping. The chapter starts with grasp mapping in a direct-control setting. Then, more
intelligence is added as grasp recognition is introduced. The robot is to learn not
only what is done, but alsohow it is done. Most objects can be grasped in several
ways, depending on the task at hand. Grasp recognition allows the robot to rec-
ognize the human grasps during a demonstration. Then, a fixed grasp mapping is
necessary to translate the grasps to a robot equivalent type. In the end of the chapter,
we present a technique to enable autonomous grasping of objects once the grasp has
been recognized and the pose of the object has been estimated.

• Chapter 5: Task Level Learning from Demonstration
In this chapter, we demonstrate how the robot can be taught a pick-and-place task
from demonstration. The key challenge here is that the initial task setting may
change after the demonstration, which requires the robot to understand the task and
plan a series of actions to achieve the task goals. It is not sufficient to learn low-level
movement trajectories. We also show how the robot can generalize the task model
from multiple demonstrations.

• Chapter 6: A Service Robot Application
In this chapter, we integrate some of our methods with a navigation system, which

1.4. LIST OF PUBLICATIONS 5

allows the robot to perform mobile tasks. The vision system from Chapter 3 is
extended to robustly recognize objects without any false positives. The robot is then
able to perform sophisticated tasks, such as moving to a room and searching for a
specific object.

• Chapter 7: Summary and Future Work
The final chapter summarizes the most important parts of the thesis, provides some
further discussion and also highlights issues for future research.

1.4 List of Publications

Most of the work presented in this thesis can also be found in the following publications:

• Learning and Evaluation of the Approach Vector for Automatic Grasp Generation
and Planning (S. Ekvall and D. Kragic) To appear in IEEE/RSJ International Con-
ference on Robotics and Automation, 2007

• Object Detection and Mapping for Service Robot Tasks (S. Ekvall, D. Kragic and P.
Jensfelt) To appear inRobotica, Cambridge Journals, 2007

• On-line Task Recognition and Real-Time Adaptive Assistance for Computer Aided
Machine Control (S. Ekvall, D. Aarno and D. Kragic)Transactions on Robotics,
October 2006, pp 1029-1033, vol 22, issue 5

• Integrating Active Mobile Robot Object Recognition and SLAM in Natural Environ-
ments (S. Ekvall, P. Jensfelt and D. Kragic) In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2006, pp 5798-5804

• Learning Task Models from Multiple Human Demonstrations (S. Ekvall and D.
Kragic) In IEEE International Symposium on Robot and Human Interactive Com-
munication, 2006, pp 358-363

• Task Learning Using Graphical Programming and Human Demonstrations (S. Ek-
vall, D. Aarno and D. Kragic) In IEEE International Symposium on Robot and Hu-
man Interactive Communication, 2006, pp 398-403,

• Augmenting SLAM with Object Detection in a Service Robot Framework (P. Jens-
felt, S. Ekvall, D. Kragic and D. Aarno) In IEEE International Symposium on Robot
and Human Interactive Communication, 2006, pp 741-746

• Object Recognition and Pose Estimation using Color Cooccurrence Histograms and
Geometric Modeling (S. Ekvall, D. Kragic and F. Hoffmann)Image and Vision Com-
puting, October 2005, pp 943-955, vol 23, issue 11

• Selection of Virtual Fixtures Based on Recognition of Motion Intention for Teleoper-
ation Tasks (D. Aarno, S. Ekvall and D. Kragic) In Proceedings of the third Swedish
Workshop on Autonomous Robotics, 2005

6 CHAPTER 1. INTRODUCTION

• Receptive Field Cooccurrence Histograms for Object Detection (S. Ekvall and D.
Kragic) In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005, pp 84-89

• Grasp Recognition for Programming by Demonstration (S. Ekvall and D. Kragic) In
IEEE/RSJ International Conference on Robotics and Automation, 2005, pp 748-753

• Adaptive Virtual Fixtures for Machine-Assisted Teleoperation Tasks (D. Aarno, S.
Ekvall and D. Kragic) In IEEE/RSJ International Conference on Robotics and Au-
tomation, 2005, pp 897-903

• Integrating Object and Grasp Recognition for Dynamic Scene Interpretation, (S. Ek-
vall and D. Kragic) In IEEE/RSJ International Conference on Advanced Robotics,
2005, pp 331-336

• Interactive Grasp Learning Based on Human Demonstration (S. Ekvall and D. Kragic)
In IEEE/RSJ International Conference on Robotics and Automation, 2004, pp 3519-
3524, vol 4

• Object Recognition and Pose Estimation for Robotic Manipulation using Color Cooc-
currence Histograms (S. Ekvall, F. Hoffmann and D. Kragic) In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2003, pp 1284-1289, vol 2

The following paper is under review.

• Robot Learning from Demonstration: A Task-Level Planning Approach (S. Ekvall
and D. Kragic) Submitted to IEEETransactions on Robotics

Chapter 2

Machine-Assisted Task Execution Using
Direct Learning

In today’s manufacturing industry, large portions of the operation has been automated.
However, many processes are too difficult to automate and must rely on humans’ decision
making and superior performance in areas such as identifying defective parts, dealing with
process variations, pushing cable bundles aside (Peshkinet al., 2001), or medical applica-
tions (Taylor and Stoianovici, 2003). When such skills are required, humans still have to
perform straining tasks. We believe that Human-Machine Collaborative Systems (HMCS)
can be used to help prevent ergonomic injuries and operator wear, by allowing coopera-
tion between a human and a (mobile) manipulation platform. In such a system, the user’s
intention is recognized and the system is aiding the user in performing the task.

Segmentation and recognition of operator generated motions are commonly facili-
tated to provide appropriate assistance during task execution in teleoperative and human-
machine collaborative settings. The assistance is usually provided in a virtual fixture
framework where the level of compliance can be altered on-line thus improving the perfor-
mance in terms of execution time and overall precision. However, the fixtures are typically
inflexible, resulting in a degraded performance in cases of unexpected obstacles or incor-
rect fixture models. In this chapter, we present a method for on-line task tracking and
propose the use ofadaptive virtual fixturesthat can cope with the above problems. Here,
rather than executing a predefined plan, the operator has the ability to avoid unforeseen
obstacles and deviate from the model. To allow this, the probability of following a cer-
tain trajectory (subtask) is estimated and used to automatically adjust the compliance, thus
providing the on-line decision of how to fixture the movement.

Related to Fig. 1.2, the system presented in this chapter is an example of direct task
learning, where the robot learns directly from sensory data. The goal of this chapter is
to equip a stationary robot with learning capabilities for direct learning. The human con-
trols the robot using either a joystick, a force-torque controller or some other device. The
robot records the end effector position during the human demonstration. When training is
complete, the robot has learned the nature of the task and is therefore aware of the user’s in-

7

8
CHAPTER 2. MACHINE-ASSISTED TASK EXECUTION USING DIRECT

LEARNING

tention. Hence, it is possible to aid the user in upcoming task executions. We demonstrate
the learning system with a series of experiments using a real robot.

2.0.1 Human Machine Collaborative Systems

In the area of HMCSs and teleoperation, task segmentation and recognition are two impor-
tant research problems. In this chapter, it is shown how a flexible design framework can be
obtained by building a low-level Programming by Demonstration system where the robot
can be trained in a fast and easy way. In our system, a high-level task is segmented into
subtasks where each of the subtasks has avirtual fixtureobtained from 3D training data.
Virtual fixtures are commonly defined as a task-dependent aid for teleoperative purposes,
(Payandeh and Stanisic, 2002) and used to constrain the user’s or the manipulator’s motion
in undesired directions while allowing or aiding motion along the desired directions. Here,
a virtual fixture is a physical constraint that forces a robot to move along desired paths. A
state sequence analyzer learns what subtasks are more probable to follow each other which
is then used by an on-line state estimator that estimates the probability of the user being in
a particular state. A specific virtual fixture, corresponding to the most probable state can
then be applied.

2.1 System Overview

Given a training trajectory, we wish to apply a virtual fixture to aid the user in following the
trajectory. Furthermore, to cope with the above mentioned problems with virtual fixtures,
we introduce the concept ofadaptivevirtual fixtures. Here, the trajectory is divided into
several line segments, and each line segment is “stretchable”, meaning that the user can
continue to follow a certain line segment for as long as necessary. However, this solution
comes with a number of challenges. We have to automatically divide the trajectory into
lines, and at run-time, identify which line segment the user is currently following. An
overview of the system is shown in Fig. 2.1.

The components of the system are shortly introduced below:

Measurement Retrieval- During both training and execution, sensor measurements are
recorded and used to control the robot.

Line Estimation - The recorded time-position tuples form a trajectory. We model this
trajectory as a sequence of linear movements. Higher-order models are possible, but in
this work we chose a linear model because of its simplicity. As presented in Section 2.4.2,
lines are automatically found in the demonstrated trajectories using K-means clustering.

Line Probability Estimation - Each sample provides, together with the previous sam-
ple, a short line. Given that the task model consists of a limited number of lines, it is
possible to estimate the probability that a particular sample origins from a specific line.
This is done using Support Vector Machines (SVMs), presented in Section 2.2.3.

2.1. SYSTEM OVERVIEW 9

Figure 2.1: Overview of the system used for task training and task execution.

State Probability Estimation - Although it is now clear which line is the most proba-
ble, the line probability estimation is only based on the information from a single sample.
Using Hidden Markov Models (HMMs), a better estimation is achieved using all samples
obtained so far. HMMs are described in Section 2.2.1.

Virtual Fixture Guidance - The virtual fixture corresponding to the most probable line
segment is applied to aid the user in following the line.

In (Peshkinet al., 2001), the concept ofCobotsas special purpose human-machine col-
laborative systems is presented. Although frequently used, the Cobots are designed for
a single task and when the assembly task changes, they have to be reprogrammed. We
use a combination of K-means clustering, HMMs and SVMs for state generation, state
sequence analysis and associated probability estimation. In our system, task segmentation
is performed off-line and used by an on-line state estimator that applies a virtual fixture

10
CHAPTER 2. MACHINE-ASSISTED TASK EXECUTION USING DIRECT

LEARNING

with a fixturing factor determined by the probability of being in a certain state. The use of
the HMM/SVM approach is motivated by the good generalization over similar tasks. Our
system consists of an off-line task learning and an on-line task execution step.

The system is fully autonomous and is able to i) decompose a demonstrated task into
states, ii) compute a virtual fixture for each state and iii) aid the user with task execution
by applying the correct virtual fixture at all times.

2.2 Theoretical Background

In a collaborative system, it is important to detect the current state or user’s intention
to correctly guide the user. Virtual fixtures can be used to constrain the motion of the
manipulator through definition of virtual walls and forbidden regions or through definition
of a desired directions and trajectories of motions, (Li and Taylor, 2004). Another example
of virtual fixtures is to directly constrain the user motion in undesired directions while
allowing motion along desired directions using a haptic interface, (Payandeh and Stanisic,
2002). The approach adopted in this work defines adesireddirection

d ∈ R3, ‖d‖= 1

or thespanof the task, (Li and Taylor, 2004; Kragicet al., 2005). The user’s input,
which may be force, position or velocity measurements, is transformed to a desired velocity
vuser. The desired velocity is divided into normal and orthogonal components and scaled
by a fixturing factork as shown by (2.1). The fixturing factor determines the compliance of
the system. A high value (' 1) of k defines ahard fixture, i.e. only motion in the direction
of the fixture is allowed (low compliance). A value ofk = 0.5 is in our notation equivalent
to no fixture at all, supporting isotropic motion (high compliance). The output velocityv
of the robot is then obtained by scalingv̂ to match the input speed as shown in (2.2).

v̂ = proj d(vuser) ·k+perpd(vuser) · (1−k) (2.1)

v =
v̂
‖v̂‖

· ‖vuser‖ (2.2)

2.2.1 Hidden Markov Models

The main idea behind Hidden Markov Models (HMMs) is to integrate a simple and effi-
cient temporal model and the available statistical modeling tools for stationary signals into
a mathematical framework. HMMs have been primarily used in speech recognition (Ra-
biner, 1989) but their use have recently been reported in many other fields. The advantage
of HMMs is the introduction ofhidden stateswhich enables more detailed an accurate
modeling of stochastic processes. The user of a HMM does not necessarily need to know
what states represent, the method automatically assign probability distributions that fit the
training data.

The HMM, denoted byλ = (A,B,π), is defined by three elements over a collection of
N states andM discrete observation symbols:

2.2. THEORETICAL BACKGROUND 11

• A, which is the state transition probability matrix.A = {ai j }, whereai j is the proba-
bility of taking the transition from statei to statej.

• B, which is the observation probability matrix.B = {bi(ok)}, wherebi(ok) is the
probability, P(ok|i), of observing thekth possible observation symbol out of the
totalM discrete observation symbols in statei.

• π, which is the initial state probability vector.π = {πi}, whereπi is the probability
of starting in statei.

Sinceai j , bi(ok) andπi all are probability density functions, they obey the following
properties:

ai j > 0, bi(ok) > 0, πi > 0 i, j = 1, ...,N, k = 1, ...,M
N

∑
i
(πi) = 1 and

N

∑
j
(ai j) = 1, i = 1, ...,N

M

∑
k

(bi(ok)) = 1, i = 1, ...,N

To construct a suitable HMM for modeling, we have to select the number of statesN,
and the number of discrete possible observationsM. In addition, the probability density
matricesA, B, andπ have to be determined by training. The most commonly used method
is the Baum-Welch method, which is in iterate process that finds the local maximum given
some starting values ofA, B, andπ.

2.2.2 Probability Estimators for Hidden Markov Models

A problem inherit to HMMs is the choice of the probability distribution for estimating the
observation probability matrixB. With continuous input, a parametric distribution is often
assumed whenM � N (Elgammalet al., 2003). Using a parametric distribution, similari-
ties may decrease the performance of the HMM since the real distribution is hidden and the
assumption of a parametric distribution is a strong hypothesis on the model (Castellaniet
al., 2004). Using probability estimators avoids this problem since they compute the obser-
vation symbol probability instead of using a look-up matrix or parametric model, (Bourlard
and Morgan, 1990). Another advantage is that they allow to use continuous input instead
of discrete observation symbols for the HMM. Successful use of probability estimators
using multi layer perceptrons (MLP) and Support Vector Machines (SVM) are reported in
(Bourlard and Morgan, 1990; Renalset al., 1994). In this work, SVMs are used to estimate
the observation probabilitiesP(x|state i).

2.2.3 Support Vector Machines

Support Vector Machines (SVM) have been used extensively for pattern classification in a
number of research areas (Roobaert, 2001; Rychetskyet al., 1999; Hyunsoo and Haesun,

12
CHAPTER 2. MACHINE-ASSISTED TASK EXECUTION USING DIRECT

LEARNING

Figure 2.2: A binary classification example: circles are separated from triangles by a sep-
aration hyperplane. The training samples corresponding to the support vectors are marked
by filled symbols.

2004). SVMs have several appealing properties such as fast training, accurate classifica-
tion and good generalization (Chenet al., 2003; Burges, 1998). In short, SVMs are binary
classifiers that separate two classes by an optimal separation hyperplane. The separation
hyperplane is found by minimizing the expected classification error which is equal to max-
imizing the distance to the margin as demonstrated in Fig. 2.2.

SVMs work with linear separation surfaces in a Hilbert space (Chenet al., 2003).
However, the input patterns are often not linearly separable, or even defined in such a dot-
product space. To overcome this limitation, a “kernel trick” is used to transform the input
pattern to a Hilbert space (Aizermanet al., 1964). A mapφ:

φ : χ→H , x→ x

is defined for the patternsx from the domainχ. The Hilbert spaceH is commonly called
the feature space. There are three benefits of transforming the data intoH : this makes it
possible to define a similarity measure from the dot product inH . In addition, it provides
a setting to deal with the patterns geometrically and moreover makes it possible to study
learning algorithms using linear algebra and analytic geometry, Finally, it provides the
freedom to choose the mappingφ which, in its turn, makes it possible to design a large
variety of learning algorithms. SVMs try to estimate a functionf : χ→{±1} that classifies
the inputx∈ χ to one of the two classes±1 based on input-output training data. Vapnik-
Chervonenkis (VC) theory shows that it is imperative to restrict the class of functions that
f is chosen from, in order to avoid over-fitting.

Let us now consider a class of hyperplanes

w ·x+b = 0, w ∈ RN, b∈ R

with the corresponding decision function

f (x) = sgn(w ·x+b).

2.3. RELATED WORK 13

Among all such hyperplanes there exists a unique one that gives the maximum margin of
separation between the two classes, that is (Chenet al., 2003):

max
w,b

(
min(‖x−xi‖ : x ∈ RN, w ·x+b = 0, i = 1,2, ...,m)

)
The optimal hyperplane can then be computed by solving the following optimization prob-
lem:

minimize
1
2
‖w‖2 overw,b

subject to :yi((w ·xi)+b)≥ 1, i = 1,2, ...,m (2.3)

One way to solve (2.3) is through the Lagrangian dual:

max
α≥0

(
min
w,b

(L(w,b,α))
)

From the above, it can be shown (Chenet al., 2003) that the hyperplane decision function
can be written as

f (x) = sgn

(
m

∑
i=1

yi ·αi(x ·x)+b

)
which implies that the solution vectorw has an expansion in terms of a subset of the
training samples. The subset is formed by the training samples with a non-zero Lagrange
multipliers,αi . The samples with a non-zero Lagrange multiplier are known as thesupport
vectors. The support vectors can easily be computed by solving a quadratic programming
problem (Chenet al., 2003).

2.3 Related Work

Approaches similar to ours have been considered in HMCS settings. In (Li and Okamura,
2003), a HMCS system is presented where virtual fixtures facilitate tracking of a curve
in two dimensions and a HMM framework estimates whether the user is doing nothing,
following or not following the curve. Based on these, the virtual fixture is automatically
switched on or off, enabling the user to avoid local obstacles. In (Nolinet al., 2003), dif-
ferent ways of setting the compliance level are described, depending on how well the user
is following the fixture. Three different compliance behaviors were evaluated:toggle, fade
andhold. The results show that thefadebehavior, which linearly decreases the compliance
with the distance from the fixture, achieves best results when using automatic task detec-
tion. In our work, the compliance is adjusted through a fixturing factor presented in the
next section. Instead of using the distance to the fixture, the probability that the user is in a
certain state is used as a basis for setting the compliance which is one of the contributions
of our work.

Commonly, the fixtures are generated from a predefined model of the task which works
well as long as the trajectory to be followed in the real world is exactly as described by

14
CHAPTER 2. MACHINE-ASSISTED TASK EXECUTION USING DIRECT

LEARNING

the model. In robotic applications, the system must be able to deal with model errors
and there is a requirement to perform the same type of tasks in terms ofsequencingbut
the length (type) of each subtask may vary. Therefore, an adaptive approach in which
the trajectory is decomposed into straight lines is evaluated in this work. The system
constantly estimates which state the user is currently in and aids the execution. Therefore,
it is necessary to decompose the task into several subtasks, recognize the subtasks on-line
and handle deviations from the learned task in a flexible manner. For this purpose, HMMs
have been used to model and detect state changes corresponding to different predefined
subtasks, (Li and Okamura, 2003; Castellaniet al., 2004). However, in most cases only
one- or two-dimensional inputs have been considered. In our system, the subtasks are
automatically detected given the assumption of of straight line motion in 3D and a hybrid
HMM/SVM automata is constructed for on-line state probability estimation.

2.4 Trajectory Analysis

This section describes the implementation of the virtual fixture learning system. The virtual
fixtures are generated automatically from a number of demonstrated tasks. The overall
task is decomposed into several subtasks, each with its own virtual fixture. According
to Fig. 2.1, the first step is to filter the input data. Then, a line fitting step is used to
estimate how many lines (states) are required to represent the demonstrated trajectory. An
observation probability function learns the probabilities of observing specific 3D-vectors
when tracking a specific line. Finally, a state sequence analyzer learns what lines are
more probable to follow each other. In summary, the demonstrated trajectories results in a
number of support vectors, a HMM and a set of virtual fixtures. The support vectors and
the HMM are then used to decide when to apply a certain fixture.

2.4.1 Retrieving Measurements

The first task is to obtain measurements from a sensor. The input data consist of a set of
3D-coordinates that may be obtained from a number of sensors, describing a position and
time tuple denoted as{q, t}. From the input samples, movement directions are extracted.
The noisy input samples are filtered using a dead-zone of radiusδ aroundq, i.e. a minimum
distanceδ since the last stored sample is required so that small variations in position are
not captured.

2.4.2 Estimating Lines in the Demonstrated Trajectories

Once the task has been demonstrated, the input data is quantized in order to segment dif-
ferent lines. The input data consists of normalized 3D-vectors representing directions and
K-means clustering (MacQueen, 1967) is used to find the lines. For convenience, the
method is presented below. The position of a cluster center is equal to the direction of the
corresponding line. Given a trajectory, the number of lines required to represent it has to be
estimated automatically. For this purpose a search method is used that evaluates the result
for different number of clusters and then chooses the quantization with the best results.

2.4. TRAJECTORY ANALYSIS 15

Prior to clustering, two thirds of the data points are stored for validation. These are used
to measure how well the current clusters represent unseen data. We estimate an optimal
number of clusters that maximizes the validation score for the unseen data. The algorithm
starts with a single cluster and gradually increases the number of clusters by one as long
as the validation score increases. However, more clusters typically give a lower error, so a
penalty is given proportional to the number of clusters to facilitate a simple solution.

2.4.2.1 K-means Clustering

K-means clustering is an algorithm for partitioningN L-dimensional data points intoK
disjoint subsets, while minimizing the squared distance over all data points and their closest
cluster center. The algorithm consists of a simple iteration procedure as follows. Initially,
the cluster centers are distributed randomly on theL-dimensional space. In the first step,
each point is assigned to the cluster whose centroid is closest to that point. In the next step,
each centroid is moved to the mean position of that data points assigned to it. These two
steps are repeated until the cluster center positions have stabilized. This is a simple, yet
efficient method of obtaining good quantization of data.

2.4.3 Estimating Observation Probabilities Using Support Vector Machines

For each state detected by the clustering algorithm, a SVM is trained to distinguish it from
all the others (one-vs-all). In order to provide a probability estimation for the HMM, the
distance to the margin from the sample to be evaluated is computed as (Castellaniet al.,
2004):

f j(x) = ∑
i

αi ·yi ·x ·xi +b (2.4)

wherex is the sample to be evaluated,xi is the i-th training sample,yi ∈ {±1} is the
class ofxi and j denotes thej-th SVM. The distance measuref j(x) is then transformed
to a conditional probability using a sigmoid function,g(x), (Castellaniet al., 2004). The
probability for a statei given a samplex can then be computed as:

P(statei|x) = gi(x) ·∏
j 6=i

(1−g j(x)) (2.5)

wheregi(x) = 1/(1+e−σ· fi(x))

Given the above and applying Bayes’ rule, the HMM observation probabilityP(x|statei)
may be computed.

P(x|statei) =
P(statei|x)P(x)

P(statei)
(2.6)

We assume equal unconditional probabilities for all states and observations, and thus
P(x)/P(statei) is constant. The SVMs now serve as probability estimators for both the
HMM training and state estimation. Since the standard SVMs do not cope well with out-
liers, a modified version of SVMs is used (Cortes and Vapnik, 1995).

16
CHAPTER 2. MACHINE-ASSISTED TASK EXECUTION USING DIRECT

LEARNING

2.4.4 State Sequence Analysis Using Hidden Markov Models

Even if a task is assumed to consist of a sequence of line motions, in an on-line execution
step, the lines may have different lengths compared to the training data. Hence, it is not
possible to exactly follow the training trajectory. When a certain line is followed, it is
assumed that the corresponding line state is active. Thus, there are equally many states as
there are line directions. Given that a certain state is active, some states are more likely
to follow each other depending on the task and, in our system, a fully connected Hidden
Markov Model is used to model the task. The number of states is equal to the number of
line types found in the training data. TheA-matrix is initially set to have probability 0.7
to remain in the same state and a uniformly distributed probability to switch state. The
π vector is set to uniformly distributed probabilities, meaning that all states are equally
probable at the start time. For training, the Baum-Welch algorithm is used until stable
values are achieved.

With each line, there is an associated virtual fixture defined by the direction of the line.
In order to apply the correct fixture, the current state has to be estimated. The system con-
tinuously updates the state probability vectorp = pi , wherepi = P(xk ,xk−1...,x1|statei)
is calculated according to

p̂i =


πi ·P(x|statei) if plast = 0

P(x|statei) ·
Nstates

∑
j

Ai j · plast
j otherwise

pi = p̂i/
Nstates

∑
j

p̂ j (2.7)

The stateswith the highest probabilityps is chosen and the virtual fixture correspond-
ing to this state is applied with the fixturing factork = max(0.5, ps · ξ), ξ ∈ [0,1], where
ps = maxi{pi} andξ is the maximum value for the fixturing factor. As shown in (2.1), the
fixturing factor describes how the virtual fixture will constrain the manipulator’s motion.
In the case of a haptic input device, the fixture can also be used to provide the necessary
feedback to the user and not only constraining the motion of the teleoperated device. Thus,
when unsure which state the user is currently in, the user has full control over the system.
On the other hand, when all observations indicate a certain state, the fixturing factork is set
to ξ. This automatic adjustment of the fixturing factor allows the user to leave the fixture
and move freely without having a special “not-following-fixture”-state.

2.5 Experimental Evaluation

In this section, three experiments are presented. The first experiment is a simple trajectory
tracking task in a workspace with obstacles, shown in Fig. 2.3. The second is similar to
the first one, but the workspace was changedafter training, in order to test the algorithm’s
automatic adjustment to similar workspaces. In the last experiment, an obstacle was placed

2.5. EXPERIMENTAL EVALUATION 17

Figure 2.3: The experimental workspace with obstacles: the white line shows the expected
path of the end-effector.

along the path of the trajectory, forcing the operator to leave the fixture. This experiment
tested the adjustment of the fixturing factor as well as the algorithm’s ability to cope with
unexpected obstacles.

In the experiments, a teleoperated setting was considered. The PUMA 560 robot was
controlled via a magnetic tracker called Nest of Birds (NOB) (Ascension Tech., 2006)
mounted on a data-glove carried by the user. The NOB consists of a transmitter and pose
measuring sensors. The glove with the sensors can be seen in the lower part of Fig. 2.3 -
there is one sensor mounted on a thumb, index and a little finger and the fourth sensor is
placed in the middle of the hand. In the experiments, only the hand sensor is used since
it provides the full position and orientation estimate of the user’s hand motion. Subtask
recognition is performed with a frequency of 30 Hz due to the limited sampling rate of the
NOB sensor. The movements of the operator measured by the NOB sensor were used to
extract a desired input velocity to the robot. After applying the virtual fixture according to
(2.2), the desired velocity of the end effector is sent to the robot control system. Controlling
the end-effector manually in this way is hard, but the experiments will show that the use
of virtual fixtures makes the task easier. The system also works well with other input
modalities. For instance, a force sensor mounted on the end effector has also been used to
control the robot.

In all experiments, a dead-zone ofδ = 2 cm was used. This value ofδ corresponds
to the approximate noise level of our input device. One of the major difficulties of the
system is that the input device provides no haptic feedback. Therefore, the virtual fixture
framework is used to filter out sensor noise and correct unintentional operator motions.

18
CHAPTER 2. MACHINE-ASSISTED TASK EXECUTION USING DIRECT

LEARNING

This is done by scaling down the input velocity that is perpendicular to the desired direction
of the virtual fixture as long as the commanded motions is along the general direction of
the learned fixture.

In all experiments, a maximum fixturing factor wasξ = 0.8. A radial basis function
with σ = 2 was used as the kernel for the SVMs and the value ofσ in the sigmoid transfer
function (2.5), was empirically chosen to 0.5.

2.5.1 Experiment 1: Trajectory Following

The first experiment was a simple trajectory following task in a narrow workspace. The
user had to avoid obstacles and move along certain lines to avoid collision. At start, the
operator demonstrated the task five times, the system learned from training data and four
states were automatically identified. An example training path is shown in Fig. 2.4. The
user then performed the task again using the glove, the states were automatically recog-
nized and the robot was controlled aided by the virtual fixtures generated from the training
data. The path taken by the robot is shown in Fig. 2.5. For clarity, the state probabilities
and fixturing factor estimated by the SVM and HMM during task execution are presented
in Fig. 2.8. This example clearly demonstrates the ability of the system to successfully
segment and repeat the learned task, allowing a flexible state change.

Figure 2.4: A training example demonstrated by the user. This example was used for
training the robot in all experiments.

Initially, the end-effector is moving along the y-axis, corresponding to the direction
of state 3. Because of deviations from the state direction, the SVM probability will fluc-
tuate since its estimation is based on the distance from the decision boundary. However
the HMM probability remains steady due to the estimation history. This shows the ad-
vantage of using a HMM on top of SVM for state identification. At sample 24, the user
switches direction and starts raising the end-effector. The fixturing factor decreases with

2.5. EXPERIMENTAL EVALUATION 19

−1

−0.5

0

0.5

−1

−0.5

0

0.5
−0.4

−0.3

−0.2

−0.1

0

x

y

z

State 1
State 2
State 3
State 4

Figure 2.5: End effector position when following the trajectory using virtual fixtures. The
different symbols corresponds to the different states recognized by the HMM.

−1

−0.5

0

0.5

−1

−0.5

0

0.5
−0.4

−0.3

−0.2

−0.1

0

x

y

z

State 1
State 2
State 3
State 4

Figure 2.6: Same as Fig. 2.5, but in a modified workspace compared to training.

the probability for state 3, simplifying the direction change. Then, the probability for state
1, corresponding to movement along the z-axis, increases. In total, the user performed 4
state transitions in the experiment.

2.5.2 Experiment 2: Changed Workspace

This experiment demonstrates the ability of the system to deal with a changed workspace.
The same training trajectories as in the first experiment were used, but the workspace was

20
CHAPTER 2. MACHINE-ASSISTED TASK EXECUTION USING DIRECT

LEARNING

−1

−0.5

0

0.5

−1

−0.5

0

0.5
−0.4

−0.3

−0.2

−0.1

0

x

y

z

State 1
State 2
State 3
State 4

View from above

Figure 2.7: Same as Fig. 2.5, but with an unexpected obstacle not present during training.

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
1

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
2

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
3

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
4

0 25 50 75 100

0.5

0.8

F
ix

tu
rin

g
fa

ct
or

Sample

HMM
SVM

Figure 2.8: Estimated probabilities for the different states in experiment 1. Estimates are
shown for both the SVM and HMM, the fixturing factor is also shown.

changed after training. As it can be seen in Fig. 2.6, the size of the obstacle the user has to
avoid has been changed. As the task is just a variation of the trained task, the system is still
able to identify the operator’s intention and correct unintentional operator motions. The
trajectory generated from the on-line execution shows that the changed environment does
not introduce any problem for the control algorithm since an appropriate fixturing factor is
provided at each state. This clearly justifies the proposed approach compared to the work
previously reported in (Peshkinet al., 2001).

2.6. DISCUSSION 21

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
1

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
2

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
3

0 25 50 75 100
0

1

P
ro

ba
bi

lit
y,

st
at

e
4

0 25 50 75 100

0.5

0.8

F
ix

tu
rin

g
fa

ct
or

Sample

HMM
SVM

Avoid Obstacle

Figure 2.9: Estimated probabilities for the different states in the obstacle avoidance exper-
iment 3. Estimates are shown for both the SVM and HMM estimator.

2.5.3 Experiment 3: Unexpected Obstacle

The final experiment was conducted in the same workspace as the first one. However,
this time a new obstacle was placed right in the path of the learned trajectory, forcing the
operator to leave the fixture. In this case, the virtual fixture is not aiding the operator, but
may instead do the opposite as the operator wants to leave the fixture in order to avoid the
obstacle. Hence, in this situation it is desired that the effect of the virtual fixture decreases
as the operator avoids the obstacle. Once again, the same training examples as in the
previous experiments were used.

Fig. 2.7 illustrates the path taken in order to avoid the obstacle. The system always
identifies the class which corresponds best with input data. Fig. 2.9 shows the probabilities
and fixturing factor for this experiment. Initially, the task is identical to experiment 1, the
user follows the fixture until the obstacle has to be avoided. The fixturing factor decreases
as the user diverts from the direction of state 3, and thus the user is able to avoid the obsta-
cle. It can be seen that the overall task has changed and that new states were introduced in
terms of sequencing. The proposed system not only provides the possibility to perform the
task, but can also be used to design a new task model by demonstration if this particular
task has to be performed several times.

2.6 Discussion

We have presented a system based on the use ofadaptive virtual fixtures. It is widely
known that one of the important issues for robot control systems is the ability to divide
the overall task into subtasks and provide the desired control in each of them. We have

22
CHAPTER 2. MACHINE-ASSISTED TASK EXECUTION USING DIRECT

LEARNING

shown that it is possible to use a HMM/SVM hybrid state sequence analyzer on multi-
dimensional data to obtain an on-line state estimate that can be used to apply a virtual
fixture. Furthermore, the process is automated to allow construction of fixtures and task
segmentation from demonstrations, making the system flexible and adaptive by separating
the task into subtasks. Hence, model errors and unexpected obstacles are easily dealt with.

In this chapter we only provide qualitative experiments, and it might be interesting
to add some quantitative experiments and measure how much stability is gained using
the fixtures. The user could be told to steer the end effector along a predefined path,
for example a drawing on a piece of paper. The result could then be compared to the
true path. However, it has previously been shown that virtual fixtures increase the overall
performance (Payandeh and Stanisic, 2002), and there is no reason to believe that this
approach is an exception. The goal of this chapter was to make the traditional virtual
fixtures more adaptive.

In the current design, the algorithm automatically estimates the number of subtasks
required to divide the training data. If instead it is possible for the user to manually select
the number of states, the algorithm may be expected to perform even better. Such approach
may be, for example, used in medical applications since surgical tasks are expected to be
well-defined and known in advance (Kragicet al., 2005).

In terms of the HMMs, the design of the transition matrix A depends on the properties
of the task. Although the transition matrix is trained, only a local solution is found so
the overall performance varies for different A matrices. We have used a fully connected
transition matrix, which allows each state to jump to any other state. This is the most
general design type and is applicable to virtually any task. However, if the nature of the
task is so that certain transitions are impossible, they should be encoded as zeroes in the
matrix. We also experimented with the more common left-to-right matrix design, meaning
that once the state has changed, it cannot change back to the previous. We found that the
design did not work in this case, as if the user did a movement by mistake, triggering the
state change, it was impossible to return to the correct state.

A motivated question is for which tasks the decomposition into lines is applicable. A
natural extension to this work is to add second order components like the arc of a cir-
cle. Still, a circle can be approximated by a sequence of lines, so adding complex shape
primitives may only reduce the tracking error.

Focus in this work was on machine guidance in a human machine collaborative system,
but the method presented is not restricted to that setting. As will be presented in Chapter 4,
HMMs are usually used for recognition. This is done by calculating the probability for the
entire observation sequence. Several different demonstrated tasks can easily be recognized
using this method, by creating HMM models for each of them and comparing the posterior
probabilities.

The method described in this chapter is an example of direct learning. The robot learns
the task while it is being remotely controlled by the human. No mapping from human
to robot body is necessary, and sensing is very precise. The following chapters instead
focuses on indirect learning. In the next chapter, we investigate methods for robot vision
to enable remote sensing and learning from observations.

Chapter 3

Robot Vision for Indirect Learning

As we move from direct learning to indirect learning, a fundamental requirement is put
upon the robot. It has to be able to utilize remote sensing to understand the world outside
its own body. This way, the robot can learn tasks just by observing a human performing
them. There are several ways of performing remote sensing, e.g., using sonars and laser
scanners, but vision is certainly the method which provides the most information. Vision is
also the most important sense used by humans to understand the surrounding. Furthermore,
vision plays a vital role in human learning. Clearly, a robot that is to learn from human
demonstrations must also be equipped with some form of vision capabilities. Here, the
most relevant ability is detecting and recognizing objects.

Object recognition is a large research area in both robotics and in computer vision,
and numerous methods have been proposed. A few major attributes define the differences
between them:

• Appearance/Feature-Based
The representation of an object can either be based on theappearanceof the object,
calculated over the entire training image, or on specific features of the object, cal-
culated over several small image patches at key locations in the training image. In
general, feature-based methods have a lower false positive rate and higher scalabil-
ity, but can only recognizeinstancesof objects, not object categories. The objects
must be textured to ensure that enough key points are found. Also, they work mainly
on rigid object, as on deformable objects key points may change appearance and
position.

• Translation-, Rotation- and Scale Invariance
Translation invariance is a requirement for detecting objects that are not pre-segmented.
The algorithm must produce about the same result regardless if the object is shifted
in the image plane. Rotation invariance means that the algorithm gives the same
result when the object is rotated in the image plane. Since the robot in most cases
know what pose the object it is looking for has, it is desired that it is able to detect
the object even if it is rotated in an angle never encountered before. However, for

23

24 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

some applications it may be necessary to separate between an object lying down or
standing up. Scale invariance is also an important property. In uncontrolled environ-
ments it is quite unlikely that the object will be found in the same scale as the robot
was trained on.

• Occlusion Robustness
Often there are several objects on top and in front of each other in a cluttered scene.
The ability to detect and recognize objects that are only partly visible is often desired.

• Scalability
In general, the more objects the robot needs to recognize, the worse the recognition
rate will be. A method with high scalability will have a low reduction in recognition
rate as the number of objects increases.

• Training Complexity
Before a method can be used for recognizing objects, it has to be trained. In general,
the more images available for training, the better the results. However, for a robot
that is to learn recognition from human demonstrations, it is desired that the robot is
able to learn from only a few training images since it is tedious to show the robot the
same object over and over again. Also, training time should be fast.

• Computational Efficiency
Most applications require a quick response from the vision system. A learning sce-
nario is no exception, as the robot has to be able to interpret a live demonstration.
During the last few years the computational processing power of an average com-
puter has increased, and systems with real-time performance have emerged.

An object recognition system is typically designed to classify an object to one of several
predefined classes assuming that the segmentation of the object from the background has
already been performed. The task for an object detection algorithm is much harder. Its
purpose is to search for a specific object in an image of a complex scene. Most of the
object recognition algorithms may be used for object detection by using a search window
and scanning the image for the object.

3.1 System Overview

In most of the recognition methods reported in the literature, a large number of training
images are needed to recognize objects viewed from arbitrary angles. The training is often
performed off-line and, for some algorithms, it can be very time consuming. For robotic
applications, it is important that new objects can be learned easily. i.e. putting a new object
in the database and retraining should be fast and computationally cheap. Our goal in the
work reported in this chapter is to develop an on-line learning scheme that can be effective
after just one training example but still has the ability to improve its performance with more
examples. Also, learning new objects should be possible without heavy recalculations on

3.2. RELATED WORK 25

already learned objects. We believe the method is general enough to be easily used for a
variety of applications requiring robust object detection.

Our vision system is a combination of several modules working together, as depicted
in Fig. 3.1. The system is able to detect, recognize and estimate the pose of an object.

Rotation Estimation

Pose Estimation

Object Recognition

Image Filtering

filtered
image

Object Detection Object Segmentation

α(X,Y,Z,)

α,β,γ(X,Y,Z,)

image

Vision System

(x1, y1, x2, y2)(x, y)

(x1, y1, x2, y2)

()α

Figure 3.1: An overview of our vision system. Most vision systems in the literature rely
on image filtering as a first step, to detect edges and corners at various scales. Then,
the object is detected and segmented, and the image coordinates are fed to a recognition
algorithm (some algorithms perform recognition without segmentation). Depending on
the application, the image coordinates may be enough, but if interaction with the object is
desired, a pose estimation algorithm is usually necessary. A model based pose estimation
is able to provide all six degrees of freedom of the object, including the orientation and the
true (X,Y,Z) world position relative to the camera.

We initially started to work on object detection using Color Cooccurrence Histograms
(CCH), presented in Section 3.3. However, we found that the pure color-based method was
much too sensitive to lighting conditions. In Section 3.4 we present an extended object
detection system, which utilizes Receptive Field Cooccurrence Histograms (RFCH). The
two methods are then evaluated in Section 3.5. In Section 3.6 we show how an appearance-
based method can be used to estimate the pose of an object.

In terms of the properties listed in the beginning of this chapter, the presented method
is an appearance-based method which is translation- and rotation invariant, and robust to
scale changes. It also copes well with object occlusions. The scalability has not been
explicitly evaluated, but the method performs well for 10 object instances, although the
results are expected to degrade as more objects are added. The method has a low training
complexity and a high computational efficiency.

3.2 Related Work

The field of computer vision is enormous. Here, we focus on methods which can be used
to detect object instances in cluttered environments such as homes or offices. In terms of

26 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

object recognition, the appearance-based representations are commonly used, (Murase and
Nayar, 1995; Selinger and Nelson, 2001; Caputo, 2004). However, the appearance-based
methods suffer from various problems. For example, a representation based on the color
of an object is sensitive to varying lighting conditions, while a representation based on the
shape of an object is sensitive to occlusion. These drawbacks motivated us to develop a
new detection system to cope with these problems. As we demonstrate in Section 3.5, the
RFCH-method robustly copes with both of the mentioned problems. This property makes
the algorithm ideal for use on robotic platforms which are to operate in natural scenes.

Back in 1991, Swain and Ballard (1991) demonstrated how RGB color histograms
can be used for object recognition. Schiele and Crowley (2000) generalized this idea
to histograms of receptive fields, and computed histograms of either first-order Gaussian
derivative operators or the gradient magnitude and the Laplacian operator at three scales.
Linde and Lindeberg (2004) evaluated more complex descriptor combinations, forming
histograms of up to 14 dimensions. Excellent performance on both the COIL-100 and the
ETH-80 database were shown. Mel (1997) also developed a histogram based object recog-
nition system that uses multiple low-level attributes such as color, local shape and texture.
Although these methods are robust to changes in rotation, position and deformation, they
cannot cope with recognition in a cluttered scene. The problem is that the background vis-
ible around the object confuses the methods. Chang and Krumm (1999) show how color
cooccurrence histograms can be used for object detection, performing better than regular
color histograms.

The methods mentioned so far are appearance-based methods, meaning that they cal-
culate the object representation on all available image data. In contrast, local feature-based
methods only capture the most representative parts of an object. Lowe (1999) presents
the SIFT features, which is a promising approach for detecting objects in natural scenes.
However, the method relies on the presence of feature points and, for objects with simple
or no texture, this method fails. The method also requires a high resolution camera, or that
the object occupies a rather large part of the image.

3.3 Color Cooccurrence Histograms

A Color Histogram is a statistical representation of the occurrence of colors an image. A
Color Cooccurrence Histogram (CCH) is able to capture more of the geometric properties
of an object. Instead of just counting each pixel’s color value, the histogram is built from
pairs of pixels. The pixel pairs can be constrained based on, for example, their relative
distance. This way, only pixel pairs separated by less than a maximum distance,dmax are
considered. Thus, the histogram represents not only how common a color is in the image
but also how common it is that certain combinations of color occur close to each other.

3.3.1 Image Normalization

The appearance of colors in an image is highly affected by the illumination. To make the
representation more robust to illumination changes colors are normalized according to

3.3. COLOR COOCCURRENCE HISTOGRAMS 27

rnorm =
r

r +g+b
, gnorm =

g
r +g+b

Another alternative is to use the HSV color space and only use the hue and saturation,
which give similar results.

3.3.2 Image Quantization

Using one histogram bin for each color may result in a very sparse histogram. Instead,
the image is first quantized using K-means clustering (MacQueen, 1967). Each normal-
ized pixel is quantized to one ofN 2-dimensional cluster centers in rg-space. As distance
measure, we use the Euclidean distance in the color space. That is, each cluster has the
shape of a circle. input dimensions to be of the same scale, otherwise some descriptors
would be favored. Thus, we scale all descriptors to the interval [0,255]. The clusters are
randomly initialized, and a cluster without members is relocated just next to the cluster
with the highest total distance over all its members. After a few iterations, this leads to a
shared representation of that data between the two clusters. Each object ends up with its
own cluster scheme in addition to the RFCH calculated on the quantized training image.

When searching for an object in a scene, the image is quantized with the same cluster-
centers as the cluster scheme of the object being searched for. Quantizing the search image
also has a positive effect on object detection performance. Pixels lying too far from any
cluster in the descriptor space are classified as the background and not incorporated in the
histogram. This is because each cluster center has a radius that depends on the average
distance to that cluster center. More specifically, if a pixel has a Euclidean distanced to
a cluster center, it is not counted ifd > α ·davg, wheredavg is the average distance of all
pixels belonging to that cluster center (found during training), andα is a free parameter.
We have usedα = 1.5 i.e., most of the training data is captured.α = 1.0 corresponds to
capturing about half the training data.

The quantizing of the image can be seen as a first step that simplifies the detection
task. To maximize detection rate, each object should have its own cluster scheme. This,
however, makes it necessary to quantize the image once for each object being searched
for. If several different objects are to be detected and a very fast algorithm is required, it is
better to use shared cluster centers over all objects known. In that case, the image only has
to be quantized once.

It has to be noted that multiple histograms of the object across a number of training
images may share the same set of cluster centers.

3.3.3 Histogram Matching

The similarity between two normalized CCHs is computed as the histogram intersection:

µ(h1,h2) =
N2

∑
n=1

min(h1[n],h2[n]) (3.1)

28 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

wherehi [n] denotes the frequency of pixels pairs in binn for imagei, quantized intoN
cluster centers. Note here that the histogram size isN2 since we use cooccurrence his-
tograms. The higher the value ofµ(h1,h2), the better the match between the histograms.
Prior to matching, the histograms are normalized with the total number of pixel pairs.

Another popular histogram similarity measure is theχ2:

µ(h1,h2) =
N2

∑
n=1

(h1[n]−h2[n])2

h1[n]+h2[n]
(3.2)

In this case, the lower value ofµ(h1,h2), the better the match between the histograms. The
χ2 similarity measure usually performs better than the histogram intersection method on
object recognition image databases. However, we have found thatχ2 performs much worse
than histogram intersection when used for object detection. We believe that this is because
the background that is visible in the search window and not present during training, is
not penalizing the match correspondence as much as with theχ2. Histogram intersection
focuses on bins that represent the searched object best, whileχ2 treats all bins equally.
As mentioned,χ2 still performs slightly better on object recognition databases. In these
databases there is often only a black background, or even worse, the background provides
information about the object (e.g., airplanes shown on a blue sky background).

3.3.4 Object Detection and Segmentation

Object detection is a more challenging task than object recognition. Usually, the object
only occupies a small area of the image and object recognition algorithms cannot be run
directly considering the entire image. Instead, the image is scanned using a small search
window. The window is shifted such that consecutive windows overlap to 50 % and the
RFCH of the window is compared with the object’s RFCH according to (3.1). Each object
may be represented by several histograms if its appearance changes significantly with the
view angle of the object. However, in this work we only used one histogram per object.

The matching voteµ(hob ject,hwindow) indicates the likelihood that the window contains
the object. Once the entire image has been searched through, a vote matrix provides a
hypothesis of the object’s location. Fig. 3.2 shows a typical scene from our experiments
together with the corresponding vote matrix for the yellow soda can. The vote matrix
reveals a strong response in the vicinity of the object’s true position close to the center of
the image.

The vote matrix may then be used to segment the object from the background, as de-
scribed below, or just provide an hypothesis of the object’s location. The most probable
location is corresponding to the vote cell with the maximum value.

3.3.4.1 Object Segmentation

The local maxima in the vote matrix serve as starting points to initiate the identification of
candidate windows. Each window is iteratively expanded by adjacent rows or columns, as
long as the new cells give sufficient support for the object. The expansion process stops

3.4. RECEPTIVE FIELD COOCCURRENCE HISTOGRAMS 29

Figure 3.2: Example of searching for the yellow soda can, placed closed to the center of the
image. Dark areas indicate high likelihood of the object being present. There is a strong
response where the soda can is placed, but also a small response at the location of the raisin
box, standing to the left in the image, because of the similar yellow color. Note that this
image was generated using the more advanced Receptive Field method, described later in
this chapter.

when the ratio between the average vote in the border cells and the local maxima vote be-
comes falls short of the thresholdΦ. In principle, the optimal threshold valueΦ depends
on the objects color distribution and texture. If the threshold is too high, parts of the object
may be omitted. If the threshold is too low, the window contains too much background
that reduces the signal to noise ratio in the subsequent image processing steps. An experi-
mental evaluation of different threshold values showed that our algorithm achieves similar
performance for a range ofΦ ∈ [0.3,0.6], as shown in Fig. 3.17.

3.4 Receptive Field Cooccurrence Histograms

To improve the detection and recognition rate, we have extended CCHs to take advantage
of the information in the local gradient field of an image. We denote this improved rep-
resentation a Receptive Field Cooccurrence Histogram (RFCH). Instead of representing
just colors, the cooccurrence of several image descriptor responses within an image are
counted. Examples of such image descriptors are color intensity, gradient magnitude and
Laplace response, described in detail below.

3.4.1 Image Descriptors

We will evaluate the performance of histogram-based object detection using different types
of image descriptors. The descriptors we use are all rotationally and translationally invari-
ant. If rotational invariance is not required for a particular application, increased recogni-
tion rate could be achieved by using Gabor filters. In short, we will consider the following
basic types of image descriptors, as well as various combinations of these:

30 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

• Normalized Colors
The color descriptors are the intensity values in the red and green color channels, in
normalized RG-color space, according tornorm = r

r+g+b andgnorm = g
r+g+b.

• Gradient Magnitude
The gradient magnitude is a differential invariant, and is described by the combi-

nation of partial derivatives (Lx, Ly): |∇L| =
√

L2
x +L2

y. The partial derivatives are

calculated from the scale-space representationL = g∗ f obtained by smoothing the
original imagef with a Gaussian kernelg, with standard deviationσ.

• Laplacian
The Laplacian is an on-center/off-surround descriptor. Using this descriptor is bio-
logically motivated, as it is well known that center/surround ganglion cells exist in
the human brain. The Laplacian is calculated from the partial derivatives (Lxx, Lyy)
according to∇2L = Lxx+Lyy. From now on,∇2L denotes calculating the Laplacian
on the intensity channel, while∇2Lrg denotes calculating it on the normalized color
channels separately.

3.4.2 Image Quantization

Regular multidimensional receptive field histograms (Schiele and Crowley, 2000) have
one dimension for each image descriptor. This makes the histograms huge. For example,
using 15 bins in a 6-dimensional histogram means 156 (∼ 107) bin entries. As a result the
histograms are very sparse, and most of the bins have zero or only one count. Building
a cooccurrence histogram makes things even worse, in that case we need about 1014 bin
entries. By first clustering the input data, a dimension reduction is achieved. Hence, by
choosing the number of clusters, the histogram size may be controlled. In this work, we
have used 80 clusters resulting in that our cooccurrence histograms are dense and most
bins have high counts.

Dimension reduction is performed much like described in Section 3.3.2. Each pixel
is quantized to one ofN cluster centers. The cluster centers have a dimensionality equal
to the number of image descriptors used. For example, if both color, gradient magnitude
and the Laplacian are used, the dimensionality is six (three descriptors on two colors). As
distance measure, we use the Euclidean distance in the descriptor space. That is, each
cluster has the shape of a hypersphere. This requires all input dimensions to be of the same
scale, otherwise some descriptors would be favored. Thus, we scale all descriptors to the
interval [0,255].

Fig. 3.3 shows an example of a quantized search image, when searching for a red,
green and white Santa-mug.

3.4.3 An Alternative Segmentation Approach

While the segmentation method described in Section 3.3.4.1 is very fast, it has the draw-
back that the object searching is only performed on a single scale. Most of the time only

3.4. RECEPTIVE FIELD COOCCURRENCE HISTOGRAMS 31

Figure 3.3: Example when searching for the Santa-mug, visible in the top right corner.
Left: The original image. Right: Pixels that survive the cluster assignment. The pixels that
lie too far away from their nearest cluster are ignored (set to black in this example). The
red striped table cloth still remains, as the Santa-mug contains red-white edges.

a small part of the object in the test image will be matched to the entire object from the
training image. Another approach is to compute the histogram over a multitude of squares
in the image, each with a different size and position. Then, the square with the highest vote
corresponds to the object location, and thus segmentation is given by the square borders. In
(Viola and Jones, 2001), theintegral imageis presented. With this representation, a large
number of squares can be evaluated in a very short time.

3.4.3.1 Integral Image

The integral image is a collection of histograms calculated from the top left corner to
specific points in the image. This allows for quick calculations of histograms over arbitrary
squares in the image. Building the integral image do not take much time, as it is a dynamic
programming method in that each histogram uses the previous histogram and just add the
new pixels. Then, the histogram of the square ABCD in Fig. 3.4 can quickly be calculated
as A+D-B-C.

An integral image of a cooccurrence histogram is slightly different since each his-
togram contains some pixels outside its border. However, with this in mind correct calcu-
lations can still be made on the integral image.

3.4.3.2 Histogram Boosting

Another technique presented by Viola and Jones (2001) is to add boosting (Freund and
Schapire, 1995) to build a more robust representation. Although Viola and Jones (2001)
did not use color based histograms, the technique can easily be used with RFCHs. In short,
the object is represented not only by a single histogram, but with many histograms covering
different parts of the object. Thus, specific features may be dominant in histograms over

32 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

A B

C D

Figure 3.4: By using the integral image, the histogram for the square ABCD can be calcu-
lated very quickly as A+D-B-C.

small areas, while for a histogram over the entire object those features are barely visible
due to the huge amount of data. Boosting is used to automatically find out which areas of
the object that best represents it. In addition, each area is assigned a voting strength that
indicates its importance. However, the approach also comes with a number of drawbacks,
which we present in the experimental evaluation.

3.4.4 Complexity

The running time can be divided into three parts. First, the test image is quantized. The
quantization time has complexityO(N). Second, the histograms are calculated. The cal-
culation time has complexityO(d2

max). Last, the histogram similarities are calculated. Al-
though histogram matching is a fast process, its running time has complexityO(N2).

The algorithm is very fast which makes it applicable even on mobile robots. Depending
on the number of descriptors used and the image size, the algorithm implemented in C++
runs at about 3-10 Hz on a 3 GHz regular PC.

3.5 Object Detection Evaluation

We evaluate six different descriptor combinations in this section. The descriptor combina-
tions are chosen to show the effect of the individual descriptors as well as the combined
performance. The descriptor combinations are:

• [R,G] - Capturing only the absolute values of the normalized red and green chan-
nel. Corresponding to a color cooccurrence histogram. Withdmax= 0 this means a
regular color histogram (except that the colors are quantized).

• [R,G, ∇2Lrg σ = 2] - The above combination extended with the Laplacian operator
at scaleσ = 2. As the operator works on both color channels independently, this
combination has dimension 4.

3.5. OBJECT DETECTION EVALUATION 33

• [R,G, |∇Lrg|, ∇2Lrg σ = 2] - The above combination extended with the gradient
magnitude information on each color channel, scaleσ = 2.

• [|∇L| σ = 1,2,4, |∇Lrg| σ = 2] - Only the gradient magnitude, on the intensity chan-
nel and on each color channel individually. On the intensity channel, three scales are
used,σ = 1,2,4. For each of the color channels, scaleσ = 2 is used. 5 dimensions.

• [∇2L σ = 1,2,4,∇2Lrg σ = 2] - The same combination as above, but for the Lapla-
cian operator instead.

• [R,G, |∇Lrg|, ∇2Lrg σ = 2,4] - The combination of colors, gradient magnitude and
the Laplacian, on two different scales,σ = 2,4. 10 dimensions.

All descriptor combinations were evaluated using CODID - CVAP Object Detection
Image Database, (Ekvall, 2005).

3.5.1 CODID - CVAP Object Detection Image Database

CODID is an image database designed specifically for testing object detection algorithms
in a natural environment. The database contains 40 test images of size 320x200 pixels,
and each image contains 14 objects. The test images include problems such as object
occlusion, varying illumination and textured background. Out of the 14 objects, 10 are to
be detected by an object detection algorithm. The database provides 10 training images for
this purpose, i.e. only one training image per object. The database also provides bounding
boxes for each of the ten objects and each scene and an object is considered to be detected
if the algorithm can provide pixel coordinates within the object’s bounding box for that
scene. In general, detection algorithms may provide several hypotheses of an object’s
location. In this work, only the strongest hypothesis is taken into account.

The test images are very difficult from a computer vision point of view, with cluttered
scenes and objects lying rotated behind and on top of each other. Thus, many objects are
partially occluded in the scene. In total, the objects are arranged in 20 different ways and
each scene is captured under two lighting conditions. The first lighting condition is the
same as during training, a fluorescent ceiling lamp, while the second is a closer placed
light bulb illuminating from a different angle.

We have evaluated the six different descriptor configurations on CODID. Besides the
detection rate, we present graphs of how various parameters, such asα anddmax affect
the results. We also present segmentation results which show how well RFCHs perform at
segmenting an object from the background.

3.5.2 Training

For training, one image of each object is provided. Naturally, providing more images would
improve the recognition rate but our main interest is to evaluate the proposed method using
just one training image. The training images are shown in Fig. 3.5. As it can be seen,
some objects are very similar to each other, making the recognition task non-trivial. The

34 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

Figure 3.5: The ten images used for training.

histogram is built only from non-black pixels. In these experiments, the training images
have been manually segmented. For training in robotic applications, we assume that the
robot can observe the table before and after the object is placed in front of the camera and
perform the segmentation based on image differencing.

3.5.3 Detection Results

The experimental evaluation has been performed using six combinations of feature descrip-
tors. As it can be seen in Table 3.1, the combination of all feature descriptors gives the best
results. The color descriptor is very sensitive to changing lighting conditions, despite the
fact that the images were color normalized prior to recognition. On the other hand, the
other descriptors are very robust with respect to this problem and the combination of de-
scriptors performs very well. We also compare the method with regular color histograms
which show much worse results.

Adding descriptors on several scales does not seem to improve the performance in the
first case, but when lighting conditions change, some improvement can be seen. With
changed illumination, colors are less reliable and the method is able to benefit from the ex-
tra information given by the Laplace and gradient magnitude descriptors on several scales.
All descriptor combinations have been tested withN = 80 cluster-centers, except the 10-
dimensional one which required 130 cluster-centers to perform optimally. Also,dmax= 10
was used in all tests, except for the color histogram method, which of course usedmax= 0.

All detection rates reported in Table 3.1 are achieved using the histogram intersection
method (3.1). For comparison, we also tested the 6D descriptor combination with theχ2

method (3.2). With this method, only 60 % of the objects were detected, compared to 95 %
using histogram intersection.

3.5.3.1 Misclassification Analysis

Among the objects to be detected, there are three quite similar mugs as shown in Fig 3.5.
Most detection errors originate from these three mugs being confused with each other. If
one mug is partially occluded, its appearance may be less similar to its training image
compared to the appearance of the other mugs. Thus, in these cases, the algorithm suggest
the location of another mug as the most probable location.

3.5. OBJECT DETECTION EVALUATION 35

Table 3.1: The detection rate of different feature descriptor combinations in two cases:
i) same lighting conditions as when training, and ii) changed lighting conditions.

Lighting Condition: Same Changed
Descriptor Combination:

2D: Color histogram 71.5 38.0
2D: [R,G] (CCH) 77.5 38.0

4D: [R,G, ∇2Lrg σ = 2] 88.5 61.5
5D: [|∇L| σ = 1,2,4, |∇Lrg| σ = 2] 57 51
5D: [∇2L σ = 1,2,4,∇2Lrg σ = 2] 77.5 62.0
6D: [R,G, |∇Lrg|, ∇2Lrg σ = 2] 95.0 80.0

10D: [R,G, |∇Lrg|, ∇2Lrg σ = 2,4] 93.5 86.0

3.5.4 Segmentation Results

We evaluated two methods for object segmentation. We first evaluated the voting based
approach presented in Section 3.3.4.1. We also tried representing the object with nine dif-
ferent histograms, each covering one ninth of the object. This approach was evaluated with
the use of an integral image as described in Section 3.4.3.1. The search was constrained
to squares with had the same geometric proportions as the object in the training image.
Fig. 3.6 illustrates the different segmentation results obtained with these two methods. The
more advanced method produces slightly better results, but has a number of drawbacks.
First, it is not as fast. It takes a couple of seconds to come up with a result, compared the
fractions of a second with the simple method. Second, while the use of multiple histograms
gives a better representation, it constrains the method to only find the objects that are ori-
ented in the same way as they were during training, because of the geometrical relation of
the nine sub-windows. Also, it is less robust to occlusion.

To measure the difference of the methods we defined a segmentation success rateλ as

λ = 2· size(Wt ∪Wh)
size(Wh)+size(Wt)

(3.3)

whereWt denotes the true window around the object andWh denotes the hypothesis.
Thus,λ = 1 means perfect segmentation whileλ = 0 means that the object is completely
missed. Achieving a highλ is very difficult, and usually the best segmentations, which are
visually very good, achieve aλ of about 0.85. The averageλ over the 10 objects and the
first 20 images in CODID was 0.56 for the voting based method and 0.6 for the integral
image based method. Hence, slightly better results are obtained. Additional detection
improvements are expected with boosting. However, the increased computation time is not
acceptable for our applications.

36 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

Figure 3.6: Left: The segmentation obtained with the voting based method. Right: The
segmentation obtained with the integral image method. This method is able to capture the
less discriminant parts of for example the mug and the stapler, due to the representation
with multiple histograms.

3.5.5 Free Parameters

The algorithm requires setting a number of parameters which were experimentally deter-
mined. However, it is shown that the detection result are not significantly affected by the
values of parameters. The parameters are:

• Number of cluster-centers,N
We found that using too few cluster-centers reduces the detection rate. From Fig. 3.7
it can be seen that feature descriptor combinations with high dimensionality require
more cluster centers to reach their optimal performance. As seen, 80 clusters is
sufficient for most descriptor combinations.

• Maximum pixel distance,dmax

The effect of cooccurrence information is evaluated by varyingdmax. Usingdmax=
0 means no cooccurrence information. As seen in Fig. 3.8, the performance is
increased radically by just adding the cooccurrence information of pixel neighbors,
dmax= 1. Fordmax> 10 the detection rate starts to decrease. This can be explained
by the fact that the distance between the pixels is not stored in the RFCH. Using
a too large maximum pixel distance will add more noise than information, as the
likelihood of observing the same cooccurrence in another image decreases with pixel
distance. As seen in Fig. 3.8, the effect of the cooccurrence information is even more
significant when lighting conditions change.

• Size of cluster-centers,α
We have investigated the effect of limiting the size of the cluster centers. Pixels that
lie outside all of the cluster centers are classified as background and not taken into
account. As seen in Fig. 3.8, the algorithm performs optimally whenα = 1.5, i.e.

3.5. OBJECT DETECTION EVALUATION 37

Figure 3.7: The importance of the number of cluster-centers for different image descriptor
combinations.

Figure 3.8: Left: The detection rate mapped to the maximum pixel distance used for cooc-
currence,dmax, in two cases: Same lighting as when training, and different lighting from
training. Right: The detection rate mapped to the size of the cluster centers,α.

the size is 1.5 times the average distance to the cluster center used during training.
Smallerα removes too many of the pixels and, asα grows, the effect described in
Section 3.4.2 starts to decrease.

38 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

• Search window size
We have found that some object recognition algorithms require a search window
size of a specific size to function properly for object detection. This is a serious
drawback, as the proper search window size is commonly not known in advance.
Searching the image several times with different sized search windows is a solution,
although it is quite time consuming. As Fig. 3.9 shows, the choice of search window
size is not crucial for the performance of our algorithm. The algorithm performs
equally well for window sizes of 20 to 60 pixels. In our experiments, we have used
a search window of size 40.

Figure 3.9: Left: The detection rate mapped to the size of the search window. Right:
The effect on detection rate when the training examples are scaled, for six different image
descriptor combinations.

3.5.6 Scale Robustness

We have also investigated how the different descriptor combinations performs when the
scale of the training object is changed. The training images were rescaled to between half
size and double size, and the effect on detection performance was investigated. As seen in
Fig. 3.9, the color descriptors are very robust to scaling, while the other descriptors types
decrease in performance as the scale increase. However, when the descriptor types are
combined, the performance is partially robust to scale changes. To improve scale robust-
ness, the image can be scanned at different scales.

3.5.7 Conclusion

In the last few sections, a new method for object detection has been presented. Receptive
Field Cooccurrence Histograms are used to represent the object appearance, and such a
histogram captures how commonpairs of certain filter responses and colors are within an
image. The experimental evaluation shows that the method is able to successfully detect

3.6. POSE ESTIMATION 39

objects in cluttered scenes, and that the method is robust to scale changes and illumination
variations. The performance of the method depends on a number of parameters but we have
shown that the choice of these are not crucial. On the contrary, the algorithm performs very
well with a wide variety of parameter values.

For an algorithm to be used for object detection, it has to be able to recognize the
object although it is placed on a textured cloth and only partially visible. The CODID
image database was specifically designed for testing these types of natural challenges, and
we have reported good detection results on this database. The algorithm is fast and fairly
easy to implement. Training of new objects is a simple procedure and only a few images
are sufficient for a good representation of the object.

We have presented two segmentation methods. One is based on a single histogram,
while the other features multiple histograms for object representation. Initial results show
that multiple histograms give somewhat better segmentation, however at the cost of in-
creased complexity and decreased speed.

In the experiments presented in this section, the search object was assumed to be visible
in the image. To decide if the most probable location contains the object, one has to
compare the histogram vote with a threshold value. However, the threshold value depends
both on the object as well as the scene, which makes it difficult to use this method for
object recognition in complex scenes. Still, the method is good for providing hypotheses
of where the searched object could be.

In the next section, we will estimate the pose of the object using the appearance-based
CCH method to initialize a frame of the object, which is then fitted to the image.

3.6 Pose Estimation

To grasp an object, knowing the location of the object is not enough. The robot must know
the pose of the object in order to adjust its gripper accordingly. In this section, we present
a method of obtaining the pose using the appearance-based method in combination with a
model based method. Because this work was done prior to the discovery of RFCHs, the
results in this section were obtained using CCHs. Even better results are expected using
RFCHs.

Once the object has been segmented from the image, its rotation around the verti-
cal axis may be estimated. The appearance-based rotation estimation is performed using
many training images of the object taken from different angles. Each training image is
labeled with the correct rotation of the object in that image. When estimating the pose
for a new image, the database is searched for the image with the most similar appearance.
The similarity in appearance of two posesi and j is calculated according to equation 3.1.
Fig. 3.10 shows the dependency between the match valueµ(i, j) and angular separation
in object pose|α(i)−α(j)|. To improve the robustness, the hypotheses are first weighted
by a Gaussian. If thei-th training image with a known angleαi matches the segmented
image of unknown pose to a degreeµi , the likelihoodP(β) of the object angle rotationβ is

40 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

calculated as:

P(β) = ∑N
i=0µig(β, αi)

∑N
i=0g(β, αi)

(3.4)

The Gaussian kernel function

g(β, α) =
1

σ(2π)1/2
e
−(β−α)2

2σ2 (3.5)

captures the degree to which the voteµi of a training image contributes toP(β) based on
the distanceβ−αi . The maximum ofP(β) emerges in vicinity of training images with
high match valuesµ. For the example shown in Fig. 3.10, the match valuesµi of training
images are clearly correlated with the object’s angle of rotationαi . The distribution has a
global maximum at−39deg, and a second local maximum at±180deg. The two minima
occur at±100 deg. The algorithm estimates the rotation angle of−39 degat the global
maximum which is a fairly accurate estimate of the true rotation angle of−37deg.

−200 −150 −100 −50 0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
at

ch
 v

al
ue

Angle (degrees)
−200 −150 −100 −50 0 50 100 150 200

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Angle (degrees)

M
at

ch
 v

al
ue

Figure 3.10: Left) The match valuesµ of training images before, and Right) after convolu-
tion with a Gaussian kernel.

3.6.1 Model Based Pose Estimation

If a model of the object is available, a more accurate pose estimation can be achieved,
and a full 6-D object pose is obtained, Vinczeet al. (1999). We have integrated the
work in (Kragic and Christensen, 2002) with the appearance-based rotation estimation.
Our approach combines the accuracy of geometry based methods with the robustness of
appearance-based methods in a synergistic fashion where the key idea of the integrated
algorithm is to obtain the initial pose estimate using the appearance-based method. This
estimate allows it to project features of the object model onto the image. These projected
features provide sufficient prior information to initialize the local search and matching of
corresponding features in the image. The integrated approach reduces the global corre-
spondence problem to a local tracking problem.

3.6. POSE ESTIMATION 41

A typical model based tracking system usually involves the following steps: detection,
matching, pose estimation, update and prediction, see Fig. 3.11. The input to the algorithm

x̂k+1|k ẑk+1|k
x̂k+1|k+1

zk+1CAMERA MODEL

OBJECT MODEL

PROJECTION

RENDERING
AND

IMAGES

DETECT MATCH

INITIALIZATION

UPDATE

ESTIMATION
POSE

PREDICT

Figure 3.11:Block diagram of our model based tracking system.

is a wire–frame model of the object. The main loop starts with apredictionstep where
the state of the object is predicted by means of the current pose (velocity, acceleration)
estimate and a motion model. The visible parts of the object are then projected into the
image (projection and renderingstep). After the features aredetected, they arematchedto
the projected ones and used to estimate the new pose of the object. Finally, the calculated
pose is input to theupdatestep.

3.6.1.1 Prediction and Update

The system state vector consists of three parameters describing translation of the target,
another three for orientation and an additional six for the velocities:

x =
[
X,Y,Z,φ,ψ,γ, Ẋ,Ẏ, Ż, φ̇, ψ̇, γ̇

]
(3.6)

whereφ, ψ andγ represent roll, pitch and yaw angles (Craig, 1989). The following piece-
wise constant white acceleration model is considered (Bar-Shalom and Li, 1993):

xk+1 = Fxk +Gvk, zk = Hxk +wk (3.7)

wherevk is a zero–mean white acceleration sequence,wk is the measurement noise and

F =
[

I6×6 ∆TI6×6
0 I6×6

]
, G =

[
∆T2

2 I6×6
∆TI6×6

]
, H = [I6×6 | 0] (3.8)

For the prediction and update, theα−β filter is used:

x̂k+1|k = Fkx̂k, ẑk+1|k = Hx̂k+1|k

x̂k+1|k+1 = x̂k+1|k +W[zk+1− ẑk+1|k]
(3.9)

42 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

Here, the pose of the target is used as measurement rather than image features, as com-
monly used in the literature, (Dickmanns and Graefe, 1988), (Gengenbachet al., 1996).
An approach similar to the one presented here was considered in (Wunsch and Hirzinger,
1997). This approach simplifies the structure of the filter which facilitates a computation-
ally more efficient implementation. In particular, the dimension of the matrixH does not
depend on the number of matched features in each frame but it remains constant during the
tracking sequence.

Figure 3.12:first row) An example of tracking a package of raisins: a fairly textured object against
a textured background. The estimated pose of the object is overlaid in white. During this experiment
a 6mm lens was used and the object was at a distance of approximately 50cm from the camera,
and second row) A moving camera and a static object show the ability of the system to cope with
significant depth changes and perspective effects.

3.6.2 Experimental Evaluation

The proposed system was experimentally evaluated for: i) segmentation and rotation esti-
mation, and ii) full 6-DoF pose estimation and tracking.

3.6.3 Object Recognition and Rotation Estimation

For training, the correct pose of the object is estimated by manually matching correspond-
ing corner points between the image and a wire–frame model of the object. We have
implemented a combination of methods proposed in (DeMenthon and Davis, 1995) and
(Araujoet al., 1996). For each training image the complete CCH is computed off–line and
stored together with the known rotation of the object. To minimize the noise in the training
images, the background is manually removed from the images prior to training. During
the experimental evaluation we observed that after about 50 training images no significant
improvement in the accuracy is gained. At run time, the CCHs of the candidate windows
are matched to the stored information to retrieve the rotationα of the object around the

3.6. POSE ESTIMATION 43

vertical axis. The background is not removed from the test images and CCHs are based on
all pixel pairs separated by less than 10 pixels, which roughly amounts to 600k pixel pairs
per segmented test image. Fig. 3.13 illustrates how the CCH of a training image changes
as the object is rotated by 0, 45 and 90 degrees.

Figure 3.13: The CCH of a training image changes significantly with the angle of the
object. The size of the CCH is 50x50 bins. Dark areas indicate high counts in the corre-
sponding CCH bin. Left: Object rotated with 0 degrees. Center: Object rotated with 45
degrees. Right: Object rotated with 90 degrees.

Our object recognition and rotation estimation algorithms are tested in combination
where the strongest hypothesis from the former serves as input to the latter. 70 images of
size 100x100 pixels, with a removed background, were used for training. 30 images of
size 320x200, showing the rice package in natural scenes were used for testing. In these
images, the rice package typically occupied about 5 % of the image.

The CCHs corresponding to±X degare commonly very similar since they are basically
“mirrored”. This results in an ambiguous match value distribution. To deal with this
problem, pixel pairs corresponding to positive and negative angles are stored in separate
bins, see Fig. 3.14. In addition, the most dominating part of the CCH are pixel pairs with a
distance 0. Therefore, these pairs are excluded from histograms during rotation estimation.
As a confidence value,C for rotation estimation we use the ratio between the magnitude of
the two largest matching values

C =
µmax−µavg

µ2ndmax−µavg
(3.10)

We experimentally determined the optimal values for the number of color clustersN
and the width of the Gaussian kernelσ by means of cross-validation. For the rice package,
the optimal values areN = 50 andσ = 5. The results for the winner-take-all approach with
σ = 0 are inferior compared to applying convolution.

As an example, the two narrow surfaces of the rice object are easily confused as they
appear almost identical, except for a small patch of letters on one of the sides. The right part
of Fig. 3.15 shows segmented images of the rice package taken from opposite directions.
As a result of this confusion, the match value graph is bimodal, as seen in Fig. 3.15. In
our experiments, the algorithm successfully estimates the angle in all cases in spite of
this problem. However, a small fraction of noise is enough to make the algorithm select

44 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

Figure 3.14: By separating pixel pairs with different orientation, and storing them in sep-
arate bins, mirrored images will not have the same CCH. Pixel pairs on the left side have
the same orientation, opposite to the orientation of the pixel pairs on the right side.

the other alternative. For the purpose of grasping such a symmetric object, however, it is
irrelevant whether it is rotated−90degor +90deg.

−200 −150 −100 −50 0 50 100 150 200
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Angle (degrees)

M
at

ch
 v

al
ue

−200 −150 −100 −50 0 50 100 150 200
0

1

2

3

4

5

6

7

Angle (degrees)

M
at

ch
 v

al
ue

Figure 3.15: Center: The appearance of rice package rotated−90degis very similar to the
appearance when it is rotated+90 deg. This results in a bimodal match value graph (left).
An example of a match value graph in an unambiguous case is shown to the right.

The average angular error is 6degwhich is quite remarkable considering that the angles
computed by means of manual feature matching already carry an uncertainty of about
5 deg.

In our application, the main purpose of the appearance-based method is to robustly
provide a pose estimate that is accurate enough for initialization of corresponding features
in the tracking based scheme. The feature-based tracking method tolerates angular errors in
the initial pose of up to 25−30deg. As shown in the angular error histogram in Fig. 3.16,
all of the 30 test cases meet this requirement.

We also tested the robustness of the pose estimation with respect to changes in scale,
camera angle and noise level. The camera tilt angle is varied between 0 and about 30deg
between test- and training images, which this time contained a raisins package instead of
the rice package. The average angular error increases to 17deg. Thus, it can be concluded

3.6. POSE ESTIMATION 45

0 5 10 15 20 25
0

2

4

6

8

10

12

Angle error(degrees)

Te
st

 im
ag

es
 w

ith
 th

is
er

ro
r

0.5 1 1.5 2
0

10

20

30

40

50

60

M
ea

n
an

gl
e

er
ro

r(d
eg

re
es

)

Scale

Figure 3.16: Left) Distribution of angular error, and Right) Mean angular error as a func-
tion of variations in scale.

that the algorithm is robust with respect to reasonable changes in the camera perspective
effects.

We further evaluated the robustness with respect to changes in scale for a range[0.5−
2.0]. As shown in Fig. 3.16, the angular error remains below 20degover a range[0.8−2].
In our application, the table area that can be reached by the manipulator is fairly limited,
such that the distance to the object to be grasped does not vary significantly. For applica-
tions in which the distance between object and camera is more uncertain, it may become
necessary to perform additional training at wider range of scales and orientations.

Random pixels are added to the test images in order to test the robustness towards
noise. In Fig. 3.17, the impact of image noise on the mean angular error is shown. Noise
levels above 40% cause a considerable decrease in performance. This is easily explained
by the fact that the information stored in a CCH is already corrupted if one of the two
pixels is effected by noise or occlusion. At a noise level of 40% per pixel, effectively
only 36% of the pixel pairs remain intact. This observation underlines the need for proper
object segmentation prior to the pose estimation step. We note here that an angular error
of 25−30degis still sufficiently accurate for proper initialization of the model based pose
estimator. In terms of timing, the execution time for the pose estimation step on a Sunblade
100 (500 MHz) was 0.3 seconds.

3.6.4 Full 6-DoF Pose Estimation

In the integrate scheme, object recognition and rotation estimation serve as the initial val-
ues for the model based pose estimation and tracking algorithm. The distance of the object
from the camera,Z is estimated according to the ratio between the height of the segmented
window and the height of the object (which is known from the model) together with the
camera parameters. Similarly,X andY are estimated from the window position in the

46 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20
30
40
50
60
70
80
90

M
ea

n
an

gl
e

er
ro

r(d
eg

re
es

)

Amount of noise
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
10
20
30
40
50
60
70
80
90

Segmentation threshold

M
ea

n
an

gl
e

er
ro

r(d
eg

re
es

)

Figure 3.17: Left) Angular error as a function of image noise , and Right) segmentation
thresholdθ.

image. The rotation of the object around the vertical axis is obtained from the rotation
recognition step, while the remaining two angles are initialized to zero.

Fig. 3.18 shows a few examples of processing steps in the integrated scheme. With
the incomplete pose calculated in the recognition (first figure from the left) and orientation
estimation step, the initial full pose is estimated (second figure from the left). After that, a
local fitting method matches lines in the image with edges of the projected object model.
The image obtained after convergence of the tracking scheme is shown on the right. Ta-
ble 3.2 contains the pose values before and after the fitting stage. It is important to note,
that even under the incorrect initialization of the two other rotation angles as zero, our ap-
proach is able to cope with significant deviations from this assumption. This is strongly
visible in the last row in Fig. 3.18 where, according to the results reported in Table 3.2, the
angle around camera’sZ-axis is larger than 20deg.

3.7 Discussion

Object recognition and pose estimation are basic prerequisites for robust robotic manipula-
tion and object grasping. In this chapter, a novel approach for object recognition and pose
estimation based on receptive field cooccurrence histograms and geometric model based
techniques have been presented. The particular problems addressed were: i) robust recog-
nition of objects in natural scenes, ii) estimation of partial pose using an appearance-based
approach, and iii) complete 6-DoF model based pose estimation and tracking.

It has been demonstrated that CCHs are computationally efficient for representing the
appearance of an object in the context of object recognition and partial pose estimation.
Because of their invariance to scaling and translations, the algorithm performs robustly in
natural settings. We have shown that RFCHs perform better for object detection, especially
under dynamic lighting conditions. It is expected that RFCHs would perform better for
rotation estimation as well.

3.7. DISCUSSION 47

Figure 3.18: From object recognition to pose estimation Test1 - Test4, (from left): i) the
output of the recognition, ii) initial pose estimation, iii) after few fitting iterations, iv) the
estimated pose of the object.

Test NO Xbe f Xa f t Ybe f Ya f t Zbe f Za f t φbe f φa f t ψbe f ψa f t γbe f γa f t

mm mm mm mm mm mm deg deg deg deg deg deg
Test 1 -41 -19 125 147 590 802 45 22 0 9 0 5
Test 2 -93 -89 206 265 748 976 40 16 0 -4 0 1
Test 3 -72 -66 138 159 587 774 30 16 0 -2 0 0
Test 4 -112 -110 120 143 584 756 30 13 0 2.5 0 -22

Table 3.2: Values show object’s pose before and after the fitting stage. Test1-4 represent
experiments shown in Fig. 3.18.

On a basis of 70 training images, our scheme consistently estimates the object poses of
all 30 test images with a maximum angular error of less than 20degand an average angular
error of 6deg. The method is sufficiently robust towards variations in camera angle and
scale and is partially able to cope with image noise and occlusion.

It has to be noted here that the experiments were conducted under the assumption that

48 CHAPTER 3. ROBOT VISION FOR INDIRECT LEARNING

the object is visible in the image. The RFCH algorithm merely returns the most proba-
ble location for an object. The problem of deciding if the object is actually there or not
is harder, and extensive experiments have shown that using local features for this is bet-
ter than appearance-based methods. In Chapter 6 we present a method of combining an
appearance-based method with a feature-based method for both finding and recognizing
objects in complex scenes.

Chapter 4

Grasp Mapping, Recognition and
Execution

For indirect task learning, recognizing objects is important but not sufficient. If the task
involves object manipulation, the robot also has to learn how the object should be grasped.
The proper grasp type depends both on the target object, and the current task. As an exam-
ple, let us assume that the task is to pick up a cup to fill it with coffee. Generating suitable
grasps based solely on the object shape provides three possible grasps: a circular sphere
grasp, a power wrap grasp, and a two-finger-thumb precision grasp as seen in Fig. 4.1.
However, the task knowledge introduces additional constraints because, in order to fill the
cup, the opening should not be covered. In this case, only two grasps remain feasible.

Figure 4.1: Different possible grasps for picking up a cup.

49

50 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

Another issue is themappingfrom human grasp to robot grasp. In the above example,
the robot hand is similar to the human, and should ideally have the same joint values.
However, due to kinematic constraints this is not always possible. This will become more
evident as we examine other robot hand types in Section 4.1. Here, we investigate semi-
autonomous grasping and human-robot grasp mapping. One particular challenge is that
our equipment only allows us to measure fingertip positions, not finger joint values. Thus,
those positions have to be translated into robot joint values.

In Section 4.2 we move to autonomous grasping. The grasp mapping presented in
Section 4.1 is hard to realize in an autonomous grasp setting because it requires the robot
to identify whereon the object the grasp is taken, i.e., where the contact points are. This
is difficult since the hand will often occlude the object, or vice versa. Instead, our strategy
here is to, in Section 4.3, recognize the human grasptype, and then map this type into a
corresponding robot type by a fixed mapping scheme. The grasp recognition is based on
the hand pose during the entire grasp sequence, and trained from human examples. Once
the robot knows the pose of an object, and what grasp type to use, the problem is how to
grip the object using the grasp type. This is investigated in Section 4.4. Here, the robot
evaluates several approach vectors to the object before it actually performs the grasp.

4.0.1 GraspIt!

In this work, we have used a grasping simulator, called GraspIt! (Miller and Allen, 2000),
to analyze and visualize the poses of a variety of different robot hands which are not avail-
able to us in practice. Another advantage of using the simulator is the possibility to perform
a large number of experiments with slightly changed conditions and system parameters.
This is not feasible in the real world as the world state has to be reset between each exper-
iment.

Graspit! can import a wide variety of different hands and robots, model environments
with objects and all of these can be manipulated within a virtual 3D workspace. A custom
collision detection and contact determination system prevents bodies from passing through
each other and can find and mark contact locations. A dynamics engine can compute
contact and friction forces over time.

4.1 Mapping Human Grasps to Robot Grasps

The human hand can perform a wide variety of grasps. Because of the difficulties in con-
structing a robotic gripper equivalent to the human hand, most robotic grippers have much
less flexibility. Consequently, the human and robot hand cannot, in general, perform the
same types of grasps. As the kinematics and configuration spaces of a human hand and an
artificial robot hand are generally different, the fingertip positions of the robot hand cannot
correspond exactly to the fingertip positions of the human hand (especially when fingertip
grasps are considered). Consequently, a mapping between human hand and robot hand is
necessary in order to control a robot hand with a human hand. This mapping changes for
different robotic manipulators. For example, the mapping for a three finger robot hand like

4.1. MAPPING HUMAN GRASPS TO ROBOT GRASPS 51

the Barrett hand (Townsend, 2000), which has only four degrees of freedom, is different
to the mapping for a five finger robot hand like the Robonaut hand (Lovchik and Diftler,
1999), which has 14 DoFs.

One way of performing grasp mapping is to calculate the inverse kinematics of the
robot hand and then try to minimize the sum over fingertip distances. However, this re-
quires an analytical solution for each robot hand type. In this work we have instead used
an Artificial Neural Network (ANN) for grasp mapping. From a few training examples the
ANN can learn the mapping space from human to robot hand. This method also fits well
in the Programming by Demonstration paradigm.

In general, there are two ways of representing mapping between these two spaces,
using:

• Joint space
Mapping using the joint space representation facilitates thesimilaritybetween hands’
poses. This is suitable for enveloping or power grasps, which are explained later on
in this chapter.

• Cartesian space
Mapping using the Cartesian space is more suitable for representing the fingertip
positions. This is a natural approach when, for example, precision grasps are con-
sidered.

Related to the work presented here, a third group may be added to this list, namely the
combination of the above. Here, the positions of the human hand’s fingertips are mapped
to some joint values of the robot hand. If the robot and the human have similar hand con-
figurations, the result is likely to be the same as for purely Cartesian mapping. However,
if the robot hand’s kinematics is very different from the human one, as for example in the
Barrett hand case, Cartesian mapping is not suitable.

4.1.1 Measuring the Hand Posture

To be able to recognize a grasp, information about the hand posture, such as fingertip
locations or joint angles, is needed. The three approaches used in the literature are:

• Vision
Visual feedback is commonly used as an external sensor to provide fingertip loca-
tions. In this case, the sensor does not have to be mounted on the person performing
the grasp. A difficult problem is to obtain robust measurements in case of occlu-
sions, shadows, specular reflections, etc. A common approach is to use predefined
hand models and fit the estimated vertices to the predefined grasp postures in 3D,
(Ogawaraet al., 2003; Bretzner, 1999).

• Magnetic trackers
Another alternative is the use of magnetic trackers, such as the Nest of Birds (As-
cension Tech., 2006). It is a magnetic tracker that consists of an electronics unit, a
transmitter and four pose measuring sensors. From signals measured by the sensors,

52 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

Nest of Birds calculates the position and orientation of each sensor providing six
degrees of freedom.

• Optical Gloves
A popular measuring device is also the Cyber Glove (Virtual Technologies Inc.,
1995), with 22 degrees of freedom. By using optical wires in the fingers, it is able
to measure joint angles. Clearly, joint angles are preferred for tasks such as grasp
recognition. Unfortunately, such detailed information can be obtained only with this
type of sensor and it is difficult to scale the evaluation methods with respect to differ-
ent sensory inputs such as vision. In that manner, a grasp recognition system based
on fingertip locations is much more flexible.

4.1.1.1 Measurement System

To obtain measurements, we have used the Nest of Birds. It is a magnetic tracker that
consists of an electronics unit, a transmitter and four pose measuring sensors. From signals
measured by the sensors, Nest of Birds calculates the position and orientation of each
sensor providing six degrees of freedom. The sensors are mounted on a glove as illustrated
in Fig. 4.2. The center sensor, mounted on the back side of the glove, serves as a reference
sensor. It measures the position and orientation of the hand. The remaining three sensors
are mounted on the thumb, index finger and little finger, and provide fingertip position
measurements.

Figure 4.2:The glove used for human input.

4.1.1.2 Calculating the Fingertip Positions

Each of the sensors provides a 3D-positionp, calculated according to (4.1) resulting in
a total of nine values. The position of the sensor is represented byx = (x,y,z), and the
reference sensor is represented byxr = (xr ,yr ,zr). The rotation matrixM is calculated
from the Euler anglesφ, ψ andγ according to (4.2). As seen in (4.1), the features derived

4.1. MAPPING HUMAN GRASPS TO ROBOT GRASPS 53

from the sensors are both translationally and rotationally invariant. This means that the
same values are extracted regardless of the rotation angle of the hand.

p = M(x−xr) (4.1)

M =

 cφcψ sφcψ −sψ
−sφcγ +cφsψsγ cφcγ +sφsψsγ cψsγ
sφsγ +cφsψcγ −cφsγ +sφsψcγ cψcγ


(cφ = cos(φ), sψ = sin(ψ) ...) (4.2)

4.1.2 Using an Artificial Neural Network for Grasp Mapping

A two-layered ANN illustrated in Fig. 4.3 was used to learn the mapping from the human
hand to the robot hand. The input values are the position coordinates of each of the fingers.
There are three fingers with 3D-coordinates which gives us nine input values. Note here
that the coordinates are provided relative to the reference sensor on the back of the hand.
The output layer has as many neurons as the number of DoFs of the robot hand, and each
neuron correspond to a joint angle.

Figure 4.3:The neural network used for mapping the human hand to the Barrett hand. The input
consists of fingertip positions scaled to [-1, 1] and the output is the Barrett joint values, also scaled
to [-1, 1].

First, the user wearing the glove demonstrates a pose to the system which is captured
when a key is pressed. Then, Graspit! is used so that the user drags the links and joints

54 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

of the hand to achieve the corresponding pose. These two poses then constitute a training
sample for the ANN. When enough training samples have been gathered (usually only a
few is sufficient), the ANN is trained. This step takes only a few seconds on a regular
Pentium 450MHz PC. For training, we used the back-propagation algorithm. A sigmoid
function is used at each neuron to add non-linearity to the system, and the input values are
scaled to [-1, 1].

4.1.3 Evaluation

Figure 4.4: Three different robotic manipulators studied in this thesis: (a) Barrett hand (b)
DLR hand (c) Robonaut hand.

We have performed grasp mapping evaluation on three different manipulators, shown
in Fig. 4.4. We first evaluated how good mapping we could obtain, using just seven training
postures: Open hand, each individual finger closed and each half-closed. Many additional
postures were captured for testing, these included postures with many fingers closed simul-
taneously. We used the RMS error for the obtained finger joints compared to the expected
finger joints as a mapping quality measure. The RMS error is more descriptive than the
mean error because if the mapping error is large for a single finger but zero for the others,
the quality is worse than if there is a low error on all fingers. We used this measure to
choose the number of hidden neurons, and the best values were found to be 4, 11, 12 for
the Barrett, DLR and Robonaut hand, respectively. The results show that seven postures is
enough for most cases, but as we will show later, when it comes to object grasping more
training examples improves the mapping accuracy.

4.1. MAPPING HUMAN GRASPS TO ROBOT GRASPS 55

4.1.3.1 Barrett Hand

The Barrett hand (Townsend, 2000) shown in Fig. 4.4(a) has three fingers and four degrees
of freedom (DoFs), one DoF for each finger, the fourth degree is for spread angle. One
finger is static and only has the possibility to close towards the center, while the movement
of the two remaining fingers is defined by spread angle and the closing angle for each
finger.

The kinematic constraints of this hand means that there are many differences between
the Barrett and the human hand. This makes controlling the fourth DoF, the spread angle,
very difficult. Therefore, this joint was fixed and only three degrees of freedom were
controlled (the closing angle of each finger).

Figure 4.5: Example training postures used for the Barrett hand: Open hand, thumb closed,
index finger closed and little finger closed.

Despite the big differences between human and Barrett hand, an intuitive joint to joint
mapping is possible, if the spread angle is fixed. Note that we have the same number of
sensors and DoFs to control. Some exemplary training images are shown in Fig. 4.5. For
this hand we obtained an average RMS DoF error of 1.47 degrees.

4.1.3.2 DLR Hand

The DLR hand (Borstet al., 2003) shown in Fig. 4.4(b) has four fingers and twelve degrees
of freedom: two DoFs for each finger closure and another degree for the spread angle of
each finger. This hand has the possibility of closing each finger in two different directions
limited by the spread angle. The kinematic constraints make DLR hand different from the
Barrett hand and more similar to the human hand. This makes it easier and more intuitive
to control. However, the spread DoF of each finger is difficult to control using position to
joint mapping, and it may cause problems with finger collisions. Therefore, these joints

56 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

were restricted, and the two remaining DoFs for each finger were directly controlled (the
closing angle of each finger). For the DLR hand different training configurations have
been tested. Most similar to human motion is controlling the DLR thumb with the human
thumb and separate the three remaining fingers into two groups. We decided that the index
finger controls the first group and the little finger controls the second group. Fig. 4.6
shows some of the different training postures for DLR hand. If more sensors are available,
the individual fingers could easily be controlled separately. For this hand we obtained an
average RMS DoF error of 1.15 degrees.

Figure 4.6: Some of the training postures for the DLR hand: open hand, thumb closed,
index finger closed and little finger closed that controls two fingers in the DLR hand.

A problem in mapping with the DLR is that the fingers of the manipulator hand may
collide even when the fingers of human hand do not collide, due to spread angle motion,
see Fig. 4.7. This is a problem since if one of the fingers when the hand is closed locks
another finger, then the fingers have to be "unfolded" in the correct order, i.e., the finger on
top should be opened first. But if the user unfolds his/her grasp in another order, it results
in a situation in which the manipulator hand is closed while the human hand is open, then
the movements of human hand can not be performed until the robot hand is unlocked. To
avoid this problem we have limited the spread angle range and therefore there are less
possibilities of collision between fingers, see Fig 4.8.

4.1.3.3 Robonaut Hand

The NASA Robonaut (Lovchik and Diftler, 1999) hand shown in Fig. 4.4(c), has a total
of fourteen degrees of freedom. There are two DoFs for the wrist, and five fingers with in
total twelve degrees of freedom. A dexterous work set allows the hand to maintain a stable
grasp while manipulating an object. The mapping results on this hand are particularly
good because control is intuitive and simple, due to the obvious similarities to the human

4.1. MAPPING HUMAN GRASPS TO ROBOT GRASPS 57

Figure 4.7: Two collision examples for the DLR and Robonaut hand. Here, we can see that
thumb finger is locked. To solve the situation the fingers have to be unfolded in correct
order.

Figure 4.8: Two examples of mapping to avoid collisions for the DLR and Robonaut hand
while grasping a cylinder. Here, the thumb finger is not locked by the others.

hand. Even in 14-DoF control the ANN has no problems to map the finger positions of the
human hand to joint values. The training scheme is similar to the DLR-scheme, where the
thumb sensor controls the Robonaut thumb and the other four finger can be divided into
sections. In our training scheme the little finger or the index finger has to control three
fingers simultaneously. Of course, it is possible to demonstrate different behaviors, for
example, letting the index and little finger control two fingers each. As for the DLR hand,
we are constrained here by the number of sensors. The underlying methodology can easily
be extended if more sensors are available. For this hand we obtained an average RMS DoF
error of 1.11 degrees.

For this manipulator there is also a risk of collision. To cope with this, some DoF
limitations are given to the direct mapping. Some of the training postures for the Robonaut
hand can be seen in Fig. 4.9.

4.1.4 Object Grasping

While the free grasp mapping allows the user to form any posture with the robot hand, its
accuracy may not be sufficient to grasp objects. The average DoF error increases when
all fingers are closed simultaneously. To reduce the error, additional training examples are
provided, that show the robot specific grasp mappings, not just hand posture mappings.

58 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

Figure 4.9: Example training postures for the Robonaut hand: open hand, thumb closed,
index finger closed and little finger closed.

Figure 4.10: The extended network, with an added input neuron for the size of the object.

However, this will only teach the robot how to grasp that specific object. To obtain a more
generalized network, we introduce a 10th input neuron, indicating the object size as shown
in Fig. 4.10.

At this point we assume the object to consist of a basic shape with the form of a cylinder
or a cube. The size indicates the object radius for a cylindrical object, or the side of a cubic
object. Thus, we need separate networks for grasping cylinders and cubes. Examples of the
additional training images are shown in Fig. 4.11. Four cylindrical and five cubic objects
were used to train the system.

Fig. 4.12 show the test errors for three different grasps using the Barrett hand. As seen,

4.2. AUTONOMOUS GRASPING BASED ON HUMAN ADVICE 59

Figure 4.11: Three examples of training postures for grasping cylinders. For each hand,
the system is trained on several cylinders.

the errors are lower for the mapping based on object shape. To further emphasize this, we
present Fig. 4.13 which shows the posture of the Barrett hand as it is grasping a cube.

4.1.5 Conclusion

In this section, we have presented a way of mapping human hand postures to robot hand
postures using an artificial neural network. The results show that for the grasping task,
the system benefits from having training examples of different grasps, in addition to dif-
ferent hand postures. This system could be used for performing object manipulation in a
teleoperative setting. However, a more advanced data glove with haptic feedback is prob-
ably necessary for a robust system, as the user would then know when the object has been
grasped by the robot. This also requires the robot hand to be equipped with tactile sensors.
The next section is also related to teleoperation, but with a higher degree of robot intel-
ligence. The robot executes the grasping task autonomously just given a human example
grasp execution.

4.2 Autonomous Grasping Based on Human Advice

Automatic grasping of objects is one of the most challenging research topics within robotics.
The grasping process depends on many different modules working together, and each mod-
ule is a hard research problem. The following modules must be present to enable a suc-
cessful grasp of an arbitrary object:

60 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

Sphere Grasp Wrap Grasp Precision Grasp
0

1

2

3

4

5

6

7

RM
S

er
ro

r (
de

gr
ee

s)

 Shape−based mapping
Free mapping

Figure 4.12: The RMS error for three Barrett grasp types on a cube. As seen the error is
lower for the shape-based mapping. The two right bars correspond to the scene depicted in
Fig. 4.13.

Figure 4.13: Training and test results for Barrett precision grasp on a cube. The two left
images show the training postures. The two right images show the result using shape-based
mapping (low error) and free mapping (high error).

• Object Detection/Recognition - Before the robot can begin to manipulate objects, it
has to find the object.

• Pose Estimation - To successfully place the robot fingers at the correct location, the
pose estimation of the object must be very exact. In this work, we simplify the
problem by assuming the object to be standing on a table. Thus, it is only necessary
to estimate three DoFs.

• Tactile Sensing - Vision alone is often not sufficient to grasp an object. The robot
must be able to adjust its grasp during the whole manipulation sequence in order

4.2. AUTONOMOUS GRASPING BASED ON HUMAN ADVICE 61

to secure the grasp without causing the object to fall. If the object is heavy it may
slip. The robot should automatically detect such a problem and change the grasp
accordingly.

These methods rely on the assumption that the object is known to the robot in advance.
Grasping an unknown object is much harder. The problem is that it is not easy to estimate
the pose of an unknown object, unless it belongs to some known primitive shape class, e.g.,
a box. Furthermore, grasping an object without knowing its pose is quite hard, and it is
also difficult to automatically evaluate whether a grasp is successful or not. In this work
we have mostly concentrated on the simpler, but still very difficult problem of grasping
known objects.

In this chapter, robotic grasping sequences are performed combining a learning by
demonstration framework with semi-autonomous grasping. Let us start by a short motiva-
tion for the system design. Consider a human and a robot each standing in front of a table,
on which a set of objects are placed, Fig. 4.14. A specific action is then demonstrated
to the robot. That action may be moving (pick up/move/put down) an object. The robot
recognizes which object has been moved and where using visual feedback. The magnetic
trackers on the human hand, provide information that enables the robot to recognize the
grasp type used. The robot should then reproduce or imitate the action induced by the
human. As we showed in Ekvall and Kragic (2005b), a set of actions can be recorded as a
whole task. This task can then be repeated by the robot at later time point.

We design and evaluate a system for automatic grasp generation and fine control, that
can be used in the above scenario. The approach is evaluated in simulation using the
Barrett hand and the Robonaut hand, presented in Section 4.1. In addition, it is shown how
dynamic simulation can be used for building grasp experience and for the evaluation of
grasp performance.

Figure 4.14: Left: A human demonstrates object manipulation actions to the robot. A
camera and data glove equipped with magnetic trackers provide sensory input for task
recognition. Right: The robot uses this information to reproduce the demonstrated action
using its own frame of reference.

62 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

We shortly review the components currently used in our system:

1. Object Recognition and Pose Estimation
Estimation of the objects’ poses before and after an action enables the system to
identify whichobject has been movedwhere. For object recognition and pose esti-
mation, we used the RFCH-techniques described in Section 3.4. In this work, it is
assumed that the objects are resting on a table. The pose can hence be represented
by three parameters (x, y andφ).

2. Grasp Recognition
A glove with magnetic trackers provides hand postures which are in a grasp recog-
nition system. The system is described in detail in Section 4.3. The position of the
hand is used to segment the grasp actions.

3. Grasp Mapping
A fixed defined grasp mapping scheme maps the human grasps to robot grasps as
presented in Section 4.4.2.

4. Grasp Planning
The robot selects a suitable grasp controller. The object will be approached from
the direction that maximizes the probability of reaching a successful grasp. This is
presented in more detail in Section 4.4.

5. Grasp Execution
A semi-autonomous grasp controller is used to control the hand from the planned
approach position until a force closure grasp is reached, Section 4.4.

The evaluation of the system proposed in this work is performed using a modified and
extended version of the robot grasp simulator GraspIt! (Miller and Allen, 2000) to allow
for repetitive experiments and statistical evaluation. We strongly believe that the results of
the experimental evaluation facilitate further development of robot grasping systems.

4.3 Grasp Recognition

Grasp recognition can be based on either the final posture of the hand or the entire grasp
sequence including the arm motion. While the former alternative seems as more natural and
is commonly used by other researchers we consider the latter alternative important since
it allows graspintention recognition. Also, the decision is made on the measurements
obtained during the whole manipulation sequence which adds robustness to the system.
There is no need to identify the best time point for hand posture recognition.

The steps involved in grasp recognition are the following: i) Obtain information about
the user’s fingertip locations or finger joint values, ii) Extract the key information and
obtain features, iii) Demonstrate different grasps and build a model for each grasp, iv)
Classify new grasps by comparing the features extracted with stored models. Each of these
steps are described in detail in the following sections.

4.3. GRASP RECOGNITION 63

4.3.1 Applications

Grasp recognition is of great importance for many applications:

• Programming by Demonstration
Grasp Recognition is used in simple PbD systems where the system not only records
where an object has been moved, but also with what grasp the object was grasped
with. Depending on the object’saffordances, certain grasp types are more useful.
This knowledge can be transferred to the robot through grasp recognition.

• Prosthesis Construction
One of the longterm goals in robotics and neuroscience is to interpret the signals
directly from the human brain and use them to control a prosthesis. Today, there is a
range of electrically driven hands available. Many of these are activated by the user
contracting a single muscle with the resulting electromyographic signal activating
the opening or closing of a single degree-of-freedom device. Related to our work,
if the user’s intention can be recognized, the prosthesis may automatically prepare
for the grasp by shaping the end effector to match the object. With the ambition to
improve the prostheses, (Ferguson and Dunlop, 2002) have performed grasp recog-
nition from myoelectric signals, measured on intact muscles. Six basic grasps from
Cutkosky’s grasp hierarchy (Cutkosky, 1989) are recognized, with an 80 % classifi-
cation rate.

• Object recognition
While object recognition generally is based on visual feedback, we believe the ro-
bustness may be increased by integrating a visual system with a grasp recognition
system. A cup on the table may be recognized using, for example, its shape and color
information. Integrating this with the recognition ofactionthat can be performed on
the object will further increase the robustness. This is closely related to the current
research trend inperception-action mapping, (Ernst and Bulthoff, 2004).

4.3.2 Related Work on Grasp Recognition

Various methods for grasp recognition have been tried, but few have investigated recogni-
tion based on fingertip positions. Friedrichet al.(1999) present an approach for grasp clas-
sification using neural networks and Cutkosky’s taxonomy. Similarly, Kang and Ikeuchi
(1993) classify user-demonstrated grasps using an analytical method. They recognize grasp
classes roughly similar to, but more elaborate than those proposed by Cutkosky. The com-
mon drawback of these techniques is that only static posture analysis is performed which
means that an ideal time point for analysis of the hand configuration has to be extracted
from the demonstration by other means before classification can be done.

Grasp recognition, gesture or sign language recognition commonly use Hidden Markov
Models (see Section 2.2.1) for sequence analysis. In an approach similar to ours, Bernardin
et al.(2003) recognize dynamic grasp sequences using HMMs. They present a system that
uses both hand shape and contact point information obtained from a data glove and tactile

64 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

sensors to recognize continuous human grasp sequences. The sensor fusion, grasp classifi-
cation and task segmentation are made by a HMM based recognizer that distinguishes 14
grasp types from Kamakura’s taxonomy. The HMM is based on finger joint values, from
the Cyber Glove. An accuracy of up to 92.2% for a single user system, and 90.9% for a
multiple user system is achieved. It should be noted here that in the multiple user case, the
system has to be trained for every user. One particular contribution of our work is that the
recognition rates we report consider system evaluation on users who did not participate in
the training process.

A problem similar to grasp recognition is gesture recognition. Liang and Ouhyoung
(1998) presents a Taiwanese sign language recognition system that consists of 4 HMMs,
each recognizing the gesture from posture, position, orientation and motion features, re-
spectively. The HMMs are fed with features extracted from the data glove. Posture features
consist of a flexion of 10 finger joints of the hand. Azimuth, elevation, and roll of palm
reported by a Polhemus 3D tracker are used for orientation estimation. Another approach
is taken by Lee and Kim (1999), who designed a vision based system to recognize continu-
ously executed sequences of gestures without prior detection of breakpoints. The segmen-
tation is done automatically by a HMM recognizer and a set of 10 gestures is classified.
Starner and Pentland (1995) report the use of HMMs for the recognition of the American
sign language (ASL).

4.3.3 Grasp Recognition: Two Methods

In this section, we present two methods for grasp classification: i) using HMMs with
fingertip locations and ii) observing the hand movement trajectory during different grasps.
Here, Cutkosky’s grasp taxonomy (Cutkosky, 1989) has been used for the definition of
different grasp classes. In this hierarchy, grasps are sorted into 16 different classes. Each
class is either a power- or precision-grasp, circular or prismatic. Six of these classes are
redundant using our measuring device, and therefore 10 grasp types are considered as
shown in Fig. 4.15. In this work, it is assumed that the start and the end time point of a
grasp sequence are known. In (Ekvall and Kragic, 2004), we have shown how automatic
segmentation can be done using continuous probability estimation.

4.3.4 Grasp Classification Based on Fingertip Positions

A grasp sequence is modelled as: i) Prepare: the hand is opened and formed to match
the object to be grasped. ii) Approach: the hand is moved until palm contact is detected
(power grasps) or until the object lies between the fingers (precision grasps). iii) Hand
closure: the fingers are wrapped around the object until the contact force exceeds a certain
value. We have to note here that, if only the final measurements of the fingertip positions
are considered, the classification would be highly dependent on the object size. Here,
a statistical, model based approach using Hidden Markov Models (see section 2.2.1) is
considered to model each grasp as a sequence of hand postures. By analyzing each posture
during the grasp sequence, increased robustness is gained.

4.3. GRASP RECOGNITION 65

Figure 4.15: Grasps considered in our system: the numbers correspond to their position in
Cutkosky’s grasp taxonomy.

4.3.4.1 Grasp Modeling

The three fingertip locations are quantized into one of 50 cluster positions. Each cluster
is 9-dimensional, since we have three fingertip locations with three dimensions each. The
clusters are found using K-means clustering on the training data. The number of clusters
should be low enough to gather enough statistical data of each posture, but high enough to
facilitate good accuracy. We have experimentally found that 50 clusters satisfy both of the
above requirements.

We assign a left-to-right structure to our HMM and each model operates in parallel.
Each state in the HMM represents a hand posture and a grasp sequence is considered as
a sequence of hand postures. With 50 different hand postures, a single grasp sequence is
typically constructed of 5 postures. Thus, we have used 5 states in each HMM. The Baum-

66 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

Welch algorithm is used to train the HMM and only a few iterations are required to obtain
stable values forλ j(A j ,B j ,π j). Once the HMM is trained, it describes the probability
of observing certain hand postures in different states. Since the state transitions are also
modelled, the velocity of a performed grasp is not an issue.

For classification, we select the most probable model, given the observations, i.e., the
most probable grasp, given the sequence of hand postures. Since noa-priori model infor-
mation is available, the model with the highest likelihood is chosen:

class= argmax
i

(P(o1...oN|λi)) (4.3)

4.3.5 Grasp Classification Based on Arm Movement Trajectories

In the second grasp classification approach considered here, we evaluate the importance of
the arm trajectory in the grasping process. The reference sensor used in the HMM based
method, mounted on the back side of the hand, is also used for trajectory recording. Six
parameters are captured during the grasp:x, y andzdescribing the position, and three Euler
angles (azimuth, elevation and roll) describing the orientation of the sensor. In addition,
the velocities of each of these parameters are calculated at each time step. AnArmStateis
described by these 12 parameters, and is represented asv = (v1, v2,...,v12).

4.3.5.1 Position and Orientation Invariant Trajectories

Besides the grasp type, the grasping trajectory depends on the initial arm configuration, as
well as the object position. Ideally, we would like the grasp trajectory of a certain grasp to
be the same when the user is sitting and standing up and independent of the position of the
object to be grasped. The final position and orientation of the hand provides information of
the object’s location, and by transforming all trajectories to the relative coordinate system
given by the final hand pose(x,y,z,α,β,γ) of each trajectory, trajectories with different
start- and end-positions may be compared.

4.3.5.2 Similarity of Two Trajectories

An arm movement trajectory is a sequence ofArmStates. Let us first consider the trajectory
of a single parameter inArmState, i.e. v1(n). If the trajectory consists ofN time steps, it
be viewed as a point in an N-dimensional space. The naive dissimilarity measureD(x,y)
for two trajectoriesx andy of equal length, is the Euclidean distance, defined as

D(x,y) =

√
N−1

∑
n=0

(x(n)−y(n))2 (4.4)

The lowerD(x,y), the more similar trajectoriesx andy. The above dissimilarity mea-
sure has a couple of disadvantages. First, it is very sensitive to time shifting. A shift in
time for one trajectory will make the two trajectories uncorrelated. Second, it does not
handle shifts in space very well either, i.e. a position trajectory will have low similarity to
an identical trajectory, shifted a few cm.

4.3. GRASP RECOGNITION 67

By first transforming the trajectory to the Fourier domain, the above problems are
avoided. Transformation is performed using the Discrete Fourier Transform (DFT), de-
fined as

X(µ) =
1
N

N−1

∑
n=0

x(n)e
−µn2iπ

N (4.5)

whereX ∈ [0, 1, ..., N− 1] are the frequency components of the signal x(n). The
dissimilarity measure used for the two transformed trajectories is

D(X,Y) =
f c

∑
µ=1

|(X(µ)−Y(µ)|2 (4.6)

By ignoring the first componentX(0), which corresponds to the average position, space
shift invariance is achieved. Also,X(µ) is not time dependent, so time shifts is not a
problem. Furthermore, only the firstf c < N coefficients are taken into account, which
corresponds to a low-pass filtering of the signalx(n). Extensive experiments have shown
that the useful information regarding arm movement trajectories is concentrated to the first
few Fourier coefficients. Using cross validation, we foundfc = 2 to be optimal.

The Nest of Birds measurement system provides samples with approximately constant
rate, 30 Hz. However, for the DFT this is not satisfactory as the samples have to be taken at
equidistant intervals. Since this is not possible, we have used interpolation to calculate the
assumed measurement values at the desired time points. As arm movements are in general
slow compared to the measurement rate, it is realistic to interpolate the measurements. A
fixed number of samplesk are used, so the same number of Fourier components will be
available for each trajectory. We foundk = 20 to be optimal, using cross validation.

The total dissimilarity function for two trajectoriesu andv is described by

D(u,v) =
12

∑
i=1

f c

∑
µ=1

|(Xi(µ)−Yi(µ)|2 (4.7)

If we, in addition, allow each parameteri to be weighted with weightwi , the dissimi-
larity function is

D(u,v) =
12

∑
i=1

w2
i ·

f c

∑
µ=1

|(Xi(µ)−Yi(µ)|2 (4.8)

However, the Fourier transform is not scale-invariant. In order to compare trajectories
taken by different users, with different arm lengths, a normalization step is required. (4.9)
describes the general normalization procedure for all position parameters. The maximum
and minimum parameter values were determined from the training data. These values
represent the grasp workspace, which has the approximate size of 1m3.

vnorm
i (n) =

vi(n)−min(vi)
max(vi)−min(vi)

(4.9)

68 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

4.3.5.3 Parameter Weighting

To evaluate which of the parameters are the most important for grasp recognition, we as-
signed weights to the parameters to let their importance vary. By optimizing the weights
using cross validation, the recognition rate for the test set increased. For weight optimiza-
tion, we used a procedure similar to threshold accepting (Dueck and Scheuer, 1990), in
which random changes are made in order to find the global maximum.

The final weights determine the importance of different parameters for grasp recogni-
tion. One drawback with threshold accepting is that it is not guaranteed to find the global
maximum. The risk of getting stuck in a local maximum is reduced because of the random
steps taken. However, the cross-validation score is still a good predictor of how high the
recognition rate will be. Therefore, we have tried 50 stable weight sets, and selected the
set with the highest cross-validation score.

4.3.5.4 Trajectory Classification

For classification of arm trajectories, we have chosen an instance-based approach in which
all training examples are considered when a trajectoryu is to be classified. A training
examplev votes for its corresponding object classi in vote slotci , with a vote calculated
from the dissimilarity function (4.8) as

ci = ci +
1

σ
√

(2π)
e
−D(u,v)

2σ2 (4.10)

whereσ is the standard deviation of the Gaussian kernel. We foundσ = 0.1 to be
optimal, using cross validation. When all training examples have voted, the object class is
estimated by selecting the grasp type with the highest number of votes:

class=
Nob jects

argmax
i=1

ci (4.11)

4.3.6 Experimental Evaluation

The methods are evaluated separately. As mentioned, 10 grasp types from Cutkosky’s
grasp taxonomy have been considered in two different settings.

In the first setting, the grasps are trained and tested by the same subject. For each grasp
type, 20 grasps are executed, from which 10 are used for training and the remaining 10 are
used for testing. In the second setting, training is done by two users, each demonstrating
every grasp 10 times. The testing is then performed on a third subject, this time executing
each grasp 20 times. The latter experiment evaluates how well the system generalizes to
new users with different hand shapes.

During training and testing, the same grasp is taken on several different objects, illus-
trated in Fig. 4.16. For example, theLarge Diametergrasp is taken on both the binder and
the box.

4.3. GRASP RECOGNITION 69

Figure 4.16: The objects grasped in the experiments.

4.3.6.1 Optimal Parameter Weights

From the training examples, the optimal parameters for the trajectory based method were
found using threshold accepting. Fig. 4.17 shows the importance of the different 12 pa-
rameters.

Figure 4.17: The final parameter weights used by the trajectory based method.

It can be seen that some of the parameters are completely ignored, while the others have
about the same weights. It is interesting to note that in terms of the position velocities,
only the Y velocity is important, which is the approach velocity to the object. The Z
position corresponds to up and down motion, and the X position corresponds to left and
right motions, relative to the object.

70 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

4.3.6.2 Performance

We have evaluated the performance of each method with respect to the number of differ-
ent grasps to recognize. As the number of possible grasps increases, the difficulty of the
recognition task increases. Fig. 4.18 shows the recognition rate for the single user setting.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

HMM
Trajectory
Random

Figure 4.18: The recognition rate in the single user setting, mapped to the number of grasp
types available.

As expected, the HMM based method which relies on fingertip locations outperforms
the trajectory based method. The HMM method is able to recognize 94% of the grasps
when there are 10 possible grasp types to choose from. For comparison, we also tested
with a simple posture classification approach, in which just the mean fingertip location
of the final posture were stored during training. Instead of analyzing the entire grasp se-
quence, we compared the final posture of the test sequence with the final postures of the
training sequences. The grasp is then classified as the nearest neighbor in the training data,
measured by the Euclidean fingertip distance. With this approach we achieved a recogni-
tion rate of 86%.

Further on, we evaluated the performance in the multiple user setting. In this setting,
two users trained the system, which then was tested on a third user. Fig. 4.19 shows the
recognition rate.

The performance is not as good as in the single user setting. The system performs
well for up to five grasp types, with a recognition rate of about 80%. For 10 grasp types,
the recognition rate is 65%. However, the system was trained on a single user and fur-

4.3. GRASP RECOGNITION 71

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

HMM
Trajectory
Random

Figure 4.19: The recognition rate in the multiple user setting, mapped to the number of
grasp types available.

ther experiments are required to evaluate if training on multiple users will increase the
generalization capabilities of the system.

4.3.6.3 Misclassification Analysis

As seen in Fig. 4.20, most misclassifications are thePower Sphereand thePrecision Disc
being classified as the4-Finger Thumb. It is easy to reason why this happens. First, the
grasp types are very similar in terms of fingertip positions, see Fig. 4.15. Second, the
way the users take these grasps vary among the subjects. Some users have a wide spread
angle when taking the4-Finger Thumbgrasp, while others keep their fingers close together.
This, combined with the inaccuracy of the sensors (up to 1 or 2 cm), and the different hand
shapes of the subjects, makes it very hard to distinguish between these grasps using only
fingertip positions.

4.3.6.4 Grasp Intention

We have also investigated how well the methods recognize grasp intention. When a human
grasps an object, the hand starts to prepare for the grasp immediately. This behavior can
be exploited for grasp intention recognition. In these experiments we have only used five
grasp types, as some are very similar in the beginning of the grasp sequence. We have
evaluated how well the methods perform when trained and tested only on the first part of

72 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

Figure 4.20: The confusion matrix, for 10 grasp types, and multiple users.

the grasp. As seen in Fig. 4.21, the grasps can be recognized with a 95% accuracy already
at 60% of grasp completion, in the single user setting. With multiple users, 80% of the
grasp has to be seen before the system performs satisfactory. Note that this evaluation was
done using five specific grasps, while the results depicted in Fig. 4.18 were generated as
the mean over the results from all the possible subsets of grasp types drawn from the total
ten grasp types.

4.3.7 Conclusion

In this section, we have presented two methods for grasp recognition. The first method
relies on fingertip movements where only three fingers have been considered due to lim-
itations of the measurement device. The second method is based on the hand trajectory
taken during the grasp. The position and orientation as well as the velocity of the hand is
tracked during grasp execution. The experimental evaluation has shown that as expected,
the hand posture is more important than the trajectory taken, but surprisingly good results
were obtained from the hand trajectory.

We have also found that the user reveals much information during the grasp and this
information can be used to estimate the grasp type before it is taken. When the system is

4.4. AUTONOMOUS GRASPING INSPIRED BY HUMAN DEMONSTRATION 73

20 40 60 80 100
0

20

40

60

80

100

% of grasp completion

R
ec

og
ni

tio
n

ra
te

 (%
)

Single user setting
Multiple user setting

Figure 4.21: The recognition rate mapped to the percentage of grasp completion, for five
grasp types.

used on the same user that has trained the system, it can recognize almost all grasps at just
60% completion. Grasp recognition is further used in Section 4.4 in order to aid the robot
in choosing a grasp type.

4.4 Autonomous Grasping Inspired by Human Demonstration

One of the main challenges in the field of robotics is to make robots ubiquitous. To in-
telligently interact with the world, one of the key abilities that robots need to have is to
manipulate objects. Typical environments in which robots will be deployed, such as a
house or an office, are dynamic and it is very difficult to equip robots with an ultimate
and general grasp planning capability. Planning a grasp is difficult due to the large search
space resulting from all possible hand configurations, grasp types, and object properties
that occur in regular environments. Another important question is how to equip robots
with capabilities of gathering and interpreting the necessary information for novel tasks
through interaction with the environment in combination with minimal prior knowledge.

In this section we present a method for automatically grasping known objects. The
entire grasp sequence is thoroughly evaluated in a simulated environment, from learning
a grasp to actually reaching it, including dynamic simulation of the grasp execution. We
also discuss the necessary requirements for evaluating this approach in a real setting. It
should be noted here that the problems arising are not only related to the mapping between

74 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

different kinematic chains for the arm/hand systems but also to the quality of the object
pose estimation delivered by the vision system.

The contributions of the work presented in this section are:

• A suitable grasp is related to object pose and shape and not only to a set of points
generated along its outer contour. This means that we do not assume that the initial
hand position is such that only planar grasps can be executed as proposed in (Morales
et al., 2004). In addition, grasps relying only on a set of contact points may be
impossible to generate on-line since the available sensory feedback may not be able
to estimate the exact same points on the object’s surface once the pose of the object
is changed.

• The choice of the suitable grasp is based on theexperience, i.e. it is learned from
simulated grasps on the object, and also from the human by defining the set of most
likely hand preshapes with respect to the specific object. A similar idea was inves-
tigated in (Miller et al., 2003) but only one robotic hand and four grasp preshapes
were considered. We evaluate both Barrett (Townsend, 2000) and Robonaut hand,
(Lovchik and Diftler, 1999). Since grasp preshapes are generated based on recogni-
tion of human grasps it makes them more natural. This is, of course, of interest for
humanoid robots where the current trend is to resemble human behavior as closely
as possible.

• Finally, we evaluate the quality of different grasp types with respect to inaccura-
cies in pose estimation. This is an important issue that commonly occurs in robotic
systems. The reasons may be that the calibration of the vision system or hand-eye
system is not exact or that a detailed model of the object is not available. We evaluate
how big pose estimation error different grasp types can handle.

4.4.1 Related Work on Grasping

Considering specifically object manipulation tasks, the work on automatic grasp synthesis
and planning is of significant relevance, (Milleret al., 2003; Pollard, 2004; Moraleset al.,
2004; Platt Jret al., 2003). The main issue here is the automatic generation of stable grasps
assuming that the model of the hand is known and that certain assumptions about the shape
of the object can be made. Example of assumptions may be that the full and exact pose
of the object is known in combination with its (approximate) shape, (Milleret al., 2003).
Another common assumption is that the outer contour of the object can be extracted and
a planar grasp applied, (Moraleset al., 2004). The work on contact-level grasps synthesis
concentrates mainly on finding a fixed number of contact locations with no regard to hand
geometry, (Bicchi and Kumar, 2000; Dinget al., 2000).

Taking into account both the hand kinematics as well as somea-priori knowledge about
the feasible grasps has been acknowledged as a more flexible and natural approach towards
automatic grasp planning (Pollard, 1994; Milleret al., 2003). In (Pollard, 1994), a method
for adapting a given prototype grasp of one object to another object, such that the quality
of the new grasp would be at least 75% of the quality of the original one was developed. It

4.4. AUTONOMOUS GRASPING INSPIRED BY HUMAN DEMONSTRATION 75

has to be, however, pointed out that this process required a parallel algorithm running on
supercomputer to be computed efficiently. The method proposed in (Milleret al., 2003)
presents a system for automatic grasp planning for a Barrett hand by modeling an object
as a set of shape primitives, such as spheres, cylinders, cones and boxes in a combination
with a set of rules to generate a set of grasp starting positions and pregrasp shapes.

With respect to dynamic grasping and manipulation control, previously presented re-
sults include catching a ball or playing the piano using the robotic DLR Hand (Borstet
al., 2003). Exchanging a light bulb has been shown using the Utah/MIT hand (Jägersand,
1997). High speed grasping has also been demonstrated in (Namikiet al., 2003). In terms
of grasping systems, relevant ideas have been presented in (Horswill, 2000).

4.4.2 Grasp Mapping

The ANN-based hand posture mapping presented in Section 4.1 can not be used in this
scenario. It is designed to be used online in a teleoperative manner, while in this section we
deal with autonomous grasping. Instead, we define a fixed grasp mapping scheme based on
grasp type similarity. During execution of the robot grasp, the robot’svirtual fingers(Kang
and Ikeuchi, 1997) acts much in the same way as the human fingers. It has been argued that
grasp preshapes can be used to limit the large number of possible robot hand configurations.
This is motivated by the fact that, when planning a grasp, humans unconsciously simplify
the grasp choice by choosing from a limited set of prehensile postures appropriate for the
object and task at hand (Napier, 1956). Related to robotics, Cutkosky (1989) classified
human grasps needed in a manufacturing environment and evaluated how the task and
object geometry affect the choice of grasp.

As shown in Section 4.3 the current grasp recognition system can recognize ten dif-
ferent grasp types. The mapping scheme showed in Table 4.1 was defined. This table is
visualized in Fig. 4.22.

Barrett Two−finger Thumb Robonaut Four−finger Robonaut Platform Robonaut Precision Disc

Four−finger Thumb Three−finger Thumb Light Tool Abducted Thumb Power Sphere Large Diameter Small Diameter Medium Wrap Platform Precision Disc

Barrett Precision DiscBarrett WrapRobonaut Wrap Robonaut Thumb Wrap

Figure 4.22: Initial robot hand postures for different grasp types.

It has to be noted here that the robot grasp types do not refer only to hand postures,
but to grasp execution schemes. Such a scheme includes the initial position, theapproach
vector, the robot hand closing sequence, controllers for corrective movements, etc. Hence,
different strategies are used to grasp an object dependent on the grasp type. Fig. 4.22
illustrates the initial hand postures for each of the controllers.

76 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

Human Grasp Barrett Grasp Robonaut Grasp

Large Diameter Barrett Wrap Robo. Thumb Wrap

Small Diameter Barrett Wrap Robo. Thumb Wrap

Medium Wrap Barrett Wrap Robo. Thumb Wrap

Abducted Thumb Barrett Wrap Robonaut Wrap

Light Tool Barrett Wrap Robonaut Wrap

Four-finger Thumb Barrett Two-finger Thumb Robo. Four-finger

Three-finger Thumb Barrett Two-finger Thumb Robo. Four-finger

Power Sphere Barrett Wrap Robonaut Wrap

Precision Disc Barrett Precision Disc Robo. Precision Disc

Platform Barrett Wrap Robonaut Platform

Table 4.1: The mapping of human grasps to robot grasp controllers. The left column is a
selection of human grasps from Cutkosky’s grasp hierarchy.

4.4.3 Grasp Controllers

There are two basic grasp controllers in the system: Power Grasp and Precision Grasp.
There are eight variations of these, three for the Barrett hand and five for the Robonaut
hand. The difference lies in the initial grasping position and the finger control during
closure. The two basic controllers are described below.

• Power Grasp
First the initial hand posture is set according to the grasp type recognized from the
human demonstration. Then the hand approaches the object with the palm towards
the object. Once contact is detected, all fingers close simultaneously. When a finger-
tip contact is detected, that finger stops its closure. This grasp type will in general
give a contact at the palm for a more stable grasp. Depending on the grasp type, the
joint angle speed may be different for each joint, causing for example the thumb to
close more slowly.

• Precision Grasp
This controller is similar to the Power Grasp, but with an added dimension. Once
contact is detected, typically at one of the finger tips, the hand can retract a prede-
fined distance and then close all fingers simultaneously. This allows the robot to
combine tactile sensing with computer vision.

The grasp approach vector is defined relative to the object’s pose and center. Other
object shapes may require evaluation of several approach vectors, e.g. the object top and
bottom, or one or more for each object feature.

4.4. AUTONOMOUS GRASPING INSPIRED BY HUMAN DEMONSTRATION 77

For both these controllers, a grasp modification step would increase the grasp success
rate. Once the grasp is established, the robot could calculate the grasp quality, estimate the
local surface patches of the object, and correct its finger positions for a more stable grasp.
However, this is a difficult research problem, and outside the scope of this work.

4.4.4 Grasp Planning

Grasp planning is the process of finding stable grasps for a certain object without actually
grasping them. The planning is done for each object and each robot end-effector, in the
grasping simulator GraspIt! A 3D-model of the object is approached with the end-effector
model from many different angles, and a grasp quality measure is used to measure the
grasp obtained from each angle. All results are stored in a grasp experience database. Our
approach to grasp planning is similar to the work described in (Miller and Allen, 2000) and
(Moraleset al., 2006a). However, those approaches require the object to be composed of
object primitives, explained later in Section 4.4.4.3. For each primitive, a set of predefined
candidate grasps and approach directions are evaluated. In this work, we do not use pre-
defined approach vectors but instead evaluate many approach vectors for each object. The
vectors may target the center of the object or one of the primitives, but we believe the infor-
mation gained from previous grasping of a primitive has limited value when the primitive
is attached to an object. The most significant contribution compared to the above papers is
that we evaluate how the grasps perform under imperfect pose estimation. We also evaluate
how the primitive representation affects the results as the real object is grasped.

The planning is performed using a simple search technique where many different ap-
proach vectors are tested on the object. The training can be performed on either the primi-
tive object model or the full object model, and in the experiments we have evaluated both
methods. A more detailed model will in general result in higher grasp quality on the real
object.

For power grasps, three parameters (θ, φ, ψ) are varied describing the approach di-
rection and hand rotation. For precision grasps, a fourth parameterd, that describes the
retract distance when contact is detected, is added. The number of evaluated values for the
variables areθ=9, φ=17, ψ=9, d=6. For the precision grasps the search space was hence
8262 grasps which required about an hour of training using kinematic simulation.

4.4.4.1 Grasp Quality Measures

To evaluate grasps, the 6-D convex hull spanned by the forces and torques that the grasp
can resist is analyzed using GraspIt! (Miller and Allen, 1999). Theε-L1 quality measure
is the smallest maximum wrench the grasp can resist and is used for power grasps. For
precision grasps, a grasp quality measure based on the volume of the convex hull was
used, volume-L1. These grasp quality measures obviously require full knowledge of the
world, and can thus only be used in simulation.

78 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

4.4.4.2 Grasp Retrieval

At run-time, the robot retrieves the approach vector that result in the highest quality grasp
from the grasp experience database. As the highest quality grasp is not necessarily the
most robust with respect to position and model errors, the grasp should be chosen tak-
ing also those parameters into account, see Section 4.4.5.2. Because of robot kinematic
constraints and possible non-free paths toward the object, all approach directions are not
suitable at task execution time. Thus, the robot searches the database only for directions
that are applicable in the current situation. In a Programming by Demonstration scenario,
the mapping from human to robot grasp is one-to-one. But if the robot acts autonomously,
i.e. exploresthe environment and performs grasps on unknown objects, the grasp type is
not defined and the best grasp can be chosen from among all possible grasps.

4.4.4.3 Training on Object Primitives

As mentioned earlier, a model of each object is necessary for training the grasp planner.
It is not likely that the robot will be able to acquire these models by itself within the near
future. However, it is not unrealistic to assume that it will be possible to extractshape
primitivesusing computer vision. The idea is to represent each object by its appearance
and shape primitives. The appearance is used for recognition, and the primitives for grasp
planning. Several primitives build up an object, and the primitives can be of different basic
shapes: truncated cone, sphere, box, cylinder etc. To evaluate such an approach, we have
designed a primitive representation of each object in our scenario, see Fig. 4.23. The grasp
controllers are then evaluated in the GraspIt! simulator. For evaluation purposes, we have
modelled all objects in 3D, also seen in Fig. 4.23.

4.4.5 Experimental Evaluation

The experimental evaluation presented here focuses on the gripping task, as the grasp
recognition and object recognition models have been evaluated in previous chapters. The
grasping evaluation is also done in the simulator, since we do not have access to the real
manipulator hands. Five objects shown in Fig. 4.23 were modelled and put in the simulator.
The real objects were placed on a table, with a mounted camera to monitor the world state.
Objects and grasps were recognized and fed to the virtual robot, which then grasped the
same object with the desired grasp. In this section we provide both qualitative experiments
that show how some human grasps are mapped to the manipulator, and quantitative exper-
iments that show how small errors in pose estimation affect the end result. As pointed out
by Moraleset al.(2006b), the robustness of a grasp to positioning the effector has not been
widely addressed in the literature.

4.4.5.1 Grasp Mapping Examples

Fig. 4.24 shows some examples of the best grasps obtained when the robot is free to choose
any approach direction. Fig. 4.24(h) shows an example of a failed grasp, due to a simulated
error in pose estimation.

4.4. AUTONOMOUS GRASPING INSPIRED BY HUMAN DEMONSTRATION 79

Figure 4.23: Left: The real objects. Center: The modelled objects. Right: The object
primitives used for training.

4.4.5.2 Simulated Pose Estimation Inaccuracies

To evaluate the performance under imperfect pose estimation, we have simulated errors in
pose estimation by providing an object pose with an offset. As pointed out in (Moraleset
al., 2006b), the robustness of a grasp to positioning the end-effector has not been widely
addressed in the literature.

In the experiment, the target object was placed on the table and the robot performed
50 grasps using different approaches. The robot hand position was between each grasped
translated a certain distance in a random direction. As a result, the robot interpreted the

80 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

(a) Barrett Pre-
cision Disc

(b) Barrett
Wrap

(c) Barrett Wrap

(d) Robonaut
Precision Disc

(e) Robonaut
Thumb Wrap

(f) Robonaut
Thumb Wrap

(g) Barrett 2-
finger Thumb

(h) Robonaut 4-
finger Thumb

(i) Failed Bar-
rett Wrap

Figure 4.24: Examples of grasp executions for various grasp types and objects. (a)-(h)
shows successful grasps, while (i) shows a failed grasp due to a simulated error in pose
estimation. The contact friction cones are plotted in red.

situation as if the object (and possibly table) was in another position than that for which
the grasp was planned. This was repeated for five different vector lengths: 0, 1, 2, 3, and 4
cm. In total, the robot grasped the object 250 times from a total of 201 different positions.

Fig. 4.25 - 4.27 show the grasp success rates for various grasps and objects, under

4.4. AUTONOMOUS GRASPING INSPIRED BY HUMAN DEMONSTRATION 81

increasing error in position estimation. As expected, power grasps are more robust to
position errors than precision grasps. The precision grasps target details of object, e.g.,
the bottle cap or the ear of the mug. Thus, the grasps are much more sensitive to position
inaccuracies.

It is clear that the Barrett hand is more robust than the Robonaut hand, likely due to
its long fingers. The exception is the grasping of the mug, Fig. 4.26, where the Robonaut
Four-finger Thumb grasp is the best.

The bottle and the mug have been trained both using a primitive model and using the
real model (see Fig. 4.23). Training on the primitive model does not decrease the grasp
success rate much, especially not for the bottle. However, the primitive model of the mug
is, unlike the real mug, not hollow, which causes problems for some of the precision grasps
trained on the primitive.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap
Robonaut Thumb Wrap, trained on primitive
Robonaut Precision Disc
Robonaut Precision Disc, trained on primitive
Barrett Wrap
Barrett Wrap, trained on primitive
Barrett Precision Disc
Barrett Precision Disc, trained on primitive

Figure 4.25: Grasp bottle.

In (Tegin et al., 2006) we present a force controller for the Barrett hand. Using this,
grasping in a dynamic environment was simulated. The results in Fig. 4.28 shows that this
allows for even worse pose estimation while still finding successful grasps.

We have also evaluated how a simulated rotation estimation error affects the result. For
each object and grasp type, we tested much the object could be rotated before the grasp
failed. As expected, for symmetric objects like the orange and the bottle this type of error
has no effect. However, for the other objects we found that the difference in rotation error
robustness is big. Table 4.2 shows the rotation tolerance for various objects and grasp
types. For two of the Robonaut grasps on the mug, the rotation is no problem, with a
perfect success rate. For one of the Barrett grasps on the mug, the rotation is absolutely
crucial and cannot withstand a small rotation inaccuracy. Thus, this type of grasp should
be avoided for this object.

82 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap
Robonaut Thumb Wrap, trained on primitive
Robonaut Precision Disc
Robonaut Precision Disc, trained on primitive
Robonaut Four−finger Thumb
Robonaut Four−finger Thumb, trained on primitive
Barrett Wrap
Barrett Wrap, trained on primitive
Barrett Precision Disc
Barrett Precision Disc, trained on primitive
Barrett Two−finger Thumb
Barrett Two−finger Thumb, trained on primitive

Figure 4.26: Grasp mug.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap
Barrett Thumb Wrap

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap
Barrett Thumb Wrap

Figure 4.27: Left: Grasp orange. Right: Grasp zip disk packet.

4.4.6 Conclusion

The success rate of the presented system depends on the performance of four subparts:
i) object recognition, ii) grasp recognition, iii) pose estimation of the grasped object, and
iv) grasp execution. As demonstrated in Section 3.4, the object recognition rate for only
five objects is around 100 %, and the grasp recognition ratio is about 94 % for ten grasp
types. Therefore, the performance in a static environment may be considered close to
perfect with respect to the first steps. As the object pose and possibly the object model is
not perfectly known, some errors were introduced that indicate the needed precision in the
pose estimation given a certain grasp execution scheme. The results suggest that for certain
tasks stable grasping is possible even when the object’s position is not perfectly known.

4.5. DISCUSSION 83

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

Position Error [cm]

G
ra

sp
 S

uc
ce

ss
 R

at
e

Barrett Kinematic
Barrett Dynamic

Figure 4.28: Grasp success rates for grasping of the rice packet, using different controllers.
As seen, a force controller (Barrett Dynamic) improves the result and allows the hand to
stabilize the grasp even if the approach vector is poor. (Due to some problems with the
simulator, a limited number of samples was used in the evaluation of dynamic grasping.
For the 0, 1, 2, 3, and 4 cm random displacement, the number of trials were 50, 14, 18, 18,
and 12 respectively (instead of 50). Still, these samples were truly random and we believe
that the number of trials is high enough to draw conclusions.)

If a high quality dynamic physical modeling is essential, for example when grasping
compliant objects or for advanced contact models, other simulation tools may be more
suitable, see e.g. (Ferrettiet al., 2006). But since grasping often can be performed rather
slowly, and as model errors for mass properties, sensors, friction, and in actuator and gear
models are often quite large, second order dynamic effects can be ignored in the control
design and instead considered as small disturbances (Prattichizzo and Bicchi, 1998).

4.5 Discussion

In this chapter, we have presented two approaches for robotic grasping. In the first, we
focus on robot control and teleoperation using a natural device: a data glove which let the
user control the robot hand with his own hand. In the second approach, the grasping is
autonomous but the choice of grasp is inspired by a human demonstration, from which the
grasp type is automatically recognized. This grasp type is then mapped to the robot and
the grasp is executed in a simulated environment.

84 CHAPTER 4. GRASP MAPPING, RECOGNITION AND EXECUTION

Object and Grasp Type: Rotation Error Tolerance (degrees):
Mug, Robonaut Precision Disc 4
Mug, Robonaut Thumb Wrap 180

Mug, Robonaut Four Finger Thumb 180
Zip Disc Packet, Robonaut Thumb Wrap 17

Rice Packet, Robonaut Thumb Wrap 2
Zip Disk Packet, Barrett Thumb Wrap 3

Rice Packet, Barrett Thumb Wrap 17
Mug, Barrett Thumb Wrap 12
Mug, Barrett Precision Disc 0

Mug, Barrett Two Finger Thumb 6

Table 4.2: The rotation error tolerance for different objects and grasp types.

Methods for generating robot grasps based on object models, shape primitives and/or
human demonstration have been presented and evaluated. While many factors are impor-
tant, the focus lies on one of the main challenges in automatic grasping; the choice of the
approach vector. The approach vector depends on the object as well as on the grasp type.
Using the proposed methods, the approach vector is chosen not only based on perceptional
cues, but on experience that some approach vectors will provide useful tactile cues that
result in stable grasps. Moreover, a methodology for developing and evaluating grasping
schemes has been presented. Focus lies on obtaining stable grasps under imperfect vision,
something that has not been thoroughly investigated in the literature.

Simulating results was necessary for generating insight into the problem and for per-
forming the statistical evaluation for the grasp experience, since i) the world must be reset
after each grasp attempt, and ii) computing the grasp quality measure requires perfect
world knowledge. The proposed strategies have been demonstrated in combination with
tactile feedback and hybrid force/position control of a robot hand. The functionality of
the proposed framework for grasp scheme design has been shown by successfully reaching
force closure grasps using a Barrett hand and dynamic simulation.

The grasp experience database contains not only a record of success rates for different
grasp controllers but also the object-hand relations during an experiment. In this way, we
can specify under what conditions the learned grasp strategy can be reproduced in new
trials.

The results of the experimental evaluation performed in a simulated environment sug-
gest that the outlined approach and tools can be of great use in robotic grasping, from learn-
ing by demonstration to robust object manipulation. Future work includes further grasp
execution scheme development and implementation. Furthermore, to ensure truly secure
grasping outside the simulator, the grasping scheme must also comprise a grasp quality
evaluation method that does not use information available in simulation only. Preferably
such a measure would also depend upon the task at hand.

Chapter 5

Task Level Learning from
Demonstration

Robot task learning has during the past years received significant attention (Kuniyoshiet
al., 1994; Atkeson and Schaal, 1997; Schaal, 1999; Matarić, 2000; Ogawaraet al., 2002;
Breazeal and Scassellati, 2002; Friedrichet al., 1999; Ehrenmannet al., 2001; Aleottiet al.,
2004; Ekvall and Kragic, 2005a) and it has been recognized that more natural programming
interfaces are necessary to allow ordinary users to teach robots new tasks. Motivated by
the fact that imitation enables humans to easily learn skills others have already mastered,
the robotics community has taken upon this idea and used it in the design of some of the
recent task learning systems for robots. From the viewpoint of task learning in humans it
is known that such a strategy where a teacher’s demonstration is used as a starting point
of learning significantly speeds up the process and reduces the amount of trial-and-error
steps. In the AI community, much of the work has concentrated on the high-level planning
and conceptual representations of skills and state changes using propositional or first-order
logic. In robotics, such an approach to learning has been considered in frameworks of
Learning by Imitation and Programming by Demonstration (PbD), (Friedrichet al., 1999;
Chen and Zelinsky, 2003) where sensory based task representation and task analysis have
been recognized to represent the basis for development of robust and flexible learning
systems. Apart from being able to learn from and imitate humans, improving robots’
capabilities through longterm training and feedback has been recognized as the milestone
in both communities.

For the work presented here, we consider a service robot scenario in which we want to
enable a robot to learn and refine representations and understanding of complex domestic
tasks. The robot should be able to learn either by a direct learning process with a human
teacher, or through observation where the robot is able to extract new information and learn
new skills just by looking at a human. A PbD interface can be used to interpret teacher’s
demonstration and generate control commands required by the robots for completing the
task. Such a programming interface is natural for humans since it does not require any
programming skills and can potentially be used to program very complex tasks.

85

86 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

Naturally, an important issue to deal with is that the initial task setting will change
between the demonstration and execution time. A robot that has to set up a dinner table
may have to plan the order of handling plates, cutlery and glasses in a different way that
previously demonstrated by a human teacher. Hence, it is not sufficient to just replicate
the human movements but the robot i) must have the ability to recognize what parts of the
whole task can be segmented and considered as subtasks so to ii) perform online planning
for task execution given the current state of the environment.

The main contribution of this chapter is the use of a task planning approach in combina-
tion with robot learning from demonstration strategies. The important problem considered
here is how to instruct or teach the robot the essential order of the subtasks for which the
execution order may or may not be crucial. As an example, in a table setting scenario, the
main dish plate should always be under the appetizer or a soup plate and the order in which
these are placed on the table is important. One way of addressing this problem is to demon-
strate a task to the robot multiple times and let the robot learn which order of the subtasks
is essential. In relation, additional contributions of this chapter are the state generation and
constraints identification methodologies based on multiple human demonstrations.

The proposed methodologies are evaluated in the framework of robotic object manip-
ulation tasks. Learning such tasks is considered a hard problem since robots have a very
limited world knowledge to start with and are mainly constrained by the type of available
sensory modalities. For humans, much of the background knowledge is innate and one
demonstration is often sufficient. This is not a case when considering a robot. There are
two possible directions here: either we let the robot assume that the actions can be executed
in any order, or that the actions have to be executed in the same order as the demonstra-
tion. The first alternative requires that the human instructs the robot of all the possible task
constraints during the demonstration. In this chapter, we have chosen the latter alternative
since it allows the robot to learn from multiple observations and improve the task model
over time, without the risk of violating a contraint.

5.1 Motivation and Related Work

For humans, one of the fundamentals of social behavior is the understanding of each others
intentions, skill transfer and learning through interaction and observation. Skill learning
in humans have been well studied and most common forms of teaching are observation,
demonstration, physical guidance or verbal instruction, (Schmidt and Lee, 1999). When
learning a complex task, a significant amount of information has to be processed. It has
been shown that in such cases, the viewer does not know which details are important for
the task outcome and that the appropriate level of detail should be provided for successful
learning, (Schmidt and Lee, 1999).

In a similar way, the robot task learning have to be made easy and flexible. Some of
the open questions are:

• How should the robot be instructed complex tasks when the temporal order for some
of the subtasks is important but unimportant for others?

5.1. MOTIVATION AND RELATED WORK 87

• How should objects and actions that can be performed on them be represented?

• Should the task goal be represented by the final goal state or should it be learned by
considering temporal dependencies between the subtasks?

• How does the representation and number of demonstrations facilitate the generaliza-
tion of task models?

These are some of the question we are trying to answer in the work presented here. In
general, we would like to teach the robot some useful tasks such as how to set up a dinner
table, slice a cucumber or put in dishes into a dishwasher. Setting up a dinner table task
can be viewed as a sequence of pick-and-place object manipulation subtasks, (Ekvall and
Kragic, 2005b). For this task, the robot is required to recognize objects, grasp them and
put them on the table in specific relation to each other. The relationship between objects
can be represented relative to one object, e.g. main plate. Chopping a cucumber is more
difficult since the robot has to learn that a knife should be held in a specific way related to
the cucumber. Different from the first example, the relative relationship between objects
changes during task execution. Mobile manipulation tasks such as mail delivery (Jensfelt
et al., 2005) include constraints, for example that the mail has to be collected before it
can be delivered but the order of delivery may be irrelevant. In summary, for some of the
tasks a specific order of subtasks is required and for some it is not. One contribution of
our work is that the problem of learning tasks that include object manipulation is solved
by identifying the goal state and the spatio-temporal constraints of the task.

Many of the current robot instruction systems that deal with programming by demon-
stration are based on a single demonstration. However, the robot should be able to update
the initial task model by observing humans or another robot performing the task multi-
ple times. In other words, we need a task level learning and planning system that builds
constraints automatically identified from multiple demonstrations. This problem has pre-
viously been considered in regard to sub-optimality in demonstration (Friedrich and Dill-
mann, 1995; Chen and Zelinsky, 2003) where different sources of sub-optimality have been
recognized: where the human demonstrates unnecessary, incorrect or unmotivated actions;
where there is a choice of scenario regarding when to apply an action; where the user does
not know enough about the task and thus the actions are demonstrated wrongly. Some of
the solutions to these problems have been studied in (Chen and Zelinsky, 2003) where the
sub-optimality on the task-level is considered as noise and removed before any program-
ming of the robot takes place. Differently from the work presented in (Chen and Zelinsky,
2003; Lefebvreet al., 2005) that generates plans autonomously using geometric properties
of objects or instructions provided by the demonstrator, we deal with learning and refine-
ment of high-level tasks based on a set of underlying capabilities already available to the
robot. In particular, we are interested in evaluating scenarios where the robot is able to
reproduce a task based only on a desired outcome or final goal of the task, preferably also
generalizing from multiple demonstration trials.

A similar problem has been studied in a robot navigation scenario, (Nicolescu and
Mataric, 2003) where a task is represented by the alternate paths shown during the teach-
ing phase. Compared to our work, the robot is still required to follow one of the human

88 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

demonstrations unless the task is refined. In the work presented here, we focus on ob-
ject manipulation tasks which require that objects are represented in relation to each other.
Thus, our work differs both in the state representation and the task generalization.

In (Ogawaraet al., 2002), generation of task models based on multiple human demon-
strations is presented.Essential interactionsthat represent the important hand movements
during a manipulation task are identified. Then the relative trajectories corresponding to
each essential interaction are generalized by calculating their mean and variance. High
variance means arbitrary motion is allowed, while low variance means strictly precise mo-
tion is required. The learned trajectories are stored in the task model, which is used to
reproduce a skilled behavior. It is important to point out that trajectories are related to the
essential interactions with the manipulated objects, meaning that many different trajecto-
ries corresponding to the same object manipulation are represented. This makes the method
less flexible, as it requires the world state to be roughly the same as during the demonstra-
tion. In our work, we do not store the hand trajectories, but instead what has been done.
The robot can then reproduce the results of the human demonstration at execution time by
planning a sequence of actions to reach the goal state.

5.2 System Description

The general outline of the system is shown in Fig. 5.1. The teacher demonstrates the
task and and the robot makes observations based on visual input. After a learning trial,
explained in more detail later on, the robot first plans and then executes the task using
visual input and grasp planning.

Visual input

Demonstration

Learning

Planning

Execution
Visual Servoing

Task achieved?

No

Grasp Planning

Yes
Done

Figure 5.1: Integration of task learning from demonstration and task level planning.

5.3. TASK LEVEL PLANNING 89

In the current system, task learning can be performed in three different ways:

• Imitation Learning
The termimitation learningis commonly used to represent task learning at a low
level by considering reproduction of trajectories and/or robot joint configurations,
(Ude, 1999; Rileyet al., 2000; Ruchanuruckset al., 2006). In our work, with the
imitation learning we denote the task reproduction process where the robot is given
only the task goal and it tries to achieve the same result.

• Learning in Dialog with Teacher
In human teaching, it is common that the teacher demonstrates the task once, while
continuously explaining each step. We investigate a similar approach in our system
by allowing the teacher to add some constraints to the task while performing it. By
doing this, the robot is explicitly instructed what not to do and it is thus able to avoid
solving the task in a wrong or inefficient way.

• Generalizing from Multiple Observations
We also believe that the robots should be able to improve or learn new tasks not only
through a direct teaching process but also by observing humans performing tasks in
everyday settings. Multiple observations of the same task can be utilized to form a
more general and thus flexible model of the task by autonomously identifying the
spatio-temporal constraints of the subtasks or detect the irrelevant subtasks.

In this chapter, we model and evaluate all of the above approaches.

5.2.1 Experimental Platform

The experimental platform is a PowerBot from MobileRobots Inc. It has a non-holonomic
differential drive base with two rear caster wheels. The robot is equipped with a 6-DoF
robotic manipulator on the top plate. It has a SICK LMS200 laser scanner mounted low in
the front, 28 Polaroid sonar sensors, a Canon VC-C4 pan-tilt-zoom CCD camera with 16x
zoom on top of the laser scanner and a fire wire camera on the last joint of the arm, see
Fig. 5.2.

5.3 Task Level Planning

Task planning is the problem of finding a sequence of actions to reach a desired goal state,
(Russel and Norvig, 2003). This is a classical AI problem which is commonly formalized
using a suitable language to represent task relevant actions, states and constraints. Natu-
rally, the robot has to be able to plan the demonstrated task before executing it if the state
of the environment has changed after the demonstration took place. The objects to be ma-
nipulated are not necessarily at the same positions as during the demonstration, and thus
the robot may be facing a particular starting configuration it has never seen before.

Our task planner is inspired by the STRIPS planner, (Fikes and Nilsson, 1971), and
is based on operations which contain several preconditions and effects. These describe

90 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

Figure 5.2: The experimental platform: PowerBot from MobileRobots Inc.

the changes of the world state once an action has been executed. The second part of the
planner is the problem file, which is designed to reflect the current world state. The file
contains all objects in the current scene, their locations and task defined destinations. It is
automatically generated at run-time.

The domain and problem is provided to the planner in XML. The domain is formalized
using first order logic, which allows us to model the changing state of the world. Currently,
there are only two types of operations available to the planner, defined below.

Definition 1. Domain Operations

• pickUp(o, l, g)- Grasp the objecto at locationl using grasp typeg.

• putDown(o, l, g)- Put down the objecto at locationl using grasp typeg.

The world state is described with a list of predicates.

Definition 2. Domain Predicates

• handEmpty- indicates whether the hand is empty or not.

• holding(o)- indicates if the hand is currently holding objecto.

• objAtLoc(o, l) - indicates if locationl is occupied by the objecto.

• graspable(l, g) - indicates if the object at locationl is graspable with grasp typeg.

5.3. TASK LEVEL PLANNING 91

• collision(l1, l2, g) - indicates if a collision would occur if a graspg is applied to
locationl1, and both locationl1 andl2 are occupied.

• mustOccurBefore(o1, l1, o2, l2)- A special predicate to handle temporal constraints.
Indicates if objecto1must be placed at locationl1 before objecto2can be placed at
locationl2.

Below we define the preconditions and effects for the operators.

Operation pickUp(o, l, g)

Precondition: handEmptŷ objAtLoc(o, l)^ graspable(l, g)̂ ¬∃(obj, loc) (collision(l,
loc, g)^ objAtLoc(obj, loc))
Effect: holding(o)^ ¬handEmptŷ ¬objAtLoc(o, l)

Operation putDown(o, l, g)

Precondition: holding(o) ^ graspable(l, g)^ ¬∃(obj) objAtLoc(obj, l)^ ¬∃(obj, loc)
(collision(l, loc, g)^ objAtLoc(obj, loc)) ^ ¬∃(obj, loc) mustOccurBefore(obj, loc, o, l)
Effect: handEmptŷ ¬holding(o)^ objAtLoc(obj, loc)) ^ ∀(obj, loc)¬mustOccurBefore(o,
l, obj, loc)

Thus, the grasp type for an object is selected automatically at run-time, based on the
predicates provided to the planner by the vision system. As seen, we operate with a limited
number of predefined grasps. For planning, a grasp must be chosen so that is does not
cause collisions with the other objects, and also so that it is within the robot’s reach. A
graspg at locationa is not possible if there is a nearby locationb occupied by another
object, that would cause a collision when graspg is applied toa. For all location pairs,
the robot tests all grasps against all objects for collisions and reachability. This approach
allows the robot to select the best grasp depending on the target pose of the object.

The locations are limited to the source and target locations of each object, plus a num-
ber of additional free locations that can be used for freeing up the workspace. As an
example, the source location for a box is labeledloc_box_s, and similarly the target loca-
tion is labeledloc_box_t. Section 5.5.1 provides an example of how the planner operates.
We note here that more advanced logical languages will be considered once more complex
tasks are to be modelled. One example is the Linear Dynamic Event Calculus proposed
in (Steedman, 1997), a logical language that combines aspects of situation calculus with
linear and dynamic logics.

In this chapter, we work with polyhedral objects but the presented methodology can be
applied to a large set of shapes as long an accurate pose estimate is available. The next
section shortly describes the pose estimation process.

92 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

5.3.1 Pose Estimation

As stated, pose estimation of objects is performed automatically. Here, we use a slightly
different method to the one presented in Section 3.6.1. Because only a few objects that
occupy a rather large part of the image are used, there is no need to first search for objects.
The objects are modelled using a set of geometric primitives as shown in Fig. 5.3 where
only the size has to be known in advance. In the simplest case, the primitives are the
apparent object edges modelled using points, lines and polygons defined both in the camera
(3D) and image (2D) space. Given the current pose of the object, hidden primitive removal
is performed using back face culling (Foleyet al., 1990).

Figure 5.3: An object is represented with points, lines and polygons.

Due to the rich textural properties of the objects, pose estimation cannot be performed
by using solely the outer contours of the object. This is why in an off-line learning stage,
we store a single file representing a set of SIFT points originally presented in (Lowe, 1999).
With the stored image, we also store the pose of the object corresponding to that particular
view of the object. At run time, the SIFT feature detector is applied to the whole image.
The detected features are then matched to the stored set of points defined for each of the
objects. For planar objects, a homography based matching with robust outlier rejection
(RANSAC) is used for pose estimation, as presented in (Kyrki and Kragic, 2005). The
reason for this approach is that for each point on the surface, it is enough to know which
facet it belongs to — the exact 3-D position of each individual point is not required. Since
the pose of the object for the stored view is known, the problem of scale ambiguity related
to homography decomposition is easily solved. Examples of the pose estimation process
are shown in Fig. 5.4 and Fig. 5.5. We note that the pose estimation process is not perfect
in some cases when only one side of the object is visible, Fig. 5.5 (left).

5.3.2 Detecting Object Collisions

The work here relates also to the path planning problem, (Bohlin and Kavraki, 2000).
Compared to the task level planning, a path planner searches for a path in robot’s configu-
ration space to reach a desired configuration while avoiding obstacles, self-collisions, etc.
In contrast, a task planner performs high level operations and rely on an existing low-level

5.3. TASK LEVEL PLANNING 93

Figure 5.4: Examples of estimated poses overlaid in white.

Figure 5.5: Examples of estimated poses overlaid in white. As seen in the left image, the
pose estimated from a single image is not always perfect.

robot controller to carry out the necessary operations. Using a path planner for planning
the entire task is not feasible as the complexity of the task would make the planner infeasi-
ble. Also, it is hard to accurately incorporate the dynamics of the actual grasping into the
path planner. For task planning, it is however important to also consider the reachability
of the robot. While a path planner only explores locations within the robot’s workspace, a
task planner operates in the task space and must at each step check that the specific world
location is reachable. The robot used in this work has a very limited workspace, as shown
in Fig. 5.6.

Before the planner is initiated, all possible object collisions that can occur during task
execution are evaluated. This is a fast process for settings with a few objects. If many

94 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

100 200 300 400 500 600 700
−500

0

500

x (mm)

y
(m

m
)

Robot reachability, z = −400 mm

Figure 5.6: The workspace of the robot, visualized for the plane 40 cm below the base
cube, where the experiments were conducted.

objects are involved in a task, techniques that limit the number of collision checks may
have to be utilized, e.g., only checking nearby locations for collision. Fig. 5.8 visualizes
the data available to the robot before performing collision checks. For each object, there
are a number of grasping configurations that can be applied to each object and a suitable
one is chosen based on the initial and destination position of the object and the current
position of other objects in the environment, see Fig. 5.7. A collision check results in a list
of grasps which are applicable to the object in the initial location, if its destination location
is currently occupied. The collision check is performed in three steps. First, it is tested
whether the two objects would collide with each other. In that case, no grasp is possible.
If not, each grasp for the object in the first location is checked for collision with the object
in the second location. If the grasp still does not cause a collision, it is checked whether
the robot can actually perform this grasp considering its kinematic constraints and limited
reachability.

Figure 5.7: The predefined grasp types for the different objects. The box has three grasps,
the wooden block has four, and the tape only two.

The collision checks are currently performed as following: two objects collide if their
bodies occupy the same part of the environment. This check is done in 2D since all objects
are assumed to be placed on a table in a vertical position. A grasp collides with an object if

5.3. TASK LEVEL PLANNING 95

Figure 5.8: A visualization of what the robot sees and knows. The thick lines are the object
positions including both their current position and their target position from the images
seen in Fig. 5.5. The dotted circles are the collision spheres from the different grasps. The
small circles origin from the gripper fingers, while the large circles arise from the gripper
itself and the camera mounted on the end effector, see Fig. 5.9. These larger spheres are
actually on a higher altitude and only cause collisions if a small object is being grasped
next to a tall object.

any of its collision spheres intersect with the object’s box. Since the robot knows the height
of each object and each sphere has an altitude, this collision check is done in 3D. A grasp
may have several collision spheres. For the parallel-jaw gripper we are using, there are one
small sphere for each of the fingers, one large sphere on a higher altitude for the hand, and
another large sphere to model the camera mounted on the hand. Fig. 5.9 shows a typical
error that occurs if the camera is not modelled - there is a collision between the camera and
one of the objects. Thus, the robot will have to plan grasps such that the camera does not
collide. Due to the large camera and the limited workspace, the planning task is not trivial.

5.3.3 Finding Free Space

The initial and destination locations of objects are usually not enough for the planner to
solve the task. The workspace is narrow and for many tasks, the robot needs free space
to unload objects temporarily. These locations are found by searching in the workspace

96 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

Figure 5.9: The choice of grasp type is very important. Here, the camera has not been
modelled and thus the robot thinks it is fine to put down the wooden block next to the box.
However, this causes a collision between the tall box and the camera.

visualized in Fig. 5.8 for locations which has the fewest number of collisions for all objects
and grasps. This location is then treated as any other location and any possible collision
that may still occur is provided to the planner. Since searching every possible location
would be too time consuming, the search is limited to every 5 cm and every 60 degree
rotation. This yields 210 possible locations, but of course this can easily be increased at
the expense of increased search time.

5.3.4 Taking Profit from Human Advice

We have also modelled tasks in which the human has the possibility to instruct the robot
that one of the objects (tape) has to be manipulated (placed on the table) before any other
object. We note here that there is currently no verbal communication - instead the expected
result of such a system was encoded in the planner. The instruction “The tape should be
placed first” adds two constraints: the tape should be at its target location before the box,
and also before the block. These are fed two the planner as predicates, e.g,mustOccurBe-
fore(tape, loc_tape_t, box, loc_box_t).

5.4 Automatic Generalization from Multiple Examples

If the teacher does not instruct the robot about the constraints of the task directly, the
robot should still be able to detect these by observing the task performance several times.
Beside this, in the current system the robot can calculate the average location of each object

5.4. AUTOMATIC GENERALIZATION FROM MULTIPLE EXAMPLES 97

and does not need to place them at the exact locations from a particular demonstration.
The ultimate goal is to have a robot autonomously moving around in the environment,
observing humans performing their everyday tasks and so learn new or update models
of the existing tasks. Then, without further instruction, the robot can ideally acquire the
knowledge to perform the tasks itself.

With the work presented here, we aim to automatically identify the underlying con-
straints of the task. Generalizing from multiple examples requires more components than
when simply imitating a human task. The necessary steps include:

Segmentation- The segmentation of the task into isolated operations orprimitive tasks
is a research issue that has been studied before, (Kuniyoshiet al., 1994; Atkeson and
Schaal, 1997; Matarić, 2000; Friedrichet al., 1999). The task as a whole is unlikely to be
observed again because of the minor variations that occur from demonstration to demon-
stration. We view the task as a composite of specific actions,primitive tasks, which can be
easily recognized.

In this work, the task segmentation process is performed manually. Kang and Ikeuchi
(1995) showed how automatic segmentation can be performed by using a change detection
algorithm on the volume sweep rate, which is the product of the hand speed and the finger-
tip polygon area.

State Generation- To enable generalization over multiple demonstrations, the subtasks
are modelled as states, describing the impact of a certain action to the current world state,
e.g.,“Knife moved 10 cm to the right of the plate”. Thestate generationblock takes all
demonstrations into account and searches for similar subtasks which are represented by the
same state. The similarity is measured in terms of effects on the world state.

Task Generalization - This process is used to identify which states must occur before
others and possibly which states that are irrelevant for the task goal. From a single demon-
stration, the task is carried out in the exact same order unless some prior knowledge is
available. From multiple demonstrations, the robot acquires more knowledge about the
task and achieves the goal by assembling its own action sequence from a combination of
all demonstrations.

5.4.1 Example Task

For easier understanding of the system implementation details, let us study a specific task
we would like to teach a robot,chop-a-cucumber. The following objects are considered
in the task: a cutting board, a cucumber and a knife. Given that the objects’ poses are
estimated, this task can be learned incrementally as shown in Table. 5.1. Here, object
positions can be represented given either absolute world coordinates or relative to other
objects already manipulated. The demonstrated tasks are segmented, and each subtask is
quantized to a state. A demonstration is then represented as a state sequence. Another
example task used later on in the chapter issetting up a dinner table. This task consists of
placing plate, knife, fork, spoon, glass, food and napkin on a dinner table.

98 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

Table 5.1: Taskchop cucumberas modelled in our system (z-axis anti-parallel to gravity).

Object Relative Relative (x,y,z,θ,φ,ψ)
Position Orientation Pose [cm, degrees]

Cutting board None None (393, 123, 0, 0, 0, 0)
Cucumber Cutting board Cutting board (10, 15, 1, 90, 0, 0)

Knife Cucumber Cucumber (25, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber (25, 0, 0, 90, 90, 0)
Knife Cucumber Cucumber (25, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber (24, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber (24, 0, 0, 90, 90, 0)

...

5.4.2 State Generation

In this section we provide more information of how continuous measurements are quan-
tized from the operations. For the tasks considered in our work, the placement of certain
objects can be defined relative to other objects (Place glass to the left of the main plate)
but some objects are to be placed to a specific position defined in absolute coordinates,
i.e. robot centered coordinate system or some world coordinate system. To decide if the
position should be regarded absolute or relative, we compute the minimum variance with
respect to already placed objects:

relob ji = argmin
∀ j moved

|cov(xi −xj)| (5.1)

wherexi is the position of objecti. If relob ji = i, then the position should be regarded
as absolute. The same procedure is done for the orientation, meaning that an object can
have a relative position to one object and a relative orientation to another object. For some
tasks, there may be several positions that are valid for a certain object. A difficult problem
is how to automatically decide when a position should be regarded as a new state, and
when it should be regarded as a variation of an existing state. We use K-means clustering
to quantize the position and orientation for a specific object into a number of subgroups.
This quantization method is good even though the amount of data is low which is in gen-
eral the case in PbD systems. In detail, each position can be considered as a point in
N-dimensional space, N being the number of DoFs for the object. If the same object is
placed at approximately the same location in several demonstrations, the corresponding
points will lie close to each other. K-means clustering automatically finds groups of points
(see Section 2.4.2.1), which can then be labeled as the same state. The optimal number of
subgroups is the one which yields the lowest maximum variance. However, the clusters are
not allowed to lie closer than a certain threshold to each other, to prevent the scenario of a

5.4. AUTOMATIC GENERALIZATION FROM MULTIPLE EXAMPLES 99

single cluster for each measurement. The improved algorithm becomes:

relob ji = argmin
∀ j moved, c ∈ [1,Ndemo]

c
max
k=1

|cov(xk
i −xk

j)| (5.2)

The best value is sought over all objects and cluster possibilities. Here,xk
i denotes subset

k when objecti is clustered intoc clusters. With this approach, we are able to identify
multiple suitable positions and orientations for a single object, e.g., for aset tabletask, the
spoon can be either above or to the right of the plate.

5.4.3 Task Generalization

After the demonstrations have been abstracted to state sequences, the robot can analyze all
sequences to build a general task model. Fig. 5.10 illustrates how this is done.

A

A

A B

E

E

B

G

F G

E B G

 A < B A < E A < G

 A < F B < F B < G E < G

 F < G E < F

Possible
Execution
Sequence

Constraints

Demonstration 2

Demonstration 1

Figure 5.10: Top: Two demonstrations given to the robot. Center: Nine constraints are
identified. Note that state B and E are not constrained. Bottom: One of the possible
sequences to follow at execution time

In this example, there are two demonstrations. From these, nineconstraintsare identi-
fied. Initially, all actions are constrained to the order they were demonstrated. When two
or more constraints contradict each other, they are removed. Thus, in the example above
the constraintsB< E andE < B have been removed. The robot is then free to reach any of
the goal states demonstrated, as long as it does not violate any of the constraints. As more
demonstrations are added, the list is modified. We then utilize our planner to calculate a
sequence of actions to achieve the goal under the constraints. Note that as the sequence is
calculated at run-time, the robot does not have to follow any of the human examples.

Another method for task generalization is presented in (Nicolescu and Mataric, 2003).
The method is based on the longest common subsequence (LCS) of the state sequences,
and the LCS of several demonstrations constitute the generalized task model, in which
the other actions appear as alternative paths. However, this approach is not suitable for
manipulation tasks. Many pick-and-place tasks can be performed in arbitrary order, so the

100 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

LCS for those tasks may be as short as a single state. Instead, we propose to build up a list
of constraints that describes which states must occur before others.

Among the constraints generated in the example above, some are unnecessary, e.g.,
A < G, when the constraintsA < B andB < G are present. These types of constraints
can be removed, but they actually serve a purpose: they make the planning go faster. The
planner does not have to tryG−A−B, which is a dead end.

5.5 Experimental Evaluation

Throughout the experiments presented here, we have operated in three dimensions. Each
object is assumed to be placed on a table, and only the x, z andθ pose parameters are used.
The robot also knows the height of each object. We used three objects, which is enough
to complicate the situation for the planner. The robot has a very limited workspace, about
40x20 cm as indicated in Fig. 5.6, so the choice of grasp type and move order sequence is
crucial for the task success.

5.5.1 Planning Example

Here we give an example of how the planner operates. We ran the planner on the two test
images seen in Fig. 5.5. The generated list of predicates consists of three parts. First, the
collisions are listed:

collision(loc_box_s, loc_box_t, box_left)
collision(loc_box_s, loc_box_t, box_center)
collision(loc_box_s, loc_box_t, box_right)
collision(loc_block_s, loc_tape_s, block_center)
...

Then, the reachability of each grasp is listed:
graspable(loc_box_s, box_left)
graspable(loc_box_s, box_center)
graspable(loc_box_s, box_right)
graspable(loc_block_s, block_center)
...

Finally, the location of each object is listed:
objAtLoc(box, loc_box_s)
objAtLoc(block, loc_block_s)
objAtLoc(tape, loc_tape_s)

and of coursehandEmpty. The goal state is listed separately as
objAtLoc(box, loc_box_t)
objAtLoc(block, loc_block_t)

5.5. EXPERIMENTAL EVALUATION 101

objAtLoc(tape, loc_tape_t)

The planned solution is provided below.

pickUp(box, loc_box_s, box_center)
putDown(box, loc_box_t, box_center)
pickUp(tape, loc_tape_s, tape_center_180)
putDown(tape, free1, tape_center_180)
pickUp(block, loc_block_s, block_center)
putDown(block, loc_block_t, block_center)
pickUp(tape, free1, tape_center)
putDown(tape, loc_tape_t, tape_center)

Thus, the system identifies a free location and uses it to store the tape while the other
objects are moved into place. The planner chooses the grasps and a move sequence such
that the task can be completed without collisions.

5.5.2 Imitation Learning

To evaluate the imitation learning and the overall performance of the system, we placed
the three objects in six different configurations according to Fig. 5.11. For each configu-
ration, the robot was asked to reconfigure the objects to one of the other configurations.
In total, the robot had to plan and execute 30 tasks using its 6-DoF arm and parallel-jaw
gripper. In the imitation setting, a “demonstration” is simply an image of the target con-
figuration, however the starting configuration varied slightly for each experiment since it
is not possible to place the objects exactly according to the image. Table 5.2 shows the
results.

The table should be interpreted as follows.

• S - success, all objects were successfully moved to their new position.

• F1 - failure type 1. One of the objects in the source or target configurations was not
found.

• F2 - failure type 2. The grasping of an object was not as expected, which caused
collision when it was put down. For example, the wooden block is heavy and may
slip, or the box may tilt when being grasped.

• F3 - failure type 3. Imprecise pose estimation caused the gripper to collide with the
object when grasping.

In this experiment, 11 of 30 tasks were successfully completed. Out of the 19 failures,
16 occurred due to pose estimation errors, that is, due to the imperfect visual input. Since
we only use one image for pose estimation, we believe that these errors can be avoided
by using several images for pose estimation. For example, 10 of the unsuccessful task
executions are related to the image shown in the center of the bottom row in Fig. 5.11.

102 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

Figure 5.11: The six different object configurations used in the experiments, seen from the
robot’s point of view.

Figure 5.12: Left: The robot gripper as it about to put down the box and finish the task.
Right: The final configuration of the objects, arranged by the robot. When compared with
the demonstrated task, Fig. 5.11 (top-left), the configurations seem identical.

Apart from pose estimation errors, type F2 failures are not easily detectable and hard
to predict. One solution is that the robot visually verifies the final configuration of the
manipulated object. Then, if the result is not as expected, the robot re-plans. This is
currently not implemented in the system.

5.5. EXPERIMENTAL EVALUATION 103

Table 5.2: The outcome of each task in the experiments.

Target Conf. 1 2 3 4 5 6
Source Conf.

1 - F2 F3 F3 F1 S
2 S - S S F1 F1
3 F3 F3 - S F1 F3
4 S F2 S - F1 S
5 F1 F1 F1 F1 - F1
6 S F2 S S F1 -

Figure 5.13: An unexpected error which the system can not detect or recover from. The
wooden block is heavy and sometimes slips from the gripper when grasped on the side.
The gripper still holds on to the block but due to its weight it rotates, and when being put
down it causes a collision.

5.5.3 Learning from Human Advice

This experiment is similar to the one presented in Section 5.5.2. This time, the human
instructs the robot that the tape is to be in place before the other objects, which adds two
constraints to the planner. This results in a bit longer plan:

pickUp(box, loc_box_s, box_center)
putDown(box, free1, box_center)
pickUp(block, loc_block_s, block_left)
putDown(block, free2, block_left)

104 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

pickUp(tape, loc_tape_s, tape_center_180)
putDown(tape, loc_tape_t, tape_center_180)
pickUp(block, free2, block_left)
putDown(block, loc_block_t, block_left)
pickUp(box, free1, box_center)
putDown(box, loc_box_t, box_center)

As seen, the robot fulfills the constraint of placing the tape at the target location before
the other objects are placed at their target locations.

5.5.4 Generalizing from Multiple Examples

We have also performed experiments to evaluate our approach of generalizing from mul-
tiple examples. The first experiment is performed in a virtual environment and evaluates
the state generation module with several objects. The second experiment shows how the
task generalization module operates by automatically identifying a hidden constraint from
several examples in the real world.

5.5.4.1 Generalizing in a Virtual Environment

In this experiment, theset table taskdescribed in Section 5.4.1 is considered. The task was
demonstrated by the user three times in a virtual environment where each object was only
allowed to be moved, not rotated. The state of each object can then be represented using
only its position which makes this experiment easy to analyze.

1. Glass
2. Food
3. Spoon
4. Knife
5. Plate
6. Napkin
7. Fork

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 47
3
1 2

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

5

1

3 47

2

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

57 4

21
3

6

Figure 5.14: Example demonstrations in the virtual environment.

Fig. 5.14 shows the result of each demonstration. Demonstration 1 and 3 were similar
but the objects were not moved in the same order. Demonstration 2 was different because
of the spoon being put to the right of the plate, instead of behind it. Table 5.3 shows
the states generated by the system. As expected, the knife, fork and napkin are specified
relative to the plate. Because the glass position varied too much relative to the plate,
its position is specified in absolute coordinates. The system correctly identifies the two
possible placements of the spoon (state D and H). State J arises since the fork actually has
lower variance towards the glass compared to the plate. In the first demonstration the fork

5.5. EXPERIMENTAL EVALUATION 105

was put down before the glass and positions can only be specified towards already placed
objects. Table 5.4 shows the generated state sequences for the demonstrations. From
these, a total of 32 constraints were identified. In this example, the constraints make sure
that when an object is to be placed, its ’relative’ object is already in desired position.

Table 5.3: Experiment in virtual environment: The states generated from the demonstra-
tions.

State Object Relative Position (x,z)

A Plate (0.52, 0.44)

B Knife Plate (0.1, 0)

C Fork Plate (-0.07, 0)

D Spoon Knife (-0.08, 0.04)

E Glass (0.52, 0.56)

F Food (0.62, 0.56)

G Napkin Plate (-0.01, -0.02)

H Spoon Plate (0.02, 0.04)

I Knife Spoon (0.08, -0.04)

J Fork Glass (-0.07, -0.12)

Table 5.4: The state sequences found in the demonstrations (virtual environment).

Demonstration 1 A-B-C-D-E-F-G

Demonstration 2 A-E-H-I-J-F-G

Demonstration 3 A-C-B-F-E-D-G

5.5.4.2 Generalizing From Real Examples

The method has also been evaluated in a real scenario where the robot observed the human
performing the task three times. The start configuration was different each time, which led
to three different observations, shown in Table 5.5. The task was to organize the objects
according to test image 6, and the starting configurations were according to test image 1, 2
and 3 from Fig. 5.11. The user had an underlying constraint when performing the task, that
the tape must be placed at the target location before the other objects reach their locations.

From the observations, five states were automatically generated, as shown in Table 5.6.
It is interesting to see that the system has correctly identified that the block should be
placed relative to the tape, and that the box should be placed relative to the block.

106 CHAPTER 5. TASK LEVEL LEARNING FROM DEMONSTRATION

Table 5.5: The three observations perceived by the system. (real environment)

Observation 1 move box to (214, -40, -10)

move tape to (12, -76, 57)

move block to (-120,-39,-35)

move box to (-174, 49, -121)

Observation 2 move box to (220, -60, 4)

move tape to (13, -55, 52)

move block to (-109, -25, -36)

move box to (-106, 64, -122)

Observation 3 move block to (268, -82, -138)

move tape to (23, -59, 52)

move block to (-94, -16, -41)

move box to (-93, 72, -126)

Table 5.6: Experiment in real environment: The states generated from the observations.

State Object Rel. Position Rel. Orientation (x,z,θ)

A box (217, -50, -3)

B block (268, -82, -138)

C tape (16, -63, 54)

D block tape tape (-124, 37, -91)

E box block block (-17, 88, -86)

The observations are then remapped to the identified states. This results in state se-
quences, as shown in Table 5.7.

Table 5.7: The state sequences found in the observations.

Observation 1 A-C-D-E

Observation 2 A-C-D-E

Observation 3 B-C-D-E

From these, three constraints,C < D, C < E andD < E, and one common goal,C,D,E

5.6. DISCUSSION 107

are identified. The goal is the final position of each object. Considering that this is a pick-
and-place task, only the final positions are important. For other types of tasks the robot may
have to perform either A or B as well. Note that both underlying constraints were identified
but also an additional constraintD < E. Although not intentionally demonstrated, that
constraint is necessary in order to be able to align the box next to the block. The planned
solution is the same as in Section 5.5.3, although the locations are slightly different since
they are calculated from several observations.

5.6 Discussion

In this chapter, we have presented a task learning system where a robot learning by demon-
stration scenario is integrated with a task level planning system. Three learning techniques
have been considered: task learning from imitation, learning from human advice and learn-
ing from multiple observations where a task is represented by its goal configuration and
task constraints. A task planner for manipulation tasks and reaching the goal state given
different initial world states has been demonstrated. We have also addressed the issue of
task constraints. If there are some underlying constraints that must be fulfilled the knowl-
edge of just the final goal is not sufficient for task execution. We have proposed two
techniques for constraint identification. In the first case, the teacher can instruct the system
and, in the second case, the constraints are identified by the robot itself through the merg-
ing of multiple observations. The constraints are then considered in the planning phase,
allowing the task to be executed without violating any of them.

In large complex tasks, there may be intermediate goals that must be met; the success
of the task does not just rely on the final goal. Our system can be used for such complex
tasks, however we then require the teacher to specify the intermediate goals. The planner
will then treat the task as a sequence of simpler subtasks.

The experimental evaluation has been performed both in a virtual environment and
with a robot manipulator. It has been demonstrated that the system is able to perform tasks
with real objects. We believe that the proposed framework is easily extendable to tasks
involving more complex objects. The current system requires that all objects are visible at
the planning stage.

Chapter 6

A Service Robot Application

The problem studied in this chapter is the application of the Receptive Field Cooccurrence
Histogram described in Section 3.4 to a mobile robot that autonomously navigates in a
domestic environment, builds a map as it moves along and localizes its position in it. In
addition, the robot detects predefined objects, estimates their position in the environment
and integrates this with the localization module to automatically put the objects in the gen-
erated map. Thus, we demonstrate one of the possible strategies for the integration of
spatial and semantic knowledge in a service robot scenario where a simultaneous local-
ization and mapping (SLAM) and object detection/recognition system work in synergy to
provide a richer representation of the environment than it would be possible with either of
the methods alone.

The added mobility enables the robot to learn a whole new set of tasks. Before task
learning, the robot can acquire room and place knowledge through communication with
the human teacher. At the same time, the robot can learn to recognize objects and store
their latest locations in the map. The spatial and semantic knowledge is a prerequisite for
learning higher level mobile tasks. An example of such a task may be the delivery of mail in
an office. Here, the robot could learn the task goals and plan a path to achieve those goals,
in a similar way to the pick-and-place task learned in the last chapter. Here, fetch-and-
carry is the corresponding operation to a pick-and-place operation. To learn such a task,
the robot would have to link verbal or typed instructions to its spatial-semantic knowledge,
as it would be very difficult to correctly interpret object interactions from vision alone in
such uncontrolled learning scenarios.

To enable SLAM, we have integrated our work with the work presented in (Jensfelt
et al., 2006). Thus, the navigation examples presented here are not a contribution of this
chapter.

6.1 Motivation and Related Work

The importance of robotic appliances both in economical and sociological perspective re-
garding the use of robotics in domestic environments as help to elderly and disabled has

109

110 CHAPTER 6. A SERVICE ROBOT APPLICATION

been well recognized. The AAAI Mobile Robot Challenge has demonstrated that the de-
velopment of an interactive social robot represents a clear research challenge for the fu-
ture. Such a robot should be able to easily navigate in dynamic and crowded environ-
ments, detect as well as avoid obstacles, have a dialog with a user and manipulate objects.
It has been widely recognized that, for such a system, different processes have to work
in synergy: high-level cognitive processes for abstract reasoning and planning, low-level
sensory-motor processes for data extraction and action execution, and mid-level processes
mediating these two levels.

A successful coordination between these levels requires a well-defined representation
that facilitates anchoring of different processes. One of the proposed modeling approaches
has been the use ofcognitive maps, (Kuipers, 1983). The cognitive map is the body of
knowledge a human or a robot has about the environment. In (Kuipers, 1983), it is argued
that topological, semantic and geometrical aspects are important for representation of spa-
tial knowledge. This approach is closely related to Human-Augmented mapping (HAM)
where a human and a robot interact so to establish a correspondence between the human
spatial representation of the environment and the robot’s autonomously learned one, (Krui-
jff et al., 2006). Both of the above have strongly influenced our current work where the
integration of object recognition and map building represents a basis for longterm reason-
ing and planning in an autonomous robot system.

The ability to automatically detect rooms is important as it enables the robot to learn
labels as it is being showed a new environment. Here, the scenario is that the robot auto-
matically follows the human while learning labels through verbal communication. There
are several levels of labels, the robot can learn that inside the kitchen there is a place called
the kitchen table. Both during the mapping phase and during robot task execution, object
detection can be used to augment the map of the environment with objects’ locations. We
see several scenarios here: while the robot is building the map it will add information to the
map about the location of objects. Later, the robot will be able to assist the user when s/he
wants to know where a certain object X is. As object detection might be time consuming,
another scenario is that the robot builds a map of the environment first and then when no
tasks are scheduled for execution, it moves around in the environment and searches for
objects.

The same skill can also be used when the user instructs the robot to go to a certain
area to fetch object X. If the robot has seen the object before and it already has it in the
map, the searching process is simplified to re-detection. By augmenting the map with
the location of objects we also foresee that we will be able to achieve place recognition.
This provides valuable information to the localization system as well as it greatly reduces
the problem with symmetries in a simple geometric map. This would be an alternative
approach to the visual place recognition presented in (Pronobiset al., 2006) and the laser
based system in (Martínez Mozoset al., 2005). Furthermore, along the way by building up
statistics about what type of objects typically can be found in, for example, a kitchen, the
robot might not only be able to recognize a certain kitchen but also potentially generalize
to recognize a room it has never seen before as probably being a kitchen.

Although there exists a large body of work related to mobile robots, there are still no
fully operational systems that can operate robustly and long-term in everyday environ-

6.1. MOTIVATION AND RELATED WORK 111

ments. The current trend in development of service robots is reductionistic in the sense
that the overall problem is commonly divided into manageable sub-problems. During the
last few years, there have been a few examples of systems where the robot can acquire
and facilitate semantic information, (Theobaltet al., 2002; Galindoet al., 2005). Different
to our approach, the work presented in (Theobaltet al., 2002) is mostly concentrated on
linguistic interaction with a human and the robot is not using its sensors to retrieve se-
mantic information. The anchoring approach, presented in (Galindoet al., 2005), deals
mostly with the problem of integrating semantic and spatial levels where a special type of
representation is used to achieve this.

6.1.1 Active Vision

The vision system design in this work is based on theactive visionparadigm, (Ballard,
1991) where, instead of passively observing the world, viewing conditions are actively
changed so that the best results are obtained given the task at hand. As shown in Fig. 6.1,
if the object is too far away from the camera (left), no adequate local information can be
extracted. Therefore, the main idea pursued in this work is to use a global appearance-
based method to generate a number of hypotheses of the whereabouts of the object. The
robot then investigates each of these hypotheses by moving closer to them, or as in our case,
by zooming with a pan-tilt-zoom camera. Once the object appears large enough, it can be
recognized with the local feature-based method. One of the contributions in this chapter
is that we make use of both approaches in a combined framework that let the methods
complement each other. If the robot recognizes the object from two different locations, it
can use geometric triangulation to calculate the approximate world position of the object
and store it in its map.

Figure 6.1: Left: The robot cannot recognize the mug located in the bookshelf. Right:
Minimum size of the mug required for robust recognition.

112 CHAPTER 6. A SERVICE ROBOT APPLICATION

6.2 Building a Map of the Environment

For automatic acquirement of semantic structure of the environment, automatic map build-
ing and its integration with object/place identification is a basic requirement. For increased
flexibility, the robot should both be able to build a map and use it for localization. Many
of the methods for SLAM, including the one used in this chapter, have their roots in the
work by Smithet al. (1988). Most of the work in SLAM focuses on creating a map from
sensor data but not on how this data is created or how to use the map afterwards. In this
chapter, we want the robot to use the map to carry out different tasks. Some of these tasks
may require that the user communicates with the robot using common labels from the map
such as“that room” or “that window” . A natural way to achieve this is to let the robot fol-
low the user around the environment in the initial stage when the map is being built. This
allows the user to put labels on things and places of interest: certain locations, areas or
rooms. This is convenient for example when instructing the robot later on to go to a certain
area to fetch something or when asking the robot for information about where something
might be.

The SLAM algorithm uses a laser sensor and details can be found in (Folkessonet al.,
2005). A feature based map (e.g., 2D line map as in our case) is rather sparse and does not
contain enough information for the robot to know how to move from one place to another.
Only structures that are modelled as features will be placed in the map and there is thus
no explicit information about where there is free space such as in an occupancy grid. In
this work we use a technique inspired by (Newmanet al., 2002) and build a navigation
graph while the robot moves around. When the robot has moved a certain distance, a
node is placed in the graph at the current position of the robot. Whenever the robot moves
between two nodes, these are connected in the graph. The nodes represent the free space
and the edges between them encode paths that the robot can use to move from one place
to another. The nodes in the navigation graph can also be used as references for certain
important locations such as, for example, a recharging station. Fig. 6.5 shows an example
of a navigation graph as connected stars. For a more detailed description of the navigation
graph and how it can be used for space partitioning space, see (Kruijffet al., 2006).

6.3 Active Object Recognition

Despite the large body of work on vision based object recognition, few have investigated
strategies for object recognition when distance to the object (scale) changes significantly.
Similarly, there are very few object recognition systems that have been evaluated in a
mobile robot setting. In (Gopalakrishnan and Sekmen, 2005), a robot behavior similar to
ours is presented, but with somewhat limited vision algorithms. A mobile, self-localizing
robot wanders in an office environment and can learn and recognize objects encountered.
However, the recognition algorithm cannot cope with a cluttered environment and it works
only for a very few objects since the neural-network-based vision algorithm only uses
object shape information as input.

6.3. ACTIVE OBJECT RECOGNITION 113

Impressive recognition results have been achieved with methods based on Scale In-
variant Features (SIFT) (Lowe, 1999) and alike. The most significant drawback of these
methods is that the reliable features can only be found when the object occupies a sig-
nificant part of the image. It is very hard to recognize objects that are far away from the
camera. On the other hand, the main drawback with RFCHs turned out to be the false pos-
itive rate. They are excellent for providing the most probable object location in a cluttered
environment, but when it comes to determining whether the object is actually in the scene,
the performance is mediocre. We have solved this problem by both making use of a pan-
tilt-zoom camera and a global method prior to a feature-based one to generate hypotheses.
By zooming in on a number of a probable object locations provided by the hypotheses
generation step, objects far away from the camera can be recognized. We propose to use
RFCHs for generating hypotheses of object locations, and then use a SIFT-based method
for object recognition once the object is zoomed-in.

6.3.1 Active Object Learning from Demonstration

For the robot to put a new object into the database, we have adopted a very natural approach
with an ordinary end-user in mind: the object is shown to the robot by placing it in front
of the camera. During this “teaching” step, features are extracted from the image and it is
crucial that only features from the object are extracted and thus learned by the classifier.
If the background is visible in the image, that information will be learned as well and
will therefore increase the number of false positives in the online recognition stage. The
common way of segmenting the object is to manually process the image in an editor and
crop the object from the background. However, this is a tedious step which may be difficult
for a regular user to perform. In our framework, training images are are generated from
human demonstrations in two steps. First, the robot captures an image of the scene without
the object being present in it. Then the operator places an object in front of the camera and
the object is separated using image differencing. Thus, the user is relieved of the process
of manually extracting the object. However, simple image differencing is prone to noise
and the result is not a perfect image of the object as it contains many holes in the object
and also some of the background. To cope with this problem, a number of morphological
operations is performed to achieve better segmentation (errode - dilate - errode, (Gonzalez
and Woods, 1992)). These operations are performed using information from the original
image, i.e., a growing effect (covering holes) will not add black pixels, but pixels from the
original image. The result of this step can be seen in Fig. 6.2. The final image may still
not have a perfect segmentation of the whole object but this is not a problem for any of the
vision algorithms we apply as long as most of the object is visible.

Another problem with image differencing is the choice of a thresholdθ that determines
if a pixel is part of the background or not. Ifθ is set too high, too much of the background
will remain. If θ is set too low, significant parts of the object may be omitted. In our work,
we use an automatic adjustment ofθ based on the result of the differencing performance. If
image differencing was successful, the remaining pixels should be concentrated to a single
area where the object has been placed. If the differencing has failed, the pixels are mostly
scattered around the entire image. Thus, the success is measured in terms of detection

114 CHAPTER 6. A SERVICE ROBOT APPLICATION

Figure 6.2: Left: The original image. Center: The result after simple image differencing
(only a part of the image is shown). Right: The result after morphological operations.

variance. In addition, a penalty is added that is linearly proportional to the number of
pixels remaining, to cover the case of very few remaining pixels that have a low variance
but are not sufficient for the object representation. The algorithm tests everyθ from 1 to
150, to find the optimal setting with the lowest score.

6.3.2 Hypotheses Generation

Object hypotheses are generated by scanning the image with a small search window, re-
sulting in a vote matrix as explained in Section 3.3.4. If a vote is higher than a certain
object-dependent threshold, the corresponding location for that vote is considered a hy-
pothesis.

The threshold value provides a trade-off between search time and detection probability.
If the threshold is low, many hypotheses are generated and evaluating them all is time con-
suming. On the other hand, if the threshold is high, there is a risk that the object is missed.
There are many factors influencing the match value of the searched object, e.g specular
reflections, illumination variations, occlusion. However, an extensive experimental evalu-
ation has shown that the method is not very sensitive to the value of the threshold. In this
work we found thatγ = 0.2 was suitable for relatively small objects (approximately 8-10
cm in height), while the larger objects could useγ = 0.25 for a faster search.

6.3.3 Hypotheses Evaluation Strategy

Given our pan-tilt-zoom camera and a set of hypothesized object locations, the task is to
efficiently determine and zoom on the generated hypotheses. To speed up the process,
we decided to first use an intermediate level of zoom and then use the appearance-based
object detector for final verification, before applying the somewhat slower feature-based
method. Finding the best image locations to zoom on is not a trivial task. We quantize
the view space into the same size as the vote matrix. For each vote cell, we calculate
which hypotheses would still be visible if one would zoom on that location using zoom
factor z. Then, the problem is to find the smallest set of zoom locations that cover all

6.3. ACTIVE OBJECT RECOGNITION 115

hypotheses. Here, a simple greedy approach is followed: Select the location that covers
most hypotheses, then remove these from the list and calculate the zoom locations once
again. Continue until all hypotheses are covered. See Fig. 6.3 for an example. This

Figure 6.3: An example of the greedy search strategy used while searching for the mug at
the intermediate zoom level. Squares represent possible object locations, and crosses are
the calculated zoom locations that cover all the hypotheses. There are 4 zoom locations
and 30 hypotheses in this example.

approach has proven to work well and is much more efficient compared to evaluating all
of the hypotheses. The method is used both for high and the intermediate zoom levels.
The zoom factorzdecides how much to zoom in so to reach the next zoom level. A largez
makes objects larger in the image and thus gives the detector more information but it in turn
means that fewer hypotheses can be evaluated simultaneously. To account for this, we set
z based on the distance measured by the laser scanner in the direction of the object. If the
distance is small, the far zoom level is skipped, and the algorithm starts at the intermediate
level. If the distance is very small, about 1 m or less, the intermediate level is also skipped.
Experimental evaluation will show that the object recognition method works well even if
the object appears larger in the image compared to training images.

Once a hypothesis is zoomed in, we again use RFCH for matching. If the match value
exceeds the threshold, we perform SIFT-matching to verify the hypothesis. The more
SIFT-matches found in an image, the more likely it is that the image contains the object.

116 CHAPTER 6. A SERVICE ROBOT APPLICATION

If the number of matches exceeds an object-dependent threshold, the object is considered
recognized. Some objects have more features than others and are thus easier to recognize.
To minimize the number of false positives, the threshold depends on the number of features
found during training. If multiple objects are being searched for, the hypotheses for each
object may be combined at each zoom level. This way, the number of zoom-in steps can be
reduced, compared to searching for the objects in sequence. For each zoom-in operation,
only those objects that generated the visible hypotheses are considered.

6.4 Integrating SLAM and Object Recognition

In the current scenario, we focus on the integration of SLAM and object recognition mod-
ules. We note here that the main strength of this work is the ability of the system to provide
richer maps of the environment than it would be possible to achieve with any of the tech-
niques alone. Here, the robot follows the user through a new environment so that the user
can show the robot around. The robot is considered to be ourguestthat is getting a tour of
the environment. The user can attach labels to areas/room, i.e. instruct the robot thatthis
is the living room,this is the kitchen, (Kruijffet al., 2006). These labels can then be asso-
ciated with a part of the navigation graph. As the object recognition is moderately fast, we
let the robot add objects to the map after the user has shown the extent of the environment.
This is then carried out fully autonomously. Including objects into the map also serves
to address another important problem in SLAM, namely, loop closing. In (Newman and
Ho, 2005), a laser range scanner is used to build a map and vision-based Maximally Stable
Extremal Regions (MSER) are used to detect loop closing situations. The objects in our
map could be used in a similar way.

Some objects can be detected from more than one position. This allows for triangula-
tion to estimate not only the bearing to the object but also the approximate position. Even
though an object has only been detected once, the map contains information from where
each object has been detected and in what direction which allows for re-detection. Objects
are stored on an area by area basis. We should stress that we do not propose to try to esti-
mate the exact position of an object here. When the time comes to interact with the object,
for example to pick it up, it has to be re-detected anyway to confirm that it is still there and
then use visual servoing techniques to pick it up using the same technique that has been
proposed in (Peterssonet al., 2002).

6.5 Experimental Evaluation

The experimental platform used in this work is the same as in the last chapter, see Sec-
tion 5.2.1. In this section, we first evaluate how long it takes for the robot to locate an
object in a room, and also, how often the robot fails to find the object. Then, we give
an example of how a search in multiple rooms is performed. Finally, a “fetch object”-
command is given to the robot, and we provide an example execution of that command.

6.5. EXPERIMENTAL EVALUATION 117

Figure 6.4: Some of the objects from the database.

Figure 6.5: A partial map of the 7th floor at CAS/CVAP. The stars are nodes in the naviga-
tion graph. The large stars denote door/gateway nodes that partition the graph into different
rooms/areas.

6.5.1 Evaluating the Search Effectiveness

We started by testing the effectiveness of our system in an office environment. Here, the
robot was presented four objects (see Fig. 6.4) which were then placed in a room in six
different configurations. In the training stage, the robot was given two views of each object:
one close-up view for SIFT-training and one at a lower scale for RFCH-training. We note
here that still a single image is used for the object, just at different scales.

The robot performed a search for the objects at each node in the navigation graph.
This search was done with two different robot rotations, separated by 180◦. Four different
pan angles for the camera were used to cover the field of view for each of the two robot

118 CHAPTER 6. A SERVICE ROBOT APPLICATION

Table 6.1: Object Recognition Results.

Object ATD (min) ATST (min) Detect
Rice 1:10 3:52 6/6
Book 0:40 2:55 6/6
Mug 3:52 11:22 5/6

Zip-disks 3:28 7:01 4/6

orientations. In this specific experiment, the navigation graph consisted of four nodes in a
single room (see Fig. 6.6). We note here that this strategy is not optimal and that there is
room for improvement by, for example, considering some of the work on view planning,
(Allen et al., 1998).

For each object, we measured the average time for detection (ADT), average total
search time (ATST) and the number of detections. Not all object locations were visible
from all node positions so we counted the number of times the robot missed the object
completely, i.e. did not see it from any of the node positions. As seen in Table 6.1, this
only happened three times. The rice package and book were the easiest to detect, which
can be seen from the average time for detection. This is not because of their appearance but
rather due to the size: the rice package and book are both large, so their features are easier
to detect when the object is far away. To spot the zip-packet or the mug, the robot usually
had to be less than 3 m away from the object. We found that setting the SIFT-threshold
to 1/20 of the number of features found during training, a high detection rate and no false
positives were achieved. The main reason for the required recognition time and failure is
that the camera sometimes needed several seconds to focus after moving the camera or the
robot, with the result that the images were blurry, causing the robot to miss the objects.
In Fig. 6.6, the map of the room is shown with one of the object configurations with all
four objects detected. Since all objects were detected from several nodes, their position
estimates can be improved using triangulation.

To visualize the performance of the hypothesis generation step we have generated a few
test images in which we varied both the initial distance to the object and object’s rotation
relative to the camera. In this scenario, the robot is searching for the rice package. The odd
rows in Fig. 6.7 show the example images, while even rows show the vote matrices used
for generate the hypotheses for the attention process. Strong hypotheses are shown with
darker colors. We see that the rotation of the object around the camera axis does not effect
the outcome of the hypotheses generation significantly. However, the rotation around the
vertical axis does effect the hypothesis generation (evident in Fig. 6.7(b) and (f)). The
reason for this is that the object is viewed from the side and the stored representation of the
object uses the frontal image. However, the object is still one of the strongest hypothesis
generated even if we, on purpose, placed it in an environment where there are other items
with similar textural properties presents (orange folders). It can also be seen in Fig. 6.7(j)
and (n) that once the hypothesis is examined more closely, the votes are stronger and
facilitate correct detection. One of the limitations of the current method is thus not so
much in the hypotheses generation but in hypotheses verification since SIFT points are

6.5. EXPERIMENTAL EVALUATION 119

Figure 6.6: The results of a robot detecting four objects in a living room and estimating
their positions.

invariant to rotations of up to 30-35◦, (Lowe, 1999) which means that even if the correct
hypothesis is generated the system may fail to detect the object when the SIFT based
hypothesis generation process fails. This can be addressed by using more than one view of
the objects.

6.5.2 Searching for Objects in Several Rooms

In this experiment, the search for objects is not limited to a single room. However, we skip
door nodes and nodes directly adjacent to doors as stopping in these places blocks the way
for people moving around. We used only two objects in this experiments, a soda can and
the rice package. Fig. 6.8 shows the situation after the robot has visited two of the rooms.
One instance of each of the objects were placed in these two rooms. The lines extending
from close to the graph nodes starts in the camera position at the time of detection and is
directed toward the observation of the object. As can be seen the objects are often spotted
from more than one location. A rice package showed to the far right in the map was placed
on a table. It has been detected three times and it can be seen that a triangulation would
place the object closer to the camera than the laser which is only able to detect the distance
to the wall behind the table. In this figure, it can also be seen that the robot has correctly

120 CHAPTER 6. A SERVICE ROBOT APPLICATION

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (o)

Figure 6.7: A few example images that demonstrate the outcome of the hypotheses gener-
ation process for cases when the rotation of the object relative to the camera changes. It is
evident that the rotation around the vertical axis affects the results (figure (b) and (f)) for
cases when the object is far away from the camera. A more detailed discussion is provided
in the text.

detected the three doors in this part of the environment (marked as large stars), two of them
leading to the same room from the corridor and thus correctly partitioned the space into
rooms. This demonstrates the possibility of instructing the robot to fetch object X in room
Y.

6.5.3 Fetching Objects

In section we demonstrate how the robot uses the acquired world knowledge to perform
tasks. After the map is built and the robot has performed a multi-room search, it is in-

6.5. EXPERIMENTAL EVALUATION 121

Figure 6.8: Searching for two objects in two rooms: a rice package placed on a dinner table
is precisely localized by camera compared to laser.

Figure 6.9: The robot is instructed to fetch the rice from the living room. It first plans a
path and then follows it while avoiding obstacles. Once the goal position is reached, it
verifies that the object is still there (marked with the white arrow). The robot signals that
it has found the object by pointing to it with the arm.

122 CHAPTER 6. A SERVICE ROBOT APPLICATION

structed to go to a specific room and pick up an object. The initial position of the robot is
shown in the upper left corner in Fig. 6.9 in the room calledthe manipulator lab. This room
is to the right in Fig. 6.8. The task the robot has to perform is to fetch the rice package from
the living room (the left room on the map in Fig. 6.8). The robot first plans a path using
the navigation graph and starts moving through the door to the hallway. It then enters the
living room and moves to the closest point from which it has previously seen the object.
At this point, it verifies that the object is still there. Then, it raises its arm towards the
object, signaling that the object has been found. If the object was not found at the expected
location, a new search for object is automatically initiated. A few example images taken
during robot task execution are shown in Fig. 6.9. We note here that actual object pick up
is outside the scope of this chapter. One method that could be used for this is described in
(Peterssonet al., 2002).

6.6 Discussion

In this chapter, we have presented methods that enable the robot to learn mobile tasks. The
integration of spatial and semantic information enables the robot to reason beyond simple
geometrical level. The navigation module enables the robot to follow the teacher and learn
room and place labels on the way, and the automatic object detection enables the robot to
learn statistics over where certain objects are likely to be situated.

Through an extension to the RFCH-method from Section 3.4 we have shown that we
can robustly detect and recognize objects in cluttered home and office environments, even
though the objects are far away from the robot. We have also shown how the robot can
learn to recognize new objects through interaction with the teacher.

The added mobility enables the robot to learn a whole new set of tasks. We believe
the same strategy as in Chapter 5 can be used, although it has to be complimented with
verbal or typed communication. We have shown how we build upon a SLAM system using
different types of features (lines, points, SIFT) and sensors (laser, camera) which is able
to construct a navigation graph that allows the robot to find its way through the feature-
based map. A new method suitable for object detection has been presented. It is based
on an appearance-based method, RFCH, used together with a feature-based method, SIFT.
The experimental evaluation shows that the robot is able to successfully use the detection
algorithm to detect and recognize objects in cluttered scenes.

Finally we have shown how to augment a SLAM map with information about object
positions. One of the limitations of the current approach is that the system does not use the
knowledge of the latest position of the object when searching for it in the frames node. This
put some of the unnecessary burden to the search process and could easily be optimized.
In a longer run, we believe that the system could also allow us to determine what type
of objects are typically found in certain types of rooms which furthermore could help
recognizing the function of a room that the robot has never seen before such as a kitchen
or a workshop.

Chapter 7

Summary and Future Work

In the future, we envision robots to enter our homes and help us in our everyday lives. Fill-
ing the dishwasher, setting the table or cleaning the floor are just some of the tasks we want
the robot to accomplish. Since there are many different tasks robots should be able to help
us with, they will not come preprogrammed for each of them but instead be able to learn
tasks from human demonstration. The reason is that, at manufacturing time the robot does
not know the shape of our table, the appearance of our plates etc. This information has to be
learned once the robot arrives. Clearly, the tasks also depend on the objects available and
we may also want the robot to set the table in different ways. Thus, the robot has to learn
tasks from a human teacher in the home environment. Programming by Demonstration
has been recognized as one way of achieving this. The idea is that average users without
deep technical knowledge should be able to teach the tasks by demonstrating them to the
robot. However, despite much research effort around the world the gap is still large be-
tween the vision and the current performance. The many challenges include robot vision,
grasping of objects, and also hardware reliability and robustness. One particular difficulty
is that the robot is to operate in uncontrolled, dynamic environments. In this thesis, we
have presented several contributions related to robot task learning in such environments.
The following section summarizes them.

7.1 Summary

In this thesis, we have presented contributions related to direct and indirect robot learning.
The simplest form of direct learning is storing the movement trajectory as the human is
performing the task by controlling the robot. This, however, leads to an inflexible system
and can only be used in a controlled environment, where the objects do not change their
position between learning and execution phase. On the other hand, a human controlling
the robot can identify changes in the environment and make intelligent decisions on how
to proceed. However, precision control of a high degree-of-freedom robot is difficult and
task execution tend to be slow and require much effort from the operator. It has been
shown thatvirtual fixturescan be used to aid the operator in performing the task. They

123

124 CHAPTER 7. SUMMARY AND FUTURE WORK

reduce the execution time and increase the overall precision. In Chapter 2, we introduce
adaptive virtual fixturesthat can be used in a Human Machine Collaborative System. While
standard virtual fixtures only allow the operator to follow a predefined trajectory, adaptive
virtual fixtures allow the operator to slightly change the trajectory to fit a changed task
environment.

A challenging assumption that is decisive for the indirect learning approach is that the
task relevant objects are not necessarily at the same location at execution time as when the
learning took place. Thus, it is not sufficient to learn movement trajectories and absolute
coordinates. Instead, the robot must be able to, at run-time, detect the objects and pos-
sible obstacles. Many Programming-by-Demonstration solutions aim to teach the robot a
specific task. It may be inserting a peg in a hole, or a “spindle insertion task” (Chen and
McCarragher, 2000). In this work, our goal was to develop a general learning system for
manipulative motions. The most critical module here is the vision system. In Chapter 3, we
developed an appearance-based method for object detection, which is used together with
a model-based method for pose estimation. While the object detection method is simple
to train and use, the pose estimation system requires many training images. In Chapter 5,
we instead used a pure feature-based method for pose estimation. As the results show, the
vision task is still difficult despite the quite simple setting. An interesting future approach
would be to integrate the appearance-based and feature-based methods, something we did
for object detection in Section 6 but only for object detection, not pose estimation.

In Chapter 4 we investigated some aspects in the field of object grasping. Two scenarios
were considered: i) robot grasping in collaboration with a human, and ii) autonomous-
based robot grasping. For the first scenario, we developed a neural network based grasp
mapping system, that translates the human grasp into a robot grasp. The system can be
trained by examples. The operator can then control the robot grasping through a data-
glove. In the second scenario, the robot grasps objects autonomously. Here, a full model
of the object is necessary, so that the robot can try out different approach vectors before
grasping the object. By recognizing the human grasp during a demonstration, the robot
can choose hand configuration and grasp strategy, to fit the object and current task. In this
chapter, all results were evaluated in simulation, in contrast to the other chapters where
a real robot was used for evaluation. Simulation has the advantage that it allows us to
experiment with many different robot hands not available at our lab. The disadvantage
is that the methods are not guaranteed to work outside the simulator. Hence, the most
important future work here is to evaluate the methods using a real robot.

In Chapter 6 we presented a service robot application. The robot is able to navigate to
a room and search for an object on demand. Another scenario is that the robot wanders
around and automatically searches for objects. Then, on user’s demand, it can provide
information on where the object was seen last. However, the robot would be more useful
if it could actually grasp the object and perform fetch-and-carry operations. If the object
is standing on a table or the floor, without anything blocking it, it is certainly possible to
grasp it. But if it instead is situated in a bookshelf or in a box, the grasping task becomes
quite complicated.

7.2. FUTURE WORK AND PERSPECTIVE 125

7.2 Future Work and Perspective

One drawback with adaptive virtual fixture approach is that the task is approximated with
a set of linear movements. Although this was not experienced as a problem during the
experiments, further evaluation is necessary to see how the system performs with more
complex and curved trajectories. In the experiments, we operate in three dimensions, while
most work on virtual fixtures in the literature is limited to two dimensions. However,
many tasks require both translation and rotation in 3D, thus six dimensions. Theoretically,
adaptive virtual fixtures should be able to operate in joint space instead of Cartesian space.
Then, the task can still be divided into straight line segments. The evaluation of such an
approach is one of the more important subjects for future work on this system.

Currently, the indirect learning system is limited to pick-and-place operations, but we
believe that due to the general methods used, the system can be extended to perform other
actions. As we mention in (Ekvall and Kragic, 2006), one continuation would be to add
learned movement trajectories asactionsto the task planning system. To exemplify, con-
sider the taskchop cucumberfrom Section 5.4.1. Here, the chopping motion can be rep-
resented as a trajectory, and the robot could learn what prerequisites that need to be met
are required before that action can be executed. The planner is then utilized to achieve this
subgoal (knife in hand, cutting board on table, cucumber on cutting board).

There are several other ways to extend the work presented in Chapter 5. First of all, the
grasps are currently provided to the robot asa priori knowledge. Instead, the robot could
utilize the grasp recognition and mapping from Chapter 4 to automatically retrieve possible
grasps from the demonstration. Another assumption in Chapter 5 is that the 3D-models of
the objects are available. These should also be taught to the robot by showing the object
to it, similar to the object appearance learning presented in Section 6.3.1. However, to
automatically retrieve 3D-models puts great demands on the vision system, which must
also be able to separate the unknown object from the background.

A natural, and actually quite simple extension to the task planning and execution sys-
tem presented in Chapter 5 is to integrate it with the navigation module from Chapter 6.
This would allow the task location to be encoded into the task, so that when the robot is
asked to set the table, it first automatically moves to the kitchen.

In this thesis, we have presented several ways of teaching robots how to perform var-
ious tasks. It is clear that although we are a few steps closer, we are still far from an
autonomous home robot butler that can aid us in everyday tasks. In the different chapters,
we have shown learning methods on different levels, from simple imitation to full auton-
omy. Each level of learning has both advantages and drawbacks. Imitation learning is easy
to implement but is very restricted in that the world must be exactly the same at run-time,
as when the learning took place. On the other hand, adding intelligence to the robot allows
it to adjust its behavior to deal with dynamic worlds, but restricts the problem space which
the robot can solve. Eventually, we end up with a robot that can solve a very specific task
fully autonomously. The learning then is simply to teach the robot how to deal with vari-
ations of that task. We have also shown different semi-autonomous solutions where the
robot has some intelligence and aids the human in performing the task. Such a solution is
good if a broader problem space is desired, but we do not have the demand of full auton-

126 CHAPTER 7. SUMMARY AND FUTURE WORK

omy. We believe this kind of solution will be mostly applicable in the industry, where the
problem is well-defined but unattractive for a human to perform. The task may be danger-
ous (mine clearing), require perfect precision (surgery), be very heavy (construction), to
name a few reasons.

The conclusion is that it is not possible to select a single level of autonomy as the
optimal level for all tasks. A future multi-purpose robot will probably be equipped with
learning on many different levels.

Bibliography

M. Aizerman, E. Braverman, and L. Rozonoer. 1964. Theoretical foundations of the poten-
tial function method in pattern recognition learning.Automation and Remote Control,
25:821–837.

J. Aleotti, S. Caselli, and M. Reggiani. 2004. Leveraging on a virtual environment for robot
programming by demonstration. InRobotics and Autonomous Systems, Special issue:
Robot Learning from Demonstration, volume 47, pages 153–161.

P. K. Allen, M. K. Reed, and I. Stamos. 1998. View planning for site modeling. InProc.
DARPA Image Understanding Workshop, pages 1181–1192.

H. Araujo, R. L. Canceroni, and C. M. Brown. 1996. A fully projective formulation for
Lowe’s tracking algorithm. Technical report 641, The University of Rochester, CS De-
partment, Rochester, NY.

Ascension Tech. 2006. Nest of Birds. http://www.ascension-
tech.com/products/nestofbirds.php.

C. G. Atkeson and S. Schaal. 1997. Robot learning from demonstration. InMachine
Learning: Proceedings of the Fourteenth International Conference (ICML ’97) (ed. D.
H. Fisher Jr.), pages 12–20.

D. H. Ballard. 1991. Animate vision.Artificial Intelligence, 48(1):57–86.

Y. Bar-Shalom and Y. Li. 1993.Estimation and Tracking:Principles, techniques and soft-
ware. Artech House.

K. Bernardin, K. Ogawara, K. Ikeuchi, and R. Dillmann. 2003. A hidden markov model
based sensor fusion approach for recognizing continuous human grasping sequences.
In Third IEEE Int. Conf. on Humanoid Robots. URL http://www.cvl.iis.
u-tokyo.ac.jp/papers/all/0100.pdf .

A. Bicchi and V. Kumar. 2000. Robotic grasping and contact: A review. InProceedings of
the IEEE International Conference on Robotics and Automation, ICRA’00, pages 348–
353.

127

128 BIBLIOGRAPHY

R. Bohlin and L. Kavraki. 2000. Path planning using lazy prm. InProceedings of the
International Conference on Robotics and Automation, pages 521–528.

C. Borst, M. Fischer, S. Haidacher, H. Liu, and G Hirzinger. 2003. DLR hand II: Exper-
iments and experiences with an antropomorphic hand. InProceedings. IEEE Interna-
tional Conference on Robotics and Automation, volume 1, pages 702–707.

H. Bourlard and N. Morgan. 1990. A continuous speech recognition system embedding
MLP into HMM. Advances in Neural Information Processing Systems, 2:186–193.

C. Breazeal and B. Scassellati. 2002. Robots that imitate humans.Trends in Cognitive
Sciences, 6(11):481–487.

L. Bretzner. 1999.Multi-scale feature tracking and motion estimation. PhD thesis, CVAP,
NADA, Royal Institute of Technology, KTH.

C. J.C. Burges. 1998. A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery, 2:121–167.

B. Caputo. 2004.A new kernel method for appearance-based object recognition: spin
glass-Markov random fields. PhD thesis, Royal Institute of Technology, Sweden.

A. Castellani, D. Botturi, M. Bicego, and P. Fiorini. 2004. Hybrid HMM/SVM model for
the analysis and segmentation of teleoperation tasks. InIEEE International Conference
on Robotics and Automation, volume 3, pages 2918–2923.

P. Chang and J. Krumm. 1999. Object recognition with color cooccurrence histograms. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages
498–504.

J. Chen and A. Zelinsky. 2003. Programming by demonstration: coping with suboptimal
teaching actions.International Journal of Robotics Research, 22(5):299–319.

J. R. Chen and B. J. McCarragher. 2000. Programming by demonstration - constructing
task level plans in a hybrid dynamic framework. InProceedings of the IEEE Interna-
tional Conference on Robotics and Automation, ICRA’00, pages 1402–1407.

P. Chen, C. Lin, and B. Schölkopf. 2003. A tutorial onν-support vec-
tor machines. URLhttp://www.csie.ntu.edu.tw/~cjlin/papers/
nusvmtutorial.pdf .

C. Cortes and V. Vapnik. 1995. Support-Vector Networks.Machine Learning, 20(3):273 –
297.

J. J. Craig. 1989.Introduction to Robotics: Mechanics and Control. Addison Wesley
Publishing Company.

M. R. Cutkosky. 1989. On grasp choice, grasp models and the desing of hands for manu-
facturing tasks.IEEE Transactions on Robotics and Automation, 5(3):269–279.

129

D. DeMenthon and L. S. Davis. 1995. Model-based object pose in 25 lines of code.Inter-
national Journal of Computer Vision, 15:123–141.

E. Dickmanns and V. Graefe. 1988. Dynamic monocular machine vision.Machine Vision
and Applications, 1:223–240.

D. Ding, Y.-H. Liu, and S. Wang. 2000. Computing 3-d optimal formclosure grasps. In
Proc. of the 2000 IEEE International Conference on Robotics and Automation, pages
3573–3578.

G. Dueck and T. Scheuer. 1990. Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing.Journal of Computational Physics,
90:161–175.

M. Ehrenmann, O. Rogalla, R. Zöllner, and R. Dillmann. 2001. Teaching service robots
complex tasks: Programming by demonstration for workshop and household environ-
ments. InProceedings of the 2001 International Conference on Field and Service
Robots(FSR), pages 397–402.

S. Ekvall. 2005. CODID - CVAP Object Detection Image Database. URLhttp://www.
nada.kth.se/~ekvall/codid.html .

S. Ekvall and D. Kragic. 2004. Interactive grasp learning based on human demonstration.
In IEEE/RSJ International Conference on Robotics and Automation, volume 4, pages
3519–3524.

S. Ekvall and D. Kragic. 2005a. Grasp recognition for programming by demonstration. In
IEEE/RSJ IROS, pages 748–753.

S. Ekvall and D. Kragic. 2005b. Integrating object and grasp recognition for dynamic
scene interpretation. InIEEE International Conference on Advanced Robotics, ICAR’05,
pages 331–336.

S. Ekvall and D. Kragic. 2006. Learning task models from multiple human demonstra-
tions. In The 15th IEEE International Symposium on Robot and Human Interactive
Communication, RO-MAN’06, pages 358–363,.

A. Elgammal, V. Shet, Y. Yacoob, and L. S. Davis. 2003. Learning dynamics for exemplar-
based gesture recognition. InIEEE Conference on Computer Vision and Pattern Recog-
nition, volume 1, pages 571–578.

M. O. Ernst and H. H. Bulthoff. 2004. Merging the senses into a robust percept.Trends in
Cognitive Sciences 8(4), pages 162–169.

S. Ferguson and G. Dunlop. 2002. Grasp recognition from myoelectric signals. InAus-
tralian Conference On Robotics And Automation - ACRA, Auckland, pages 78–83.

130 BIBLIOGRAPHY

G. Ferretti, G. Magnani, P. Rocco, and L. Viganò. 2006. Modelling and simulation of a
gripper with dymola. Mathematical and Computer Modelling of Dynamical Systems,
12:89–102.

R. E. Fikes and N. J. Nilsson. 1971. STRIPS: A new approach to the application of theorem
proving to problem solving.Artificial Intelligence 2, pages 189–205.

J Foley, A. van Dam, S. Feiner, and J. Hughes, editors. 1990.Computer graphics - princi-
ples and practice. Addison-Wesley Publishing Company.

J. Folkesson, P. Jensfelt, and H. I. Christensen. 2005. Vision SLAM in the measurement
subspace. InProc. of the IEEE International Conference on Robotics and Automation
(ICRA’05), pages 30–35.

Y. Freund and R. E. Schapire. 1995. A decision-theoretic generalization of on-line learning
and an application to boosting.Computational Learning Theory, pages 23–37.

H. Friedrich and R. Dillmann. 1995. Obtaining good performance from a bad teacher.
In Workshop: Programming by Demonstration vs Learning from Examples; Inter-
national Conference on Machine Learning. URL citeseer.ist.psu.edu/
kaiser95obtaining.html .

H. Friedrich, R. Dillmann, and O. Rogalla. 1999. Interactive robot programming based on
human demonstration and advice.Sensor Based Intelligent Robots, 1724:96–119.

H. Friedrich, S. Münch, and R. Dillmann. 1996. Robot programming by demonstration
(rpd): Supporting the induction by human interaction.Machine Learning, 23:163–189.

G. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J.A. Fernández-Madrigal, and
J. González. 2005. Multi-hierarchical semantic maps for mobile robotics. InIEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2278–2283.

V. Gengenbach, H.-H. Nagel, M. Tonko, and K. Schäfer. 1996. Automatic dismantling
integrating optical flow into a machine-vision controlled robot system. InProceedings
of the IEEE International Conference on Robotics and Automation, ICRA’96, volume 2,
pages 1320–1325.

R. C. Gonzalez and R. E. Woods. 1992.Digital Image Processing. Addison Wesley
Publishing Company.

A. Gopalakrishnan and A. Sekmen. 2005. Vision-based mobile robot learning and naviga-
tion. In IEEE International Workshop on Robot and Human Interactive Communication,
pages 48–53.

I. D. Horswill. 2000. Behavior-Based Robotics, Behavior Design. Technical report CS
395, Northwestern University.

131

K. Hyunsoo and P. Haesun. 2004. Prediction of protein relative solvent accessibility with
support vector machines and long-range interaction 3D local descriptor.Proteins: Struc-
ture, Function, and Bioinformatics, pages 557–562.

M. Jägersand. 1997.On-line Estimation of Visual-Motor Models for Robot Control and
Visual Simulation. PhD thesis, Univ. of Rochester.

P. Jensfelt, S. Ekvall, D. Kragic, and D. Aarno. 2005. Integrating slam and object detec-
tion for service robot tasks. InIEEE International Conference on Intelligent Robots
and Systems, Workshop on Mobile Manipulators: Basic Techniques, New Trends and
Applications". URL http://www.nada.kth.se/~patric/publications/
workshop2005.pdf .

P. Jensfelt, J. Folkesson, D. Kragic, and H. I. Christensen. 2006. Exploiting distinguishable
image features in robotic mapping and localization. In Henrik I. Christensen, editor,1st
European Robotics Symposium (EUROS-06), pages 143–157.

S. Kang and K. Ikeuchi. 1993. Toward automatic robot instruction from perception-
recognizing a grasp from observation.IEEE Transactions on Robotics and Automation,
9:432–443.

S. Kang and K. Ikeuchi. 1995. Toward automatic robot instruction from perception - tem-
poral segmentation of tasks from human hand motion.IEEE Transactions on Robotics
and Automation, 11(5):670 – 681.

S. Kang and K. Ikeuchi. 1997. Toward automatic robot instruction from perception-
mapping human grasps to manipulator grasps.IEEE Transactions on Robotics and
Automation, 13:81–95.

D. Kragic and H.I. Christensen. 2002. Model based techniques for robotic servoing and
grasping. InProceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots
and Systems, pages 299–304.

D. Kragic, P. Marayong, M. Li, A. M. Okamura, and G. D. Hager. 2005. Human-machine
collaborative systems for microsurgical applications.International Journal of Robotics
Research, 24:731–741.

G. M. Kruijff, H. Zender, P. Jensfelt, and H. I. Christensen. 2006. Clarification dialogues
in human-augmented mapping. InProc. of the 1st Annual Conference on Human-Robot
Interaction (HRI’06), pages 282–289.

A. B. Kuang, S. Payandeh, B. Zheng, F. Henigman, and C.L. MacKenzie. 2004. Assem-
bling virtual fixtures for guidance in training environments. In12th International Sym-
posium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAP-
TICS ’04., pages 367 – 374.

132 BIBLIOGRAPHY

B. J. Kuipers. 1983. The cognitive map: Could it have been any other way?H. L. Pick, Jr.
and L. P. Acredolo (Eds.), Spatial Orientation: Theory, Research, and Application, New
York: Plenum Press, pages 345–359.

Y. Kuniyoshi, M. Inaba, and H. Inoue. 1994. Learning by watching, extracting reusable
task knowledge from visual observation of human performance.IEEE Transactions on
Robotics and Automation, 10:799–822.

V. Kyrki and D. Kragic. 2005. Integration of model-based and model-free cues for visual
object tracking in 3d. InIEEE International Conference on Robotics and Automation,
ICRA’05, pages 1566–1572.

H. K. Lee and J. H. Kim. 1999. An HMM-based threshold model approach for gesture
recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence, 21:961–
973.

T. Lefebvre, H. Bruyninckx, and J. De Schutter. 2005. Task planning with active sensing
for autonomous compliant motion.International Journal of Robotics Research, 24(1):
61–81.

M. Li and A. M. Okamura. 2003. Recognition of operator motions for real-time assistance
using virtual fixtures. In11th Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems (HAPTICS’03), pages 125–131.

M. Li and R. H. Taylor. 2004. Spatial motion constraints in medical robot using virtual
fixtures generated by anatomy. InIEEE International Conference on Robotics and Au-
tomation, ICRA ’04, volume 2, pages 1270–1275.

R. Liang and M. Ouhyoung. 1998. A real-time continuous gesture recognition system
for sign language. InIEEE International Conference on Automatic Face and Gesture
Recognition, pages 558–567.

O. Linde and T. Lindeberg. 2004. Object recognition using composed receptive field his-
tograms of higher dimensionality. In17th International Conference on Pattern Recog-
nition, ICPR’04, volume 2, pages 1–6.

C. S. Lovchik and M. A. Diftler. 1999. The robonaut hand: a dexterous robot hand for
space. InIEEE International Conference on Robotics and Automation, volume 2, pages
907–912.

D. Lowe. 1999. Object recognition from local scale-invariant features. InIEEE Interna-
tional Conference on Computer Vision (ICCV 99), pages 1150–1157.

J. B. MacQueen. 1967. Some methods for classification and analysis of multivariate ob-
servations. InProceedings of 5-th Berkeley Symposium on Mathematical Statistics and
Probability, pages 1:281–297. University of California Press.

133

O. Martínez Mozos, C. Stachniss, and W. Burgard. 2005. Supervised learning of places
from range data using adaboost. InProc. of the IEEE International Conference on
Robotics and Automation, ICRA’05, pages 1742–1747.

M. J. Mataríc. 2000. Getting humanoids to move and imitate.IEEE Intelligent Systems,
15:18–24.

B. W. Mel. 1997. SEEMORE: Combining color, shape and texture histogramming in a
neurally inspired approach to visual object recognition.Neural Computation, 9:777–
804.

A. T. Miller and P. K. Allen. 1999. Examples of 3D grasp quality computations. InPro-
ceedings of the of the 1999 IEEE International Conference on Robotics and Automation,
pages 1240–1246.

A. T. Miller and P. K. Allen. 2000. Graspit!: A versatile simulator for grasping analysis. In
Proceedings of the of the 2000 ASME International Mechanical Engineering Congress
and Exposition, pages 1251–1258.

A. T. Miller, S. Knoop, P. K. Allen, and H. I. Christensen. 2003. Automatic grasp planning
using shape primitives. InProc. of the IEEE International Conference on Robotics and
Automation, pages 1824–1829.

A. Morales, P. Azad, T. Asfour, D. Kraft, S. Knoop, R. Dillmann, A. Kargov,
C. Pylatiuk, and S. Schulz. 2006a. An anthropomorphic grasping approach for
an assistant humanoid robot. InInternational Symposium on Robotics (ISR).
URL http://www.sfb588.uni-karlsruhe.de/publikationen/2006/
R1R3_Morales_ISR06.pdf .

A. Morales, E. Chinellato, A. H. Fagg, and A. P. del Pobil. 2004. Using experience for
assessing grasp reliability.International Journal of Humanoid Robotics, 1(4):671–691.

A. Morales, P. J. Sanz, A. P. del Pobil, and A. H. Fagg. 2006b. Vision-based three-finger
grasp synthesis constrained by hand geometry.Robotics and Autonomous Systems, 54
(6):494–512.

H. Murase and S. K. Nayar. 1995. Visual learning and recognition of 3-d objects from
appearance.International Journal of Computer Vision, 14:5–24.

A. Namiki, Y. Imai, M. Ishikawa, and M. Kaneko. 2003. Development of a high-speed
multifingered hand system and its application to catching. InIEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 3, pages 2666–2671.

J. Napier. 1956. The prehensile movements of the human hand.Journal of Bone and Joint
Surgery, 38B(4):902–913.

P. Newman and K. Ho. 2005. SLAM-loop closing with visually salient features. InIEEE
International Conference on Robotics and Automation, ICRA’05, pages 635–642.

134 BIBLIOGRAPHY

P. Newman, J. Leonard, J. D. Tardós, and J. Neira. 2002. Explore and return: Experimen-
tal validation of real-time concurrent mapping and localization. InProc. of the IEEE
International Conference on Robotics and Automation (ICRA’02), pages 1802–1809.

M. N. Nicolescu and M. J. Mataric. 2003. Natural methods for robot task learning: In-
structive demonstrations, generalization and practice. InProceedings of the Second
International Joint International Conference on Autonomous Agents, pages 241–248.

J. T. Nolin, P. M. Stemniski, and A. M. Okamura. 2003. Activation cues and force scal-
ing methods for virtual fixtures. In11th Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems (HAPTICS’03), pages 404–409.

K. Ogawara, K. Hashimoto, J. Takamatsu, and K. Ikeuchi. 2003. Grasp recognition using
a 3D articulated model and infrared images. InIEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1590–1595.

K. Ogawara, J. Takamatsu, K. Kimura, and K. Ikeuchi. 2002. Generation of a task model
by integrating multiple observations of human demonstrations. InProceedings of the
IEEE Intl. Conf. on Robotics and Automation (ICRA ’02), pages 1545–1550.

S. Payandeh and Z. Stanisic. 2002. On application of virtual fixtures as an aid for telema-
nipulation and training. In10th Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, HAPTICS ’02, pages 18–23.

M. A. Peshkin, J. E. Colgate, W. Wannasuphoprasit, C. A. Moore, R. B. Gillespie, and
P. Akella. 2001. Cobot architecture.IEEE Transactions on Robotics and Automation,
17(4):377–390.

L. Petersson, P. Jensfelt, D. Tell, M. Strandberg, D. Kragic, and H. I. Christensen. 2002.
Systems integration for real-world manipulation tasks. InIEEE International Confer-
ence on Robotics and Automation, volume 3, pages 2500–2505.

R. Platt Jr, A. H. Fagg, and R. A. Grupen. 2003. Extending fingertip grasping to whole
body grasping. InProc. of the International Conference on Robotics and Automation,
pages 2677–2682.

N. S. Pollard. 1994.Parallel Methods for Synthesizing Whole-Hand Grasps from Gener-
alized Prototypes. Phd thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

N. S. Pollard. 2004. Closure and quality equivalence for efficient synthesis of grasps from
examples.International Journal of Robotic Research, 23(6):595–613.

D. Prattichizzo and A. Bicchi. 1998. Dynamic analysis of mobility and graspability of
general manipulation systems.IEEE Transactions on Robotics and Automation, 14(2):
241–257.

135

A. Pronobis, B. Caputo, P. Jensfelt, and H. I. Christensen. 2006. A discriminative approach
to robust visual place recognition. InIEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS’06.

L. R. Rabiner. 1989. A tutorial on hidden Markov models and selected applications in
speech recognition. InProc. of the IEEE, vol 77, no. 2, pages 257–286.

S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H. Franco. 1994. Connectionist proba-
bility estimators in HMM speech recognition.IEEE Transactions on Speech and Audio
Processing, 2(1):161–174.

M. Riley, A. Ude, and C. G. Atkeson. 2000. Methods for motion generation and interac-
tion with a humanoid robot: Case studies of dancing and catching. InAAAI and CMU
Workshop on Interactive Robotics and Entertainment, pages 35–42.

D. Roobaert. 2001.Pedagogical Support Vector Learning: A Pure Learning Approach
to Object Recognition. PhD thesis, Department of Numerical Analysis and Computing
Science, Royal Institute of Technology, Sweden.

M. Ruchanurucks, S. Nakaoka, S. Kudo, and K. Ikeuchi. 2006. Humanoid robot motion
generation with sequential physical constraints. InIEEE International Conference on
Robotics and Automation, pages 2649–2654.

S. Russel and P. Norvig. 2003.Artificial intelligence: A modern approach. Second edition,
Prentice Hall.

M. Rychetsky, S. Ortmann, and M. Glesner. 1999. Support vector approaches for engine
knock detection. InInternational Joint Conference on Neural Networks, IJCNN ’99,
volume 2, pages 969–974.

S. Schaal. 1999. Is imitation route learning route to humanoid robots?Trends in Cognitive
Sciences, 3:232–242.

B. Schiele and J. L. Crowley. 2000. Recognition without correspondence using multidi-
mensional receptive field histograms.International Journal of Computer Vision, 36(1):
31–50.

R. Schmidt and T. Lee. 1999.Motor Control and learning: a behavioral emphasis. Human
Kinetics, 3rd edition.

A. Selinger and R. C. Nelson. 2001. Appearance-based object recognition using multiple
views. Technical Report 749, Comp. Sci. Dept. University of Rochester, Rochester NY.

R. Smith, M. Self, and P. Cheeseman. 1988. A stochastic map for uncertain spatial rela-
tionships. In4th International Symposium on Robotics Research, pages 467–474.

T. Starner and A. Pentland. 1995. Visual recognition of American sign language using hid-
den Markov models. InProc. International Workshop on Automatic Face- and Gesture-
Recognition, pages 189–194.

136 BIBLIOGRAPHY

M. Steedman. 1997. Temporality. In J. van Benthem and A. ter Meulen, editors,Handbook
of Logic and Language, pages 895–938. Elsevier.

R. S. Sutton and A. G. Barto. 1998.Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

M. Swain and D. Ballard. 1991. Color indexing.International Journal of Computer Vision,
7:11–32.

R. H. Taylor and D. Stoianovici. 2003. Medical robotics in computer-integrated surgery.
IEEE Transactions on Robotics and Automation, 19:765–781.

J. Tegin, J. Wikander, S. Ekvall, D. Kragic, and B. Iliev. 2006. Experience based learning
and control of robotic grasping. InIEEE-RAS International Conference on Humanoid
Robots, Workshop: Towards Cognitive Humanoid Robots.

C. Theobalt, J. Bos, T. Chapman, A. Espinosa, M. Fraser, G. Hayes, E. Klein, T. Oka, and
R. Reeve. 2002. Talking to Godot: Dialogue with a mobile robot. InIEEE International
Conference on Intelligent Robots and Systems, IROS’02, pages 1338–1343.

W. Townsend. 2000. The BarrettHand grasper – programmably flexible part handling and
assembly.Industrial Robot: An International Journal, 27(3):181–188.

A. Ude. 1999. Robust estimation of human body kinematics from video. InIEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1489–1494.

M. Vincze, M. Ayromlou, and W. Kubinger. 1999. An integrating framework for robust
real-time 3D object tracking. InProceedings of the First International Conference on
Computer Vision Systems, ICVS’99, pages 135–150.

P. Viola and M. Jones. 2001. Rapid object detection using a boosted cascade of sim-
ple features. InIEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 1, pages 511–518.

Virtual Technologies Inc. 1995. CyberGlove. InUser’s Manual.

P. Wunsch and G. Hirzinger. 1997. Real-time visual tracking of 3D objects with dynamic
handling of occlusion. InProceedings of the IEEE International Conference on Robotics
and Automation, ICRA’97, volume 2, pages 2868–2873.

