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Abstract

This work is concentrated on efforts to efficiently compute properties of systems,
modelled by differential equations, involving multiple scales. Goal oriented adaptiv-
ity is the common approach to all the treated problems. Here the goal of a numerical
computation is to approximate a functional of the solution to the differential equa-
tion and the numerical method is adapted to this task.

The thesis consists of four papers. The first three papers concern the convergence
of adaptive algorithms for numerical solution of differential equations; based on a
posteriori expansions of global errors in the sought functional, the discretisations
used in a numerical solution of the differential equiation are adaptively refined. The
fourth paper uses expansion of the adaptive modelling error to compute a stochastic
differential equation for a phase-field by coarse-graining molecular dynamics.

An adaptive algorithm aims to minimise the number of degrees of freedom to
make the error in the functional less than a given tolerance. The number of degrees
of freedom provides the convergence rate of the adaptive algorithm as the tolerance
tends to zero. Provided that the computational work is proportional to the degrees
of freedom this gives an estimate of the efficiency of the algorithm.

The first paper treats approximation of functionals of solutions to second order
elliptic partial differential equations in bounded domains of R

d, using isoparametric
d-linear quadrilateral finite elements. For an adaptive algorithm, an error expan-
sion with computable leading order term is derived and used in a computable error
density, which is proved to converge uniformly as the mesh size tends to zero. For
each element an error indicator is defined by the computed error density multiply-
ing the local mesh size to the power of 2 + d. The adaptive algorithm is based on
successive subdivisions of elements, where it uses the error indicators. It is proved,
using the uniform convergence of the error density, that the algorithm either re-
duces the maximal error indicator with a factor or stops; if it stops, then the error is
asymptotically bounded by the tolerance using the optimal number of elements for
an adaptive isotropic mesh, up to a problem independent factor. Here the optimal

number of elements is proportional to the d/2 power of the L
d

d+2 quasi-norm of the
error density, whereas a uniform mesh requires a number of elements proportional
to the d/2 power of the larger L1 norm of the same error density to obtain the same
accuracy. For problems with multiple scales, in particular, these convergence rates
may differ much, even though the convergence order may be the same.

The second paper presents an adaptive algorithm for Monte Carlo Euler approx-
imation of the expected value E[g(X(τ), τ)] of a given function g depending on the
solution X of an Itô stochastic differential equation and on the first exit time τ from
a given domain. An error expansion with computable leading order term for the
approximation of E[g(X(T ))] with a fixed final time T > 0 was given in [Szepessy,
Tempone, and Zouraris, Comm. Pure and Appl. Math., 54, 1169-1214, 2001]. This
error expansion is now extended to the case with stopped diffusion. In the extension
conditional probabilities are used to estimate the first exit time error, and differ-



iv

ence quotients are used to approximate the initial data of the dual solutions. For
the stopped diffusion problem the time discretisation error is of order N−1/2 for
a method with N uniform time steps. Numerical results show that the adaptive
algorithm improves the time discretisation error to the order N−1, with N adaptive
time steps.

The third paper gives an overview of the application of the adaptive algorithm
in the first two papers to ordinary, stochastic, and partial differential equation.

The fourth paper investigates the possibility of computing some of the model
functions in an Allen–Cahn type phase-field equation from a microscale model,
where the material is described by stochastic, Smoluchowski, molecular dynam-
ics. A local average of contributions to the potential energy in the micro model is
used to determine the local phase, and a stochastic phase-field model is computed
by coarse-graining the molecular dynamics. Molecular dynamics simulations on a
two phase system at the melting point are used to compute a double-well reaction
term in the Allen–Cahn equation and a diffusion matrix describing the noise in the
coarse-grained phase-field.
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Chapter 1

Introduction

Differential equations are important in the formulation of mathematical mod-
els in many areas of science and engineering. Such models may be used to
get an understanding of global properties of the system being modelled, from
analytical solutions to the differential equations, from qualitative analysis of
the dependence on model parameters, or from approximate numerical solu-
tions for particular parameter values. However, mathematical models are also
commonly used, not primarily to study global behaviour, but to predict the
values of one or several scalar quantities of particular importance for the ap-
plication at hand. Mathematically, such quantities correspond to functionals
of the solutions to the differential equations. When the underlying differen-
tial equations are solved numerically, with finite computational resources, it
is desirable to minimise the computational work for a given accuracy in the
functional values. In goal oriented adaptivity, for a fixed numerical method
of approximation, the degrees of freedom are adapted to both the differen-
tial equation and the functional in an attempt to minimise the work needed
to meet the error tolerance in the goal functional. The first three articles
in this thesis aim at increased understanding of optimal convergence rates
for goal oriented adaptive algorithms; one adaptive algorithm is studied in
different settings, in particular those of deterministic elliptic partial differen-
tial equations in bounded d-dimensional domains using isoparametric d-linear
quadrilateral finite element approximations, and of Itô stochastic differential
equations using the Euler Monte Carlo method.

A common characteristic among many problems where adaptivity is used is
that two or more scales are involved and that poor accuracy in the small details
may propagate to the large scale properties of the solution. For example, if a
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2 CHAPTER 1. INTRODUCTION

certain partial differential equation, combined with the goal functional, have
the property that the solution must be resolved well in parts of the domain
to obtain the desired accuracy, then a uniform discretisation may waste much
computational effort by over-resolving the solution in the rest of the domain.
The situation in the fourth article concerns instead the problem of computing
an approximate model on a macroscopic scale from an underlying microscopic
model, which is assumed to be more fundamental. This can be seen as a
form of adaptivity in the model, although the computations on the microscale
and the macroscale are separated. In this case the macroscopic model is a
stochastic phase-field equation describing the time evolution of a system with
a solid and a liquid phase. The microscopic model of the material is that
of interacting particles with positions given by the stochastic Smoluchowski
molecular dynamics.



Chapter 2

Background on Adaptive

Algorithms

Adaptive and Non-Adaptive Algorithms Consider the problem of com-
puting an approximate value of g(f) of a functional g : X → R for f ∈ F ,
where F is a subset of the normed linear space X. Often a numerical method
for this problem is on the form

gn(f) = φn(L1(f), . . . , Ln(f)), (2.1)

where Li : X → R are linear functionals and φn : X → R is linear or nonlinear.
The functionals can for example be function evaluations, Li(f) = f(xi). The
method gn is called non-adaptive if the functionals Li are the same for all
f ∈ F . It is called adaptive if the choice of functionals Li depends on f
through the previously computed values L1(f), . . . , Li−1(f).

In information based complexity theory there is a general result by Bakh-
valov and Smolyak comparing adaptive and non-adaptive methods for approx-
imation of linear functionals, g : X → R, on a normed linear function space,
X. The result states that for any adaptive method (2.1) using a fixed number
of linear functionals Li to approximate the linear g, defined on a symmetric
convex subset F of X, there is a linear non-adaptive method whose maximal
error, on F with the same number of linear functionals, is as small as that of
the adaptive method. A more detailed formulation can be found the overview
article [24] by Novak.

How does the adaptive algorithms for computation of linear functionals
of solutions to differential equations which are considered here relate to the
result of Bakhvalov and Smolyak? The point of view is different in that a fixed

3



4 CHAPTER 2. BACKGROUND ON ADAPTIVE ALGORITHMS

method, for example a finite element method of given order, is considered with
the aim to construct an adaptive mesh refinement algorithm for that method.
Also, in contrast to keeping the number of steps in the algorithm fixed, the
aim here is to create an algorithm where the number of steps, as a function
of the the error tolerance is close to optimal as the tolerance tends to zero.

Consider a numerical method based on uniform discretisation of a d-
dimensional domain with element size h and with approximation error Θ(hp),
as h → 0, using the notation that f = Θ(g) if and only if f = O(g) and

g = O(f). Making the error less than a tolerance TOL requires Θ(TOL−d/p)
elements. Assuming that the work is proportional to the number of elements
the performance of the method can be expressed in terms of the tolerance,
as TOL → 0. This measure of the efficiency is natural to extend to adaptive
algorithms as illustrated in a simple setting in the next example.

Example: Numerical Integration The assumption of a convex domain
of definition, F , for the adaptive and non-adaptive methods in the result of
Bakhvalov and Smolyak mentioned above is important. To illustrate this
and to show how convergence rates for adaptive algorithms are measured
here, consider the linear functional given by an integral of a known function,

g(f) =
∫ T

0
f(t) dt, and let the method of numerical integration be the left

point rule (forward Euler). Discretise the time interval [0, T ] into N sub-
intervals 0 = t0 < t1 < · · · < tN = T with steps ∆tn := tn+1 − tn. With ḡ(f)
denoting the numerical approximation of g(f) the global discretisation error
becomes

g(f) − ḡ(f) =

N−1
∑

n=0

ρn(∆tn)2 + higher order terms, (2.2)

where the error density function ρ is given by ρn := df
dt (tn)/2. As an example

of a non-adaptive method consider uniform ∆t. Using that the number of
time steps is

N(∆t) =

∫ T

0

1

∆t(τ)
dτ, (2.3)

the number Nu of uniform steps to reach a given level of accuracy TOL is
asymptotically proportional to TOL−1 with the L1-norm of the function ρ in
the proportionality constant,

Nu ≃ T

TOL
‖ρ‖L1(0,T ), (2.4)
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provided that ρ has constant sign. When the number of steps in (2.3) is
minimised with the accuracy constraint that the leading order of (2.2) is
TOL, the optimal distribution of time steps is

ρn∆t2n = constant for all n.

With this choice the number Na of adaptive steps becomes proportional to
TOL−1 with the smaller L

1
2 -quasi-norm of the error density as the propor-

tionality constant,

Na ≃ 1

TOL
‖ρ‖

L
1
2 (0,T )

. (2.5)

Since the Euler method uses one function evaluation per step the asymptotic
number of steps (2.4) and (2.5) give the convergence rates of the Euler method
using uniform and optimal adaptive time steps respectively.

Take for example the integrand f(t) = 1/
√

t + ǫ for a small positive para-
meter ǫ ≪ T . Since ρ(t) = −1

4(t+ǫ)3/4 the number of uniform steps becomes

Nu ≃ T/4

TOL

∫ T

0

dt

(t + ǫ)3/2
≈ T/4

TOL

1

ǫ1/2
,

while the number of adaptive time steps is smaller,

Na ≃ 1/4

TOL

(

∫ T

0

dt

(t + ǫ)3/4

)2

≈ 4
√

T

TOL
.

The smaller multiple of 1/TOL with an adaptive approach captures the mul-
tiple scales introduced by ǫ ≪ T . In this example, the integrand can also be
viewed as an approximation of the singular 1/

√
t, in which case the parameter

must be taken ǫ1/2 = o(TOL), so that Na/Nu → 0 as TOL → 0.
If F = {f : ||f ′||

L
1
2

< M} for a constant M , then the integrand in

the example above is in F for some ǫ depending on M . Note that F is non-
convex so that the result by Bakhvalov and Smolyak does not apply to the
problem of computing g(f) for f ∈ F . In this class of integrands the choice
of uniform steps in the non-adaptive method is motivated by considering in-
tegrands fs(t) = 1/

√

|t − s| + ǫ with ǫ just large enough for fs to be in F for
all s ∈ [0, T ]. However, it is not always the case that optimal non-adaptive
discretisations for a fixed method are uniform, as is illustrated in the next
example.
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Example: Corner Singularity for an Elliptic Partial Differential

Equation Let u, in a domain Ω with a crack as in Figure 2.1, be the solution
of the Laplace equation

Ω

0 Γ0

Figure 2.1: Domain with a crack

−∆u = 0, in Ω,

u = 0, on Γ0,

u = f, on ∂Ω \ Γ0,

and let g(f), viewed as a linear functional of the Dirichlet boundary values f ,
be given by the integral of u,

(u, 1) =

∫

Ω

u dx.

Even if the boundary conditions are taken from a class of smooth functions
the solution u will in general have a form like u(r, θ) =

√
rα(θ) + β(r, θ) in

polar coordinates with smooth α and β close to the tip of the crack; see for
example the textbook [15] by Johnson. For a given solution method of the
boundary value problem, for example bilinear finite elements on a grid with
square elements and hanging nodes, the a priori information of the singularity
of the derivative of the exact solution can be used to construct non-uniform
non-adaptive meshes for this particular geometry. On the other hand, in
applications where the domain Ω varies adaptive methods allow the mesh to
automatically adapt to the geometry without the detailed a priori knowledge
of the solution. This is the situation considered in Paper I.



Chapter 3

An Adaptive Algorithm

This chapter describes an adaptive algorithm for computing approximate solu-
tions to problems which can abstractly be stated as:

compute the functional g(u)

where u solves an initial or boundary value problem (3.1)

for a differential equation in a d-dimensional domain Ω.

For a given method of numerical approximation of u, based on discretisation
of the domain Ω, the algorithm constructs the final discretisation by iterative
refinements of an initial mesh; the algorithm presupposes an expansion of the
error in the scalar quantity g(u) of the form

Global error =
∑

local error · weight + higher order error, (3.2)

depending on the approximation method and on the problem; compare (2.2)
in the numerical integration example. The leading order terms must be com-
putable using information on the current mesh. The weight describes the
influence of changes in the differential equation on the functional of its solu-
tion. The goal of the adaptive algorithm is to, for the given approximation
method, approximate g(u) using an adapted mesh with a minimal number of
intervals (elements) for error less than a given tolerance.

Concrete formulations of the abstract (3.1) are for example:

• the computation of g(u) = (u(T ))2 where u solves an ordinary differen-

7



8 CHAPTER 3. AN ADAPTIVE ALGORITHM

tial equation

du

dt
(t) = a(t, u(t)), 0 < t < T, (3.3)

u(0) = u0,

with flux a : [0, T ] × R
d → R

d and where an approximate solution uh

is obtained by any p:th order numerical method using uh(0) = u0 and
Ω = [0, T ] is discretised into 0 = t0 < t1 < · · · < tN = T .

• the computation of g(u) where u solves an elliptic partial differential
equation in a bounded open domain Ω ⊂ R

d and where an approximate
solution uh is obtained using a given finite element method; see the
example on page 6.

Equidistribution of Errors Consider (3.1) in a domain of dimension d
with a given approximation method of order p. Assume that an asymptotic
error expansion (3.2) on the form

error ≃
∑

n

ρnhp+d
n

is known, where h is the local mesh size, of the non-stretched element, and ρ
is independent of h. The number of elements that corresponds to a mesh with
size h can be determined by

N(h) : =

∫

Ω

dx

hd(x)
. (3.4)

If the sign of the error density varies a very small set of elements may give
an error in the functional that is close to zero due to cancellation of error
contributions of opposite sign. Thus the optimal mesh may consist of very
few elements, but it seems difficult to exploit the cancellation of errors when
constructing the mesh. Disregarding the possible cancellation by minimising
the number of elements N in (3.4) under the constraint

N
∑

n=1

|ρn|hd+p
n =

∫

Ω

|ρ(x)|hp(x)dx = TOL,

gives the optimum

|ρ|(h∗)d+p = constant (3.5)



9

with corresponding mesh size function

h∗(x) : =
TOL

1
p

|ρ(x)| 1
d+p

(
∫

Ω

|ρ(x)| d
d+p dx

)− 1
p

. (3.6)

This condition is optimal only for density functions ρ with one sign. Moreover,
in higher dimension, d > 1, it is optimal only for meshes with non-stretched
elements, that is, elements such that each element is described by one element
size h.

The adaptive refinement algorithm, described in a generic deterministic
form in Algorithm 1 below, is designed to approximate the optimal equidistri-
bution of error contributions (3.5). With [k] denoting quantities on the k:th
mesh in the refinement sequence, the accepted mesh kstop ideally fulfils

ρ̂n[kstop](hn[kstop])d+p ≈ TOL

N [kstop]
, n = 1, 2, . . . , N [kstop],

where ρ̂n is a computable approximation of the unsigned error density, |ρ|.
Thus, after calculating ρ̂[k] from computed approximate primal and dual
solutions on level k, the algorithm refines all elements with error indicat-
ors r̄n[k] : = ρ̂n[k](hn[k])d+p > s1TOL/N [k], where s1 ≈ 1 is a constant.
The maximal error indicator may reduce slowly when most r̄n are small,
r̄n[k] ≤ s1TOL/N [k], leading to many refinements; to avoid this the refine-
ments stop when all r̄n[k] ≤ S1TOL/N [k] for a constant S1 > s1. In summary,
the new element sizes h[k + 1] are obtained from h[k] by:

Algorithm 1: Refinement and stopping

forall intervals (elements) n = 1, 2, . . . , N [k] do

r̄n[k] = ρ̂n[k](hn[k])d+p

if r̄n[k] > s1TOL/N [k] then

mark interval (element) n for division
end

end

if max1≤n≤N [k] r̄n[k] ≤ S1TOL/N [k] then

stop the refinements
else

divide every marked interval (element) into 2d sub intervals
(elements)

end

The optimality condition (3.5) was obtained from the assumption of a limit
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error density, ρ, and the adaptive algorithm was constructed to approxim-
ate (3.5) using a computed approximate error density ρ̂. This is meaningful if
ρ̂ converges to |ρ| as TOL → 0. Thus for any particular application the proof
of this convergence is crucial for the theoretical analysis of the algorithm.
It is possible to analyse the important properties of stopping, accuracy and
efficiency of the algorithm in terms of convergence of ρ̂.

Stopping of Algorithm 1 Assume the convergence of ρ̂ where this positive
approximate error density is bounded away from zero by a lower bound δ which
tends to 0 with TOL as

δ = TOLγ , (3.7)

for a positive parameter γ which depends on the application. Then the change
in the density ρ̂(K)[k] in an element K on refinement level k from its value on
the parent element on a previous level, p(K, k) can be bounded; it follows from
the convergence assumption and (3.7) and an additional assumption (3.12) on
the initial mesh size that there exist functions ĉ and Ĉ, close to 1 for sufficiently
refined meshes, such that

ĉ(K) ≤ ρ̂(K)[p(K, k)]

ρ̂(K)[k]
≤ Ĉ(K), (3.8a)

ĉ(K) ≤ ρ̂(K)[k − 1]

ρ̂(K)[k]
≤ Ĉ(K). (3.8b)

The lower bound on the quotients here can be used, together with the refine-
ment and stopping criteria in Algorithm 1, to prove the following theorem,
which shows that the slow reduction of the maximal error indicator is avoided
for S1 chosen suitably larger than s1.

Theorem (Stopping). With the adaptive refinement and stopping strategy in

Algorithm 1, assume that ĉ satisfies (3.8a)–(3.8b), for the elements or time

steps corresponding to the maximal error indicator on each refinement level,

and that

S1 ≥ 2d

ĉ
s1, 1 >

ĉ−1

2d+p
.

Then each refinement level either decreases the maximal error indicator with

the factor ĉ−1

2d+p , that is

max
1≤n≤N [k+1]

r̄n[k + 1] ≤ ĉ−1

2d+p
max

1≤n≤N [k]
r̄n[k], (3.9)

or it stops the algorithm.
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Accuracy of Algorithm 1 By construction the adaptive algorithm guaran-
tees that the estimate of the global error is bounded by a given error tolerance,
TOL. Is also the true global error bounded by TOL asymptotically? The stop-
ping criterion in Algorithm 1 gives an upper bound of the error indicators,
which together with the assumed convergence of ρ̂ leads to an asymptotic
bound of the global error of the kind

lim sup
TOL→0+

(

TOL−1
∣

∣g(u) − g(uh)
∣

∣

)

≤ S1,

where u is the exact solution and uh the computed approximation. See The-
orem 3.3 in Paper I for a precise formulation for the dual weighted residual
finite element algorithm considered there for second order elliptic partial dif-
ferential equations.

Efficiency of Algorithm 1 The goal of the adaptive algorithm is to de-
termine a mesh with a minimal number of elements or time steps, N , for the
specified accuracy. The optimality condition (3.6) in the equation (3.4) for N
gives the optimal number of adaptive elements

Nopt =

∫

Ω

dx

(h∗(x))d
=

1

TOL
d
p

(
∫

Ω

|ρ[k](x)| d
d+p dx

)

d+p
p

=
1

TOL
d
p

‖ρ‖
d
p

L
d

d+p
.

(3.10)
With a uniform mesh, constant mesh size h, the number of elements, Nuni, to
achieve

∑N
i=1 |ρi|h

d+p = TOL becomes instead

Nuni =

∫

Ω

dx

hd(x)
=

∫

Ω
dx

TOL
d
p

(
∫

Ω

|ρ[k](x)|dx

)
d
p

=

∫

Ω
dx

TOL
d
p

‖ρ‖
d
p

L1 . (3.11)

Since, by Jensen’s inequality, ‖f‖
L

d
d+p

≤ (
∫

Ω
dx)

p
d ‖f‖L1 , the asymptotic con-

stant multiplying 1/TOLd/p in the convergence order is smaller for the adapt-
ive method than the uniform element size method. For problems with multiple
scale solutions the difference may be significant; compare the integration ex-
ample in Chapter 1.

From the refinement criterion in Algorithm 1, a lower bound of the error
indicators follows for the refined parent error indicator. This, together with
the assumption that upper bound of the ratios of the error density (3.8a)–
(3.8b) holds for all elements on the final mesh, and an assumption

hK [1] = Θ(TOLs), (3.12)
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on the initial mesh size to guarantee that, for sufficiently small TOL, all
elements on the initial mesh are refined, can be used to show that Algorithm 1
generates a mesh which is optimal, (3.10), up to a multiplicative constant
independent of the data,

(TOL
d
p N) ≤ C ‖Ĉρ̂‖

d
p

L
d

d+p
≤ C

(

max
x∈D

Ĉ(x)
d
p

)

‖ρ̂‖
d
p

L
d

d+p
, (3.13)

with C ≤ ( 2d+p

s1
)

d
p . See Theorem 3.4 in Paper I for a precise formulation in a

specific case.

Earlier Applications of Algorithm 1 to Stochastic Differential Equa-

tions The work [29, 20] treat the weak approximation of an Itô Stochastic
differential equation of the form

dXk(t) = ak(t, X(t))dt +

ℓ0
∑

ℓ=1

bℓ
k(t, X(t))dW ℓ(t), t > 0, (3.14)

where k = 1, . . . , d, and X(t;ω) is a stochastic process in R
d, with independ-

ent one dimensional Wiener processes W ℓ(t;ω), ℓ = 1, . . . , ℓ0. The functions
a(t, x) ∈ R

d and bℓ(t, x) ∈ R
d, ℓ = 1, . . . , ℓ0, are given drift and diffusion

fluxes.
Weak approximation of the stochastic differential equation by the Euler

Monte Carlo method approximates the expected value E[g(X(T ))] of a func-
tional of the solution with a sample average of g(X(T )), where X(tn) are
identically distributed samples of a discrete time approximation of X(tn) in
the times 0 = t0 < t1 < · · · < tN = T using the Euler method,

X(tn+1) − X(tn) = a(tn, X(tn))∆tn +

ℓ0
∑

ℓ=1

bℓ(tn, X(tn))∆W ℓ
n, (3.15)

for ∆tn = tn+1 − tn, ∆W ℓ
n = W ℓ(tn+1)−W ℓ(tn), n = 0, 1, 2, . . . , N − 1. The

aim of the adaptive algorithm is to, for a given error tolerance, obtain
∣

∣

∣

∣

∣

∣

E[g(X(T ))] −
1

M

M
∑

j=1

g(X(T ;ωj))

∣

∣

∣

∣

∣

∣

≤ TOL (3.16)

with a probability close to one, and doing this with minimal computational
work, proportional to the total number of stochastic time steps Nωj for the
M realisations.
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The error in (3.16) splits naturally into two parts,

E[g(X(T ))] − 1

M

M
∑

j=1

g(X(T ;ωj))

=
(

E[g(X(T )) − g(X(T ))]
)

+



E[g(X(T ))] − 1

M

M
∑

j=1

g(X(T ))



,(3.17)

corresponding to time discretisation error and statistical error.
Talay and Tubaro derived a priori estimates of the error (3.16) in [30]. This

is modified to an error expansion with a posteriori computable leading order
term in [29] using computable stochastic flows and discrete dual backward
problems. In [20] convergence of algorithms based on the error expansion is
analysed in terms of stopping, accuracy, and efficiency using both stochastic
and deterministic time steps in the control of the time discretisation error.
With stochastic adaptive time steps Algorithm 1 controls the refinements and
the stopping in the computation of each sample path. In those time steps
that are marked for refinement the sample value of the Wiener processes in
the midpoints are simulated using Brownian bridges

W l

(

tn + tn+1

2

)

=
1

2

(

W l(tn) + W l(tn+1)
)

+ zl
n, (3.18)

where zl
n are independent normally distributed random variables with mean

0 and variance (tn+1 − tn)/4, independent also of previous W l(tj).
The statistical error, governed by the Central Limit Theorem, is asymp-

totically bounded by c0σ/
√

M where σ is the sample average of the standard
deviation of g(X(T )) and c0 is a positive constant for a confidence interval.

Paper II extends the earlier work on stochastic differential equations to
stopped diffusion problems; see Section 4.4.





Chapter 4

Summary of Papers

4.1 An Adaptive Dual Weighted Residual Finite

Element Algorithm

Consider an adaptive finite element algorithm to approximate linear function-
als

g(u) = (u, F ) : =

∫

Ω

uF dx

of multiscale solutions, u : Ω → R, of the second order elliptic partial differ-
ential equation

−div(a∇u) = f (4.1)

in a given open bounded domain Ω ⊂ R
d with Dirichlet boundary condition

u|∂Ω = 0. The weak form of (4.1) is

(a∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω),

where the Sobolev space H1
0 (Ω) is the Hilbert space of functions on Ω, van-

ishing on ∂Ω, such that the first derivatives are in L2(Ω). The finite element
approximate solution, uh, solves the corresponding discrete variational form,

(a∇uh,∇v) = (f, v), ∀v ∈ Vh, (4.2)

where Vh is a finite dimensional subspace of H1
0 (Ω); see for example [5] by

Brenner and Scott. For the purpose of Paper I, Vh is the set of continuous
piecewise isoparametric bilinear quadrilateral functions in H1

0 (Ω), using an
adaptive quadrilateral mesh with hanging nodes. In the dual weighted residual

15
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method, see [2] by Becker and Rannacher, a dual function ϕ ∈ H1
0 (Ω) defined

by
(a∇v,∇ϕ) = (v, F ), ∀v ∈ H1

0 (Ω),

is introduced to describe the sensitivity of the functional value on the fluctu-
ations in the solution to the partial differential equation. From the definition
of the dual, the error in the functional value is

(u − uh, F ) = (a∇(u − uh),∇ϕ) = (R(uh),−ϕ),

with the residual R(v) = −div(a∇v)− f , defined as a distribution in H−1(Ω)
for v ∈ H1

0 (Ω). By this and the orthogonality (4.2) applied to πϕ ∈ Vh, where
πϕ is the nodal interpolant on Vh, the error in the functional has the dual
weighted residual representation

(u − uh, F ) = (R(uh), πϕ − ϕ) . (4.3)

Taking inspiration from [10], by Eriksson et.al., and [2] Paper I contains a
derivation of a computable approximation

∑

K ρ̄Khd+2
K of (4.3) for adaptive

meshes with at most one hanging node per edge where the refinements of
the initial elements are obtained by successive division of elements into 2d, so
that the transformation of each initial element to the reference tensor element
maps the corresponding sub mesh to a tensor hanging node mesh.

The new difficulty when elliptic partial differential equations are considered
instead of ordinary differential equations is the analysis of the convergence of
the error density.

In contrast to the common approach to derive an a posteriori error estim-
ate, the aim here is to derive a uniformly convergent error density with com-
putable leading order term and formulate an adaptive algorithm with proved
convergence rates. The works [1] by Babuška and Vogelius, [9] by Dörfler,
and [23] by Morin, Nochetto, and Siebert study the convergence of adaptive
algorithms for finite element approximations of partial differential equations.

There are also recent work on the convergence rates of adaptive algorithms
for numerical solution of elliptic partial differential equations, in terms of the
computational work. DeVore [7] shows the efficiency of adaptive approxima-
tion of functions, including wavelet expansions. In [6] Cohen, Dahmen, and
DeVore use an adaptive N -term wavelet-based approximation algorithm and
proves that it produces a solution which is asymptotically optimal in the en-
ergy norm error for linear coercive elliptic problems. In [3] by Binev, Dahmen,
and DeVore and [26, 27] by Stevenson, the ideas in [23] are extended to prove
optimal energy norm error estimates using piecewise linear elements for the
Poisson equation.
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4.2 Paper I: Convergence Rates for an Adaptive Dual

Weighted Residual Finite Element Algorithm

This paper establishes basic convergence rates for a dual weighted residual
finite element algorithm using isoparametric d-linear quadrilateral finite ele-
ment approximation to functionals of solutions second order elliptic partial
differential equations in open bounded domains of R

d.
Section 2 describes an expansion of the error in the functional, based

on (4.3), which is shown in Theorem 2.1 to be uniformly convergent as the
mesh size tends to zero for smooth primal and dual solutions. The comput-
able error density using localised averages of second order difference quotients
of the primal and dual solutions, gives the leading order term of the error
expansion; see Corollary 2.2. While the analysis is carried out for d-linear
elements, a way to extend it to k:th order isoparametric quadrilateral finite
elements is suggested.

The hanging node constraint implies that the refinement step in Algorithm 1
on page 9 must be modified to include a recursive marking of all neighbours
that would otherwise violate the constraint. With that modification, the al-
gorithm is analysed Section 3 following the outline in Chapter 3.

Section 4 presents numerical results for a simplified elasticity problem re-
lated to a problem with round corner of small radius introducing a small scale
in the solution. The results show that the adaptive algorithm is more efficient
for this problem than uniform refinements.

Paper I has entry [22] in the bibliography.

4.3 An Adaptive Algorithm for the Stopped Diffusion

Problem

Here the objective is to compute adaptive approximations of an expected value

E[g(X(τ), τ)] (4.4)

of a given function, g : D × [0, T ] → R, where the stochastic process X solves
a stochastic differential equation (3.14) and τ is the first exit time

τ := inf{0 < t : (X(t), t) 6∈ D × (0, T )}

from a given open domain D × (0, T ) ⊂ R
d × (0, T ). These so called barrier

problems have applications in physics and finance, for example when pricing
barrier options.
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The expected value (4.4) is approximated by a sample average of g(X(τ), τ),
where (X, τ) is an Euler approximation (3.15) of (X, τ) using stochastic ad-
aptive time steps. Like in (3.17) the global error using M realizations, splits
into two parts

E[g(X(τ), τ)] − 1

M

M
∑

j=1

g(X(τ ;ωj), τ)

=
(

E[g(X(τ), τ) − g(X(τ), τ)]
)

+



E[g(X(τ), τ)] − 1

M

M
∑

j=1

g(X(τ ;ωj), τ)



,

corresponding to time discretisation error and statistical error.
The main difficulty introduced by the barrier is that the continuous path

may exit D even though a discrete approximate solution does not cross the
boundary of D. The hitting of the boundary causes the time discretisation
error for the Monte Carlo Euler method with N uniform time steps to be of
order N−1/2 instead of N−1 without stopping boundary in R

d× [0, T ); see [11]
by Gobet.

In Mannella [16] and Jansons and Lythe [14] the order N−1, using N
uniform time steps is recovered by deciding in each time step whether the
continuous path exits a half space domain by simulating a stochastic outcome.
In [12] Gobet proves the convergence rate N−1 for a similar method, under
suitable assumptions including smooth boundary. These methods are efficient
when the exit probabilities can be computed accurately, for example when the
domain is a half space or has a smooth boundary which can be approximated
by tangent planes, but not for a boundary with corners.

4.4 Paper II: Adaptive Monte Carlo Algorithms for

Stopped Diffusion

This paper, inspired by Petersen and Buchmann [25], uses an alternative ap-
proach to the uniform time step methods of [16], [14] and [12]. The time
steps are chosen adaptively for each sample path, decreasing close to the bar-
rier. The advantage of this method is that the exit probability need not be
computed accurately, which is difficult for complicated domains D. Section 2
contains a derivation of an expansion of the error with computable leading
order term, which is an extension of the corresponding error expansion in [29]
for the approximation of E[g(X(T ))] for fixed T and D = R

d. The extension
uses a conditional probability to estimate the first exit time and it initialises
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the dual solutions on the barrier with difference approximations of partial de-
rivatives. Section 3 presents an adaptive algorithm based on the estimates in
Section 2. Numerical results presented in Section 4 show that the algorithm
recovers the time discretisation error of order N−1, for N adaptive time steps.

Paper II has entry [8] in the bibliography.

4.5 Paper III: An Adaptive Algorithm for Ordinary,

Stochastic and Partial Differential Equations

The results presented in the first two papers in this thesis follow previous
work on the same adaptive algorithm in other precise settings of (3.1). For
an ordinary differential equation (3.3), an error expansion (3.2) is derived by
a variational principle in [19] and the convergence properties of the adaptive
algorithm are studied in [18]. Weak approximation of an Itô stochastic differ-
ential equation is treated in [29, 20]. The application to the barrier problem
in Paper II is an extension of the results in the latter two papers. Paper III
provides an overview of the applications of the algorithm to both to ordinary,
stochastic, and partial differential equations.

Paper III has entry [21] in the bibliography.

4.6 The computation of a stochastic phase-field model

by coarse-graining Smoluchowski molecular

dynamics

The modelling of nucleation and growth of crystal grains in a sub-cooled
liquid involves both macroscopic and microscopic length scales. Diffusion and
convection of heat occur on the macroscopic level but the process also depends
on interface effects, where the width of the solid–liquid interface can extend
over just a few inter-atomic distances. For the study of the continuum level
time evolution of the phase transformations phase-field methods are widely
used. A stochastic phase-field model for solidification

∂

∂t
(cV T + Lg(φ)) = ∇ · (λ∇T ) , (4.5a)

∂φ

∂t
= ∇ · (k1∇φ) − k2

(

f ′(φ) + g′(φ)k3(TM − T )
)

+ noise,

(4.5b)

gives a macroscopic description of the time evolution of two phases, here
liquid and solid, co-existing in a material. Here T denotes the temperature,
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cV the specific heat at constant volume, L the latent heat of solidification,
and TM the melting point. The function φ is an order parameter that is
used to distinguish between the two phases. The model functions f(φ) and
g(φ) are constructed such that the system of partial differential equations,
in the absence of noise, has two stable stationary solutions corresponding to
pure single phase systems. An overview of the phase-field method applied
to the modelling of solidification can be found in [4] by Boettinger, Warren,
Beckermann, and Karma.

For a specific phase transition, the choice of model functions in the phase-
field model, while motivated by thermodynamics, has to be made by the
researcher based on his or her knowledge of the problem at hand. To avoid
or complement this modelling on the macroscopic level, a research goal is to
compute, if possible, the model functions and parameters, f(φ), g(φ), k1, k2,
k3, and the characteristics of the noise from computations on a microscale
model; in [28] Szepessy suggests a method for doing this. To achieve this the
phase-field, φ, must be defined in terms of quantities computable on the micro-
scale. The underlying microscopic model is a stochastic molecular dynamics
model, where the positions, Xt

i , of individual atoms follow the Smoluchowski
dynamics

dXt
i = −∇Xi

U(Xt) dt +
√

2kBT dW t
i , i = 1, 2, . . . , N,

for a given potential U which is a modelling choice on the microscopic level.
Assuming that the total potential energy splits naturally as a sum of contri-
butions from the individual atoms

U(X ) =

N∑

i=1

mi(X ),

for example as in the case when the potential is defined by pairwise interactions
between atoms, a microscopic phase-field variable is introduced as a smooth
spatial average of the contributions through

m(x;X ) =

N∑

i=1

mi(X )η(x − Xi).

The smoothness depends on the choice of the mollifier η. A stochastic dif-
ferential equation for a coarse-grained approximation mcg

t of the microlevel
phase-field is obtained by an optimal control argument.

Extensive research is being performed on methods to combine computa-
tions on different scales in material physics and other sciences; for the specific
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case of modelling of dendritic solidification see for example the overview [13]
by Hoyt, Asta, and Karma.

4.7 Paper IV: A Stochastic Phase-Field Model

Computed From Coarse-Grained Molecular

Dynamics

This paper presents results from numerical experiments on the method for
computing stochastic phase-field models for phase transformations by coarse-
graining molecular dynamics suggested in [28], as outlined above. On the
microscopic level the simulated material is modelled by Smoluchowski mo-
lecular dynamics where the potential is defined by the so called exponential-6
pair potential with parameter values used for the simulation of Argon at high
pressures. At such high pressures solid and liquid phases of the noble gas
element can co-exist even above room temperature and the numerical exper-
iments are made on the phase transformations between a solid crystal and a
liquid.

The numerical experiments, consisting of molecular dynamics simulations
on a two phase system at the melting point, are used to compute a double-
well reaction term in the Allen–Cahn equation (4.5b) and a diffusion matrix
describing the noise in the coarse-grained phase-field.

Paper IV has entry [32] in the bibliography.
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Abstract.

Basic convergence rates are established for an adaptive algorithm based on the dual
weighted residual error representation,

error =
X

elements

error density × mesh size2+d,

applied to isoparametric d-linear quadrilateral finite element approximation of func-
tionals of multi scale solutions to second order elliptic partial differential equations in
bounded domains of R

d. In contrast to the usual aim to derive an a posteriori error
estimate, this work derives, as the mesh size tends to zero, a uniformly convergent error
expansion for the error density, with computable leading order term. It is shown that
the optimal adaptive isotropic mesh uses a number of elements proportional to the d/2

power of the L
d

d+2 quasi-norm of the error density; the same error for approximation
with a uniform mesh requires a number of elements proportional to the d/2 power of
the larger L1 norm of the same error density. A point is that this measure recognizes
different convergence rates for multi scale problems, although the convergence order
may be the same. The main result is a proof that the adaptive algorithm based on
successive subdivisions of elements reduces the maximal error indicator with a factor
or stops with the error asymptotically bounded by the tolerance using the optimal
number of elements, up to a problem independent factor. An important step is to
prove uniform convergence of the expansion for the error density, which is based on
localized averages of second order difference quotients of the primal and dual finite ele-
ment solutions. The averages are used since the difference quotients themselves do not
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2002-4961, by a Swedish Foundation for Strategic Research grant and by the European network
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converge pointwise for adapted meshes. The proof uses weak convergence techniques
with a symmetrizer for the second order difference quotients and a splitting of the error
into a dominating contribution, from elements with no hanging nodes or edges on the
initial mesh, and a remaining asymptotically negligible part. Numerical experiments
for an elasticity problem with a crack and different variants of the averages show that
the algorithm is useful in practice also for relatively large tolerances, much larger than
the small tolerances needed to theoretically guarantee that the algorithm works well.

AMS subject classification (2000): 65N12, 65N30, 65N50.

Key words: adaptive methods, mesh refinement algorithm, a posteriori error esti-
mate, computational complexity, finite elements.
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1 Introduction to Adaptive Finite Element Algorithms

This work analyzes the convergence rate of an adaptive finite element algo-
rithm to approximate functionals of multi scale solutions, u : Ω → R, of the
second order elliptic partial differential equation

(1.1) −div(a∇u) = f

in a given open bounded domain Ω ⊂ R
d with Dirichlet boundary condition

u|∂Ω = 0. The paper presents the linear two dimensional case, d = 2, with data
a and f , where a is a symmetric positive definite matrix a : Ω → R

d×d and
f : Ω → R. The results directly generalize to higher dimensions, d > 2. The
adaptivity is based only on the Galerkin approximation error, neglecting for
instance quadrature and data error. It is easy to extend the study to some non-
linear problems, see Remark 2.4. This work uses some simplifying properties of
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linear quadrilateral finite element approximation; an extension to approximation
by piecewise polynomials of degree k > 1 is discussed in Section 2.4.

There are numerous studies on error estimates for adaptive finite element
methods applied to partial differential equations, e.g., [1], [4, 5], [7], [9, 10],
[18, 19], [20, 21], [25], and some work on the convergence of adaptive algorithms
[6], [16], [26]. However, important numerical complexity theory, on how conver-
gence rates for adaptive finite element algorithms depend on the computational
work, is not as well developed, but there are recent contributions. The work [15]
shows the efficiency of adaptive approximation of functions, including wavelet
expansions, based on smoothness conditions in Besov spaces. Inspired by this
approximation result, first the work [13] proves that a wavelet-based adaptive N -
term approximation algorithm produces a solution with asymptotically optimal
error in the energy norm for linear coercive elliptic problems. Then [11, 27] ex-
tend the ideas of [26] to prove similar optimal error estimates in the energy norm
for piecewise linear elements applied to the Poisson equation. The modification
includes a somewhat complicated coarsening step in the adaptive algorithm to
obtain bounds on the work.

Our work focuses on isoparametric d-linear quadrilateral finite element ap-
proximation of functionals of the solution to (1.1), inspired by [10], [18] and [19],
using the residual and dual weight functions to estimate the error. Section 2
uses the dual weighted residual method to derive, as the mesh size tends to zero,
a uniformly convergent expansion of this error, with computable leading order
term

∑
K ρ̄Kh

2+d
K where hK is the mesh size and ρ̄K is the error density for

element K. This is in contrast to the usual aim to derive an a posteriori error
estimate for adaptive refinements. Section 3 applies this expansion to prove con-
vergence rates, depending on the number of degrees of freedom, for an adaptive
finite element algorithm. The simpler problem to approximate a given function
is studied in [2] where adaptive refinements are based on an error expansion for
approximation, in function spaces of rectangular bi-p elements.

What is the right measure of convergence rates for adaptive finite element
algorithms applied to (1.1)? For a constant mesh size h, approximations with
error O(hp) require computational work with O(1/hd) operations, using optimal
multigrid solvers. The accuracy ǫ ≡ O(hp) is hence asymptotically determined
by the number of elements N = O(1/hd) = O(ǫ−d/p). This simple asymptotic
complexity estimate, O(ǫ−d/p), is one of the most basic and well used numer-
ical analysis measures of the performance of approximations. Analogously, for
adaptive methods, it seems natural to study the approximation error and the
associated work, proportional to the number of elements, as the tolerance pa-
rameter tends to zero. For the second order accurate piecewise linear finite
elements on a uniform mesh, the number of elements needed to reach a given
approximation error turns out to be proportional to the d/2 power of the L1-
norm of the error density; this work shows that the smallest number of isotropic
elements in an adaptive mesh is proportional to the d/2 power of the smaller

L
d

d+2 quasi-norm of the same error density. These norms of the error density are
therefore good measures of the convergence rates and define our optimal number
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of elements, explained in Section 3. A simple elasticity problem with a round

corner of radius ǫ shows in Section 4 that the error density is ρ = O(1)
(r+ǫ)3 with

the polar coordinate r > 0 in R
2, so that ‖ρ‖L1/2 = O(1) and ‖ρ‖L1 = O(1)

ǫ .

Therefore the optimal mesh of adaptive elements becomes O(1)
TOL for error TOL

while the number of uniform elements is O(1)
TOL

1
ǫ for the same error. A point

is that this measure distinguishes between different convergence rates for multi
scale problems, although the convergence order may be the same.

Section 3 constructs a simple algorithm which, given an error tolerance, TOL,
subdivides the elements with error indicators, |ρ̄K |h2+d

K , greater than TOL/N
and stops if all N elements have sufficiently small error indicators. In particular
the algorithm has no coarsening step. Theorems 3.1, 3.3 and 3.4 in Section 3
prove that each refinement level of this adaptive algorithm decreases the maximal
error indicator with a factor, less than 1, or stops with an error asymptotically
bounded by TOL and with asymptotically optimal number of elements, N , in
the finest mesh, up to a problem independent factor. The total number of
elements, including all refinement levels, can be bounded by O(N), provided the
tolerance in each refinement level decreases by a constant factor, see Theorem
3.5. Varying tolerance has the drawback that the final stopping tolerance is not
a priori known; on the other hand, with constant tolerance, the total number of
elements including all levels is bounded by the larger O(N logN).

Chapter one in [23] describes the relation of the adaptive convergence rate
result in Section 3 to Bakhvalov’s and Smolyak’s complexity result [8], which
shows that, using a fixed number of function evaluations, there is for each adap-
tive method a non-adaptive method which has as small maximal error as the
adaptive method, for approximation of linear functionals in a convex symmetric
subset of a normed linear function space. The difference in the assumptions,
which favors adaptive approximations, is that in Section 3 the discretization
method is fixed and only the mesh is varying and that the performance of the
algorithm is characterized by non-convex function sets, e.g. functions with the

L
d

d+2 quasi-norm bounded by a constant.
The reports [23] and [22, 28] introduced adaptive algorithms for weak approx-

imation of ordinary and stochastic differential equations, respectively. Their
extension to partial differential equations here is partly straightforward except
for the pointwise convergence of the error density and a hanging node constraint;
to prove convergence of the error density for approximation of ordinary differen-
tial equations is simple, while the corresponding convergence result for partial
differential equations is hard, requiring unions of structured adapted meshes and
detailed analysis special to bilinear finite elements. In fact the work [10] writes
”The strategies for mesh adaption is largely based on heuristic grounds. One
hard open problem is the rigorous proof of the convergence of local residual
terms and weights to certain ’limits’ ”. Note that such pointwise convergence
of the error density, based on second order difference quotients, is well known
for structured uniform meshes; however Remark 2.1 below shows by an exam-
ple that second order difference quotients of smooth functions do not in general
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converge pointwise for adapted meshes. To prove convergence of the second
order difference quotients, in the error density, our proof instead uses localized
averages with a symmetrizer and a splitting of the error into a dominating con-
tribution, from elements with no hanging nodes or edges on the initial mesh,
and a remaining asymptotically negligible part.

2 Convergence of the Error Density

2.1 An Error Representation

The finite element approximation uh, of u in (1.1), is based on the standard
variational formulation in the function space Vh of continuous piecewise isopara-
metric bilinear quadrilateral functions in H1

0 (Ω), using an adaptive quadrilateral
mesh with hanging nodes cf. [10]. The Sobolev space H1

0 (Ω) is the usual Hilbert
space of functions on Ω, vanishing on ∂Ω, with bounded first derivatives in L2(Ω).
Let T denote the set of convex quadrilaterals K and let hK be the local mesh
size, i.e. the length of the longest edge of K. Let Te denote all interior edges in
T . The aim is to compute a linear functional value (u, F ) :=

∫
Ω uFdx for a given

function F ∈ L2(Ω). Let (·, ·) denote the duality pairing on H−1 × H1
0 , which

reduces to the usual inner product in L2(Ω) on L2 × L2. Define the residual
R(v) = −div(a∇v) − f as a distribution in H−1(Ω) for v ∈ H1

0 (Ω). Then the
variational problems for u ∈ H1

0 (Ω) and uh ∈ Vh are

(R(u), v) = 0, ∀v ∈ H1
0 (Ω),

(R(uh), v) = 0, ∀v ∈ Vh.(2.1)

Define the dual function ϕ ∈ H1
0 (Ω) by

(2.2) (a∇v,∇ϕ) = (F, v), ∀v ∈ H1
0 (Ω),

to obtain
(u − uh, F ) = (a∇(u − uh),∇ϕ) = (R(uh),−ϕ).

The orthogonality (2.1) implies (u− uh, F ) = (R(uh), v − ϕ) for all v ∈ Vh, and
the choice v = πϕ ∈ Vh, where π is the nodal interpolant on Vh, yields the dual
weighted error representation

(2.3) (u − uh, F ) = (R(uh), πϕ − ϕ) .

The global error (2.3) can be split into residual parts supported in the interior
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of quadrilaterals and on their edges

(u− uh, F ) =
∑

K∈T

∫

K

(−div(a∇uh) − f)(πϕ− ϕ)dx

+
∑

K∈T

∫

∂K

n · a∇uh (πϕ− ϕ) ds

=
∑

K∈T

∫

K

(−div(a∇uh) − f)(πϕ− ϕ)dx

−
∑

e∈Te

∫

e

n · a[∇uh] (πϕ− ϕ) ds,

(2.4)

where n is the outward normal to the element K, on ∂K, and on the edge
e the symbol n denotes one of the normals (it does not matter which) with
[w](x) := lims→0+

(
w(x + sn) − w(x − sn)

)
. The continuity of uh on Ω implies

[∇uh] = n[n · ∇uh] =: n[
∂uh

∂n
].

2.2 Approximation of the Error Density

The goal in this section is to derive a computable approximation of the error
representation (2.4). An adaptive algorithm providing a reliable error bound
and efficient use of the degrees of freedom can use an error expansion

(2.5) (u− uh, F ) ≃
∑

K

ρ̄Kh
2+d
K

where the error density ρ̄ is essentially independent of the mesh size and the
asymptotic error density is used to find the optimal mesh.

Precise analysis of the adaptive algorithms for ordinary [23] and stochastic
differential equations [22, 24] was obtained by proving convergence of an error
density. This work generalizes those adaptive algorithms to partial differential
equations. The main new ingredient is to prove convergence of the error den-
sity. For general meshes this convergence of the error density ρ̄ does not hold,
since the orientation of the elements varies. The purpose here is to analyze the
asymptotic behavior of the error density ρ̄ for adaptive refinements, with general
quadrilateral initial meshes: successive division of reference square elements into
four similar squares generates hanging node meshes consisting of unions of struc-
tured adapted sub meshes, where the domain of each structured sub mesh is an
initial element; viewed in the initial reference element the structured adaptive
mesh is an adaptive hanging node mesh with square elements. We restrict the
study to such unions of structured adaptive hanging node meshes. The use of
quadrilaterals can directly be extended to higher space dimension using tensor
reference elements. Other refinements using e.g. subdivision of a simplex, in
three and higher dimensions, cf. [17], generate new edges which are not parallel
to the old and would require additional analysis.
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To define the error density ρ̄ we use the isoparametric bilinear quadrilateral
finite element approximation ϕh ∈ Vh, of the dual function ϕ in (2.2), defined
by

(a∇v,∇ϕh) = (F, v), ∀v ∈ Vh.(2.6)

Then one would like to use second order difference quotients of uh and ϕh to
approximate the error density. On uniform meshes the second difference quo-
tients of uh and ϕh converge and the proof uses the translation invariance of
the mesh. However, non uniform adapted meshes are not translation invariant
and Remark 2.1 shows that a second order difference quotient of the discrete
functions uh or ϕh does not in general converge pointwise to the corresponding
second order derivatives of u or ϕ, respectively. We solve this problem by using
instead localized averages of second order difference quotients and a splitting of
the error into a dominating contribution from elements with no hanging nodes
or edges on the initial mesh and a remaining asymptotically negligible part.

Consider a multiscale problem and an adaptive algorithm seeking to equidis-
tribute the error indicators ρ̄hh

4
K in an error expansion (2.5), by successively

dividing elements into four, using general regular quadrilateral initial meshes.
The notion of multiscale means here that the error density ρ̄ will be uniformly
bounded, although it may be very large, and essentially independent of the mesh
size, as shown in Theorem 2.1. There is a smooth mapping of each initial element
to a square, so that the refined initial element is mapped to a square hanging
node mesh. Let TI denote the subset of elements with an edge on the initial
mesh. Asymptotically as the tolerance tends to zero, the total area,

∫
TI
dx, of

the elements with edges in common with the initial mesh tends to zero as the
maximal edge length, hmax, tends to zero. Assume that all second order differ-
ence quotients of uh are uniformly bounded. The approximation error has then
by (2.4) the bound

|(u− uh, F )| =
∑

K∈T

O(h4
K).

Therefore the contribution to this sum from the elements with an edge on the
initial mesh is bounded by

∑

K∈TI

O(h4
K) = o(h2

max)

and hence these elements will give an asymptotically negligible contribution
to the total error, as hmax → 0+. We show in Theorem 2.1 that the error
density has a precise expansion using that the isoparametric bilinear coordinate
transformation X−1 : [0, 1]2 → KI maps the square and the square hanging
node mesh to the initial element KI and its refined hanging node quadrilateral
mesh.

Let us now study the transformation of the variational formulation under such
a mapping X : KI → [0, 1]2

∑

ij

∫

KI

(aij
∂uh

∂xj

∂v

∂xi
− fv)dx =

∫

[0,1]2
(aX ′u′h ·X ′v′ − fv)Jdx′
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where X ′ is the Jacobian of X and J is the Jacobian determinant. Here we
abuse the notation by writing v instead of (v ◦X−1) and similarly for a, uh, and

f , for x ∈ KI . Moreover, we write v′ = ∂v
∂x′

i
instead of ∂(v◦X−1)

∂x′

i
.

Therefore the variational equation in the transformed coordinates, x′, takes
the same form with a and f replaced by a∗ : = J(X ′)taX ′ and f∗ : = Jf ,
respectively. Note that a∗ and f∗ are as smooth on X(KI) as the functions a
and f are on KI . To avoid messy notation, we will not always use the prime
notation for coordinates obviously in the reference elements; we will also avoid
notation for the dependence of X on the initial element KI and assume that we
for a point x ∈ Ω choose the mapping X that corresponds to the initial element
KI which contains x. We will use the set of transformed elements

T ′ := {X(K) : K ∈ T }.

To define the approximate error density, ρ̄, we will use averages of second
difference as follows. Consider a function w which is defined on a discretization
of an interval [0, â] with nodes {xj : j = 0, . . . , N̄ + 1} =: N̄ , where x0 = 0 and
xN̄+1 = â. Let h+ := xi+1 − xi and h− := xi − xi−1 denote two consecutive
edge sizes. Then define the average mesh size h̄ and the difference quotients

h̄i :=
h+ + h−

2
=
xi+1 − xi−1

2
,

Dw(xi) :=
w(xi + h+) − w(xi)

h+
,(2.7)

D2w(xi) :=
1

h̄i

(
w(xi + h+) − w(xi)

h+
− w(xi) − w(xi − h−)

h−

)
.

The localized average is based on a non negative function, ψxj : N → R, j =
1, . . . , N̄ , with ψj

i := ψxj (xi) and a positive parameter α, measuring the width
of the average, where the averaging function satisfies

ψj
· ≥ 0,(2.8)

‖h̄·D2ψj
· ‖ℓ1 = O(α−2),(2.9)

ψj
0 + ψj

N̄+1
= O(α−1),(2.10)

ψj
0 = ψj

1, ψj

N̄
= ψj

N̄+1
,(2.11)

and the weak convergence for any v ∈ C1([0, â])

∣∣∣
N̄∑

i=1

ψj
i h̄iv(xi) − v(xj)

∣∣∣ = O(α).(2.12)

Define the average difference

(2.13) D2w(xj) :=

N̄∑

i=1

ψj
i h̄iD

2w(xi).
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Section 2.3 presents an efficient method to compute such averages Y ∈ R
N̄+2 of

D2w ∈ R
N̄ based on the equation

Yi − α2D2Yi = D2wi, i = 1, . . . , N̄

with homogeneous Neumann boundary conditions, Y0 = Y1, YN̄ = YN̄+1. Sec-
tion 4 reports numerical results with different alternative averages, including the
fast nearest neighbor variant. The convergence proof requires α to be sufficiently
large, slightly larger than the pointwise errors |u − uh|, |∇(u − uh)|, |ϕ − ϕh|
and |∇(ϕ− ϕh)|.

Let us define h̄D2
iw as the difference quotients h̄D2w, in (2.7), with respect

to the x′i reference directions i = 1, 2, respectively, and analogously for Diw.
The the weight function ψj centered at a nodal point x′j ∈ [0, 1]2 then yields

the averaged values D2
iw by (2.13). The approximate error density, ρ̄, in the

transformed coordinates is now defined by

ρK :=
1

48

4∑

j=1

(
a∗11D

2
1uh D2

1ϕh + a∗22D
2
2uh D2

2ϕh

)
(xK

j )(2.14)

where xK
1 , x

K
2 , x

K
3 , x

K
4 are the four corners of the square K ∈ T ′ illustrated in

Figure 2.1. To derive this error density and make the ideas as transparent as
possible we focus on a simple but general case based on solutions u and ϕ with
multiple scales and C3 regularity. Let TH denote the subset of elements with
hanging nodes in neighbors and let

T̄H :=
⋃

K∈TH

K.

Our proof uses the assumption that the area
∫
T̄H

dx tends to zero asymptotically.
This can be motivated by the fact that the error density is uniformly bounded
and by (2.8-2.12) changes very little in a distance of order α, where 1 ≫ α≫ h;
therefore a mesh size change from h to h/2 requires the error density to approxi-
mately change by a factor of 16, for equidistributed error indicators ρ̄Kh

4
K . This

change of ρ̄ can not happen within a distance α and consequently the quotient
of the number of hanging node elements and the total number of elements is
at most O(h/α) and the total area of hanging node elements becomes at most∫
T̄H

dx = O(hmax/α).
We will use an adaptive algorithm where the error indicators become approx-

imately equidistributed: we prove in Section 3 that

(2.15) c
TOL

N
≤ ρ̂Kh

4
K ≤ S1

TOL

N
,

for problem independent constants c and S1, the number N of elements in the
final mesh and where

ρ̂ := max(|ρ̄|, δ)(2.16)
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Figure 2.1: Corners xK
j and edges eK

ij of a square K ∈ T ′

is a positive approximation of the error density depending on a positive param-
eter δ tending to zero as the error tolerance, TOL, tends to zero. A consequence
of u and ϕ in C3 and the lower bound of the error indicator ρ̂ is that the quotient
of the maximal, hmax, and minimal, hmin, mesh sizes becomes

(2.17)
hmax

hmin
≤ C

( ρ̂max

ρ̂min

)1/4

≤ Cu

δ1/4
=:

√
Cδ,

where C = (S1/c)
1/4 is independent of TOL, u and ϕ; while the constant Cu

is independent of TOL but depends on u and ϕ. Section 4 shows an example
where Cu = O(ǫ−3/4) for an elasticity problem with a crack of radius ǫ. The
upper bound in (2.15) follows directly from the stopping rule of the algorithm
(3.11)-(3.12) and the lower bound is proved from the refinement criterion of a
parent error indicator; with the notation of Section 3 we have c = s1/(Ĉ2d+2)
from (3.33).

Let W 1,∞(Ω) denote the usual Sobolev space of functions with bounded first
order derivatives in L∞(Ω) and let hmax be the maximal edge length in the mesh
of Vh. Sometimes we drop the set and write W 1,∞ and L∞ also for functions in
the reference set [0, 1]2. To prove convergence of the error density, ρ̄, we will use
the assumption that for some γ ∈ (0, 1]

‖u− uh‖W 1,∞(Ω) + ‖ϕ− ϕh‖W 1,∞(Ω) = O(Cδhmax),

‖u− uh‖L∞(Ω) + ‖ϕ− ϕh‖L∞(Ω) = O(h2γ
max).

(2.18)

The work [12] proves such estimates for finite element approximations of the
coercive linear problems (1.1) and (2.2), with piecewise isoparametric bilinear
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quadrilateral elements and quasi uniform meshes, provided u, ϕ ∈ C2(Ω̄), see
[14] for nonlinear problems. Our meshes are quasi uniform with a possible large
constant Cu if |ρ̄| is bounded away from zero. Including the case with |ρ̄| close
to zero needs the use of the modified error density, ρ̂ defined in equation (2.16),
and yields the bound (2.17) of the quotient of the maximal and minimal mesh
size in the final mesh and such a bound changes an O(hmax) estimate of the
right hand side in (2.18) to O(Cδhmax) with Cδ = C2

u/δ
1/2.

To have solutions u and ϕ in C3(Ω̄), with general data f and F , is not com-
patible with Ω being a domain with corners. Therefore the constraint of the
mesh, required by Vh, yields restrictions on the data. One solution is to treat
only the approximation in an interior domain Ωh ⊂ Ω and let uh and ϕh have
the boundary values u|∂Ωh

and ϕ|∂Ωh
, respectively. Another solution is to let

Ω be a polygonal domain and use constraints on f and F ; i.e. in a square
[0, 1]2, let f and F satisfy

∑∞
n,m=1(n

2 + m2)4f2
nm < ∞, with the Fourier co-

efficients fnm =
∫ 1

0
f(x, y) sin(πx) sin(πy)dxdy, which by Sobolev’s inequality

implies u, ϕ ∈ C3([0, 1]2).
Our main result in this section is
Theorem 2.1. Assume that a ∈ C1(Ω̄) and that the solutions u ∈ C3(Ω̄), ϕ ∈

C3(Ω̄) of (1.1) and (2.2), respectively, are for some γ ∈ (0, 1] approximated uni-
formly with error satisfying (2.18) using piecewise isoparametric bilinear quadri-
lateral elements and a refined mesh, with at most one hanging node per edge,
obtained by successively dividing the reference square elements into four similar
squares. Assume also that the total area of the elements with a hanging node on
a neighbor or with an edge on the initial mesh is asymptotically zero:

(2.19)

∫

T̄H∪T̄I

dx = o(1), as hmax → 0+.

Then the global error (2.3) has the error expansion

(2.20) (u−uh, F ) =
∑

K∈T ′

(
ρK +O(hγ

max/α+α)
)
h4

K +O(Cδhmax)

∫

T̄H∪T̄I

hKdx

with uniformly convergent computable error density ρ̄, defined by (2.14) and
(2.7)-(2.13) with

(2.21)
h−γ

max

α
= o(1),

as hmax → 0+, satisfying

(2.22) ρ̄ = ρ̃+ O(hγ
max/α+ α),

where

ρ̃ :=
1

12

(
a∗11

∂2u

∂x2
1

∂2ϕ

∂x2
1

+ a∗22
∂2u

∂x2
2

∂2ϕ

∂x2
2

)

is evaluated in the transformed coordinates on [0, 1]2. The computable error
density ρ̄ yields the leading order error contribution in the following sense



12 K.-S. MOON AND E. VON SCHWERIN AND A. SZEPESSY AND R. TEMPONE

Corollary 2.2. Suppose that the assumptions in Theorem 2.1 hold and in
addition that the error indicators satisfy (2.15), which is verified for the adaptive
algorithm in Section 3. Then the lower bound for the error density, δ → 0+,
as TOL → 0+, can be chosen such that

∑
K ρ̄Kh

4
K is the leading order error

contribution in the sense

(2.23) (u− uh, F ) =
∑

K∈T ′

ρ̄Kh
4
K + o(TOL)

where

(2.24)
∑

K∈T ′

ρ̄Kh
4
K ≤ S1TOL,

and, provided ‖ρ̃‖L1/2(Ω) > 0,

(2.25) lim inf
TOL→0+

TOL−1
∑

K∈T ′

|ρ̄K |h4
K ≥ c.

Observe that the regularity condition u ∈ C3(Ω̄) and the assumption that
‖ρ̃‖L1/2(Ω) > 0 exclude the very special case where the exact solution u or ϕ
is in Vh. Note also that the convergence of ρ̄ is uniform while the convergence
of ρ̌, defined by (u − uh, F ) =

∑
K∈T ′ ρ̌h4

K , is in L1(Ω) by assumption (2.19).
It is important to notice that our restriction of the data, required by u, ϕ ∈
C3(Ω̄), includes examples with substantial adaptive gain. Section 3 shows that

the optimal number of adaptive elements is Nopt = TOL−1‖ρ̄‖d/2

L
d

d+2

, while the

number of uniform elements becomes Nuni = TOL−1‖ρ̄‖d/2
L1 to achieve the same

error TOL. Although u, ϕ ∈ C3(Ω̄) their norms in these spaces may be large

so that ‖ρ̄‖
L

d
d+2

≪ ‖ρ̄‖L1. Section 4 shows such an example with
‖ρ‖L1

‖ρ‖
L1/2

=

O(ǫ−1) for an elasticity problem, with ǫ related to the radius of a round corner.
Note also that the error term O(hγ

max/α+ α) can be expressed in terms of the
tolerance, by Lemma 3.2, so that the error term becomes negligible for sufficiently
small tolerances. In the example in Section 4 this relative error is of the order
TOL1/4/ǫ.

The proof of the theorem is based on the uniform convergence of the averaged
second differences D2uh and D2ϕh, derived in Lemma 2.4, and the convergence
of h−2(πϕ − ϕ) established in Lemma 2.5. The pointwise convergence of the
averaged differences is essentially a consequence of the observation that the dif-
ference operator h̄D2 is symmetric, which is proved in Lemma 2.3, and weak
convergence. We first prove the lemmas and then the theorem.

Theorem 2.1 can be generalized to some cases where the optimal adaptive iso-
tropic mesh uses a number of elements proportional to (‖ρ̃‖

L
d

d+2
/TOL)d/2 <∞

while the same error for approximation with a uniform mesh requires a much
larger number of elements proportional to a higher power of TOL−1, because
‖ρ̃‖L1 = ∞. The assumption u, ϕ ∈ C3(Ω̄) is then violated. But for some such
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problems it is possible to determine a spatially varying averaging and extend the
analysis in Theorem 2.1; see Example 4.1 for an example.

Remark 2.1 (Averages are needed). The uniform convergence in
Lemma 2.4 applies to the averaged second differences D2uh and D2ϕh. On the
other hand, with uniform meshes the difference quotients without averaging con-
verge uniformly to the corresponding second derivatives. The following example
explains why the second order difference quotients of the interpolant on meshes
with hanging nodes do not converge uniformly on Ω; numerical tests show that
the corresponding finite element solution of Poisson’s equation behaves similarly
to the interpolant, i.e., second order difference quotients of the finite element
solution with hanging nodes do not converge uniformly. Let u(x1, x2) = x2

2, so
that ∂x1x1

u = 0 everywhere, and compute the second difference D2
1πu in the node

(−h, 0) neighboring the hanging node (0, 0) as in Figure 2.2. Using bilinear finite
elements the nodal interpolant πu is equal to u in all proper nodes, but in the
hanging node πu(0, 0) = h2 6= 0 = u(0, 0). Then D2

1πu(−h, 0) = h2/h2 = 1 but
∂x1x1

u(−h, 0) = 0. In spite of this, Lemma 2.4 shows that the averaged differ-
ence quotients converge uniformly under the condition that α−1 = o(h−γ

max) as
hmax → 0.

-2h -h 0 2h

-h

0

h

Figure 2.2: Difference quotients without averaging do not converge uniformly to second
derivatives in the presence of hanging nodes.

Remark 2.2 (Localization). One would like to take α = α(xj) ≃ h(xj), for
instance with an average based only on a few neighboring elements. Our conver-
gence proof determines α by (2.18) and (2.21), where in particular α depends on
the global pointwise error ϕ− ϕh. Example 4.1 shows different variants of local
averages. On the other hand, in practice the algorithm seems to work reasonably
well even without the localized averages, see Section 4 and similar algorithms in
[10].

On a uniform mesh, the difference operatorD2 is symmetric so that summation
by parts behaves like integration by parts. On an adapted non uniform mesh,
the difference operator D2 is not symmetric, however we have
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Lemma 2.3. The difference operator h̄D2 is symmetric, i.e., the diagonal
matrix h̄ is a symmetrizer for D2, and hence, for all v, w ∈ R

N̄+2, the summation
by parts formula

N̄∑

i=1

h̄iwiD
2vi =

N̄∑

i=1

vih̄iD
2wi +

vN̄+1wN̄

hN̄

+
v0w1

h0
− vN̄wN̄+1

hN̄

− v1w0

h0

holds.
Proof. Summation by parts proves the lemma:

N̄∑

i=1

wih̄iD
2vi =

N̄∑

i=1

(
vi+1 − vi

hi
− vi − vi−1

hi−1
)wi

=

N̄∑

i=1

vi(
wi+1 − wi

hi
− wi − wi−1

hi−1
)

+
vN̄+1wN̄

hN̄

+
v0w1

h0
− vN̄wN̄+1

hN̄

− v1w0

h0

=

N̄∑

i=1

vih̄iD
2wi

+
vN̄+1wN̄

hN̄

+
v0w1

h0
− vN̄wN̄+1

hN̄

− v1w0

h0
.

This symmetry of h̄D2 is the essential ingredient to obtain convergence of the
averages D2uh and D2ϕh.

Lemma 2.4. Assume that u, ϕ ∈ C3(Ω̄) and

hγ
max‖u− uh‖W 1,∞ + hγ

max‖ϕ− ϕh‖W 1,∞

+ ‖u− uh‖L∞ + ‖ϕ− ϕh‖L∞ = O(h2γ
max)

holds; then the averaged second difference quotients and second derivatives of uh

and ϕh, in the initial reference element coordinates, satisfy

‖D2
i uh − ∂xixiu‖L∞ + ‖D2

iϕh − ∂xixiϕ‖L∞

= O(hγ
max/α+ α), as hmax → 0.

(2.26)

Proof. Let (w,wh) = (u, uh) or (w,wh) = (ϕ, ϕh) and consider the average

error D2
i (wh − w). Lemma 2.3 shows that the operator h̄D2

i is symmetric. This
symmetry and the assumptions (2.9)-(2.10) yield, with · denoting the standard
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scalar product in R
N̄ ,

|D2
i (wh − w)(xj)| = |h̄D2

i (wh − w) · ψj |
=
∣∣∣(wh − w) · h̄D2

i ψ
j

+
(wh − w)(xN̄+1) − (wh − w)(xN̄ )

hN̄

ψj(xN̄+1)

− (wh − w)(x1) − (wh − w)(x0)

h0
ψj(x0)

∣∣∣

≤ ‖wh − w‖ℓ∞‖h̄D2
i ψ

j‖ℓ1 + 2‖w′
h − w′‖L∞ max

x∈{0,a}
|ψj(x)|

= O(
hγ

max

α
) → 0,

provided α−1 = o(h−γ
max) as hmax → 0.

The function ψj also satisfies the weak convergence (2.12) which together with

the uniform convergence D2
iw−∂xixiw = O(hmax) and w ∈ C3(Ω̄) imply D2

iw−
∂xixiw = O(α). Therefore we conclude that D2

iwh − ∂xixiw = O(hγ
max/α+ α),

in the nodal points, uniformly as hmax → 0; the C3(Ω̄)-bound on w implies the
L∞-estimate.

Let

T ′
H := {X(K) : K ∈ TH},

T ′
I := {X(K) : K ∈ TI}.

Lemma 2.5. Assume that w ∈ C3([0, 1]2). Consider a point x′ ∈ [0, 1]2 in an
initial reference element and a sequence of squares K ∈ T ′ \ T ′

H containing x′.
Then

(2.27) h−4
K

∫

K

(πw(x) − w(x)) dx− 1

12
∆w(x′) = O(hK).

Proof. Apply the tensor property π = π1π2, where πi is the piecewise linear
nodal interpolant in the xi direction, to split

(2.28) πw − w = π1(π2w − w) + π1w − w.

Translate the square K to the reference square K0 := [0, h]× [0, h], for h = hK .
Approximation of w by a quadratic function on K0 shows that

(2.29) πiw − w =
1

2
∂xixiw(x′)xi(h− xi) + O(h3), on K0.

The integral ∫ h

0

xi(h− xi)dxi =
h3

6

combined with (2.28)-(2.29) proves the lemma.
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Proof of Theorem 2.1. The error representation (2.4) divides the residual into
parts supported in the interior of squares and on their edges.

The residual in the interior of the elements becomes

−div(a∗∇uh) − f∗ = −2a∗12
∂2uh

∂x1∂x2
−
∑

ij

∂a∗ij
∂xi

∂uh

∂xj
− f∗

which has the mixed derivative term 2a∗12
∂uh

∂x1∂x2
= 2a∗12D1D2uh. We seek a con-

verging error density and since second order differences of uh may not converge
uniformly, we study the error in replacing D1D2uh by ∂2u/∂x1∂x2 using the
summation by parts formula

(2.30)
n∑

i=1

(αi − αi−1)βi =
n−1∑

i=1

αi(βi − βi+1) + αnβn − α0β1

applied to αK = D2uh − D2u evaluated at the east edge eK
22 of element K in

Figure 2.1 and βK =
∫

K
a∗12(πϕ − ϕ)dx′. Let us denote the set of boundary

elements in the x′1-direction, corresponding to n and 1 in (2.30), by ∂1(T ′
H ∪T ′

I ).
This summation by parts yields

∑

K∈T ′\(T ′

H∪T ′

I )

∫

K

a∗12D1D2uh(πϕ− ϕ)dx′

=
∑

K∈T ′\(T ′

H∪T ′

I )

D1D2u

∫

K

a∗12(πϕ − ϕ)dx′

+
∑

K∈∂1(T ′

H∪T ′

I )

(D2uh −D2u)

∫

K

a∗12(πϕ − ϕ)dx′/hK

+
∑

K∈T ′\
(
T ′

H∪T ′

I ∪∂1(T ′

H∪T ′

I )
)
D2(u − uh)D1

∫

K

a∗12(πϕ − ϕ)dx′.

(2.31)

The last term has the bound

D1

∫

K

a∗12(πϕ − ϕ)dx′ = O(h4
K)

since K and its neighbors have no hanging nodes or edges on the initial mesh.
Observe that across edges in the initial mesh the matrix a∗ changes discontinu-
ously and on hanging node elements πϕ has discontinuous derivatives; therefore
summation by parts on all elements would give larger difference quotients of
order h3

K . The assumption (2.18) implies D2(u− uh) = O(Cδhmax) and yields

∑

K∈T ′\(T ′

H∪T ′

I ∪∂1(T ′

H∪T ′

I ))

D2(u − uh)D1

∫

K

a∗12(πϕ − ϕ)dx′

= O(Cδhmax)
∑

K∈T ′\(T ′

H∪T ′

I ∪∂1(T ′

H∪T ′

I ))

h4
K ,
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which is an asymptotically negligible contribution to the total error
∑

K O(h4
K).

The boundary term has by (2.18) the bound

∑

K∈∂1(T ′

H∪T ′

I )

∫

K

(D2uh −D2u)a
∗
12(πϕ− ϕ)dx′/hk = O(Cδhmax)

∑

K∈T ′

H∪T ′

I

h3
K .

Similarly, replacing in the remaining interior error the uh increments by corre-
sponding derivatives of the solution u and using Lemmas 2.4 and 2.5 give

∑

K∈T ′

∫

K

(
− 2a∗12

∂uh

∂x′1∂x
′
2

−
∑

ij

∂a∗ij
∂x′i

∂uh

∂x′j
− f∗

)
(πϕ− ϕ)dx′

=
∑

K∈T ′

∫

K

(
a∗11

∂2u

∂x′1∂x
′
1

+ a∗22
∂2u

∂x′2∂x
′
2

)
(πϕ− ϕ) dx′

+ O(Cδhmax)
∑

K∈T ′

H∪T ′

I

h3
K + O(Cδhmax)

∑

K∈T ′\(T ′

H∪T ′

I )

h4
K

=
∑

K∈T ′




4∑

j=1

(a∗11D
2
1uh + a∗22D

2
2uh)(D2

1ϕh +D2
2ϕh)(xK

j )
h4

K

48
+ h4

KO(
hγ

max

α
+ α)




+ O(Cδhmax)
∑

K∈T ′

H∪T ′

I

h3
K .

(2.32)

Consider the error associated with the edges in the error representation (2.4).
The normal derivative ∂uh/∂xi is the same on the opposite edges of a square in
T ′. Therefore the regularity ϕ ∈ C3(Ω̄) and the uniform convergence ∇uh → ∇u
of (2.18) yield for K ∈ T ′ \ (T ′

H ∪ T ′
I )

∫

∂K

n · a∗ n∂uh

∂n
(πϕ − ϕ)ds′

=

∫

eK
12

∂uh

∂x2

∣∣∣∣
e12

(a∗22 (πϕ− ϕ) |e12
− a∗22 (πϕ− ϕ) |e11

) dx′1

+

∫

eK
22

∂uh

∂x1

∣∣∣∣
e22

(a∗11 (πϕ− ϕ) |e22
− a∗11 (πϕ− ϕ) |e21

)dx′2

=

∫

eK
12

∂u

∂x2

∣∣∣∣
e12

(a∗22 (πϕ− ϕ) |e12
− a∗22 (πϕ− ϕ) |e11

)dx′1

+

∫

eK
22

∂u

∂x1

∣∣∣∣
e22

(a∗11 (πϕ− ϕ) |e22
− a∗11 (πϕ− ϕ) |e21

)dx′2 + h4
KO(Cδhmax),

where eij := eK
ij in Figure 2.1. Use [∂uh/∂n] = O(Cδhmax) in T ′

H ∪T ′
I , obtained

from (2.18) and [∂u/∂n] = 0, and summation by parts over the other edges, as
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in (2.31), to obtain

∑

e∈Te

∫

e

n · an[
∂uh

∂n
](πϕ− ϕ)ds′

= −
∑

K∈T ′\(T ′

H∪T ′

I )

(∫

eK
11

a∗22

( ∂u

∂x2

∣∣∣∣
e12

− ∂u

∂x2

∣∣∣∣
e11

)
(πϕ− ϕ) dx′1(2.33)

+

∫

eK
21

a∗11

( ∂u

∂x1

∣∣∣∣
e22

− ∂u

∂x1

∣∣∣∣
e21

)
(πϕ− ϕ) dx′2 + h4

KO(Cδhmax)

)

+
∑

K∈∂i(T ′

H∪T ′

I )

∫

eK
ij

n · a∗ n(
∂uh

∂n
− ∂u

∂n
)(πϕ − ϕ)ds′

+O(Cδhmax)
∑

K∈T ′

H∪T ′

I

O(h3
K).

The assumptions (2.18) and (2.19) show that the boundary term becomes asymp-
totically negligible

∑

K∈∂i(T ′

H∪T ′

I )

∫

eK
ij

n · a∗ n(
∂uh

∂n
− ∂u

∂n
)(πϕ − ϕ)ds′ = O(Cδhmax)

∑

K∈T ′

H∪T ′

I

h3
K .

We have (
∂u

∂x2

∣∣∣∣
e12

− ∂u

∂x2

∣∣∣∣
e11

)
/hK = ∂x2x2

u+ O(hK)

therefore the regularity assumptions a ∈ C1(Ω̄) and u ∈ C3(Ω̄), together with
Lemmas 2.4 and 2.5 applied to uh and ϕh imply that right hand side of (2.33)
has an expansion with leading order terms

∫

eK
11

a∗22

(
∂u

∂x2

∣∣∣
e12

− ∂u

∂x2

∣∣∣
e11

)
(πϕ− ϕ) dx′1 =

h4
K

48

4∑

j=1

a∗22D
2
2uh D2

1ϕh(xK
j )

+ h4
KO(hγ

max/α+ α),

(2.34)

and similarly for the edges in the other direction. Note that the convergence
O(hγ

max/α + α) → 0 in (2.34) is uniform on Ω̄. Finally, the mixed second
differences in the sum over all edges in (2.33) cancel by the same terms from the
interior residual to complete the proof of (2.20). The error estimate (2.22) then
follows from Lemma 2.5. �

Proof of the Corollary. The steps in this proof are done in more detail in
Section 3. Here is a short preview. Summation of all indicators with the upper
bound in (2.15) proves (2.24)

∑

K

ρ̄Kh
4
K ≤

∑

K

ρ̂Kh
4
K ≤ S1TOL.
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The upper bound in (2.15) also gives

N =

∫

Ω

dx

h2
≥
√

N

S1TOL

∫

Ω

√
ρ̂dx

and consequently
1

N
≤ S1TOL

‖ρ̂‖L1/2

and

h2
max ≤ S1TOL√

δ
∫
Ω

√
ρ̂dx

.

Let hγ
max/α + α = O(hγ̂

max) be the definition of γ̂ ∈ (0, 1]. Then a choice of δ
such that (hγ

max/α + α)ρ̂ ≤ (TOL/
√
δ)γ̂/δ = o(1) and Cδ

∫
T̄H∪T̄I

dx/
√
δ = o(1)

together with the expansion (2.20) proves (2.24).
It remains to establish the lower bound. The lower bound (2.15) on the error

indicators imply as above

∑

K

|ρ̄K |h4
K =

∫

Ω

|ρ̄|h2dx ≥ cTOL
∫
Ω
|ρ̄|/√ρ̂ dx∫

Ω

√
ρ̂dx

which combined with the uniform convergence of ρ̂ and ρ̄ proves the lower bound
(2.25) in the limit TOL → 0+. �

2.3 Efficient Computation of the Averages

Let

δij =

{
1 if i = j,
0 if i 6= j.

We will use ψj : N → R determined, for j = 1, . . . , N̄ , by

(2.35) h̄iψ
j
i − α2h̄iD

2ψj
i = δij , i = 1, . . . , N̄

with homogeneous Neumann boundary conditions ψj
0 = ψj

1 and ψj

N̄
= ψj

N̄+1
.

The averages Yj := D2v(xj) =
∑N

i=1 h̄iD
2viψ

j
i then solve the dual equation to

(2.35) with the right hand side h̄iD
2vi. The symmetry of h̄D2 and the summa-

tion by parts formula in Lemma 2.3 show that Y can be efficiently computed
by

(2.36) Yj − α2D2Yj = D2vj , j = 1, . . . , N̄

with homogeneous Neumann boundary conditions, Y0 = Y1, YN̄ = YN̄+1.
It remains to verify the conditions (2.8)-(2.12) for ψ. The following discrete

minimum principle argument first observes that D2ψj
i∗ ≥ 0 at a minimum point

i∗ and hence (2.35) yields non negative ψ

ψj
i ≥ ψj

i∗ =
δi∗j

h̄i∗
+ α2D2ψj

i∗ ≥ 0.
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The remaining conditions can be derived from the following estimate of the
weighted ℓ1 norm

∑
i h̄iψ

j
iwi, with the weights wi = cosh(

xi−xp

ᾱ ) for ᾱ ≥ 2α and
xp ∈ N : multiplication by wi in (2.35) and summation by parts shows

N̄∑

i=1

ψj
i h̄i(wi − α2D2wi)

+ α2ψj
N̄+1

wN̄+1 − wN

hN̄

− α2ψj
0

w1 − w0

h0
= cosh(

xj − xp

ᾱ
).

(2.37)

We have

D2wi = ᾱ−2wi + O(hmax),

wN̄+1 − wN̄

hN̄

= ᾱ−1 sinh(
xN̄ − xp

ᾱ
) + O(hmax),

w1 − w0

h0
= ᾱ−1 sinh(

x0 − xp

ᾱ
) + O(hmax).

(2.38)

Therefore all terms in the left hand side of (2.37) are non negative for ᾱ ≥ 2α,
with sufficiently small hmax, and provide estimates to verify the conditions (2.9)-
(2.12).

Note first that the choice w = 1, corresponding to ᾱ = ∞ in (2.37), implies∑
i h̄iψ

j
i = 1 and hence by (2.35) we have ‖α2h̄D2ψj‖ℓ1 ≤ 2.

The estimates (2.37) and (2.38) show first that the boundary values satisfy

ψj
0 = O(1/min(xj , α)),

ψj
N̄+1

= O(1/min(â− xj , α)),

and with a second choice of weight function wi = e−xi/ᾱ and wi = e(xi−â)/ᾱ,
respectively, we have similarly

ψj
0 = O(1/α),

ψj

N̄+1
= O(1/α).

Finally, to verify the weak convergence we estimate

|
∑

i

ψj
i (vi − vj)h̄i| ≤ ‖ψjwh̄‖ℓ1‖(v· − vj)w

−1‖ℓ∞

and use (2.37) together with a uniform bound on the difference quotients of v
to obtain

‖(v· − vj)w
−1‖ℓ∞ ≤ O(max

i
|xi − xj |e−|xi−xj |/ᾱ) = O(ᾱ),

so that |∑i ψ
j
i vih̄i − vj | ≤ O(ᾱ).
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2.4 Higher Order Polynomials

The analysis in Section 2 uses isoparametric d-linear quadrilateral finite ele-
ments and splits the error to a dominating part, from domains where the mesh is
locally uniform, and a negligible part, from a small domain with hanging nodes.
This kind of analysis seems possible to extend to higher order elements. In the
case of approximation with isoparametric order k quadrilateral finite elements,
the leading order error term becomes

∑
K ρ̄h2k+d

K with the error density in the
transformed coordinates defined by

ρK := c

4∑

j=1

(
a∗11D

k+1
1 uh D

k+1
1 ϕh + a∗22D

k+1
2 uh D

k+1
2 ϕh

)
(xK

j ),(2.39)

where Dk+1
i is a k + 1 order difference quotient approximating the k + 1 order

partial derivative ∂k+1/∂xk+1
i and c is a constant determined below.

To somehow explain this error density consider a uniformly refined square,
in the transformed coordinates, as the computational domain and assume that
all difference quotients of order k + 2 of uh are bounded and that all deriva-
tives of order k + 2 of ϕ are bounded. Instead of using the interpolant of ϕ in
the orthogonality (2.1), take the L2 projection π̂ϕ as test function in the error
representation (2.3) to obtain the error representation

(u− uh, F ) = (R(uh), π̂ϕ− ϕ) .

By the tensor property π̂ = π̂1π̂2, this representation splits into two one dimen-
sional problems

(R(uh), π̂ϕ− ϕ) = (R(uh), π̂1ϕ− ϕ) + (R(uh), π̂1(π̂2ϕ− ϕ))

= (R(uh), π̂1ϕ− ϕ) + (π̂1R(uh), π̂2ϕ− ϕ) ,

where π̂i is the one dimensional L2 projection in the xi-direction. It is then
sufficient to consider the error density for one dimensional problems; the use of
the L2 projection is motivated by the following step

(R(uh), π̂1ϕ− ϕ) = (R(uh) − π1R(uh), π̂1ϕ− ϕ) .

Here the function π1R(uh) is the nodal interpolant of the discrete but discon-
tinuous function R(uh) = f + a0u

′
h + a′′h which takes the same value as R(uh) in

the interior nodes and mean value of the left and right limits at the edges. The
residual parts have the estimates

‖f − π1f‖L∞ = O(hk+1),

‖a0u
′
h − π1(a0u

′
h)‖L∞ = O(hk),

‖au′′h − π1(au
′′
h)‖L∞ = O(hk−1);

therefore the last part with the jump at the second derivative dominates the
error; in the case k = 2 we see directly that u′′h − π1u

′′
h is to leading order pro-

portional to the jump [u′′h] = hD3
1uh, which is a third order difference quotient.
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To estimate the error π̂1ϕ − ϕ pointwise make a Taylor expansion to order
k + 2 centered at a nodal point xp and note that I − π̂1 has a null space of
polynomials of order k, so that

(π̂1ϕ− ϕ)(x) = ϕ(k+1)(xp)
(x− xp)

k+1

(k + 1)!
+ O(hk+2), |x− xp| ≤ h.

Assume that uh is the nodal interpolant of a smooth function w. Expand w
into a Taylor series of order k + 2 as above and let w1 be its Taylor polynomial
of order k. The jump of u′′h is proportional to the difference of w − w1 in two
neighboring elements which to leading order is proportional to w(k+1)hk−1, so
that [u′′h] ∼ hk−1Dk+1uh.

We have now motivated that the leading order error term is given by (2.39)
for some constant c. To determine the right constant c, consider ϕ = w = xk+1

1

and compute by hand

c =

∫ 1

0

(
(π1w)′′ − π1

(
(π1w)′′

))
(ϕ− π̂1ϕ)dx1/(h

k(k + 1)!)2.

Remark 2.3 (One dimension). Note that in one dimension, d = 1, the edge
part of the residual vanishes since πϕ = ϕ in the nodes.

Remark 2.4 (Nonlinear problems). A nonlinear problem a = a(u, x) and
f = f(∇u, u, x) for a nonlinear functional,

∫
Ω
g(u(x), x)dx, gives a different dual

problem for ϕ, but the same approximation property

‖u− uh‖W 1,∞ + ‖ϕ− ϕh‖W 1,∞ = O(Cδhmax)

and the regularity u ∈ C3(Ω̄), ϕ ∈ C3(Ω̄) also yield estimates of the linearization
error and imply the conclusion in the theorem.

Remark 2.5 (Alternative error densities). Let s ∈ [0, 1] and

R∗(ϕh) = −div(a∇ϕh) − F.

Then

(u− uh, F ) = s (R(uh), πϕ− ϕ)

+(1 − s) (πu− u,R∗(ϕh))(2.40)

are alternative global error estimates for s ∈ [0, 1], cf. [10]. The isoparametric
bilinear quadrilateral approximation with hanging nodes in this work shows that
in fact also the local error densities are asymptotically the same for all s ∈ [0, 1]

(2.41) ρ̄→ 1

12

(
a∗11

∂2u

∂x2
1

∂2ϕ

∂x2
1

+ a∗22
∂2u

∂x2
2

∂2ϕ

∂x2
2

)
,

as hmax → 0: Theorem 2.1 is formulated for the case s = 1, but the symmetry
of the problem makes Theorem 2.1 applicable to s ∈ [0, 1]. For instance, s = 0
is the case where the role of uh and ϕh are interchanged, with respect to s = 1,
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and since also the error density is symmetric with respect to this interchange of
uh and ϕh we conclude that the error representation (2.40) yields the same error
density (2.41) for all s ∈ [0, 1] asymptotically. Here the approximation errors

D2
i uh → ∂2u

∂x2
i

and D2
iϕh → ∂2ϕ

∂x2
i

are the dominating errors in the convergence.

The same conclusion of the error density asymptotically independent of s holds
also for nonlinear problems with a = a(u, x), f = f(∇u, u, x) and g = g(u, x).

3 Convergence Rates for the Adaptive Mesh Algorithm

This section constructs an adaptive algorithm and analyzes its stopping, accu-
racy and efficiency, using the convergence of the error density in Theorem 2.1 to
motivate the bound (3.14). The analysis is largely based on the similar work on
ordinary differential equations in [23]. The main difference is the hanging node
constraint present here.

3.1 Adaptive Refinements and Stopping

Theorem 2.1 proves that the error expansion

(u− uh, F ) =
∑

K∈T ′

(ρK + O(
hγ

max

α
+ α))h2+d

K + O(Cδhmax)
∑

K∈T ′

H∪T ′

I

h1+d
K

=:
∑

K

ρ̌Kh
2+d
K ,

(3.1)

with Cδ defined in (2.17), has a well defined leading order error density ρ which
converges uniformly as hmax → 0+. The two error terms

∑

K∈T ′

O(
hγ

max

α
+ α)h2+d

K and O(Cδhmax)
∑

K∈T ′

H∪T ′

I

h1+d
K

are fundamental in the analysis of the algorithm. Assume that α has been chosen
such that

(3.2)
hγ

max

α
+ α = O(hbγ

max),

where γ̂ > 0. In the adaptive algorithm below we will use the positive approxi-
mate error density ρ̂K defined by

ρ̂|K = ρ̂K := max (|ρK |, δ)(3.3)

where

δ := TOLγ̄(3.4)

satisfies the two lower bounds

(3.5) γ̄ <
γ̂

γ̂ + 2
and Cδ

∫

T̄H∪T̄I

dx/δ = o(1) as TOL → 0+,
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and the upper bound
δ = o(1) as TOL → 0 + .

The lower bounds on δ > 0 are motivated by the requirements that hmax → 0 as
TOL → 0, that the bounds for the error density in (3.14) hold, see Lemma 3.2,
and that the error from hanging node elements become asymptotically negligible,
see Theorem 3.3. The convergence ρ̂→ |ρ̃| requires the upper bound δ → 0.

Let us now motivate the optimal choice of element sizes

∣∣ρ
∣∣hd+2 = constant,

for hypothetical linear tensor reference finite elements with no other constraint
than tensor cube reference elements and a mesh independent error density ρ.
Define first, for a mesh with elements {K1,K2,K3, . . . ,KN}, the piecewise con-
stant error density and mesh functions ρ|Ki ≡ ρi ≡ ρKi , ρ̂|Ki ≡ ρ̂i ≡ ρ̂Ki and
h|Ki ≡ hi ≡ hKi . The number of elements that corresponds to a mesh with size
h can be determined by

N(h) ≡
∫

Ω

dx

hd(x)
.(3.6)

It seems hard to use the sign of the error indicator for constructing the mesh,

since with only two elements the error can be zero just by chance: let
∫ 1

0
f(s)ds =

0 be the integral of a continuous function where also f(0) = f(1) = 0. This
integral can be computed by the Euler method without error for a very particular
choice of just the two elements (0, s̄), (s̄, 1), with an interior point s̄ satisfying
f(s̄) = 0, but any other choice of two elements gives in general very large error.
Instead we choose to minimize the number of elements N in (3.6) under the
more stringent constraint

N̄∑

i=1

|ρi|hd+2
i =

∫

Ω

|ρ(x)|h2dx = TOL.(3.7)

This yields, with a standard application of a Lagrange multiplier, the optimal
element sizes h∗ satisfying

(3.8) |ρ|(h∗)d+2 = constant

and

h∗ :=
TOL

1
2

|ρ| 1
d+2

(∫

Ω

|ρ(x)| d
d+2 dx

)− 1
2

.(3.9)

This condition is optimal only for density functions ρ with one sign and for
meshes with shape regular elements, i.e., non stretched elements. To use the
sign of the density or orientation of stretched elements in an optimal way is not
considered in this work.
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The goal of the adaptive algorithm described below is to construct a mesh of
Ω such that

(3.10) ρ̂ih
d+2
i ≈ TOL

N
, i = 1, . . . , N,

which is an approximation of the optimal (3.8). Let the index [k] refer to the
refinement level in the sequence of adaptively refined meshes. To achieve (3.10)
let s1 ≈ 1 be a given constant, start with an initial mesh of size h[1] and then
specify iteratively a new mesh h[k + 1], from h[k], using the following dividing
strategy:

for all elements i = 1, 2, . . . , N [k]

r̄i[k] := ρ̂i[k](hi[k])
d+2

if r̄i[k] > s1
TOL

N [k]
then

mark element i for division and recursively mark all neighbors

that need division due to the hanging node constraint:

at most one hanging node per edge

endif

endfor

divide every marked element in T ′ into 2d uniform sub elements.

(3.11)

With this dividing strategy, it is natural to use the stopping criterion:

(3.12) if
(

max
1≤i≤N [k]

r̄i[k] ≤ S1
TOL

N [k]

)
then stop.

Here S1 is a given constant, with S1 > s1 ≈ 1, determined more precisely as
follows: we want that the maximal error indicator decays quickly to the stopping
level S1TOL/N , but when almost all error indicators r̄i satisfy r̄i < s1

TOL
N the

reduction of the error may be slow. Theorem 3.1 shows that a slow reduction is
avoided if S1 satisfies (3.15).

The remainder of this section analyzes in three theorems the adaptive algo-
rithm based on (3.11) and (3.12) with respect to stopping, accuracy and ef-
ficiency. To analyze the decay of the maximal error indicator, it is useful to
understand the variation of the density ρ̂ at different refinement levels, in par-
ticular we will consider an element K[k] and its parent on a previous refinement
level, p(K, k), with the corresponding error density ρ̂(K)[p(K, k)]. With the as-
sumption that hmax → 0 as TOL → 0+ Theorem 2.1 shows that there is a limit
error density ρ̃ such that

(3.13) lim
L1

ρ̌ = ρ̃, ρ→ ρ̃ and ρ̂→ |ρ̃|, as TOL → 0 + .

A consequence of the uniform convergence ρ̂→ |ρ̃| , as TOL → 0+, and (3.3) is
that for all elements K and all refinement levels k there exists positive functions
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ĉ and Ĉ close to 1 for sufficiently fine meshes, such that the error density satisfies

(3.14)

ĉ(K) ≤ ρ̂(K)[p(K, k)]

ρ̂(K)[k]
≤ Ĉ(K),

ĉ(K) ≤ ρ̂(K)[k − 1]

ρ̂(K)[k]
≤ Ĉ(K),

provided maxK,k hK [k] is sufficiently small. In other words, (3.14) holds with

e.g. ĉ = 2−1 = Ĉ−1 for sufficiently small maxK,k hK [k]. Note that the condition
(3.14) also implies a related constraint on the optimal mesh, see Remark 3.1.

Theorem 3.1 (Stopping). Suppose the assumptions of Theorem 2.1 hold and
the adaptive algorithm uses the strategy (3.11)-(3.12). Assume that ĉ satisfies
(3.14), for the elements corresponding to the maximal error indicator on each
refinement level, and that

(3.15) S1 ≥ 2d

ĉ
s1, 1 >

ĉ−1

2d+2
.

Then each refinement level either decreases the maximal error indicator with the
factor

max
1≤i≤N [k+1]

r̄i[k + 1] ≤ ĉ−1

2d+2
max

1≤i≤N [k]
r̄i[k],(3.16)

or stops the algorithm.
We have in [23] tested several alternative stopping rules, such as the usual

|∑i ρ̄ih
2+d
i | ≤ TOL. Our stopping rule (3.12) has the advantage that it implies

bounds on hmax, see Lemma 3.2, which may explain its more accurate error
estimates.

Proof. Define the piecewise constant error indicator function r̄|K ≡ r̄K , for all
elements K. There is a point x∗ ∈ Ω giving the maximal error indicator value

r̄(x∗)[k + 1] = max
1≤i≤N [k+1]

r̄i[k + 1]

on refinement level k+ 1. The corresponding indicator r̄(x∗)[k], on the previous
level, satisfies precisely one of the following three statements

r̄(x∗)[k] ≤ s1TOL

N [k]
,(3.17)

s1TOL

N [k]
< r̄(x∗)[k] ≤ 2d+2 s1TOL

N [k]
,(3.18)

r̄(x∗)[k] > 2d+2 s1TOL

N [k]
.(3.19)

If (3.17) holds either the element containing x∗ is not divided on level k + 1 or
it is divided on level k + 1 by the hanging node condition. In any case, (3.14)
implies

r̄(x∗)[k + 1] ≤ ĉ−1s1TOL

N [k]
.(3.20)
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Condition (3.15) and the bound N [k + 1] ≤ 2dN [k] imply

S1TOL

N [k + 1]
≥ ĉ−1s1TOL

N [k]
,

which together with (3.20) show that the algorithm stops at level k+ 1 if (3.17)
holds.

Similarly, if (3.18) holds, the element containing x∗ is divided on level k + 1,

so that r̄(x∗)[k + 1] ≤ ĉ−1s1TOL
N [k] again and consequently the algorithm stops at

level k + 1.
Finally if (3.19) holds, the element containing x∗ is divided and by (3.14)

r̄(x∗)[k + 1] ≤ ĉ−1

2d+2
r̄(x∗)[k] ≤ ĉ−1

2d+2
max

1≤i≤N [k]
r̄i[k],

which proves the theorem. �

Let us verify that the choice (3.4) of δ implies that hmax → 0 and that the
functions ĉ and Ĉ in (3.14) are close to 1 for sufficiently small tolerances.

Lemma 3.2. Suppose ρ̂ is given by (3.3) and δ by (3.4). If the algorithm stops
by stopping criterion (3.12), then

(3.21) hmax[J ] = O
(
TOL(1−γ̄)/2

)
,

for the final mesh J . Suppose in addition that the convergence (2.22) of the
error density holds with α in (3.2) and that hmax[1] = O(TOLs) for some s with
γ̄/γ̂ < s < (1 − γ̄)/2; then

∣∣∣∣
ρ̂(K)[p(K, k)]

ρ̂(K)[k]
− 1

∣∣∣∣ = O
(
TOLsbγ−γ̄

)
→ 0, as TOL → 0,

∣∣∣∣
ρ̂(K)[k − 1]

ρ̂(K)[k]
− 1

∣∣∣∣ = O
(
TOLsbγ−γ̄

)
→ 0, as TOL → 0.

Proof. When the algorithm stops, on level J , the error indicators satisfy the
bound

(ρ̂hd+2)(K)[J ] ≤ S1TOL

N [J ]
, for all K.(3.22)

Consequently we have by (3.3)

δhd+2
max[J ] ≤ S1TOL

N [J ]
,

which using (3.4) proves (3.21):

h2
max[J ] ≤ S1TOL

δN [J ]hd
max[J ]

≤ S1TOL1−γ̄

∫
Ω dx

.
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The convergence (2.22) and the definition (3.3) imply

ρ̂ = max(|ρ̃| + O(hγ
max/α+ α), δ)

where |ρ̃| is the limit of ρ̂. Therefore, by (3.2) and (3.4) we have
∣∣∣∣
ρ̂(K)[p(K, k)]

ρ̂(K)[k]
− 1

∣∣∣∣ ≤ max
k≤J

O(hγ
max/α+ α)[k]

δ
≤ O(hbγ

max[1])

δ
= O

(
TOLsbγ−γ̄

)
.

The same estimate for ρ̂(K)[k−1]
ρ̂(K)[k] finishes the proof. �

Remark 3.1 (Mesh constraints). The error density condition (3.14) also
implies constraints on the optimal mesh; for instance the assumption 1

2 (ρ̄(x)[k]+
ρ̄(x+ h)[k]) = ρ̄(x)[k − 1] shows that

(3.23) 2ĉ− 1 ≤
∣∣∣∣
ρ̄(x+ h)[k]

ρ̄(x)[k]

∣∣∣∣ ≤ 2Ĉ−1 − 1.

�

3.2 Accuracy of the Adaptive Algorithm

The adaptive algorithm guarantees that the estimate of the global error is
bounded by a given error tolerance, TOL. An important question is whether the
true global error is bounded by TOL asymptotically. Using the upper bound
(3.12) of the error indicators and the convergence of ρ and ρ̄ in Theorem 2.1,
the global error has the following estimate.

Theorem 3.3 (Accuracy). Suppose that the assumptions of Lemma 3.2
hold. Then the adaptive algorithm (3.11)-(3.12) satisfies

(3.24) lim sup
TOL→0+

(
TOL−1

∣∣(u− uh, F )
∣∣
)
≤ S1.

Proof. When the adaptive algorithm stops, (2.20), (3.3), (3.12) and (3.21) imply

|(u− uh, F )|
TOL

=
|∑N

i=1(ρ̄ih
d+2
i + O(hbγ

max)hd+2
i ) + O(Cδhmax)

∑
K∈TH∪TI

h1+d
K |

TOL

≤ TOL−1
( N∑

i=1

(|ρ̄i| + O(hbγ
max))h

d+2
i + O(Cδhmax)

∑

K∈TH∪TI

h1+d
K

)

≤
N∑

i=1

(1 +
O(hbγ

max)

ρ̂i
)
S1

N
+ O(Cδ

h2
max

TOL
)

∫

T̄H∪T̄I

dx

≤ S1 + O
(
TOL(bγ−γ̄(bγ+2))/2

)
+ O(Cδδ

−1)

∫

T̄H∪T̄I

dx,

(3.25)

which together with the assumptions (3.5) and (2.19) prove (3.24) in the limit
as TOL → 0+. �
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3.3 Efficiency of the Adaptive Algorithm

An important issue for the adaptive method is its efficiency; we want to de-
termine a mesh with as few elements as possible providing the desired accuracy.
From the definition (3.6) and the optimality condition (3.9), the number of op-
timal adaptive elements, Nopt, satisfies

Nopt =

∫

Ω

dx

(h∗(x))d
=

1

TOL
d
2

(∫

Ω

|ρ[k](x)| d
d+2 dx

) d+2

2

,

i.e.

(3.26) Nopt =
1

TOL
d
2

‖ρ‖
d
2

L
d

d+2

.

Here ‖ · ‖
L

d
d+2

is the quasi-norm defined by

‖f‖
L

d
d+2

:=
(∫

Ω

|f(x)| d
d+2 dx

) d+2

d

.

On the other hand, for the uniform mesh with elements h = constant, the
number of elements, Nuni, to achieve

∑N
i=1 |ρi|hd+2

i = TOL becomes

Nuni =

∫

Ω

dx

hd(x)
=

∫
Ω
dx

TOL
d
2

(∫

Ω

|ρ[k](x)|dx
) d

2

,

i.e.

(3.27) Nuni =

∫
Ω
dx

TOL
d
2

‖ρ‖
d
2

L1.

Hence, the number of uniform elements is measured in the L1-norm while the

optimal number of elements is measured in the L
d

d+2 quasi-norm. Jensen’s in-
equality implies ‖f‖

L
d

d+2
≤ (
∫
Ω
dx)

2
d ‖f‖L1, therefore an adaptive method may

use fewer elements than the uniform element size method. Example 4.1 shows a
case where adaptive refinements give a better order of convergence than uniform
refinements.

The following theorem uses a lower bound of the error indicators, obtained
from the refinement criterion (3.11) for the refined parent error indicator and
the ratio of the error density (3.14), to show that the algorithm (3.11)-(3.12)
generates a mesh which is optimal, up to a multiplicative constant.

Theorem 3.4 (Efficiency). Assume that Ĉ = Ĉ(x) satisfies (3.14) for all
elements at the final refinement level, that the assumptions of Lemma 3.2 hold
and that the initial mesh satisfies hK [1] ≥ TOLs for all elements K and some
s with γ̄/γ̂ < s < (1 − γ̄)/2. Then there exists a constant C > 0, bounded

by (2d+2

s1
)

d
2 , such that, for sufficiently small TOL, the final number of adaptive

elements N , of the algorithm (3.11)-(3.12), satisfies

(TOL
d
2N) ≤ C ‖Ĉρ̂‖

d
2

L
d

d+2

≤ C

(
max
x∈Ω

Ĉ(x)
d
2

)
‖ρ̂‖

d
2

L
d

d+2

,(3.28)
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and

lim
TOL→0+

‖ρ̂‖
L

d
d+2

= ‖ρ̃‖
L

d
d+2

,

lim
TOL→0+

max
x∈Ω

Ĉ(x)
d
2 = 1,

(3.29)

i.e. the number of elements is asymptotically optimal up to the problem inde-

pendent factor C ≤ (2d+2

s1
)

d
2 .

Proof. Let us first verify that the initial mesh is coarse enough so that all
elements are divided, i.e. that

(3.30) r̄(K)[1] ≥ s1TOL/N [1].

We have

r̄(K)[1] ≥ δh2+d
K [1] ≥ TOLγ̄+2shd

K [1] ≥ TOLγ̄+2s

∫
Ω dx

N [1]
> s1

TOL

N [1]

provided TOLγ̄+2s−1 > 1/
∫
Ω
dx. By assumption γ̄+ 2s− 1 < 0 and we see that

(3.30) indeed holds for the initial mesh with sufficiently small TOL.
When the adaptive algorithm stops, on level J , the error indicators satisfy the

upper bound

r̄K [J ] = (ρ̂(K)hd+2
K )[J ] ≤ S1TOL

N [J ]
, ∀K ∈ T .

Each element K[J ] has a parent on a previous level, p(K, J) (not necessary the
previous level J−1), which was divided. We shall show that this parent indicator
r̄(K)[p(K, J)] satisfies the lower bound

r̄(K)[p(K, J)] >
s1TOL

N [p(K, J)]
,(3.31)

and this lower bound is the essential step to obtain the estimate (3.28). If this
parent was not refined by hanging node constraints, the lower bound holds. In
fact, it also holds if the refinement was made by hanging node constraints: then
the parent has a refined neighbor element which has half the mesh size while the
error densities ρ̂i and ρ̂j of two neighboring elements satisfy by Theorem 2.1

∣∣1 − ρ̂j

ρ̂i

∣∣ = |ρ̂i − |ρ̃i| + |ρ̃i| − |ρ̃j | + |ρ̃j | − ρ̂j |
ρ̂i

= O(
hbγ

max[1]

δ
+
hmax[1]

δ
) = O

(
TOLsbγ−γ̄

)
→ 0 as TOL → 0 + .

(3.32)

Therefore the error indicator of the parent is a factor 2d+1 larger than for the
neighbor. Hence, starting from source elements, where the indicator is marked
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for refinement not by the hanging node constraint, the error indicators for suc-
cessive connected hanging node neighbors increase and consequently also the
hanging node refinements satisfy the lower bound (3.31).

The indicators of the parent elements therefore satisfy the lower bound

ρ̂(K)[p(K, J)]2d+2hd+2
K [J ] = (ρ̂(K)hd+2(K))[p(K, J)]

>
s1TOL

N [p(K, J)]

≥ s1TOL

N [J ]
.

The estimate on the number of elements now follows by relating the error indi-
cators to the lower bounds of their parents:

hd+2(K)[J ] >
s1TOL

N [J ]

1

2d+2

1

ρ̂(K)[p(K, J)]

≥ s1TOL

N [J ]2d+2

1

Ĉρ̂(K)[J ]
.

(3.33)

This and (3.6) imply

N [J ] =

∫

Ω

dx

hd(x)[J ]
<

(N [J ])
d

d+2 2d

(s1TOL)
d

d+2

∫

Ω

∣∣∣Ĉρ̂
∣∣∣

d
d+2

dx

which together with Hölder’s inequality proves (3.28):

N [J ] ≤
(

2d+2

s1

) d
2 ( 1

TOL

) d
2 ‖Ĉρ̂‖

d
2

L
d

d+2

≤
(

2d+2

s1

) d
2 ( 1

TOL

) d
2

(‖Ĉ‖L∞‖ρ̂‖
L

d
d+2

)
d
2 .

Combining the last estimate with the uniform convergence ρ̂→ |ρ̃| and Lemma
3.2 establish the asymptotic result (3.29). �

Remark 3.2 (Efficiency without Theorem 2.1). The conclusion (3.28)
in Theorem 3.4 can be obtained for all TOL also without use of Theorem 2.1 by
replacing the estimate (3.32), requiring Theorem 2.1, by the assumption that the
quotient of the error densities for two neighboring elements is bounded below by
2−(d+2).

3.4 Implementation of the Adaptive Algorithm

This subsection presents a detailed implementation of the adaptive algorithm
(3.11)-(3.12). The dividing strategy (3.11) is applied iteratively until the ap-
proximate solution is sufficiently resolved, in other words, until the approximate
error density ρ̂ and the elements satisfy the stopping criterion (3.12):
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Initialization

The user chooses:

1. an initial error tolerance, TOL,

2. an initial coarse (uniform) mesh, and

3. a number, s1, in (3.11) and a rough estimate of ĉ in (3.14) to compute
S1 using (3.15),

4. numbers γ̄ and α in (2.36) and (3.4).

Set the mesh level k to 0.

Step I

Increase the mesh level k by 1. Compute the second order accurate ap-
proximation uh[k] ∈ Vh[k] in (2.1) and compute the approximate weight
ϕh[k] ∈ Vh[k], using the method (2.6). Compute the density ρ̂i[k] using
(2.14),(3.3),(3.4) and an average, i.e., (2.36).

Step II

If
(

max
1≤i≤N [k]

r̄i[k] ≤ S1TOL
N [k]

)
then stop the program

else

do (3.11)

go to Step I

endif.

3.5 Decreasing Tolerance

This subsection studies an adaptive algorithm allowing the tolerance to de-
crease slightly as the mesh is refined. The decreasing tolerance is motivated by
efficiency – the efficiency of the algorithm depends on the total work including
all refinement levels. If the number of elements in each refinement iteration in-
creases only very slowly, the total work becomes proportional to the product of
the number of elements in the finest mesh times the number of refinement levels.
The condition (3.9) shows that the number of refined levels, J , satisfies

minh = 2−Jh[1] = O(TOL1/2).(3.34)

A relation minh = O(TOLα), α > 0 still holds for many singular densities, as in
Example 4.1. Therefore, J = O(log(TOL−1)) ≃ logN , so that the total number
of elements, including all mesh levels, of the algorithm (3.11)-(3.12) would be
essentially bounded by

O(N logN).(3.35)
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A more efficient refinement algorithm is obtained by successively decreasing the
tolerance, TOL[k + 1] < TOL[k], in each refinement so that

N [k]

N [k + 1]
≤ c̄ < 1(3.36)

always holds. The condition (3.36) would imply that the total number of ele-
ments satisfy

J∑

k=1

N [k] ≤ N [J ]

1 − c̄
.(3.37)

Therefore, a slightly decreasing tolerance may be more efficient than a constant
tolerance. Including the assumption

c′ ≤ TOL[k + 1]

TOL[k]
≤ 1(3.38)

and replacing ĉ by c′ĉ in (3.15) directly generalizes Theorems 3.1, 3.3 and 3.4 to
slightly varying tolerance, where TOL in (3.24) and (3.28) then denotes the final
stopping tolerance. However, an unattractive consequence of varying tolerance
is that the stopping tolerance becomes a priori uncertain, see Remark 3.3 and
Theorem 3.5.

Remark 3.3. A decreasing tolerance is useful if there are few elements with
their error indicators, r̄i, in the set (s1TOL/N,∞). To include a decreasing
tolerance, modify the algorithm by adding the command “Set V = 0” in the end
of Step I and replace Step II by:

Step II

If
(

max
1≤i≤N [k]

r̄i[k] ≤ S1TOL
N [k]

)
then stop the program

else

do (3.11)

if (N [k]/N [k + 1] > c̄ & V = 0), then

TOL = TOL[k](1 − c̄−1−1
2d−1

), V = 1 and go to Step II,

else

go to Step I.

endif

endif

Include in the initialization also a choice of the factor c̄ to increase the number
of elements in (3.36).

Assume that the set (c′s1TOL/N, s1TOL/N ] contains a fraction c′′N of the
elements, where 2−d < c′ < 1; for instance, if the error indicators, r̄i, are uni-
formly distributed in [0, s1TOL/N ], with a negligible part outside of this set,
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there holds c′′ = 1 − c′, which yields c̄ = 1
1+c′′(2d−1) = 1

1+(1−c′)(2d−1) and mo-

tivates c′ = 1 − c̄−1−1
2d−1 in the algorithm. A refinement approximately maps the

error indicator set
(c′s1TOL/N, s1TOL/N ]

to
(c′s1TOL/(N2d+2), s1TOL/(N2d+2)].

Then the next refinement continues with essentially a similar distribution of the
error indicators, provided c′ is not too small. When the algorithm stops, the final
tolerance satisfies

TOL[0] ≥ TOL[J ] ≥ TOL[0](c′)J = TOL1+O(| log c′|),

which for c′ close to 1 is only a slight change. �

Let us now show that the total number of elements, for all mesh levels, can be
bounded by a constant times the number of elements in the finest mesh with de-
creasing tolerance. Its proof uses that the tolerance decreases sufficiently, which
simplifies the analysis. A more refined study, with less demanding assumptions
on the tolerance, following the idea in Remark 3.3 would need deeper under-
standing of the distribution of the error indicators r̄i. In contrast to the basic
Theorems 3.1, 3.3 and 3.4, the following result has the drawback that it uses a
uniform bound in (3.14) which yields a condition, on c′, that in practice can be
too restrictive although it seems reasonable for very small tolerances. The proof
is also more complicated and less natural than the previous proofs.

Theorem 3.5. The total number of elements satisfies the bound

J∑

k=1

N [k] = O(N [J ]),

for a variant of the adaptive algorithm in Section 3.4 where all levels have de-
creasing tolerance

TOL[k + 1] = TOL[k]c′

satisfying 0 < c′ < 1/Ĉ, provided all initial elements are divided, S1 ≥ s12
d/(ĉc′)

and (3.14) holds uniformly for all elements. Proof. Let s2 := s1/(Ĉc
′2d+2) and

N0[k] := {i : s2TOL[k]/N [k] ≤ r̄i[k] ≤ s1TOL[k]/N [k]}. We shall first verify
that

(3.39) min
K,k

(r̄KN/TOL)[k] ≥ s2.

Assume first that
min

K
r̄K [k] > s1TOL/N [k],
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then all elements are divided on level k + 1 and by (3.14)

r̄(K)[k + 1] =
(
ρ̂(K)h(K)d+2

)
[k + 1]

≥ 1

Ĉ
ρ̂(K)[k]

hd+2(K)[k]

2d+2

=
1

Ĉ2d+2
r̄(K)[k]

>
s1TOL[k]

Ĉ2d+2N [k]

therefore

min
K

r̄(K)[k + 1] >
s1TOL[k + 1]

Ĉc′2d+2N [k + 1]

=
s2TOL[k + 1]

N [k + 1]
.

Then if K ∈ N0[k] the element K is not divided on level k+1, unless the hanging
node constraint required division but then the error indicator is bigger than its
source of the hanging node constraint, see the proof of Theorem 3.4. For K
which is not divided on level k + 1 it holds that

r̄(K)[k + 1] ≥ 1

Ĉ
r̄(K)[k]

≥ 1

Ĉ
s2 TOL[k]/N [k]

≥ 1

Ĉc′
s2 TOL[k + 1]/N [k + 1]

> s2 TOL[k + 1]/N [k + 1].

Therefore we conclude, by induction, that the error indicators satisfy

min
K,k

(r̄(K)N/TOL)[k] ≥ s2.

The next step is show that at most m consecutive levels can have the slow
increase N [k]/N [k+1] > c̄. This will imply that the total number of elements is
bounded by a constant times the final number of elements. Assume the contrary
that

N [k]

N [k + 1]
> c̄, k = κ, . . . , κ+m,(3.40)

where m and c̄ are chosen to satisfy

(c′)m

ĉ
<
s2
s1
,(3.41)

1 < c̄−1 < 2d/(m+1),(3.42)
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and let N0[k] := #N0[k] and N+ := N−N0. The bound (3.39) shows that error
indicators are either in N0 or in the refinement region where r̄i > s1TOL/N .
Therefore we have

N [k + 1] = N0[k] + 2dN+[k]

which combined with (3.40) show that the number of divided elements, N+[k],
satisfies

N+[k] <
c̄−1 − 1

2d − 1
N [k].(3.43)

The tolerance decreases, so that after m levels the dividing barrier is

s1TOL[κ+m]/N [κ+m] < (c′)ms1TOL[κ]/N [κ].

All elements in N0[κ] must have been divided after m levels, since if they have
not all been divided some error indicator is larger than ĉs2TOL[κ]/N [κ] and
condition (3.41) gives the contradiction that an element with error indicator,
r̄K [κ+m], in the dividing region will not be divided

s1
TOL[κ+m]

N [κ+m]
< (c′)ms1

TOL[κ]

N [κ]
< ĉs2

TOL[κ]

N [κ]
< r̄K [κ+m].

Dividing of all elements in N0[κ] shows that N0[κ] must be smaller than the sum
of divided elements

N0[κ] ≤
m∑

j=1

N+[κ+ j](3.44)

which also leads to a contradiction, since by (3.43)

N0[κ] = N [κ] −N+[κ] >
2d − c̄−1

2d − 1
N [κ]

and by combining (3.43) and (3.40)

N+[κ+ j] <
c̄−1 − 1

2d − 1
N [κ+ j]

<
c̄−1 − 1

2d − 1
c̄−1N [κ+ j − 1]

<
c̄−1 − 1

2d − 1
c̄−jN [κ],

so that by the assumption (3.42)

N0[κ] −
m∑

j=1

N+[κ+ j] >
2d − c̄−m−1

2d − 1
N [κ] > 0,
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which contradicts (3.44). Hence, the number of consecutive levels, where
N [k]/N [k + 1] > c̄, must be smaller than m+ 1 and therefore

J∑

k=1

N [k] ≤ mN [J ]

1 − c̄
= O(N [J ]).

�

4 An Application

In this section we study a simplified elasticity problem related to a round
corner, which yields a solution with multiple scales, and show that the adaptive
algorithm solves this problem more efficiently than with a uniform mesh; the
number of adaptive elements divided by the number of uniform elements becomes
O(ǫ), for the same error, where ǫ is related to the radius of the corner.

The numerical results in this section were obtained with an implementation of
the adaptive algorithm in Section 3.4 using the error expansion (2.20) and the
approximate error density (2.14). Table 4.1 compares different choices of the
averaging of the second differences and Figure 4.4 shows that the requirements
on Ĉ and ĉ in (3.14) are fulfilled.

Example 4.1. An example with adaptive gain is computation of the functional

(u, 1) =

∫

Ω

u dx,

where the function u solves the Laplace equation in a domain which generates
different scales

−∆u = 0, in Ω = {x ∈ R
2 : ǫ < |x| < 1} \ Γ0,

u = g, on ΓC = {x ∈ R
2 : |x| = ǫ},

u = 0, on Γ0 = (ǫ, 1] × {0},
u = g, on ∂Ω \ (Γ0 ∪ ΓC).

Here g is the function (r, θ) 7→ r1/2 sin(θ/2), where (r, θ) are the polar coor-
dinates, so that the exact solution, u, is r1/2 sin(θ/2). Note that the Dirichlet
boundary condition on ΓC is equivalent to the Robin boundary condition

∂u

∂n
+
u

2ǫ
= 0, on ΓC ,(4.1)

which yields the dual problem

−∆ϕ = 1 in Ω, ϕ|∂Ω\ΓC
= 0,

∂ϕ

∂n
+
ϕ

2ǫ

∣∣∣∣
ΓC

= 0.



38 K.-S. MOON AND E. VON SCHWERIN AND A. SZEPESSY AND R. TEMPONE

Ω

Γ0ΓC

Figure 4.1: Domain with a crack with rounded tip

An expansion of ϕ, by separation of variables, implies that the singular mode
r1/2 sin(θ/2) is present also in ϕ. Following (2.22), this mode r1/2 sin(θ/2) in u
and ϕ therefore yields

ρ̂(x) =
O(1)

r3
, for r > ǫ,(4.2)

where the leading order term in O(1) is positive. This implies by (3.28) that the
optimal number of adaptive elements N , for error TOL, satisfies

TOL N = O(1), as TOL → 0+,

while (3.27) shows that the number of uniform elements for the same error grows
much faster for small ǫ,

TOL Nuni = O(1)/ǫ, as TOL → 0+.

Our numerical tests are for simplicity in computer implementation on a qual-
itatively related problem: A crude approximation of a round corner at ΓC on
a square grid is to replace the boundary condition on ΓC ∪ Γ0 with the penalty
formulation: min(‖∇u‖2

L2(Ω) + β‖u‖2
L2(Γ0)) for β ≫ 1 with the computational

domain Ω = [−1, 1]2 \ Γ0. This gives the Robin boundary condition

∂u

∂n
+ βu = 0, on Γ0,(4.3)

the Dirichlet condition u = g on ∂Ω \ Γ0, and ∆u = 0 in Ω. We see from
Theorem 2.1 and Lemma 3.2 that the error density converges with a relative

error TOL1/4O(1)
ǫ in the case of a rounded tip and similarly for the Robin boundary

condition (4.3) with β ≃ ǫ−1, so to have theoretical estimates on the error density
very small tolerances are necessary. Numerical results show that the bound (3.14)
holds with ĉ independent of ǫ and TOL, which makes the algorithm useful also
for larger tolerances.
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4.1 Numerical results for ǫ = 0

In Table 4.1 and Figures 4.2–4.4 below we present numerical results for the
singular case ǫ = 0.

In practice the adaptive algorithm works also when the error density is com-
puted without averaging. The proofs of Theorems 3.1, 3.3, and 3.4 use uniform
convergence of ρ̂, since the algorithm uses local properties of ρ̂; on the other
hand, the error is an integral over Ω and therefore weaker convergence of ρ̂ may
suffice to estimate the error. Figure 4.4 shows that the minimal requirements on
ĉ and Ĉ, defined in (3.14), to prove Theorems 3.1, 3.3, and 3.4 behave well.

refinements N error error estimate
uniform 32768 4.8 · 10−4 2.0 · 10−4

adaptive (a) 20288 4.4 · 10−6 6.9 · 10−6

(b) 18203 5.1 · 10−6 7.7 · 10−6

(c) 18929 4.8 · 10−6 7.1 · 10−6

(d) 16634 5.5 · 10−6 8.0 · 10−6

(e) 18884 5.1 · 10−6 7.5 · 10−6

Table 4.1: The adaptive algorithm (3.11)–(3.12) uses far less elements than the num-
ber of uniform elements needed to get comparable accuracy in Example 4.1. The
error (u − uh, 1) is estimated by (2.5) using signed error density, spatially varying av-
eraging α(x) =

p

r(x)h(x) or α = 0, and the following combinations of parameters:

(a) α =
√

rh, δ =
√

TOL,
(b) α = 0, δ =

√
TOL,

(c) α =
√

rh, δ = 0,
(d) α = 0, δ = 0,
(e) local averaging over 5 nodes, δ =

√
TOL.

They all give similar error and number of elements for the tolerance TOL = 2−15. The
computations used s1 = 1 and S1 = 10.

The numerical computations in the previous example give an optimal refine-
ment near the corner singularity, h ≈

√
TOLr3/4, which is the same needed to

control the error in u and ϕ, measured with the energy norm. This fact is a
direct consequence of u and ϕ having the same behavior in the vicinity of the
corner singularity.

However, if we consider instead an example where the solution u is smooth,
D2u = O(1), and ϕ is related to the computation of a point value, then we
may have ρ ∼ r−3 yielding a more stringent refinement than the one needed to
control the error in u with the energy norm.
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Figure 4.2: Efficiency estimate of the accepted mesh in the case (a) in Table 4.1 for a
sequence of tolerances. The number of elements, N , on the accepted mesh is compared
to the estimated optimal Nopt = ||ρ̂||L1/2/TOL, where the quasi-norm of the error
density is computed on the finest mesh, corresponding to TOL = 2−15.
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Figure 4.4: For the five cases (a)–(e) in Table 4.1, the quotients Ĉ(K) = ρ̂(K)[p(K,k)]
ρ̂(K)[k]

and

ĉ(K) = min{ ρ̂(K)[p(K,k)]
ρ̂(K)[k]

, ρ̂(K)[k−1]
ρ̂(K)[k]

} have been computed for a sequence of tolerances.

The values shown for ĉ are the minimal over all levels, k, while for Ĉ(K), K is an
element on the accepted mesh. The minimal requirements for Theorems 3.1 and 3.3
use bounds on ĉ−1 for the maximal error indicator, which is here approximately 8,
because of (4.2) and ǫ = 0. For Theorem 3.4 the minimal requirements use bounds on
||ρ̂Ĉ||L1/2 , which is close to ||ρ̂||L1/2 computed on the accepted mesh using TOL = 2−15;

the maximal Ĉ may, especially with δ = 0, be significantly larger.
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Summary. We present adaptive algorithms for weak approximation of stopped
diffusion using the Monte Carlo Euler method. The goal is to compute an expected
value E[g(X(τ), τ)] of a given function g depending on the solution X of an Itô
stochastic differential equation and on the first exit time τ from a given domain. The
adaptive algorithms are based on an extension of an error expansion with computable
leading order term, for the approximation of E[g(X(T ))] with a fixed final time
T > 0 and diffusion processes X in R

d, introduced in [17] using stochastic flows
and dual backward solutions. The main steps in the extension to stopped diffusion
processes are to use a conditional probability to estimate the first exit time error and
introduce difference quotients to approximate the initial data of the dual solutions.
Numerical results show that the adaptive algorithms achieve the time discretization
error of order N−1 with N adaptive time steps, while the error is of order N−1/2

for a method with N uniform time steps.

Key words: adaptive mesh refinement algorithm, diffusion with boundary, barrier
option, Monte Carlo method, weak approximation

1 Introduction

In this paper, we compute adaptive approximations of an expected value
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E[g(X(τ), τ)] (1)

of a given function, g : D × [0, T ] → R, where the stochastic process X solves
an Itô stochastic differential equation (SDE)

dXi(t) = ai(X(t)) dt +

l0∑

l=1

bl
i(X(t)) dW l(t) , i = 1, 2, . . . , d, t > 0 (2)

and τ is the first exit time

τ := inf{0 < t : (X(t), t) 6∈ D × (0, T )} (3)

from a given open domain D×(0, T ) ⊂ R
d×(0, T ). The functions a : R

d → R
d

and bl : R
d → R

d for l = 1, 2, . . . , l0, are given drift and diffusion fluxes and
W l(t;ω) for l = 1, 2, . . . , l0, are independent Wiener processes. Such problems
arise in physics and finance, for instance when computing the value of barrier
options.

In the case when the dimension of the problem is large or when the related
partial differential equation is difficult to formulate or to solve, the Monte
Carlo Euler method is used to compute the expected value. The main difficulty
in the approximation of the stopped (or killed) diffusion on the boundary
∂D is that a continuous sample path may exit the given domain D even
though a discrete approximate solution does not cross the boundary of D.
This hitting of the boundary makes the time discretization error N−1/2 for
the Monte Carlo Euler method with N uniform time steps, see [7], while the
discretization error is of order N−1 without stopping boundary in R

d × [0, T ).
The work [13] and [9] reduce the large N−1/2 first exit error to N−1. The idea
is to generate a uniformly distributed random variable in (0, 1) for each time
step and compare it with a known exit probability to decide if the continuous
path exits the domain during this time interval. A similar method with N
uniform time steps in a domain with smooth boundary is proven to converge
with the rate N−1 under some appropriate assumptions in [8]. Different Monte
Carlo methods for stopped diffusions are compared computationally in [5]. To
use these methods, the exit probability needs to be computed accurately.

Inspired by Petersen and Buchmann [16], this work uses the alternative
to reduce the computational error by choosing adaptively the size of the time
steps near the boundary, which has the advantage that the exit probability
does not need to be computed accurately. Section 2 derives an expansion of
the error with computable leading order term. Section 3 presents an adaptive
algorithm based on the error estimate where the time discretization error is
of order N−1 with N adaptive time steps.

Using the Monte Carlo Euler method, the expected value (1) can be ap-
proximated by a sample average of g(X(τ), τ), where (X, τ) is an Euler ap-
proximation of (X, τ). The global error can then be split into time discretiz-
ation error and statistical error,
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E[g(X(τ), τ)] − 1

M

M∑

j=1

g(X(τ ;ωj), τ)

=
(
E[g(X(τ), τ) − g(X(τ), τ)]

)
+


E[g(X(τ), τ)] − 1

M

M∑

j=1

g(X(τ ;ωj), τ)




=: ET + ES (4)

where M is the number of realizations. The statistical error, ES in (4), is
asymptotically bounded by c0σ/

√
M using the Central Limit Theorem, where

σ is the sample average of the standard deviation of g(X(τ), τ) and c0 is a
positive constant for a confidence interval, see Sect. 3.1.

Talay and Tubaro [18] and Bally and Talay [4] prove an a priori error
expansion of E[g(X(T )) − g(X(T ))] for the case without stopping boundary,
i.e. for diffusion processes in R

d×[0, T ]. In the same setting without a stopping
boundary, the work [17] proves an expansion of the error with computable

leading order term, error ≃ E
[∑N

n=1 rn

]
, using an error density, ρ = rn/∆t2n,

which depends on computable discrete primal and dual solutions. Given this
error estimate, consider an algorithm which for each realization refines the
solution, X, by the adaptive time stepping:

for all time steps n = 1, . . . , N

if

(
rn ≥ TOLT

E[N ]

)
then

divide ∆tn into 2 equal substeps, and generate

the intermediate value of W by the Brownian bridge (5),

else let the new step be the same as the old

endif

endfor,

with the stopping criterion:

if

(
max

1≤n≤N
rn < S

TOLT

E[N ]

)
then stop.

The intermediate sample points from W are constructed by the Brownian
bridge, cf. [10],

W l

(
tn + tn+1

2

)
=

1

2

(
W l(tn) + W l(tn+1)

)
+ zl

n (5)

where zl
n are independent random variables in N(0, (tn+1−tn)/4), i.e. they are

normally distributed with mean 0 and variance (tn+1−tn)/4, independent also
of previous W l(tj). Letting c0 be the confidence interval parameter, related

to the statistical error c0σ/
√

M ≃ TOLS , in (4), with TOL = 3TOLT =
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3TOLS/2, and assuming S > C are constants such that C−1 ≤ ρparent

ρchild
≤ C,

the work [15] proves that the algorithm stops with asymptotically optimal
expected number of time steps and the error asymptotically bounded by TOL
with large probability (up to problem independent factors):

E[N ] . 4CE[Noptimal] and P (
error

TOL
≤ S

3
+

2

3
) & (2π)−1/2

∫ c0

−c0

e−x2/2dx .

In Sect. 2, we approximate the time discretization error, ET in (4), in com-
putable form by extending the error estimate in [17] to weak approximation
of stopped diffusion. As in [18] and [17], the first step to derive an error es-
timate is to introduce a continuous Euler path. Then the error between the
exact and continuous Euler path is approximated using stochastic flows and
dual backward solutions in Sect. 2.3. The main idea in this extension is to use
difference quotients to replace the stochastic flows that do not exist at the
boundary. The approximate error between the continuous and the discrete
Euler path is derived by a conditional probability using Brownian bridges in
Sect. 2.2. Note that the exit probability is used here only to decide the time
steps, not to approximate the expected values directly. Therefore the accuracy
of the approximation of the exit probability is not crucial.

The computation of the dual solutions may be costly in high dimension.
A simplified variant of the algorithm based on the local error is obtained by
replacing the dual solutions by 1.

The paper is organized as follows. The computable error estimate for
stopped diffusions is derived in the next section and based on this error estim-
ate we develop adaptive algorithms in Sect. 3. Finally some numerical results
of adaptive refinements in one and two space dimension are given in Sect.4.
This paper is an extension of the preprint paper 5 in [14] where stopped
diffusion in one dimension is studied.

2 Error Expansion

Consider a domain D ⊂ R
d and assume that the initial position X(0) = X0

lies in D. The goal is to compute the expected value E[g(X(τ), τ)] of a given
function g which depends on the stochastic process X and the first exit time
τ defined in (3).

First discretize the time interval [0, T ] into N subintervals 0 = t0 < t1 <
. . . < tN = T and let X denote the Euler approximation of the process X;
start with X(0) = X0 and compute X(tn+1) for n = 0, 1, . . . , N − 1 by

Xi(tn+1) = Xi(tn) + ai(X(tn))∆tn +

l0∑

l=1

bl
i(X(tn))∆W l

n, i = 1, 2, . . . , d,

(6)
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where ∆tn := tn+1 − tn denote time increments and ∆W l
n := W l(tn+1) −

W l(tn) denote Wiener increments. Approximate the first exit time τ with

τ := min
1≤n≤N

{tn : (X(tn), tn) 6∈ D × [0, T )} (7)

using the Euler approximation path X instead of the exact path X.
Introduce, for theoretical purposes only, a continuous Euler path X(t) by

Xi(t) = Xi(tn) +

∫ t

tn

ai(X(tn)) dt +

l0∑

l=1

∫ t

tn

bl
i(X(tn)) dW l

t, i = 1, 2, . . . , d,

(8)

for t ∈ [tn, tn+1) and denote by

τ̃ := inf{0 < t : (X(t), t) 6∈ D × [0, T )} (9)

the exit time of the continuous Euler path. Then the time discretization error
of the Euler approximation can be split in two parts:

E[g(X(τ), τ) − g(X(τ), τ)]

= E[g(X(τ), τ) − g(X(τ̃), τ̃)] + E[g(X(τ̃), τ̃) − g(X(τ), τ)]

=: EC + ED.

(10)

In [7], Gobet proves the following a priori error estimate with N uniform time
steps:

E[f(X(τ), τ) − f(X(τ), τ)] = O(N−1/2). (11)

In order to improve the convergence rate in (11), we adaptively refine the
mesh according to computable error estimates. Error estimates for ED and EC

are derived in Theorem 1 and Theorem 2 respectively.

2.1 Notation

In this paper, ∂i denotes the derivative with respect to xi, i.e. ∂i := ∂/∂xi, and
similarly for ∂ij and ∂ijk. If same subscript appears twice in a term, the term
denotes the sum over the range of this subscript, e.g., cik∂kbj :=

∑
k cik∂kbj .

We use Xt := X(t) and Xt := X(t) for the continuous cases and X
n

:= X(tn)
for the discrete case. The piecewise constant mesh function ∆t is defined by

∆t(s) := ∆tn for s ∈ [tn, tn+1) and n = 0, 1, . . . , N − 1 (12)

and
∆tmax := max

n,ω
∆tn(ω).

We let 1A denote the indicator function, i.e. 1A(y) = 1 if y ∈ A, otherwise
1A(y) = 0.



6 Dzougoutov, Moon, von Schwerin, Szepessy, and Tempone

2.2 Expansion of Exiting Error using Probability

Consider the time discretization error between the continuous and the discrete
Euler path, denoted by ED in (10). In the case when the continuous Euler
path ends at time t = T , i.e. τ̃ = T = τ , there is no time discretization error
between two Euler paths since E[g(Xeτ , τ̃)1eτ=T ] = E[g(Xτ , τ)1τ=T ]. On the
other hand, if the continuous Euler path is stopped at τ̃ < T then it is possible
that τ̃ < τ . Figure 1 shows an illustrative Monte Carlo trajectory where the
continuous Euler path X(t) ∈ R exits the domain D = (−∞, λ) at t = τ̃ < T ,
but the discrete Euler process X

n
does not stop until much later, τ = T .

X(t)  
X(t

n
)

t 
τ = T 

x = λ 
0 

x 

τ ~ 

T 

Fig. 1. An illustrative Euler Monte Carlo trajectory when eτ < τ

Taking the above effect into account, ED can be estimated using the prob-
ability of the continuous Euler path exiting in a time interval (tn, tn+1) condi-

tioned on the values of X
n

and X
n+1

in the discrete Euler process. Consider
the particular case of a half space D = {x ∈ R

d : 〈v, x〉Rd < λ} for a constant
λ and a constant unit vector v. The probability PX,n of X(t) exiting at some
t ∈ (tn, tn+1) has an explicit expression, see e.g. [12], [1],

PX,n := P

[
max

t∈[tn,tn+1]
〈v,Xt〉Rd ≥ λ

∣∣∣∣ X
n

= z1, X
n+1

= z2

]

= exp

(
−2

(λ − 〈v, z1〉Rd)(λ − 〈v, z2〉Rd)

σ2∆tn

)
(13)

where 〈v, z1〉Rd < λ and 〈v, z2〉Rd < λ and σ2 = vib(X
n
)ℓ
ib(X

n
)ℓ
jvj . The

work [3] studies estimates for the exit probability of the Brownian bridge
in general cases of one dimension, e.g. with time dependent lower and upper
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boundaries. For a family of non degenerate SDEs in high dimension, including
the half space case, the exit probabilities are expressed as asymptotic series
in [6], [2]. In the more general case, we can approximate D locally near the
boundary by its tangent half space and use the approximation of the exit
probability for the half space case, see [7], [8].

We have the following error representation for ED, formulated for the case
D = {x ∈ R

d : x1 < λ} :

Theorem 1. Let X(t) and X(tn) be the continuous and discrete Euler approx-

imations defined in (8) and (6) respectively. Let χ be the σ-algebra generated

by {Xn
: n = 0, 1, . . . , N}. Then the error ED has the representation

E[g(Xeτ , τ̃) − g(Xτ , τ)] = E

[
N−1∑

n=0

(
g(Xξn

, ξn) − g(Xτ , τ)
)
P̂X,n

]
(14)

for ξn ∈ (tn, tn+1), Xξn
= (λ, X2,ξn

, . . . ,Xd,ξn
) satisfying

g(Xξn
, ξn) = E

[
g(Xeτ , τ̃)

∣∣ χ, τ̃ ∈ [tn, tn+1)
]

and where P̂X,n are conditional first exit probabilities defined by

P̂X,n = PX,n

n−1∏

k=0

(1 − PX,k), n = 1, 2, . . . , N − 1, (15)

P̂X,0 = PX,0,

using the conditional exit probabilities from (13).

Proof. Since E[(g(Xeτ , τ̃)−g(Xτ , τ))1eτ=T ] = 0 and 1eτ<T =
∑N−1

n=0 1eτ∈[tn,tn+1)

we obtain

E[g(Xeτ , τ̃) − g(Xτ , τ)] = E

[
N−1∑

n=0

(g(Xeτ , τ̃) − g(Xτ , τ))1eτ∈[tn,tn+1)

]
,

and after smoothing with the σ-algebra χ generated by {Xn
: n = 0, 1, . . . , N}

E[g(Xeτ , τ̃) − g(Xτ , τ)] = E

[
N−1∑

n=0

E
[(

g(Xeτ , τ̃) − g(Xτ , τ)
)
1eτ∈[tn,tn+1)

∣∣ χ
]
]
.

(16)

In the right hand side we have

E[g(Xτ , τ)1eτ∈[tn,tn+1)

∣∣ χ] = g(Xτ , τ) P[τ̃ ∈ [tn, tn+1)|χ] (17)

since g(Xτ , τ) ∈ χ, and, using the independence of the different coordinate
directions in the Brownian bridge and the mean value theorem for integration
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E[g(Xeτ , τ̃)1eτ∈[tn,tn+1)

∣∣ χ] = E
[
g(Xeτ , τ̃)

∣∣χ, τ̃ ∈ [tn, tn+1)
]
P[τ̃ ∈ [tn, tn+1) |χ]

= g(Xξn
, ξn)P[τ̃ ∈ [tn, tn+1) | χ], (18)

for some ξn ∈ (tn, tn+1), Xξn
= (λ, X2,ξn

, . . . ,Xd,ξn
). Inserting (17) and (18)

into (16) we get

E[g(Xeτ , τ̃) − g(Xτ , τ)]=E

[
N−1∑

n=0

(
g(Xξn

, ξn) − g(Xτ , τ)
)

P[τ̃ ∈ [tn, tn+1) |χ]

]
.

(19)

To compute the probability in (19), we observe that the event {τ̃ ∈ [tn, tn+1)}
is equivalent to

{
Xt∈[t0,t1) ∈ D, . . . ,Xt∈[tn−1,tn) ∈ D, and Xt∈[tn,tn+1) 6∈ D

}

and that the events
{
Xt∈[tn,tn+1) ∈ D

}
, for n = 0, 1, . . . , N −1, are independ-

ent with respect to χ. Thus, using the conditional exit probabilities PX,k, we
obtain

P̂X,n := P[τ̃ ∈ [tn, tn+1) | χ] = PX,n

n−1∏

k=0

(1 − PX,k)

and

P̂X,0 := P[τ̃ ∈ [t0, t1) | χ] = PX,0,

which together with (19) proves (14).

Remark 1. For uniform time steps we know from [7] that
E[g(Xeτ , τ̃)− g(Xτ , τ)] = O(

√
∆t). To obtain a computable approximation of

E
[
g(Xeτ , τ̃)

∣∣ χ, τ̃ ∈ [tn, tn+1)
]

approximate by a linear function

g(Xeτ , τ̃) = g(X(tn), tn) + B(Xeτ − X(tn)) + O(|Xeτ − X(tn)|2 + |τ̃ − tn|).

The last two terms have expected value E[. . . |χ, τ̃ ∈ [tn, tn+1)] = O(∆t)
and Xξn

= (λ, X2,ξn
, . . . ,Xd,ξn

) is based on pinned Brownian motions
Y := (X2, . . . ,Xd) independent of τ̃ . Hence the expected value E[Y |χ, τ̃ ∈
[tn, tn+1)] is

Y (tn) + (Y (tn+1 − Y (tn))
E[τ̃ |χ, τ̃ ∈ [tn, tn+1)] − tn

tn+1 − tn
.

The expected value E[τ̃ |χ, τ̃ ∈ [tn, tn+1)] can be calculated from the explicit
probability distribution of the exit time for Brownian bridges in [1].
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2.3 Error Expansion Using Dual Solutions

In this subsection, we derive a computable error estimate between the exact
and the continuous Euler path, i.e. EC in (10). The main result is stated in
Theorem 2 and the proof is presented afterwards.

The error estimate uses the discrete dual functions ϕ(tn), ϕ′(tn) and

ϕ′′(tn), taking values in R
d, R

d2

and R
d3

respectively, defined as follows. For
simplicity we describe the case when D is the half space {x : x1 < λ}; see
Remark 2. Introduce the notation

ci(tn, x) = xi + ∆tnai(x) + bl
i(x)∆W l

n, i = 1, 2, . . . , d,

βij(x) =
1

2
bl
i(x)bl

j(x), i, j = 1, 2, . . . , d.

Then the function ϕ is defined by the dual backward problem

ϕi(tn) = ∂icj(tn, X
n
)ϕj(tn+1), tn < τ, i = 1, 2, . . . , d, (20)

ϕi(τ) =





∂ig(Xτ , τ), if τ = T , i = 1, 2, . . . , d, or

if τ < T and i = 2, . . . , d,

−(g(X̂ τ̂ , τ̂) − g(Xτ , τ))/∆x, if τ < T and i = 1;

(21)

since ∂1g(Xτ , τ) does not exist if τ < T we have introduced the restarted Euler

approximation X̂(tn) for tn ∈ [τ , τ̂ ] with initial value X̂(τ) = X(τ) + γ∆x,
where γ is an inward unit normal vector, ∆x is a small positive number and

τ̂ denotes the first exit time of X̂, i.e. τ̂ := min{tn : τ < tn and X̂
n

6∈ D}.
The first variation ϕ′ satisfies, cf. [17],

ϕ′
ik(tn) = ∂icj(tn, X

n
)∂kcm(tn, X

n
)ϕ′

jm(tn+1)

+ ∂2
ikcj(tn, X

n
)ϕj(tn+1), tn < τ, (22)

ϕ′
ik(τ) = δ2

ikg(Xτ , τ), (23)

where we interpret δ2
ikg(Xτ , τ) as the corresponding second derivatives when

possible and make use of difference quotients otherwise. If no simplifying prop-
erty of the domain D and the drift bl

i is present we may use additional restarted

processes, similar to X̂, and difference quotients to define the initial values of
ϕ′ and ϕ′′. Interpreting δ3

ikpg(Xτ , τ) analogously to δ2
ikg(Xτ , τ), the second

variation ϕ′′ satisfies

ϕ′
ikp(tn) = ∂icj(tn, X

n
)∂kcm(tn, X

n
)∂pcr(tn, X

n
)ϕ′′

jmr(tn+1)

+ ∂2
ipcj(tn, X

n
)∂kcm(tn, X

n
)ϕ′

jm(tn+1)

+ ∂icj(tn, X
n
)∂2

kpcm(tn, X
n
)ϕ′

jm(tn+1)

+ ∂2
ikcj(tn, X

n
)∂pcm(tn, X

n
)ϕ′

jm(tn+1)

+ ∂3
ikpcj(tn, X

n
)ϕj(tn+1), tn < τ, (24)

ϕ′′
ikr(τ) = δ3

ikpg(Xτ , τ). (25)
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Remark 2. For more general domains we may approximate ∂D with the tan-
gent plane at the stopping point (Xτ , τ), compute derivatives of g in the
directions of the tangent plane and use difference quotients in the normal
direction and then transform back to the original coordinate directions.

The time discretization error EC in (10) has the following error expansion:

Theorem 2. Let X(t), X(t) and X(tn) be the exact, the continuous Euler and

the discrete Euler path defined in (2), (8) and (6) respectively. Assume that

the functions a, b and g are bounded in C6(D) and C6(D× [0, T ]) respectively.

Then the time discretization error EC has the error expansion

E[g(Xτ , τ) − g(Xeτ , τ̃)] = E

[
N−1∑

n=0

1tn+1≤τρn∆t2n

]
(26)

+O
(

∆x +
√

∆tmax +

√
∆tmax

∆xk

)
E

[
N−1∑

n=0

∆t2n

]

where ∆x is a small positive constant and k ∈ {1, 2, 3} is the highest order of

difference quotient used in (20)–(25) to define ϕ, ϕ′, ϕ′′, and

ρn =
1

2
(∂tak + aj∂jak + βij∂

2
ijak)(X

n
)ϕk(tn+1)

+
1

2

(
∂tβkm + 2βjm∂jak + aj∂jβkm + βij∂

2
ijβkm

)
(X

n
)ϕ′

km(tn+1) (27)

+ (βjr∂jβkm)(X
n
)ϕ′′

kmr(tn+1).

Remark 3. If we do not solve the backward dual problems (20)–(25), but in-
stead set ϕ ≡ ϕ′ ≡ ϕ′′ ≡ 1 we obtain adaptivity based on the local error.

The proof of Theorem 2 has several steps and we present them by following
three lemmas. Let us first introduce a solution u of the Kolmogorov backward
equation

∂tu + ai∂iu + βij∂
2
iju = 0, (x, t) ∈ D × [0, T ), (28)

u(x, T ) = g(x, T ), x ∈ D,

u(x, t) = g(x, t), (x, t) ∈ ∂D × [0, T ].

Then by the Feynman-Kac formula u can be represented by the expectation

u(x, t) = E[g(Xτ , τ) | X(t) = x]. (29)

Let ai and bi be the piecewise constant functions defined by ai(t) = ai(X
n
)

and bi(t) = bi(X
n
) for t ∈ [tn, tn+1). Similarly define βij = 1

2bl
ib

l
j . Then the

time discretization error EC has the following representation :
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Lemma 1. Let X(t) and X(t) be the exact and the continuous Euler path

defined by (2) and (8) respectively and let the function u be defined by (29).
Suppose that the assumptions in Theorem 2 hold. Then the time discretization

error between these two paths has the representation

E[g(Xτ , τ) − g(Xeτ , τ̃)] = E

[∫ eτ

0

(
(ai − ai)∂iu + (βij − βij)∂

2
iju

)
(Xt, t) dt

]
.

(30)

Proof. Apply the Itô formula to the function u in (29) to get

du(Xt, t) =
(
∂tu + ai∂iu + βij∂

2
iju

)
(Xt, t) dt + bl

i∂iu(Xt, t) dW l
t.

Here the definition of the continuous Euler scheme in (8) is used, i.e. dXi(t) =

ai dt + bl
i dW l

t for t ∈ [tn, tn+1). Integrate both sides from 0 to τ̃ and take the
expectation to obtain

E[u(Xeτ , τ̃) − u(X0, 0)] = E

[∫ eτ

0

(∂tu + ai∂iu + βij∂
2
iju)(Xt, t) dt

]

+ E

[∫ eτ

0

bl
i∂iu(Xt, t) dW l

t

]
.

(31)

Note that the Itô integral in (31) is not adapted to the standard filtra-
tion generated by W alone. Instead consider the filtration Gt, the σ-algebra
generated by {W l(s),∆t(s) : s ≤ t, l = 1, 2, . . . , l0}. Then from Lemma 4.2
in [15] the Itô integral in (31) is a martingale with respect to Gt and since τ̃
is a stopping time, we therefore have

E

[∫ eτ

0

bl
i∂iu(Xt, t)dW l

t

]
= 0.

In the left hand side of (31) we use the boundary conditions in (28)

E[u(Xeτ , τ̃)] = E[g(Xeτ , τ̃)],

and the Feynman-Kac formula (29)

u(X0, 0) = E[g(Xτ , τ) | X0 = X0] = E[g(Xτ , τ)].

Finally we use the Kolmogorov backward equation (28) to eliminate ∂tu in
the first expectation of the right hand side in (31) and conclude (30).

Using the discrete time steps, the error representation (30) can be written

E[g(Xτ , τ) − g(Xeτ , τ̃)]

= E

[
N−1∑

n=0

∫ tn+1

tn

1t≤eτ

(
(ai − ai)∂iu + (βij − βij)∂

2
iju

)
(Xt, t) dt

]
. (32)
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Lemma 2. Let X(t) and X(t) be the exact path and the continuous Euler

path defined in (2) and (8) respectively and assume that the assumptions in

Theorem 2 hold. Then the time discretization error between these two paths

has the following expansion

E[g(Xτ , τ)−g(Xeτ , τ̃)]=E

[
N−1∑

n=0

1tn+1≤τ ρ̃n∆t2n

]
+O(

√
∆tmax)E

[
N−1∑

n=0

O(∆t2n)

]

(33)
where

ρ̃n =
1

2
(∂tak + aj∂jak + βij∂

2
ijak)(X

n
)∂ku(X

n+1
, tn+1)

+
1

2

(
∂tβkm + 2βjm∂jak + aj∂jβkm + βij∂

2
ijβkm

)
(X

n
)∂2

kmu(X
n+1

, tn+1)

+ (βjr∂jβkm)(X
n
)∂3

kmru(X
n+1

, tn+1). (34)

Proof. Apply the Itô formula to each term in (32) to get

ai(Xt) − ai(Xt) = ai(Xt) − ai(Xn)

=

∫ t

tn

(
∂sai + ak∂kai + βjk∂2

jkai

)
(Xs) ds

+

∫ t

tn

bl
j∂jai(Xs) dW l

s,

and similarly

βij(Xt) − βij(Xt)

=

∫ t

tn

(
∂sβij + ak∂kβij + βkm∂2

kmβij

)
(Xs) ds +

∫ t

tn

bl
k∂kβij(Xs) dW l

s.

Substitute the above integrals in (32) and use Malliavin derivatives, see [17],
for example

E

[
N−1∑

n=0

∫ tn+1

tn

1t≤eτ

∫ t

tn

bl
j∂jai(Xs)∂iu(Xt, t) dW l

s dt

]

= E

[
N−1∑

n=0

∫ tn+1

tn

1t≤eτ

∫ t

tn

2βjm∂jai(Xs)∂
2
imu(Xt, t) ds dt

]

to get
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E[g(Xτ , τ) − g(Xeτ , τ̃)]

= E

[
N−1∑

n=0

∫ tn+1

tn

1t≤eτ

(∫ t

tn

(
∂sai + ak∂kai + βjk∂2

jkai

)
(Xs) ds ∂iu(Xt, t)

+

∫ t

tn

(
∂sβkm + 2βjm∂jak + aj∂jβkm + βij∂

2
ijβkm

)
(Xs) ds ∂2

kmu(Xt, t)

+

∫ t

tn

2βjr∂jβkm(Xs) ds ∂3
kmru(Xt, t)

)
dt

]
. (35)

Each term in (35) has the form

E

[
N−1∑

n=0

∫ tn+1

tn

∫ t

tn

1t≤eτf(Xs) h(Xt, t) dsdt

]
(36)

where f is a function of ai, βij and their derivatives representing the local
error and h is a function of the derivatives of u. Finally apply the a priori
error estimate (11) to the expected value (36) to conclude

E

[
N−1∑

n=0

∫ tn+1

tn

∫ t

tn

1t≤eτf(Xs) h(Xt, t) dsdt

]

= E

[
N−1∑

n=0

1

2
1tn+1≤τf(X

n
)h(X

n+1
, tn+1)∆t2n

]
+ O(

√
∆tmax)E

[
N−1∑

n=0

∆t2n

]

which proves (33).

Note that the quantities ∂iu, ∂2
iju and ∂3

ijku in (34) not are computable.
The adaptive algorithms will use the computable approximations (20)-(25)
for these functions. From the construction of u we have

∂ku(x, t) = E[∂iu(Xτ , τ)X ′
ik(τ ; t) | X ′

ij(t) = δij , X(t) = x], (37)

where δij denotes the Kronecker δ–function and X ′
ij(s; t) := ∂Xi(s;X(t) =

x)/∂xj is the first variation of X(s) with respect to a perturbation in the
initial location at time t, i.e. it satisfies

dX ′
ij(s) = ∂kai(X(s))X ′

kj(s) ds + ∂kbl
i(X(s))X ′

kj(s) dW l(s), t < s < τ,

(38)

X ′
ij(t) = δij .

The goal is to approximate ∂ku(X
n
, tn) in (34) by conditional expected values

of the computable quantities ϕk defined in (20)-(21) and similarly to approx-
imate ∂2

iju and ∂3
ijku by expected values of ϕ′

ij and ϕ′′
ijk in (22)-(23) and

(24)-(25) respectively.
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Note that if the continuous exact path finishes at τ = T then by the
definition of u, we have ∂ku(XT , T ) = ∂kg(XT , T ) so that

E[∂iu(Xτ , τ)X ′
ik(τ ; t)1τ=T | X ′

ij(t) = δij , X(t) = x]

= E[∂ig(XT , T )X ′
ik(T ; t)1τ=T | X ′

ij(t) = δij , X(t) = x]. (39)

However, for τ < T the first variation ∂ig(Xτ , τ) exists only in the directions
tangent to the boundary ∂D, i = 2, . . . , d. In the direction normal to ∂D we
approximate ∂1u(Xτ , τ) in (37) by the expected value of a difference quotient
of g and remove this second expected value. To do this we introduce a small
positive constant ∆x. Once the continuous exact path crosses the boundary,
we start a new realization X̂ with the initial value

X̂(τ) = X(τ) + γ∆x ∈ D,

where γ denotes an inward unit normal vector. The new realization X̂t evolves
by (2) for τ < t < τ̂ until it stops with the first exit time τ̂ ∈ (τ, T ]. Then by
the Taylor expansion we have

∂1u(Xτ , τ) = −u(X̂τ , τ) − u(Xτ , τ)

∆x
+ O(∆x)

and the Feynman-Kac formula (29) gives

∂1u(Xτ , τ) = −E[g(X̂τ̂ , τ̂) − g(Xτ , τ)|Gτ ]

∆x
+ O(∆x)

where Gt is the σ-algebra generated by {W l(s),∆t(s) : s ≤ t, l = 1, 2, . . . , l0}.
Use the measurability of X ′

ik(τ ; t)1τ<T ∈ Gτ to get

E
[
∂1u (Xτ , τ) X ′

1k(τ ; t)1τ<T | X ′
ij(t) = δij , X(t) = x

]

=E

[
E

[
g(X̂τ̂ , τ̂) − g(Xτ , τ)

−∆x

∣∣∣∣∣ Gτ

]
X ′

1k(τ ; t)1τ<T

∣∣∣∣∣
X ′

ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]

+ O(∆x)

=E

[
E

[
g(X̂τ̂ , τ̂) − g(Xτ , τ)

−∆x
X ′

1k(τ ; t)1τ<T

∣∣∣∣∣ Gτ

] ∣∣∣∣∣
X ′

ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]

+ O(∆x)

=E

[
g(X̂τ̂ , τ̂) − g(Xτ , τ)

−∆x
X ′

1k(τ ; t)1τ<T

∣∣∣∣∣
X ′

ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]
+ O(∆x),

and thus



Adaptive Monte Carlo Algorithms for Stopped Diffusion 15

E[∂iu(Xτ , τ)X ′
ik(τ ; t)1τ<T | X ′

ij(t) = δij , X(t) = x]

= E

[
−g(X̂τ̂ , τ̂) − g(Xτ , τ)

∆x
X ′

1k(τ ; t)1τ<T

∣∣∣∣∣
X ′

ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]

+ E

[
d∑

i=2

∂ig(Xτ , τ)X ′
ik(τ ; t)1τ<T

∣∣∣∣∣ X ′
ij(t) = δij , X(t) = x

]
+ O(∆x). (40)

The expected values in the right hand sides of (39) and (40) can be ap-
proximated using Euler approximations and the error in doing so is estimated

by repeated use of the a priori error estimate (11). Let thus (X̂, τ̂) be the
Euler approximation of (X̂, τ̂) and gather all Xi, Xij in a stochastic process

Yt, taking values in R
d+d2

. Then Yt satisfies the system of SDEs, (2) and (38),
which we write

dY (t) = A(Y (t)) dt + Bl(Y (t)) dW l(t), t > t0, Y (t0) = Y0. (41)

Similarly define the corresponding Euler approximation Y of Y as the solution
of

Y (tn+1) = Y (tn) + A(Y (tn))∆tn + Bl(Y (tn))∆W l
n, n ≥ 0, Y (t0) = Y0.

(42)

Consider first the case τ = T ; apply the a priori error estimate (11) to the
functions f̌(Yτ , τ) = ∂ig(Xτ , τ)X ′

ik(τ ; t)1τ=T , for k = 1, 2, . . . , d, to get

E[f̌(Yτ , τ) − f̌(Y τ , τ)] = O(
√

∆tmax).

When τ < T , the second expected value in the right hand side of (40) is
treated similarly as when τ = T . For the first expected value in the right
hand side in (40), extend Yt to Yt containing also the d-dimensional process
X̂t, which solves (2) for τ < t < τ̂ . Then Yt has two exit times θ = (τ, τ̂)T.
Denote by Y and θ the corresponding Euler approximations and apply (11) to

the functions f̌(Yθ, θ) = − g(X̂τ̂ ,τ̂)−g(Xτ ,τ)
∆x X ′

1k(τ ; t)1τ<T , for k = 1, 2, . . . , d,
to obtain

E[f̌(Yθ, θ) − f̌(Yθ, θ)] = O
(√

∆tmax

∆x

)

and consequently
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∂ku(x, t) = E[∂ig(Xτ , τ)X ′
ik(τ ; t)1τ=T | X

′

ij(t) = δij , X(t) = x]

+ E

[
g(X̂ τ̂ , τ̂) − g(Xτ , τ)

−∆x
X

′

1k(τ ; t)1τ<T

∣∣∣∣∣
X

′

ij(t) = δij , X(t) = x,

X̂τ = Xτ + γ∆x

]

+ E

[
d∑

i=2

∂ig(Xτ , τ)X
′

ik(τ ; t)1τ<T

∣∣∣∣∣ X
′

ij(t) = δij , X(t) = x

]

+ O
(

∆x +
√

∆tmax +

√
∆tmax

∆x

)
. (43)

This is an expansion of the expected value of ϕk defined in (20)-(21). The
higher derivatives ∂2

iju and ∂3
ijku can be computed in a similar way and we

have the error expansion:

Lemma 3. Suppose the assumptions in Theorem 2 hold. Then the function

u defined by (29) and the dual functions ϕ, ϕ′ and ϕ′′ defined by (20)-(25)
satisfy, for α = 1, 2, 3,

∂αu(X(tn), tn) − E[ϕα(tn) | Fn] = O
(

∆x +
√

∆tmax +

√
∆tmax

∆xα

)
(44)

where Fn denotes the σ-algebras generated by {W l(s),∆t(s) : s ≤ tn, l =
1, 2, . . . , l0}, ϕ1 = ϕi, ϕ2 = ϕ′

ij and ϕ3 = ϕ′′
ijk for some i, j, k and ∂αu is the

corresponding α:th order derivative of u.

Proof. For α = 1, the approximation (43) and the definition (20)-(21) yield
(44).

Following [17] extend Y to be (X, X ′, X ′′, X ′′′)T satisfying the SDE sim-
ilar to (41) with Y (t0) = (x, I, 0, 0)T where I is the d × d-identity matrix.
Here the first variation X ′ of X is defined in (38) and the other higher vari-
ations are defined similarly by taking the derivatives to the right hand side of

(38). Introduce the corresponding Euler approximate Y = (X, X
′
, X

′′
, X

′′′
)T

satisfying the SDE similar to (42) and let (X
′
, X

′′
, X

′′′
) denote the Euler ap-

proximations of (X ′, X ′′, X ′′′). For the case when τ = T and α = 2 or 3, we
use the a priori error estimate (11) for the extended systems Y and Y with

f̌(Yτ , τ) =
(
∂igX ′′

ikn + ∂2
irgX ′

ikX ′
rn

)
1τ=T if α = 2,

f̌(Yτ , τ) =(∂igX ′′′
iknm + ∂2

irgX ′
ikX ′′

rnm

+ ∂2
irgX ′

inX ′′
rkm + ∂2

irgX ′
imX ′′

rkn

+ ∂3
irvgX ′

ikX ′
rnX ′

vm)1τ=T if α = 3,

where f̌(Yτ , τ) in the case α = 2 derives from

∂knu(x, t) = E [∂iu(Xτ , τ)X ′′
ikn(τ) + ∂iru(Xτ , τ)X ′

ik(τ)X ′
rn(τ) |

X ′′
ikn(t) = 0, X ′

ij(t) = δij , X(t) = x
]
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with u(Xτ , τ) = g(Xτ , τ) if τ = T and similarly for α = 3. The exten-
sion to the case τ < T is similar to the first order derivative treated above;
this time second and third order difference quotients appear leading to terms
O(

√
∆tmax/∆x2) and O(

√
∆tmax/∆x3) respectively.

Proof of Theorem 2. The measurability of the function fn depending on the
derivatives of a and β, e.g. fn = 1tn+1≤τ (∂tak +aj∂jak +βij∂

2
ijak)(X

n
)∆t2n ∈

Fn+1, proves

E

[
N−1∑

n=0

fnE[ϕk(tn+1)|Fn+1]

]
= E

[
E

[
N−1∑

n=0

fnϕk(tn+1)

∣∣∣∣∣Fn+1

]]

= E

[
N−1∑

n=0

fnϕk(tn+1)

]
. (45)

Similar representations hold for the other terms in (34). Consequently, the
combination of Lemma 2-3 and the removal of the second expectation (45)
prove (26). 2

Remark 4. In the case of only first order difference quotients, the optimal size
of the constant ∆x for the difference quotient in (44) is O((∆tmax)

1/4) and

∆x = TOL
1/4
T is used for the adaptive algorithm in Sect. 3 where TOLT is a

given time discretization error tolerance. In the one dimensional example in
Sect. 4 we use the Kolmogorov equation to replace higher order derivatives on
the boundary with lower order terms. For instance ϕ′(τ) = −β−1(∂tg(Xτ , τ)+

a(Xτ )ϕ(τ)) and ϕ′′′(τ) = β−1((∂tg(X̂ τ̂ , τ̂)−∂tg(Xτ , τ))/∆x+∂xa(Xτ )ϕ(τ)+
(a + ∂xβ)(Xτ )ϕ′(τ)).

3 Adaptive Algorithms for Stopped Diffusion

This section presents adaptive algorithms for the stopped diffusion problems.
As described in Sect. 2, the computational error is separated into the following
three terms : the time discretization error between the exact and the continu-
ous Euler path EC , the time discretization error between the continuous and
discrete Euler approximation ED, and the statistical error ES , i.e.

E[g(X(τ), τ)] − 1

M

M∑

j=1

g(X(τ ;ωj), τ)

= E[g(X(τ), τ) − g(X(τ̃), τ̃)] + E[g(X(τ̃), τ̃) − g(X(τ), τ)]

+


E[g(X(τ), τ)] − 1

M

M∑

j=1

g(X(τ ;ωj), τ)




=: EC + ED + ES . (46)
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For a given error tolerance TOL, the goal is to minimize the computational
work, which is roughly O(M ·N) = O(TOL−2

S TOL−1
T ) where TOLS and TOLT

denote a statistical tolerance and a time discretization tolerance respectively.
Thus we obtain

TOLS =
2

3
TOL and TOLT =

1

3
TOL (47)

by solving

minTOL−2
S TOL−1

T subject to TOLS + TOLT = TOL.

3.1 Control of the Statistical Error

Let us first introduce some notation. Define the sample average A(Y ;M) and
the sample standard deviation σ(Y ;M) of Y by

A(Y ;M) :=
1

M

M∑

j=1

Y (ωj), σ(Y ;M) :=
(
A(Y 2;M) − (A(Y ;M))2

) 1
2 .

Then from the Central Limit Theorem, the statistical error ES in (46) satisfies

|ES | ≤ ES(Y ;M) := c
0

σ(Y ;M)√
M

(48)

with probability close to one asymptotically, where Y = g(Xτ , τ) and c0 is a
constant corresponding to a confidence interval. For example, c0 ≥ 1.65 gives
asymptotically the probability greater than 0.90.

3.2 Control of the Time Discretization Error

In this subsection, we present two refinement strategies to control the time
discretization error. For a given partition 0 = t0 < t1 < . . . < tN = T , the
piecewise constant mesh function ∆t is defined by (12) and the corresponding
number N(∆t) of steps is

N(∆t) :=

∫ T

0

1

∆t(s)
ds .

Then the optimal choice of the time steps is formulated by minimizing the
computational work E[N(∆t)] such that ∆t ∈ K subject to given accuracy
constraints. The feasible set K for the mesh function ∆t is defined by

K := {∆t : ∆t is stochastic, positive and piecewise constant on

[0, T ] for each realization }.
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Total Time Discretization Error

The goal is to make the total time discretization error, ET = EC + ED defined
in (4), bounded by a given time discretization error tolerance TOLT in (47).
Therefore the accuracy constraint is

E

[

N−1
∑

n=0

rn

]

≤ TOLT (49)

where the error indicators rn are defined for n = 0, 1, . . . , N − 1, by

rn :=
∣

∣

∣
1tn+1≤τρn∆t2n

+
(

g
(

proj∂D

1

2
(X(tn) + X(tn+1)),

1

2
(tn + tn+1)

)

− g(Xτ , τ)
)

P̂X,n

∣

∣

∣
(50)

with ρn in (27) and P̂X,n in (15) and proj∂D the orthogonal projection to ∂D.
To have as few time steps as possible, we try to make

rn(ω) = constant, ∀n and ∀ω

and by (49) the natural choice of the constant is then

rn(ω) =
TOLT

E[N ]
, ∀n and ∀ω. (51)

The choice (51) is optimal in the case without stopping boundary, see [15], [17],
i.e. without the second term in (50). Numerical tests on one dimensional
processes show that the error ED in (46), corresponding the second term in
(50), converges exponentially fast as the number of adaptive steps is increased.
Therefore an over-refinement in this part of the error does not seem to cost
much. Note that in practice the quantity E[N ] is not known and we can only
estimate it by the sample average N [j] := A(N ;M [j]) of the final number
of time steps in the jth batch of M [j] numbers of realizations. Then the
statistical error, |E[N ] − N [j]|, is bounded by ES(N ;M [j]), with probability
close to one, by the same argument as in (48).

To achieve (51), start with an initial mesh ∆t[1] and then specify iteratively
a new partition ∆t[k + 1] from ∆t[k], using the following refinement strategy:
for each realization in the mth batch and for all time steps n = 0, 1, . . . , N [k]−
1,

if

(

rn[k] ≥ TOLT

N [m − 1]

)

then (52)

divide ∆tn[k] into 2 equal substeps, and

generate the intermediate value of W by Brownian bridges (5)

else let the new step be the same as the old

endif,
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with the stopping criterion: for each realization of the mth batch

if

(
max

1≤n≤N [k]
rn[k] < S

TOLT

N [m − 1]

)
then stop. (53)

Here S is a given constant, motivated as follows: we want the maximal error
indicator to decay quickly to the stopping level STOLT /N , but when almost
all rn satisfy rn ≤ TOLT /N , the reduction of the error may be slow. The
constant S is introduced to cure this slow reduction.

Splitting of the Time Discretization Error

Let us compare the adaptive algorithm (52)-(53) with the following ad hoc

refinement algorithm. First we split the time discretization tolerance TOLT =
TOLC +TOLD by TOLC = TOLD = TOLT /2 and define the error indicators
rC
n and rD

n by

rC
n := 1tn+1≤τ |ρn|∆t2n (54)

rD
n :=

∣

∣

∣

∣

g
(

proj∂D

1

2
(X(tn) + X(tn+1)),

1

2
(tn + tn+1)

)

− g(Xτ , τ)

∣

∣

∣

∣

P̂X,n

with ρn in (27) and P̂X,n in (15). This alternative refinement strategy is to
take into account the computational observation that only a few time intervals
for each realization have large error indicators rD

n compared to the others, see
Fig. 2, an illustrative Monte Carlo realization of rD

n for Example 1 in Sect. 4.
Start the algorithm with an initial mesh ∆t[1] and then specify iteratively

a new partition ∆t[k + 1] from ∆t[k] using following refinement strategy: for
each realization in the mth batch and for all time step n = 0, 1, . . . , N [k]− 1,

if

(

rC
n [k] ≥ TOLC

N [m − 1]
or rD

n [k] ≥ TOLD

)

then, (55)

divide ∆tn[k] into 2 equal substeps

else let the new step be the same as the old one

endif.

until the following stopping criteria is fulfilled: for each realization of the mth
batch

if

(

max
1≤n≤N [k]

rC
n [k] < SC

TOLC

N [m − 1]
and max

1≤n≤N [k]
rD
n [k] < SDTOLD

)

(56)

then stop.

Here SC and SD are given constants to cure the slow reduction when almost
all rC

n or rD
n satisfy rC

n ≤ TOLC/N or rD
n ≤ TOLD.
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Fig. 2. Example 1: An illustrative Monte Carlo realization of rD
n with TOL = 0.1

3.3 The Adaptive Algorithms

The adaptive stochastic time stepping algorithms have structures similar to
a basic Monte Carlo algorithm, with an additional inner loop for individual
mesh refinement for each realization of a Brownian motion. First we split
the specified error tolerance by (47): the outer loop computes the batches of
realizations of X, until an estimate for the statistical error (48) is below the
tolerance, TOLS ; then in the inner loop, for each realization, we apply our
refinement strategy (52) or (55) to a given initial mesh iteratively until the
error indicators satisfy the stopping criteria (53) or (56) with a given time
discretization tolerance TOLT . This procedure, in the inner loop, needs to
sample the Wiener process W on finer partitions, given its values on coarser,
which is accomplished by Brownian bridge refinements (5).

The adaptive algorithm based on the refinement (52) and the stopping
(53) is called Algorithm A and the algorithm based on the refinement (55)
and the stopping (56) is called Algorithm B. We first describe Algorithm A

in detail and define the additional changes for Algorithm B afterwards.

Algorithm A

Initialization

Choose:

1. an error tolerance, TOL ≡ TOLS + TOLT ,
2. a number N [1] of initial uniform steps ∆t[1] for [0, T ], with TOLN [1]

bounded from above and below by positive constants, and set N [0] = N [1],
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3. a number M [1] of initial realizations, with TOL2 M [1] bounded from above
and below by positive constants,

4. the stopping constant S in (53),
5. a positive constant c0 for a confidence interval and an integer MCH≥ 2

to determine the number of realizations in (58),
6. a constant ∆x for the difference quotient in (43), see Remark 4.

Set the iteration counter for realization batches m = 1 and the stochastic
error to ES [m] = +∞.

Do while ( ES [m] > TOLS )
For realizations j = 1, . . . ,M [m]

Set the number of time levels for realization j to k = 1 and set the
error indicator to r[k] = +∞.
Start with the initial partition ∆t[k] and generate ∆W [k].
Compute for realization j, g(X(T ))[J ] and N [J ] by calling
routine Control--Time--Error where k = J is the number of
final time levels for an accurate mesh of this realization.

end-for

Compute the sample average Eg ≡ A
(

g(X(T ));M [m]
)

, the sample

standard deviation S[m] ≡ S(g(X(T ));M [m]) and the a posteriori
bound for the statistical error ES [m] ≡ ES(g(X(T ));M [m]) in (48).
if ( ES [m] > TOLS )

Discard all old M [m] realizations and determine a larger M [m + 1]
by change M (M [m], S[m], TOLS ; M [m+1]), in (58), and update
N = A (N [J ];M [m]), where the random variable N [J ] is the final
number of time steps on each realization.

end-if

Increase m by 1.
end-do

Accept Eg as an approximation of E[g(X(T ))], since the estimate of the
computational error is bounded by TOL.

routine Control--Time--Error
(

∆t[k],∆W [k], r[k], N [m − 1];

g(X(T ))[J ], N [J ]
)

Do while ( r[k] violates the stopping (53) )
Compute the Euler approximation X[k] in (6) and the error indicator
r[k] in (50) on ∆t[k] with the known Wiener increments ∆W [k].
if ( r[k] violates the stopping (53) )

Do the refinement process (52) to compute ∆t[k + 1] from ∆t[k]
and compute ∆W [k +1] from ∆W [k] using Brownian bridges (57).

end-if

Increase k by 1.
end-do

Set the number of the final level J = k − 1.
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end of Control--Time--Error

At the new time steps t′i ≡ (ti[k] + ti+1[k])/2, on level k + 1, the new sample
points from W are constructed by the Brownian bridge, cf. [10],

W ℓ(t′i) =
1

2

(

W ℓ(ti[k]) + W ℓ(ti+1[k])
)

+ zℓ
i (57)

where zℓ
i are independent random variables, also independent of W (tj [k]) for

all i, j and ℓ, and each component zℓ
i is normal distributed with mean zero

and variance (ti+1[k] − ti[k])/4.

routine change M (Min, Sin, TOLS ; Mout)

M∗ = min
{

integer part
(

c
0

Sin

TOLS

)2

, MCH × Min

}

n = integer part (log2 M∗) + 1
Mout = 2n.

(58)

end of change M

Here MCH ≥ 2 is a positive integer parameter introduced to avoid a large
new number of realizations in the next batch due to a possibly inaccurate
sample standard deviation σ[m]. Indeed, M [m + 1] cannot be greater than
MCH × M [m].

Algorithm B

In addition to the Initialization of Algorithm A, choose the error tolerances
TOLT = TOLC + TOLD and the stopping constants SC and SD in (56).
Inside the Do while loop of Algorithm A, use (rC [k], rD[k]) in (54) instead
of r[k] and the refinement (55) and stopping (56).

4 Numerical Experiments

This section presents numerical results from a one dimensional problem with
a C++ implementation of Algorithm A and Algorithm B described in Sect. 3
and for a two dimensional problem with a corner singularity with Matlab

implementation. The numerical results in 1D are obtained using the pseudo-
random number generator, drand48(), in standard C library functions. The
Box-Muller method is used to generate standard Gaussian random variable
from the uniformly distributed pseudo-random numbers, see for example [11].
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4.1 A One Dimensional Domain

In all computations, the following constants are chosen for the initialization of
both Algorithm A and Algorithm B: the number of time steps in the initial
partition, ∆t[1], of [0, T ] is N [1] = 4; the initial number of realizations is
M [1] = 128; the stopping constant S = 4 is used in (53) and SC = 4, SD = 1
in (56); the constants to determine the number of realizations in (58) are

c0 = 1.65 and MCH = 16, and the constant ∆x = TOL
1/4
T is used for the

difference quotient in (43).
To describe the behavior of the adaptive algorithm, let us first define some

notation. The index Q, which is the ratio between the approximate error and
the exact error, is defined by

Q :=
Eapprox

Eexact
:=

ES + |ET |
∣

∣E[g(Xτ , τ)] −A(g(Xτ , τ);M)
∣

∣

. (59)

Here the statistical error ES is defined by (48) and the time discretization
error ET is defined by

ET := A
(

N−1
∑

n=0

1tn+1≤τρn∆t2n +

(

g(λ,
1

2
(tn + tn+1)) − g(Xτ , τ)

)

P̂X,n;M

)

,

where λ defines the domain D = (−∞, λ).

Example 1. Consider (2) with d = 1,

a(t, x) =
11

36
x, b(t, x) =

1

6
x, t ∈ [0, T ], x ∈ (−∞, 2)

and the initial condition X(0) = 1.6 and T = 2. For g(x, t) = x3e−t with
x ∈ R, this problem has the exact solution E[g(Xτ , τ)] = u(X(0), 0) = X(0)3,
where the solution u of the Kolmogorov backward equation (28) is u(x, t) =
x3e−t.

To check the behavior of the error expansion described in Sect. 2, Ex-
ample 1 is constructed such that most of the realizations exit at τ < T , for in-
stance, with TOL = 0.01, 99% of the paths exit at τ < T and A(τ ;M) ≃ 0.77.

Table 1 shows the comparisons between Algorithm A and Algorithm B

for the computational results of Example 1. As the error tolerance TOL de-
creases, Eexact decreases and is bounded by a given TOL. The sample stand-
ard deviation of the number of time steps is around 35% of the average of
the number of time steps. The histogram in Fig. 5 indeed shows that highly
varying step sizes are used for individual realizations.

To check the accuracy of the error estimate in Sect. 2, choose the number
of realizations M sufficiently large so that the total statistical error is small
compared to the time discretization error. Here we use M = 222 = 4, 194, 304,
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Table 1. Example 1: Comparisons of the final number of the realizations, M , the
sample average of the final number of steps, A(N ; M), the sample standard deviation
of the final number of steps, σ(N ; M), and the exact error, Eexact for different error
tolerances, TOL

Algorithm A Algorithm B

TOL M A(N ; M) σ(N ; M) Eexact A(N ; M) σ(N ; M) Eexact

0.5 27 27 11.7 0.028 24 6.9 0.02
0.1 211 81 30.6 0.024 84 25.8 0.06
0.05 213 126 44.0 0.015 158 54.2 0.02
0.01 218 453 170.7 0.003 700 287.7 0.005
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Fig. 3. Example 1: Comparison of the convergence rates with uniform and adapt-
ive meshes. The convergence rate of the adaptive method is of order N−1 with N

adaptive time steps, while the rate for the uniform method is of order N−1/2 with
N uniform time steps

which makes the statistical error approximately 0.001. Then the comparison
of the convergence between the uniform and the adaptive method is shown in
Fig. 3. The x-axis denotes the number of time steps for the uniform method
and the sample average of the final number of steps for the adaptive method.
The y-axis is the exact error Eexact defined by (59). The number of steps
N = 2k, k = 3, 4, . . . , 10 are used for the uniform method and for adaptive
method the tolerances TOL = 0.5, 0.1, 0.05 and 0.01 are used. Figure 3 shows
that the convergence rate of the adaptive method is of order N−1 with N
adaptive time steps, while the uniform method converges with the rate N−1/2

with N uniform time steps.
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Fig. 4. Example 1: The ratio of the approximate and exact error on adaptive mesh.
The ratio tends to 1 as the number of time steps increases

Figure 4 shows the convergence of the ratio Q between the approximate
and the exact error in (59), still with M = 222 so that the statistical error is
negligible. As predicted by Theorem 1 and 2, Fig. 4 shows that the ratio Q
tends to 1 as N increases. From Fig. 3 and 4, Algorithm B seems more stable
than Algorithm A for Example 1, on the other hand Algorithm A achieves
smaller exact error for the same number of time steps.

Figure 5 shows the histogram of the step sizes depending on the distance
from the boundary with TOL = 0.05 and M = 222 realizations of Algorithm
A. The histogram of Algorithm B also has a similar appearance. The x-axis
denotes base 2 log-scale of the step size, ranging from 2−35 to 2−5, the y-
axis denotes base 2 log-scale of the distance from the boundary, ranging from
2−20 to 1, and the z-axis denotes base 2 log-scale of the number of steps. To
compensate the large error near the boundary, relatively small step sizes are
used close to the boundary compared to further away from the boundary.

4.2 A Two Dimensional Domain

The methods described in the previous sections are implemented for a two
dimensional domain, with a corner, which does not satisfy the conditions of
smoothness required in [7]. The idea is to find out if the adaptive method
can give some improvements to the standard Euler algorithm even though the
approximations of the exit probabilities are somewhat incorrect. The known
methods for improving the time discretization error rely on the possibility
to locally approximate the boundary by its tangent plane. This is obviously
difficult in the case for domains with sharp corners.
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Fig. 5. Example 1: The histogram of the step sizes depending on the distance from
the boundary using Algorithm A. Relatively small step sizes are used close to the
boundary to improve the accuracy

The method used by Gobet [7] is strictly dependent on the value of the
exit probability of the continuous Euler process between two time levels. When
dealing with domains with non smooth boundary, for example corners, this
method may give large errors, since it makes use of the assumption that the
boundary can be locally approximated by its tangent plane. A domain with
a sharp corner, however, cannot be locally well approximated as a tangent
plane.

A prerequisite for any adaptive method is some sort of error estimate to
decide which regions need refining and which do not. However, one of the
advantages of adaptive methods in general is that they do not require a great
deal of exactness in this error estimate in order to function in a satisfactory
manner. In fact, it is often enough to check that the behavior of the error es-
timate is qualitatively similar to the real error, i.e. that the estimate increases
and decreases similarly as the actual error.

The domain D for our test problem is chosen to be the one shown in Fig. 6
and in this domain we consider the problem

ut +
1

2
∆u = 0, t < T

u(·, T ) = g(·, T )

u(x, t) = g(x, t), x ∈ ∂D (60)

which is solved by the expectation u(x, t) = E[F (Xτ , τ) | Xt = x] for a pure
Brownian motion dXj(t) = dW j(t), j = 1, 2, where F = g(·, τ) if the process
X exited D first at time τ before T , and F = g(·, T ) if no exit occurred before
T .
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(0,0)

D

Fig. 6. The computational domain D with a corner at the origin

The boundary condition is chosen so that the behavior of the process W
near the corner has a much greater impact than the behavior near the arc.

Therefore, the boundary condition is chosen as g(x, t) = 10e−
√

x2+y2−0.1t and
we let the process start within D, near the corner at the origin. We also choose
a large enough radius, R = 10, of the arc boundary and short enough time
interval, T = 1, so it becomes highly unlikely for the process to reach the arc.
The goal is to approximate u(−0.209, 0.249, 0) = 0.544.

The algorithm for this type of domain differs from the one for smooth
domains only in the approximation of the exit probabilities Pi. To apply the
algorithms formally, it is assumed that the corner is slightly ’rounded’. In
the quadrant x1 < 0 and x2 > 0 it can then be imagined that the corner is
a circular arc with infinitely small radius, in which case an inward pointing
normal vector from the boundary to a point Xt is simply given by Xt itself.
The tangent plane must then be orthogonal to Xt and pass through the corner
at the origin. By proceeding in this way the tangent plane is quite easy to find,
but it is obviously not a good approximation of the boundary near the corner.
Using this crude estimate for the tangent plane it becomes easy to calculate
distances to the tangent planes of the points in the Euler path, and thereby
to calculate rough estimates of the exit probabilities. Near the corner, these
estimates of the exit probabilities will, however, be quite far from correct. In
all three quadrants the algorithm will over-estimate the exit probabilities.

The adaptive algorithm proceeds as described in the previous sections but
now using the exit probabilities Pi as described above and

ri =
(
g
(
proj∂D

(1

2
(Xti

+ Xti+1
)
)
,
ti + ti+1

2

)
− g(Xτ , τ)

)
P̂i,

where proj∂D is the orthogonal projection to the boundary ∂D. A dilemma
arises when trying to calculate the error estimate for the case when the dis-
crete process crosses the ’tangent plane’ but does not exit the domain D. An
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example of this is shown in Fig. 7. When calculating the exit probability for
such a step, Mannella’s and Gobet’s method would proceed as earlier, and con-
sider that the process indeed has exited the domain. For the adaptive method
however, this seems an unnecessarily erroneous way to proceed, and the exit
probability is calculated by reflecting the point which has exited back onto
the other side of the tangent plane. This procedure results in a completely
incorrect exit probability for some steps, but as this does not occur too often,
it seems to be an acceptable way of testing the convergence properties of the
adaptive algorithm. It is important to note that it is necessary to limit the
refinement, for example by limiting the length of the time steps so that the
incorrect behavior of the exit probabilities for these few steps will not cause
the algorithm to refine indefinitely.

tangent

D

D

X(i)X(i−1)

Fig. 7. The discrete process has crossed the ’tangent plane’ but is still within D

The solution u of (60) has large derivatives near the corner. This resulted
in an even slower convergence rate than O(N1/2) for the standard Euler al-
gorithm, see Fig. 8. Even so, a considerable improvement in the convergence
was achieved by using the adaptive algorithm for stochastic differential equa-
tions, resulting in a convergence rate which is better than O( 1

N ) and maybe
even an exponential rate for this case with dX = dW , see Fig. 9. As seen in
Fig. 9, our implementation of Mannella’s and Gobet’s method in the corner
case gave only a slight improvement to the standard Euler method and was
not as effective as the adaptive algorithm. The number of realizations, M ,
was chosen so that the statistical error was negligible as compared to the time
discretization error. For this purpose, M = 222 proved sufficient.



30 Dzougoutov, Moon, von Schwerin, Szepessy, and Tempone

10
0

10
1

10
2

10
3

10
4

10
−0.8

10
−0.6

10
−0.4

10
−0.2

10
0

Number of steps

E
rr

o
r

Standard Euler error
Slope (1/4) reference

Fig. 8. Error for the Standard Euler method

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

Number of steps

E
rr

o
r

Slope 1 reference
Slope 0.5 reference
Adaptive error
Gobet error

Fig. 9. Error for the adaptive algorithm and Gobet’s method

Acknowledgments

The authors thank Michael Tehranchi for the reference [1]. This work is sup-
ported by the Swedish Research Council grants 2002-6285 and 2002-4961,
the Swedish Foundation for Strategic Research, and the European network
HYKE, funded by the EC as contract HPRN-CT-2002-00282.



Adaptive Monte Carlo Algorithms for Stopped Diffusion 31

References

1. Abundo M.: Some conditional crossing results of Brownian motion over a
piecewise-linear boundary. Statist. Probab. Lett. 58, no. 2, 131–145, (2002)

2. Baldi P.: Exact asymptotics for the probability of exit from a domain and ap-
plications to simulation. Ann. Probab. 23, no. 4, 1644–1670, (1995)

3. Baldi P., Caramellino L. and Iovino M.G.: Pricing general barrier options: a nu-
merical approach using sharp large deviations. Math. Finance 9, no. 4, 293–322,
(1999)

4. Bally V. and Talay D.: The law of the Euler scheme for stochastic differential
equations, I. Convergence rate of the distribution function. Probab. Theory
Related Fields 104, no. 1, 43–60, (1996)

5. Buchmann F.M.: Computing exit times with the Euler scheme. Research report
no. 2003-02, ETH, (2003).

6. Fleming W.H. and James M.R.: Asymptotic series and exit time probabilities.
Ann. Probab. 20, no. 3, 1369–1384, (1992)

7. Gobet E.: Weak approximation of killed diffusion using Euler schemes.
Stochastic Process. Appl. 87, no. 2, 167–197, (2000)

8. Gobet E.: Euler schemes and half-space approximation for the simulation of
diffusion in a domain. ESAIM Probab. Statist. 5, 261–297, (2001)

9. Jansons K.M. and Lythe G.D.: Efficient numerical solution of stochastic differ-
ential equations using exponential timestepping. J. Stat. Phys. 100, no. 5/6,
1097–1109, (2000)

10. Karatzas I. and Shreve S.E.: Brownian motion and stochastic calculus. Graduate
Texts in Mathematics, 113. Springer-Verlag, New York, (1991)

11. Kloeden P.E. and Platen E.: Numerical solution of stochastic differential equa-
tions. Applications of Mathematics, 23. Springer-Verlag, Berlin, (1992)
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An Adaptive Algorithm for Ordinary, Stochastic and Partial

Differential Equations

Kyoung-Sook Moon, Erik von Schwerin, Anders Szepessy, and Raúl
Tempone

Abstract. The theory of a posteriori error estimates suitable for adaptive
refinement is well established. This work focuses on the fundamental, but
less studied, issue of convergence rates of adaptive algorithms. In particular,
this work describes a simple and general adaptive algorithm applied to or-
dinary, stochastic and partial differential equations with proven convergence
rates. The presentation has three parts: The error approximations used to
build error indicators for the adaptive algorithm are based on error expansions
with computable leading order terms. It is explained how to measure optimal
convergence rates for approximation of functionals of the solution, and why
convergence of the error density is always useful and subtle in the case of sto-
chastic and partial differential equations. The adaptive algorithm, performing
successive mesh refinements, either reduces the maximal error indicator by a
factor or stops with the error asymptotically bounded by the prescribed accu-
racy requirement. Furthermore, the algorithm stops using the optimal number
of degrees of freedom, up to a problem independent factor.

1. Introduction to the Adaptive Algorithm

This work presents an overview of the authors work on the convergence rate of
an adaptive algorithm to compute functionals of solutions to ordinary, stochastic
and partial differential equations. The main ingredient of the adaptive algorithm
is an error expansion of the form

Global error =
∑

local error · weight + higher order error,(1)

with computable leading order terms. The weight is the sensitivity of the func-
tional of the solution with respect to perturbations in the differential equation. For
an ordinary differential equation, the error expansion (1) can be derived by the
variational principle in [24] and for weak approximation of stochastic differential
equations the error expansion (1) can be derived based on computable stochastic
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flows and discrete dual backward problems in [29]. For partial differential equa-
tions, [22] derives an asymptotic expansion of the error using the dual weighted
residual method.

The goal of the adaptive algorithm for differential equations based on these
error expansions, is to approximate the desired quantity of interest with an adapted
mesh using as few mesh elements as possible, for a given level of accuracy using a
given approximation method, for instance the Euler method or piecewise bilinear
finite elements with varying mesh size. Based on the a posteriori error expansions
of the form (1) the global error can be asymptotically approximated by

(2) Global error ≈
∑

K

error indicator,

where K is a set of time steps or elements. A typical adaptive algorithm does two
things iteratively :

(i) if the error indicators satisfy an accuracy condition, then it stops; oth-
erwise

(ii) the algorithm chooses where to refine the mesh, recomputes the error
indicators and then makes an iterative step to (i).

Therefore the indicators not only estimate the localization of the global error but
also give information on how to refine the mesh in order to achieve optimal efficiency.

Despite the established use of adaptive algorithms and the well developed the-
ory of a posteriori error estimates, e.g. [1, 2, 3, 4, 5, 7, 8, 9, 17, 18, 19, 20]
the theoretical study of adaptive mesh refinement algorithms is more recent, cf.
[6, 10, 13, 15, 23, 22, 25, 27, 28]. To introduce the main ingredients, let us
consider a simple integration problem, namely for a given function X : [0, T ] → R

approximate the integral g(X) =
∫ T

0 X(t)dt. Let us first discretize the time interval
[0, T ] into N subintervals 0 = t0 < t1 < · · · < tN = T with corresponding time steps
hn := tn+1 − tn. Now, if we approximate g(X) using the left point rule (forward
Euler) denoted by ḡ, our global discretization error becomes

(3) Global Error = g(X)− ḡ =

N−1
∑

n=0

(hn)2ρn + higher order terms,

with the error density function ρ defined by ρn := dX
dt (tn)/2. From the definition

of the number of time steps

(4) N(h) :=

∫ T

0

1

h(τ)
dτ,

the number Nu of uniform steps to reach a given level of accuracy TOL turns out
to be asymptotically proportional to the L1-norm of the function ρ, i.e.

Nu ≃
T

TOL
‖ρ‖L1(0,T ).

On the other hand, by minimizing the number of steps in (4) subject to an accuracy
constraint, i.e. imposing the leading order of (3) to be TOL, a standard Lagrangian
relaxation yields the optimal choice

h2
n ρn = constant for alln
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and as a consequence the number Na of adaptive steps becomes proportional to the

smaller L
1
2 quasi-norm of the error density, i.e.

Na ≃
1

TOL
‖ρ‖

L
1
2 (0,T )

.

For instance, if we have a singular case, X(t) = 1/
√

t, we can instead compute with
Xǫ(t) = 1/

√
t + ǫ, choosing the positive parameter ǫ such that

∣

∣

∣

∣

∣

∫ T

0

(X(t) − Xǫ(t)) dt

∣∣∣∣∣ = o(TOL)

i.e. ǫ1/2 . o(TOL). Therefore, the number of uniform time steps becomes

Nu ≃ T/4

TOL

∫ T

0

dt

(t + ǫ)3/2
≃ T/4

TOL

1

ǫ1/2
& O(TOL−2)

while the number of adaptive time steps is the smaller

Na ≃ 1/4

TOL

(∫ T

0

dt

(t + ǫ)3/4

)2

≈ O(TOL−1)

which clearly shows the advantage of an adaptive approach. In the sequel we will
consider multiscale problems, i.e. problems that have very different scales so that
the error density, although being bounded, may be very large, e.g. 1

ǫ3/2 .
Thus, having motivated the need for adaptivity in the previous example, we

now state the main questions to answer, namely
What is the notion of error density for ordinary, stochastic and partial differential
equations?
What is a suitable approximation for such an error density?
What can be concluded about the convergence rate of the adaptive algorithm?

In this paper, Section 2 describes an adaptive algorithm based on previously
derived a posteriori error expansions for ODEs [24], SDEs [25], and PDEs [22].
Then, Section 3 presents results on the convergence rates of the adaptive algorithm
and Section 4 illustrates the behavior of the adaptive algorithm using a numerical
example.

2. Convergence of the Error Density and the Adaptive Algorithm

2.1. An Error Expansion for ODEs. Let us consider an ordinary differen-
tial equation (ODE) of the form

(5)
dX(t)

dt
= a(t, X(t)), 0 < t ≤ T,

with an initial value X(0) = X0 ∈ R
d and a given flux a : [0, T ] × R

d → R
d. First

discretize the time interval [0, T ] into N subintervals 0 = t0 < t1 < . . . < tN = T
and let X be an approximation of X in (5) by any p-th order accurate numerical
method, satisfying the same initial condition X(0) = X(0) = X0.

We are interested in computing a function value g(X(T )) for a given general
function g : R

d → R, which may represent the quantities of physical interest. Using
the variational principle, we show in [24] that the global error has the expansion

(6) g(X(T )) − g(X(T )) =

N∑

n=1

(
ē(tn), Ψ̄(tn)

)
+

∫ T

0

o(hp(t))dt,
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where (·, ·) is the standard scalar product on R
d. Here the approximate local error

is defined by ē(tn) := γ(X̄(tn) − X(tn)), where γ is a Richardson extrapolation

constant and the approximate local exact solution X̄ is computed with smaller
time steps or a higher order method than X. The weight Ψ̄ is an approximation of
Ψ, which solves the dual equation

− dΨ(s)

ds
= (a′)∗(s, X(s))Ψ(s), s < T,(7)

Ψ(T ) = g′(X(T )),

where (a′)∗(s, x) is the transpose of the Jacobian matrix.
Therefore the leading order term in (6) has the approximate error density

ρ̄n :=

(
ē(tn), Ψ̄(tn)

)

hp+1
n

,

which is then used in the adaptive algorithm, see Section 2.4.

2.2. An Error Expansion for SDEs. Let us consider an Itô Stochastic
differential equation (SDE) of the form

dXk(t) = ak(t, X(t))dt +

ℓ0∑

ℓ=1

bℓ
k(t, X(t))dW ℓ(t), t > 0,(8)

where k = 1, . . . , d and (X(t; ω)) is a stochastic process in R
d, with randomness gen-

erated by the independent one dimensional Wiener processes W ℓ(t; ω), ℓ = 1, . . . , ℓ0,
on the probability space (Ω,F , P ). The functions a(t, x) ∈ R

d and bℓ(t, x) ∈ R
d,

ℓ = 1, . . . , ℓ0, are given drift and diffusion fluxes.
The goal is to construct approximations to the expected value E[g(X(T ))]

by a Monte Carlo method, for a given function g : R
d → R. Examples of such

an expected value are the computation of option prices in mathematical finance,
stochastic climate prediction, wave propagation in random media, etc. The Monte
Carlo Euler method approximates the unknown process X by the Euler method
X(tn) which is a time discretization based on the nodes 0 = t0 < t1 < · · · < tN = T
where

(9) X(tn+1) − X(tn) = hna(tn, X(tn)) +

ℓ0∑

ℓ=1

∆W ℓ
nbℓ(tn, X(tn)),

and hn ≡ tn+1− tn, ∆W ℓ
n ≡ W ℓ(tn+1)−W ℓ(tn), n = 0, 1, 2, . . . , N −1. The aim of

the adaptive algorithm is to choose the size of the time steps, hn, and the number of
independent identically distributed samples X(·, ωj), j = 1, 2, . . . , M , such that the
computational work, N · M , is minimal while the approximation error is bounded
by a given error tolerance, TOL, i.e. the event

(10)

∣∣∣∣∣∣
E[g(X(T ))] − 1

M

M∑

j=1

g(X(T ; ωj))

∣∣∣∣∣∣
≤ TOL

has a probability close to one. A priori error estimates of the computational error
in (10) was first derived by Talay and Tubaro in [30]. The work [29] modified Ta-
lay’s and Tubaro’s error expansion to an expansion with computable leading order
term in a posteriori form, based on computable stochastic flows and discrete dual
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backward problems. Stopped diffusion, including for example the barrier option, is
an example where adaptive time steps improve the convergence rate, see [14].

Assume that the process X satisfies (8) and its approximation, X , is given by
(9), we have, see [29, 25]

Theorem 2.1 (Error expansion for SDEs). Suppose there are positive constants

k and C and an integer m0 with the bounds

g ∈ Cm0

loc (Rd), |∂αg(x)| ≤ C(1 + |x|k), for all |α| ≤ m0,
E
[
|X(0)|2k+d+1 + |X(0)|2k+d+1

]
≤ C,

and

a and b are bounded in Cm0([0, T ] × R
d).

Assume that X is constructed by the forward Euler method with step sizes hn pro-

duced by the stochastic time step version of the adaptive algorithm in Section 2.4

and the corresponding ∆Wn ≡ W (tn+1)−W (tn) are generated by Brownian bridges.

Assume also that X(0) = X(0) and E[|X(0)|k0 ] ≤ C for some k0 ≥ 16. Then the

time discretization error has the expansion

E[g(X(T )) − g(X(T ))] = E

[
N∑

n=1

ρ̄n(hn)2

]
(11)

+O
(√

TOL

c(TOL)

(
C(TOL)

c(TOL)

)8/k0

)
E

[
N∑

n=1

(hn)2

]

with computable leading order terms, where

ρ̄n(tn, X) ≡ 1

2

(
∂

∂t
ak + ∂jakaj + ∂ijakdij

)
ϕk(tn+1)

+
1

2

(
∂

∂t
dkm + ∂jdkmaj + ∂ijdkmdij + 2∂jakdjm

)
ϕ′

km(tn+1)(12)

+∂jdkmdjrϕ
′′
kmr(tn+1),

with dij = 1
2

∑l0
l=1 bl

ib
l
j. The terms in the sum of (12) are evaluated at the a

posteriori known points (tn, X(tn)), i.e.

∂αa ≡ ∂αa(tn, X(tn)), ∂αb ≡ ∂αb(tn, X(tn)), ∂αd ≡ ∂αd(tn, X(tn)).

Here ϕ ∈ R
d is the solution of the discrete dual backward problem

ϕi(tn) = ∂icj(tn, X(tn))ϕj(tn+1), tn < T,

ϕi(T ) = ∂ig(X(T )),
(13)

with

ci(tn, x) ≡ xi + hnai(tn, x) + ∆W ℓ
nbℓ

i(tn, x)(14)

and its first and second variation

ϕ′
ij ≡ ∂xj(tn)ϕi(tn) ≡ ∂ϕi(tn; X(tn) = x)

∂xj
,(15)

ϕ′′
ikm(tn) ≡ ∂xm(tn)ϕ

′
ik(tn) ≡ ∂ϕ′

ik(tn; X(tn) = x)

∂xm
,(16)
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which satisfy

ϕ′
ik(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))ϕ′

jp(tn+1)

+∂ikcj(tn, X(tn))ϕj(tn+1), tn < T,
ϕ′

ik(T ) = ∂ikg(X(T )),

(17)

and

ϕ′′
ikm(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))∂mcr(tn, X(tn))ϕ′′

jpr(tn+1)

+∂imcj(tn, X(tn))∂kcp(tn, X(tn))ϕ′
jp(tn+1)

+∂icj(tn, X(tn))∂kmcp(tn, X(tn))ϕ′
jp(tn+1)

+∂ikcj(tn, X(tn))∂mcp(tn, X(tn))ϕ′
jp(tn+1)

+∂ikmcj(tn, X(tn))ϕj(tn+1), tn < T,

ϕ′′
ikm(T ) = ∂ikmg(X(T )),

(18)

respectively.

The previous result can also be directly applied to the particular case of deter-
ministic time steps. Observe that the error expansion in Theorem 2.1 has the form

(19) E[g(X(T )) − g(X(T ))] = E

[
N∑

n=1

ρ̄nh2
n

]
+ higher order terms

and due to the almost sure convergence of the density ρ̄n as we refine the discretiza-
tion, see [25], it is suitable for use in the adaptive algorithm.

The computational error in (10) naturally separates into the time discretization
error and the statistical error

E[g(X(T ))] − 1

M

M∑

j=1

g(X(T ; ωj))(20)

=
(
E[g(X(T )) − g(X(T ))]

)
+


E[g(X(T ))] − 1

M

M∑

j=1

g(X(T ; ωj))




≡ ET + ES .

The time steps for the realizations of the approximate solution X are determined
from statistical approximations of the time discretization error, ET , and the number,
M , of realizations of X is determined from the statistical error, ES. The statistical
error and the time discretization error are combined in order to bound the compu-
tational error (20). Therefore we split a given error tolerance TOL into a statistical
tolerance, TOLS , and a time discretization tolerance, TOLT . The computational
work is roughly O(N · M) = O(TOL−1

T TOL−2
S ), therefore we use

TOLT =
1

3
TOL and TOLS =

2

3
TOL,(21)

by minimizing TOL−1
T TOL−2

S under the constraint TOLT + TOLS = TOL.
From the central limit theorem, the statistical error is bounded by the following

quantity, i.e. the event

|ES(X; M)| ≤ ES(X ; M) ≡ c
0

S(X ; M)√
M

(22)
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has probability close to one, where S(X ; M) is the sample standard deviation of X
and c0 is a constant related to the confidence interval.

The time discretization error is approximated by (19) and its contribution from
each of the realizations controlled according to the adaptive algorithm described in
Section 2.4.

2.3. An Error Expansion for PDEs. Consider a problem to compute a
linear functional

g(u) :=

∫

D

u Gdx

for a given function G ∈ L2(D) and u is the solution of a second order elliptic
partial differential equation of the form

(23) −div(a∇u) = f

in a given open bounded domain D ⊂ R
d with Dirichlet boundary data u|∂D = 0.

The finite element approximation uh, of u in (23), is based on the standard
variational formulation in the function set Vh of continuous piecewise isoparametric
bilinear quadrilateral functions in H1

0 (D), using an adaptive quadrilateral mesh
with hanging nodes cf. [9]. The Sobolev space H1

0 (D) is the usual Hilbert space
of functions on D, vanishing on ∂D, with bounded first derivatives in L2(D). Let
T denote the set of convex quadrilaterals K and let hK be the local mesh size, i.e.
the length of the longest edge of K. Then the variational problems for u ∈ H1

0 (D)
and uh ∈ Vh are

∫

D

a∇u · ∇v dx =

∫

D

f v dx, ∀v ∈ H1
0 (D),

∫

D

a∇uh · ∇v dx =

∫

D

f v dx, ∀v ∈ Vh.(24)

A central role in the dual weighted error representation for g(u) − g(uh) is played
by the dual function ϕ ∈ H1

0 (D) which satisfies

(25)

∫

D

a∇ϕ · ∇v dx =

∫

D

Gv dx, ∀v ∈ H1
0 (D).

Besides, its finite element approximation ϕh ∈ Vh, defined by
∫

D

a∇ϕh · ∇v dx =

∫

D

Gv dx, ∀v ∈ Vh(26)

is used to construct the error density ρ̄ in Theorem 2.2.
For general meshes the convergence of the error density does not hold, since the

orientation of the elements varies. Thus, here the analysis considers the asymptotic
behavior of the error density ρ̄ for adaptive refinements, with general quadrilateral
initial meshes: successive division of reference square elements into four similar
squares generates hanging node meshes consisting of unions of structured adapted
meshes, where each structured mesh has the domain of an initial element; viewed
in the initial reference element the structured adaptive mesh is an adaptive hanging
node mesh with square elements. We restrict the study to such unions of structured
adaptive hanging node meshes. The use of quadrilaterals can directly be extended
to higher space dimension using tensor reference elements. Other refinements using
e.g. subdivision of a simplex, in three and higher dimensions cf. [16], generate new
edges which are not parallel to the old and would require additional analysis.
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There is a smooth mapping of each initial element to a square, so that the re-
fined initial element is mapped to a square hanging node mesh. Let TI denote the
subset of elements with an edge on the initial mesh. Theorem 2.2 states that the er-
ror density has a precise expansion using that the isoparametric bilinear coordinate
transformation X−1 : [0, 1]2 → KI maps the square and the square hanging node
mesh to the initial element KI and its refined hanging node quadrilateral mesh.

Let us now study the transformation of the variational formulation under such
a mapping X : KI → [0, 1]2

∑

ij

∫

KI

(aij
∂uh

∂xj

∂v

∂xi
− fv)dx =

∫

[0,1]2
(aX ′u′

h · X ′v′ − fv)Jdx′

where X ′ is the Jacobian of X and J is the Jacobian determinant. Here we abuse
the notation by writing v instead of (v ◦ X−1) and similarly for a, uh, and f , for

x ∈ KI . Besides, we write v′ = ∂v
∂x′

i
instead of ∂(v◦X−1)

∂x′

i
.

Therefore the variational equation in the transformed coordinates, x′, takes the
same form with a and f replaced by a∗ ≡ J(X ′)taX ′ and f∗ ≡ Jf , respectively.
Note that a∗ and f∗ are as smooth on X(KI) as the functions a and f are on KI .
To avoid messy notation, we will not always use the prime notation for coordinates
obviously in the reference elements; we will also avoid notation for the dependence
of X on the initial element KI and assume that we for a point x ∈ D choose the
mapping X that corresponds to the initial element KI which contains x. We will
use the set of transformed elements T ′ ≡ {X(K) : K ∈ T }.

To define the approximate error density, ρ̄, we will use averages of second differ-
ence quotients as follows. Consider a function w which is defined on a discretization
of an interval [0, L] with nodes {xj : j = 0, . . . , N̄ + 1} =: N̄ , where x0 = 0 and
xN̄+1 = L. Let h+ ≡ xj+1 − xj and h− ≡ xj − xj−1 denote two consecutive edge

sizes. Then define the average mesh size h̄ and the difference quotients

h̄j ≡ h+ + h−

2
=

xj+1 − xj−1

2
,

Dw(xj) ≡ w(xj + h+) − w(xj)

h+
(27)

D2w(xj) ≡ 1

h̄j

(
w(xj + h+) − w(xj)

h+
− w(xj) − w(xj − h−)

h−

)
.

Define D2w ∈ R
N̄ , implicitly as the solution Y ∈ R

N̄+2 of an auxiliary equation,
i.e.

(28)
D2wn ≡Yn, n = 1, . . . , N̄ , where

Yn − α2D2Yn =D2wn, n = 1, . . . , N̄ ,

with homogeneous Neumann boundary conditions, Y0 = Y1, YN̄ = YN̄+1. The
work [22] reports numerical results of different alternative averages, including the
fast nearest neighbor variant. The convergence proof requires α to be sufficiently
large compared to the mesh size.

Let us define h̄D2
i w as the difference quotients h̄D2w, in (27), with respect to

the x′
i reference directions i = 1, 2, respectively, and analogously for Diw. The
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approximate error density, ρ̄, in the transformed coordinates is now defined by

ρK ≡ 1

48

4∑

j=1

(
a∗
11D

2
1uh D2

1ϕh + a∗
22D

2
2uh D2

2ϕh

)
(xK

j )(29)

where xK
1 , xK

2 , xK
3 , xK

4 are the four corners of the square K ∈ T ′ illustrated in
Figure 1.

eK
21 eK

22

eK
11

eK
12

K

xK
4

xK
1

xK
3

xK
2

t t

tt

Figure 1. Corners xK
j and edges eK

ij of a square K ∈ T ′

Let TH denote the subset of elements with hanging nodes in neighbors and let
T̄H ≡ ⋃

K∈TH
K. Let W 1,∞(D) denote the usual Sobolev space of functions with

bounded first order derivatives in L∞(D) and let hmax and hmin be the maximal
and the minimal edge length in the mesh of Vh.

The proof of convergence of the error density, ρ̄, uses the assumption that for
some γ ∈ (0, 1]

‖u − uh‖W 1,∞(D) + ‖ϕ − ϕh‖W 1,∞(D) = O(Cδhmax),

‖u − uh‖L∞(D) + ‖ϕ − ϕh‖L∞(D) = O(h2γ
max).

(30)

In [11] such estimates are proved for finite element approximations of the coercive
linear problems (23) and (25), with piecewise isoparametric bilinear quadrilateral
elements and quasi uniform meshes, provided u, ϕ ∈ C2(D̄); see [12] for nonlinear
problems. If |ρ̄| is bounded away from zero, then the algorithm described in Sec-
tion 2.4 produces quasi uniform meshes, hmax/hmin bounded by a constant that
is possibly large depending on u and ϕ but independent of TOL. To include the
case with |ρ̄| close to zero the algorithm uses a positive approximate error density
ρ̂ ≥ δ > 0, defined in (42), with a parameter δ which tends to zero as TOL tends to
zero; see Remark 2.3. With N denoting the number of elements in the final mesh,
it is proved in [22] that

(31) c
TOL

N
≤ ρ̂Kh4

K ≤ S1
TOL

N
,
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for problem independent constants c and S1. With u and ϕ in C3 the quotient of
the maximal and minimal mesh sizes becomes

(32)
hmax

hmin
≤ C

( ρ̂max

ρ̂min

)1/4

≤ Cu

δ1/4
≡
√

Cδ,

where C = (S1/c)1/4 is independent of TOL, u and ϕ; while the constant Cu is
independent of TOL but depends on u and ϕ. The δ-dependence of the quotient
between hmax and hmin changes an O(hmax) estimate of the right hand side in (30)
to O(Cδhmax).

The main result in [22] is

Theorem 2.2. Assume that a ∈ C1(D̄) and that the solutions u ∈ C3(D̄), ϕ ∈
C3(D̄) of (23) and (25), respectively, are for some γ ∈ (0, 1] approximated uniformly

with error satisfying (30) using piecewise isoparametric bilinear quadrilateral ele-

ments and a refined mesh, with at most one hanging node per edge, obtained by

successively dividing the reference square elements into four similar squares. As-

sume also that the total area of the elements with a hanging node on a neighbor or

with an edge on the initial mesh is asymptotically zero:

(33)

∫

T̄H∪T̄I

dx = o(1), as hmax → 0 + .

Then the global error has the expansion

(34) g(u) − g(uh) =
∑

K∈T ′

(
ρK + O(hγ

max/α + α)
)
h4

K + O(Cδhmax)

∫

T̄H∪T̄I

hKdx

with uniformly convergent computable error density ρ̄, defined by (29) and (27)-(28)
for α−1 = o(h−γ

max), satisfying

(35) ρ̄ = ρ̃ + O(hγ
max/α + α)

where

ρ̃ ≡ 1

12

(
a∗
11

∂2u

∂x2
1

∂2ϕ

∂x2
1

+ a∗
22

∂2u

∂x2
2

∂2ϕ

∂x2
2

)

is evaluated in the transformed coordinates on [0, 1]2.

Note that the convergence of ρ̄ is uniform while the convergence of ρ̌, defined
by g(u)− g(uh) ≡∑K∈T ′ ρ̌h4

K , is in L1(D) by assumption (33). It is important to

notice that our restriction of the data, required by u, ϕ ∈ C3(D̄), includes examples
with substantial adaptive gain. Section 3 shows that the optimal number of adaptive

elements is Nopt ≃ TOL−1‖ρ̄‖d/2

L
d

d+2

, while the number of uniform elements becomes

Nuni ≃ TOL−1‖ρ̄‖d/2
L1 to achieve the same error TOL. Although u, ϕ ∈ C3(D̄) their

norms in these spaces may be large so that ‖ρ̄‖
L

d
d+2

≪ ‖ρ̄‖L1 .

In general, second order difference quotients of the interpolant on meshes with
hanging nodes do not converge uniformly on D and this is why the averages are
needed [22].

Theorem 2.2 proves that the error expansion

g(u) − g(uh) =
∑

K∈T ′

(ρK + O(
hγ

max

α
+ α))h2+d

K + O(Cδhmax)
∑

K∈T ′

H∪T ′

I

h1+d
K(36)
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has a well defined leading order error density ρ which converges uniformly as
hmax → 0+. We now assume that α has been chosen such that

(37)
hγ

max

α
+ α = O(hbγ

max),

where γ̂ > 0.

2.4. The Adaptive Algorithm. To motivate the approximate equidistribu-
tion of the error indicators in an adaptive algorithm, consider an asymptotic error
expansion

error ≃
∑

n

ρnhp+d
n ,

where h is the local isotropic mesh size and ρ is independent of h. The number of
elements that corresponds to a mesh with size h can be determined by

N(h) ≡
∫

D

dx

hd(x)
.(38)

It seems hard to use the sign of the error indicators for constructing the mesh.
Instead, we minimize the number of elements N in (38) under the more stringent
constraint

N̄∑

n=1

|ρn|hd+p
n =

∫

D

|ρ(x)|hpdx = TOL,(39)

with D = [0, T ] and d = 1 for ODEs and SDEs. The global order of convergence
satisfies p = 1 for the Euler-Maruyama SDE approximation and p = 2 for the
d-linear finite elements approximations used here. A standard application of a
Lagrange multiplier yields the optimum

(40) |ρ|(h∗)d+p = constant

and

h∗ ≡ TOL
1
p

|ρ| 1
d+p

(∫

D

|ρ(x)| d
d+p dx

)− 1
p

.(41)

This condition is optimal only for density functions ρ with one sign, and in the
PDE case, for meshes with shape regular elements, i.e. non stretched elements. To
use the sign of the density or orientation of stretched elements in an optimal way
is not considered here.

In the adaptive algorithm below we will use the positive approximate error
density ρ̂K defined by

ρ̂|K ≡ ρ̂K ≡ min
(
max (|ρK |, δ) , TOL−r

)
(42)

with r > 0 and where the lower bound, δ > 0, is chosen according to

Remark 2.3 (Lower bound for the error density).

δ ≡ TOLγ̄(43)

where the parameter γ̄ is 0 < γ̄ < 1/(p + 1) for ODEs, γ̄ = 1/9 for SDEs, and for

PDEs it is chosen such that satisfies the two lower bounds

(44) γ̄ <
γ̂

γ̂ + 2
and

∫

T̄H∪T̄I

dx/δ = o(1) as TOL → 0+,
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and the upper bound δ = o(1) as TOL → 0 + . The lower bounds on δ > 0 are

motivated by the requirements that hmax → 0 as TOL → 0, that the bounds for the

error density in (51) hold and that the error from hanging node elements becomes

asymptotically negligible, see Theorem 3.2. The convergence of ρ̂ towards the exact

density requires the upper bound δ → 0.

The goal of the adaptive algorithm described below is to construct a mesh such
that

(45) ρ̂nhd+p
n ≈ TOL

N
, n = 1, . . . , N,

which is an approximation of the optimal (40). Let the index [k] refer to the
refinement level in the sequence of adaptively refined meshes. For a mesh with
elements {K1, K2, K3, . . . , KN}, we consider the piecewise constant error density
and mesh functions ρ|Kn ≡ ρn ≡ ρKn , ρ̂|Kn ≡ ρ̂n ≡ ρ̂Kn and h|Kn ≡ hn ≡ hKn .
To achieve (45) let s1 ≈ 1 be a given constant, start with an initial mesh of size
h[1] and then specify iteratively a new mesh h[k +1], from h[k], using the following
dividing strategy:

for all intervals (elements) n = 1, 2, . . . , N [k]

r̄n[k] ≡ ρ̂n[k](hn[k])d+p

if r̄n[k] > s1
TOL

N [k]
then

mark interval (element) n for division.

(In addition, for the PDE case mark recursively all neighbors

that need division due to the hanging node constraint:

at most one hanging node per edge.)

endif

endfor

divide every marked interval (element) into 2d uniform sub intervals (elements).

(46)

With this dividing strategy, it is natural to use the stopping criterion:

(47) if
(

max
1≤n≤N [k]

r̄n[k] ≤ S1
TOL

N [k]

)
then stop.

Here S1 is a given constant, with S1 > s1 ≈ 1, determined more precisely as
follows: we want that the maximal error indicator decays quickly to the stopping
level S1TOL/N , but when almost all error indicators r̄n satisfy r̄n < s1

TOL
N the

reduction of the error may be slow. Theorem 3.1 shows that a slow reduction is
avoided if S1 satisfies (52).

Remark 2.4 (SDE case: Stochastic Time Steps). Let g ≡ ∑M
j=1 g(X̄(T ); ωj)

be the sample average approximation of the expected value E[g(X(T ))] and let

N [m] be the sample average of the final number of time steps in the m-th batch

of M [m] realizations. In this case (46), is used iteratively for each of the real-

izations, j = 1, . . . , M [m], with TOLT instead of TOL and with N instead of N ,
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see [25]. Replacing the integrals
∫

D
. . . dx by

∫ ∫
. . . dt dP = E

∫
. . . dt for-

mally motivates the equidistribution of the error indicators for each realization of

the Brownian motion.

3. Convergence Rates for the Adaptive Mesh Algorithm

This section presents results on the stopping, accuracy and efficiency properties
of adaptive algorithm introduced in Section 2.

3.1. Adaptive Refinements and Stopping. To analyze the decay of the
maximal error indicator, it is useful to understand the variation of the density ρ̂ at
different refinement levels, in particular we will consider an element or time step
K[k] and its parent on a previous refinement level, p(K, k), with the corresponding
error density ρ̂(K)[p(K, k)]. It is possible to verify that the choice (43) of δ implies
that hmax → 0 as TOL → 0+, see [22], [23], [25]. Hence Theorem 2.2 shows, for
the PDE, that there is a limit error density ρ̃ such that

(48) ρ̌
L1

−−→ ρ̃, ρ → ρ̃ and ρ̂ → |ρ̃|, as TOL → 0 + .

Similarly, the choice (43) of δ is used to show in [23] for ODEs that

(49) ρ̂ → |ρ̃|, as TOL → 0+,

and in [25] that for each realization of the SDE, with 0 < α < 1/2,

(50) lim
TOL→0+

h−α
max(ρ̂ − |ρ̃|) = 0, almost surely.

A consequence of the uniform convergence ρ̂ → |ρ̃| , as TOL → 0+, and (42) is
that for all elements K and all refinement levels k there exists positive functions ĉ
and Ĉ close to 1 for sufficiently refined meshes, such that the error density satisfies

(51)

ĉ(K) ≤ ρ̂(K)[p(K, k)]

ρ̂(K)[k]
≤ Ĉ(K),

ĉ(K) ≤ ρ̂(K)[k − 1]

ρ̂(K)[k]
≤ Ĉ(K),

provided maxK,k hK [k] is sufficiently small. In other words, (51) holds with e.g.

ĉ = 2−1 = Ĉ−1 for sufficiently small maxK,k hK [k]. For SDEs the functions ĉ and

Ĉ are close to 1, almost surely.

Theorem 3.1 (Stopping). Suppose the adaptive algorithm uses the strategy

(46)-(47). Assume that ĉ satisfies (51), for the elements or time steps corresponding

to the maximal error indicator on each refinement level, and that

(52) S1 ≥ 2d

ĉ
s1, 1 >

ĉ−1

2d+p
.

Then each refinement level either decreases the maximal error indicator with the

factor

max
1≤n≤N [k+1]

r̄n[k + 1] ≤ ĉ−1

2d+p
max

1≤n≤N [k]
r̄n[k],(53)

or stops the algorithm.

Here, the global order of convergence is p = 1 for the Euler-Maruyama SDE
approximation and p = 2 for the d-linear finite elements approximations.
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3.2. Accuracy of the Adaptive Algorithm. The adaptive algorithm guar-
antees that the estimate of the global error is bounded by a given error tolerance,
TOL. An important question is whether the true global error is bounded by TOL
asymptotically. Using the upper bound (47) of the error indicators and the con-
vergence of ρ and ρ̄ in Theorem 2.2, or the convergence (49), (50) respectively, the
global error has the following estimate.

Theorem 3.2 (Accuracy). Suppose (42)–(43) hold and that, for PDEs (37)
and the assumptions of Theorem 2.2 hold, or, for ODEs and SDEs, (49) and (50)
holds, respectively. Then the adaptive algorithm (46)–(47) satisfies

lim sup
TOL→0+

(
TOL−1

∣∣g(X(T )) − g(X(T ))
∣∣
)
≤ S1, for the ODE,

lim sup
TOL→0+

(
TOL−1

∣∣g(u) − g(uh)
∣∣
)
≤ S1, for the PDE,

and, for the SDE, with the number of realizations M and any c0 > 0 determined

by (22),

lim inf
TOL→0+

P


 1

TOL

∣∣∣∣∣∣
E[g(X(T ))] − 1

M

M∑

j=1

g(X(T ; ωj))

∣∣∣∣∣∣
≤ S1 + 2

3


≥

∫ c0

−c0

e−x2/2

√
2π

dx.

3.3. Efficiency of the Adaptive Algorithm. An important issue for the
adaptive method is its efficiency; we want to determine a mesh with as few elements
or time steps as possible providing the desired accuracy. From the definition (38)
and the optimality condition (41), the number of optimal adaptive elements, Nopt,
satisfies

(54) Nopt =

∫

D

dx

(h∗(x))d
=

1

TOL
d
p

(∫

D

|ρ[k](x)| d
d+p dx

) d+p
p

=
1

TOL
d
p

‖ρ‖
d
p

L
d

d+p
.

On the other hand, for the uniform mesh with elements h = constant, the number

of elements, Nuni, to achieve
∑N

i=1 |ρi|hd+p = TOL becomes

(55) Nuni =

∫

D

dx

hd(x)
=

∫
D

dx

TOL
d
p

(∫

D

|ρ[k](x)|dx

) d
p

=

∫
D

dx

TOL
d
p

‖ρ‖
d
p

L1.

Hence, the number of uniform elements is measured in the L1-norm while the

optimal number of elements is measured in the L
d

d+p quasi-norm. Jensen’s in-
equality implies ‖f‖

L
d

d+p
≤ (

∫
D

dx)
p
d ‖f‖L1, therefore an adaptive method may

use fewer elements than the uniform element size method. For the SDE we get

the optimal expected number of adaptive steps E[Nopt] = 1
TOL

(
E
∫ T

0

√
|ρ| dt

)2

=

1
TOL‖ρ‖L

1
2 (dtdP )

while with uniform time steps E[Nuni] = T
TOL

∫ T

0 E|ρ| dt.

The following theorem uses a lower bound of the error indicators, obtained
from the refinement criterion (46) for the refined parent error indicator and the
ratio of the error density (51), to show that the algorithm (46)-(47) generates a
mesh which is optimal, up to a multiplicative constant independent of the data. In
order to guarantee that, for sufficiently small TOL, all elements on the initial mesh
are refined, the initial mesh size is assumed to obey

(56) hK [1] ≥ TOLs,
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where the parameter s has the upper bound s < 1−γ̄
p and the lower bounds 0 < s,

for ODEs and SDEs, and γ̄
γ̂ < s, for PDEs.

Theorem 3.3 (Efficiency). Assume that Ĉ = Ĉ(t), Ĉ(t, ω) or Ĉ(x) satisfies

(51) for all elements at the final refinement level, that the assumptions of Theorem

3.2 hold, and that the initial mesh satisfies (56) for all elements K. Then there

exists a constant C > 0, bounded by (2d+p

s1
)

d
p , such that, for sufficiently small TOL,

the final number of adaptive time steps or elements N , of the algorithm (46)-(47)
for ODEs or PDEs, satisfies

(TOL
d
p N) ≤ C ‖Ĉρ̂‖

d
p

L
d

d+p

≤ C

(
max
x∈D

Ĉ(x)
d
p

)
‖ρ̂‖

d
p

L
d

d+p

,(57)

and

lim
TOL→0+

‖ρ̂‖
L

d
d+p

= ‖ρ̃‖
L

d
d+p

,

lim
TOL→0+

max
x∈D

Ĉ(x)
d
p = 1,

i.e. the number of elements is asymptotically optimal up to the problem indepen-

dent factor C ≤ (2d+p

s1
)

d
p . For the SDE case the final sample average N̄ [m] =

1
M [m]

∑M [m]
j=1 N(ωj) of the number of adaptive steps of the algorithm (46)-(47) sat-

isfies

TOLT N̄ [m]
2

N̄ [m − 1]
< C2



∫ T

0

1

M [m]

M [m]∑

j=1

√
ρ̂Ĉ dt




2

and asymptotically

lim sup
TOLT →0+

TOLT E[N ] ≤ C2‖ρ̃‖
L

1
2 (dtdP )

4. A Numerical Example

This section presents numerical results obtained with an implementation of the
adaptive algorithm in Section 2.4 for a simplified elasticity problem using the error
expansion (34) and the approximate error density (29). A more detailed description
of the problem and the numerical results is given in [22].

Example 4.1. The problem is to compute the functional

g(u) =

∫

D

u dx,

where the function u solves the Laplace equation in a slit domain

−∆u = 0, in D = (−1, 1)2 \ Γ0,

u = 0, on Γ0 = [0, 1) × {0},
u = ub, on ∂D \ Γ0.

D

Γ0

With the function ub given by (r, θ) 7→ r1/2 sin(θ/2), in the polar coordinates (r, θ),
the exact solution, u, is r1/2 sin(θ/2). This singular problem is related to a problem
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with a rounded tip, leading to a smooth solution with multiple scales, see [22]. Nu-
merical results show that the adaptive algorithm needs far less elements than the
number of uniform elements needed to get comparable accuracy for this problem;
see Table 1. Figure 2 shows that the number of elements in the accepted adaptively
refined mesh is close to the estimated optimal number.

The singular mode r1/2 sin(θ/2) in u is present also in the solution to the dual
problem

−∆ϕ = 1 in D, ϕ|∂D= 0.

Thus the conditions u, φ ∈ C3(D̄) in Theorem 2.2 are violated and uniform conver-
gence of the error density does not hold. Instead the error density grows like

ρ̂(x) =
O(1)

r3
.(58)

Still the numerical results in Figure 4 show that the minimal requirement on ĉ and

Ĉ in (51) to prove Theorem 3.1, 3.2 and 3.3 behave well.

refinements N error error estimate TOL
uniform 32768 4.8 · 10−4 2.0 · 10−4

adaptive 725 3.2 · 10−4 3.1 · 10−4 2.0 · 10−3

3464 3.8 · 10−5 4.5 · 10−5 2.4 · 10−4

20288 4.4 · 10−6 6.9 · 10−6 3.1 · 10−5

Table 1. The adaptive algorithm (46)–(47) uses far less elements
than the number of uniform elements needed to get comparable
accuracy in Example 4.1. The error g(u) − g(uh) is estimated by∑

K ρ̄Kh4
K using the signed error density (29), spatially varying

averaging α(x) =
√

r(x)h(x), and lower bound δ =
√

TOL. The
adaptive refinement and stopping used the parameter values s1 = 1
and S1 = 10.
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bounds on ||ρ̂Ĉ||L1/2 , which is close to ||ρ̂||L1/2 computed on the

accepted mesh using TOL = 2−15; the maximal Ĉ may be signifi-
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Abstract

Results are presented from numerical experiments aiming at the computation of

stochastic phase-field models for phase transformations by coarse-graining molecular

dynamics. The studied phase transformations occur between a solid crystal and a

liquid. Nucleation and growth, sometimes dendritic, of crystal grains in a sub-cooled

liquid is determined by diffusion and convection of heat, on the macroscopic level,

and by interface effects, where the width of the solid–liquid interface is on an atomic

length-scale. Phase-field methods are widely used in the study of the continuum level

time evolution of the phase transformations; they introduce an order parameter to

distinguish between the phases. The dynamics of the order parameter is modelled by

an Allen–Cahn equation and coupled to an energy equation, where the latent heat at

the phase transition enters as a source term. Stochastic fluctuations are sometimes

added in the coupled system of partial differential equations to introduce nucleation

and to get qualitatively correct behaviour of dendritic side-branching. In this report

the possibility of computing some of the Allen–Cahn model functions from a micro-

scale model is investigated. The microscopic model description of the material by

stochastic, Smoluchowski, dynamics is considered given. A local average of contribu-

tions to the potential energy in the micro model is used to determine the local phase,

and a stochastic phase-field model is computed by coarse-graining the molecular dy-

namics. Molecular dynamics simulations on a two phase system at the melting point

are used to compute a double-well reaction term in the Allen–Cahn equation and a

diffusion matrix describing the noise in the coarse-grained phase-field.

This work was supported by the Swedish Foundation for Strategic Research grant A3 02:123,
”Mathematical theory and simulation tools for phase transformations is materials”.

1 Introduction

Phase-field methods are widely used for modelling phase transformations in materials on
the continuum level and exist in many different versions for different applications. In this
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report the considered phase transformation occurs in a single component system with a
solid and a liquid phase.

The phase-field model of solidification studied here is a coupled system of partial differential
equations for the temperature, T , and a phase-field, φ, which is an order parameter used to
distinguish between the solid and the liquid subdomains. Two different values, φs and φl, are
equilibrium values of the phase-field in solid and liquid respectively. The phase-field varies
continuously between the two values and the interface between solid and liquid, at a time t,
is defined as a level surface of the phase-field; for example {x ∈ R

d : φ(x, t) = 0.5(φs +φl)}.
From a computational point of view the implicit definition of the phases in the phase-field
method, as in the level set method [8, 12], is an advantage over sharp interface methods,
since it avoids the explicit tracking of the interface. A local change of the phase-field from
φl to φs in a subdomain translates into solidification of that region with a corresponding
release of latent heat and the reverse change from φs to φl means melting which requires
energy. The release or absorption of latent heat is modelled as a continuous function of φ
so that the energy released when a unit volume solidifies is L(g(φl)− g(φs)), where L is the
latent heat and g(φ) is a model function, monotone with g(φs) = 0, g(φl) = 1, g′(φs) = 0,
and g′(φl) = 0. Then the energy equation for a unit volume becomes a heat equation with
a source term

∂

∂t
(cV T + Lg(φ)) = ∇ · (λ∇T ) ,

where cV is the heat capacity at constant volume and λ is the thermal conductivity. Here,
and in the following, the usual notation for differentiation with respect to the spatial vari-
ables is applied, with ∇ and ∇· denoting the gradient and the divergence respectively. The
phase-field, and the related model function g, are exceptional in the energy equation in the
sense that, while all the other quantities are standard physical quantities on the macroscopic
level, the phase-field need not be associated with a measurable quantity. A phenomenolo-
gical model of the phase change is given by the energy equation coupled to the Allen-Cahn
equation

∂φ

∂t
= ∇ · (k1∇φ) − k2

(
f ′(φ) + g′(φ)k3(TM − T )

)
(1)

for the time evolution of the phase-field; here TM denotes the melting point, k1, k2, and
k3, are positive model parameters (k1 may be an anisotropic matrix introducing directional
dependence on the growth of the solid), and the model function f is a double well potential
with minima at φs and φl. Standard examples of the model functions are

f(φ) = −1

2
φ2 +

1

4
φ4, g(φ) =

15

16

(
1

5
φ5 − 2

3
φ3 + φ

)
+

1

2
,

when φs = −1 and φl = 1. By construction of the model functions, the reaction term in the
Allen-Cahn equation vanishes where φ = φs or φ = φl independently of the temperature.
Since the diffusion term is zero for any constant function the two constant phase-fields
φ ≡ φs and φ ≡ φl are stationary solutions to the Allen-Cahn equation for all temperatures.
This means, for example, that nucleation of solid in a region of subcooled liquid can not
occur in a phase-field modelled by the deterministic Allen-Cahn equation above. The effect
of nucleation can be introduced in the model by adding a noise term in the Allen-Cahn
equation, giving a stochastic partial differential equation. Simulation of dendrite growth in
an subcooled liquid is another example where the deterministic system is inadequate; its
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solutions fail to develop the side branches seen to form in real dendrites as the tips grow.
Stochastic phase-field models where noise is added to either one, or both, of the Allen-Cahn
equation and the energy equation are used to include the effect of side branching; see for
example [2].

The present report contains the results from numerical experiments on a method presented
and analysed in [14] and the rest of this introduction summarises the ideas from [14] needed
here. That report takes the stochastic phase-field model

∂

∂t
(cV T + Lg(φ)) = ∇ · (λ∇T ) , (2a)

∂φ

∂t
= ∇ · (k1∇φ) − k2

(

f ′(φ) + g′(φ)k3(TM − T )
)

+ noise, (2b)

as its starting point and asks whether it is possible to obtain the model functions and
parameters, f(φ), g(φ), k1, k2, k3, and the noise, from computations on a microscale model.
To answer this question the phase-field, φ, must be defined in terms of quantities computable
on the microscale. The microscopic model used for this purpose is a molecular dynamics
model of N particles in a microscopic domain D in R

3 where the motion of the particles is
given by the Smoluchowski dynamics; see for example [5]. Thus, with Xt ∈ R

3N denoting
the positions of all particles in the system at the time t and Xt

i ∈ R
3 the position of particle

i, the dynamics are given by the Itô stochastic differential equations

dXt
i = −∇X

i
U(Xt) dt+

√

2kBT dW t
i , i = 1, 2, . . . , N, (3)

where U is the total potential energy of the system, ∇X
i

denotes the gradient with respect

to the position of particle i, kB is the Boltzmann constant, and Wi = (Wi,1,Wi,2,Wi,3)
T

are independent three dimensional Brownian motions, with independent components. The
macroscopic temperature, T , is a constant input parameter in the microscopic model. We
may identify the latent heat, in the macroscopic model, with the difference in total potential
energy per unit volume of the liquid and the solid at the melting point, in the microscopic
model. The idea is then to let the local contributions to the total potential energy define the
phase variable. Since the potential energy decreases with the temperature even in a single
phase system the equilibrium values of such a phase-field, m, unlike those of φ, depend on
the temperature; see Figure 1. Assuming that in pure solid or pure liquid the phase-field,

T
M

Latent heat, L

Subcooled Liquid Liquid

Solid Superheated Solid
m

m

T

Figure 1: Schematic picture of m(T ) for a pure liquid (top curve) and a pure solid (bottom
curve) and the latent heat as the jump in m at a phase transition.

m, varies slowly, compared to the latent heat release, with the temperature close to the

3



melting point, the energy equation becomes

∂

∂t
(cV T +m) = ∇ · (λ∇T ) ,

where cV and λ are approximately the same as in (2a) for T ≈ TM.

For a model where the total potential energy of the system can be naturally split into a sum
of contributions arising from the interaction of individual atoms with their environment,

U(X ) =

N∑

i=1

mi(X ), (4)

phase-fields can be introduced on the micro level by localised averages of these contributions;
a given configuration X defines a phase-field m( · ;X ) : D → R through

m(x;X ) =

N∑

i=1

mi(X )η(x−Xi), (5)

where the choice of mollifier, η, determines the spatial smoothness of the phase-field. If, for
example, the potential energy is defined entirely by pairwise interactions

U(X ) =
1

2

N∑

i=1

N∑

k 6=i,k=1

Φ(Xi −Xk),

as is common in simple molecular dynamics models, it is natural to let

mi(X ) =
1

2

N∑

k 6=i,k=1

Φ(Xi −Xk)

be particle i’s contribution to the total potential energy.

With the definition (5) of the potential energy phase-field, m, and with the microscopic
system defined by (3) and (4), Itô’s formula gives a stochastic differential equation

dm(x;Xt) = α(x;Xt) dt+

N∑

j=1

3∑

k=1

βj,k(x;Xt) dW t
j,k, (6)

for m evaluated in a point x ∈ D. The drift, α(x; ·), and the diffusions, βj,k(x; ·), are expli-
citly known functions expressed in terms of the mi:s, the mollifier, η, and their derivatives
up to second order. While m by definition is a continuous field it is still an atomic scale
quantity since it is defined in terms the particle positions Xt. A macroscopic phase-field,
similar to φ in (2), must lose both the dependence on the particle positions, Xt, and the
explicit dependence on the microscale space variable x. To achieve this, a coarse-grained
approximation mcg(x) of m(x) is introduced as a solution of a stochastic differential equa-
tion

dmt
cg(x) = a(mt

cg)(x) dt+

M∑

j=1

bj(m
t
cg)(x) dW̃

t
j , (7)
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where the independent Wiener processes W̃ t
j , j = 1, 2, . . . ,M ≪ N , also are independent

of the Wiener processes Wi in the micro model. Here the drift and diffusion coefficient
functions, a(mt

cg) and bj(m
t
cg), may depend on more information about the coarse-grained

phase-field than just the point value; compare the stochastic Allen-Cahn equation (2b),
where the diffusion term in the drift contains second derivatives of the phase-field.

The choice of the coarse-grained drift and diffusion functions proceeds in two steps: first,
finding a general form the coarse-grained equation where the drift and diffusion coefficient
functions, defined as time averaged expected values of the microscopic drift and diffusions
over simulation paths, still depend on the micro scale space variable, x; second, expressing
the x dependent coarse-grained drift and diffusion coefficients by drift and diffusion func-
tions depending only on the phase-field mcg, using that mcg is a smooth monotone function
of x in the interface.

In the first step, a coarse-grained stochastic differential equation

dmt
cg(x) = a(x) dt+

M∑

j=1

bj(x) dW̃
t
j ,

is introduced by defining the drift

a(x) =
1

T E

[∫ T

0

α(x;Xt) dt
∣∣∣ X0 = X0 , x ∈ D, (8a)

and choosing a diffusion matrix that fulfil

M∑

j=1

bj(x)bj(x
′) =

1

T E

[∫ T

0

N∑

j=1

3∑

k=1

βj,k(x;Xt)βj,k(x′;Xt) dt
∣∣∣ X0 = X0

]
, x, x′ ∈ D, (8b)

for some fixed, deterministic, initial conditions X0 = X0. The initial condition for the
coarse-grained phase-field is m0

cg = m(·;X0). This particular coarse-graining is motivated
by the argument that the coarse-grained model will be used to compute properties on the
form E

[
y(m(·;XT ))

]
, where y : D → R is a smooth function and T > 0 is a fixed final

time. The optimal coarse-grained model is the one that minimises the error in the expected
value; using the conditional expected values u(µ, t) = E[y(mT

cg) |mt
cg = µ], this error can

be expressed as

E
[
y(m(·;XT ))

]
− E

[
y(mT

cg)
]

= E

[∫ T

0

〈
u′(m(·;Xt), t) , α(·;Xt) − a(·)

〉
L2(D)

dt

+
1

2

∫ T

0

u′′(m(·;Xt), t) ,

N∑

j=1

3∑

k=1

(βj,k ⊗ βj,k)(·, ·;Xt) −
M∑

j=1

(bj ⊗ bj)(·, ·)
L2(D×D)

dt

]
,

where ⊗ denotes the tensor product (bj ⊗ bj)(x, x′) = bj(x)bj(x
′), and u′ and u′′ denote the

first and second variations of u(µ, t) with respect to µ. Assuming that u′ can be expanded
in powers of α− a, the choice (8a) cancels the leading term in the error associated with u′.
Similarly, (8b) corresponds to cancelling the dominating term in the expansion of u′′.
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In a practical computation the functions α and βj can only be evaluated in a discrete set
of points DK = {x1, . . . , xK} ⊂ D. The right hand sides in (8a) and (8b) become a vector
and a symmetric positive semidefinite K-by-K matrix, respectively. Hence a(x) becomes
a vector of tabulated values for x ∈ DK . It is natural to have one Wiener process per
point xk in the spatial discretisation, so that K = M . The corresponding K tabulated
individual diffusion coefficient functions, bj , will be obtained by a square root factorisation
of the computed matrix, by means of an eigenvector expansion; this choice of factorisation
preserves the connection between the evaluation point xk and the elements k in bj and
produces spatially localised functions, consistent with the association of individual Wiener
processes and points in DK .

In the second step, the initial configuration, X0, in (8) is chosen so that the microscopic
domain D includes a solid–liquid interface in equilibrium. Since the interface is stationary
no phase transformation occurs in the simulation, and consequently the part of the reaction
term in the Allen-Cahn equation (2b) relating the speed of the phase change to the deviation
from the melting point, k2k3g

′(φ)(TM − T ), can not be obtained; the simulation must
be performed at the melting point, TM, under the given conditions. The simulation of
a travelling front, off the equilibrium temperature, requires more advanced micro model
simulations than the ones considered here.

The interface is assumed to be locally planar on the microscopic scale and the spatially
averaged properties are expected to vary much more slowly in the directions parallel to the
interface than in the direction normal to the interface. Label the direction normal to the
interface as direction x1 and let x2, x3 be orthogonal directions in the plane of the interface.
Then the mollifier, η, in (5) can be chosen to make the averages much more localised in the
x1 direction than in the x2 and x3 directions. In the microscopic domain, D, the averages
in the x2 and x3 directions are chosen to be uniform averages over the entire domain, so
that the phase-fields, m and mcg, and the drift and diffusion functions, α, βj,k, a, and bj ,
become functions of one space variable, x1. Hence the evaluation points in DK are only
distinguished by their x1 coordinates. As mentioned above, the drift coefficient, α, depends
on the derivatives up to second order of, η, and the potential energy contributions mi. After
averaging out the x2 and x3 dependence, it can be written as

α(x1;X
t) = kBT

∂2

∂x2
1

m(x1;X
t) +

∂

∂x1
A1(x1;X

t) +A0(x1;X
t),

for some functions A1 and A0. Keeping this form in the averaging, the coarse-grained drift
coefficient in (8a) can be written

a(x1) = kBT
∂2

∂x2
1

mav(x1) +
∂

∂x1
a1(x1) + a0(x1),

where the second order derivative of the averaged phase-field,

mav(x1) =
1

T E

[∫ T

0

m(x1;X
t) dt , (9)

corresponds to the diffusion term in (2b). Assuming that the averaged phase-field mav is
a monotone function of x1 in the interface, the explicit dependence on the spatial variable
can be eliminated by inverting mav and defining

a(mcg) = a(m−1
av (mcg)), bj(mcg) = bj(m

−1
av (mcg)), (10)
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which give drift and diffusion coefficients on the form (7).

The present study is a practical test of the method described above. In particular the aims
are to verify that Smoluchowski dynamics can be used in practise, in the sense that the
coarse grained drift and diffusion coefficient functions can be determined together with the
phase-field model potential, f , and that they seem reasonable. For this purpose simulations
are performed at just one temperature and density (at the melting point) and with just
two values of the angle of the stationary interface with respect to the crystal structure in
the solid. An actual determination of the model functions in the phase field model would
require many more simulations with varying parameters.

2 Computational Methods

The numerical computations consist of molecular dynamics computations, giving the mi-
croscopic description of the two-phase system, and the extraction of model functions for a
coarse grained stochastic differential equation model.

2.1 Molecular Dynamics Models and Simulation

Two mathematical models of the material are used; both are one component molecular dy-
namics models where the interaction between particles is determined by a pair potential of
the exponential-6 (Exp-6) type. The coarse graining is based on a stochastic model where
the particle trajectories on the diffusion time scale are given by the Smoluchowski dynam-
ics (3). The computations with this model are performed under constant volume at the
melting point where a liquid and a solid phase coexist in the computational domain. The
melting point is determined using constant pressure simulations of the deterministic mo-
lecular dynamics model where the particle trajectories are determined by Newton’s second
law with forces given the by gradients of the model potential. Both models and the cor-
responding simulations are described below, after a description of the potential common to
the models.

2.1.1 Pair Potential Defining the Total Potential Energy

The microscopic system consists of N identical particles at positions X = (X1, . . . , XN ) in
three dimensions. The total potential energy, U , of the system is determined by the particle
positions through

U(X ) =
1

2

N∑

i=1

N∑

k 6=i,k=1

Φ(Xi −Xk), (11)

using pairwise interactions only. The pair potential is the spherically symmetric Exp-6
potential

Φ(r) = A exp(−Br) − C

r6
, (12)
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with r denoting the distance between two particles, and A, B, and C being positive
model parameters. The Exp-6 potential, like the similar Lennard-Jones pair potential,
ΦLJ(r) = 4ǫLJ

(
(σLJ/r)

12 − (σLJ/r)
6
)
, is a short range interaction that can be used to

model condensed noble gases. With the parameters used here, obtained from [11], the
Exp-6 potential models Argon at high pressures. At pressures around 2 GPa, where the
solid-liquid phase transition will be simulated, the Exp-6 potential with its slightly softer
repulsive part describes the equation of state of Argon better than the Lennard–Jones po-
tential does; see [11, 15]. The shapes of the two pair potentials around the global minimum
of the Lennard–Jones potential can be compared in Figure 2(a); the typical inter atomic
distances between nearest neighbours in both the simulated solid and liquid will be close to
1. Note that, while the Lennard–Jones pair potential tends to infinity as the interatomic
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Pair potentials Φ(r) in reduced Lennard−Jones units

r

energy

Exponential−6
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(a) Pair Potentials for Argon

0

0

−ε
LJ

σ
LJ r

energy

The Lennard−Jones Pair potential, Φ
LJ

(r)

(b) General form of the Lennard-Jones poten-
tial

Figure 2: (a): The Exp-6 pair potential is similar to the Lennard-Jones pair potential near
the minimum, but the repulsion is slightly weaker in the Exp-6. The radius and the energy
are measured in reduced Lennard-Jones units, where the Lennard-Jones parameters are
ǫLJ = kB120 K and σLJ = 3.405 Å.
(b): The parameter σLJ is the radius where the Lennard-Jones potential is 0, which is
equal to the potential at infinite separation, and the parameter ǫLJ is the depth of potential
minimum.

distance tends to zero, the Exp-6 pair potential, as stated in (12), reaches a global maximum
before turning down and approaching minus infinity in the limit. This clearly illustrates
that the model based on the Exp-6 potential breaks down if two atoms come too close,
but neither one of the pair potentials is designed to describe interactions of particles much
closer than the typical nearest neighbour separation.

For short range potentials, like the Exp-6 and the Lennard-Jones potentials, the potential
(and its derivative) decay sufficiently fast for the combined effect on the total potential
energy (and the interatomic forces) of all atom pairs separated more than a certain distance
to be negligible compared to the effect of the pairs separated less than the same distance.
To take advantage of this in computations a cut-off radius is introduced and all interactions
between particles separated by a distance larger than the cut-off are neglected; instead of
summing over all k 6=i in the inner sum in (11) the sum is only taken over particles in a
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spherical neighbourhood of particle i.

All the physical quantities in this report are given in the reduced Lennard-Jones units. Thus
length is measured in units of σLJ, energy in units of ǫLJ, and time in units of

√
mσ2

LJ/ǫLJ,
where m is the mass of one atom. (The time unit is the inverse of the characteristic
frequency.) A list of the dimensionless units in the Argon model as well as the parameters
in the Exp-6 potential can be found in Table 2.1.1. At the temperatures and pressures
considered here, the stable phase of the Exp-6 potential is either the Face Centered Cubic
(FCC) lattice or a liquid phase.

Quantity Unit
Energy 1.6568 · 10−21 J
Time 2.1557 · 10−12 s
Mass 6.6412 · 10−26 kg
Length 3.405 · 10−10 m
Temperature 120 K
Pressure 4.1968 · 107 Pa

Constant Value
kB 1

Parameter Value
A 3.84661 · 105

B 11.4974
C 3.9445

Table 1: Atomic units and corresponding values of physical constants and parameters in
the Exp-6 model (12). Non dimensional molecular dynamics equations are obtained after
normalising with the atom mass, m, and the Lennard-Jones parameters, σLJ and ǫLJ; in
this Argon model m = 6.6412 · 10−26 kg (or 39.948 atomic mass units), σLJ = 3.405 Å, and
ǫLJ/kB = 120 K, where kB is the Boltzmann constant.

2.1.2 Newtonian System Simulated at Constant Pressure

The purpose here is to approximately determine the melting point at a high fixed pres-
sure, to be able to set up and simulate stationary (FCC-liquid) two-phase systems later.
Determination of the melting point follows the two-phase method described by Belonoshko
and co-authors in [1].

The mathematical model is a classical system of N identical particles where the pos-
itions, Xt = (Xt

1, . . . , X
t
N ), and the velocities, vt = (vt

1, . . . , v
t
N ), evolve in time according

to Newton’s equations

dXt

dt
= vt, (13a)

dvt

dt
= −∇XU(Xt), (13b)

where the total potential energy of the system is given by (11)-(12) using the parameter
values in Table 2.1.1. Here ∇X denotes the gradient with respect to the particle positions.
The force acting on particle i is −∇X

i
U(Xt) and, since all particles have unit mass in

the non-dimensional units, the acceleration is equal to the force. Particle positions are
restricted to a finite computational box with periodic boundary conditions, corresponding
to an infinite system where the same configuration of particles is repeated periodically in all
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three directions; a particle leaving the computational cell on one side enters the cell again
from the opposite side and particles interact with periodic images of particles in the cell.

For a fixed volume of the computational cell the equations (13) will preserve the total
energy, E, (the sum of potential and kinetic energy) of the system as well as the number
of particles. It will approximately sample the (N,V,E) ensemble. In the determination
of the melting point the simulations are instead performed in an approximation of the
(N,T, P ) ensemble, using a constant number of particles, N , a constant temperature, T ,
and a constant pressure, P . This must allow for the volume of the computational cell to
change during the simulation. There must also be mechanisms for keeping the temperature
and the pressure constant, thus modifying (13) so that the total energy varies.

Numerical computations of the (N,T,P) molecular dynamic simulations were per-
formed using Keith Refson’s publicly available software package Moldy, [9]. Constant
temperature was enforced using the Nosé-Hoover thermostat, where the equations of mo-
tions (13) are modified, and extended, to include an additional degree of freedom model-
ling a thermal reservoir. The fictitious inertia associated with the thermal reservoir was
100 kJmol−1 ps2, corresponding to 21.57 in the dimensionless equation. The pressure was
kept constant using the Parinello-Rahman equation, controlling the dynamics of the vec-
tors (three edges) that define the computational cell. The fictitious mass parameter in the
Parinello-Rahman equation was 300 amu corresponding to 1.20·104 in the reduced Lennard–
Jones units. A short description of the Nosé-Hoover thermostat and the Parinello-Rahman
equation, with references to papers with theoretical foundations of the methods, can be
found in the manual [10].

The time stepping method in Moldy is a modification of Beeman’s algorithm using predictor-
corrector iterations in the computation of the velocities; see [10] for details. The simulations
described here used the constant time step 4.639 · 10−5 and the potential cut-off 2.937.

In the two-phase method for determination of the melting point the molecular dynam-
ics simulation starts from an initial configuration that is part solid and part liquid. As the
(N,T, P ) simulation proceeds the whole liquid part will solidify, if T < TM for the given
pressure, or the solid will melt, if T > TM, resulting in a single phase system. Starting
from a coarse estimate of the temperature interval containing the melting temperature,
that interval can be narrowed down by running simulations at temperatures in the interval
and noting whether they equilibrate to an all solid or an all liquid system. The validity of
this two-phase approach has been verified in [1] for determining, among other things, the
melting point of a molecular dynamics model of Xenon, similar to the Argon model used
here.

The initial configuration in a two-phase simulation was composed of pre-simulated solid and
liquid configurations. The solid part was prepared by taking a perfect FCC configuration
and performing a short molecular dynamics run at the temperature and pressure of the in-
tended two-phase simulation to adapt the size of the computational cell. Initially the sides
of the computational cell were aligned with the sides of the unit cube in the perfect FCC lat-
tice; see Figure 3. While in general the dynamics of the cell edges in the Parinello-Rahman
equations allow the cell to take the shape of any parallelepiped, here the dynamics were
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(a) The FCC unit cube (b) Eight FCC unit cubes

Figure 3: A perfect FCC lattice consists of FCC unit cubes, (a), stacked next to each other
in three dimensions, (b). With one atom in the (0, 0, 0) corner of the unit cube the three
other atoms are placed at the centres of the cubic faces intersecting in (0, 0, 0).

restricted to only allow rescaling, without rotation, of the three edges and thus keeping the
rectangular box shape of the cell. The preparation of the liquid part started from the con-
figuration of the already prepared FCC-solid and a run was performed at a temperature well
over the estimated melting point, where the sample would melt quickly; after equilibrating
at the higher temperature the sample was quenched to the temperature of the two-phase
simulation. Only one side of the computational cell was allowed to change while preparing
the liquid part and thus the orthogonal cross section of the simulation cell was preserved
from the FCC simulation. The solid and liquid parts were joined in the two-phase initial
configuration by placing them next to each other, letting the cell faces of identical shape
face each other. The general appearance is similar to the configurations shown in Figure 5
on page 16, even though those configurations belong to the constant volume Smoluchowski
simulations where the set up procedure is slightly modified. Periodic boundary conditions
were still applied in all directions, so that each part (solid or liquid) corresponded to a
semi-infinite slab surrounded on two sides by the other phase with the effect of simulating
a periodic, sandwiched, material. Voids of thickness of approximately one nearest neigh-
bour separation were introduced in both solid–liquid interfaces to make sure that no pair
of particles ended up to close in the initial configuration. Since the two-phase simulations
were performed at constant pressure, the voids would fill in the beginning of the run as the
length of the computational cell decreased.

In the two-phase simulations the lengths of all three vectors defining the cell edges were
allowed to change. Starting from an initial two-phase configuration the molecular dynam-
ics simulation was run until the system was considered equilibrated. After equilibration
the computational cell was filled with either the solid or the liquid phase. The density of
the FCC solid is higher than that of the liquid phase. If the phase change was solidific-
ation of the liquid, then the volume of the computational cell would decrease during the
equilibration stage before assuming an approximately constant value; if the solid was melt-
ing, the total volume would grow during equilibration. The density of the stable phase at
the given pressure and temperature was obtained by time averages of the simulation after
equilibration.

When the volume per particle is shown as a function of the temperature, at constant
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pressure, it will display a sharp change at the melting point; see Figure 4(a) on page 12. The
procedure will obtain an interval around the melting point and the accuracy can be improved
by performing simulations at more temperatures to shorten the interval of uncertainty.
However, the equilibration requires longer time when close to the melting point and the
cost for refining the approximation grows, not only because the number of simulations
grows, but more importantly because every single simulation takes longer to perform.
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Va ρ
Liquid 0.8060 1.241
FCC 0.7714 1.296
Combined 0.7883 1.269

(b) Extrapolated data at T = 2.9

Figure 4: (a) Volume per atom as a function of temperature at a the pressure 47.6554
(or 2.0 GPa) in (N,P, T ) simulations. Data points from simulations that are considered
equilibrated are marked with ◦ and those from simulations that are not equilibrated are
marked with ×. The two regions of equilibrated values where the volume per atom varies
approximately linearly correspond to solid (FCC), at lower temperatures, and liquid, at
higher temperature, respectively. The melting point at the given pressure is somewhere
in between; the approximate value T = 2.9 is used below and in the constant volume
simulations.
(b) The volume per atom of solid and liquid have been extrapolated to T = 2.9 by least
square fits of straight lines to the simulation data and the corresponding number densities,
ρ, have been computed. If T = 2.9 is sufficiently close to the melting point at this pressure,
then the two phases will coexist in constant volume, (N,V, T ), simulations provided that
the total density is between the estimated densities of pure solid and pure liquid. The
ratio of the volumes of the solid and the liquid part is determined by the total density
of the combined system. The tabulated value of the density for a combined system gives
approximately equal volumes of both parts at a pressure close to the one in the constant
pressure simulations.

The main purpose here is to investigate the possibility of obtaining the model functions
in a coarse grained phase-field model from (N,V, T ) Smoluchowski dynamics simulations,
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as described next. Therefor the accuracy in the determination of the melting point at the
given pressure is critical only to the extent that it must be possible to perform the constant
volume simulations at this temperature; that is, it must be possible to perform simulations
on a two-phase system with stable interfaces between the solid and liquid parts. If the
purpose were to perform computations at the melting point at this very pressure, then
more computational effort would have to be spent on the accuracy of the melting point and
the corresponding densities.

The numerical simulations were performed with N = 8000 particles; the initial solid con-
figuration consisted of 4000 particles, corresponding to 10×10×10 FCC unit cells with four
atoms each, and the liquid had the same number of particles. From simulations at the
pressure 47.7 in the reduced Lennard-Jones units (corresponding to 2.0 GPa) an approx-
imate value of 2.9 for the melting point was obtained together with number densities for
the liquid and solid extrapolated to this temperature; see Figure 4 on page 12. Fixing the
temperature and the number density N/V , only one degree of freedom remains in the triple
(N,V, T ), allowing the system size to vary.

2.1.3 Smoluchowski System Simulated at Constant Volume

The constant volume and temperature Smoluchowski dynamics two-phase simulations de-
scribed here were used to compute the functions (10) defining the coarse-grained phase-
field dynamics (7), as described in the introduction. This meant computing time averaged
quantities like the time averaged potential energy phase-field (9) and the corresponding
coarse-grained drift and diffusion coefficient functions (8).

The mathematical model is that ofN particles whose positionsXt follow the Smoluchow-
ski dynamics

dXt = −∇XU(Xt) dt+
√

2kBT dW t, (14)

introduced on page 3. There are no velocities in the Smoluchowski dynamics. Instead
the positions of all particles in the system give a complete description of the system at a
particular time. Such a description, Xt, will be refered to as a configuration of the system.
The particles are contained in a computational cell, shaped like a rectangular box, of fixed
dimensions and the boundary conditions are periodic in all directions. Hence the volume,
V , and the number of particles, N , are fixed. Without velocities there is no kinetic energy,
but the temperature, T , enters directly in the dynamics. The temperature parameter is
held fixed, which can be viewed as a kind of thermostat built into the dynamics.

Since the volume of the computational cell is constant, unlike in the (N,T, P ) simulations
above, the overall density of the system remains constant over time, which allows for sta-
tionary two-phase configurations where part of the domain is solid and part is liquid.

The numerical simulations The discrete time approximations X̄n of Xtn , were com-
puted using the explicit Euler-Maruyama scheme

X̄n = X̄n−1 −∇XU(X̄n−1) ∆tn +
√

2kBT ∆Wn, (15)
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where ∆tn = tn−tn−1 is a time increment and ∆Wn = W (tn)−W (tn−1) is an increment in
the 3N -dimensional Wiener process. Each run was performed using constant time step size,
∆tn ≡ ∆t, but the time step could change between different runs depending on the purpose;
in the equilibration phase the typical step size was ∆t = 10−4, but in the production phase
the step size had to be taken smaller, as discussed later.

The computation of ∇XU(X̄n−1) in every time step is potentially an O(N2) operation
since the potential is defined by pairwise interactions. The computations described here
used the potential cut-off radius 3.0, which meant that each particle only interacted directly
with a relatively small number of neighbours (independent of N since the density was
approximately constant). To avoid the O(N2) task of computing all pairwise distances
in each time step, the computational cell is divided into smaller sub cells, where the size
is defined in terms of the cut-off radius so that two particles only can interact if they
are in the same sub cell or in two neighbouring sub cells; information about particles
migrating between sub cells is exchanged in each time step. The computations use a two
dimensional grid of sub cells, where the particle positions within each sub cell are sorted
with respect to the third coordinate dimension in every time step. When the particles are
sorted the sweep over all particles in a sub cell can be efficiently implemented and the sorting
procedure is not too expensive since the particles do not move far in one time step. A more
thorough description of this algorithm can be found in [13]. The actual code used here is a
modification of a parallelised code for Newtonian molecular dynamics obtained from Måns
Elenius in Dzugutov’s group[4]; the main modifications when adapting to Smoluchowski
dynamics is the removal of velocities from the system and the introduction of a pseudo
random number generator for the Brownian increments, ∆Wn.

With the cut-off radius 3.0 used in the computation and the model parameters in Table 2.1.1
on page 9, the Exp-6 pair potential and its derivatives are small at the cut-off radius. Still
the potential will be discontinuous at the cut-off, unless it is slightly modified. A small
linear term is added to make the potential continuously differentiable at the cut-off radius.
In the practical computations, both the pair potential and the derivatives were obtained by
linear interpolation from tabulated values.

The random number generator for normally distributed random variables was the Ziggurat
method, described in [6], in a Fortran 90 implementation by Alan Miller, accessible from
Netlib [7]. The underlying 32-bit integer pseudo random number generator is the 3-shift
register SHR3. Since the purpose of the simulations only is to investigate if the coarse-
graining procedure gives reasonable results just one pseudo random number generator was
used, while several different random number generators ought to be used in a practical
application. The generator was initialised with different seeds on different processors in the
parallel computations, but it does not have distinct cycles simulating independent random
variables. The hope is that the nature of the molecular dynamics simulations is enough
to avoid the danger of correlated random numbers on the different processors, but this
could be tested by comparing with other pseudo random generators that actually simulate
independent random variables on different processors.

The two-phase systems for the Smoluchowski dynamics simulations were set up to
obtain a two-phase system at temperature T = 2.90 with approximately equal volumes of
solid and liquid and with stationary interfaces. To achieve this two equal volumes of FCC-

14



solid and liquid were pre-simulated with the densities tabulated in Figure 4, on page 12.
The preparation of the initial configurations for the Smoluchowski dynamics two-phase
simulations was similar to the procedure described above, but some adjustments must be
made because of the constant volume restriction. The shape of the computational cell used
when generating the solid part was chosen to match the periodic structure of the FCC
lattice at the tabulated density for the FCC part. A short equilibration run, at T = 2.90,
starting from a perfect FCC lattice at this density gave the initial solid configuration. The
computational cell for the initial liquid part was chosen to be the same as the one in FCC
simulation and the initial configuration when pre-simulating the liquid part was obtained
from the FCC configuration by distributing vacancies to get the correct density in the liquid.
In a simulation of (15) using a temperature, T , above the melting point, TM, the sample
was melted and equilibrated. Afterwards the liquid was cooled to desired temperature using
a subsequent simulation with T = TM.

Since no pair of atoms can be too close in the initial configuration, gaps had to be intro-
duced between the solid and liquid parts, but the voids could not be introduced as additional
volumes in the computational cell; the individual parts were equilibrated at (N,V, T ) corres-
ponding to the expected densities for solid and liquid in the combined system, so increasing
the total volume would reduce the overall density, resulting in partial or total melting of the
solid part. To make room for the voids both the solid and the liquid parts were compressed
slightly in the direction normal to the solid–liquid interfaces, before inserting them in their
respective volumes in the computational cell for the two-phase simulation. Initial configur-
ations obtained by this procedure are shown as configurations (a) and (c) in Figure 5, on
page 16. The orientation of the solid–liquid interfaces with respect to the FCC lattice differ
between the two initial configurations shown, and these orientations with the corresponding
numerical simulations will be labelled Orientation 1 (O1) and Orientation 2 (O2) in the
following. The shaded plane in Figure 6(b) shows the orientation of the interface in O1 and
the shaded plane in Figure 6(c) shows the orientation in O2.

Even though the compression in one direction was small, it introduced an artificial internal
stress in the system. The higher value of the phase-field in the subfigures (a) and (c) in
Figure 5 compared to the corresponding regions in the subfigures (b) and (d) is an effect
of the compression. In the initial phase of the equilibration of the two-phase system, the
compressed parts expand to fill the voids. The phase-fields in the interiors of the solid and
liquid parts in subfigures (b) and (d) have reached the levels seen in the corresponding
single phase systems, which shows at least that the local potential energy contributions had
returned to normal before the production runs started.

As a test of the two-phase configuration serving as initial data in the production run, the
radial distribution functions in the interior of the two phases were computed. The radial
distribution function, g(r), is useful for identifying the phase of a single-phase system. For
a single component system g(r), where r ∈ R

+, is implicitly defined by the condition that
the average number of atoms in a spherical shell between the radii r1 and r2 from the centre
of any atom is

ρ

∫ r2

r1

g(r)4πr2 dr,

where ρ is the global particle density. In other words, the radial distribution function is the
average particle density, as a function of the separation r, normalised by overall density.
Figure 7, on page 18, shows good agreement for simulation O2 between g(r) corresponding
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(a) Initial configuration, orientation 1

(b) Configuration at a later time, orientation 1

(c) Initial configuration, orientation 2

(d) Configuration at a later time, orientation 2

Figure 5: Snapshots of the process of setting up initial configurations for the two-phase
simulations O1 and O2. The left part is solid (FCC) and the right part liquid. In the
initial configurations, (a) and (c), the individual parts have been equilibrated at Tmelt (for
the combined system), and slightly compressed in one direction (to allow for two gaps).
Subfigures (b) and (d) show configurations at later times when the parts have expanded
to fill the voids and form two interfaces. The atoms are coloured according to a computed
phase variable; in (a) and (b) the phase variable is just the instantaneous field m(x1;X

0),

whereas (b) and (d) use discrete time averages approximating 1
t2−t1

∫ t2
t1
m(x1;X

t) dt.

Simulation O1 used 64131 particles in a computational cell of dimensions
93.17 × 23.29 × 23.29, while simulation O2 used 78911 particles in a cell of dimen-
sions 100.86 × 24.71 × 24.96.
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(a) Unit cell (b) Orientation 1 (c) Orientation 2

Figure 6: The shaded planes in (b) and (c) show the two orientations of the solid-liquid
interface with respect to the FCC lattice treated in the numerical simulations.

to single phase solid and liquid configurations and g(r) computed in the interior of the two
phases, excluding two intervals of length 10.0 in the interface regions.

An effect of the finite size of the computational cell is that periodic boundary conditions
may interact with the solid and affect the results; here the computational cell was chosen to
match the FCC structure in a specific orientation with respect to the box and thus stabilises
the structure and orientation. It is important to know that the density in the FCC part (and
hence the box cross section) is consistent with constant pressure simulations close to the
melting point. A related question is whether the length of the computational box is large
enough for properties around the interfaces in the infinitely layered structure to be good
approximations of those near an interface between a solid and liquid on the macroscopic
scale.

2.2 Computation Of the Coarse-Grained Model Functions

The coefficient functions (10) in the stochastic differential equation (7) for the coarse-grained
phase-field are defined in terms of the time averaged expected values (8) and (9) on the
form

1

T E

[∫ T

0

ψ(·;Xt)

∣∣∣∣ X
0 = X0

]
,

where X0 is a configuration of a stationary two-phase system. By setting up an initial
configuration, X0, as described in the previous section, and simulating discrete sample
trajectories using the Euler-Maruyama method (15), a sequence of configurations {X̄k}K

k=1

approximating the sequence {Xtk}K
k=1 for some times 0 < t1 < · · · < tK = T , is obtained.

In a post processing step a set of configurations S ⊆ {X̄k}K
k=1 is selected and averages

AS (ψ) =
∑

X∈S

ψ(·;X )wX ,

consistently weighted with weights wX , are computed as approximations of the correspond-
ing expected values in the continuous time model. It is usually more efficient not to include
every configuration in the averages. This will be discussed in Section 3.

As described in the introduction, the averages are functions of the coordinate direction x1,
normal to the planar interface, since the mollifier in the definition (5) of the microscale
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Figure 7: The radial distribution function, g(r), computed from several configurations,
separated in time, in the process of setting up the two-phase system in simulation O2. The
solid curve shows g(r) computed as an average over all particles in the computational cell
used while pre-simulating the solid and the liquid part, in subfigure (a) and (b) respectively.
The dashed curves show g(r) computed as an average over particles in two slices of the
computational cell of the two-phase system; subfigure (a) shows g(r) obtained from the
slice 5.0 ≤ x1 ≤ 45.43, inside the solid phase, and subfigure (b) shows g(r) from the
slice 55.43 ≤ x1 ≤ 95.86, inside the liquid phase. The configurations are taken from an
equilibration run, after the closing of the initial gaps between the pre-simulated phases,
but before the “production” run. The radial distribution functions show good agreement
between the single phase systems and the corresponding solid and liquid subdomains away
from the interface.
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phase-field, m, is chosen to take uniform averages in the planes parallel to the interface.
The mollifier used in the computations is

η(x) = η(x1) = c exp

(

−1

2

(x1

ǫ

)2
)
1|x1|<Rc

, (16)

where c is a normalising constant, ǫ is a smoothing parameter, and Rc is a cut-off. The
smoothing parameter is on the order of typical nearest neighbour distances, ǫ ≈ 1, and
Rc = 6ǫ, for all choices of ǫ, which gives η(Rc) ≈ 1.5 · 10−8η(0); the shape of η can be seen
in Figure 25(a), on page 41.

An explicit derivation of expressions for the drift and the diffusion is given in Appendix A.
Separating the drift in terms containing two, one, and zero, derivatives of the mollifier, the
right hand side of (8a) is approximated by

kBT
∂2

∂x2
1

AS (m) +
∂

∂x1
AS (a1) + AS (a0),

where

a1(x;X ) =

N
∑

j=1

(kBT −mj(X ))[Fj(X )]1η(x−Xj) (17)

and

a0(x;X ) = −
N

∑

j=1

(

kBT∇Xj
· Fj(X ) +

1

2
||Fj(X )||2

)

η(x−Xj)

− 1

2

N
∑

j=1

N
∑

i 6=j,i=1

fij(X ) · Fj(X )η(x−Xi). (18)

Here Fj is the total force acting on particle j, [Fj(X )]1 is the x1-component of the force,
and fij are the contributions from individual pairs,

Fj(X ) = −∇Xj
U(X ) =

N
∑

i 6=j,i=1

Φ′(||Xi −Xj ||)
Xi −Xj

||Xi −Xj ||
=

N
∑

i 6=j,i=1

fij(X ).

The right hand side in equation (8b), for the coarse grained diffusion, is approximated by

B(·, ·) = AS



2kBT

N
∑

j=1

(

pj(·, ·;X) + qj(·, ·;X)
)



, (19)

where

pj(x, y;X ) =

(

mj(X )

ǫ2

)2
[

x−Xj

]

1

[

y −Xj

]

1
η(x−Xj)η(y −Xj)

− mj(X )

2ǫ2
[x−Xj ]1η(x−Xj)

(

[Fj(X )]1η(y −Xj) +

N
∑

i 6=j,i=1

[fij(X )]1η(y −Xi)

)

− mj(X )

2ǫ2
[y −Xj ]1η(y −Xj)

(

[Fj(X )]1η(x−Xj) +

N
∑

i 6=j,i=1

[fij(X )]1η(x−Xi)

)
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and

qj(x, y;X ) =
1

4

(

Fj(X )η(x−Xj) +

N

i 6=j,i=1

fij(X )η(x−Xi)

)

·
(

Fj(X )η(y −Xj) +

N

i 6=j,i=1

fij(X )η(y −Xi)

)

.

The functions AS (ψ) are computed in a discrete set of points DK = {xi
1}K

i=1 along the x1

axis of the molecular dynamics domain. This makes the computed components, AS (m),
AS (a1), and AS (a0), of the drift coefficient function K-vectors and the computed B a
K-by-K matrix. The individual diffusion coefficient functions bj are obtained by taking

the square root of the computed diffusion matrix, B = B
1/2

(B
1/2

)T, and letting the j:th

column of B
1/2

define bj . While an exact computation would produce a symmetric positive
semi definite matrix B, finite precision effects make some computed eigenvalues negative,
but small in absolute value. In an eigenvector factorisation of B, let Λ denote a diagonal
matrix with all eigenvalues of B and Λ+ a smaller diagonal matrix containing the dominant,
possibly all, of the positive eigenvalues but no negative ones. Let V and V+ be the matrices
of the corresponding eigenvectors. Then the square root of the matrix Λ+ is a real diagonal
matrix which can be used in the approximation

B = V ΛV T ≈ V+Λ+V+
T =

(
V+Λ+

1/2V+
T
) (

V+Λ+
1/2V+

T
)T

=: BBT. (20)

With one Wiener process W̃j in the coarse-grained stochastic differential equation (7) per
evaluation point, K = M , the component vectors, bj , of the diffusion in coarse-grained
equation can be defined as the column vectors of the matrix B, to obtain

M
∑

j=1

bjb
T

j ≈ B.

If two grid points, x1 and y1, are further apart than twice the sum of the cut-off in the
potential and the cut-off in the mollifier, then pj(x, y; ·) and qj(x, y; ·) is zero; hence a
natural ordering x1

1 < x2
1 < · · · < xK

1 of the grid points makes B a band matrix. The
definition of B in (20) preserves the connection between grid points and diffusion functions
and the dominating terms in a tabulated vector bj are those of nearby grid points.

3 Results

This section describes results from numerical simulations performed to compute the coarse-
grained model functions. The value of the smoothing parameter ǫ in the mollifier is 1.0,
unless another value is specified.
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3.1 The averaged phase-field mav ≈ AS (m)

The first observation is that during the time intervals of the molecular dynamics simula-
tions, the interfaces between the solid and the liquid subdomains were sufficiently stable
for the averaged potential energy phase-fields, AS (m), to appear qualitatively right. The
phase-field appears to have two distinct equilibrium values, corresponding to the solid and
liquid subdomains, and the transitions between the two regions are smooth and occur over
distances of a few nearest neighbour distances; see Figure 8. Figure 9(b) shows that the com-
putational cells in the molecular dynamics simulations are large enough for the phase-field
in the interior of the two phases to attain values similar to the values in the corresponding
single phase simulations. In simulations with a cubic, 23.29× 23.29× 23.29, computational
cell the gap between the phase-field levels in the solid and the liquid was significantly smal-
ler, which indicates that the length of the computational cell can not be taken much smaller
than in simulations O1 and O2. It is still possible that further increasing the size of the
computational cell may affect the results.

3.2 The averaged drift a ≈ AS (α)

The average AS (m) approximates the expected time average (9). The next expected value
to study is the one defining the coarse grained drift in (8a). In a stationary situation, where
the interfaces do not move during the simulation and the averaged phase-field converges to a
stationary profile, the average total drift in the stochastic differential equation describing the
phase-field variable must converge to zero. Still the time averaged total drift corresponding
to the simulation O2, whose averaged phase-field was discussed above, is far from zero; see
Figure 10. The computed time averaged drift

AS

(

α(x; X̄n)
)

≈ 1

T E

[∫ T

0

α(x;Xt) dt
∣

∣

∣
X0 = X0

]

depends both on the length of the time interval where the average is computed, the number
of configurations used in the average, and on the discrete approximation X̄n of Xtn ; these
potential error sources must be analysed to explain the result.

3.2.1 The effect of discrete time dynamics

First consider the error associated with the discrete dynamics. The explicit form of the
drift is derived for the continuous time mathematical model with the Smoluchowski dy-
namics (14), and not the discrete time Euler-Maruyama dynamics (15) that is used in the
numerical simulations. For a fixed size of the time step this means that, even if the state
of the numerical simulation is stationary on the time scale of the simulation so that time
averaged phase-field converges to an equilibrium profile, the time averaged total drift will
not go zero because of the time discretisation error. Figure 11 shows that the computed
radial distribution functions, here from single phase solid configurations, are close when the
time steps used vary from 10−7 to 10−4; still the larger time steps give average computed
drifts AS

(

α(x; X̄n)
)

that are inconsistent with the observed time evolution of the average

phase-field AS

(

m(x; X̄n)
)

. As shown in Figure 13, the time step ∆t = 1 · 10−5 gives an
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(f) Orientation 2

Figure 8: Subfigures (a) and (c) show the potential energy phase-field, AS (m), computed
from simulations O1 and O2, respectively. Subfigures (b) and (d) show the correspond-
ing spatially averaged particle densities. Subfigures (e) and (f) show the pointwise sample
variance associated with the averages in (c) and (d). The thick parts of the curves show
the computed functions in molecular dynamics cell. The thinner parts show the periodic
continuations across the boundaries of the cell, marked by circles. The averages in sim-
ulation O1, and O2, were formed over 1721, and 1775, configurations separated in time
by 5 · 10−4, so that the total time from first to last configuration was 0.860, and 0.8875,
respectively. The high frequency fluctuations are small after averaging on this time scale,
but larger fluctuations remain in both phases. This suggests that the two phase system is
not yet equilibrated. Still the computed phase-fields appear qualitatively correct.
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Figure 9: The computational cell in the molecular dynamics simulations must be sufficiently
large for the infinitely layered structure to resemble a system with a single solid–liquid
interface on the macroscopic scale. In simulation O2 the total length of the computational
cell was 100.86; subfigure (b) shows that this was sufficient for the averaged phase-field,
AS (m), to obtain values in the interior of each phase that are similar to the functions,
marked by thick curves, obtained in the single phase configurations simulated during the
setup of simulation O2.
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Figure 10: The average total drift, AS (α), based on the same 1775 configurations from
simulation O2 as AS (m) in Figure 8(c), is still dominated by large oscillations.
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average drift that oscillates between -100 and -250, even when the computed phase-field
AS

(
m(x; X̄n)

)
is approximately constant over times of the order 10. For this reason, the

time step used in simulations O1 and O2, generating configurations for the computation of
AS

(
m(x; X̄n)

)
and AS

(
α(x; X̄n)

)
, was ∆t = 5·10−7 , while the time step used in the setup

of the initial configurations often was a thousand times larger. With this small time step
the fluctuations in the computed average drift outweighs the deviation from the expected
zero mean; see Figure 10.

The choice of the time step size ∆t = 5 · 10−7 was guided by a rough error estimate, taking
into account the maximal absolute value of second order derivatives of the Smoluchowski
drift −∇Xj

U(Xt) when the nearest neighbours don’t come closer than approximately 0.8, as
indicated by Figure 11. Then the time step was adjusted so that the slow convergence of the
time averaged drift in terms of T and the number of configurations, X̄n, was the dominating
error source in the results. This over-killing of the time discretisation error in the molecular
dynamics wastes computer power and could possibly be avoided by more accurate error
estimates, allowing a matching of the different error contributions. Using a reasonable
number of grid points, K, in the computation of the drift coefficient K-vectors and the
diffusion K-by-K matrix B, in (19), the computational cost for obtaining B in particular,
far exceeds the cost of actually making a time step in the molecular dynamics simulation.
Hence the additional cost of over-killing the time step error is not very significant, provided
that not every configuration in the time stepping is included in the averages AS (m), AS (α),
and B. In the averages shown in Figure 8 and Figure 10, for example, the configurations
were sampled at time intervals 5 · 10−4, corresponding to 1000 time steps in the molecular
dynamics simulation.

A further improvement may be to incorporate finite step-size effects in the expressions for
the components of the drift. The higher order derivatives of the pair potential attain large
values when two particles come closer than 1; see Figure 12. Hence the time step must
be taken very small for Itô’s formula to be a good approximation of the dynamics of the
discrete system. Instead of a direct application of Itô’s formula in the derivation of the drift
and diffusion terms in (26) and (27) on page 44 one could include higher order terms in the
expansion to improve the accuracy of the computed drift.

3.2.2 Dependence on the length of the time averaging interval

Next consider the dependence of the computed coarse-grained drift coefficient function on
the length of the time interval T . Introducing the time averaged drift over a sample path
as

AT =
1

T

∫ T

0

α(·;Xt) dt,

the coarse-grained drift (8a) is a = E[AT ]. The rate of convergence of a, as T → ∞, in
the continuous time mathematical model can be estimated by integration of the stochastic
differential equation (6) for the phase-field m. Integrating from 0 to T gives

m(·;XT ) −m(·;X0) =

∫ T

0

α(·;Xt) dt+

∫ T

0

N∑

j=1

3∑

k=1

βj,k(·;Xt) dW t
j,k, (21)
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Figure 11: The radial distribution function, g(r), computed using four different step sizes
in a single phase FCC simulation. The difference between the curves is small (a), even if
the one obtained for ∆t = 10−4 differs visibly from the others in the first peak (b). In spite
of the good approximation in the radial distribution function, the larger step sizes give very
poor results in the computed dynamics of m.
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Figure 12: The absolute value of the Exp-6 potential and its derivatives grow very quickly
with decreasing r, in the range with positive g(r) in Figure 11(b). The potential and its
two first derivatives using the model parameters in Table 2.1.1, on page 9, are shown here.
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(d) AS (a0)
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Figure 13: Using the step size ∆t = 1 · 10−5 in the Euler-Maruyama scheme, the computed
average phase-field AS (m) is approximately stationary during the time interval of the
averaging. In subfigure (a) the average is based on 123 configurations, sampled at every ten
thousandth time step, corresponding to a total time interval of 12.3. Still, the computed
average drift AS (α) is far from zero during this time interval. The large deviation from
zero is entirely due to the term AS (a0).
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(a) Mean based on 111 configurations, T = 0.0555
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(b) Mean based on 444 configurations, T = 0.2220
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(c) Mean based on 1775 configurations, T = 0.8875

T = 0.0555 T = 0.2220 T = 0.8750
111 cfgs. -5.7 (1.3 · 103) -10.3 (1.2 · 103) 4.3 (1.1 · 103)
444 cfgs. 6.1 (2.1 · 102) 0.67 (2.7 · 102)
1775 cfgs. 1.9 (3.8 · 101)
(d) The spatial (x1) mean and, within parentheses, variance of AS (α)

Figure 14: The total drift AS (α), decays slightly faster with T than the predicted 1/
√
T

in the examples (a), (b), and (c) above. Here the number of configurations in the averages
grows with T and the means and variances of AS (α) tabulated in (d) suggest that the
number of configurations still restricts the rate of convergence. The average in subfigure (c)
is based on the same 1775 configurations from simulation O2 as AS (m) in Figure 8(c).
The averages in subfigures (a) and (b) are based on the first 111 and 444 configurations,
respectively.
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so that, by taking the expectation and using that, since Xt is W t-adapted, the expectations
of the Itô-integrals vanish

E

[
∫ T

0

α(·;Xt) dt

]

= E
[

m(·;XT ) −m(·;X0)
]

. (22)

Hence, if the phase-field is stationary, then the expected mean drift over time is zero.
Normalising (21) and (22) by T ,

AT − E
[

AT

]

=

1

T



m(·;XT ) −m(·;X0) − E
[

m(·;XT ) −m(·;X0)
]

−
N
∑

j=1

3
∑

k=1

∫ T

0

βj,k(·;Xt) dW t
j,k





and the variance of AT is obtained as

Var[AT ] = E
[

(

AT − E
[

AT

])2
]

=
1

T 2
Var

[

m(·;XT ) −m(·;X0)

]

+
1

T 2

N
∑

j=1

3
∑

k=1

E





(

∫ T

0

βj,k(·;Xt) dW t
j,k,

)2




− 2

T 2
E





(

m(·;XT ) −m(·;X0)
)





N
∑

j=1

3
∑

k=1

∫ T

0

βj,k(·;Xt) dW t
j,k







 ,

where last expression was simplified using the independence of the different components of
W t, and the zero expected value of Itô integrals. Assuming that both the phase-field and
all the diffusion coefficients are bounded, the dominating term in the expression for the
variance is

1

T 2

N
∑

j=1

3
∑

k=1

E





(

∫ T

0

βj,k(·;Xt) dW t
j,k,

)2


 = O 1

T

)

.

In the two phase simulations considered here, the values of the computed phase-field var-
ies between a lower level in the solid a higher in the liquid. Because of the small positive
probability for two particles, with trajectories computed using the Euler-Maruyama dynam-
ics (15), to get within an arbitrarily small distance of each other, there is no guarantee that
computed phase-field always will stay in this range. However, if the minimum interatomic
distance becomes to small, that is a breakdown of the whole microscopic model and not just
a problem when computing the drift; this situation has not been observed to happen in the
simulations here and the observed values of the phase-field are all in the range (−1.5, 1.0).
Hence the assumption that m is bounded seems reasonable here; a bound on the absolute
value of the diffusion coefficients βj,k is less certain, and it will have to be larger than the
bound on m.

For the average drift to be small compared to the stationary values of the phase-field itself, it
must be at least a factor 100 smaller than the computed average shown in Figure 10. Based
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on the rough analysis above, the expected time average of the total drift can be expected to
decay as 1/

√
T with a large constant factor. When the computed drift AS (α) in Figure 10

is compared to averages computed using two smaller subsequences of configurations, the
convergence to zero appears to be slightly faster than 1/

√
T ; see Figure 14. Even when

extrapolating with the measured convergence rate, decreasing the average drift by a factor
100 would require increasing the averaging time interval by more than a factor 1000, which
is beyond reach within the present project. With increasing accuracy in the time average,
eventually the time step in the molecular dynamics simulations must be decreased, further
increasing the computational cost.

Since the total drift coefficient function, a(x1) ≈ AS (α(x1; ·)), where

AS (α(x1; ·)) = kBT
∂2

∂x2
1

AS (m(x1; ·)) +
∂

∂x1
AS (a1(x1; ·)) + AS (a0(x1; ·)), (23)

in the coarse grained model is expected to be zero in a stationary situation, a more accurate
computation would serve primarily as a consistency test. On the other hand, the individual
terms in the right hand side are not all expected to vanish independently. Indeed, it is clear
from the results on AS (m(x1; ·)) in Section 3.1 that the term with two differentiations with
respect to x1 will not be identically zero. This also shows that while the total drift is far
from AS (α(x1; ·)) converged, at least one term is reasonably accurate.

A closer look on the terms of the drift, reveals that the different terms are of different
orders of magnitude. The term AS (a0(x1; ·)), with a0 defined in (18), contains both second
order differentials of the potential with respect to the particle positions and second powers
of first order differentials. These terms, as illustrated in Figure 12, attain much larger
values than the potential itself and cancellation is required to reduce AS (a0(x1; ·)) to a
size comparable with the two other terms in the drift. Figure 15(e) shows an individual
a0(x1; ·) computed from one configuration; in the length of the computational cell, the
values range from approximately -500 to +500, whereas the phase-field, m(x1; ·), is of the
order 1, and a1(x1; ·) is of intermediate magnitude. A comparison between the computed
averages AS (α(x1; ·)) in Figure 14 and AS (a0(x1; ·)) in Figure 15 shows that AS (a0(x1; ·))
is the dominates the other two terms completely here.

The average AS (a1(x1; ·)), contains first order differentials of the potential, but only to
the first power. The convergence of is faster than that of AS (a0(x1; ·)), but the computed
averages in Figure 16 still show significant fluctuations. The final term in AS (α(x1; ·)) is

kBT
∂2

∂x2
1

AS (m(x1; ·)), which only depends on the potential and not its derivatives. This

average converges faster than the other two and, even after two differentiations with respect
to x1, the fluctuations are small compared to the distinct structures at the interfaces; see
Figure 17.

3.2.3 Obtaining the phase-field double-well potential from the drift

When defining a phase-field variable in terms the potential energy in the microscale model
in Section 1, the goal was to compute a reaction–diffusion equation, like the Allen-Cahn
equation (2b), for the coarse-grained phase-field. In a one dimensional problem, with T ≡
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(b) Mean based on 444 configurations, T = 0.8875
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(c) Mean based on 444 configurations, T = 0.2220
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(d) Mean based on 1775 configurations, T = 0.8875
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(f) Variance based on the configurations in (d)

Figure 15: The term AS (a0) is the slowest converging average in the drift average; a
comparison with Figure 14 shows that this term dominates the total drift average. This
explicit form of the term, given in (18) is a sum over all particles of terms that are second
order in the particle forces and a term containing the divergence of the particle force; in
the molecular dynamics simulation, these terms are large and so is the function a0, when
computed from a single configuration, as in (e). Eventually the average must decrease to
order 1 through cancellation, but for the number of configurations available here fluctuations
dominate the computed averages AS (a0).
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(a) Mean based on 111 configurations, T = 0.8875
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(b) Mean based on 444 configurations, T = 0.8875

−40 −20 0 20 40 60 80 100 120 140
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x
1

Drift component  a
1
 

(c) Mean based on 444 configurations, T = 0.2220
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(d) Mean based on 1775 configurations, T = 0.8875

Figure 16: The term AS (a1) is supposed to approach zero as the number of configurations,
and T , increases, provided that the interfaces are stationary. Though the fluctuations are
large here, they are much smaller than in Figure 15. When the fluctuations decrease a
pattern appears with peaks at the two interfaces. This supports the observation, from the
computed AS (m) in Figure 8, that the two phase system is not in equilibrium yet and the
interfaces are not really stationary on the time scale of the average.
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TM and k1 constant, the Allen-Cahn equation reduces to

∂φ

∂t
= k1

∂2

∂x2
1

φ− k2f
′(φ) + noise, (24)

where the derivative of the double-well potential f gives the reaction part in this reaction–
diffusion equation. Now, the coarse-grained equation

dmt
cg(x1) =

(

kBT
∂2

∂x2
1

mt
cg(x1) +

∂

∂x1
a1(x1) + a0(x1)

)
dt+

M∑

j=1

bj(x) dW̃
t
j ,

where

a1(x1) = AS (a1)(x1), a0(x1) = AS (a0)(x1) , for x1 ∈ DK ,

and the diffusion coefficient vectors, bj , are obtained from the factorisation (20), is a
stochastic convection–reaction–diffusion equation. As the described above the time av-
eraged drift is zero in a stationary situation, but in the computations presented here the
fluctuations are still too large. In the ideal situation for a stationary interface, when all
three components in the drift average have converged, the convection should vanish, that is

∂

∂x1
a1 ≡ 0,

and the reaction and diffusion parts should cancel each other, so that

0 = kBT
∂2

∂x2
1

mt
cg(x1) + a0(x1). (25)

The second best thing, when some of the computed averages contain too large errors, is

to extract information from the most accurate part, that is kBT
∂2

∂x2
1

mav(x1). Assuming

that this computed average already is close to what it would be in the ideal situation, an
approximation of the reaction term can be obtained from (25).

The expression of the drift in the coarse-grained equation (7) as a function of the coarse-
grained phase-field mcg in the interface regions, instead of the space variable x1, assumes
monotonicity of the phase-field near the interfaces to allow the inversion in (10). Figure 18

shows mav(x1) and kBT
∂2

∂x2
1

mav(x1) in the interval of monotonicity for mav(x1) in the

simulation O2. Using the computed kBT
∂2

∂x2
1

mav(x1) in (25), gives

a0(x1) = −kBT
∂2

∂x2
1

mav(x1).

Inverting the computed function mav(x1) in the interface intervals, the derivative of the
double-well potential f can be identified as

f ′(mcg) = a0(m
−1
av (mcg)).

Integration with respect to mcg in the interval between mcgsolid and mcgliquid gives the

double-well potentials shown in Figure 19(a). As expected the potentials obtained from the
two different simulations O1 and O2 are slightly different. However, the potentials obtained
from the two different interfaces in one molecular dynamics simulation cell also differ slightly
and it is not possible to say that difference between simulations O1 and O2 depend on the
orientation of the interfaces with respect to the crystal lattice. The computed double wells
seem to be qualitatively right.
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(c) Mean based on 444 configurations, T = 0.2220
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Figure 17: The average kBT
∂2

∂x2
1

AS (a1) converges faster than the two other terms in AS (α).

The fluctuations are larger in subfigures (b) than in (c), which indicates that the error is
dominated by the length of the averaging time interval rather than the number of config-
urations sampled within the time interval.
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Figure 18: The computed mav(x1) in its monotone intervals in the interfaces together with

the corresponding diffusion part of the drift kBT
∂2

∂x2
1

AS (a1). The curves shown are part of

the those in Figure 8(d) and Figure 17(d).
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3.3 The averaged diffusion matrix B and the coarse-grained diffu-

sion coefficients bj.

The final component to extract in the coarse-grained model is the diffusion in the stochastic
differential equation for mt

cg. Using ǫ = 1.0 and the same 1775 configurations that were used
in the computation of the averaged phase-field and drift for simulation O2, the averaged
diffusion matrix B, has been computed, with the result shown in Figure 20(a). As described
in Section 2.2, the square root of Bis computed by an eigenvector decomposition where all
negative eigenvalues are set to zero; the result is shown in Figure 20(b). The negative
eigenvalues are very small in absolute value, compared to the dominating positive ones,
so the error made by neglecting them is insignificant when BBT is compared to B. By
choosing the diffusion coefficients bj in the coarse-grained stochastic differential equation
as the columns of B, they become localised in space; see Figure 20(c). With ǫ = 1.0 the
observed difference between the diffusion in the solid part and the liquid part is small, as
shown in Figure 21.

3.4 Dependence on the smoothing parameter

The mollifier η includes a parameter, ǫ, determining the scale on which the local average is
taken. This is in itself an ad hoc variable in the micro model and it is important to analyse
its effects on the computed quantities.

A lower limit on ǫ is set by the demand that the phase-field be approximately constant
in the solid in spite of the periodic structure. If the solid structure is aligned with the
computational domain in such a way that the global spatial averages are taken parallel to
atomic layers, then the parameter ǫ controlling the width of the average in the orthogonal
direction must be large enough to smooth the gaps between the atomic layers. In the
numerical simulations the orientations of the FCC lattice with respect to the solid–liquid
interface, and hence the planes of averaging, are precisely such that averages are computed
parallel to atomic planes, as illustrated in Figure 22. In the present case the distance to the
nearest neighbours in the FCC-lattice is around 1.02; with η on the form (16) the parameter
ǫ must be taken greater than 0.43 to ensure that η decreases with at most a factor 1/2 in
half the distance to the nearest neighbour, which seems a reasonable demand. Figure 23,
presenting computed phase-fields based on local averages of the density and the potential
energy using ǫ = 0.45, shows that the smoothing parameter has to be larger than this to
avoid oscillations in the solid part. The phase-fields based on ǫ = 0.70 in Figure 24 do not
show these oscillations on the length scale smaller than the distance between atom layers.

For the method to be reasonable, the lower bound on ǫ must not hide an interface width
in the phase-field that is sharp even on the atomic scale. In addition to the computations
with ǫ = 1.0, the phase field has been computed for ǫ = 0.45, 0.70, and 2.0. The computed
phase-fields in the regions around the interfaces, for both orientation 1 and 2, are shown
in Figure 25. The comparison shows that the interface width varies with the smoothing
parameter. It would not, however, become infinitely sharp in the limit when ǫ goes to zero,
even if the lower bound on ǫ were disregarded. This is clear from the results presented in
Figure 26 where, in addition to the values of ǫ above, a phase-field obtained with ǫ = 0.05,
violating the lower bound, is shown around one of the interfaces in O1. This value of the
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smoothing parameter, and the corresponding mollifier cutoff, Rc = 6 ·0.05 = 0.3, is so small
that the contribution to the phase-field of an individual atom in the FCC lattice is restricted
to an interval extending less than half way to the next atom layer in either direction. Still the
change in the phase-field, from strong oscillations in the solid to decaying oscillations around
the average in the pure liquid, occurs gradually on a length scale corresponding to at least
several atom layers and thus several times the artificial smoothing introduced by ǫ. Figure 26
also shows that the interface region of the phase-field obtained with ǫ = 0.45, 0.70, and 1.0 is
wider than the transition region of a step function, representing an infinitely sharp interface,
smoothed by a convolution with the mollifier using the corresponding ǫ. For ǫ = 2.0 the
interface is very close to that of a mollified step function in both width and profile. The
interface width of the smoothed step function is proportional to ǫ and it is expected that
the same will hold for the phase-field, m, if the smoothing parameter is increased beyond
the present range.
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Figure 19:
(a) The computed double well potentials from both simulation O1 and O2 using mav shown

in Figure 8 and the corresponding kBT
∂2

∂x2
1

mav(x1).

(b) The computed double well potentials from one of the interfaces in O2, using three
different values of the smoothing parameter ǫ in the mollifier. Since the interface width
varies with ǫ the height of the potential barriers vary with ǫ. Here double-wells have been
rescaled with factors obtained in the analysis of the ǫ-dependence in Figure 27 to compare
the shape of the curves.
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Figure 20: The computed average diffusion matrix B, for ǫ = 1.0, using the same configur-
ations from simulation O2 as in Figure 8(d) and Figure 17(d), is shown in (a). The square
root B of B, as defined in (20) is shown in (b). The individual columns in B are the dif-
fusion coefficient functions, bj , in the stochastic differential equation for the coarse-grained
phase-field mt. Some of these column vectors have been plotted as functions of the space
variable x1 in (c). The support of each bj is centred around the grid point xj

1.
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(c) FCC, ǫ=0.55
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(f) Liquid, ǫ=0.55

Figure 21: The average diffusion coefficient functions, b̃(∆x1) = mean
{
bj(x

j
1 + ∆x1)

}
have

been computed for different values of ǫ, with the mean taken over points xj
1 in the interior

of the solid and the liquid domains, respectively. The configurations used are the same as
in Figure 20. The difference between the solid and liquid parts is small.
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(a) Orientation 1 (b) Orientation 2

Figure 22: The distance between two adjacent atom layers in a perfect FCC lattice
is

√
1/2 r0 in orientation 1 and

√
2/3 r0 in orientation 2, where r0 is the nearest neigh-

bour distance.

−40 −20 0 20 40 60 80 100 120 140
1.22

1.24

1.26

1.28

1.3

1.32

x
1

Density Phase Field : ρ
loc

(*;x)

(a) Orientation 1

−40 −20 0 20 40 60 80 100 120 140
1.22

1.24

1.26

1.28

1.3

1.32

x
1

Density Phase Field : ρ
loc

(*;x)

(b) Orientation 2

−40 −20 0 20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1

x
1

Potential Energy Phase Field : m(*;x)

(c) Orientation 1

−40 −20 0 20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1

x
1

Potential Energy Phase Field : m(*;x)

(d) Orientation 2

Figure 23: Computed density, ρloc, and potential energy phase fields for simulations O1
and O2 using ǫ = 0.45.
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Figure 24: Computed density, ρloc, and potential energy phase fields for simulations O1
and O2 using ǫ = 0.70.
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Figure 25: The mollifier, η, in the definition of the phase field, m, depends on the model
parameter ǫ. The width of the averaging is proportional to ǫ, as illustrated in (a) which
shows η for ǫ = 0.45, 0.7, 1.0, 2.0.
The phase field, m, in the interface regions has been computed from 174 configurations with
the four ǫ-values listed above. In (b) and (c) the configurations are taken from simulation
O1, and in (d) and (e) from simulation O2. In each case the time interval between two
successive configurations is 2.5 · 10−3, corresponding to 5 · 103 time steps. Though the
interface width in the computed phase-fields varies with ǫ, it is not proportional to ǫ in this
range.
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Figure 26: For the phase field based on local contributions to the potential energy the
transition from solid to liquid occurs on a length scale of at least several nearest neighbour
distances for any choice of the smoothing parameter ǫ.
The four subfigures are based on the same configurations from simulation O1 as were
Figure 25(b)–25(c). The oscillating curve present in all subfigures is the computed phase-
field, m, using ǫ = 0.05 with a cutoff of η at 0.3. The nearest neighbour distance is
approximately 1 and, for the present orientation of the FCC structure with respect to the
x1-axis, the x1-distance between the atomic layers becomes approximately 1/

√
2. Since

the cutoff is less than half the distance between the atomic layers the phase-field would
be exactly zero at the middle distance if the crystal were perfect and it is very close to
zero here. The transition from the stable oscillation pattern in the solid to diminishing
oscillations around the mean in the liquid is extended over a distance corresponding to at
least four or five atomic layers in the solid.
The phase-field, m, for ǫ = 0.45, 0.70, 1.0, and 2.0 is shown as the heavy solid curve in
subfigures (a)–(d). For reference the convolutions

∫∞

−∞
f(y)η(x− y) dy of a sharp interface,

given by the step function f(y) = mliq1R−(y) −mFCC1R+(y), and the mollifier using the
respective ǫ-value is included as the heavy dashed curve. For the smaller ǫ-values the
mollified step function is significantly sharper than the corresponding phase-field.
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approximating ǫ
0.70 1.0 2.0

0.45 1.09 (1.56) 1.23 (2.22) 1.82 (4.44)
reference ǫ 0.70 1.13 (1.43) 1.68 (2.86)

1.0 1.49 (2.00)
(c) Rescaling factors – the accuracy is approximately ±0.05.

Figure 27: For an interface given by the convolution of a sharp step function and the
mollifier, as in Figure 26, the interface width is directly proportional to ǫ, since interface
profiles corresponding to different ǫ are identical up to affine coordinate transformations
around the interface, xif , that is: φǫ2(

ǫ2
ǫ1

(x − xif) + xif) = φǫ1(x). On a sufficiently large
scale the same scaling of the interface width can be expected from the phase-fieldm obtained
from MD simulations. This is not the case when ǫ is of the order of the nearest neighbour
distance; then the interface width grows more slowly than ǫ. One way to quantify this
statement is to consider the tabulated phase-field, mǫ1 , using the parameter value ǫ1, as
given data to be approximated by the phase-field, mǫ2 , based on the parameter value ǫ2;
the allowed approximations use affine coordinate transformations y(x) = c1(x− c0) + c0 of
the independent coordinate. The data points ((xk),mǫ1(xk)) are taken from the interior
of an interface, msolid < m0 ≤ mǫ1(xk) ≤ m1 < mliquid, and the function mǫ2 is defined
by linear interpolation between tabulated values. A least squares approximation of the
overdetermined system mǫ2(y(xk)) = mǫ1(xk) for c0 and c1 gives a value of the scaling
factor c1 to be compared to ǫ2/ǫ1.
Subfigures (a) and (b) show two examples for the interface in Figure 25(b). The circles,
◦, denote the reference data points, the solid line shows the linear interpolation of the
tabulated values for the approximating phase-field, and the line marked with crosses, ×, is
the least square approximation.
The table (c) shows the scaling constants obtained after averaging over all four interfaces
in Figure 25(b)–25(e). The corresponding quotients ǫ2

ǫ1
are included in parenthesis for

reference.
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A Explicit Calculation of Drift and Diffusion Functions

Let the total potential energy be

U(Xt) =

N
∑

i=1

mi(X ),

where

mi(X ) =
1

2

N
∑

k 6=i,k=1

Φ(||Xi −Xk||).

For the phase-field

m(x;X ) =

N
∑

i=1

mi(X )η(x−Xi),

where the particle positions X ∈ R
3N solve the Itô stochastic differential equation

dXt = −∇XU(Xt) dt+
√

2kBT dW t,

Itô’s formula gives

dm(x;Xt) =

N
∑

j=1

αj(x;X
t) dt+

N
∑

j=1

3
∑

k=1

βj,k(x;Xt) dW t
j,k,

with

αj(x;X ) = −∇Xj
m(x;X ) · ∇Xj

U(X ) + kBT∇Xj
·∇Xj

m(x;X ) (26)

and

βj,·(x;X ) =
√

2kBT∇Xj
m(x;X ). (27)

Introducing the total force, Fj , acting on particle j, and the contributions from individual
pairs, fij ,

Fj(X ) = −∇Xj
U(X ) =

N
∑

i 6=j,i=1

fij(X ),

fij(X ) = Φ′(||Xi −Xj ||)
Xi −Xj

||Xi −Xj ||
,

the gradient of mi with respect to the position of particle j is

∇Xj
mi(X ) =

1

2

N
∑

k 6=i,k=1

∇Xj
Φ(||Xi −Xk||)

= δij
1

2

N
∑

k 6=j,k=1

∇Xj
Φ(||Xj −Xk||) + (1 − δij)

1

2
∇Xj

Φ(||Xi −Xj ||)

= −δij
1

2
Fj(X ) − (1 − δij)

1

2
fij(X ),
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where δij is the Kronecker delta: δij = 1, if i = j, δij = 0, if i 6= j. The gradient of the
phase-field variable with respect to the position of particle j is

∇Xj
m(x;X ) = mj(X )∇Xj

η(x−Xj) +

N
∑

i=1

∇Xj
mi(X )η(x−Xi)

= −mj(X )∇xη(x−Xj)

−
1

2

N
∑

i=1

δijFj(X )η(x−Xi) −
1

2

N
∑

i=1

(1 − δij)fij(X )η(x−Xi)

= −∇x(mj(X )η(x−Xj))

−
1

2
Fj(X )η(x−Xj) −

1

2

N
∑

i 6=j,i=1

fij(X )η(x−Xi).

Introducing the notation −Gj for the divergence of the force Fj with respect to Xj and the
notation gij for the individual contributions,

Gj(X ) = −∇Xj
· Fj(X ) = −

N
∑

i 6=j,i=1

∇Xj
· fij(X ) =

N
∑

i 6=j,i=1

gij(X ),

gij(X ) = Φ′′(||Xi −Xj ||) + Φ′(||Xi −Xj ||)
2

||Xi −Xj ||
,

the divergence of gradient of phase field variable with respect to the position of particle j
becomes

∇Xj
·∇Xj

m(x;X ) = −∇Xj
·
(

mj(X )∇xη(x−Xj)
)

−
1

2
∇Xj

·
(

Fj(X )η(x−Xj)
)

−
1

2

N
∑

i 6=j,i=1

∇Xj
· (fij(X )η(x−Xi))

= −∇Xj
mj(X ) · ∇xη(x−Xj) −mj(X )∇Xj

· ∇xη(x−Xj)

−
1

2
∇Xj

· Fj(X )η(x−Xj) −
1

2
Fj(X ) · ∇Xj

η(x−Xj)

−
1

2

N
∑

i 6=j,i=1

∇Xj
· fij(X )η(x−Xi)

=
1

2
Fj(X ) · ∇xη(x−Xj) +mj(X )∇x · ∇xη(x−Xj)

+
1

2
Gj(X )η(x−Xj) +

1

2
Fj(X ) · ∇xη(x−Xj)

+
1

2

N
∑

i 6=j,i=1

gij(X )η(x−Xi)

= ∇x ·∇x

(

mj(X )η(x−Xj)
)

+ ∇x ·
(

Fj(X )η(x−Xj)
)

+
1

2
Gj(X )η(x−Xj) +

1

2

N
∑

i 6=j,i=1

gij(X )η(x−Xi).

Using the explicit expressions for ∇Xj
m(x;X ) and ∇Xj

·∇Xj
m(x;X ), the components (26)
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of the drift become

αj(x;X ) = ∇x(mj(X )η(x−Xj)) · (−Fj(X )) +
1

2
Fj(X )η(x−Xj) · (−Fj(X ))

+
1

2

N
∑

i 6=j,i=1

fij(X )η(x−Xi) · (−Fj(X ))

+ kBT∇Xj
·∇Xj

m(x;X )

= −∇x · (mj(X )Fj(X )η(x−Xj)) −
1

2
||Fj(X )||2η(x−Xj)

−
1

2

N
∑

i 6=j,i=1

fij(X ) · Fj(X )η(x−Xi)

+ kBT∇x ·∇x

(

mj(X )η(x−Xj)
)

+ kBT∇x ·
(

Fj(X )η(x−Xj)
)

+ kBT
1

2
Gj(X )η(x−Xj) + kBT

1

2

N
∑

i 6=j,i=1

gij(X )η(x−Xi).

= kBT∇x ·∇x

(

mj(X )η(x−Xj)
)

+ ∇x ·

(
(kBT −mj(X ))Fj(X )η(x−Xj)

)

+
1

2

(
kBTGj(X ) − ||Fj(X )||2

)
η(x−Xj)

+
1

2

N∑

i 6=j,i=1

(
kBTgij(X ) − fij(X ) · Fj(X )

)
η(x−Xi)

so that, after summing over j,

α(x;X ) = kBT∇x ·∇xm(x;X ) + ∇x · ã1(x;X ) + a0(x;X )

with

ã1(x;X ) =

N∑

j=1

(kBT −mj(X ))Fj(X )η(x−Xj)

and

a0(x;X ) =

N∑

j=1

(
kBTGj(X ) −

1

2
||Fj(X )||2

)
η(x−Xj)

−
1

2

N∑

j=1

N∑

i 6=j,i=1

fij(X ) · Fj(X )η(x−Xi).

Using the one-dimensional mollifier

η(x) = η(x1) = constant · exp

(
−

1

2

(x1

ǫ

)2
)
, (28)
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that only varies in the x1-direction, the expression for the drift reduces to

α(x;X ) = kBT
∂2

∂x2
1

m(x;X ) +
∂

∂x1
a1(x;X ) + a0(x;X )

with

a1(x;X ) =

N
∑

j=1

(kBT −mj(X ))[Fj(X )]1η(x−Xj),

where [Fj(X )]1 is the x1 component of Fj(X ).

For the purpose of computing an approximation of

1

T
E





∫ T

1

N
∑

j=1

3
∑

k=1

βj,k ⊗ βj,k





it is not practical to postpone the differentiation of the mollifier with respect to the space
varible. Using the choice (28), the gradient of the mollifier can be expressed in terms of the
mollifier itself as

∇xη(x−Xj) =
−1

ǫ2
η(x−Xj)

(

[

x−Xj

]

1
, 0, 0

)T

.

Then the expression for ∇Xj
m(x;X ) becomes

∇Xj
m(x;X ) =

(
mj(X )

ǫ2

([
x−Xj

]
1
, 0, 0

)T

−
1

2
Fj(X )

)
η(x−Xj)

−
1

2

N∑

i 6=j,i=1

fij(X )η(x−Xi)

and, using the diffusion component (27),

3∑

k=1

βj,k(x;X )βj,k(y;X ) = 2kBT

(
pj(x, y;X ) + qj(x, y;X )

)
,

where

pj(x, y;X ) =

(
mj(X )

ǫ2

)2 [
x−Xj

]
1

[
y −Xj

]
1
η(x−Xj)η(y −Xj)

−
mj(X )

2ǫ2
[x−Xj ]1η(x−Xj)

(
[Fj(X )]1η(y −Xj) +

N∑

i 6=j,i=1

[fij(X )]1η(y −Xi)

)

−
mj(X )

2ǫ2
[y −Xj ]1η(y −Xj)

(
[Fj(X )]1η(x−Xj) +

N∑

i 6=j,i=1

[fij(X )]1η(x−Xi)

)

and

qj(x, y;X ) =
1

4

(
Fj(X )η(x−Xj) +

N∑

i 6=j,i=1

fij(X )η(x−Xi)

)

·

(
Fj(X )η(y −Xj) +

N∑

i 6=j,i=1

fij(X )η(y −Xi)

)
.
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