

Error Handling in
Spoken Dialogue Systems

Managing Uncertainty, Grounding
and Miscommunication

GABRIE L S KANTZE

Doctoral Thesis
Stockholm, Sweden 2007

KTH Computer Science and Communication
Department of Speech, Music and Hearing

100 44 Stockholm, Sweden

GSLT Graduate School of Language Technology
Faculty of Arts, Göteborg University

405 30 Göteborg, Sweden

TRITA-CSC-A 2007:14
ISSN 1653-5723
ISRN KTH/CSC/A–07/14–SE
ISBN 978-91-7178-788-0

Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan framlägges till
offentlig granskning för avläggande av filosofie doktorsexamen fredagen den 23 november
klockan 10.00 i sal F3, Kungliga Tekniska Högskolan, Lindstedtsvägen 26, Stockholm.

© Gabriel Skantze, November 2007

Printed by Universitetsservice US AB

Abstract

Due to the large variability in the speech signal, the speech recognition process constitutes the
major source of errors in most spoken dialogue systems. A spoken dialogue system can never
know for certain what the user is saying, it can only make hypotheses. As a result of this uncer-
tainty, two types of errors can be made: over-generation of hypotheses, which leads to misun-
derstanding, and under-generation, which leads to non-understanding. In human-human dia-
logue, speakers try to minimise such miscommunication by constantly sending and picking up
signals about their understanding, a process commonly referred to as grounding.
The topic of this thesis is how to deal with this uncertainty in spoken dialogue systems:

how to detect errors in speech recognition results, how to recover from non-understanding,
how to choose when to engage in grounding, how to model the grounding process, how to
realise grounding utterances and how to detect and repair misunderstandings. The approach
in this thesis is to explore and draw lessons from human error handling, and to study how
error handling may be performed in different parts of a complete spoken dialogue system.
These studies are divided into three parts.
In the first part, an experimental setup is presented in which a speech recogniser is used to

induce errors in human-human dialogues. The results show that, unlike the behaviour of most
dialogue systems, humans tend to employ other strategies than encouraging the interlocutor to
repeat when faced with non-understandings. The collected data is also used in a follow-up
experiment to explore which factors humans may benefit from when detecting errors in speech
recognition results. Two machine learning algorithms are also used for the task.
In the second part, the spoken dialogue system HIGGINS is presented, including the robust

semantic interpreter PICKERING and the error aware discourse modeller GALATEA. It is shown
how grounding is modelled and error handling is performed on the concept level. The system
may choose to display its understanding of individual concepts, pose fragmentary clarification
requests, or risk a misunderstanding and possibly detect and repair it at a later stage. An
evaluation of the system with naive users indicates that the system performs well under error
conditions.
In the third part, models for choosing when to engage in grounding and how to realise

grounding utterances are presented. A decision-theoretic, data-driven model for making
grounding decisions is applied to the data from the evaluation of the HIGGINS system. Finally,
two experiments are presented, which explore how the intonation of synthesised fragmentary
grounding utterances affect their pragmatic meaning.
The primary target of this thesis is the management of uncertainty, grounding and mis-

communication in conversational dialogue systems, which to a larger extent build upon the
principles of human conversation. However, many of the methods, models and results pre-
sented should also be applicable to dialogue systems in general.

v

Acknowledgements

First of all, I would like to thank my supervisor Rolf Carlson, who has guided me into the
field of speech communication, encouraged me to pursue my research interests, discussed re-
search ideas, and provided valuable comments and suggestions all along the way to finishing
this thesis.
Second, I want to thank my co-worker and roommate Jens Edlund. Many of the ideas that

have led to the research presented in this thesis originate from our discussions, and parts of the
work have been done in collaboration with him. Thanks also for reading and commenting on
parts of the thesis.
It has also been very rewarding to collaborate with David House on the experiments pre-

sented in Chapter 9. Furthermore, David has read the thesis closely and suggested many im-
provements at the final stages of writing the thesis.
I also wish to thank Johan Boye for reading the thesis, as well as papers I have written, and

for giving me encouraging comments as well as critical questions that have forced me to de-
velop my thoughts and arguments.
I have really enjoyed working at the Department of Speech, Music and Hearing, and I

wish to thank all the people working there. Special thanks to Björn Granström and Rolf Carl-
son for heading the speech group and for all hard work to find funding for our research, Alex-
ander Seward for explaining and discussing speech recognition issues, Jonas Beskow for help
on speech synthesis issues, and Preben Wik, Anna Hjalmarsson, Mattias Heldner and Joakim
Gustafson for stimulating discussions.
I would not be doing research on dialogue systems if it were not for Arne Jönsson. By

working as a programmer in his research group in the summers during my MSc studies, I was
introduced to the field and got valuable hands-on experience on developing dialogue systems.
This thesis is to a large extent based on empirical material, and I am very thankful towards

all patient subjects participating in the many (sometimes quite boring) experiments.
I must also thank my anonymous reviewers around the world who have read and com-

mented on papers and articles I have written.
Finally, I want to thank my supportive family: my wife Linda, my daughters Agnes and

Miranda, my parents Patrik and Margareta, and my brothers Alexander and Valdemar.

This study was carried out at KTH with the support of the Swedish Graduate School of Lan-
guage Technology (GSLT) and the Centre for Speech Technology (CTT). The Knut and
Alice Wallenberg Foundation, as well as the Ragnar and Astrid Signeul Foundation have also
contributed with some of the travelling and conference expenses.

vii

Publications and contributors

A large part of this thesis is based on work already published in conference and workshop pro-
ceedings, journal articles and book chapters. This represents work partly done in collaboration
with others, as indicated in the following list.

Chapter 4

The experiment presented in this chapter was conducted by the author. The chapter is based
on the following publications:

Skantze, G. (2003). Exploring human error handling strategies: implications for spoken dia-
logue systems. In Proceedings of ISCA Tutorial and Research Workshop on Error Han-
dling in Spoken Dialogue Systems (pp. 71-76). Chateau-d'Oex-Vaud, Switzerland.

Skantze, G. (2005). Exploring human error recovery strategies: implications for spoken dia-
logue systems. Speech Communication, 45(3), 325-341.

Chapter 5

The experiment on human error detection was conducted by the author together with Jens
Edlund. The machine learning study was done by the author. The chapter is based on the
following publication:

Skantze, G., & Edlund, J. (2004). Early error detection on word level. In Proceedings of ISCA
Tutorial and Research Workshop (ITRW) on Robustness Issues in Conversational Interac-
tion. Norwich, UK.

Chapter 6-7

The HIGGINS system and its components were conceived and specified by the author together
with Jens Edlund. The major part of the implementation of the system was done by the au-
thor. The evaluation of the interpreter PICKERING was done by the author together with Jens
Edlund. The evaluation of GALATEA and the HIGGINS system was done by the author. The
chapters are based on the following publications:

Edlund, J., Skantze, G., & Carlson, R. (2004). Higgins - a spoken dialogue system for investi-
gating error handling techniques. In Proceedings of the International Conference on Spo-
ken Language Processing, ICSLP 04 (pp. 229-231). Jeju, Korea.

Skantze, G. (2005). Galatea: a discourse modeller supporting concept-level error handling in
spoken dialogue systems. In Proceedings of SigDial (pp. 178-189). Lisbon, Portugal.

viii

Skantze, G. (in press). Galatea: A discourse modeller supporting concept-level error handling
in spoken dialogue systems. To be published in Dybkjær, L., & Minker, W. (Eds.), Re-
cent Trends in Discourse and Dialogue. Springer.

Skantze, G., & Edlund, J. (2004). Robust interpretation in the Higgins spoken dialogue sys-
tem. In ISCA Tutorial and Research Workshop (ITRW) on Robustness Issues in Conversa-
tional Interaction. Norwich, UK.

Chapter 8

The proposed method was conceived and applied to the collected data by the author. The
chapter is based on the following publication:

Skantze, G. (2007). Making grounding decisions: Data-driven estimation of dialogue costs
and confidence thresholds. In Proceedings of SigDial (pp. 206-210). Antwerp, Belgium.

Chapter 9

The experiments were performed together with Jens Edlund and David House. The chapter is
based on the following publications:

Edlund, J., House, D., & Skantze, G. (2005). The effects of prosodic features on the interpre-
tation of clarification ellipses. In Proceedings of Interspeech 2005 (pp. 2389-2392). Lis-
bon, Portugal.

Skantze, G., House, D., & Edlund, J. (2006). User responses to prosodic variation in frag-
mentary grounding utterances in dialogue. In Proceedings of Interspeech 2006 - ICSLP
(pp. 2002-2005). Pittsburgh PA, USA.

ix

Contents

PART I Introduction and Background..1

CHAPTER 1 Introduction ...3

1.1 Error handling issues...4
1.2 Thesis contributions..6
1.3 Thesis overview...7

CHAPTER 2 Spoken dialogue systems ...11

2.1 Classifications of spoken dialogue systems ...11
2.2 The structure and properties of conversation ...13
2.3 Spoken dialogue system components...18
2.4 Summary ..30

CHAPTER 3 Miscommunication and error handling ...31

3.1 Miscommunication and grounding ...31
3.2 Errors in spoken dialogue systems ...40
3.3 Error handling in spoken dialogue systems ..45
3.4 Summary ..59

PART I I Exploring Human Error Handling ...63

CHAPTER 4 Exploring non-understanding recovery..65

4.1 Methods for exploring human error handling..65
4.2 Experimental method..68
4.3 Results ..75
4.4 Discussion ..81
4.5 Summary ..85

CHAPTER 5 Early error detection on word level..87

5.1 Study I: Machine learning...88
5.2 Study II: Human error detection...91
5.3 Discussion ..94
5.4 Summary ..96

PART I I I The Higgins Spoken Dialogue System ..97

x

CHAPTER 6 Concept-level error handling in Higgins..99

6.1 The Higgins navigation domain..100
6.2 Semantic representations ...102
6.3 Architecture ..104
6.4 PICKERING: Natural language understanding ..106
6.5 GALATEA: Discourse modelling ...110
6.6 NAM: Navigation action manager ..116
6.7 Error handling actions...118
6.8 Discussion ..128
6.9 Summary ..129

CHAPTER 7 Higgins evaluation ..131

7.1 PICKERING evaluation ...131
7.2 GALATEA evaluation..134
7.3 Summary ..142

PART I V Deciding and Realising Grounding Actions..143

CHAPTER 8 Making grounding decisions ...145

8.1 The grounding decision problem ..145
8.2 The proposed model ...148
8.3 Application to the Higgins navigation domain ..154
8.4 Possible extensions ..159
8.5 Discussion ..162
8.6 Summary ..163

CHAPTER 9 Prosody in fragmentary grounding ..165

9.1 Prosody in grounding and requests..166
9.2 Experiment I: Interpretations ..167
9.3 Experiment II: User responses ...170
9.4 Discussion ..173
9.5 Summary ..174

PART V Conclusion ...177

CHAPTER 10 Summary and discussion ...179

10.1 Thesis summary ..179
10.2 Discussion and future work...184

References..187

PART I

Introduction and Background

DAVE: How would you account for this discrepancy between you and the twin
9000?

HAL: Well, I don't think there is any question about it. It can only be attributable
to human error. This sort of thing has cropped up before, and it has always
been due to human error.

FRANK: Listen HAL. There has never been any instance at all of a computer error
occurring in the 9000 series, has there?

HAL: None whatsoever, Frank. The 9000 series has a perfect operational record.

2001 – A Space Odyssey
screenplay by Stanley Kubrick and Arthur C. Clark

To err is human, but it takes a computer to really louse it up.

Anonymous

3

CHAPTER 1

Introduction

Most of today’s computer applications have a graphical user interface (GUI), which allows the
user to perform actions through direct manipulation of graphical elements, such as icons, text
and tables, presented to the user on a display device. As an alternative (or complement) to this
kind of interaction, a spoken dialogue system offers the possibility to interact by means of spo-
ken language. Possible applications which may benefit from spoken language interfaces in-
clude flight booking over the telephone, human-robot interaction, speech controlled music
players and conversational computer games. Compared to a GUI, a spoken language interface
frees the user’s hands and eyes for other tasks. Moreover, human-human conversation is gen-
erally a natural, intuitive, robust and efficient means for interaction. A lot of effort is being
invested in trying to make spoken dialogue systems also benefit from these properties.
To be able to engage in conversation, a spoken dialogue system has to attend to, recognise

and understand what the user is saying, interpret utterances in context, decide what to say next,
as well as when and how to say it. To achieve this, a wide range of research areas and tech-
nologies must be involved, such as automatic speech recognition, natural language under-
standing, dialogue management, natural language generation and speech synthesis.
One of the greatest challenges when building dialogue systems is to deal with uncertainty

and errors. Uncertainty comes partly from the ambiguity of natural language itself. In addition,
in the case of spoken dialogue systems, a great deal of uncertainty comes from the error-prone
speech recognition process. Speech recognition errors arise from speaker variability, back-
ground noise and unexpected language use, which are all hard (if not impossible) to model
exhaustively. However, as Brown (1995) points out, apparently satisfactory communication
may often take place between humans without the listener arriving at a full interpretation of
the words used. One explanation for this is the redundancy and context-dependence of lan-
guage use; the same information may be conveyed in different ways in the same utterance, or

Chapter 1. Introduction

4

may be repeated by the speakers in order to ensure understanding, and the context may be
used to reduce uncertainty or fill in the gaps. Furthermore, when humans speak to each other,
there is a collaborative process of avoiding and recovering from miscommunication that often
goes unnoticed (Clark, 1996).
The topic of this thesis is how to draw lessons from this seemingly smooth handling of un-

certainty and miscommunication in human-human dialogue, and how to use this knowledge
to improve error handling in spoken dialogue systems.

1.1 Error handling issues

Due to the error prone speech recognition process, a dialogue system can never know for cer-
tain what the user is saying, it can only make hypotheses. Errors in spoken dialogue systems
may be classified into two broad categories: under-generation and over-generation of interpre-
tation hypotheses. In terms of miscommunication, these categories correspond to the notions
of non-understanding and misunderstanding. Misunderstanding means that the listener obtains
an interpretation that is not in line with the speaker’s intentions. If the listener fails to obtain
any interpretation at all, or is not confident enough to choose a specific interpretation, a non-
understanding has occurred. One important difference between non-understandings and mis-
understandings is that non-understandings are noticed immediately by the listener, while mis-
understandings may not be identified until a later stage in the dialogue. Some misunderstand-
ings might never be detected at all. The same utterance may, of course, give rise to both mis-
understanding and non-understanding, that is, parts of an utterance may be misunderstood
while others are not understood.
As is argued in this thesis, error handling is not a separate processing step in a spoken dia-

logue system, like a speech recogniser or a dialogue manager. Instead, error handling should be
regarded as a set of issues that should be considered in all parts of the system to handle the
consequences of under-generation and over-generation. As an example, take a dialogue system
which is supposed to understand the user’s description of her location in a city. This might be
the output of the speech recogniser1:

(1) User: I CAN SEE A BLUE BUILDING

The system must now consider the possibility that this is not what the user actually said – the
speech recogniser might have over-generated or under-generated words. One important error
handling issue is then to detect such errors in the speech recognition result, so that misunder-
standing may be avoided. We will call this early error detection. If all words are deemed to be
incorrect, or if the speech recogniser does not deliver any hypotheses at all, we may say that a
non-understanding has occurred.

1 The greyscale represent the speech recognition word confidence scores. Dark colour represents high

confidence and light colour represents low confidence.

1.1 Error handling issues

5

Another important issue is then how to recover from non-understanding. This means that
the system must gain understanding of future contributions as efficiently as possible, after a
non-understanding has occurred.
But, as Clark (1996) points out, the handling of uncertainty and problems in dialogue is

not just an individual task. Speakers deal with uncertainty and problems together, by provid-
ing and evaluating positive and negative evidence of understanding – a process commonly re-
ferred to as grounding. By this process, the speakers share their private knowledge and beliefs
with each other and make sure that what was private can now be regarded as common ground.
The following example2 illustrates some alternative responses from the system that all provide
different kinds of evidence:

(2) U.1: I CAN SEE A BLUE BUILDING
S.2 (alt. a): Ok, can you see a tree?
S.2 (alt. b): Blue?
S.2 (alt. c): How many stories does the blue building have?

As can be seen in the example, the system may provide evidence of its understanding in differ-
ent ways and for different parts of the original utterance. It may for example assume under-
standing and provide an acknowledgement (a), it may suspect that some part of the utterance
is incorrect and pose a clarification request (b), or it may assume understanding but provide a
verbatim repetition as part of the next contribution (c). A key problem for spoken dialogue
systems is to choose which evidence to provide and how it should be realised. It would not be
efficient to provide evidence on everything that is said; neither would it be efficient to not
provide any evidence at all, since this would lead to a lot of misunderstandings that would
need to be repaired later on.
If the system assumes understanding of an incorrect hypothesis, this misunderstanding

may still be repaired. For example, the positive evidence that the system provides (such as alt. c
above) might let the user detect such misunderstandings and raise an objection:

(3) U.1: I CAN SEE A BLUE BUILDING
S.2: How many stories does the blue building have?
U.3: I SAID A BROWN BUILDING

However, the system must be able to understand such objections and repair the error that was
made. This will be referred to as late error detection (i.e., detection of misunderstandings) and
misunderstanding repair. Another opportunity for late error detection is if the system detects
inconsistencies in its model of what has been said and what it knows about the world.

2 In all examples, U refers to the user and S to the system (A and B are used for human interlocu-

tors). The number after the dot indicates the order of the turn. Italics are used to separate the speakers
and enhance readability. In the case of human-computer dialogue examples, user utterances written in
greyscale capital letters represent speech recognition results, not what the user actually said.

Chapter 1. Introduction

6

1.2 Thesis contributions

The work presented in this thesis consists of experiments on several of the issues outlined
above and the development of models and methods for handling them. Of course, all aspects
cannot be covered in the scope of this thesis. However, the ambition has been to not focus on
only one particular aspect of error handling, but to study how error handling may be per-
formed in different parts of a complete spoken dialogue system.
There are two general themes in this thesis. The first theme concerns how to explore and

draw lessons from human-like error handling strategies and how to apply these to human-
computer dialogue. The second theme, which is related to the first, is to explore concept-level
error handling. Most approaches to error handling in spoken dialogue systems have focused on
whole utterances as the smallest unit. Typically, whole utterances are assigned confidence
scores and decisions are made whether to reject, verify or accept them as correct. Such utter-
ance-level error handling is often feasible in command-based dialogue systems where utter-
ances are relatively short and predictable. However, in conversational dialogue systems, utter-
ance-level error handling is too simplistic. Humans engaging in conversation often focus on
parts of utterances to, for example, pose fragmentary clarification requests (as exemplified in
alt. b in example (2) above), and thereby increase the efficiency of the dialogue. In dialogue
systems that are targeted towards more human-like conversation, speech recognition results
and the semantic interpretations of them may often be partly correct. This calls for error han-
dling on a “sub-utterance” level – to base error handling on individual words or concepts in
utterances.
This thesis relies to a large extent on an empirical approach. In order to understand how

humans manage problems in dialogue, such data must be collected and analysed. To under-
stand what kind of problems arise in spoken dialogue systems, we also need data containing
real speech recognition errors. The models and guidelines derived from the data have been
used to develop a dialogue system that is in turn evaluated with naive users.
The main contributions of this thesis can be summarised as follows:

• An experimental setup that allows us to study the way humans deal with speech rec-

ognition errors.
o Results indicating that humans to a large extent employ other strategies

than encouraging the interlocutor to repeat when faced with non-
understandings.

• Results confirming previous findings that errors in speech recognition results may be
detected by considering confidence scores as well as other knowledge sources that
were not accessible to the speech recogniser. While previous studies have shown this
to be true for utterance-level error detection, these results show that it is also true for
word-level error detection.

• A practical model for how the grounding status of concepts gets updated during the
discourse in a spoken dialogue system, how this updating is affected by the use of

1.3 Thesis overview

7

anaphora and ellipses, and how this information may be used for various error han-
dling strategies.

o An implementation of the model in a complete spoken dialogue system in a
non-trivial domain.

o An evaluation of the system with naive users, which indicates that the sys-
tem and model performs well under error conditions.

• A decision-theoretic, data-driven model, based on task-analysis and bootstrapping,
for making grounding decisions in spoken dialogue systems.

• A tentative model for the intonation of synthesised fragmentary grounding utter-
ances in Swedish and their associated pragmatic meaning.

1.3 Thesis overview

In the rest of Part I, the brief initial overview of error handling given in 1.1 above is developed
into a detailed discussion of the issues, and research on how they may be handled is reviewed.
This will serve as a background for presenting the contributions of this thesis in Part II, III
and IV. The thesis ends with a concluding summary and discussion in Part V.

Chapter 2: Spoken dialogue systems

This chapter discusses some basic properties of spoken dialogue and the techniques and issues
involved in developing spoken dialogue systems. It is argued that two general types of dialogue
systems may be distinguished, command-based and conversational, and that this thesis is tar-
geted towards the latter, that is, dialogue systems that to a larger extent build upon the princi-
ples of human conversation. The basic building blocks of spoken dialogue systems are dis-
cussed: automatic speech recognition, natural language understanding, dialogue management,
natural language generation and text-to-speech synthesis.

Chapter 3: Miscommunication and error handling

This chapter starts with a general discussion on the concepts of miscommunication, grounding,
repair, clarification and error in the context of human-human and human-computer dialogue.
This is followed by reviews and discussions on previous research related to error handling in
spoken dialogue systems, including early error detection, grounding and late error detection.
Places where the contributions of this thesis fit in and extend this body of knowledge will be
pointed out.

Part II: Exploring Human Error Handling

Chapter 4: Exploring non-understanding recovery

In this chapter, a method for collecting data on human error handling strategies is presented.
An experiment was conducted based on this method, in which pairs of subjects were given a

Chapter 1. Introduction

8

joint task for which they needed to engage in dialogue. A speech recogniser was used to intro-
duce errors in one direction – thereby simulating the roles of human and computer in a dia-
logue system. The analysis is focussed on how the subjects recovered from non-understanding.

Chapter 5: Early error detection on word level

One interesting result from the experiment presented in Chapter 4 was that humans were ex-
tremely good at early error detection, that is, to understand which recognition hypotheses were
incorrect in order to avoid misunderstandings. Most studies on automatic early error detection
have focused on detecting whether a given hypothesis of a user utterance contains any errors at
all or is error-free. For concept level error handling, it would be more useful to detect which
words or concepts in the hypothesis that are erroneous, and it is obvious that this is what the
human subjects did. This chapter explores which factors humans rely on when detecting such
errors. A machine learning experiment is also presented where the data from Chapter 4 is used
for automatic detection.

Part III: The Higgins Spoken Dialogue System

Chapter 6: Concept-level error handling in Higgins

As part of the work presented in this thesis, a complete spoken dialogue system, called HIG-
GINS, has been developed to serve as a test-bed for implementing and evaluating error han-
dling methods and models. For this system, a set of modules have been developed, most nota-
bly a robust interpreter called PICKERING and a discourse modeller called GALATEA, which
models the grounding status of concepts. This chapter describes how concept level error han-
dling is done in the different parts of the system. In most previous accounts, a special set of
grounding actions are used to provide evidence of understanding for complete user utterances.
In this chapter, it is shown how all utterances instead may contribute to the grounding process
on the concept level.

Chapter 7: Higgins evaluation

This chapter presents two separate evaluations. First the performance of the robust interpreter
PICKERING is studied under different error conditions. Second, a data collection is presented
in which naive users interact with the HIGGINS system. The data is used to evaluate the system
in general and the discourse modeller GALATEA in particular, as well as the users’ reactions to
fragmentary clarification.

Part IV: Deciding and Realising Grounding Actions

Chapter 8: Making grounding decisions

The different grounding strategies supported by HIGGINS leave the system with decisions that
have to be made: what kind of evidence should it provide and which recognition hypotheses

1.3 Thesis overview

9

should it accept as correct? These grounding decisions should ideally be based on the system’s
uncertainty in its hypothesis, the cost of misunderstanding, and the cost of making a ground-
ing action. In this chapter, the framework of decision making under uncertainty is applied to
the problem, where the utility and costs of different actions are weighted against the probabili-
ties of different outcomes. The data collected in Chapter 7 is used to derive a data-driven,
dynamic model for making these decisions.

Chapter 9: Prosody in fragmentary grounding

Since fragmentary grounding utterances (such as alt. b in example (2) above) lack syntactic
and lexical information, their interpretation depends to a large extent on their prosodic realisa-
tion. This chapter presents two experiments which show how the prosody of synthesised
grounding utterances affects their interpretation, as well as users’ behaviour in a human-
computer dialogue setting.

Part V: Conclusion

Chapter 10: Summary and discussion

In the final chapter, the contributions made in this thesis are summarised, followed by a dis-
cussion on how the methods and models presented may be extended and integrated further.
Finally, the generalisation of the results to other dialogue systems and domains is discussed.

11

CHAPTER 2

Spoken dialogue systems

In this chapter, we will start with a broad classification of spoken dialogue systems in order to
narrow down the class of systems that are targeted in this thesis. This is followed by a brief
overview of the structure and properties of human-human conversation from a linguistic per-
spective, in order to derive a set of terms and concepts that are useful when discussing spoken
dialogue systems. The final, and major, part of this chapter consists of a description of the
different technologies and research areas that are involved in a spoken dialogue system.

2.1 Classifications of spoken dialogue systems

Spoken dialogue systems is a label that denotes a wide range of systems, from simple weather
information systems (“say the name of your city”) to complex problem-solving, reasoning,
applications. The division between “simple” command-based systems and “complex” systems
targeted towards spontaneous language can be roughly associated to systems developed within
the industry and academia, respectively (Pieraccini & Huerta, 2005). However, as Pieraccini
& Huerta (2005) point out, this distinction is somewhat misleading, since commercial systems
have to meet usability requirements to a much larger extent and deal with “real” users, taking
the technological limitations into account. This may indeed be “complex”, but in another
sense. Academic researchers on dialogue systems, on the other hand, often have the goal of
exploring how systems may allow more spontaneous language use. They often do not have the
resources to make large-scale usability studies, nor do they typically have access to “real” users.
This has lead to a distinction between two types of dialogue systems; we may call them

conversational systems and command-based systems. It should be stressed that these are proto-
typical categories, and all dialogue system do not fit neatly into one of them. One way of view-
ing this distinction is to regard it as two metaphors that may be exploited – the “human meta-

Chapter 2. Spoken dialogue systems

12

phor” and the “interface metaphor” (Edlund et al., 2006). In the first case, the user regards the
system as a conversational partner. In the second case, the user regards it as a “voice interface”
with some options and slots that may be activated and filled by speech commands. One meta-
phor isn’t necessarily better than the other – they may just meet different needs – but the
metaphor should be consistent so that the user may act accordingly.
It should be noted that not all academic research is targeted towards conversational systems.

Command-based systems and conversational systems have different challenges. Regarding
usability, command-based systems have the problem of making the user understand what can
be said. One approach to this is the “universal speech interface” or “speech-graffiti” – that is,
to define and agree on a universal set of speech commands that can be used in the same way in
all dialogue systems (Harris & Rosenfeld, 2004). Since the goal of conversational systems is to
allow spontaneous speech, the challenge is instead how to model everything that people may
say. This leads to the challenge of how to model the language used. In command-based sys-
tems, the language models are often more rigid, assuming that users understand this and that
the interface metaphor will constrain the use of disfluencies, etc. Here, the challenge may in-
stead be to handle a very large vocabulary (such as all the streets in London). In conversational
systems, the vocabulary is often made smaller, but the grammar less strict, in order to model
the less predictable language use. Also, longer utterances with more complex semantics may be
expected, mixed with shorter, context-dependent fragmentary utterances.
In targeting conversational dialogue, the goal is not to handle all aspects of human lan-

guage use. As Allen et al. (2001a) points out, full natural-language understanding by machine
is an enormously complex (if not impossible) problem that will not be solved in the foresee-
able future. A fundamental constraint for most dialogue systems, both command-based and
conversational, has therefore been that they should operate within a given domain, or handle a
specific task. The domain will constrain the user’s expectations and behaviour into something
that could be modelled by the computer.
An argument for moving towards conversational dialogue, as opposed to a command-

based, is that human-like conversation generally is considered to be a natural, intuitive, robust
and efficient means for interaction. Thus, the advantage of command-based speech interfaces
over traditional graphical user interfaces is often restricted to the fact that users may use the
hands and eyes for other tasks, and their usefulness may thus be limited to special contexts of
use, such as when driving a car. Conversational dialogue systems hold the promise of offering
a more intuitive and efficient interaction. Whether this promise will be met remains to be seen.
Table 2.1 summarises the distinction between command-based and conversational dia-

logue systems. Again, these are prototypical categories, and a given dialogue system does not
have to exhibit all properties from one column.
The focus of this thesis is on error handling in conversational dialogue systems. However,

many of the results should be applicable to dialogue systems in general.

2.2 The structure and properties of conversation

13

Table 2.1: Two prototypical classes of dialogue systems and their associated properties.

 Command-based Conversational

Metaphor Voice interface metaphor. Human metaphor.

Language Constrained command-
language.

Unconstrained spontaneous
language.

Utterance length Short utterances. Mixed.

Semantics Simple semantics. Less context
dependence.

Complex semantics. More con-
text dependence.

Syntax More predictable. Less predictable.

Language models Strict grammar, possibly large
vocabulary.

Less strict grammar, possibly
smaller vocabulary.

Language coverage
challenge

How to get the user to under-
stand what could be said.

How to model everything that
people say in the domain.

2.2 The structure and properties of conversation

Before discussing the components and implementation of dialogue systems, we will briefly
describe some fundamental properties of human-human conversation from a linguistic per-
spective. This overview will help to understand the phenomena that need to be considered in a
conversational dialogue system.
Spoken dialogue is the most basic and primary form of language use – it is the setting in

which we first learn to use language as children. But there are, of course, other forms of lan-
guage use – such as written text and monologues – and spoken dialogue has some unique
characteristics. Speech differs from (most forms of) written language in that it is produced in a
linear fashion and cannot be post-edited. Moreover, there are no punctuation marks or para-
graphs, but instead a prosodic layer which may carry non-lexical information. Dialogue differs
from monologue in that it is a joint activity in which people take turns in the roles of speaker
and listener, and have to coordinate their language use to achieve mutual understanding
(Clark, 1996).

2.2.1 Communicative acts

A useful unit for analysis of written text is the sentence. Sentences are delimited by punctuation
marks, where each sentence commonly express one or more propositions. For spoken dialogue,
on the other hand, such units are much less adequate for analysis. Spoken dialogue contains
no punctuation marks and constitutes largely of non-sentential, fragmentary linguistic con-
structions. Furthermore, a linguistic construct may span over several turns, with other con-
structs in between, as in the following example:

Chapter 2. Spoken dialogue systems

14

(4) A.1: I have a red building …
B.2: mhm, a red building
A.3: … on my left.

A unit that is commonly used for segmenting spoken dialogue is instead the utterance. In dia-
logue, speakers exchange utterances, with the intent of affecting the other speaker in some way.
The segmentation of speech into utterances is not trivial. The term “utterance” is sometimes
used to denote “complete” constructs such as A.1 and A.3 together (i.e., an utterance may
span several turns), and sometimes used to denote an uninterrupted sequence of speech from
one speaker (i.e., A.1 and A.3 are separate utterances). In this thesis, we use the terms utterance
or turn to refer to an uninterrupted sequence of speech from one speaker. We use the term
communicative act (CA) to refer to a segment of speech from one speaker that has a main com-
municative function. A single turn may contain several CA’s, but one CA may also span several
turns. The term CA may also include communicative gestures that are used in face-to-face dia-
logue, although non-spoken communication is not addressed in this thesis.
A distinction can be made between the form and function of a CA. The form is the words

which are spoken and their prosodic realisation. The function is the effect the CA has (or is
supposed to have) on the listener in the context that it is signalled. This is related to Austin’s
distinction between the locutionary and perlocutionary acts that are performed when speaking
(Austin, 1962). Take the following example:

(5) A: What is your name?
B: Ben

B can be said to do at least two things here: saying the word “Ben” (the locutionary act) and
informing A that his name is Ben (the perlocutionary act). The same communicative function
can (in a certain context) be achieved by using very different forms. Take the following exam-
ples, where the intended effect is that the listener should repeat the last utterance:

(6) a. What did you say? (INTERROGATIVE)

b. Please repeat. (IMPERATIVE)
c. Sorry, I didn’t hear what you said. (DECLARATIVE)

In order to analyse CA’s, it is useful to group form and functions into some sort of categories.
The forms may be easier to categorise – a rough grouping can be done by sentence-type, as in
example (6) above – but the functions are more difficult, since the functions depend on the
context to a large extent, and the number of possible contexts is infinite and hard to character-
ise. To solve this, a level in-between locutionary and perlocutionary was defined by Austin,
under the name of illocutionary act or speech act. This should be understood as the conven-
tional function certain kinds of utterances have in accord with a conventional procedure. Aus-
tin developed a taxonomy of illocutionary acts, which was later modified by Searle (1979) into
a classification of five basic types of actions that may be performed when speaking an utter-
ance:

2.2 The structure and properties of conversation

15

• ASSERTIVE: committing the speaker to something being the case.
• DIRECTIVE: attempting to get the listener to do something.
• COMMISSIVE: committing the speaker to some future course of action.
• EXPRESSIVE: expressing the psychological state of the speaker about a state of affairs.
• DECLARATION: bringing about a different state of the world via the utterance.

A problem with the concept of illocutionary acts is that it is not always clear whether it really
refers to form or function, since speech acts may also have an indirect effect. For example, the
examples in (6) above could all be considered to be DIRECTIVES, but c. could also be classified
as an ASSERTIVE with an indirect DIRECTIVE effect. It is also possible that a CA may have sev-
eral simultaneous functions. Indeed, the whole concept of illocutionary act has been ques-
tioned for various reasons that will not be described in detail here (see Levinson (1983) for a
discussion).
Other schemes for classifying the functions of CA’s have been proposed under the names of

dialogue acts and conversational moves. One such scheme is DAMSL (Allen & Core, 1997),
where each CA has a forward-looking function (such as STATEMENT, INFO-REQUEST, THANK-
ING) and a backward-looking function (such as ACCEPT, REJECT, ANSWER). This scheme is
also more detailed than Searle’s, containing functions such as SIGNAL-NON-UNDERSTANDING,
which may be applied to all examples in (6).
These classifications are necessary and useful to make, if one wants to analyse patterns in

dialogue or build dialogue systems, but it should be noted that there will probably never be an
exhaustive scheme that divides all possible functions of CA’s for all possible domains into
clearly delimited categories. The usefulness of a given scheme depends on what kind of appli-
cation or analysis it will be used for. The reliability of a scheme can be measured by inter-
annotator agreement.

2.2.2 Discourse

A sequence of communicative acts forms a discourse. If many records of conversations are col-
lected and analysed, patterns will emerge in the discourses. For example, questions tend to be
followed by answers, offers by acceptances or rejections, greetings by greetings, etc. This phe-
nomenon is called adjacency pairs (Schegloff & Sacks, 1973). Between the two parts of an ad-
jacency pair, insertion sequences of other adjacency pairs may also appear (often called sub-
dialogues in spoken dialogue systems), resulting in more complex hierarchical patterns. Here is
an example:

(7) A.1: What does the red one cost? (Raise Q.1)
B.2: The red one? (Raise Q.2)
A.3: Yes (Answer to Q.2)
B.4: It costs 100 crowns. (Answer to Q.1)

Chapter 2. Spoken dialogue systems

16

Other patterns will also emerge. For example, conversations often start with an opening sec-
tion with greetings and end with a closing section with farewells.
It is tempting to conclude that there is some sort of generative “grammar” for conversa-

tional discourse, comparable to the grammar of a sentence. But, as Levinson (1983) points out,
conversation is not a structural product in the same way that a sentence is – its outcome is
spontaneously created in cooperation between two speakers with different goals and interests.
In the words of Clark (1996): “People may have general goals on entering a conversation, but
they cannot prepare specific plans to reach them. They must achieve what they do contribu-
tion by contribution”. The reason that people tend to give answers after questions is that they
often want to be compliant and have appropriate answers to give, not that there is some
grammar that tells them to answer. If a speaker responds to a question with a partial answer, or
with a rejection of the presuppositions of the question, or simply ignores it, it would not result
in an “ungrammatical” or “ill-formed” discourse. Moreover, what counts as adjacency pairs is
not obvious. If A would instead have said “The red one looks expensive” in A.1, it is not obvi-
ous if A.1 and B.4 should be considered to constitute an adjacency pair, although the perlocu-
tionary effect of A.1 would have been (almost) the same. This shows that the structures and
patterns that emerge depend on how we assign functions to communicative acts, which is in-
deed problematic, as discussed above. If we replace A.3 in the example above with a para-
phrase which should have the same perlocutionary effect, the structure of the dialogue changes
into one without any insertion sequence:

(8) A.1: What does the red one cost? (Raise Q.1)
B.2: The red one? (Raise Q.2)
A.3: What does the red one cost? (Raise Q.3)
B.4: It costs 100 crowns. (Answer to Q.3)

2.2.3 Ellipsis and anaphora

While the structure of the discourse does not govern which perlocutionary acts can be per-
formed, it may provide constraints for how an act must be formulated to achieve a given perlo-
cutionary effect. These constraints are perhaps most obvious when speakers want to reduce
their communicative effort.
One way of making utterances more efficient is to leave things out that can be recovered

by making inferences from the discourse. This phenomenon has been called ellipsis (e.g.,
Carbonell, 1983), non-sentential utterances (e.g., Schlangen, 2003), fragmentary utterances (e.g.,
Ginzburg et al., 2001), or information enriched constituents (Ericsson, 2005). B.2 and A.3 in
(7) above are examples of this. The way ellipses “borrows” from the context can be understood
by replacing them with paraphrases:

2.2 The structure and properties of conversation

17

(9) A.1: What does the red one cost?
B.2: The red one? → Did you say “the red one”?
A.3: Yes → I said “the red one”.
B.4: It costs 100 crowns.

In this example, B.2 borrows from A.1 and A.3 borrows from B.2. Note that A.3 can only be
resolved correctly once B.2 has been resolved. By making such paraphrases, we may also assign
a specific reading of the intentions behind the utterances.
When B in B.4 wants to assert the price of “the red one” in the examples above, he could

use the more efficient ellipsis “100”. However the use of such a construct is highly constrained
by the preceding discourse in a way that a sentential utterance isn’t. Suppose A had instead
asked “how old is the red one” in A.1. B could then still answer “it costs 100 crowns” and be
understood, while the ellipsis “100” (with the intended perlocutionary effect) would be di-
rectly misleading. There has been much work at understanding the ways in which the dis-
course constrains the use of ellipses, but we will not go into more detail here. Recent computa-
tional accounts of ellipsis resolution in dialogue systems are given in Schlangen (2003) and
Ericsson (2005).
Another way of reducing the communicative effort is to use different forms of anaphora,

that is, references to objects that have already been referred to in the same discourse. When an
object is mentioned in the discourse for the first time, we may say that a representation of it –
an entity – is evoked. This entity may then correspond to zero, one or more referents in the real
world. Once an entity has been evoked, it may be referred to again, or accessed, by the use of
anaphora. An example of this is the use of “it” to refer to “the red one” in B.4 in the example
above.
Just as for ellipses, the use of anaphora is constrained by the discourse. If another entity

would have been evoked between A.1 and B.4, the pronoun “it” would have been misunder-
stood.
Indefinite descriptions are often used to mark that an entity is new and should be evoked

(e.g., “I saw a cat”). Definite descriptions or pronouns are often used to mark that an entity is
given and should be accessed (e.g., “I saw the cat”, ”I saw him”). While these are general pat-
terns, there are of course exceptions (see Brown & Yule (2004) for an overview). A computa-
tional model of reference resolution should be capable of recognising whether a linguistic con-
struct is used to evoke or access an entity, and in the latter case find the accessed entity in the
discourse history. Several such models have been proposed, such as the Centering algorithm
(Grosz et al., 1995).

2.2.4 Spontaneous speech

Conversational speech is typically spontaneous and not planned beforehand. Such speech is to
a large extent characterised by disfluencies, such as:

Chapter 2. Spoken dialogue systems

18

• Filled pauses: “I have a eeh red building on my left”
• Repetitions: “I have a red red building on my left”
• Repairs: “I have a red buil- blue building on my left”
• False starts: “I have – I have a red building on my left”

Disfluencies arise partly due to the cognitive limitations of the speakers, but they may also be
utilised by speakers to, for example, mark focus or signal uncertainty. Shriberg (1994) has
shown that disfluencies occur in spontaneous speech at rates higher than every 20 words, and
can affect up to one third of all utterances, across many corpora and languages. Due to the less
predictable word order and the truncated words caused by disfluencies, spontaneous speech is
likely to give rise to more errors in automatic speech recognition. Unfilled pauses, such as “I
have a … red building on my left”, are not always considered to be disfluencies, but they arise
for the same reasons. Such mid-utterance pauses are problematic in spoken dialogue systems,
since they make it hard for the system to know when the user has ended the turn (Ferrer et al.,
2002; Edlund & Heldner, 2005; Bell et al., 2001).

2.3 Spoken dialogue system components

Spoken dialogue systems are indeed complex systems, incorporating a wide range of speech
and language technologies, such as speech recognition, natural language understanding, dia-
logue management, natural language generation and speech synthesis. These technologies do
not only have to operate together in real-time, but they also have to operate together with a
user, which may have individual needs and behaviours that should be taken into account.
A straightforward and well-known approach to dialogue system architecture is to build it

as a chain of processes (a pipeline), where the system takes a user utterance as input and gener-
ates a system utterance as output. Such a processing chain is shown in Figure 2.1.

Figure 2.1: A typical processing chain in a spoken dialogue system.

DM
Dialogue

management

ASR
Automatic speech

recognition

NLU
Natural language

understanding

TTS
Text-to-speech

synthesis

NLG
Natural language

generation

(1) audio

(2) text

(6) audio

(5) text

(4) semantics

INPUT

OUTPUT

(3) semantics

2.3 Spoken dialogue system components

19

In this chain, the speech recogniser (ASR) takes a user’s spoken utterance (1) and transforms it
into a textual hypothesis of the utterance (2). The natural language understanding (NLU)
component parses the hypothesis and generates a semantic representation of the utterance (3),
normally without looking at the dialogue context. This representation is then handled by the
dialogue manager (DM), which looks at the discourse and dialogue context to, for example,
resolve anaphora and interpret elliptical utterances, and generates a response on a semantic
level (4). The natural language generation (NLG) component then generates a surface repre-
sentation of the utterance (5), often in some textual form, and passes it to a text-to-speech
synthesis (TTS) which generates the audio output (6) to the user.
These may be the most important components of most dialogue systems. Still, this is just a

rough sketch of how a prototypical dialogue system may be composed. There are some possi-
ble alternatives and extensions to this architecture:

• There may be additional components, such as prosodic analysis, discourse modelling,

deep and surface language generation, etc.
• Instead of passing all data along the pipe, it is possible to have a shared information

storage or a blackboard that all components write and read to, and from which they
may subscribe to events (Turunen, 2004).

• The components may send other messages, and not just according to this pipeline.
For example, the ASR may send messages about whether the user is speaking or not
directly to the TTS.

• The components might operate asynchronously and incrementally. Asynchronicity
means that, for example, the ASR may recognise what the user is saying while the
DM is planning the next thing to say. Incrementality means that, for example, the
ASR recognises the utterance word by word as they are spoken, and that the NLU
component simultaneously parses these words. Allen et al. (2001b) argues that these
are crucial issues for conversational dialogue systems.

Another approach is of course to not divide the dialogue system into components at all, since
much information and efficiency is lost when the result of one component is serialized into a
message that is sent to another component. For example, ASR and NLU may be done in the
same processing step (Esteve et al., 2003). The advantage of the division into components –
especially for research systems – is that the components can be developed individually by dif-
ferent developers working with different approaches (and possibly different programming lan-
guages), as long as the interfaces between the components are well defined.

2.3.1 Automatic speech recognition

The task of the automatic speech recogniser (ASR) is to take an acoustic speech signal and
decode it into a sequence of words. To do this, the speech signal must first be segmented into
utterances that may be decoded. This segmentation is typically called endpointing or voice ac-

Chapter 2. Spoken dialogue systems

20

tivity detection (VAD), and is most often done based on the discrimination between speech
and silence. When a certain amount of speech, followed by a certain amount of silence (a si-
lence threshold, for example 750 ms) is detected, this segment is considered to be an utterance.
This method is not unproblematic. First, the discrimination between speech and silence is not
trivial, since the signal may also contain background noise. Second, silence is not a very good
indicator that someone has finished a turn. People typically make pauses mid-utterance (as
discussed in 2.2.4), at least in conversational dialogue, resulting in the system interrupting the
user. To cope with this, the silence threshold may be increased, but this will instead lead to
very slow turn-taking from the system. Because of this, researchers have looked at other fea-
tures than silence for determining endpoints, such as intonation (see for example Ferrer et al.,
2002: Edlund & Heldner, 2005).
Once the speech signal has been segmented, the decoding task can be described as follows:

Take the acoustic input, treat it as a noisy version of the source sentence, consider all possible
word sequences, compute the probability of these sequences generating the noisy input, and
choose the sequences with the maximum probability (Huang et al., 2001). To do this, a set of
models for computing these probabilities are needed, as well as a method for parameterizing
the audio signal into features, and an efficient search algorithm, since the amount of possible
word sequences to consider is huge.
To understand which models are needed, the problem can be summarized as: “What is the

most likely word sequence, WH, out of all possible word sequences (W1,W2,W3,…Wn) in the
language L, given some acoustic observation O”. This problem can be mathematically de-
scribed in the following equation:

(10))|(maxarg OWPW
LW

H
∈

=

P(W|O) is not so easy to compute. However, using Bayes theorem, we can rewrite the equa-
tion as:

(11)
)(

)()|(
maxarg

OP

WPWOP
W

LW
H

∈

=

P(O) is not so easy to compute either, but since P(O) is constant, regardless of which word
sequence is considered, this equation can be rewritten as:

(12))()|(maxarg WPWOPW

LW
H

∈

=

We end up with two probabilities that are much easier to compute. The probability of the
observation given the word sequence, P(O|W), is called the acoustic model, and the probability
of the word sequence, P(W), the language model. The parameterisation of the audio signal, the

2.3 Spoken dialogue system components

21

acoustic model and the search algorithm will not be described here, but see Huang et al.
(2001) for an overview.
There are basically two common types of language models typically used in dialogue sys-

tems: context-free grammar models (CFG), and n-gram models. A CFG consists of a number
of (hand-written) rules and a lexicon. A very small CFG may look like this:

(13) Grammar rules: S->[NP VP]; VP->[V NP]; NP->[N]
Lexicon: V->“loves”; N->”John”; N->”Mary”

This grammar states that a sentence (S), such as “John loves Mary”, may consist of a noun
phrase (NP) and a verb phrase (VP), and that the verb phrase (“loves Mary”) may consist of a
verb (V), such as “loves”, and a noun phrase. A noun phrase may in turn consist of just a noun,
such as “John” or “Mary”. Such a grammar describes all legal word strings in a given language,
but does not contain any statistical information. A corpus with texts may be used to infer the
probabilities of the different rules and thus make the CFG stochastic.
N-gram models are purely stochastic; they model the probability of a sequence of words as

a product of the probabilities of each word, given the N-1 preceding words. For example, a
trigram model may contain the probability that the word “house” occurs after the string “have
a”.
The general characteristics of these two types of models, in the context of spoken dialogue

systems, are fairly well known (see for example Knight et al., 2001). CFG models typically
perform better than n-gram models, given that the user knows what can be said and speaks in-
grammar, and are thus better suited for command-based dialogue systems. N-gram models
typically need large amounts of data to perform well, but are better at covering spontaneous,
less predictable, speech. N-gram models also tend to degrade more gracefully when the user’s
utterances are poorly covered by the grammar, but they may also give rise to ASR results
which are often only partially correct. Such models may therefore be more suitable for conver-
sational dialogue systems.
A method for increasing the ASR accuracy is to train the acoustic models on the specific

user, in a so-called enrolment procedure. This is used in all state-of-the-art dictation systems,
since such systems need very large vocabularies. Typically, the user uses the same dictation
application frequently on the same computer, and an enrolment procedure is therefore accept-
able. Since dialogue systems are often used more infrequently and often by first-time users,
enrolment is very seldom used.
The output from the ASR may consist of a single hypothesis containing a string of words,

but an ASR may also deliver multiple hypotheses, in the form of an n-best list or a word lattice.
An n-best list is simply a list of the top hypotheses (containing n items). Since similar word
sequences achieve similar probabilities, many of the different hypotheses are often just one-
word variations of each other (Huang et al., 2001), as can be seen in Table 2.2. Especially for
longer utterances, n-best lists need to be very long in order to contain useful information. N-
best lists are therefore also very inefficient representations. For example, a 10-word utterance
with 2 different word hypotheses in each position would need an n-best list of 210=1024 items

Chapter 2. Spoken dialogue systems

22

to include all hypotheses. Word lattices are much more compact representations, in which the
possible word sequences are represented in graph, as can be seen in Figure 2.2.

Table 2.2: An example 6-best list (derived from Huang et al., 2001).

I will tell you would I think in my office

I will tell you what I think in my office

I will tell you when I think in my office

I would sell you would I think in my office

I would sell you what I think in my office

I would sell you when I think in my office

Figure 2.2: A word lattice representation of the 6-best list in Table 2.2.

The hypotheses may also be annotated with confidence scores that carry information about
how well the data fit the models. Confidence scores can be provided for the whole string, but
also for the individual words in it. The calculation of confidence scores is described and dis-
cussed in the next chapter.
The ASR is usually the only component that processes the speech signal, with the main

task of recognising the words used. However, there is an important aspect of the speech signal
– prosody – that is typically ignored. Systems doing prosodic analysis therefore need some
other component that takes the speech signal as input.

2.3.2 Natural language understanding

The task of the natural language understanding (NLU) component is to parse the speech rec-
ognition result and generate a semantic representation. Such components may be classified
according to the parsing technique used and the semantic representations that are generated.
A classic parsing approach is to use a CFG- based grammar which is enhanced with seman-

tic information. The same CFG may then be used for both speech recognition and NLU. This
is done in many command-based dialogue systems, such as those implemented in the W3C-
standard VoiceXML (McGlashan et al., 2004). This approach may not be applicable to con-
versational dialogue systems, since they often require n-gram language models in the ASR,

2.3 Spoken dialogue system components

23

which typically generate partly erroneous and less predictable word sequences that are hard to
cover with a CFG. A more robust approach is to use keyword or keyphrase spotting (i.e., some
sort of pattern-matching), where each word or phrase is associated with some semantic con-
struct (Ward, 1989; Jackson et al., 1991). The problem with this approach is that more com-
plex syntactic constructs (such as negations) are easily lost. It can also lead to an over-
generation of solutions on erroneous input. Another approach to parse less predictable input is
to use a (possibly modified) CFG, but extend the parsing algorithm with robustness tech-
niques (e.g., Mellish, 1989; Satta & Stock, 1994; Kasper et al., 1999; van Noord et al., 1999).
The main potential drawbacks with this approach is that it may be inefficient (depending on
how much robustness techniques are applied), and that it may over-generate solutions that are
hard to choose among.
There has also been a lot of effort in data-driven approaches to NLU. One of the main ra-

tionales is to gain robustness. Examples of this include Segarra et al. (2002) and He & Young
(2003). Data-driven approaches to NLU have mainly been used in academic dialogue systems,
with the exception of call-routing, which is a successful commercial application. In such sys-
tems, the user is asked to make an initial description of her problem using free speech, so-
called “open prompts”. A large corpus of such descriptions is collected and machine-learning is
used to classify them, so that the user may be routed to an appropriate operator. The “How
May I Help You”-system developed at ATT is one of the most well-known examples (Gorin et
al., 1997).
The purpose of the NLU component is to extract the “meaning” of the utterance. It is not

obvious how this should be understood in the context of spoken dialogue systems. Bangalore
et al. (2006) define this as “a representation that can be executed by an interpreter in order to
change the state of the system”. To know how the state should be changed, some sort of
communicative function should be extracted, together with a description of the propositional
content.
The simplest form of semantic result from a NLU component is a list of key-value pairs,

also called frame. As an example, the interpretation of the utterance “I want to go from Paris
to London at 8 am” may look like this:

(14) {from: Paris

 to: London

 time: 8am}

This example shows that many aspects of the semantics may be left out, if they are not needed
for the system to update its state. In this case, the semantic representation does not tell which
communicative function is being performed, nor does it tell who wants to make the booking.
Frames are commonly used in command-based systems together with CFG parsing (for exam-
ple in VoiceXML applications). A drawback with such frames is that they are inadequate for
representing more complex semantics, such as relations between objects. Frames are suitable
for keyword-spotting approaches, which cannot parse complex syntactic and semantic rela-
tions in utterances anyway. In order to represent more complex semantics, deep (or nestled)

Chapter 2. Spoken dialogue systems

24

frames may be used (also called feature structures or attribute-value matrices). For example, a
representation of the utterance “I want three Capricciosa and one Calzone”, may look like
this:

(15) {order: [{item: pizza

 type: Capricciosa

 qty: 3}

 {item: pizza

 type: Calzone

 qty: 1}]}

In many academic dialogue systems, first-order predicate calculus (FOPC) is used to represent
semantics. Using FOPC, objects and their properties and relations may be represented, as well
as quantifications of these. To be able to represent the semantics of fragments, such as verbs,
and not just full propositions, FOPC is usually extended with lambda calculus. The strength
of FOPC is that it is a well-defined, expressive formalism that also supports inferences, which
may be utilised in dialogue systems (Bos & Oka, 2002). For an introduction to the use of
FOPC for semantic representation of natural language, see Jurafsky & Martin (2000). An
early example of a dialogue system using FOPC is TRAINS (Allen & Ferguson, 1994), and a
later example is NICE (Boye et al., 2006). A practical hindrance for FOPC as a format for
semantic representations in dialogue systems is that it is not a common data structure that is
straightforward to use in most programming languages. Thus, it is often used in dialogue sys-
tems implemented in logic programming languages, such as Prolog.

2.3.3 Dialogue management

The most common tasks of the dialogue manager can be divided into three groups:

• Contextual interpretation: Resolve for example ellipses and anaphora.
• Domain knowledge management: Reason about the domain and access information

sources.
• Action selection: Decide what to do next.

In other words, the dialogue manager can be regarded as the executive controller of the dia-
logue system, it is this component that holds the current state of the dialogue and makes deci-
sions about the system’s behaviour.

2.3.3.1 Contextual interpretation
The result of the NLU component is a semantic representation of the user’s utterance. How-
ever, the NLU component does not, in most cases, have access to the dialogue history, and
thus can only make a limited interpretation that in some cases has to be enriched. Take the
following example:

2.3 Spoken dialogue system components

25

(16) S.1: When do you want to go?
U.2: On Wednesday
S.3: Where do you want to go?
U.4: Paris

If the system is limited to simple command-based travel booking dialogues, the NLU compo-
nent may directly infer from U.2 that the user wants to travel on Wednesday, since there is no
other possible interpretation of “On Wednesday” within the domain. However, in U.4, the
NLU component can only generate a semantic description which represents the city Paris. It
cannot know if the user wants to go from Paris or to Paris. This has to be inferred by the dia-
logue manager. In command-based dialogue systems, there is usually less demand for the dia-
logue manager to make such inferences, compared to a conversational system, which may con-
tain a lot of elliptical utterances that are dependent on context.
The system may resolve elliptical utterances by transforming them into their full proposi-

tional counterpart (Carbonell, 1983). In the example above, U.4 would be transformed into
the semantic representation of “I want to go to Paris”. Another solution is to open a semantic
“slot” when an elliptical utterance is expected. For example, after S.3 in the example above, the
system may open the slot “destination”, in which the elliptical utterance U.4 will fit. An ex-
ample of this approach is VoiceXML. This solution is more viable when there are not so many
different elliptical utterances that are expected. In any case, to resolve ellipses, the system must
somehow track the current state of the dialogue, which will be discussed later on.
Apart from the resolution of fragmentary utterances, the dialogue manager may also have

to resolve anaphora, as the following example illustrates (with co-referring expressions under-
lined):

(17) S: You should see a red building and a blue building. Position yourself so that you have
the red building on your left.

U: Ok, I have it on my left now.

In many dialogue system domains, anaphora does not need to be handled. An example of this
is the extensively studied travel booking domain. In this domain, the user and system mainly
talk about entities such as cities, dates and times, which are most often referred to with expres-
sions that do not need to be resolved using the preceding discourse. For a dialogue system to
resolve anaphora, it must somehow track which objects are talked about in its model of the
dialogue state. Boye et al. (2004) argue that general purpose semantic reasoning for anaphora
resolution might be unnecessarily complex and computationally demanding, given that the
dialogue systems acts within limited domains. Instead, they propose a strategy where the most
recently referred object of a compatible type is searched for.

2.3.3.2 Domain knowledge management
According to Flycht-Eriksson (2001), the different knowledge sources needed by a dialogue
manager can be separated into dialogue and discourse knowledge, task knowledge, user
knowledge and domain knowledge. The first two are needed for contextual interpretation and

Chapter 2. Spoken dialogue systems

26

action selection. User knowledge can be used to adapt the system’s behaviour to the user’s
experience and preferences. Domain knowledge management includes models and mechanisms
for reasoning about the domain and for accessing external information sources, such as an
SQL database or a graphical information system (GIS). In order to do this, the system must
have a domain model, that is, a semantic representation of the world which can be mapped to
natural language (which is done in the NLU and NLG processes) and to queries of the infor-
mation sources. In simpler domain models, the semantic representation of utterances can be
mapped directly to database queries. In more complex models, the system may have to trans-
late vague representations (such as “large”) into more precise queries, but it may also have to
draw inferences (for example understanding that a house is also a building). More complex
descriptions of how concepts in the domain model are related (which may be used for infer-
ence) are often referred to as ontologies.
Domain knowledge management is often integrated into the other tasks of the dialogue

manager, but it may also be separated from the other tasks into an individual process (Flycht-
Eriksson, 2001).

2.3.3.3 Action selection
The third main task of the dialogue manager is to make the decisions on what the dialogue
system should do next, which is often a communicative act that is to be generated and synthe-
sised by the output components. Different approaches to making this decision have been pro-
posed. A general idea is to separate an “engine” from a declarative model, in order to make the
transition between applications and domains easier.
Central to action selection (just as for contextual interpretation) is that it should somehow

be based on the context, in other words the dialogue state. A fairly simple method is to model
the dialogue as a set of pre-defined dialogue states in a finite state machine (FSM). FSM is a
well-known formalism in which the model is separated from the engine.
The FSM approach is appropriate when the semantics of the dialogue simply can be repre-

sented by the current state in the machine. However, in many applications, more complex
semantics is needed. For example, in a travel booking system, a frame with feature-value pairs
may be used, such as:

(18) {from: _

 to: _

 date: _

 time: _}

If this frame is just filled one slot at a time, controlled by the system’s initiative, an FSM is
sufficient. But if the user should be allowed to fill any field of his choice, or multiple fields at
the same time (so-called mixed-initiative), the number of different combinations of filled slots
grows exponentially as more slots are added. Thus, the FSM grows very large and becomes
incomprehensible for the dialogue designer. To solve this problem, the dialogue state is instead
commonly modelled as a store containing variables. A pre-defined or custom control algorithm
is then used to operate on the store. Depending on the current state of the store, different ac-

2.3 Spoken dialogue system components

27

tions will be taken. The store need not represent the complete dialogue history. It only needs
to represent the parts that are determined to be needed for the application.
An example of this approach is VoiceXML, where the store is modelled as a flat frame, as

in example (18) above. A pre-defined control algorithm, called the form interpretation algo-
rithm (FIA), is used, which operates in the following way:

1. Start from the top, stop at the first slot that is not filled.
2. Play a prompt that is associate with that slot, such as “Where do you want to go?”
3. Wait until the user fills one or more slots (for example by saying “I want to go from

Paris to London”), or a timeout occurs.
4. If all slots are filled, end the form. Otherwise, restart with step 1.

This simple algorithm will ensure that all slots will be filled, but will also allow the user to fill
other slots than the one asked for, or multiple slots at the same time (i.e., mixed-initiative). It
is also possible to extend the control mechanism with events that are triggered when certain
slots are filled.
An example of a more complex model is the information state approach implemented in

TrindiKit (Larsson & Traum, 2000), where the store (called the information state) is a deep
feature structure with variables. The control algorithm consists of a set of update rules which
have preconditions (on the information state) and effects. Effects may be communicative acts,
but also changes to the information state itself, triggering other rules to apply. The order in
which update rules are applied is controlled by an update algorithm. The structure of the in-
formation state, the update rules and the update algorithm may all be customised for the spe-
cific application. The approach is similar to that of production systems in AI, in which the store
is called the working memory and the update rules productions (Klahr et al., 1987).
In grammar-based approaches to dialogue management, a grammar is used to describe how

speech acts can (and should) be sequenced and structured. An example of this approach is the
LinLin system (Jönsson, 1997), where a context-free dialogue grammar is used. The grammar
is used for both contextual interpretation and for action selection. As the dialogue is parsed
using the grammar, the resulting tree structure becomes a model of the dialogue history. As
discussed in 2.2.2 above, one may doubt whether dialogue really can be described using a
grammar similar to the way sentences can, or if selection of perlocutionary acts really should
be done with the help of a grammar. Even if the dialogue can be parsed with a grammar in
hindsight, it may be more problematic to do it online, as the past dialogue probably has to be
reinterpreted in light of new utterances. The approach may therefore be more useful for mod-
elling simpler command-based dialogues than for spontaneous, conversational dialogue.
In plan-based approaches, utterances are treated in the same way as actions in a planning

system that are performed in order to achieve some goal (Allen & Perrault, 1980). By recog-
nising the user’s intentions and goals, the system may infer which (communicative) acts need
to be performed for the goal to be reached. Each act is associated with preconditions, con-
straints and effects. The idea is that the system has access to a library of such acts and may
flexibly put these together in a chain that forms a plan that may meet the desired goal. One of

Chapter 2. Spoken dialogue systems

28

the problems with this approach is that this sort of planning quickly becomes combinatorically
intractable as the number of possible acts increase. It is also questionable whether these kinds
of generalised and flexible methods for generating plans are really needed for most dialogue
systems that operate within limited domains. Often, plans can be represented in a more
straightforward way and defined in advance, given that a limited number of plans are really
needed in a given domain. For example, the travel booking frame in example (18) above, to-
gether with the FIA, may be regarded as a plan for collecting information that is needed to
book a trip. It is very simple and fixed, but nevertheless efficient.
Recently, there have been many efforts at making dialogue management (especially action

selection) data-driven, by using statistical methods and machine learning approaches. The
rationale behind this effort is that other language technologies have moved in this direction
with great success (Young, 2002). Data-driven approaches to action selection will be discussed
in Chapter 8.

2.3.4 Natural language generation

The NLG component takes the semantic representation of a communicative act from the sys-
tem and generates a textual representation, possibly with prosodic markup, that is to be syn-
thesised by a speech synthesiser. The simplest approach to this is so-called canned answers,
that is, a simple mapping between a discrete set of communicative acts and their realisations.
To make the answers more flexible, templates may be used that contain slots for values, such
as “Ok, you want to go from <from> to <to>, <date> at <time>”.
Research into more advanced and flexible models for NLG has mainly been concerned

with the production of written language or coherent texts to be read, dealing with issues such
as aggregation and rhetorical structure (Reiter & Dale, 2000). Although these issues may be
important for dialogue systems as well, there are a number of perhaps more important issues
that are specific for spoken dialogue systems, where utterances have to fit into an ongoing
conversation.
Spoken dialogue is, as opposed to a written text, produced “online” and cannot be post-

edited. Since the whole discourse cannot be planned beforehand, the semantics of each utter-
ance should be integrated into the system’s discourse model, since they may affect the realisa-
tion of future utterances. If the system is interrupted in the middle of an utterance, it should
ideally know and remember which parts of the intended utterance were actually said.
There are several ways of realising a communicative act, for example by selecting between

full utterances and elliptical constructions, or by using different anaphoric expressions. As
shown in the discussion in the next chapter, the choice of realisation is important in that dif-
ferent realisations will signal understanding in different ways, so-called grounding. Another
aspect is that a flexible choice between different forms of realisations may increase the natural-
ness and efficiency of the system.
Humans engaging in a dialogue tend to coordinate their linguistic behaviour with each

other. Garrod & Anderson (1987) have shown in experiments on human-human conversation
that speakers build conceptual pacts during the dialogue, which are specific for the discourse

2.3 Spoken dialogue system components

29

shared between them. Several studies have shown that users of spoken dialogue systems adjust
the vocabulary and expressions to the system (see for example Brennan, 1996; Gustafson et al.,
1997; Skantze, 2002). Also, if users consistently choose some lexical realisations themselves,
they will probably have a greater confidence in a system that adopts these choices.

2.3.5 Text-to-speech synthesis

A simple and straightforward way of generating the audio output is to use pre-recorded speech,
which is commonly used in commercial applications, since text-to-speech synthesis (TTS) is
often considered lacking in quality. The drawback is, of course, lack of flexibility, and pre-
recorded speech is therefore only suitable if utterances are produced as canned answers, and to
some extent templates. To gain more flexibility, a TTS process is needed. TTS can generally
be divided into two separate problems – the mapping from an orthographic text to a phonetic
string with prosodic markup, and the generation of an audio signal from this string. The first
problem has been addressed with both knowledge-driven (Carlson et al., 1982) and data-
driven (van den Bosch & Daelemans, 1993) approaches. To the second problem, there are
three common approaches: formant synthesis, diphone synthesis and unit selection. A formant
synthesiser models the characteristics of the acoustic signal, which results in a very flexible
model. However, the speech produced is not generally considered very natural-sounding. In
diphone synthesis, a limited database of phoneme transitions is recorded, and the synthesised
speech is concatenated directly from this database. Prosodic features are then added in a post-
processing of the signal. Unit selection is also based on concatenation; however, the chunks are
not limited to phoneme transitions. Instead, a large database is collected, and the largest
chunks that can be found in the database are concatenated. Unit selection needs large amounts
of data to achieve acceptable quality. This may be a problem if the dialogue system agent
should have its own voice, or the system should have many personas with different characteris-
tics, for example in game applications. A solution to this is to use a limited domain synthesis,
which is basically a unit selection synthesis based on a smaller data set collected with the in-
tended application in mind (Black & Lenzo, 2000). If the output is to be generated by an
embodied conversational agent (ECA), facial (and possibly bodily) animation is also needed
(see for example Beskow, 2003).
The interface between the NLG component and the TTS component is important, since it

should not only consist of a text – it should also be possible to represent other properties of
utterances, such as prosody. GESOM (Beskow et al., 2005) and the W3C standard SSML
(Burnett et al., 2004) are examples of such interfaces.
Many utterances are not composed of words, but are non-lexical (or non-verbal) utterances,

such as “uh-huh”, “um”, and “hmm”. According to Campbell (2007), approximately half of
the speech sounds used in normal everyday conversational speech are non-lexical. In non-
lexical utterances, much of the meaning is conveyed by prosody, rather than by the phonetic
content. Non-lexical utterances are commonly used in dialogue as feedback, disfluency mark-
ers and the like. Their primary functions are turn-taking control, negotiating agreement, sig-
nalling recognition and comprehension, and expressing emotion, attitude, and affection

Chapter 2. Spoken dialogue systems

30

(Ward, 2004). It is important to understand how prosody and phonetic content affects the
pragmatics of synthesised non-lexical utterances (Wallers et al., 2006), if a dialogue system
should be able to generate them.

2.4 Summary

This chapter has described some basic properties of spoken dialogue and the techniques and
issues involved in developing spoken dialogue systems. It was argued that two general types of
dialogue systems may be distinguished, command-based and conversational, and that this the-
sis is targeted towards the latter, that is, dialogue systems that to a larger extent build upon the
principles of human conversation. In dialogue, speakers take turns in the roles of speaker and
listener and exchange communicative acts (CA’s), varying in form and function. A sequence of
CA’s forms a discourse.
To be able to engage in conversation, a spoken dialogue system has to attend to, recognise

and understand what the user is saying, interpret utterances in context, decide what to say next,
as well as when and how to say it. To achieve this, a wide range of research areas and tech-
nologies must be involved, such as automatic speech recognition, natural language under-
standing, dialogue management, natural language generation and speech synthesis.
A more detailed description of a complete spoken dialogue system is provided in Chapter

6, where the HIGGINS system – a dialogue system developed for exploring error handling is-
sues – is described.

31

CHAPTER 3

Miscommunication and error handling

In the previous chapter, conversation and spoken dialogue systems were described from a very
general perspective. In this description, a fundamental issue is missing: how to deal with uncer-
tainty and errors. Understanding is not something that speakers can take for granted, but
something they constantly have to signal and monitor, and something that will sometimes fail.
In this chapter, we will first review how humans ensure understanding in communication and
what happens when miscommunication occurs. We will then discuss the concept of error in
the contexts of human-human and human-computer dialogue, and review research done on
how errors in spoken dialogue systems may be detected and repaired.

3.1 Miscommunication and grounding

3.1.1 Miscommunication

Miscommunication is a general term that denotes all kinds of problems that may occur in
dialogue. One reason for miscommunication being fairly frequent in dialogue may be ex-
plained by the Principle of Parsimony3 (Carletta & Mellish, 1996):

The Principle of Parsimony states that people usually try to complete tasks with the
least effort that will produce a satisfactory solution. In task-oriented dialogue, this
produces a tension between conveying information carefully to the partner and leav-
ing it to be inferred, risking a misunderstanding and the need for recovery. (p. 71)

3 Also called Ockham’s Razor.

Chapter 3. Miscommunication and error handling

32

For example, speakers may produce ambiguous referring expressions, use fragmentary utter-
ances which can only be understood assuming a certain common ground between the speakers,
and may use extremely reduced phonetic realisation of utterances. These are all different ways
of increasing efficiency and introducing risk – there is always the possibility that listeners will
not interpret them correctly. However, it may not be worth the effort to produce unambigu-
ous expressions and canonical pronunciations, if the intended messages usually are interpreted
correctly or if it is easy to diagnose and correct the problem when they are not.
There are different ways of analysing miscommunication phenomena. A common distinc-

tion is made between misunderstanding and non-understanding (e.g., Hirst et al., 1994;
Weigard, 1999). Misunderstanding means that the listener obtains an interpretation that is not
in line with the speaker’s intentions. If the listener fails to obtain any interpretation at all, or is
not confident enough to choose a specific interpretation, a non-understanding has occurred.
One important difference between non-understandings and misunderstandings is that non-
understandings are noticed immediately by the listener, while misunderstandings may not be
identified until a later stage in the dialogue. Some misunderstandings might never be detected
at all. The same utterance may, of course, give rise to both misunderstanding and non-
understanding, that is, parts of an utterance may be misunderstood while others are not un-
derstood. Successful communication may be referred to as correct understanding or just under-
standing4. Misunderstanding and correct understanding are similar in that the listener chooses
a specific interpretation and assumes understanding, which is not the case for non-
understanding.
A second way of analysing miscommunication is by the action level with which the prob-

lem is associated. Both Allwood et al. (1992) and Clark (1996) make a distinction between
four levels of action that take place when a speaker is trying to communicate something to a
listener. The authors use different terminologies, but the levels are roughly equivalent. The
terminology used here is a synthesis of their accounts. Suppose speaker A proposes an activity
for listener B, such as answering a question or executing a command. For communication to
be “successful”, all these levels of action must succeed (listed from higher to lower):

• Acceptance: B must accept A’s proposal.
• Understanding: B must understand what A is proposing.
• Perception: B must perceive the signal (e.g., hear the words spoken).
• Contact: B must attend to A.

More fine-grained analyses are of course also possible. The understanding level may for exam-
ple be split into discourse-independent meaning (e.g., word meaning) and discourse-
dependent meaning (e.g., referring expressions). The order of the levels is important; in order

4 Brown (1995) prefers the term adequate interpretation (or understanding). According to her, every

utterance is understood for a particular purpose on a particular occasion. There is, in most conversational
settings, not a single interpretation which is “correct”, but a number of adequate interpretations which
will serve to fulfil the purpose of the speakers’ joint project.

3.1 Miscommunication and grounding

33

to succeed on one level, all the levels below it must be completed. Thus, we cannot understand
what a person is saying without hearing the words spoken, we cannot hear the words without
attending, and so on. Clark calls this the principle of upward completion.
Now, misunderstanding and non-understanding may occur on all these levels of action. B

might correctly hear the words spoken by A, but misunderstand them or not understanding
them at all. B might also attend to A speaking, but misrecognise the words spoken, or not hear
them at all. As Dascal (1999) notes, this is reflected in the different names for misunderstand-
ing in the English language, such as: mishear, misrecognise, misinterpret, misinfer, misconclude.
In this thesis, however, we will stick to the terms misunderstanding and non-understanding to
denote the general phenomena, and state which level is concerned if necessary.
It is questionable, however, whether failure on the level of acceptance really should be clas-

sified as miscommunication. If someone rejects a request or does not accept a proposal, we
could easily say that the participants have succeeded in their communication. If A and B en-
gage in a dialogue about possible activities and A suggests that they should go and see a movie,
and B then rejects this proposal because he has already seen the film, we may say that they
have successfully communicated that this is not an option.
A third distinction can be made depending on the scope of the miscommunication. Misun-

derstanding and non-understanding may concern not only the whole utterance, but also parts
of it, resulting in partial misunderstanding and partial non-understanding:

(19) A: I have a red building on my left.
B (partial misunderstanding):
 How many stories does the blue building have?
B (partial non-understanding):
 What colour did you say?

Did you say red?

3.1.2 Grounding

Communication can be described as the process by which we make our knowledge and beliefs
common, we add to our common ground. Clark (1996) defines the notion of common ground
as follows:

Two people’s common ground is, in effect, the sum of their mutual, common, or
joint knowledge, beliefs, and suppositions. (p.92)

When engaging in a dialogue, two people may have more or less in their common ground to
start with. During the conversation, they try to share their private knowledge and beliefs – to
add them to the common ground. As Clark (1996) points out, however, the process by which
speakers add to the common ground is really a joint project, in which the speakers have to
cooperatively ensure mutual understanding. A speaker cannot simply deliver a message and
hope that the listener will receive, comprehend and accept it as correct. They have to con-
stantly send and pickup signals about the reception, comprehension and acceptance of the
information that is communicated. This is the process of grounding.

Chapter 3. Miscommunication and error handling

34

3.1.2.1 Evidence of understanding
In order to ground information, people give positive and negative evidence of understanding to
each other. According to Clark, each contribution to the common ground requires a presenta-
tion phase and an acceptance phase. In the presentation phase, speaker A presents a signal for
the listener B to understand; in the acceptance phase, B provides evidence of understanding.
However, speaker B may in the same turn start a new presentation phase. Thus, each utterance
can be said to communicate on two different tracks. On Track 1, knowledge and beliefs about
the topic at hand are exchanged. At the same time, communication about understanding is
(implicitly or explicitly) performed on Track 2. In Clark’s words:

Every presentation enacts the collateral question “Do you understand what I mean
by this?” The very act of directing an utterance to a respondent is a signal that means
“Are you hearing, identifying, and understanding this now?” (Clark, 1996, p.243)

The term evidence of understanding is closely related to the term feedback. The latter term is
generally used to denote the information that an agent may receive about the consequences of
the agent’s actions. In this thesis, we will use the term evidence of understanding, which more
precisely denotes feedback that concerns the management of understanding. For example,
Allwood et al. (1992) use the term linguistic feedback to denote mechanisms by which inter-
locutors signal their understanding, but also attitudinal reactions and answers to yes/no-
questions.
In Clark’s account, some kind of positive evidence of understanding is required for each

contribution to be considered as common. Clark & Schaefer (1989) list five different types of
positive evidence:

1. The hearer shows continued attention.
2. An initiation of a relevant next contribution, for example an answer to a question.
3. An acknowledgement like “uh huh” or “I see”.
4. A demonstration of understanding, for example a paraphrase.
5. A display of understanding, i.e., a repetition of some (or all) of the words used.

Evidence can be more or less strong. The types are listed above roughly from weak to strong:
Evidence 1 and 3 only shows that the listener thinks that he understands; there is no real proof
that the content of the utterance is really understood. In the words of Schegloff (1982): “’uh
huh’, ‘mm hmm’, head nods and the like at best claim attention and/or understanding, rather
than showing it or evidencing it” (p. 78). Evidence 2 may indicate that some of the contents are
understood correctly, but it is only evidence 4 and 5 that actually prove that (some of) the con-
tents were correctly understood or perceived. As Traum (1994) points out, evidence 4 might
actually be stronger than evidence 5, since the listener shows that he has processed the content
on some deeper level.
Display of understanding may be given as separate communicative acts, with the main

purpose of displaying understanding. These may be called display utterances or echoic responses
(Katagiri & Shimojima, 2000). Here is an example:

3.1 Miscommunication and grounding

35

(20) A: I have a red building on my left.
B: A red building, ok, what do you have on your right?

Display utterances and acknowledgements may also be given without keeping the turn, so-
called backchannels (Yngve, 1970) or continuing contributions (Clark, 1996):

(21) A: I have a red building …
B: a red building
A: … on my left …
B: mhm
A: … and a blue building on my right.

An important function of such mid-utterance evidence is that it may denote which parts of the
presentation utterance it concerns.
Display of understanding is very often integrated in the next communicative act, with its

main purpose belonging to Track 1:

(22) A: I have a red building on my left.
B: How many storeys does the red building have?

3.1.2.2 The grounding criterion
In example (22) above, B could have used the pronoun “it” to refer to the building, but in-
stead chooses the full definite description, which displays B’s understanding. Thus, there is
always a range of different realisations of the same propositional content (on Track 1), but
which may provide different amounts of evidence (on Track 2). How do we, then, choose
what strength of evidence to give? Clark (1996) defines grounding as follows:

To ground a thing […] is to establish it as part of common ground well enough for
current purposes. (p.221, italics added)

Thus, the requirements on how much evidence is needed vary depending on the current pur-
poses. Clark calls these requirements the grounding criterion. There are at least three important
factors that should govern the choice of what evidence to give. First, the level of uncertainty is
of course an important factor. The more uncertain we are, the more evidence we need. A sec-
ond important factor is the cost of misunderstanding and task failure. As less evidence is given,
the risk that a misunderstanding occurs will increase – thereby jeopardizing the task the speak-
ers may be involved with. However, a task failure may be more or less serious. Consider the
following example:

(23) A: Welcome to the travel agency. Ann here. How may I help you?

B: Hi there, I would like to book a trip to Paris.
A: Ok, to Paris, from where do you want to go?

In this example, B’s statement about the destination requires strong evidence (such as the dis-
play in the example), since booking a ticket with the wrong destination has serious effects. On

Chapter 3. Miscommunication and error handling

36

the other hand, when Ann is presenting her name in the beginning of the conversation, there
is typically no need for B to provide any evidence.
Why do we not always provide strong evidence, just to be certain, then? This is explained

by the Principle of Parsimony, as discussed previously – people strive to be economical and
efficient in their language use. Clark (1996) calls this the principle of least effort:

All things being equal, agents try to minimize their effort in doing what they intend
to do. (p224)

Thus, the third important factor for choosing what evidence to provide is the cost of actually
providing the evidence and the possible reactions to the evidence.
Since miscommunication may occur on different levels of actions, evidence may also be

given on these different levels. For example, the utterance “I heard what you said, but I don’t
understand” is an explicit way of giving positive evidence on the perception level, but negative
evidence on the understanding level. When positive evidence is given on one level, all the lev-
els below it are considered complete. Clark (1996) calls this the principle of downward evidence.

3.1.2.3 The requirement of positive evidence
As pointed out by Traum (1994), there is a problem with Clark’s strong requirement of posi-
tive evidence. Since an acceptance utterance also can be regarded as a presentation (of some
evidence) and all contributions require positive evidence, not just lack of negative evidence,
the acceptance should require another acceptance (with positive evidence), and so on ad infini-
tum. Clark’s solution to this problem is that each piece of evidence provided by one speaker in
turn requires less evidence from the other speaker, so that the need for evidence eventually
fades out. However, it is not entirely clear when, why and how the requirement for positive
evidence disappears.
This problem is due to the explicit requirement that each contribution needs some sort of

positive evidence:

What distinguishes this model is the requirement of positive evidence. In traditional
accounts, Roger could assume that Nina understood him unless there was evidence
to the contrary. (Clark, 1996, p. 228)

But there are a number of communicative situations when we clearly do not require positive
evidence. For example, a lecturer does not need continuous positive evidence from all hearers
to assume that they are listening. We may also send an email without requiring positive evi-
dence that it is received and read. In these cases, we may instead monitor that we do not get
negative evidence (such as someone in the audience falling asleep or an error message from the
mail server). In other cases, we do indeed require positive evidence. This, of course, depends
on the grounding criterion, as discussed previously. If lack of negative evidence may be suffi-
cient in these situations, why would it never be sufficient in spoken dialogue? Clark states that
every contribution needs positive evidence, but it is quite unclear what is meant by a contribu-
tion. Is it the whole communicative act? Or is each semantic concept a contribution? Example

3.1 Miscommunication and grounding

37

(23) above illustrates that there are certainly pieces of information for which a speaker does
not require positive evidence.
As indicated in the quote above, the reason that Clark puts this strong constraint into his

model is to distinguish the account from the naive view that speakers always assume under-
standing as long as there is no negative evidence. However, there is a middle way – we could
assume that people sometimes require positive evidence and sometimes just lack of negative
evidence, depending on the grounding criterion. If speaker A presents some signal, he may
require positive evidence of some strength (such as a display of understanding). When this
evidence is given by B, the participants may determine that the signal has been grounded suf-
ficiently, unless A gives some sort of negative evidence in return. If the grounding criterion
would have been even higher, further positive evidence may have been required. It is also im-
portant to remember that once a piece of information has been considered as being grounded,
there may also an option to go back and repair it later on if it turns out to be wrong.

3.1.3 Repair and recovery

Negative evidence may be given when some sort of miscommunication has occurred. If
speaker B has a problem hearing, understanding or accepting a contribution from speaker A
(i.e., some sort of non-understanding), speaker B may give negative evidence of understand-
ing:

(24) A: I have a blue building on my left.
B: What did you say?

 On the other hand, if speaker B accepts the contribution and gives some sort of positive evi-
dence, this evidence may tell speaker A that a misunderstanding has occurred (for example if B
misheard the utterance). Speaker A may then initiate a repair:

(25) A: I have a blue building on my left.
B: How many storeys does the brown building have?
A: I said a blue building!

Schegloff (1992) calls this latter repair type third-turn repair, which indicates that the error is
detected and initiated in the third turn, counting from the source of the problem. This notion
may also be extended to first-turn repair, second-turn repair, and fourth-turn repair (McRoy &
Hirst, 1995). First-turn repair is the same thing as self-corrections, that is, a kind of disfluency
(see 2.2.4). Second-turn repair means that the detection occurs and the repair is initiated in
the second turn, as in example (24).
Hirst et al. (1994) provide a more general way of analysing the cause for repair:

Participants in a conversation rely in part on their expectations to determine whether
they have understood each other. If a participant does not notice anything unusual,
she may assume that the conversation is proceeding smoothly. But if she hears some-

Chapter 3. Miscommunication and error handling

38

thing that seems inconsistent with her expectations, she may hypothesize that there
has been a misunderstanding, either by herself or the other, and produce a repair - an
utterance that attempts to correct the problem. (p.223)

Thus, not only direct evidence of understanding, but inconsistencies in general, may act as
sources for detecting errors. This may lead to error detection and repair at later stages in the
dialogue and give rise to for example fourth-turn repair:

(26) A: I am on Blackberry Street.
B: Take to the left.
A: Ok, now I am on Cranberry Street.
B: Weren’t you on Blueberry Street before you turned?

“Repair”, in this context, means that the speakers try to identify and remove (or correct) an
erroneous assumption which is caused by a misunderstanding. In the case of non-
understanding, the speakers are not trying to repair an erroneous assumption, but instead re-
cover understanding. In this thesis, the terms misunderstanding repair and non-understanding
recovery will therefore be used, which correspond to third-turn and second-turn repair, respec-
tively.
The same factors that influence the choice of positive evidence (uncertainty, cost of task

failure, and cost of providing evidence) apply, of course, to the choice of negative evidence. In
other words, they apply to the choice of grounding behaviour in general.

3.1.4 Clarification

When a non-understanding recovery (or second-turn repair) is initiated with a request after
partial or full non-understanding, it is often called a clarification request. If the clarification is
due to a lack of hypotheses, the clarification can be initiated with a request for repetition
(formed as a wh-request). If the clarification is due to a lack of confidence, it can be initiated
with a request for confirmation (formed as y/n-request). We can also make a distinction be-
tween partial and complete clarification requests, that is, whether they concern parts of the
previous utterance (concept-level clarification) or the complete previous utterance (utterance-
level clarification). Examples of combinations of these are provided in Table 3.1.

Table 3.1: Categorisation of clarification requests, depending on whether they concern the
complete previous utterance or parts of it, and whether they express a request for confirma-
tion or repetition.

Scope Request Example

Partial Confirm Did you say red?

Partial Repeat What colour did you say?

Complete Confirm Did you say that you have a red building on your left?

Complete Repeat What did you say?

3.1 Miscommunication and grounding

39

While a clarification request always gives some sort of negative evidence, it may also give posi-
tive evidence at the same time, concerning other parts of the utterance:

(27) A: I have a red building on my left.
B: Did you say that the building was red?

Clarification requests may (as other CA’s) be classified based on their form and function. Purver
(2004) presents a study on the different forms of clarification requests that occur in the British
National Corpus. The different forms that were identified and their distributions are pre-
sented in Table 3.2.

Table 3.2: The first two columns show the distribution of different clarification forms in the
British National Corpus according to Purver (2004). This is complemented with examples, as
well as a mapping to the categories presented in Table 3.1.

Form Distr. Example Scope Request

Non-reprise
clarifications

11.7 % What did you say? Complete Repeat

Reprise sentences 6.7 % Do you have a red building on
your left?

Complete Confirm

WH-substituted
reprise sentences

3.6 % What can you see on your left? Partial Repeat

Reprise sluices 12.9 % A red what? Partial Repeat

Reprise fragments 29.0 % Red? Partial Confirm

Gaps 0.5 % A red …? Partial Repeat

Gap fillers 4.1 % A: I see a red…
B: building?

Partial Confirm

Conventional 31.1 % Huh? Pardon? Complete Repeat

Other 0.5 %

Different approaches have been taken to classify the functions, or readings, of clarification
requests. Ginzburg & Cooper (2001) make a distinction between the constituent and the
clausal reading. The following example, with paraphrases, illustrates the difference:

(28) A: Did Bo leave?
B: Bo?

 clausal: Are you asking whether Bo left?
 constituent: Who’s Bo?

The clausal reading can, more generally, be understood as “Are you asking/asserting P?”, or
“For which X are you asking/asserting that P(X)?” and the constituent reading as “What/who
is X?" or “What/who do you mean by X?”. Purver et al. (2001) adds the lexical reading to this

Chapter 3. Miscommunication and error handling

40

list, which could be paraphrased as “Did you utter X?" or “What did you utter?”, that is, an
attempt to identify or confirm a word in the source utterance, rather than a part of the seman-
tic content of the utterance (as in the clausal reading).
As pointed out by Schlangen (2004), these different readings can be mapped to the differ-

ent levels of action (as described in 3.1.1). Such a mapping is shown in Table 3.3, where the
understanding level has been split into two levels.

Table 3.3: Mapping between the readings identified by Purver et al. (2001) and levels of action,
loosely based on Schlangen (2004). The rightmost column shows the distribution in the Brit-
ish National Corpus according to Purver (2004).

Level Reading Distr.

Understanding Understanding the meaning of frag-
mentary utterances. Mapping from
discourse entities to referents.

constituent 14.4 %

 Understanding syntax, semantics and
speech act.

clausal 47.1 %

Perception Hearing the words that were spoken. lexical 34.7 %

 other 3.9 %

It is also possible to imagine clarification on the acceptance level. Take the following example:

(29) A: I think we should paint the house pink.
B: Pink?

We could make a reading of this where B means “Pink?, that’s an ugly colour I would never
consider.” In this case, B has no problem with hearing what was said, nor understanding what
A means by “pink”, he just has a problem accepting this. However, as discussed in 3.1.1, this
should perhaps not be regarded as a case of miscommunication.
By the rules of upward completion and downward evidence, a clarification on one level

(i.e., negative evidence) also provides positive evidence on the levels below it. For example, if B
says (or implies) “Who’s Bo?” in a clarification request, A gets positive evidence that B has
perceived the words and understood the speech act, but negative evidence about B’s abilities to
find a referent to the entity “Bo”.

3.2 Errors in spoken dialogue systems

Mostly due to the error prone speech recognition process, a dialogue system can never know
for certain what the user is saying, it can only make hypotheses. Thus, it must be able to deal
with uncertainty and errors. Before discussing error handling in spoken dialogue systems, we

3.2 Errors in spoken dialogue systems

41

will discuss the concept of error in the context of human-human and human-computer dia-
logue.

3.2.1 What is an error?

In the psychological (“human factors”) tradition, errors by humans have been defined in the
following way:

a generic term to encompass all those occasions in which a planned sequence of men-
tal or physical activities fails to achieve its intended outcome, and when these failures
cannot be attributed to the intervention of some chance agency. (Reason, 1990, p. 9).

In this tradition, a distinction is made between slips (unintentional action) and mistakes (in-
tentional but mistaken action). The expression “slip of the tongue” suggests that the term “er-
ror” also may be applied to speech, and that humans indeed make errors when engaging in a
dialogue. In this view, an ambiguous referring expression or a self-correction may fail to
“achieve its intended outcome” or at least make the communication less efficient than the
speaker ideally would wish. However, there is a problem with the concept of “error” in spoken
dialogue between humans. As Clark (1996) points out, it is not at all obvious who has actually
made the mistake when miscommunication occurs. Is it the speaker for his muddy pronuncia-
tion, or the listener for not listening closely enough? As discussed previously, speakers always
try to cooperatively balance efficiency against risk. Thus, it may be inadequate to consider
misunderstandings as mistakes – they may be part of an agreed compromise.
From a system design perspective, however, an error can be defined as a deviation from an

expected output. From this perspective, it may be argued that it is only the system that makes
errors. Human self-corrections, for instance, are not errors but just another type of input that
the system should be built to handle.
The problem is that expected output is not trivial in this context. In the case of a sorting al-

gorithm, where the input is a list of entities with some associated numeric values, the expected
output can be mathematically defined. However, in the case of input such as human speech,
the expected output, from for example a speech recogniser, is not possible to define in such a
way. First, the mapping from speech to words is something that humans have established in
informal contracts with each other. Second, the amount of information carried by the audio
signal is vast and filled with noise. Third, the mapping is often ambiguous and dependent on
how much context is considered. For example, if an utterance sounds like /w�n tu: ti:/, it is
not obvious what the expected output from a speech recogniser for the third word should be.
Heard in isolation, it sounds like “tea”, but interpreted in context, “three” is probably a better
guess (maybe pronounced by someone with a foreign accent). We would probably want to ask
the speaker what was actually intended. However, this person may not be available or he
might not remember or be able to consciously reflect over what was actually meant. Expected
output for such input is therefore often defined as what a human observer would make of the
task at hand. Such a metric is problematic for several reasons, including that humans will dif-

Chapter 3. Miscommunication and error handling

42

fer in their judgement5 and that the given input and output must be humanly comprehensible.
It also leaves no room for the possibility that an automatic process may perform better than a
human. Still, the metric is often used, and speech recognisers are commonly measured against
a human-made gold standard.
Another way of defining expected output for a system is to relate it to usability. If a spoken

dialogue system is designed to meet some human need, then it meets expectations if its users
are satisfied; otherwise, it does not. A problem here is that although this is applicable to a dia-
logue system as a whole, it is considerably harder to relate to the different sub-processes in the
system, although attempts have been made (e.g., Walker et al., 2000a). Expectation based on
usability is the one that most closely relates to the over-all goal of a dialogue system, but com-
paring with human performance may be easier to evaluate, especially for sub-processes.

3.2.2 Under- and over-generation

Given an expected output of a process, two types of errors may be distinguished: under-
generation and over-generation. Errors, then, would occur when the process fails to produce
some of the expected output, or adds unexpected output, or a combination of both. For ASR,
the terms deletions and insertions are often used for these kinds of errors. A combination of an
insertion and a deletion (at the same point in the output) is called a substitution. An example is
shown in Table 3.4.

Table 3.4: Example of a deletion (DEL), insertion (INS) and a substitution (SUB).

Spoken I have a large building on my left

Recognised I have large blue building on my right

 DEL INS SUB

As a measure of the quantity of errors, the word error rate (WER) is often used. It is computed
by dividing the sum of all insertions, deletions and substitutions (possibly weighting these
differently) with the number of words in the original utterance. Correspondingly, concept error
rate (CER) is used for measuring the quantity of errors on the semantic level, after the utter-
ance has been interpreted.
A process may have a tendency or be tweaked towards over-generation or under-generation.

For example, an ASR under-generates if its confidence threshold is set high, and over-
generates if it is set low. A rigid parser is likely to under-generate interpretations (by rejecting
input that is partially flawed) and a key word spotter may over-generate (by assigning interpre-
tations to any semantically rich word). Under- and over-generation may well occur simultane-
ously, but increasing one tends to decrease the other. For categorisation tasks, over-generation

5 Lippmann (1997) reports a 4% transcription error rate for spontaneous conversations recorded

over the telephone.

3.2 Errors in spoken dialogue systems

43

results in lower precision and higher recall, whereas under-generation results in the opposite.
These error types result in the two types of miscommunication discussed in 3.1.1; over-
generation in misunderstanding and under-generation in non-understanding.
In many classification tasks, the aim is an equal ratio of error types. In spoken dialogue sys-

tems, this may not always be optimal, since the two error types have different effects on the
dialogue: non-understanding leads to more repetitions and slower progress, while misunder-
standing leads to unexpected responses from the system or to wrong actions (task failure) and
erroneous assumptions that may be hard to repair. These different consequences are very im-
portant to bear in mind when it comes to error handling, and we will return to this issue later
on.
The characterisation of over-generation and under-generation above is summarised in

Table 3.5.

Table 3.5: Two basic types of error and relating concepts.

 Over-generation Under-generation

Categorisation Low precision Low recall

ASR error Insertions Deletions

Miscommunication Misunderstanding Non-understanding

Consequence Task failure Repetitions

3.2.3 Sources of uncertainty and errors

A common observation is that the speech recognition process is the main source of errors in
spoken dialogue systems (e.g., Bousquet-Vernhettes et al., 2003; Bohus, 2007). The reason for
this is that the input to the ASR exhibits a very large amount of variability. First, there is of
course variability between speakers due to factors such as age, gender, anatomy and dialects.
Factors such as speaking rate, stress, and health conditions may also vary within the same
speaker. Add to this the variability in the channel, such as background noise and microphone
properties, and the result is a very large spectrum of different ways the same text may be real-
ised in the waveform that the ASR is supposed to decode. It is of course not possible to model
all this variability, nor has the ASR access to all the knowledge sources that a human listener
has, such as semantic relations, discourse history (beyond the current utterance) and properties
of the domain. Another problem is that the vocabulary and language models used by the ASR
never can cover all the things that users may say, which results in out-of-vocabulary (OOV) and
out-of-grammar (OOG) problems with unpredictable results. Given its limited models, the
ASR can only choose the hypothesis that is most likely.
It is important to distinguish these kinds of errors from “bugs” or “exceptions” that need

error handling (or “exception handling”) in all computer systems. The source of such errors
can, as soon as they are identified, be fixed (more or less easily). However, speech recognition

Chapter 3. Miscommunication and error handling

44

errors cannot typically be “fixed” in a similar way. A distinction can be made here between
variable and constant errors (Reason, 1990). The difference is metaphorically illustrated in
Figure 3.1. Target A illustrates large variable errors, but small constant errors, that is, all shots
are centred around the middle but with deviations that could be characterised as noise. There
is no straightforward way of solving these errors; the sight seemed to be aligned as well as pos-
sible, but the rifleman needs more training. Target B, on the other hand, shows small variable
errors, but a large constant error. Once the problem is identified (probably a misaligned sight),
the error may be fixed. This doesn’t mean that constant errors always give rise to similar be-
haviours that are easy to discover. For example, if a computer always relied on the same sorting
algorithm that always failed to consider the two last elements, this would give rise to a large
number of different error forms. Nevertheless, it would be a constant error that could easily be
remedied as soon as it was found.

Figure 3.1: Two different target patterns. A exemplifies variable errors and B constant errors.
(from Reason (1990), originally from Chapanis (1951)).

The acoustic and language models in the speech recogniser may be improved as more data is
collected, and the variable error may be reduced, however probably never completely elimi-
nated, at least not if other knowledge sources are not added to the process.
It should be noted that speech recognition may exhibit constant errors as well, that may be

easily fixed once they are found. For example, a word may be incorrectly transcribed in the
dictionary.
Another task that is commonly assigned to the ASR is voice activity detection (VAD). This

may also be a significant source of errors, for example if the system incorrectly determines that
the user has finished his turn, prepares what to say next and then starts to speak at the same
time the user completes his turn.

3.3 Error handling in spoken dialogue systems

45

There are of course sources of errors other than the ASR, such as NLU and dialogue man-
agement. However, the input to these processes is typically constrained by the language mod-
els used in the ASR and therefore exhibits less variability. The main challenge for these com-
ponents is error awareness and robust processing, that is, to expect errors in the input and be able
to do as much processing as possible despite these errors, with a performance that degrades
gracefully. This leads to an error definition problem: given a partly erroneous result from the
ASR, what is the expected output from these post-processes? Ideally, we would want such a
process to repair the errors made by the ASR and return a result that fits the intentions of the
speaker, in other words, to recover deletions and ignore insertions. However, if the number of
errors is very large, this may be an unrealistic expectation. Again, it may be useful to compare
with what a human could make of the task.
Given a correct result from the ASR, other processes may still make errors. Variable errors

may arise in the NLU due to lexical and syntactic ambiguity and in the dialogue manager due
to ambiguous elliptical and anaphoric expressions. This may lead to errors at the different lev-
els of action discussed previously. The output processes in the dialogue system may also make
errors, for example by using ambiguous referring expressions, so that the user misunderstands
the system.

3.3 Error handling in spoken dialogue systems

Variable errors, due to limitations in the system’s models, are inevitable in a spoken dialogue
system. Even as the coverage of these models is improved, speakers (and developers of dialogue
systems) will try to make the interaction more efficient by taking risks and introducing more
ambiguity and uncertainty, at least in a conversational dialogue system. That said, there are
ways to prevent, detect and repair errors, or minimise their negative consequences. Errors in-
troduced in one process should not make further processing impossible – the processes should
be robust. But errors introduced in one process may also be repaired in other processes, so that
the output of the system as a whole meets the expectations. How is this possible? If we know
how to repair an error in another process, why cannot the error be repaired or avoided in the
process where it is introduced? There are three answers to this question. First, another process
may utilise different knowledge sources which are not available in the first process. For exam-
ple, the dialogue manager may have access to the dialogue history and domain knowledge
which the speech recogniser doesn’t have. This is true as long as we do not know how to inte-
grate all processes into one process. Second, if we view the system and user as a joint unit, the
user may be involved in the error handling process by grounding. A third, and more practical,
answer is that a dialogue system developer working with a set of processes may not have
knowledge or access to make the necessary modifications to fix even constant errors in the
process in which they are introduced.
Error handling in a spoken dialogue system should not be seen as a single process in the

system, but rather as a set of issues that should be regarded in all processes. The following hu-
man-computer dialogue example illustrates some error handling issues:

Chapter 3. Miscommunication and error handling

46

(30) U.1: I can see a brown building.

I CAN SEE A BLUE BUILDING
S.2: A blue building, ok, can you see something else?
U.3: No, a brown building.

NO A BROWN BUILDING

In this dialogue fragment, we can identify three main error handling issues which are related
to the three turns. First, utterance U.1 will be recognised and interpreted, and the example
illustrates an ASR substitution. If we consider the ASR to be the main source of errors, we
would like to have some sort of technique for detecting potential errors in the ASR output, or
in a robust interpretation of the ASR output. We call this early error detection. This could re-
sult in the system accepting (parts of) the hypothesis of what the user has said or rejecting it.
But it could also result in an uncertainty of whether the hypothesis is correct or not. Just as
humans do when faced with such uncertainty, the system may initiate a grounding process,
which is done in S.2. In this example, the system is uncertain about the colour of the building
and therefore displays its understanding (“a blue building”), as part of the next turn. This
makes it possible for the user to identify the error and repair it (U.3). From the system’s per-
spective, it must now identify and repair this error based on its understanding of U.3. Since
the error was already made in U.1, but detected after U.3, we call this late error detection.
In the rest of this chapter, the problems involved and the research done on managing these

issues are laid out.

3.3.1 Early error detection

The first important error handling issue to consider is how errors introduced in the recogni-
tion and interpretation of the user’s utterance may be detected. If the recognition is poor, the
ASR may give no hypothesis at all, which will inevitably result in a non-understanding. How-
ever, it is more common that the ASR will produce a result containing errors. The system
must then understand which parts are incorrect and decide that it should be considered a (par-
tial) non-understanding. In other words, the system must be able to understand that it does not
understand. If this early error detection fails, it will result in a misunderstanding (which may
perhaps be identified later on in late error detection).
Early error detection can be described as the task of deciding which ASR results, which

words in the ASR results, or which semantic concepts in the interpretation should be consid-
ered as being correct (i.e., binary decisions), but it could also result in a set of continuous con-
fidence scores, so that other processes may take other issues into account when making the
decision. Early error detection is sometimes referred to as recognition performance prediction
(Litman et al., 2000; Gabsdil & Lemon, 2004) or confidence annotation (Bohus & Rudnicky,
2002).
Most error detection techniques rely (partly) on the ASR confidence score, and we will

start with a brief review of how this score is typically estimated.

3.3 Error handling in spoken dialogue systems

47

3.3.1.1 ASR confidence score estimation
An ASR may be able estimate a confidence score for the whole utterance, but also for the indi-
vidual words in it. The score is typically a continuous value between 0 and 1, where 0 means
low confidence and 1 high confidence. If the score is only to be used for discriminating be-
tween the labels incorrect and correct – by setting a threshold for reject/accept – the only im-
portant factor for the quality of the score is how accurate such a classification can be made
based on it. The standard metric used to asses the quality of a confidence scoring is the nor-
malised cross entropy (NCE), which is an information theoretic measure of how much addi-
tional information the scores provide over the majority class baseline (i.e., assigning all words
with the same (optimal) score). However, for other purposes, it could also be desirable to have
a probabilistic score, that is, a confidence score of 0.3 would mean that there is a 30% prob-
ability that the hypothesis is correct.
According to Jiang (2005), methods for computing confidence scores in speech recogni-

tion can be roughly classified into three major categories: predictor features, posterior probability
and utterance verification. The first approach is to collect predictor features from the recogni-
tion process, such as the n-best list, acoustic stability and language models, and then combine
these in a certain way to generate a single score to indicate correctness of the recognition deci-
sion (see for example Hazen et al., 2002).
The second approach is to use the posterior probability (equation (10) on page 20) directly,

which would constitute a probabilistic confidence score. However, there is a fundamental
problem with this (Wessel et al., 2001). As shown in equation (11) and equation (12), the
probability of the acoustic observation, P(O), is typically excluded from the model, since it is
not needed to calculate the relative likeliness and choose the most likely hypothesis. Thus, the
remaining formula, P(O|W)P(W), does not describe the absolute probability of the hypothesis.
It does not account for the fact that as the probability of the acoustic observation increases, it
becomes more likely that the hypothesis is generated by something else, and the probability of
the hypothesis should decrease. Methods for approximating P(O) have been proposed, such as
using a phoneme recogniser, filler models, or deducing it from the word graph (Wessel et al.,
2001).
In the third approach, utterance verification, confidence scoring is formulated as statistical

hypothesis testing similar to speaker verification, using likelihood ratio testing,

3.3.1.2 Rejection threshold optimisation
Early error detection can, in the simplest case, be regarded as a choice between reject and accept
by comparing the ASR confidence score against a threshold. If the score is above this threshold,
the hypothesis is accepted, otherwise it is rejected. This threshold may be set to some default
value (such as 0.3), however the performance can typically be optimised if data is collected for
the specific application and analysed. Such an optimisation is shown in Figure 3.2. The lower
the threshold, the greater the of number of false acceptances (i.e., over-generation). As the
threshold is increased, false acceptances will be fewer, but more false rejections (i.e., under-
generation) will occur. Such a graph may be used to find the optimal threshold with the lowest
total number of false acceptances and false rejections (approximately 0.42 in the example).

Chapter 3. Miscommunication and error handling

48

One should bear in mind that this is only true as long as false acceptances and false rejections
have the same cost – an assumption that will be questioned later on.

3.3.1.3 Other knowledge sources
To improve early error detection, machine learning has been used in many studies. A corpus
of recognised utterances from the application is typically collected and annotated, and super-
vised learning is used to classify hypotheses as correct or incorrect, based on features from
other sources than the ASR. A simple heuristic (such as accepting all hypotheses) is often used
as a baseline to compare with.
An obvious argument against early error detection as a post-processing step on the ASR

output is that the problems that these techniques attempt to fix should be addressed directly in
the ASR. However, as argued in Ringger & Allen (1997), post-processing may consider con-
stant errors in the language and acoustic models, which arise from mismatched training and
usage conditions. It is not always easy to find and correct the actual problems in the models
and a post-processing algorithm may help to pinpoint them. Post-processing may also include
factors that were not considered by the speech recogniser, such as prosody, semantics and dia-
logue history.
Prosody is a strong candidate feature for early error detection, since people tend to hy-

perarticulate when they are correcting the system, which often leads to poor speech recogni-
tion performance (Oviatt et al., 1996; Levow, 1998; Bell & Gustafson, 1999). Speech recogni-
tion can also be sensitive to speaker-specific characteristics (such as gender and age), which
may be reflected in prosodic features. Litman et al. (2000) examine the use of prosodic fea-
tures for early error detection, namely maximum and minimum F0 and RMS values, the total
duration of the utterance, the length of the pause preceding the turn, the speaking rate and the
amount of silence within the turn. A machine-learning algorithm called RIPPER (Cohen,

0 0.2 0.4 0.6 0.8 1

Threshold

False Acceptances

False Rejections

Figure 3.2: Rejection threshold optimisation.

3.3 Error handling in spoken dialogue systems

49

1995) was used. The task was to decide if a given ASR result had a word error rate (WER)
greater than zero or not. Using only the ASR confidence score gave a better result than the
baseline (guessing that all results were correct). However, adding the prosodic features in-
creased the accuracy significantly. The accuracy was increased further by adding contextual
features, such as information about which grammar was used in the recognition.
Other knowledge sources, not considered by the ASR, which should improve error detec-

tion are features from the NLU and dialogue manager. In Walker et al. (2000b), the useful-
ness of such features is studied, using data from the “How May I Help You” call centre-
application. 43 different features were used, all taken from the log, which means that they
could have been extracted online. The NLU and dialogue manager related features included
parsing confidence, grammar coverage, and preceding system prompt. The RIPPER algorithm
was used in this study also, but the task was in this case to decide if the semantic label assigned
to the utterance was correct or not (i.e., early error detection was performed after interpreta-
tion). Again, using the ASR confidence score alone was better than baseline, but adding the
other features improved the performance significantly.
The methods discussed above (except the raw ASR confidence score) are all based on bi-

nary decisions between correct/incorrect. This is useful if the only choice is between rejecting
and accepting the hypothesis, but if other factors are to be taken into account or other options
are to be considered (as will be discussed later on), a continuous (possibly probabilistic) confi-
dence score would be more useful as a result of the early error detection. Bohus & Rudnicky
(2002) investigated the use of different machine learning approaches to confidence estimation
based on a number of features from the ASR, the NLU and the dialogue manager, and found
that logistic regression gave the best result.
The common approach to early error detection, as the review above indicates, is to train

the classifier on an annotated pre-recorded corpus. Bohus & Rudnicky (2007) present an al-
ternative approach, where the system collects online data from clarification requests. The
user’s response to a clarification request indicates whether the hypothesis was correct or not.
This way, training material may be collected without having a human annotating it. Thus, the
system can be said to learn by its own experience. The data collected will contain more noise
than manually annotated data, since users do not always act as intended after clarification re-
quests, and their responses sometimes are misrecognised by the system. However, the study
shows that the achieved confidence estimation performance is nearly (but not quite) as good as
the one that is achieved with manual annotation.
In the studies presented above, whole utterances are considered. This may be useful for

shorter utterances with more simple semantics. However, if utterances are longer and contain
more complex semantics, it may be useful to consider individual words or concepts for early
error detection. In Chapter 5, such a study is presented.

3.3.1.4 Error correction and n-best lists
Another possibility in the post-processing of the ASR result is to not only detect errors, but to
also correct them, in other words not just delete insertions, but also re-insert deletions. An ob-

Chapter 3. Miscommunication and error handling

50

vious source for such corrections is the n-best list or word lattice typically provided by the
ASR, as described in 2.3.1.
In order to explore the upper limit of such an approach, Brill et al. (1998) conducted an

experiment in which subjects were given the task of choosing the most likely hypothesis from
10-best lists, but were also asked to manually edit and correct the best hypothesis to improve it
further if they thought it was possible. The data was from switchboard, broadcast news and
Wall-street journal. The results showed that the subjects were able to improve WER by 1.3-
3.1 percent units by just selecting the best hypothesis, and by 2-4 percent units by further
corrections.
Examples of studies on automatic reordering of n-best lists include Rayner et al. (1994),

Chotimongkol & Rudnicky (2001), Gabsdil & Lemon (2004) and Jonson (2006), which all
show how the system sometimes can choose better hypotheses if knowledge sources other than
those used by the ASR are considered. In short, n-best list reordering is often done by applying
some sort of early error detection technique (as discussed above) to several hypotheses and
then picking the one that achieves the best score.
There are some potential problems involved in processing n-best lists. First, it may be

computationally challenging to consider many possible alternatives simultaneously, especially
if other knowledge sources in the form of other dialogue system components, such as parsing,
are to be involved. This is especially true if the dialogue system should operate incrementally,
on a word by word basis. Second, as discussed in 2.3.1, n-best lists may be less fruitful to con-
sider when utterances are longer, since many of the top hypotheses will be very similar, with
perhaps just some single function words varying in a long list of semantically similar combina-
tions. Thus, n-best lists may be more useful in command-based dialogue systems where utter-
ances may be shorter and incrementality is not an issue.
For conversational dialogue systems, it may be more useful to explore the use of word lat-

tices. However, this may require a more sophisticated approach than just applying an early
error detection technique on a list of hypotheses. That is beyond the scope of this thesis.

3.3.1.5 Error prediction
One interesting error handling strategy is to detect the problem before it has even occurred –
in other words, to predict errors. This way, the dialogue system could adapt its behaviour to
avoid the problem. Walker et al. (2000c) report an experiment where the initial segments of a
dialogue were used for error prediction. The dialogue system was the “How May I Help You”
call centre-application. All dialogues were classified as “task success” or “problematic”. The
RIPPER machine-learning algorithm (Cohen, 1995) was trained to classify the dialogues
based on online features from the ASR, NLU and discourse. By just looking at the first turn,
the performance (72.3%) was significantly better than majority class baseline (64%, tagging
everything as “task success”), although the improvement is not huge. By also looking at the
second turn, the improvement was better (79.8%). Although 16% above baseline, just given
the two first exchanges and online features, sounds impressive for predicting problematic dia-
logues, the question is whether 80% is good enough to be able to take appropriate actions.

3.3 Error handling in spoken dialogue systems

51

3.3.2 Grounding in dialogue systems

In the simplest case, error detection leads to the choice of reject or accept. However, there are
other alternatives. As discussed in 3.1.2 above, humans detect and correct errors together by
giving evidence of understanding in a grounding process. If the system is uncertain about
whether an error is present, it may provide evidence of understanding and detect potential
errors based on the user’s reaction to this evidence.

3.3.2.1 Explicit and implicit verification
The most well-known and well-tested techniques for grounding are called explicit and implicit
verification. In explicit verification, the system asks a clarification request, typically in the form
of a reprise sentence (see Table 3.2 on page 39). The following example is from Bouwman et
al. (1999):

(31) U: I’d like to travel to Amsterdam.
S: Do you want to go to Amsterdam?
U: Yes. that’s right.

In implicit verification, the system instead displays its understanding as in the following ex-
ample (again from Bouwman et al. (1999)):

(32) U: I’d like to travel to Amsterdam.
S: To Amsterdam. From where do you want to leave?

Whereas explicit verification typically requires the user to confirm the hypothesis for the sys-
tem to consider it as being correct, implicit verification require no such response. As long as
the user does not object, the hypothesis is considered to be correct.

3.3.2.2 Other kinds of evidence
As we saw in 3.1.2, clarification in the form of reprise sentence (explicit verification) and dis-
play of understanding (implicit verification) are just two kinds of evidence that speakers use in
dialogue. Are there other kinds of evidence that may be useful for error handling in spoken
dialogue systems? Continued attention and relevant next contribution should perhaps not be
regarded as a choice the system can make in order to give positive evidence. Instead, if the
system continues with an irrelevant next contribution (due to a misunderstanding), this will
probably trigger the user to initiate a repair. However, the system should be capable of under-
standing such a repair.
Acknowledgements may be used to actively give positive evidence. An acknowledgement

like “ok” or “m” may give the user evidence that the system has heard the utterance and proc-
essed it on some level of action. However, it cannot be used to actually detect erroneous hy-
potheses, since the system’s understanding of the involved concepts is never signalled to the
user.

Chapter 3. Miscommunication and error handling

52

3.3.2.3 Evidence on different levels of action
As discussed previously, clarification requests may concern different levels of action. In explicit
verification, it is normally assumed that the perception level is concerned. However, other
levels may be concerned as well, as the following example illustrates:

(33) U: I have the red building on my left.
S(alt. a): Which red building?
S(alt. b): Do you really mean the red building?

In these examples, the user gets positive evidence that the system has heard and to some extent
understood what the user said, but there is some problem in deeper understanding. Such clari-
fication requests could be useful for resolving ambiguous anaphoric expressions (as in the ex-
ample above), but also for ambiguous fragmentary expressions. The use of clarification on
different levels of action is explored in Schlangen (2004) and Rieser (2004).
Larsson (2003) discusses the use of positive and negative evidence on different levels of ac-

tion. As positive evidence, display of understanding and acknowledgements are considered.
The examples on negative evidence are mostly (implicit) requests for repetition:

• Contact: “I didn’t hear anything from you”
• Perception: “I didn’t hear what you said”
• Semantic understanding: “I don’t understand”
• Pragmatic understanding: “I don’t quite understand”
• Acceptance: “Sorry, Paris is not a valid destination city”

In 3.1.1, we questioned whether failure on the acceptance level really should be classified as
miscommunication. In the same way, we may question whether “evidence” on the acceptance
level, as in the example above, really should be classified as evidence of understanding in the
same way as the other levels – it is not caused by any uncertainty or lack of hypotheses. Thus,
it should perhaps not be considered as being part of error handling.

3.3.2.4 Non-understanding recovery
Non-understandings may not only be frustrating for the user per se, they may also lead to er-
ror-spirals, that is, further non-understandings that may be hard to recover from. For example,
Levow (1998) found that the probability of experiencing a recognition error after a correct
recognition in a dialogue system was 0.16, but immediately after an incorrect recognition it
was 0.44. Thus, if the system decides to reject the user’s last utterance it should take appropri-
ate actions to recover understanding in subsequent turns.
One reason for non-understandings often leading to other non-understandings is that

speakers usually repeat the non-understood utterance in the subsequent turn. If the ASR failed
to recognise this utterance the first time (possibly because the utterance was out-of-vocabulary
or that the user’s pronunciation of the utterance is uncommon), there is an increased risk that
it will fail the second time too. Another reason is that people tend to hyperarticulate when

3.3 Error handling in spoken dialogue systems

53

making repetitions after non-understanding (Oviatt et al., 1996; Levow, 1998; Bell & Gustaf-
son, 1999), a strategy that is useful when speaking with humans, but may worsen the perform-
ance of the ASR. Many speech recognisers lack models for hyperarticulate speech, which
makes the understanding of repeated utterances even more difficult.
One approach to this problem is to look at how speech recognition can be improved after

non-understanding. For example, Ainsworth & Pratt (1992) investigates how the system can
eliminate the misrecognised word from the vocabulary to improve recognition of repetitions.
Another approach is to design the system response after the non-understanding more care-

fully. A common assumption seems to be that after non-understanding, the system has no
option but to request repetition by signalling non-understanding or making a clarification
request, just as in the examples on negative evidence on different levels of action listed above.
While this mapping between action levels and system responses seems straightforward and
intuitive, the usefulness of such signals of non-understanding for handling errors can be ques-
tioned, since they encourage repetitions. Neither is it usually fruitful to try to explain or ana-
lyse the source of the problem. For example, to use an utterance like “I didn’t hear what you
said” to signal that the problem is due to the ASR (and not some other processing step), will
probably just encourage hyperarticulated repetitions. As Balentine et al. (2001) writes in a
style guide for telephony dialogue systems:

Avoid apologizing for problems or inadvertently blaming the user for them. Instead,
simply move forward by prompting for the next appropriate user action. There are
two motivations for this. First, the application can never be certain of the underlying
error, so descriptions of the problem may be incorrect or misleading. Second, ex-
plaining the problem does not necessarily influence the user in a constructive way.
Rather than dwelling on the condition that has led to a problem, it is better to de-
scribe what action is now expected from the user. (p. 55)

According to Balentine et al. (2001), system responses after non-understandings should en-
courage the user to try another wording, and provide incrementally more help on subsequent
non-understandings.
The problem of non-understanding recovery is explored and discussed in more depth in

Chapter 4.

3.3.2.5 Concept-level grounding
The overview of research on clarification requests in 3.1.4 above showed that humans often
(in about 45% of the cases) use fragmentary constructions when making clarification requests.
To improve efficiency and naturalness, a dialogue system should also be able to utilise frag-
mentary utterances in grounding. Fragmentary grounding utterances may not only be realised
more efficiently, they may also help to pinpoint the problematic parts of the original utterance.
However, as Gabsdil (2003) points out, the use of fragmentary grounding in spoken dialogue
systems is not very common. The following example illustrates a possible use:

Chapter 3. Miscommunication and error handling

54

(34) U.1: I have a red building on my left.
S.2 (alt. a): Red?
S.2 (alt. b): Red, ok, what do you have on your right?

S.2(b) may look similar to the implicit verification “To Amsterdam” in example (29) above.
However, there is a difference. “To Amsterdam” is, in the travel booking domain, equivalent
to “I want to go to Amsterdam” or “So you want to go to Amsterdam”. It does not need to be
resolved. The utterance “red” on the other hand could mean many different things in the
navigation domain that the example is taken from, and necessarily has to be resolved and
placed in a larger semantic construct. Thus, whereas “To Amsterdam” does not help to pin-
point the problematic part of the utterance, the utterance “Red” does.
The use of fragmentary grounding utterances has some interesting challenges that are ad-

dressed in Chapter 6 and 9:

• The problematic concepts in the original utterance must be identified.
• The grounding utterance must have the right textual and prosodic realisation to be

understood correctly by the user.
• The system must remember for which concepts it has provided evidence.
• The user’s reaction to the request must be understood correctly. If the user negates

and/or corrects the proposed concept, the system must understand that it is only
parts of the original utterance that have been negated and/or corrected, not the entire
contribution.

Rieser (2004) and Schlangen (2004) describe implementations of systems that are capable of
posing fragmentary clarification requests based on concept confidence scores on all action lev-
els. However, the models do not handle the user’s reactions to those requests.
The use of concept-level clarification requests in dialogue systems has received more inter-

est than the use of concept-level display of understanding. Concepts may be displayed as sepa-
rate communicative acts, as in S.2(b) in example (34) above. But, as discussed in 3.1.2.1, the
display of concepts may also be integrated in the next communicative act, with the primary
communicative function relating to the task at hand. The following examples with alternative
system reactions are examples of this:

(35) U.1: I have a red building on my left.
S.2(alt. a): How many stories does it have?
S.2(alt. b): How many stories does the building have?
S.2(alt. c): How many stories does the red building have?

By choosing between different referring expressions, the system may display its understanding
to different extents, depending on its confidence in the concepts involved. To be able to do
this, the challenges listed above must be considered. The issue of choosing between these dif-
ferent realisations and modelling an integrated display of understanding will be addressed in
Chapter 6.

3.3 Error handling in spoken dialogue systems

55

3.3.2.6 Alternative clarification
There is another type of clarification request that may be referred to as an alternative clarifica-
tion request (Gabsdil, 2003). If the system can consider several alternative hypotheses from the
speech recogniser, it could make a clarification request such as this:

(36) U: I have a red building on my left.
S: Red or blue?

It could also be possible to make an alternative clarification request on the understanding level,
for example if there are several possible ways to resolve an anaphora:

(37) U: I have the building on my left.
S: The red or the blue one?

In order to pose alternative clarification requests, the system must somehow be able to pro-
duce several parallel hypotheses, for example by n-best lists or word lattices. See 3.3.1.4 for a
discussion on the potential problems associated with this. The use of alternative clarification
will not be investigated in this thesis.

3.3.2.7 Making grounding decisions
As we have seen, there are several ways to handle uncertainty and errors in dialogue, either
towards risking under-generation or over-generation. As Allen et al. (1996) points out, some-
times it may be better to “choose a specific interpretation and run the risk of making a mistake
as opposed to generating a clarification subdialogue”. The system may display its understand-
ing, request clarification on what is not understood, presuppose understanding and defer the
detection of errors to a later stage in the dialogue, or simply reject the hypothesis. We refer to
this choice as the grounding decision problem. The grounding decision concerns not only which
evidence of understanding to give, but also whether the hypothesis should be regarded as
common ground. A common basic approach is to use hand-crafted confidence thresholds as
shown in Figure 3.3 (see for example Bouwman et al., 1999).

Figure 3.3: Typical grounding decision based on a confidence score.

C
o

n
fid

en
ce

Accept

Display understanding (Implicit verification)

Clarification request (Explicit verification)

Reject

Chapter 3. Miscommunication and error handling

56

This division seems intuitive, but the problem is how to find optimal thresholds. Another
problem is that the thresholds most often are static and not dependent on the dialogue context.
Simple threshold optimisation as described in 3.3.1.2 above cannot be applied to this problem.
We will return to this issue in Chapter 8, where a dynamic, data-driven, decision-theoretic

model for making grounding decisions is presented and related research is discussed.

3.3.2.8 Evidence of understanding from the user
Most studies on grounding in spoken dialogue systems, including this thesis, are focussed on
how to cope with system non-understandings and misunderstanding, in particular those
caused by speech recognition errors. As a consequence, the models of grounding proposed are
mainly concerned with how the system should provide evidence of understanding based on its
hypotheses of the user’s utterances. However, it is of course also possible that users may give
evidence of understanding. A dialogue system should for example be able to make a repetition
after an utterance such as “what did you say?”. But as dialogue systems start to utilise more
sophisticated methods for providing evidence, we should expect users to do the same. For ex-
ample, if we endow systems with the capabilities of making fragmentary clarification requests
such as “red?” and non-verbal acknowledgements such as “uhu”, users are likely to pick up on
this. This poses new challenges for the recognition and interpretation of user utterances, in-
cluding prosodic analysis.

3.3.3 Late error detection and misunderstanding repair

If the system accepts an incorrect hypothesis of the user’s communicative acts, it may still be
possible to do late error detection at later stages in the dialogue and repair the misunderstand-
ing.

3.3.3.1 Late error detection
Late error detection may typically be performed after the system has displayed its understand-
ing (based on an incorrect hypothesis) and the user initiates a repair:

(38) U.1: I have a blue building on my left.
S.2: How many stories does the brown building have?
U.3: I said blue building!

As noted previously, errors may also be detected based on inconsistencies in general, several
turns after the actual error occurs. This leads to two issues that should be handled by a dia-
logue system. First, to facilitate late error detection, the system must be capable of detecting
cues from the user in the “third turn” that something is wrong (such as the U.3 in the example
above), and to detect inconsistencies in general. Second, to enable repair of misunderstandings,
it must know which assumptions to remove or re-evaluate in its model of the common ground.

3.3 Error handling in spoken dialogue systems

57

One problem with detecting errors in the “third turn” is that these problem signals may
look very disparate and may depend on subtle prosodic cues, or the user may just ignore the
problem. Here are some imaginable variants to U.3 in example (38) above:

(39) U.3a: eeh, brown building?
U.3b: I can’t see any brown building.
U.3c: I don’t understand.
U.3d: the brown building we talked about before?
U.3e: ehh… I can see a blue building.

Krahmer et al. (2001) calls these signals “go back” cues, as opposed to “go on” cues, which
signal that the displayed hypothesis was correct. A number of possible cues are listed in Table
3.6.

Table 3.6: Possible positive and negative cues from the user after the system has displayed its
understanding (from Krahmer et al., 2001).

Positive cue Negative cue

Short turns Long turns

Unmarked word order
(“I want to leave from Stockholm”)

Marked word order
(“It is Stockholm I want to leave from”)

Confirm (“Yes”) Disconfirm (“No”)

Answer No answer

No corrections Corrections

No repetitions Repetitions

New info No new info

In an analysis of a hand-labelled corpus based on spoken dialogue systems providing train
timetable information, Krahmer et al. (2001) found that users never gave explicit positive cues
such as “yes”, and rather seldom (in 15.4% of the cases) gave explicit negative cues (“no”),
after an implicit verifications (display of understanding). The best determinant is instead
whether the user makes any attempts to make a correction or not. It should be noted that this
analysis has been performed on what the users actually said, not on the results from the ASR.
The question is to what extent these results can be applied to online dialogue, since the ASR
for example may miss corrected slots. It should also be noted that given a negative cue, the
system has no information on what the problem actually is, just that a problem has occurred.
One approach to this problem is to use machine learning, training on a set of features,

similar to early error detection, to distinguish user corrections from non-corrections. Litman et
al. (2006) investigate the use of prosodic, ASR-derived, and system-specific features, both for
the current turn and for contextual windows, and using summary features of the prior dia-
logue. An initial analysis showed that the prosody of corrections differ significantly from non-

Chapter 3. Miscommunication and error handling

58

corrections, being higher in pitch, louder, longer, with longer pauses preceding them and less
internal silence. As expected, they are misrecognised more frequently than non-corrections.
Using machine learning, the best-performing feature set cuts the majority baseline error almost
in half, from 29% to 15.7%.
The problem of detecting negative evidence in the third turn has lead many dialogue de-

signers to avoid using display of understanding (implicit verification). A common experience is
that users often don’t know how to react and feel uncomfortable (see for example Weegels,
2000).

3.3.3.2 Modelling grounding status
As positive or negative evidence is given for a hypothesis and the user reacts to this evidence,
we may say that the hypothesis’ grounding status has been updated. By modelling this ground-
ing status, the system may decide when the grounding criterion has been satisfied, that is,
when the hypothesis may be considered to be common ground.
Traum (1994) shows how recursive transition networks (RTN) may be used to track the

grounding status. In this account, the semantic units that get grounded are called discourse
units, and the actions that contribute to the updating of the grounding status of these are
called grounding acts. Grounding acts may be repairs, requests for repairs, acknowledgements
and requests for acknowledgement. The discourse units can be compared to speech acts. Thus,
the model can be said to track utterance-level grounding. Grounding actions are also treated as
a special kind of communicative act. These two properties are common for most models of
grounding status. The problem with such accounts is that they do not explain how for exam-
ple different kinds of referring expressions in task-related utterances may help to provide evi-
dence of understanding on parts of the previous utterance, as in example (35) above. A third
property of many models of grounding status is that the grounding status is only tracked lo-
cally within the “subdialogue”. This makes it impossible for the system to consider the
grounding status later on in the dialogue if inconsistencies that indicate a misunderstanding
are found. In Chapter 6, a model that deals with these shortcomings is presented.
Heisterkamp & McGlashan (1996) presents a model in which the grounding status is

tracked by assigning a contextual function to each information unit.

• new_for_system(X).
• repeated_by_user(X).
• inferred_by_system(X).
• modified_by_user(X).
• negated_by_user(X).

A similar model is used by McTear et al. (2005) under the name of discourse pegs.
Another approach to late error detection and grounding status modelling is presented in

Bohus & Rudnicky (2005a), where the system models its belief in concepts as a continuous

3.4 Summary

59

confidence score that gets updated as the concept is grounded. The approach is called belief
updating and is defined as follows:

given an initial belief over a concept Belieft(C), a system action SA(C) and a user re-
sponse R, compute the updated belief Belieft+1(C).

Or, in terms of confidence score for a single hypothesis:

given an initial confidence score for the top hypothesis h for a concept C, construct
an updated confidence score for the hypothesis h, in light of the system confirmation
action SA(C), and the follow-up user response R.

Thus, the approach is similar to that of using machine learning for confidence estimation in
early error detection, but it is extended to also include features from the subsequent CA’s in the
grounding process. In their approach, data was used to train a binary logistic regression model
on features from the original hypothesis as well as the system’s action and the follow-up user
response. Some of the most useful features were: the initial confidence score, prosodic features,
expectation match, barge-in, lexical features, the presence of repeated grammar slots, as well as
the identity of the concept to be confirmed.

3.3.3.3 Misunderstanding repair
When a misunderstanding is detected, it should be repaired. To do this, the system must have
some mechanisms for removing erroneous hypotheses from the common ground. For example,
in Larsson (2002), a “backup” copy of the dialogue state (a “temporary storage”) is kept to
restore the information state if the system’s hypothesis of the common ground turns out to be
incorrect. A drawback with this approach is that the detection of the misunderstanding may
only occur immediately after the error, in the “third turn”, and that the dialogue state is com-
pletely restored, which means that individual concepts that were not erroneous are lost.
It is also possible that the system should not simply restore the state when an old error is

suspected. The system could also make a late clarification request, as in example (26) on page
38.
A problem with implementing a more elaborate model of late error detection in many dia-

logue systems is that the result of early error detection (such as confidence scores) are most
often only considered once and not stored for late error detection. In Chapter 6, this issue is
discussed in more depth, and a model that supports long-term storage of confidence scores
and grounding information is presented.

3.4 Summary

This chapter has reviewed the work done on error handling in spoken dialogue systems and
laid-out the issues that are involved. Figure 3.4 shows a diagram which illustrates how the
most important error handling issues presented above are connected, from the perspective of
this thesis.

Chapter 3. Miscommunication and error handling

60

The diagram can be described as follows. Given a noisy speech recognition result, the sys-
tem must make a robust interpretation of it into a hypothesis of the semantic concepts in the
user’s utterance �. The system must also decide which words in the ASR output or which
resulting semantic concepts should be considered to be correct, and/or decide the level of un-
certainty (early error detection) �. For each concept in the hypothesis, the system must make a
grounding decision �:

• The system could simply accept the concept and regard it as common ground �.
• The system could simply reject the concept, i.e., treat it as a non-understanding �.
• The system could accept the concept and add it to the common ground but at the

same time display its understanding, so that the user has a chance to correct the system
if the concept is incorrect �.

• The system could reject the concept (i.e., not treat it as common ground), but make
a clarification request, so that the user may confirm the concept if it is correct. If so,
the concept may be treated as common ground �.

Speech recognition result

Grounding decision

Clarification
(confirmation)

Accept Reject Uncertain
Reject

Display
Understanding

Common ground
Grounding status

Late error detection

Uncertain
Accept

Non-
understanding

recovery

Misunderstanding
repair

Robust interpretation
Early error detection

�

�

� � � �

� � 	

Figure 3.4: Overview of the error handling issues considered in this thesis

3.4 Summary

61

If the system rejects the concept, it might perform a non-understanding recovery
, which may
be some sort of clarification request. If a concept is treated as common ground, the system’s
uncertainty of the concept should be stored �, so that errors may be detected later on (late
error detection) �, for example if the system displays its understanding and the user objects. In
such a case, a misunderstanding has been detected, which needs to be repaired 	. The con-
cept should be removed from common ground, but the user may also be involved in further
clarifications.

PART II

Exploring Human Error Handling

A: What’s you name?
B: Watt
A: I said, what’s your name?
B: Watt is my name
A: What?
B: Yes
A: Yes, what?
B: Watt, yes

Unknown source

Ignorance is preferable to error; and he is less remote from the truth
who believes nothing, than he who believes what is wrong.

Thomas Jefferson

65

CHAPTER 4

Exploring non-understanding recovery

Despite the many sources of uncertainty in spoken communication, humans have a remark-
able capability of adapting to difficulties and collaboratively prevent, detect and recover from
problems. How can this seemingly smooth handling of uncertainty and miscommunication in
human-human dialogue be transferred to human-computer dialogue? In this chapter, an ex-
periment on human-human communication is presented, where the human error recovery
strategies employed after miscommunication are explored and analysed.

4.1 Methods for exploring human error handling

One approach to explore human error handling strategies is to look at problems as they occur
in human-human dialogue, and transfer this knowledge to human-computer dialogue. There
are two potential problems with this approach. First, human-computer dialogue and human-
human dialogue have been shown to have different properties (Fraser & Gilbert, 1991). This
is partly due to the user’s idea of the system not being a human, and partly due to the limita-
tions of the system’s conversational capabilities. A second less obvious problem is that the par-
ticipants’ actual understanding of what is said is not always transparent when analysing the
dialogue. Just because a speaker does not give any sign of non-understanding does not neces-
sarily mean that every word was understood correctly.

4.1.1 The Wizard-of-Oz method

In order to design dialogue systems that can handle the varieties of situations that occur in
human-computer dialogue – such as miscommunication – data of such interaction needs to be
collected. A method that is commonly used to collect such data before a dialogue system is

Chapter 4. Exploring non-understanding recovery

66

actually built is the Wizard-of-Oz method, where an operator (the “wizard”) is simulating
parts of the system, most often assuming a perfect speech recogniser (Fraser & Gilbert, 1991).
The user is not told about this setup and is supposed to believe that she is interacting with a
computer. A typical Wizard-of-Oz setting is shown in Figure 4.1.

Figure 4.1: A typical Wizard-of-Oz setting.

The advantage compared to studying human-human dialogue is that people will act as if they
spoke to a computer. The problem concerning studies of error handling is that it is hard to get
an accurate account of what happens when speech recognition errors occur, since they are of-
ten ignored when the experiment is conducted. The optimistic assumption tends to be that
these things can be added later on when the rest is solved, or that the problem will disappear
automatically as speech recognisers get better. One approach to get data on miscommunica-
tion is to simulate errors, for example by randomly substituting words in the input. But, as
Fraser & Gilbert (1991) points out, this is an almost impossible task in a Wizard-of-Oz envi-
ronment. First, the wizard is working under time pressure and it may be hard to make the
right substitutions while controlling other components. Second, the kind of errors that really
do occur are hard to simulate. Just substituting random words may be too simplistic a model.
Out-of-vocabulary words will often give rise to unexpected results, as the speech recogniser is
trying to fit what has been said into the language model using in-vocabulary words. Another
approach considered by Fraser & Gilbert (1991) is using a speech recogniser as a filter between
the user and the operator, but they argue that it would be too hard for the operator to read the
speech recognition results, and that the poor speech recognition performance would constrain
the dialogue too much. Paek (2001) suggests that a speech recogniser could be used in a Wiz-
ard-of-Oz setting to establish a gold standard for other components, which are simulated by
the operator.
A fundamental assumption behind the Wizard-of-Oz-method is that users are thought to

behave differently when talking to a machine compared to talking to a human (Dahlbäck et al.,
1993). There are two reasons for this. First, the system has conversational limitations that will
constrain the dialogue. Second, the user has a model of the interlocutor that will affect the
linguistic constructs used. Many studies that compare human-human and human-wizard con-
ditions (see Fraser & Gilbert, 1991 for an overview) do not make this distinction and these
variables are not controlled systematically and independently of one another. Thus, they do
not tell us which one of them is important for the differences that appear. However, in an

TTS

speaks

listens selects/
types

listens

User Wizard

4.1 Methods for exploring human error handling

67

experiment conducted by Amalberti et al. (1993), the effect of the user’s conceptions about
the other speaker was tested independently of the limitations of the system. Two groups of
subjects were asked to obtain information about air travel via spoken dialogue with a remote
travel agent. One group was told that they were talking to a computer, while the other was
told that they were talking to a human operator. In both cases, the voice of the operator was
distorted. The amount of distortion was carefully tuned, so that the human group could be
told that they were testing communication through a noisy channel, while the other group
were told that they were talking to a computer. Thus, the experimental setting was exactly the
same for the two groups, apart from their conceptions about the other speaker. The results
showed that there were differences in the users’ linguistic behaviour. However, the differences
were most noticeable initially, and a lot of differences tended to disappear in subsequent ses-
sions. Furthermore, the differences that were found between the groups were mainly related to
problem solving, where the users in the human group were more cooperative towards the op-
erator. This suggests that the experience the user has of a system will affect the user’s behav-
iour in future interactions. If users are faced with more cooperative systems, they may start to
take advantage of this. In order to make advances in the development of dialogue systems, it
could be dangerous to adapt to users’ current beliefs of the capabilities of such systems, espe-
cially users who have a very limited experience of them.
This leads us to another problem concerning explorative Wizard-of-Oz experiments. Nu-

merous studies show that the behaviour of a dialogue system has great impact on the user’s
behaviour (e.g., Brennan, 1996; Gustafson et al., 1997; Skantze, 2002). Thus, the way the
wizard acts will influence the data that is collected. This can be a problem, since the collected
data might be based on a priori assumptions about the users’ behaviour and how a system is
supposed to react to them, and might not cover other, unanticipated interaction patterns. Us-
ing a speech recogniser in a controlled Wizard-of-Oz setting would also make it hard to pre-
scribe how the operator should behave depending on different levels of comprehensibility.
All in all, it seems as if the Wizard-of-Oz method might be difficult to use for studying er-

ror handling strategies, even if a speech recogniser is included in the setting, unless the ex-
perimenter has a very clear idea of the different errors that will occur and which specific error
handling strategies should be tested. In order to deceive the subject, the wizard must work fast
and accurately. This does not only require a good design of the experimental setting and op-
erator environment, but also much training of the operator. Since the method is very costly to
perform, it may be unfeasible to use it for conducting more explorative experiments on such
strategies.

4.1.2 The proposed method

In the experiment presented in this chapter, two humans were given a task to solve by speak-
ing to each other. To introduce errors, a speech recogniser was used in one direction, so that
the listener could only read the speech recognition results. The problems of miscommunica-
tion that these errors give rise to, and the effects they have on the dialogue and the subjects’
experience of it, have been analysed.

Chapter 4. Exploring non-understanding recovery

68

This approach has three advantages. First, the speech recogniser imposes some limitations
similar to those of a dialogue system, which makes the dialogue more similar to human-
computer dialogue. Second, the kind of errors that occur are probably more similar to those
that occur in spoken dialogue systems than those that occur in ordinary human-human dia-
logue or those that may be simulated in Wizard-of-Oz studies. Third, since the operator’s un-
derstanding is limited to that of the speech recognition result, the level of understanding is
more transparent when analysing the dialogue.

4.2 Experimental method

4.2.1 Experimental setting

The goal of this experiment was to get clues as to how errors may be handled in spoken dia-
logue systems, not to test specific error handling strategies. The task was chosen to resemble
that of a fairly complex spoken dialogue system and the two subjects were given the role of
operator (corresponding to the “dialogue system”) and user. The operator could not hear what
the user said, and had to read the speech recognition result from a screen. A number of differ-
ent naive operators were used in order to get varied data on error handling strategies. As op-
posed to the Wizard-of-Oz method, the operator was treated as a subject as well and the users
were openly informed about the setting.
As discussed previously, the problem of transferring results from human-human studies to

human-computer dialogue has been shown to depend mainly on the limitations that real sys-
tems impose on the dialogue. In the current study, the users were told that a speech recogniser
was used, and were therefore aware of the fact that complex utterances might not get through.
Since speech recognition is regarded as the bottleneck of most complex spoken dialogue sys-
tems, the results of this study may be more easily transferred to dialogue systems than results
taken from ordinary human-human dialogue.
One thing that does differ between human-human and human-computer dialogue, even

when the channel is equally noisy in both cases, is the amount of common ground that the
speakers have before engaging in the conversation. To minimise common ground, the opera-
tor and the user were not allowed to meet before or during the experiment. However, both
subjects were fully informed about the experimental setting. A challenging issue for the setting
is how the operator should reply, provided that user should not be allowed to form any as-
sumptions about the operator. One possibility could be to let the operator type a message,
synthesize it and play it back to the user, using a text-to-speech system. However, pilot studies
showed that this would be too slow, and that the operator might behave in a “lazy” way, not
typing the whole message as it would have been spoken. Another solution could be to let the
operator choose or compose the answer from a set of templates, but this would restrict the
operator’s output, and unexpected behaviour would not be captured. The proposed solution is
to let the operator speak freely and distort the speech through a vocoder. The final setting is
illustrated in Figure 4.2.

4.2 Experimental method

69

Figure 4.2: The setting used in the experiment.

It should be noted that this experimental setting lacks the control that the consistent behav-
iour of a trained operator would give. Still, this method may be good for explorative studies,
which aim at finding new ideas on dialogue behaviour, and especially on how error situations
could be handled.

4.2.2 The dialogue domain

The domain selected for the experiment was pedestrian navigation on a simulated campus. In
this domain, the user’s goal is to get to a specific location and the dialogue system (in this ex-
periment the operator) is used to get directions. The system (operator) does not know where
the user is, and must rely on the user’s descriptions of the environment. Dialogue about route
descriptions have been studied extensively in so-called Map Task experiments (see Anderson et
al. (1991) for a description of a corpus, and Brown (1995) for an extensive analysis). The
question is to what extent these data are applicable to dialogue systems for navigation, since
the user (the “follower” in Map Task) has access to the whole map and can talk about absolute
directions (such as “north”, “south”, “up” and “down”). For this experiment, a simulation
environment, which is described in the next section, was built to prevent the user from using
such information. Although miscommunication has been studied in Map Task experiments
previously (Brown, 1995; Carletta & Mellish, 1996), such experiments have not, to our best
knowledge, been conducted using a speech recogniser.

4.2.3 Experimental design

4.2.3.1 Subjects
16 subjects were used, 8 users and 8 operators, ranging in age from 16 to 42 years. All subjects
were native speakers of Swedish. The subjects were paired in groups of operator/user. There
were 8 women and 8 men, equally balanced as operators and users. Users with low to medium
computer experience were chosen (to represent ordinary users), while the operators were cho-
sen with a somewhat higher computer experience and some experience of speech technology,
on the assumption that this would make the learning of the operator interface faster. However,

ASR

Vocoder

speaks

listens speaks

reads

User Operator

Chapter 4. Exploring non-understanding recovery

70

since the purpose of the study was to collect data on “natural” human error handling, people
with experience in dialogue system design were not used as operators.

4.2.3.2 Scenarios
The users were given the task to get from one department to another on a simulated campus.
The operators’ task was to guide the users. The operators had access to a map showing the
entire campus to help them with their task. In order to solve the task, the users had to state the
goal and continuously describe their current location. When guiding the users, the operators
had no direct access to their position, but had to rely on their descriptions of surrounding
landmarks. Five different scenarios were given to each pair of subjects, which resulted in 40
dialogues. The order of the scenarios was changed and balanced between pairs, so that general
trends after several sessions could be studied independently of scenario.

4.2.3.3 Material
A system for handling the simulation of the campus and for managing the communication
between the subjects was built. The user’s and the operator’s interfaces to the systems are
shown in Figure 4.3.

Figure 4.3: The user’s interface to the left and the operator’s interface to the right.

A

B

C
D

E

E

F

4.2 Experimental method

71

At the bottom of the user’s screen (A), the scenario was presented. Only a small fraction of the
map (B) surrounding the current position was shown (seen from above). The user moved
around on the campus by using the arrow keys on a keyboard. When the user changed direc-
tion, the whole map rotated, so that the user always was facing “up”, which made it hard for
the subjects to talk about “up”, “down”, “north” or “south”. Instead, they had to use land-
marks and relative directions.
The operator’s map (C) was identical to the user’s, except for some street names that were

missing on the user’s map. The operator could easily look up where the departments were
located (D). The user’s position was not shown on the operator’s map, so the operator had to
rely on the user’s descriptions of the environment. On each screen, there was a legend explain-
ing the landmarks, such as trees, parking places and brick buildings (E).
Both the user and the operator were wearing headsets and a push-to-talk mechanism was

used. The operator’s speech was processed through a vocoder and played back directly to the
user. The processed speech was fairly easy to understand, according to post-interviews. How-
ever, a lot of prosody was distorted, and the users could not tell whether they listened to a
male or female voice.
The user’s speech was recognised by a speech recogniser and the recognised string was dis-

played on the operator’s screen (F). An off-the-shelf speech recogniser was used with built-in
acoustic models of Swedish. A bigram language model was used, trained on a small corpus of
invented dialogues and transcriptions from pilot studies. The vocabulary was of about 350
words. As Fraser & Gilbert (1991) points out, using speech recognition in a Wizard-of-Oz
setting might be tough for the operator, since the recognition result may be hard to present
and interpret. In this experiment, the words were coloured in greyscale according to each
word’s confidence score, in order to make them more easily readable, allowing the operator to
get an immediate and overall understanding of the confidence scores of the words. Words that
were coloured in darker tones had higher confidence scores, while lighter tones reflected lower
confidence scores. Since the operator could not hear the user, an indicator on the screen
showed whether the user was speaking or not, in order to facilitate turn taking.

4.2.3.4 Procedure
The user and operator were informed separately about the experiment and the setting, and the
respective computer interfaces were explained to them. After the instructions, the subjects
were placed in different rooms and were not allowed to see each other until the experiment
was over. They got no information about each other before the experiment. During the ex-
periment, the conductor of the experiment was sitting behind the operator and could see what
the operator was doing and hear what the participants said (using headphones). The conduc-
tor also assisted in answering any technical questions about the system from the operator dur-
ing the experiment. The user was sitting alone. The task was interrupted if the subjects did not
complete it within ten minutes. There were no instructions on who should start the conversa-
tion, who should take the initiative and “lead” the dialogue, or on possible error handling
strategies.

Chapter 4. Exploring non-understanding recovery

72

Table 4.1: Example annotation. The columns denote (from left to right): the speaker (Operator
or User) and utterance id, the utterance (in case of a user utterance, first the recognised utter-
ance and then the transcription in italics), the understanding, and the dialogue act label. All
examples are translated from Swedish. The confidence shading of the words in the speech
recognition results have been transferred to the corresponding English words in the transla-
tion.

Turn Utterance Und. Dialogue act

O.a1 Take to the right in the crossing and continue. You
will have a gravel pitch on your right and then a
concrete building and then you will get to a crossing
and you can stop there.

 ASSERTROUTE

U.a2 I AM THERE

(I am there.)
FULL ASSERTPOSITION

O.a3 Okay, then continue, eeh let’s see, the concrete
house that you have on your right side when you
have passed the crossing and continued straight
forward, well you should pass it and then you
should take to the right directly after that house.

 ACKNOWLEDGE
ASSERTROUTE

U.a4 NUMBER FOUR NINETEEN HOUSE NUMBER FIVE

(number ten in the corner of the house, should I
round it?)

MIS REQUESTROUTE

O.a5 Number nineteen is Machine Construction. ASSERTROUTE

U.a6 AT A GRAVEL PITH WITH THIRTEEN

(At a gravel pitch. Am I right then?)
PARTIAL ASSERTPOSITION

REQUESTROUTE

O.a7 Okay, then there is a little problem, I must check,
wait a moment.

 ACKNOWLEDGE
ASSERTPROBLEM
REQUESTACTWAIT

U.b1 HELLO ELEVEN TWENTY ONE TWELVE

(Yes I am there and where shall I go now?)
NON ASSERTPOSITION

REQUESTROUTE

O.b2 Repeat REQUESTACTREPEAT

U.b3 ELEVEN COME TO A WOODEN BUILDING TWENTY

NINETEEN

(eeh now I have come to the wooden building how
should I go then?)

PARTIAL ASSERTPOSITION
REQUESTROUTE

O.c1 Do you have a brick building on your right? REQUESTPOSITION

U.c2 WHAT HEARD
(Yes I have.)

NON YES

O.c3 Do you have a brick building on your right? REQUESTPOSITION
(REPEAT)

U.c4 WHAT HAS
(Yes I have.)

NON YES

O.c5 What else can you see than the wooden building? REQUESTPOSITION

4.2 Experimental method

73

After each scenario, the subjects filled out a questionnaire about the interaction. The ques-
tionnaires consisted of a number of statements, for each of which the subjects stated to what
extent they agreed. The set of statements were somewhat different for the operators and the
users. Only one of the statements from the users’ questionnaire is discussed in this chapter:
“we did well in solving the task”. There was a choice of seven levels of agreement, ranging
from “strongly disagree” to “strongly agree”. After the whole experiment, both user and opera-
tor were interviewed. For the users, the questions mainly concerned how well they thought
that they had been understood and if they had understood the vocoder.

4.2.3.5 Data analysis
All utterances of the users and operators were transcribed and manually annotated. Each utter-
ance was annotated with regard to which dialogue acts it contained and how well it was under-
stood. Some annotation examples are given in Table 4.1. The annotation schemes used are
described below and presented in Table 4.2 and Table 4.3.

Table 4.2: The dialogue act categories.

Label Example

REQUESTGOAL Where do you want to go?

ASSERTGOAL I want to go to the department of machine construction.

REQUESTPOSITION Can you see a wooden building?

ASSERTPOSITION I have a tree to my left and a concrete building to my right.

REQUESTROUTE How should I go now?

ASSERTROUTE After the building, you should take to the left.

SIGNALNONUNDERSTANDING I do not understand.
Please repeat.
What did you say?

REQUESTREADY Are you ready?

ASSERTPROBLEM There seems to be a problem.

REQUESTACTWAIT Please wait.

ASSERTACTWAIT I am waiting.

ACKNOWLEDGE Okay
Yes

NO No

GREETING Hello

THANKS Thank you.

The dialogue act scheme, as presented in Table 4.2 above, was not intended to be general.
Instead, it was constructed to cover the most frequent types of dialogue acts in the current
experiment. The purpose of annotating dialogue acts was to find relations between these and

Chapter 4. Exploring non-understanding recovery

74

the understanding of utterances. Unlike more general schemes (such as those discussed in
2.2.1), distinctions were also made between questions and assertions concerning different sub-
tasks in the domain, such as establishing a goal, finding out the users’ positions and giving
directions. No distinction was made between assertions and answers (which can be seen as a
subset of assertions), since this would introduce unnecessary ambiguity, especially as there was
a lot of miscommunication. The dialogue acts were encoded based on the spoken, not the
recognised, utterances.
Each user utterance was also annotated with regard to how well it was immediately “un-

derstood” by the operator. “Understood” here means that the operator continued the dialogue
with one interpretation, knowing that it may turn out to be incorrect. It does not necessarily
mean that that the operator believed in the interpretation. For example, a clarification ques-
tion from the operator such as “do you have a tree on your left?” shows that the operator un-
derstands that there is a tree on the left from the previous utterance. Based on the user’s reac-
tion to this question, the operator may later reject this interpretation. However, it is still anno-
tated as (partially) understood or misunderstood, since this was the immediate interpretation.
To estimate the level of understanding, the speech recognition result and the operator’s reac-
tion to the utterance were considered. The degree of understanding was classified into four
categories, presented in Table 4.3.

Table 4.3: The degrees of understanding each user utterance was annotated with.

Label Meaning

FULL Full understanding: The full intention of the utterance was understood.

PARTIAL Partial understanding: Only a fragment or a part of the full intention was under-
stood.

NON Non-understanding: No part or fragment of the intended message (with the pos-
sible exception of a single vague word) was understood.

MIS Misunderstanding: The operator continued with an interpretation that was not in
line with the user’s intention.

Of course, the annotator had no direct access to the speaker’s intention for each utterance.
However, the interpretation was highly constrained by the task context. If there were speech
recognition errors that could lead to misunderstanding, these were only marked as misunder-
standing if the operator seemed to continue with an interpretation of them. An example of
this is utterance Ua.4 in Table 4.1. The utterance Oa.5 suggests that the operator interprets
the word “nineteen” as correct, so Ua.4 is classified as a misunderstanding. In contrast, there is
nothing in utterance Oa.7 or Ob.2 (or subsequent utterances) that suggests that the previous
utterance was misunderstood (in this sense), even though there are many misrecognised words.
The data was transcribed and annotated by one main annotator. To check the reliability of

the annotation scheme used, two other persons annotated 1/5 of the dialogues (i.e., full dia-
logues, randomly selected). The annotators were instructed to annotate according the defini-

4.3 Results

75

tions of understanding, understanding levels, and dialogue acts, as they are described above.
For dialogue acts, the main annotator agreed with one of the other annotators in 99.1% of the
cases and with both of them in 97.5% of the cases. For the understanding levels, the scores
were 94.9% and 89.8%. The most common disagreement was between partial and full under-
standing. These figures were judged good enough to base the analysis on the main annotation.

4.3 Results

4.3.1 General results

The 40 dialogues resulted in 736 user utterances (18.4 per dialogue on average). The mean
utterance length was 6.7 words. 80% of the 40 scenarios were solved within ten minutes. As
expected, there were a lot of errors in the recognition results – about 42% word error rate
(WER) – due to the users’ unrestricted speech and the fact that the bigram language model
used was limited: 250 training utterances with a vocabulary of 350 words and 19 classes. 7.3%
of the words used were out of vocabulary. There were large individual differences in terms of
understanding. The different operators’ average understanding is shown in Figure 4.4. In the
rightmost bar, the average understanding for all subjects is shown.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

all

MIS

NON

PARTIAL

FULL

Figure 4.4: The different operators’ average understanding of the users’ utterances across all
five sessions. The rightmost bar shows the distribution for all operators.

As can be seen in the figure, very few of the utterances resulted in misunderstanding. This
means that when misrecognitions occurred, the operators were very good at deciding which
words were correct and which were not. When there were a lot of misrecognitions, this re-

Chapter 4. Exploring non-understanding recovery

76

sulted in partial understanding or non-understanding, instead of misunderstanding. Thus, the
operators were very good at error detection. More than 50% full understanding in general may
seem to be high compared to the high WER. However all words do not have to be correct for
full understanding. Moreover, the WER was not equally distributed between utterances. Some
had very low WER and some very high.
In order to find out whether the subjects improved at the task during the five sessions, a

trend analysis was tested on several factors. As shown in Figure 4.4, there was a large between-
pair variance, which makes it hard to find general trends. However, it turned out that the pro-
portion of non-understanding and the number of user utterances (a measure of the length of
the dialogue) changed after subsequent sessions (one-way repeated measures ANOVA; p<0.05).
An analysis of polynomial contrasts showed that both variables decreased in a linear fashion.
The trends are shown in Figure 4.5.

0

5

10

15

20

25

30

1 2 3 4 5

Session

U
tt

e
ra

n
c
e
s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o
n
-u

n
d
e
rs

ta
n
d
in

g

Utterances

Non-understanding

Figure 4.5: The average number of user utterances and proportion of non-understanding in
each dialogue, as they decrease after subsequent sessions.

The post interviews revealed that, despite the numerous non-understandings, the users in gen-
eral experienced that they were almost always understood. It turned out that in many cases,
instead of signalling non-understanding – which may seem like the obvious choice – the op-
erators employed other strategies.

4.3 Results

77

4.3.2 Strategies after non-understanding

The operators’ strategies after non-understanding were divided into three categories: SIGNAL-
NONUNDERSTANDING, ASSERTROUTE and REQUESTPOSITION. The three groups were of
approximately equal size.

4.3.2.1 SIGNALNONUNDERSTANDING
This category includes all reactions to non-understanding where the operator somehow sig-
nalled that the utterance was not understood. This includes explicit requests for repetition
(“please repeat”, “what did you say”), assertions of non-understanding (“I didn’t understand”),
and repetitions of the same utterance (O.c1-O.c3 in Table 4.1 is an example of a repetition).
Consider the following example:

(40) U.d1: WEST WITH (that’s right)
O.d2: Please repeat what you said.
U.d3: THAT THERE WITH (that’s right)

In the example, the problem with the recognition is that the expression “that’s right” isn’t
covered by the language model. Therefore, the repetition doesn’t lead to a recovery from the
problem. Example U.b1-U.b3 in Table 4.1 is an example where the request for repeat instead
triggers the user to rephrase, which leads to a minor recovery (partial understanding).

4.3.2.2 ASSERTROUTE
This category contains all reactions to non-understanding where the operator gave a new route
description without any of the signals of non-understanding mentioned above. Here is an ex-
ample:

(41) O.e1: Continue a little bit forward.
U.e2: STREET THAT THERE HOUSE (past the wooden house?)
O.e3: Now, walk around the wooden house. Take left and then right.

The only thing that the operator seems to rely on, in this example, is something about a house.
Since it is impossible to interpret what the user is trying to say and since the word house does
not contribute much (in this domain) to the understanding, this has been classified as a non-
understanding. Although it seems like the operator is totally ignoring the user’s contribution,
the operator utterance implicitly verifies the user’s position by referring to a wooden house
(something that there are only a few of on the map). If the hypothesis is incorrect and the op-
erator’s utterance was out of place, the user has a chance to react so that the recovery process
may continue. If it is correct (as in this case), the user will probably perceive the situation as if
the utterance was fully understood.

Chapter 4. Exploring non-understanding recovery

78

4.3.2.3 REQUESTPOSITION
This category contains all reactions to non-understanding where the operator asked a question
about the user’s position without any of the signals of non-understanding mentioned above.
Here is an example:

(42) O.f1: Do you see a wooden house in front of you?
U.f2: YES CROSSING ADDRESS NOW (I pass the wooden house now.)
O.f3: Can you see a restaurant sign?

The operator seems unsure of whether the user really can see a wooden house, but instead of
asking the user to repeat, another question is asked that is confirming the same hypothesis as
the operator wanted to confirm by asking the first question. Another example is Oc.3-O.c5 in
Table 4.1. After the non-understanding, the operator asks about a wooden building (which
has been mentioned previously in the dialogue). Since the question is task-related (and not
related to what has been said), it implicitly confirms the operator’s hypothesis about the user’s
position without signalling non-understanding (just as with ASSERTROUTE).

4.3.3 Error recovery

As discussed in 3.3.2.4, non-understanding may often lead to error spirals, where the user just
repeats the non-understood utterance and perhaps starts to hyperarticulate, which may only
worsen the recognition performance. A good error recovery strategy should therefore aim at
coming to understanding, or at getting “back on track”, as quickly as possible after a non-
understanding has occurred. In order to evaluate the different strategies based on this criterion,
the operator’s understanding of the user’s utterance following a reaction to a non-
understanding was studied. As an example, take the sequence b1-b3 in Table 4.1. After the first
non-understanding, the operator selects the strategy SIGNALNONUNDERSTANDING. This
strategy leads to a partial understanding of the next utterance. The distribution of the opera-
tors’ understanding following the different strategies is presented in Figure 4.6. The top bar
shows the general distribution for all utterances, also shown in the rightmost bar in Figure 4.4.
Statistical tests showed that there was no deviation from the general distribution after AS-

SERTROUTE and SIGNALNONUNDERSTANDING, but after REQUESTPOSITION there were
significantly less non-understandings and instead significantly more partial understandings
(goodness-of-fit test; dF = 3; χ2 = 12.52; p < 0.01). This suggests that REQUESTPOSITION
leads to better recovery from the problem.
Why does REQUESTPOSITION lead to less non-understanding? To answer this question,

the types of questions that were posed and the reactions to the strategies were analysed further.
Approximately 1/3 of the REQUESTPOSITION utterances were wh-questions and 2/3 yes/no-
questions. This may suggest that the questions constrain the length of the answers from the
user and thereby increase the speech recognition performance. However, yes/no-questions do
not always result in simple yes/no answers, as example (42) above illustrates. Table 4.4 shows
the utterance length following the different strategies. As seen in the table, the utterances fol-

4.3 Results

79

lowing REQUESTPOSITIONare not shorter, but longer. The better understanding of these ut-
terances is probably explained by the fact that they constrain the vocabulary and syntax of the
response to the domain and the language models, which increase speech recognition perform-
ance. Moreover, the specific question that precedes the response may also constrain the inter-
pretation of the speech recognition result even if it is bad. This is not true for ASSERTROUTE,
and may explain why REQUESTPOSITION works better.

Table 4.4: Mean and median length of the utterances (number of words) following the differ-
ent strategies.

 Mean utterance length Median utterance length

SIGNALNONUNDERSTANDING 7.4 4

ASSERTROUTE 6.4 5

REQUESTPOSITION 8.6 8

4.3.4 User experience of task success

Fast error recovery can be regarded as a measure of efficiency. But from a user-centred point of
view, the experience of using the system should come first, and efficiency should be a means
for improving the experience of using the system. Thus, it is interesting to examine how dif-
ferent recovery strategies and other objective measures contribute to the user’s experience.

0% 20% 40% 60% 80% 100%

expected

ASSERTROUTE

SIGNALNONUNDERSTANDING

REQUESTPOSITION

FULL

PARTIAL

NON

MIS

S S

Figure 4.6: The understanding of the user’s utterance that follows the operator’s reaction to a
non-understanding. “S” marks significant deviation from the general distribution.

Chapter 4. Exploring non-understanding recovery

80

Since there was a large between-pair and within-pair variance (as shown in Figure 4.4 and
Figure 4.5), regarding the subjects’ performance, it should be possible to correlate the user’s
experience with objective measures for different pairs and sessions. To investigate this, a mul-
tiple regression analysis was used in a way similar to the PARADISE evaluation framework for
dialogue systems (Walker et al., 2000a). The idea behind PARADISE is to find out the rela-
tion between the subjective measure of the user’s satisfaction (which can be collected by using
a questionnaire) and a number of objective measures (the task success and dialogue costs, such
as number of repetitions, WER, etc.). If this relation can be estimated, it is possible to predict
the effect on user satisfaction that the tuning of objective parameters will have (such as im-
proving the WER), without having to run expensive user tests. The method can also be used
to give insights into which parameters are important for the user satisfaction of dialogue sys-
tems in general and which are not.
The input to the regression analysis is a criterion variable (user satisfaction) and a set of

predictor variables (the objective measures). The output is a set of coefficients for the predictor
variables that describe the relative contribution of each variable for the variation in the crite-
rion variable. Since the user’s task in the current study was given beforehand and was quite
artificial, it was hard to get a measure of the “user satisfaction”. Instead, the user’s experience
of task success was used. The question “how well do you think that you did in solving the
task?” from the questionnaire was used as the dependent factor, which was a rating from 0 to 6.
As predictor variables, factors that were likely to affect the user’s experience were selected: time
to solve the task, the length of the path that the user took, the mean WER, the number of
non-understandings, and the number of uses of the error recovery strategies (SIGNAL-
NONUNDERSTANDING, ASSERTROUTE, REQUESTPOSITION). All 40 dialogues were used as
data points.
If several predictor variables correlate, they will explain the same variation in the criterion

variable, and the result will depend on which predictor variables are selected. It is therefore
important to select the variables systematically. Hinkle et al. (1994) describe three procedures
for doing this: backward solution, forward solution and stepwise solution. All three were tested
in the current experiment, and they all resulted in a significant correlation between the crite-
rion variable and two of the predictor variables (R2=0.56; p < 0.0001). The contribution of
the different variables to the user’s experience of task success is shown in Table 4.5. As can be
seen in the table, the only factors that contributed were time for task completion and the
number of non-understandings that the operator had signalled (which both had a negative
effect). It is interesting that neither the number of non-understandings nor the WER per se
had any effect on the user’s experience, but only the cases where the user was made aware of
the non-understanding.

4.4 Discussion

81

Table 4.5: Results from the regression analysis.

Contributing factors Coeff SE T Stat P-value

Total time -0,456 0,083 -5,499 < 0,001

SIGNALNONUNDERSTANDING’s -0,560 0,262 -2,142 0,039

Non-contributing factors

Total path length

WER

Non-understandings

ASSERTROUTE’s

REQUESTPOSITION’s

4.4 Discussion

The experiment presented in this chapter shows that the operators did not routinely signal
non-understanding when faced with incomprehensible speech recognition results. Instead,
they tried to ask task-related questions that confirmed their hypothesis about the user’s posi-
tion. This strategy led to fewer non-understandings of the subsequent user utterance, and thus
to a faster recovery from the problem. When they did signal non-understanding, this had a
negative effect on the user’s experience of task success. Despite the numerous non-
understandings, users reported that they were almost always understood.
A main point driven by Brown (1995) is that listeners do not primarily strive to arrive at a

correct interpretation of utterances. They merely use the utterances as a knowledge source
among others to solve the task at hand. This is supported by the findings presented in this
chapter. In a problem solving task such as guiding, the goal is established early in the dialogue
and the speakers can focus primarily on solving the task by working towards this goal. The
results from this study also confirm the argument put forth by Brown (1995), that it may be
problematic to study understanding by just analysing ordinary human-human dialogue, since
the signals of understanding that the speakers send apparently do not have to reflect their true
understanding. As Brown points out, the problem of studying understanding in ordinary con-
versation analysis is that the analyst has no access to what goes on inside people’s heads. The
analyst has to rely on the record of the speakers’ behaviour, such as grounding and signals of
non-understanding. However, it is not certain at all that these signals reflect the true under-
standing of the speakers. This is a serious problem if the analyst wants to relate the level of
understanding to the speaker’s behaviour during conversation. In psycholinguistic laboratory
experiments, the comprehension of subjects can be studied by carefully controlling the stimuli
and measuring the level of understanding after each utterance or fragment. The problem with
such experiments is that it is not possible to relate the understanding to an ongoing dialogue
that the subject is engaged in. Brown argues that the Map Task method provides a solution to
this problem, since the speakers’ beliefs about the world are controlled by the experimenter

Chapter 4. Exploring non-understanding recovery

82

(i.e., what is printed on the maps). Thus, it becomes possible to study miscommunication that
arises from the misalignments of the speakers’ models of the world. However, the method does
not provide information on how people react to non-understanding, which the experimental
setup used in this study supports.
On average, the speech recognition performance was poor. As mentioned previously, this

was partly due to the users’ relatively free speech and partly due to the limited training of the
language models. This may seem as non-representative for most dialogue systems. However,
without the poor performance, it would not have been possible to collect enough data on non-
understanding from a reasonable number of dialogues for quantitative analysis. It is also im-
portant to stress that the WER varied a lot between utterances and subjects (as can be seen in
Figure 4.4), which is often the case in real applications. Some dialogues were smooth and suc-
cessful, while others were dominated by errors. This also made the experience of task success
more varied, which is important for regression analysis. Humans are also probably better at
interpreting the bad recognition results than what could be accomplished with a robust inter-
preter. Thus, the distribution of the levels of understanding may be more representative than
the WER.
It would be interesting to find out why the subjects get better at the task after repeated ses-

sions. This is probably due to the fact that they get better at formulating descriptions and
route directions. It would also be interesting to find out whether they learn any new error
handling strategies. Another question is whether it is mainly the user or the operator that
adapts. That is, does a dialogue system have to adapt to the user, or is it enough that the user
adapts to the system? No general trends in choice of strategies could be found, probably due to
the large inter-subject variance.
In this study, a speech recogniser was used to introduce errors. The drawback with this ap-

proach is that there is no direct control over the amount of errors that are introduced, and
thus it becomes hard to study how the effects of different error handling strategies depend on
the amount of errors. An interesting alternative is presented in Stuttle et al. (2004) where a
trained typist transcribes what is said. The typist does not (intentionally) introduce any errors.
Instead, the transcribed utterances are processed by a system that simulates a certain rate of
speech recognition errors. The system uses a phonetic confusion model and a language model,
which results in errors similar to those that a speech recogniser would make.

4.4.1 Comparison to other findings

The finding that signalling non-understanding decreases the understanding of subsequence
utterances is in line with other findings, as discussed in 3.3.2.4. However, it is interesting that
there are alternative strategies that not only increase the recovery rate, but lead to better user
satisfaction.
Bohus & Rudnicky (2005b) describes an experiment with a spoken dialog system that

handles conference room reservations (called the RoomLine system). The system randomly
chose between 10 different non-understanding recovery strategies, such as AskRepeat (system
asks the user to repeat the non-understood utterance), Yield (system remains silent, and thus

4.4 Discussion

83

implicitly notifies the user that a non-understanding has occurred), and Reprompt (system
repeats the previous prompt). Among these options was also the strategy MoveOn, defined as
“system advances the task by moving on to a different question”, which is very similar to the
more successful strategies employed by the operators in the experiment presented here. It
turned out that this strategy had the highest performance on error recovery. The authors make
the following note:

The high performance of the MoveOn strategy is consistent with prior evidence from
a wizard-of-oz study of error handling strategies […]6 In the RoomLine system, the
MoveOn strategy implements this idea in practice, and the observed performance
confirms the prior evidence from Skantze’s study. Although not surprising, we do
find this result very interesting, as it points towards a road less traveled in spoken dia-
log system design: when non-understandings happen, instead of trying to repair the
current problem, use an alternative dialog plan to advance the task.

Schlangen & Fernández (2007a, 2007b) used a setting similar to the one presented here. In
one experiment, pairs of subjects were given the task of dictating to each other. In another
experiment, pairs of subjects were given a more problem-solving oriented task. In both cases,
noise was inserted at random places in the speech to induce perception problems. A compari-
son between the collected dialogues showed that clarification requests were much more com-
mon in the dictation task, although the amount of inserted noise was the same. Thus, if the
task is not fully dependent on the precise wordings, people rely on other strategies than clarify-
ing what is said.
Yet other support for the findings presented in this chapter comes from an informal analy-

sis of the Spoken Dutch Corpus, containing transcriptions of human-human dialogues (Boves,
2004):

The transcripts of the spontaneous conversations […] contain a substantial number
of ‘xxx’ codes, which stand for speech that the transcriber could not understand. Al-
though a formal analysis of these situations remains to be performed, the results of
the work on multiword expressions suggests that only a small proportion of these un-
intelligible intervals elicits ‘say that again, please’ replies from the interlocutor. This
can mean two things: either the speakers, who are familiar with each other, have
much less difficulty understanding each other than a third person, or the fact that
one does not understand the interlocutor completely does not always affect the
communication to such an extent that a repair meta-dialog is called for.

4.4.2 Application to other domains

One important question is if these results can be applied to domains that are not about naviga-
tion. In tasks where a single slot has to be filled by using specific words, there may not be any
other option than to signal non-understanding and thereby encourage repetition. In certain
other, more complex domains, strategies similar to REQUESTPOSITION, are likely to be appli-

6 The study reported in this chapter.

Chapter 4. Exploring non-understanding recovery

84

cable. To illustrate the possible applications, some examples from different domains will be
given. The most obvious are dialogues where the operator is diagnosing a problem. If the sys-
tem does not understand the answer to one question, it might be better to ask another one
instead of signalling non-understanding, given that there are several ways to pinpoint the
problem. A similar strategy may also be useful if speech technology is to be used in games,
where non-understanding may be frustrating for the user and task-related questions may be
used to guide the conversation along certain paths. It should also be possible to ask task-
related questions after non-understanding in information-browsing domains. As an example,
take the apartment broker domain, which is the domain for the ADAPT spoken dialogue sys-
tem (Gustafson et al., 2000). The following (invented) dialogue illustrates:

(43) U.g1: Tell me about the bathroom. [full understanding]
S.g2: It is a tiled bathroom and it has a bathtub.
U.g3: Is there anything else you can tell me about the apartment?

[non-understanding]
S.g4: Do you want me to tell you more about some specific part of the apartment?
U.g5: Yes, tell me about the kitchen.

In this case, the system’s response after the non-understanding (S.g4) happens to be appropri-
ate and does not signal non-understanding. Just like REQUESTPOSITION, it is a task-related
question that may constrain the interpretation of the user’s next utterance. The results from
this study suggest that it may have a greater potential for recovering from the error than an
explicit signal of non-understanding would have. If it had not been in place, the user would
still have a chance to correct the system. Furthermore, the user may not always have a fixed
idea of what she wants to know and may experience a question such as S.g4 as helpful. In a
multimodal system (such as ADAPT), it is also often possible to switch modality and let the
user provide the information in an alternative way. Oviatt & VanGent (1996) have shown
that modality switching is a successful method for recovering from error. The results from the
study presented in this chapter suggest that it may be better to do this without signalling non-
understanding:

(44) S.h1: Which area are you interested in?
U.h2: I would like to live near the water. [non-understanding]
S.h3: Can you mark exactly on the map.

Utterance S.h3 could start with “Sorry, I couldn’t understand”, but leaving this out may im-
prove the user experience of task success. The operators in this study sometimes used some
word in the poor recognition results when formulating their requests after non-understandings.
This may increase the probability of posing a question that seems relevant.
Of course, these are just invented examples of what could possibly be done in other do-

mains to recover from non-understanding without signalling non-understanding. It would be
interesting to perform experiments similar to this in other domains to find out if humans
benefit from similar strategies, or if they have to signal non-understanding.

4.5 Summary

85

4.5 Summary

In this chapter, a method for collecting data on human error handling strategies has been pre-
sented. An experiment was conducted based on this method, in which pairs of subjects were
given the task of guiding each other in a virtual campus by talking to each other. The person
giving directions (the “operator”) could not hear what the other speaker (the “user”) said. In-
stead, the user’s speech was recognised by a speech recogniser and the operator could read the
results on a screen. Due to limited language models, the speech recognition performance was
poor and there were many cases of non-understanding. Despite the numerous non-
understandings, users reported that they were almost always understood. Unlike most dialogue
systems, the operators did not often signal non-understanding. If they did signal non-
understanding, this had a negative effect on the user’s experience of task success.
An alternative reaction to non-understanding was to ask task-related questions that were

confirming the operator’s hypothesis about the user’s position. This strategy led to fewer non-
understandings of the subsequent user utterance, and thus to a faster recovery from the prob-
lem.
For the design of spoken dialogue systems in similar domains, the results suggest that when

non-understandings occur, a good domain model and robust parsing techniques should be
used to pose relevant questions to the user, instead of signalling non-understanding, so that
errors can be efficiently resolved without the user experiencing the dialogue as problematic and
dominated by explicit error handling.

87

CHAPTER 5

Early error detection on word level

In the experiment reported in Chapter 4, the high WER caused many non-understandings,
but only a few misunderstandings. This means that humans have an impressive capability of
early error detection, meaning that they are to a large extent aware of which hypotheses are
reasonable, and which are not. An important question is what this awareness is based on. In
other words, if we were to build a dialogue system with such capabilities, which knowledge
sources would contribute to the detection of errors?
In this chapter, two studies are presented, based on the data collected for Chapter 4. In

Study I, machine learning is used with different sets of features. A main issue for machine
learning is which factors (knowledge sources) the learning can and should be based on, and
how to operationalise these factors into extractable features. Some factors, such as dialogue
history, may seem useful for error detection, but are hard to operationalise, especially for
longer contexts. Finding whether a factor contributes to the performance of a human subject
doing the error detection task may provide some guidance as to its value to the machine learn-
ing task. In Study II, humans were given the task of detecting errors with different combina-
tions of knowledge sources.
As described earlier in 3.3.1, previous studies on early error detection have to a large extent

focussed on full utterances. More precisely, the task has been to decide whether the word error
rate (WER) and/or concept error rate is greater than zero. This is useful for systems where
short utterances are expected and their complexity limited. However, when long and complex
utterances are expected and an n-gram language model is used for the ASR, many utterances
can be expected to contain some errors. Long utterances may also contain more than one con-
cept, rendering an all-or-nothing distinction too blunt. If some content words are intact, the
recognition may still prove useful.

Chapter 5. Early error detection on word level

88

The task in the studies presented in this chapter can be described as binary word-level early
error detection, in other words, to classify each word in the speech recognition result as correct
or incorrect. While it would perhaps be more useful to classify concepts in the semantic inter-
pretation of the speech recognition result, the results from this study are not dependent on the
semantic model or interpretation technique used.

5.1 Study I: Machine learning

In this study, machine learning was used for the error detection task. Two learners were
trained on several different sets of features in order to measure the contribution of different
factors to machine learning of early error detection.

5.1.1 Algorithms used

Two machine learning algorithms were tested and compared: transformation-based learning
and memory-based learning. These algorithms were chosen because they represent different
machine learning paradigms and they were familiar to the author.

5.1.1.1 Transformation-based learning
In transformation-based learning, the algorithm learns a set of transformation rules that are
applied after each other. It was invented by Eric Brill for use in part of speech tagging (Brill,
1995), but has been used for many other tasks as well, such as dialogue act tagging (Lager,
1999). All instances are initially tagged with the most common class. A set of rule templates
has to be written specifically for the task. During training, the algorithm finds the instantia-
tion of a template that creates the rule that most efficiently transforms the classes in the mate-
rial in a positive direction. Rules learned early in the process may include very drastic general
transformations that also have negative effects. However, these negative transformations may
be recovered later by more specific rules. In the current study, µ-TBL (Lager, 1999) was used
for transformation-based learning. µ-TBL supports the definition of clauses written in Prolog,
which makes the use of features more flexible, for example when handling numeric features.
However, unlike other rule learning algorithms, such as RIPPER (Cohen, 1995), µ-TBL can-
not automatically find thresholds for numeric features.

5.1.1.2 Memory-based learning
In memory-based learning (also called instance-based learning), the training set is just stored as
examples for later evaluation (Mitchell, 1997). The computation is postponed to classification
(so-called “lazy” learning), when the instance to be classified is compared to all examples to
find the (set of) nearest neighbour(s). The number of nearest neighbours that are compared
can be tuned for the task (the algorithm is sometimes called k-nearest neighbour, where k is the
number of nearest neighbours used). To measure the distance between two instances, the vec-
tors of features for the instances are compared. In this study, TiMBL (Daelemans et al., 2003)
was used for memory-based learning. TiMBL supports different ways of comparing features.

5.1 Study I: Machine learning

89

The most simple is just an overlap measure, where each feature gets one score if the values of
the instances are equal. The features are typically weighted using “gain ratio weighting”, a
measure that is computed using information theory. This is done at training time by analysing
all examples to compute how much each feature contributes to the task. TiMBL also supports
other ways of comparing the value of two features. Using “modified value difference”, the ex-
amples can be analysed to form a matrix of distances between the values of the feature. If the
feature is numeric, it is also possible to use the numerical difference between features as a di-
rect distance metric.
Memory-based learning has the advantage that learning is extremely fast (just storing ex-

amples) and that very little preparation has to be done (for example, no templates have to be
written). It may also find so-called “islands of exceptions” more easily, without having to dis-
cover very specific exception rules. The disadvantage is that classifying new instances may be
slow. It is therefore crucial that the algorithm has efficient methods for indexing the examples.
Another disadvantage, compared to transformation-based learning, is that it is hard to study
what is actually learnt. It is not possible to study any rules that might give insights into sys-
tematic properties of the data.

5.1.2 Data and features

The classification task in this experiment was to determine whether a given recognised word
was present at the corresponding location in the transcription of the spoken utterance (TRUE)
or not (FALSE). For this study, the recognition results from the corpus presented in Chapter 4
were aligned to the transcriptions (using minimum edit distance) in order to determine for
each word if it was correct or not. 73.2% of the words turned out to be correct, which gives us
a majority-class baseline to compare the machine learning performance with. Of the 4470
words, 4/5 were used as training data and 1/5 as test data.
In Table 5.1, the features that were used for each word are classified into four groups: con-

fidence, lexical, contextual and discourse. For dialogue act tagging, a simple set was con-
structed specifically for the domain. The content/non-content split was also made with the
domain in mind. Content words were mainly nouns, adjectives and verbs.

5.1.3 Results

In order to investigate how the performance varied depending on which features that were
used, different combinations of feature set groups were used. The results are shown in Table
5.2. TiMBL seemed to perform best with the IB1 algorithm, gain ratio weighting and overlap
as distance metric (except for confidence, for which a numeric distance metric was used). De-
pending on feature set, different values for k were best. Since µ-TBL cannot automatically find
thresholds for numeric values, a set of ten (equally sized) intervals were defined for the confi-
dence score.

Chapter 5. Early error detection on word level

90

Table 5.1: Features used for error detection.

Group Feature Explanation

Confidence CONFIDENCE ASR word confidence score

Lexical WORD The word

 POS The part-of-speech for the word

 LENGTH The number of syllables in the word

 CONTENT Is it a content word?

Contextual PREVPOS The part-of-speech for the previous word

 NEXTPOS The part-of-speech for the next word

 PREVWORD The previous word

Discourse PREVDIALOGUEACT The dialogue act of the previous operator ut-
terance (according to Table 4.2)

 MENTIONED Is it a content word that has been mentioned
previously by the operator in the discourse?

Table 5.2: Performance of the machine learning algorithms depending on feature set.

Feature set µ-TBL TiMBL

Confidence 77.3% 76.0% (k=5)

Lexical 77.5% 78.0% (k=1)

Lexical + Contextual 81.4% 82.8% (k=1)

Lexical + Confidence 81.3% 81.0% (k=5)

Lexical + Confidence + Contextual 83.9% 83.2% (k=1)

Lexical + Confidence + Contextual + Discourse 85.1% 84.1% (k=1)

As the table shows, each group seems to add (more or less) to the performance. µ-TBL seems
to perform a bit better (although the difference has not been tested for significance). With the
richest feature set, µ-TBL performs 11.9% better than baseline.
The performance of the two machine learners seems to be very similar. In order to investi-

gate whether they made the same mistakes, the result of the classifications were compared. In
69 cases, both learners made the same mistake, in 137 cases they disagreed. Thus, if a perfect
ensemble method would be used that could choose the right classifier, the resulting perform-
ance would be 92.3%.
Since many interpretation modules in dialogue systems are mainly dependent on content

words, the performance of these are important for detection. There were 285 content words in
the test material of which 199 were correctly recognised. This gives a baseline of 69.8%. For
these words, the best scores for the classifiers were 87.7% (µ-TBL) and 87.0% (TiMBL). Thus,
the best classifier µ-TBL performs 17.9% better than baseline for content words. (A perfect
ensemble method would score 94.4%.)

5.2 Study II: Human error detection

91

The top rules that were learned by µ-TBL are shown in Table 5.3. The first rule states that
all content words with confidence less than 0.5 should be tagged as FALSE. The rest of the
rules mainly concern different confidence thresholds depending on type of word (often repre-
sented with part-of-speech and word length). There are also some interesting discourse rules,
such as the sixth: all two-syllable content nouns with a confidence score high enough that have
been mentioned previously by the operator should be tagged as correct.

Table 5.3: The top rules learned by µ-TBL.

Transformation Rule

TRUE → FALSE CONFIDENCE < 0.5 & CONTENT = TRUE

TRUE → FALSE CONFIDENCE < 0.6 & POS = Verb & LENGTH = 2

TRUE → FALSE CONFIDENCE < 0.4 & POS = Adverb & LENGTH = 1

TRUE → FALSE CONFIDENCE < 0.5 & POS = Adverb & LENGTH = 2

TRUE → FALSE CONFIDENCE < 0.4 & POS = Verb & LENGTH = 1

FALSE → TRUE CONFIDENCE > 0.4 & MENTIONED = TRUE & POS = Noun & LENGTH = 2

5.2 Study II: Human error detection

The features used in the machine learning study were chosen because they could intuitively
contribute to error detection and they were easy to operationalise. However, it should be in-
teresting to examine which factors humans could benefit from in performing the task, espe-
cially factors that are hard to operationalise. Finding whether a factor contributes to the per-
formance of a human subject doing the error detection task may provide some guidance as to
its value to the machine learning task. In the second study, an experiment was conducted
where human subjects (henceforth referred to as judges) were asked to detect errors in ASR
results. In order to investigate whether dialogue context, ASR confidence measures, and ASR
n-best lists provide help when detecting errors, the judges’ access to these factors was varied
systematically.

5.2.1 Method

The corpus presented in Chapter 4 was also used for this study. Four dialogues with higher
average WER than the corpus as a whole were chosen. The first 15 exchanges of these dia-
logues were used for the experiment, resulting in a subset of the corpus containing 60 ex-
changes. 50% of the words in the subset were correctly recognised, which gives the baseline for
the task, by either deleting all words or leaving the entire string unaltered.
Eight judges with some limited experience in speech technology were asked to delete words

in the ASR output that they believed to be wrong, using a custom-made tool. Figure 5.1
shows the tool in English translation.

Chapter 5. Early error detection on word level

92

Figure 5.1: The judges’ interface with an example translated into English.

Each judge assessed all four dialogues, with a different amount of visible context for each dia-
logue. The four levels of context are shown in Table 5.4.

Table 5.4: Context levels.

Label Description

NOCONTEXT No context. ASR output only, utterances in random order.

PREVIOUSCONTEXT Previous utterance from the operator visible. Utterance pairs in
random order.

FULLCONTEXT Full dialogue. The operator utterances and the ASR output are
given incrementally and stay visible throughout the dialogue.

MAPCONTEXT As FULLCONTEXT, with the addition of the map that was used by the
interlocutors.

Furthermore, each ASR result was repeated three times with an increasing degree of informa-
tion from the ASR attached, and the judge had to reassess the recognition each time. The ASR
information levels are listed in order of appearance in Table 5.5. The order of the dialogues
and context levels were systematically varied for each judge.

 The dialogue so far. User utterances in

greyscale and operator utterances in black. Correction field for the judge.

N-best list from the ASR.

Utterance confidence score in parenthesis.

The dialogue so far. User utterances in grey-
scale and operator utterances in black. Correction field for the judge.

n-best list from the ASR.
Utterance confidence score in parenthesis.

5.2 Study II: Human error detection

93

Table 5.5: ASR information levels.

Label Description

NOCONFIDENCE Recognised string only.

CONFIDENCE Recognised string, colour coded for word confidence (grey scale: dark for
high confidence, light for low).

NBESTLIST As CONFIDENCE, but the 5-best ASR result was provided.

5.2.2 Data analysis

The data consists of three versions of each recognised utterance: the transcription, the ASR
result, and the judge’s correction, which were all aligned to measure the judges’ performance.
An example is shown in Table 5.6. For each word in the recognition result that was misrecog-
nised, the judge received one error detection point if the word was removed or changed. Since
this was an error detection task and not an error correction task, the point was received regard-
less of whether the judge changed the erroneous word to the correct word or not (see the first
word in the example). For each word that was correctly recognised, the judge received one
point if the word was not removed or changed. The total number of points in each recogni-
tion result was then divided by the total number of words in the result to yield an error detec-
tion score between 0.0 and 1.0. The example in Table 5.6 yields an error detection score of
0.6. A score of 1.0 indicates that all incorrectly recognised words (insertions and substitutions)
were detected and no correctly recognised words were judged as errors. A score of 0.0 indicates
the opposite: all correctly recognised words were judged as errors and all errors were judged as
correct.

Table 5.6: Made-up example calculation of error detection score (sub=substitution,
ins=insertion).

Transcription the correct words

ASR result our system thought correct words

ASR error sub ins ins - -

Judge’s correction users thought correct text

Detection point 1 1 0 1 0

5.2.3 Results

The left column of Figure 5.2 shows mean error detection scores for the different ASR infor-
mation and context levels. PREVIOUSCONTEXT, FULLCONTEXT and MAPCONTEXT turned
out to hold no significant differences and are thus combined into CONTEXT.

Chapter 5. Early error detection on word level

94

0,40

0,50

0,60

0,70

0,80

0,90

1,00

NOCONTEXT CONTEXT NOCONTEXT CONTEXT

All

NBESTLIST

CONFIDENCE

NOCONFIDENCE

Worst
half

Best
half

Figure 5.2: Mean error detection scores for the human judges, depending on the availability of
the features. The result for all utterances is shown to the left, and the result for the best and
worst half are shown to the right.

There were main effects of both ASR information level and context level (two-way repeated
measures ANOVA; p < 0.05). Post tests revealed that NBESTLIST was better than CONFI-
DENCE, which in turn was better than NOCONFIDENCE. PREVIOUSCONTEXT was better than
NOCONTEXT (p < 0.05), but there was no difference between PREVIOUSCONTEXT, FULL-
CONTEXT and MAPCONTEXT. There were no interaction effects between variables. Overall,
the judges performed significantly better than the baseline detection score of 0.5.
To investigate what effect average WER had on the judges’ results, the figures were recal-

culated over two subsets of the corpus: one subset containing the 30 utterances with the high-
est WER, and another subset containing the 30 utterances with the lowest WER. Detection
scores for the subsets are shown in the right column of Figure 5.2. The effects for the worst
utterances were the same as the effects in general. For the best utterances, the differences be-
tween different recognition information levels persisted. However, there were no significant
differences between different context levels.

5.3 Discussion

Both studies show that word confidence scores are useful for early error detection, and that
other features can be used to improve performance. Utterance context and lexical information
improve the machine learning performance. The errors that are found with these features
probably reflect constant errors in the language and acoustic models and should be corrected
there, if possible. This is not always an easy task, however. Apart from using these methods for
improving the performance of a specific application without collecting more data for models, a

5.3 Discussion

95

rule-learning algorithm such as µ-TBL can be used to pinpoint the specific problems. For ex-
ample, if the algorithm finds that a number of specific words should be classed as incorrect,
these may be over-represented in the training material for the ASR language models.
It may be surprising that access to the n-best list improved the judges’ performance. When

simply detecting errors (and not correcting them), the information contained in the n-best list
should be reflected in the word confidence scores; if a word changes in the n-best list, it is a
sign that it may be incorrect, but such words usually also get a low confidence score. However,
for a human subject, the fact that a word changes in the list may be easier to make use of than
the grey scale of the words. Thus, the additional performance that n-best lists give could pos-
sibly be achieved by a machine learner by just looking at the confidence scores. If the n-best
list would in fact be useful for a machine learner, the question is how it should be operational-
ised, so that it could be used in the feature set.
The discourse context of the utterance is potentially the most interesting feature, since it is

not considered by the ASR. The machine learners improved only slightly from the discourse
context, but the results from the second study suggests that the immediate discourse context of
the utterance (i.e., the previous operator/system utterance) is the most important to humans
for detection. For good recognitions, there was no effect from the discourse context, which
indicates that the intact parts of a good recognition may provide sufficient context in them-
selves. For poorer recognitions, it seems that there is sufficient information in the previous
utterance together with the judges’ knowledge about the domain, and that further context is
redundant. Thus, further work on operationalising context for machine learning should focus
on the previous utterance. It could be argued that even though a long dialogue context does
not improve the performance of humans, a machine may still be able to use it. Humans, how-
ever, generally seem to outperform machines when it comes to utilising context in spoken
language.
In the studies presented in this chapter, the task was a binary decision between correct and

incorrect. As discussed in 3.3.1, it could sometimes be more useful to derive a continuous
probabilistic confidence score as a result of the early error detection. This may be possible to
derive from a memory-based learner, either by looking at the entropy of the class distribution
or the density of the nearest neighbour set (i.e., the distribution of distances in the different
k’s; if there are a lot of close competing nearest neighbours, confidence should be low).
Since the classifiers disagree in so many cases, it would also be interesting to test whether it

would be possible to use an ensemble method that could pick the right classifier.

5.3.1 Comparison to other findings

As the overview of the research on early error detection in 3.3.1 showed, related studies have
also shown that ASR confidence scores are useful for early error detection, but that other fea-
tures can be used to improve the performance. This study shows that this is equally true for
word-level error detection. The other studies in the review did not use features from a larger
context and this study confirms that larger context may not contribute much.

Chapter 5. Early error detection on word level

96

As was also shown in the review, other studies of early error detection have benefited from
the use of prosody. It would be interesting to see if prosody could also help to detect errors on
the word level, either by looking at utterance-level prosodic features or at local features. Local
prosodic features may for example help to find world-level errors that arise due to disfluencies.

5.4 Summary

In this chapter, two studies were presented in which the early detection of speech recognition
errors on word level was explored. In the first study, memory-based and transformation-based
machine learning was used for the task, using confidence, lexical, contextual and discourse
features. In the second study, factors humans benefit from when detecting errors were investi-
gated. Information from the speech recogniser (i.e., word confidence scores and 5-best lists)
and contextual information were the factors investigated. The results show that word confi-
dence scores are useful, and that lexical and contextual (both from the utterance and from the
discourse) features further improve performance, especially for content words. In the case of
poor recognitions, human judges seem to benefit from using the dialogue context. However,
larger context than the previous utterance does not seem to improve performance for human
judges.

PART II I

The Higgins

Spoken Dialogue System

HIGGINS: I’ve taught her to speak properly; and she has strict orders as to her be-
haviour. She’s to keep to two subjects: the weather and everybody's health –
Fine day and How do you do, you know – and not to let herself go on things
in general. That will be safe.

MRS HIGGINS: Safe! To talk about our health! about our insides! perhaps about
our outsides! How could you be so silly, Henry?

HIGGINS: Well, she must talk about something.

Pygmalion by George Bernard Shaw

99

CHAPTER 6

Concept-level error handling in Higgins

In Part II, it was shown that, in a conversational dialogue setting, it is indeed possible to detect
errors and extract meaning from recognition hypotheses containing a lot of errors – at least for
humans. In this part, we will investigate how this and other issues may be handled in a com-
plete spoken dialogue system.
As stated previously, speech recognition output in conversational dialogue systems is often

only partially correct. Therefore, error handling in such systems should be done on the con-
cept level, not on the utterance-level. In this chapter, we will present a model for how the
grounding status of individual concepts may be tracked. Instead of modelling how this ground-
ing status gets updated by a special set of “grounding acts”, we will show how all utterances,
even those that are mainly task-related, may contribute to the grounding process by updating
the grounding status. The grounding status includes the history of when and how the concept
is grounded by the participants, and the system’s confidence in this. Since the grounding
status is modelled on the concept level, the choice of surface realisation will affect the system’s
model of what has been grounded.
As part of the work for this thesis, the HIGGINS7 spoken dialogue system has been devel-

oped and evaluated (Edlund et al., 2004; Skantze et al., 2006). The system has served as a test-
bed for developing and evaluating methods and models for concept-level error handling, such
as robust interpretation, modelling grounding status in the discourse, displaying understand-
ing, posing clarification requests, and late error detection. This chapter will describe the do-
main, semantics and components of this system, and how concept-level error handling is done
in all parts of the system. In the next chapter, an evaluation of the system will be presented.

7 The system, as well as its components, bear Pygmalion-related names. This includes the Greek

myth Pygmalion & Galatea, the Bernard Shaw play Pygmalion, and the musical My Fair Lady.

Chapter 6. Concept-level error handling in Higgins

100

6.1 The Higgins navigation domain

The initial domain chosen for HIGGINS is the same as the one used in Chapter 4: pedestrian
city navigation and guiding. As noted previously, this domain is similar to the now classic
Map Task domain (Anderson et al., 1991), as well as to a number of guide systems, such as
REAL (Baus et al., 2002). In HIGGINS, the user tells the system where she wants to go and the
system guides the user by giving verbal instructions. The system does not have access to the
user’s position by any positioning device. Instead, it has to figure out the position by engaging
in a dialogue in which the user describes the surroundings. Since the user is moving, the sys-
tem continually has to update its model of the user’s position and provide new, possibly
amended instructions until the destination is reached. Unlike the experimental setting in
Chapter 4, a 3D model of a virtual city is used for simulation, see Figure 6.1.

Figure 6.1: The 3D simulation that is used for user tests.

It should be noted that this application would perhaps not be directly useful (as is) for pedes-
trian navigation in a real city, partly because it would be infeasible to model the city com-
pletely and partly because a real application would utilise a GPS. However, the domain is chal-
lenging from an error handling perspective; it is a conversational dialogue setting where com-
plex semantic relations and referring expressions need to be expressed.
To illustrate how error handling is done in the HIGGINS system, a made-up example sce-

nario will be used, which is shown in Table 6.1. In this scenario, the ASR results are shown as
well, revealing a fair amount of speech recognition errors. The HIGGINS system is currently
built for Swedish, but most examples in this thesis have been translated into English.

6.1 The Higgins navigation domain

101

Table 6.1: A made-up example scenario. The rightmost column shows ASR results in which
word confidence scores are represented with different shades of grey, where dark means high
confidence.

Turn Transcription ASR result

S.1 Where do you want to go?

U.2 To an ATM. TO AN ATM

S.3 Ok, an ATM, can you describe where
you are now?

U.4 I have eeh a large concrete building
on my left and a bus stop in front of
me.

I HAVE TREE A LARGE CONCRETE

BUILDING ON MY LEFT AND BUS STOP

ON MY RIGHT

S.5 What colour is the concrete building?

U.6 Red. RED

S.7 Ok, can you see a wooden building?

U.8 I can see a brown building. I CAN SEE A BLUE BUILDING

S.9 Blue?

U.10 No, brown. NO BROWN

S.11 Do you really have a bus stop on your
right?

U.12 No, in front of me. NO IN FRONT OF SEE

S.13 Ok, I think I know where you are.
Walk a little bit forward and take left
after the red building.

The system starts by requesting the user’s goal (S.1) and the user replies (U.2). Based on the
confidence score of the stated goal, the system decides to generate a separate display utterance
(“an ATM”) as part of the next turn, and continues with a general request about the user’s
position (S.3), which the user answers to by describing surrounding landmarks (U.4). This
utterance is poorly recognised by the ASR, which results in a misunderstanding: the system
now believes that the user has a bus stop on his right (which is really in front of him). How-
ever, the system stores all confidence scores and information about what has been grounded,
so that such errors may be identified later on. To constrain the user’s position, the system asks
a question about the concrete building (S.5). When doing this, it uses a definite description to
refer to the building, which is a way of simultaneously displaying its understanding, which the
user does not object to in the next utterance (U.6). This way, the system’s uncertainty about
the concrete building has been reduced. To further constrain the user’s position, the system
now asks a more specific question (S.7). The user does not directly answer the question, but
provides a description that nevertheless helps to constrain the position (U.8). The colour of
the building that the user describes is erroneously recognised, but since it gets a low confi-
dence score, the system makes a fragmentary clarification request (S.9), and the user corrects the
system (U.10). Due to the misunderstanding in U.4, the system now finds out that there is no

Chapter 6. Concept-level error handling in Higgins

102

place that the user can be. To solve this error, the system employs late error detection and
searches the discourse history and finds out that there is one concept with a relatively low con-
fidence score that has not been grounded: the belief that the user has a bus stop on his right.
The system makes a misunderstanding repair – it checks the belief with the user (S.11) and the
user corrects the system (U.12). The system has now constrained the user’s position and may
start to give route directions (S.13).
Before describing the details of these error handling mechanisms, we will introduce the

semantic representations and architecture used in the HIGGINS spoken dialogue system.

6.2 Semantic representations

The surroundings the user and system talk about contain complex landmarks and relations
that are challenging to interpret and represent semantically. For such semantic representations,
deep semantic structures are needed – not just simple feature-value lists. Semantic descriptions
are consistently represented as rooted unordered trees of semantic concepts. Nodes in the tree
may represent objects, relations and properties. Such structures are very flexible and can be
used to represent deep semantic structures, such as nested feature structures, as well as simple
forms, depending on the requirements of the domain. By using tree matching, similar to
Kilpeläinen (1992), a pattern tree can be used to search for instances in a given target tree.
Thus, larger semantic structures can form databases which may be searched. It is also possible
to include variables in a pattern tree for specifying constraints and extracting matching nodes,
as well as using special pattern nodes for negation, etc.
The semantic tree structures in HIGGINS, including the database, are represented with

XML, using a schema that is specific for the domain. Figure 6.2 shows an example: an abstract
representation of a wooden building. Figure 6.3 shows how the same structure can be visual-
ised graphically as a tree structure using XSLT and XHTML. The database in the HIGGINS
navigation domain is a large XML structure (about 60 000 elements) containing all landmarks
and their properties, as well as possible user positions and how they relate to the landmarks.
All objects in the database have id’s. The XML in Figure 6.2 could be used as a pattern to
search the database. Values starting with a dollar sign – id4 in the example – are interpreted
as variables. The result of this search would be a list of all possible bindings of variable id4,
that is, a list of the id’s of all the wooden buildings in the database.
The semantic representations may be enhanced with “meta-information”, for example

about confidence scores, communicative acts, and if information is new or given. Figure 6.4
shows the representation of the utterance “the building is made of wood”. The structure tells
us that this is a communicative act (CA) of the type ASSERT, that the object is singular (SING),
and that the object and type are GIVEN information but the material NEW. This meta-
information is needed for representing the structure of utterances, but is not contained in the
database. By removing meta-information, the structure can be transformed to a database
search pattern, like the one in Figure 6.3, in order to find possible referents to the object. The
meta-information is easily removed if placed in a special namespace.

6.2 Semantic representations

103

<object id="$id4">

 <properties>

 <type>

 <value>building</value>

 </type>

 <material>

 <value>wood</value>

 </material>

 </properties>

</object>

Figure 6.2: An abstract semantic representation of a wooden building in XML.

Figure 6.3: The same structure as in Figure
6.2, visualised graphically.

Figure 6.4: The semantic representation of
the utterance “the building is made of
wood”.

Table 6.2: An example of unification using a template.

Template Unification

S1 =
<object>

 <properties>

 <type>

 <value>

 building

 </value>

 </type>

 </properties>

</object>

S2 =
<colour>

 <value>

 red

 </value>

</colour>

T =
<template>

 <object>

 <properties count="1">

 <type count="1">

 <value count="1"/>

 </type>

 <colour count="*">

 <value count="1"/>

 </colour>

 <size count="*">

 <value count="1"/>

 </size>

 </properties>

 </object>

</template>

Unify(S1, S2, T) =
<object>

 <properties>

 <type>

 <value>building</value>

 </type>

 <colour>

 <value>red</value>

 </colour>

 </properties>

</object>

Chapter 6. Concept-level error handling in Higgins

104

Tree structures may also be unified, as shown in Table 6.2. A semantic template is used to
specify how the nodes may be structured, to guide the unification. As can be seen, the nodes
in the template may be marked with how many times it may occur at that location, by using
the attribute count. The template also makes it possible to unify structures starting at differ-
ent levels in the tree, as is the case for S1 and S2.
The use of a template for unification makes it possible to easily represent the semantics of

fragments (such as verbs, relations, properties, etc.) and combine them into full propositions.
Such fragments may be ambiguous, that is, they may fit into different parts of the template.
When the fragments are unified and they start at different levels, the unification algorithm
tries to combine them with the shortest distance possible. In other words, they get disambigu-
ated. For example, if the semantic concept PRICE (as part of the question “what does it cost”)
gets unified with the semantic structure VALUE:100 (a representation of the answer “100”),
this may result in the structure PRICE:VALUE:100, provided that the template allows such a
structure. In itself, VALUE:100 is ambiguous, and may fit into different structures.

6.3 Architecture

The HIGGINS spoken dialogue system is a distributed architecture with modules communicat-
ing over sockets. Each module has well defined interfaces, and can be implemented in any
language, running on any platform. The interfaces are described using XML schema. Figure
6.5 shows the most important modules and messages in HIGGINS, when run in the navigation
domain.
From the ASR, the top hypothesis with word confidence scores (2) is sent to a natural lan-

guage understanding module, called PICKERING. PICKERING makes a robust interpretation of
this hypothesis and creates context-independent semantic representations of communicative
acts (CA’s). In HIGGINS, dialogue management is not implemented as a single module. Instead,
this processing is divided into a discourse modeller (called GALATEA) and a set of action man-
agers. GALATEA may be regarded as a further interpretation step, which takes the context into
account. Based on incoming CA’s, GALATEA builds a discourse model. This discourse model is
then consulted by a set of action managers, which initiate systems actions. The purpose of this
separation between discourse modelling and action selection is to make the discourse model-
ling more generic, while the action selection may be highly domain specific. This separation is
similar to the approaches taken in Allen et al. (2001b) and Pfleger et al. (2003).

CA’s from the user (3) are sent from PICKERING to GALATEA, which adds them to a dis-
course model. The discourse model (4) is then sent to a grounding action manager (GAM)
which initiates grounding actions (such as making clarification requests). If the turn is not
yielded to the user, the discourse model (5) is passed on to the navigation action manager
(NAM), which initiates navigation actions (such as requesting the user’s position or giving
route directions). To do this, the NAM has access to the domain database. The NAM may also
make modifications to the discourse model, for example if an error is detected, and send it
back (6) to GALATEA.

6.3 Architecture

105

System initiated communicative acts from the action managers (7,8) are sent to a natural
language generator (OVIDIUS) which generates a surface string (with some prosodic markup).
This string (9) is sent to a TTS which synthesises the spoken output (10). But the communi-
cative acts from the system are also sent back to GALATEA (11), which treats them in the same
way as the communicative acts sent from PICKERING (3). Thus, GALATEA models communi-
cative acts both from the user and the system; ellipsis, anaphora and grounding status is han-
dled and modelled in the same way for all communicative acts.

Figure 6.5: The most important modules and messages in the HIGGINS navigation domain. CA
stands for communicative act. DM stands for discourse model.

All modules in HIGGINS are fairly generic – the resources that are needed for the specific ap-
plication are all encoded in XML. The NAM, on the other hand, is written specifically for the
domain. However, much of the work that a typical dialogue manager has to do is already han-
dled by the GAM and GALATEA.
All modules operate asynchronously, which means that, for example, the ASR may be rec-

ognising a user utterance or the TTS rendering a system utterance, while an action manager is
generating a new action.

GALATEA:
Discourse modeller

ASR

PICKERING: NLU

TTS

OVIDIUS: NLG

O
U

TP
U

T

(1) audio

(3) CA

IN
P

U
T

(10) audio

(8) CA

Navigation
Action

Manager

Domain
database

(2) ASR result

(11) CA + text

(9) text

Grounding
Action Manager

(7) CA

(4) DM

(6) DM

(5) DM

Chapter 6. Concept-level error handling in Higgins

106

6.4 PICKERING: Natural language understanding

PICKERING is a robust interpreter, designed to work with continuous incremental input from
a speech recogniser with n-gram language models in a conversational dialogue system. The
grammar used to parse recognition results is based on context-free grammars (CFG), with
some modifications. To add robustness, PICKERING may automatically allow deviations from
these grammars, such as allowing partial results, insertions and non-agreement.
Although the combination of features included in PICKERING is (to our best knowledge)

unique, much work in the literature has been focussed on achieving robustness in parsing and
semantic interpretation beyond keyword spotting. Examples include Mellish (1989), which
deals with insertions in chart parsing, and Kasper et al. (1999), in which partial results are
combined.

6.4.1 Grammar

The PICKERING grammar rules are enhanced with semantic rules for generating the kind of
semantic trees described in 6.2 above. The CFG consists of a rule-set, a collection of lexical
entries, and an optional morphology, all of which may carry semantics. Figure 6.6 shows a
simple grammar which covers the Swedish phrase “den röda byggnaden” (“the red building”).
In this example, there are three lexical entries and one rule. Both entries and rules have an

associated list of features (in the f-namespace), a <match> part that specifies what they
match, and a <sem> part which specifies the resulting semantics (in the s-namespace). Entries
may match words, and rules may match words, entries or other rules. In Swedish, words in
noun phrases must be congruent: they have to agree on gender, number and definiteness. Fea-
tures that should agree are specified in the <agreement> element. The attribute propa-
gate=”true” also tells that the agreeing features should be propagated to the matching
rule.
Grammar rules also contain instructions for combining semantics from matching entries

and rules. A common instruction, as seen in the grammar example, is <unify>, which is
used to unify semantics. <ref> is used to refer to the semantics of the matching parts.
<add> states that the resulting features should be copied into the semantics, according to the
template.
The parse result of the phrase “den röda byggnaden”, using the grammar in Figure 6.6, is

shown in Figure 6.7.

6.4 Pickering: Natural language understanding

107

<grammar>

 <lexicon>

 <entry f:name="det" f:info="given" f:gen="utr" f:num="sing">

 <match>den</match>

 <sem>

 <s:object/>

 </sem>

 </entry>

 <entry f:name="attr" f:info="given">

 <match>röda</match>

 <sem>

 <s:colour><s:value>red</s:value></s:colour>

 </sem>

 </entry>

 <entry f:name="nom" f:info="given" f:gen="utr" f:num="sing">

 <match>byggnaden</match>

 <sem>

 <s:object>

 <s:type><s:value>building</s:value></s:type>

 </s:object>

 </sem>

 </entry>

 </lexicon>

 <rules>

 <rule f:name="object" top="true">

 <agreement features="f:info f:gen f:num" propagate="true"/>

 <match>

 <entry f:name="det"/>

 <entry f:name="attr" link="attrlink"/>

 <entry f:name="nom" link="nomlink"/>

 </match>

 <sem>

 <b:unify>

 <b:ref link="nomlink">

 <b:add f:info="$info" f:num="$num" to="template"/>

 </b:ref>

 <b:ref link="attrlink">

 <b:add f:info="$info" to="template"/>

 </b:ref>

 </b:unify>

 </sem>

 </rule>

 </rules>

</grammar>

Figure 6.6: A PICKERING grammar fragment.

Chapter 6. Concept-level error handling in Higgins

108

Figure 6.7: Parsing of the phrase “den röda byggnaden” (the red building) using the grammar
in Figure 6.6.

6.4.2 Robust interpretation

To add robustness, the interpreter applies a number of additional techniques to the standard
CFG parsing algorithm. To illustrate these techniques, an example interpretation of U.4 in
Table 6.1 is shown in Figure 6.8. In the figure, the corresponding Swedish phrase is also
shown in order to highlight non-agreement in the noun phrase “a large concrete building”, as
explained below.

Figure 6.8: An example interpretation of the erroneously recognised utterance U.4 in Table 6.1.
A corresponding Swedish translation is shown below containing an additional morphological
error. The semantic results of the last two phrases are not shown.

6.4 Pickering: Natural language understanding

109

6.4.2.1 Insertions
Disfluencies not modelled by the n-gram language models may easily give rise to unexpected
words in the middle of phrases. An example of this is the third word “tree” in Figure 6.8.
PICKERING allows insertions of unexpected words anywhere inside a phrase. A parameter can
be set that constrains the number of subsequent insertions that are allowed. A simple keyword-
spotter would probably have included this content-word in the semantic result, but thanks to
the grammatical analysis, PICKERING can treat this as an error and ignore it.

6.4.2.2 Non-agreement
In a complex domain such as pedestrian navigation, morphological distinctions are meaningful
in order to distinguish both number and definiteness, which may signal whether objects and
properties are given or new. Such morphological distinctions may be more important in some
languages than others (which is the case for Swedish compared to English). However, speech
recognisers with n-gram language models may often fail to produce the right morphological
inflections. Moreover, speakers may also make morphological mistakes in conversational lan-
guage. This may give rise to non-agreement among the constituents of a phrase. PICKERING
deals with this by allowing non-agreement when features are combined according to the
<agreement> element. If the features do not agree, the majority class is selected (a random
choice is used if there is a tie). An example of this is the phrase “a large concrete building” in
Figure 6.8. The corresponding Swedish translation shown below contains a morphological
error: it is erroneously recognised as “en stora betong byggnad”. In Swedish, the correct mor-
phological inflection would be “den stora betong byggnaden” (INFO:GIVEN) or “en stor betong
byggnad” (INFO:NEW). Since the latter interpretation is more consistent with the input, it is
selected by PICKERING in the robust interpretation. While non-agreement is allowed, it is con-
sidered when different solutions are ranked.

6.4.2.3 Fragment spotting
PICKERING does not have to find a rule that covers the complete input string. Instead, it tries
to choose the smallest number of matching phrases which covers the largest number of words.
Between these phrases, non-matching words are allowed. In Figure 6.8, the best fit is three
phrases with a non-matching word (“and”) in-between. Incomplete phrases may then be com-
bined by the discourse modeller GALATEA, which will be described in 6.5.2.

6.4.2.4 Concept confidence scores
The semantic template used for unification can be marked with slots for confidence scores.
The confidence scores for the words that are involved in creating a node with such a slot are
then averaged to compute a confidence score for the node (similar to Gabsdil & Bos, 2003).
These confidence scores are then transferred to the semantic result according to the template.
Figure 6.8 shows how the concepts are marked with such scores (by the attribute conf). In-
sertions, such as “tree” in the example, should ideally lower the confidence score for the con-
cepts involved in the phrase, but they are not considered in the current implementation. These

Chapter 6. Concept-level error handling in Higgins

110

concept-level confidence scores may then be used for concept-level error handling, which will
be described later on.

6.4.2.5 Surface form
Within a certain domain, a given semantic concept may have several surface forms. For exam-
ple the forms “building” and “house” both correspond to the concept TYPE:BUILDING in the
HIGGINS navigation domain. To keep track of the form used, the semantic template may be
marked with slots for surface form. These slots are filled with the forms of the lexical entries
that were involved in the production of the semantic concepts. Examples of this are shown in
the semantic result in Figure 6.8, by the attribute form. These forms may later be used to for
example pose fragmentary clarification requests in a correct way, as described later on.

6.4.3 Implementation

PICKERING is a modified chart parser (Jurafsky & Martin, 2000) implemented in Oz8. There
are some general challenges with robustness in an interpreter. First, there is a risk that the in-
terpreter will find too many interpretations covering different parts of the input without being
semantically distinct. PICKERING utilises the semantic results to filter out solutions that are
semantically equivalent or are a subset of another solution. Another potential problem is that
the interpreter may find erroneous interpretations based on errors in the input. This is a seri-
ous problem for keyword-spotters, since virtually every erroneous content word will result in
errors in the interpretation. For a very strict parser this is not much of a problem – errors are
likely to make parsing of the input impossible – but correct partial solutions are lost.
PICKERING deals with this problem by searching for the best set of partial solutions. Finally,
robustness can be inefficient if every interpretation is to be considered. The algorithm used in
PICKERING is a kind of generate-and-filter technique that ensures that all interpretations are
found. This can be costly, but the cost is balanced by the incremental processing – utterances
are processed while the user is still speaking. For a more detailed description of the implemen-
tation of PICKERING, see Skantze & Edlund (2004).

6.5 GALATEA: Discourse modelling

The discourse modeller in HIGGINS is called GALATEA and is also implemented in Oz. It is
designed to be generic – the required configurations and resources are all encoded in XML. As
seen in Figure 6.5, the task of GALATEA is to take the communicative acts from both the user
(as identified by PICKERING) and the system (as produced by an action manager), and build a
discourse model – a model of what has been said during the discourse and which entities are
referred to. The discourse model (encoded in XML) consists of two lists:

8 A multi-paradigm programming language supporting open distributed computing, constraints and

logical inference and concurrent object-orientation. See http://www.mozart-oz.org/.

6.5 Galatea: Discourse modelling

111

• CA-list: A list of past communicative acts in chronological order, with the most recent
act first.

• Entity list: A list of entities mentioned in the discourse, with the most recently men-
tioned entity first.

As a new CA is added to GALATEA, the following things are done:

1. SPEAKER and CAID attributes are added to the CA. These attributes contain informa-
tion about which speaker made the contribution and an id for the CA (an automati-
cally incremented number).

2. Grounding information is added to concepts in the CA, i.e., information about who
added the concept to the model, in which turn, and how confident the system is in
the concept.

3. Transformations of the CA are made, based on past CA’s in the CA-list and a set of
transformation rules. This way, ellipses may be resolved.

4. Discourse entities are identified in the CA and are assigned entity id’s.
5. The identified entities are extracted from the CA and integrated into the entity list. If

an anaphora is identified, the entities are unified.
6. The resulting CA is added to the CA-list.

After the discourse model has been updated, it may be consulted by an action manager that
decides what to do next.

6.5.1 Grounding status

The grounding status that is added to concepts in the CA contains information about who
added the concept to the model, in which turn, and how confident the system is in the con-
cept. The grounding status is represented as a list, where each item represents an occurrence of
the concept in the discourse. Each item in the list contains the following information:

• Who contributed the concept (SPEAKER)
• When was the contribution made (CAID)
• How confident is the system that the contribution was made (if not contributed by

the system)? (CONF)
• How was the contribution realised (if not contributed by the system)? (FORM)

The CONF and FORM attributes are taken from the PICKERING results (concept confidence
scores and surface form) and placed under a GROUNDING element, together with SPEAKER and
CAID attributes, which have been assigned to the CA. In the semantic template used for unifi-
cation, places where grounding information should be added are marked. Figure 6.9 shows
how grounding status has been added to the CA from the parse result in Figure 6.8.

Chapter 6. Concept-level error handling in Higgins

112

Figure 6.9: The semantic interpretation of the first CA in Figure 6.8, after grounding status has
been added and entities have been identified.

The grounding status can be compared with the “contextual functions” used in Heisterkamp
& McGlashan (1996), and the “discourse pegs” used in McTear et al. (2005), that are used to
model the grounding status (as discussed in 3.3.3.2).

6.5.2 Ellipsis resolution

GALATEA resolves ellipses by transforming them into full propositions. To do this, domain
dependent transformation rules are used that transform communicative acts based on previous
acts, similar to Carbonell (1983). Each rule has semantic preconditions for the current ellipti-
cal CA and the previous CA’s, and a transformation description. The preconditions are formu-
lated as semantic pattern trees that are matched against the target CA’s. Each rule is applied in
order; if the matching and transformation is successful, the algorithm restarts with the trans-
formed CA until no more transformations can be done. Thus, a cascade of rules may be ap-
plied. The rules are written in XML, but will not be explained in more detail here.
Table 6.3 exemplifies a transformation based on a rule that handles all answers to wh-

requests (which are called content-requests here). The preconditions for this rule are that the
new CA is an ellipsis, and that there is a content-request in the CA-list with a requested node
marked with THEME:1. The transformation description states that the ellipsis should be re-
placed by a new CA of type ASSERT, where the top node in the request is copied and the theme
node is unified with the first node that can be unified in the ellipsis – in this case the COLOUR
node. If the unification fails, the rule is not applied. The example also shows that the ground-
ing status is added before resolving ellipses. This ensures that only concepts that were part of
the original utterance are grounded, not those that are added in the ellipsis resolution.

6.5 Galatea: Discourse modelling

113

Table 6.3: Example transformation of an ellipsis into full proposition.

Context:
S.5: What colour is the
concrete building?

Ellipsis:
U.6: Red.

Transformation:
U.6: The concrete build-
ing is red.

Transformation rules may also be used for robustness to interpret utterances where PICKERING
may have identified some fragments. An example of this was shown in Figure 6.8. The second
and third phrases are identified as elliptical by PICKERING. In the context of the second phrase
(“bus stop”), GALATEA will transform the third phrase (“on my right”) into “I have a bus stop
on my right”. It is, of course, also possible to transform non-elliptical CA’s that are dependent
on the context for their interpretation. Each rule has a fairly generic purpose. Currently, about
10 different transformation rules are used for the navigation domain.

6.5.3 Anaphora resolution

GALATEA has no access to the domain database. Thus, it does not map discourse entities to
“real” objects in the database. Instead, it keeps a list of entities that are mentioned (e. g., “a
large building”) in the discourse and assigns variable id’s to them. The action manager may
then use the entities in the discourse model as patterns and make a database search to find
possible referents, that is, bindings to the entity id variables. What counts as an entity in a
specific application must be specified so that GALATEA can recognise entities, and it is up to
the dialogue system designer to define this. In the HIGGINS domain, entities that are modelled
are landmarks, user locations and user goals. Table 6.4 shows a list of the entities modelled
during the discourse in Table 6.1, and the variable id’s that are assigned to the entities.

Chapter 6. Concept-level error handling in Higgins

114

Table 6.4: The entities modelled during the discourse in Table 6.1.

Entity Occurs in turn Variable id

user goal S.1, U.2 $goal1

ATM U.2 $object1

user location S.3, U.4, S.7, U.8, S.9, U.10, S.11, U.12 $location1

large red concrete building U.4, S.5, U.6, S.13 $object2

bus stop U.4, S.11, U.12 $object3

brown building U.8, S.9, U.10 $object4

As shown previously, when semantic structures are created in PICKERING, they are marked
with given/new status, based on definiteness and sentence structure. Some parts may be given
and some new, for example when asserting information about a given object (see Figure 6.4
for an example). After a CA has been transformed, entities are identified and assigned entity
id’s according the following principles:

• If the entity has somehow already been assigned an id (for example by the action
manager generating it), it is not affected.

• If the entity is marked as new, a new id is generated.
• If the entity is marked as given, the entity list is searched from top to bottom for an

antecedent. The nodes marked as given in the entity to be added are used as a search
pattern and the potential antecedents as targets, and a pattern match is performed.

o If an antecedent is found, its id is used for the entity to be added.
o Otherwise, a new id is generated.

The identified entities are then added to the entity list according the following principles:

• If the id of the entity to be added is the same as for an entity in the entity list, these
entities are unified and moved to the first position in the list.

• Otherwise, the entity is simply placed first on the entity list.

The entity list represents unified asserted information about entities. Therefore, information
concerning the structure of the utterances they were extracted from is removed. This includes
THEME and INFO attributes, as well as concepts that are only requested, such as COLOUR:RED
in the request “is the building red?” Some early error detection is also done on the concept
level – concepts with low confidence are filtered out. These concepts may be added later on if
they are clarified, which is described in 6.7.2 below. This means that the entity list will con-
tain unified information about entities in which the system has relatively high confidence.
Thus, the entity list could also be viewed as the system’s model of the common ground. Some
examples of extracted entities are shown in Table 6.5.

6.5 Galatea: Discourse modelling

115

Table 6.5: Examples of entities extracted from CA’s.

U.4: I have a large concrete building on my left …

S.5: What colour is the concrete building?

U.6: Red

As the entities are unified in the entity list, the grounding status gets updated. Figure 6.10
shows an example of how the instances of $object2 extracted during U.4-U.6 in Table 6.5 are
unified into one entity.

Figure 6.10: How the grounding status for entity $object2 in the entity list has been updated
after U.6.

Chapter 6. Concept-level error handling in Higgins

116

Since assertions about entities are unified in the entity list, it is possible to refer to an entity
using a description that have not been used before to refer to that entity. For example, there is
a reference in utterance S.13, in Table 6.1, to “the red building”. There is no entity directly
referred to in this way before, but the entity list will contain one after U.6.
The entity list may also be used by the action manager to select an appropriate referring

expression for an entity, such as S.5 and S.11 in Table 6.1. If the entity is on top of the list, a
simple pronoun may be used (unless the entity needs more grounding, which is described in
6.7.4 below). If there are other entities above it, the system may use a more elaborate definite
noun phrase.

6.6 NAM: Navigation action manager

While GALATEA keeps the state of the discourse, the action manager(s) may keep the state of
the system’s intensions and its model of how the discourse entities map to objects in the data-
base. This approach is different from the one taken in for example TrindiKit and the informa-
tion state approach (Larsson & Traum, 2000), where all contextual information is kept in the
same store. The purpose of this modularisation is to make the discourse modeller reusable,
while the action manager may be highly domain dependent, implemented in any program-
ming language, and limited in its tasks.
In the HIGGINS navigation domain, the navigation action manager (NAM) is the only

module that has access to the map database and it is this module that performs the task-related
decisions concerning the system’s behaviour. Each time the discourse model gets updated, the
NAM uses the entity list as a search pattern to find possible referents in the database, as de-
scribed in 6.2. Table 6.6 below shows an example during turn U.4-U.6. This example shows
how the value of one entity variable ($location1) may be constrained as more information is
added about another entity ($object2), since the discourse model keeps information about the
relations between these.

Table 6.6: How the possible bindings of the variable id’s are constrained as more information
is added.

 $location1 $object2

U.4 I have a large concrete building on my
left […]

loc734, loc82,
loc293, loc83, loc94

obj25, obj04, obj73,
obj94

S.5 What colour is the concrete building?

U.6 Red loc734, loc82 obj4, obj73

The action manager makes decisions based on a fairly simple decision algorithm, similar to a
decision tree, which is traversed each time the discourse model gets updated. The decision
algorithm for the NAM is shown in Table 6.7.

6.6 NAM: Navigation action manager

117

Table 6.7: The decision algorithm for the navigation action manager (NAM).

 Decision Yes No

1 Is the latest user utterance a
request about the route?

Answer the request. End
the turn.

Continue with 2.

2 Has the user stated the goal? Continue with 3. Request the goal. End
the turn.

3 Is there any place that matches
the goal description?

Continue with 4. Tell the user that there
is no such place. End
the turn.

4 Has the user given any descrip-
tion of his location?

Continue with 5. Request the user’s
position. End the turn.

5 Is there any location the user can
be?

Continue with 6. Perform late error de-
tection and repair (de-
scribed in 6.7.6).

6 Is the user’s location exactly de-
termined?

Continue with 11. Continue with 7.

7 Is the user’s location roughly
determined?

Tell the user to position
himself between two
known objects in the
vicinity. End the turn.

Continue with 8.

8 Are there a large number of pos-
sible user locations?

Ask the user to describe
something more. End
the turn.

Continue with 9.

9 Is there any entity in the entity
list that may have several in-
stances in the database and lacks
description of properties?

Request more informa-
tion about properties.
End the turn.

Continue with 10.

10 Is it useful to ask a y/n-question
about a specific object in a spe-
cific direction?

Ask the most optimal
question. End the turn.

Ask the user to de-
scribe something else.
End the turn.

11 Is the user at the goal? Tell the user that he has
arrived at the goal. End
the turn.

Calculate the shortest
path to the goal. Give a
route direction to the
next waypoint. End the
turn.

For example, after U.2 in Table 6.1, the grounding action manager will first decide to display
understanding of “an ATM” (as explained in 6.7.1 below). The NAM will then check the
discourse model for the user’s goal, and find that it is known. The next item on the check list
is the user’s position, and since there is no information about that in the discourse model, the
NAM poses an open request on the user’s position (S.3).
The notion of “issues” is central in the “issue-based approach” to dialogue management

proposed by Larsson (2002). In this approach, the system keeps track of which issues are

Chapter 6. Concept-level error handling in Higgins

118

raised and when they are resolved or rejected. In the domain considered here, we could say
that an issue has been raised for example when the system requests the user’s position. How-
ever, we have not found the explicit representation of such issues necessary for managing this
domain using the approach presented in this chapter. Actually, it would be quite problematic
to model issues in this domain, since it may often be hard to determine when issues are re-
solved or rejected. Consider turn S.7-U.8 from Table 6.1, where the system needs more in-
formation about the user’s position:

(45) S.7: Ok, can you see a wooden building?
U.8: I can see a brown building.

In this example, the user does not directly answer the question. However, using the decision
algorithm presented above, the system may now find out that it has enough information to
continue with route directions. Whether the “issue” raised by the first question is resolved or
not does not matter.

6.7 Error handling actions

By using the grounding status in the discourse model, the action manager(s) may perform
various error handling actions, as described in this section.

6.7.1 GAM: Grounding action manager

As seen in the system architecture in Figure 6.5, the grounding action manager (GAM) is lo-
cated before the navigation action manager (NAM) in the pipeline. The task of the GAM is to
produce actions that are not dependent on the domain database. The GAM may do one of the
following:

• Produce turn-yielding actions (such as clarification requests) and end the turn.
• Produce turn-keeping actions (such as acknowledgements) and pass the discourse

model to the navigation action manager for more actions.
• Do nothing and simply pass the discourse model to the NAM to take actions.

This separation of action selection between the two action managers serves two proposes. First,
since the GAM does not have to consult the database, it can typically act faster so that the
system may be more responsive. Since the modules operate asynchronously, it may quickly
produce actions (such as acknowledgements) that are performed while the NAM is processing.
Second, since the GAM only reacts to the content in the discourse model (and does not con-
sult any external knowledge sources), it is fairly generic. It is simply configured with a set of
transformation rules written in XML, similar to the ones used in GALATEA for resolving ellip-
ses. Whereas the transformation rules in GALATEA reinterpret new CA’s based on past CA’s, the

6.7 Error handling actions

119

transformation rules in the GAM produce new system CA’s based on past CA’s. The GAM
decision algorithm presently used in the HIGGINS navigation domain is presented in Table 6.8.

Table 6.8: The decision algorithm for the grounding action manager (GAM).

 Decision Yes No

1 Was the latest user CA a request
for repetition?

Repeat the last system
CA. End the turn.

Continue with 2.

2 Was the latest user CA a request
to wait?

Acknowledge. End the
turn.

Continue with 3.

3 Did the user’s last CA contain a
value (or values) with a low
grounding status?

Request clarification on
the value or a whole
object. End the turn.

Continue with 4.

4 Was the last user CA an asser-
tion?

Acknowledge. Continue
with 5.

Continue with 5.

5 Did the user’s last CA contain a
value with a medium grounding
status?

Display understanding.
Continue with 6.

Continue with 6.

6 Was the last user CA an expres-
sion of greeting or thanks?

Express greeting or
thanks. Continue with 7.

Continue with 7.

7 Was the last user CA a fragmen-
tary direction?

Ask the user what he
can see in the direction.
End the turn.

Continue with 8.

8 Was the last user CA a fragmen-
tary object?

Ask the user if he can see
the object. End the turn.

Send the discourse
model to the NAM.

Currently, a very simple distinction is made between different levels of grounding status. If the
grounding status contains a mention of the concept from the system, it is considered to be
high. If the concept is only mentioned by the user, the highest confidence score is compared
against a set of pre-defined thresholds. This simplistic model is refined later on in this thesis.

6.7.2 Fragmentary clarification

The following turns from Table 6.1 exemplify the use of fragmentary clarification:

(46) U.8: I CAN SEE A BLUE BUILDING

S.9: Blue?
U.10a: NO
U.10b: BROWN

This use of fragmentary clarification requests in spoken dialogue systems have not been stud-
ied to a great extent. As discussed in 3.3.2.5, if correctly handled, such requests may increase

Chapter 6. Concept-level error handling in Higgins

120

both the naturalness and efficiency of the dialogue. If the hypothesis is incorrect, the user
should be able to efficiently correct the system, as in the example. To handle the turns in the
example correctly, a system should be able to do the following things:

• Identify the problematic concept(s) (in U.8).
• Produce the request (S.9) accurately.
• Interpret the negation (U.10a) correctly. Notice that the user simply negates the

proposed colour of the building – the fact that the user can see a building is still ac-
cepted.

• Interpret the correction (U.10b) correctly; to understand that the user can see a
brown building.

• Understand that only the COLOUR concept has been grounded, not the entire con-
tribution U.8.

We will now show how these requirements are handled in HIGGINS. As seen in Table 6.8, if a
concept or a tree of concepts with low grounding status is detected in decision 3, the GAM
may pose a fragmentary clarification request and end the turn. In HIGGINS, such utterances
are not treated as a special kind of grounding or feedback utterance. Instead, they are resolved
just like other ellipses into a full proposition. However, since grounding is modelled for all
utterances, the clarification request will help to boost the weak grounding status. The clarifica-
tion request is very simple to produce – the GAM simply has to embed the concepts in a CA of
type REQUEST and send it to OVIDIUS (the natural language generator).
OVIDIUS will make a surface realisation of a fragmentary clarification request (with pro-

sodic markup) and send it to the TTS (which is described in 6.7.7 below). When GALATEA
receives this elliptical CA, it is transformed into a full yes/no request. This way, subsequent
reactions to this request will be interpreted correctly, while only the concepts that are actually
realised in the ellipsis will get an updated grounding status. An example of how this is done for
U.8-U-10a is shown in Table 6.9. As can be seen in the example, negations are represented
with POLARITY nodes that are attached to concepts. This makes it easy to represent and inte-
grate “no” answers, as well as adverbial negations.
Figure 6.11 shows the resulting entity in the entity list after the dialogue. As can be seen,

the negative answer is kept in the model. This is useful when constraining possible user loca-
tions, since the POLARITY nodes are taken into account when doing tree pattern matching. A
concept may have several POLARITY nodes with different polarities and the POLARITY nodes
may also have grounding status, as can be seen in the example. This makes it possible for one
participant to confirm something while another participant negates it. Thus, POLARITY nodes
can be used to model the “acceptance” level discussed in 3.1.1. This also means that POLARITY
nodes themselves may have a low grounding status, for example if the “no” in Table 6.9 would
get a low confidence score, and need further grounding.

6.7 Error handling actions

121

Table 6.9: How a fragmentary clarification request is constructed and interpreted. Dotted
lines are part of ellipsis resolution in GALATEA. Solid lines are part of action construction in the
GAM.

 U.8: I CAN SEE A BLUE BUILDING

 S.9: Blue?

 →Is the building that you see blue?

 U.10a: NO

 →The building that I see is not blue.

Chapter 6. Concept-level error handling in Higgins

122

Figure 6.11: How the grounding status for entity $object1 in the entity list has been updated
after U.3.

Like all requests, clarification requests do not need to be answered. The concepts which are to
be clarified are not transferred to the entity list, since they have low grounding status. Thus, if
the clarification request would not have been answered, there would be no information about
the concept BLUE for this entity. This is also true if the user would have answered just “brown”,
in which case the entity would have the concept BROWN, but no information on the concept
BLUE. If the user reactions have low confidence scores, this will trigger new clarification re-
quests. Of course, reactions in the form of full propositions are also possible, such as “I can see
a brown building”.
The fragmentary clarification requests discussed above express request for confirmation for

concepts that the system lacks confidence in. However, as discussed in 3.1.4, clarification re-
quests may also be caused by (partial) lack of hypotheses and express request for repetition.
The following example (taken from a real dialogue presented in the next chapter) illustrates
such a request for partial repetition:

(47) S: Can you see a brick building on your left?
U: NOW ON MY RIGHT (No, on my right.)
S: What do you see on your right?

In this example, the system misrecognises the first part of the user correction (“no”) and GA-
LATEA thereby fails to interpret the elliptical utterance “on my right”. However, this is recog-
nised as an unresolved fragment containing a direction, and Decision 7 in Table 6.8 will lead
the GAM to pose a clarification request for the missing object.

6.7.3 Separate display utterances

As seen in Table 6.8, decision 5 may lead the GAM to produce a display utterance, presuma-
bly after it has triggered on an assertion and produced an acknowledgement (decision 4). The
NAM may then continue and produce the next task-related utterance. This is exemplified in
Table 6.10.

6.7 Error handling actions

123

Table 6.10: How a display utterance is selected and interpreted by GALATEA.

Turn Decision Before ellipsis resolution After ellipsis resolution

S.1 NAM: 2-no Where do you want to go? Where do you want to go?

U.2 TO AN ATM I want to go to an ATM.

S.3a GAM: 4-yes Ok Ok

S.3b GAM: 5-yes an ATM you want to go to an ATM.

S.3c NAM: 4-no Can you describe where you are
now?

Can you describe where you are
now?

The utterances “Ok” and “an ATM” are synthesised and played back while the NAM is asyn-
chronously deciding on the next act. In this example, it takes a very short time to produce S.3c,
and the utterance is simply queued up in the TTS. However, if the NAM had needed more
time for database searches, this would have helped the system to act more responsively.
Display utterances are handled in a way very similar to fragmentary clarification requests.

However, while these ellipses are resolved as requests, display utterances are resolved as asser-
tions (“you want to go to an ATM”), which the user may object to. Since the concepts that are
displayed have a higher confidence score, they are directly transferred to the entity list. There-
fore, the user does not have to (but may, if he wish) confirm the displayed concept. If the user
objects, a negative POLARITY node is attached.
It is also possible that the user might object to a displayed misunderstanding by other

means, such as those listed in example (39) on page 57. Such objections could be handled by
either representing them as a special type of negation (which are only treated as negations by
GALATEA after a display of understanding), or let one of the action managers remove the erro-
neous concepts in the discourse model if such an objection is detected (see late error detection
below).

6.7.4 Integrated display of understanding

Speakers do not only display their understanding using separate display utterances. They also
do this to various extents while performing task-related CA’s (i.e., integrated display of under-
standing). As example (35) on page 54 shows, one way of doing this is to choose how to refer
to entities. In HIGGINS, the NAM makes such decisions. Every time the NAM refers to a
given entity, appropriate integrated display of understanding is automatically done. To con-
struct a referring expression to an entity that is in the entity list, the NAM simply makes a
copy of the entity and removes all concepts with high grounding status. This ensures that the
concepts with low grounding status will get a high grounding status. An example is shown in
Table 6.11. When the system needs to ask a question on the colour of the building, it copies

Chapter 6. Concept-level error handling in Higgins

124

the entity and removes the concept LARGE, since it has a high grounding status, based on the
confidence score. The TYPE concept (BUILDING) is not removed, since it is often needed for a
valid referring expression – otherwise it would say “what colour is the concrete”. Since GALA-
TEA also models the system’s actions, those concepts will then get a high grounding status.

Table 6.11: How the system creates a referring expression to $object2 and how this affects
the grounding status of $object2 in the entity list.

Entity list: $object2 before S.5

S.5: What colour is the concrete building?

Entity list: $object2 after S.5

6.7.5 Non-understanding recovery

As discussed in 3.3.2.4 and as the results of the experiment in Chapter 4 suggest, it may not be
optimal to signal non-understanding when the system does not understand what the user is
saying, even if there is a complete non-understanding. Instead, humans tend to ask new task-

6.7 Error handling actions

125

related questions. This behaviour is implemented in HIGGINS in the following way. Every
time the NAM selects an action according to Table 6.7, it stores this as the last utterance. If
the next user utterance is not understood by the system, the decision algorithm interpreter is
programmed to not produce the same action again. For many decisions, there are several pos-
sible outcomes. For example, 10-yes may result in different questions. The most optimal ques-
tion is selected first, but after a non-understanding, the system will be hindered to ask this
question again, and will thus select the second most optimal question. Here is an example:

(48) S: Can you see a tree in front of you?

U: [non-understanding]
S: Can you see a bus stop on your left?
U: yes

6.7.6 Late error detection and repair

Due to the misrecognition in U.4 (in Table 6.1), the discourse model will contain an error.
However, after turn U.10, the system discovers that there is no place where the user can be.
The decision 5-no in Table 6.7 tells the NAM that it should now do late error detection and
repair. To do this, it looks through the discourse model to find concepts with low grounding
status. The only concept with a relatively low grounding status is shown in Figure 6.12.

Figure 6.12: A potential error is detected in the user location.

One way of repairing the potentially erroneous concept is to remove it from the discourse
model and search for possible user locations again. Note that this only would be done on the
concept level; the system would still keep the information that the user can see a tree some-
where.
In this example, the system instead chooses to make a late clarification request. Table 6.12

shows how this clarification is interpreted. Late clarification requests are realised as full propo-
sitions and not as fragments, since this would generally not be suitable (the context needed for
their resolution is too distant). Figure 6.13 shows the resulting user location entity after this
clarification.

Chapter 6. Concept-level error handling in Higgins

126

Table 6.12: The interpretation of the late clarification request.

Turn CA Resolved by GALATEA

S.11 Do you really have a bus stop on your right?

U.12a NO I do not have a bus stop on my
right.

U.12b IN FRONT I have a bus stop in front of me.

Figure 6.13: The user location after the late clarification request.

It is also possible to remove information that is associated with a specific turn, by looking at
the CAID attribute in the grounding status, for example after the user objects to a display of
understanding. Since the model also contains information about what the user has grounded,
it is also possible to detect cases where the user misunderstands the system. For example, the
user never displays any understanding of the concepts wood and building in U.8 in Table 6.1,
and this can be detected in the discourse model.
When the system discovers that there is no place where the user can be, there will some-

times be no information with low grounding status in the discourse model that may be re-
moved. In such cases, information about the user’s location will simply be cleared in the dis-
course model and the system will say “sorry, I have lost you”. Decision 4 in Table 6.7 will
then lead the NAM to produce something like “can you describe where you are”.

6.7.7 Utterance generation

As can be seen in the system architecture in Figure 6.5, the textual representation of system
utterances are realised by a module called OVIDIUS, also implemented in Oz. OVIDIUS takes a
system CA as input and generates a text that is to be synthesised by a TTS. The text may also
have some prosodic markup.
OVIDIUS uses a set of template rules, working much like inverted PICKERING grammar

rules – they match on semantic structures and produce text strings. The processing is similar

6.7 Error handling actions

127

to XSLT (Clark, 1999): one template rule may call another template rule to generate sub-parts
of the semantics (such as nominal phrases). Much of the vocabulary expected from the user is
also used in the system output. To make the input and output vocabularies coherent and to
reduce double work, OVIDIUS may use the same lexicon that is used in PICKERING to map
semantic structures to surface strings.

As discussed in 2.3.4, humans engaging in dialogue tend to coordinate their linguistic be-
haviour with each other. Users of spoken dialogue systems tend to adjust the vocabulary and
expressions to the system and may expect the system to do the same. When a speaker deliber-
ately chooses another wording than their interlocutor, the other speaker may feel obliged to
adapt to this. This phenomenon is especially important to understand when making clarifica-
tion requests. Consider the following example:

(49) U.1: I have a violet house on my left.

S.2: A purple building?

In S.2, the system makes a surface realisation of the semantic representation of the fragment to
be clarified. The template rules and lexicon allows OVIDIUS to generate different forms from
the same semantic representation – the underlined phrases have exactly the same semantic
representations (in this specific domain). Thus, it would make perfect sense to the system to
produce S.2 in order to clarify the referring expression. However, this may be confusing for
the user, who may get the impression that the system is trying to correct her or enforce a cer-
tain language use. In HIGGINS, this is avoided by tracking the surface form in the grounding
status, as mentioned previously. As can be seen in Table 6.9, when a clarification ellipsis is
generated in the GAM, the previous grounding status of the concepts to be clarified is not
removed. Figure 6.14 shows what the message from the GAM to OVIDIUS looks like when
utterance S.2 in example (49) above is to be generated. The FORM attribute in the grounding
status helps OVIDIUS to select the same lexical entry that was used when parsing the original
user utterance.

Figure 6.14: The semantic representation of S.2 in example (49), to be transformed into sur-
face form by OVIDIUS.

Fragmentary clarification requests and display utterances have the same textual form. The in-
terpretation of these utterances is therefore dependent on prosody to a large extent. For speech
synthesis, the KTH rule-based speech synthesis system (Carlson et al., 1982) was used, to-

Chapter 6. Concept-level error handling in Higgins

128

gether with a diphone Swedish male MBROLA voice (Dutoit et al., 1996). The only available
parameters for this TTS were pitch range, speaking rate and pitch base. Since fragmentary
grounding utterances are dynamically generated, it is not possible to hand-craft the pitch curve
for each utterance. To approximate the commonly described tonal characteristic for questions
– overall higher pitch (Hirst & Cristo, 1998) – the pitch range was initially simply increased
for fragmentary clarification requests, in order to distinguish them from display utterances. In
Chapter 9, we will explore the relationship between the prosodic realisation of fragmentary
grounding utterances and the interpretation of them in more depth.

6.8 Discussion

This chapter has focussed on how to model the way all utterances may provide evidence of
understanding, not just special “grounding acts”. Thus, as the system gives the user a route
direction (a mainly task-related act), it may simultaneously display its understanding by the
way it refers to landmarks. Another implication is that for example clarification requests are
treated in the same way as other requests and not as a special type of utterance. The tracking
of groundings status ensures that the evidence that is simultaneously provided is accounted for.
It has also been shown how the grounding status is tracked while performing ellipsis and
anaphora resolution. This means that the choice of referring and elliptical expressions affects
the system’s model of what has been grounded.
The notion of high and low grounding status is very simplistic. A more advanced model,

where the grounding status could be evaluated as a continuous (possibly probabilistic) score –
similar to the “belief updating” approach in Bohus & Rudnicky (2005a) – would be interest-
ing to explore. To improve such classification, the grounding status could be enriched with
more information on how the concept was grounded, such as prosodic information. The con-
fidence scores used for the grounding status are taken directly from the speech recogniser. An
interesting improvement would be to include the methods for early error detection explored in
Chapter 5.
Currently, the thresholds used for choosing error handling strategies have been manually

tuned. Also, the choice of strategy is not dependent on the current task. For example, when
the user asserts her goal, as in U.2 in Table 6.1, the system might navigate the user to the
wrong place and have to start all over again. Thus, the system should have a relatively high
threshold for accepting such hypotheses, since the cost of task failure is higher. When the user
asserts her position, as in U.4, an error would probably be detected rather early, when the sys-
tem finds out that there is no place the user can be, and the threshold should be lower. In
Chapter 8, we will show how a decision-theoretic framework might be applied to make such
choices.
In this chapter, we have only described how evidence may be given on the perception level

(with the reading “did you say X?”). Since the domain encourages the use of ellipses and
anaphora, it would be useful to also give evidence on the understanding level, as in the follow-
ing example:

6.9 Summary

129

(50) U: Now I can see the building.

S: The red building?

In this example, the system does not make a clarification request due to low ASR confidence
score, but rather because the reference resolution is ambiguous. To handle this, GALATEA
should be endowed with the capability of detecting that a referring expression is ambiguous
and, if this is the case, not resolve the expression, but to let the GAM pose a clarification re-
quest.
Neither does the system currently handle fragmentary clarification requests from the user,

since this would require prosodic analysis. This might be a problem if the users adapt to the
system and start to make such requests (which they are likely to do).
An important question is to what extent the methods and models described in this chapter

may apply to other domains. The HIGGINS components have been used in Connector, a dia-
logue system acting as an automatic switchboard and secretary (Edlund & Hjalmarsson, 2005).
Connector is part of the EU-funded CHIL-project, a project investigating automatic tracking
and support of interactions in meeting rooms. The HIGGINS components have also been used
in the conversational training game DEAL (Hjalmarsson et al., 2007). DEAL is a dialogue
system for second language learners, where the user talks to an embodied conversational agent
in a flea market domain, in order to train conversational skills.

6.9 Summary

In this chapter, we have described how speech recognition errors are handled in the HIGGINS
spoken dialogue system. It has been shown how all utterances may operate on the domain
level, while simultaneously providing evidence of understanding. The discourse modeller GA-
LATEA keeps track of this by modelling the grounding status of concepts while resolving ellip-
ses and anaphora. The grounding status includes information such as concept confidence
scores and surface realisation, which are extracted by the robust interpreter PICKERING. The
grounding status may be used by a set of action managers to perform concept-level error han-
dling, such as display of understanding, clarification requests and misunderstanding repair.

131

CHAPTER 7

Higgins evaluation

In the previous chapter, the HIGGINS system was presented with a focus on concept-level error
handling in the robust interpreter PICKERING and the discourse modeller GALATEA. In this
chapter, two evaluations of these HIGGINS components are presented based on different data
sets. The first is an evaluation of PICKERING, performed before the complete system was put
together, and it is intended to explore how some of the robustness features implemented in
PICKERING contribute to the performance. In the second evaluation, naive users were allowed
to interact with the complete HIGGINS system. This evaluation is focussed on the performance
of GALATEA, but also on users’ behaviour when faced with fragmentary clarification requests.

7.1 PICKERING evaluation

A robust interpreter may be too allowing and, as a result, find incorrect interpretations. Hence,
it cannot be taken for granted that the techniques PICKERING employs (as described in 6.4.2)
increase the performance of the interpreter under error conditions. To check for this,
PICKERING was evaluated with respect to how it performs under different error conditions,
and how its performance depends on the robustness techniques. The evaluation included data
with varying degrees of errors, to ensure that the interpreter works well under perfect condi-
tions and degrades gracefully in the presence of errors.

7.1.1 Method and data

PICKERING was evaluated before the complete system was built. In order to collect data, eight
subjects, all native speakers of Swedish, were given the task of moving around in the virtual
3D-city while they described their positions relative to objects in their surroundings. This

Chapter 7. Higgins evaluation

132

resulted in 340 utterances similar to those used during the positioning phases in the pedestrian
navigation domain. The utterances were transcribed and a PICKERING grammar was written to
cover the syntax and semantics that were deemed to be relevant to the domain and the objects
and properties contained in the database.
For evaluation, 16 new subjects were recorded and their utterances transcribed using the

same procedure. Due to time limitations, a test set of 100 of their utterances were manually
annotated with semantics to create a gold standard for the evaluation. The average utterance
length of the utterances was 11 words. The utterances were recognised using the KTH
LVCSR speech recogniser (Seward, 2003) with a trigram language model. In order to study
the effect of varying levels of errors in the ASR results on the PICKERING performance, the
ASR was run repeated times on the material with the beam pruning level9 set at different val-
ues. 18 pruning levels where used; the lowest pruning yielded an average WER rate of 34.2%
and the highest 95.3%.
Next, the transcriptions and the ASR results were processed by PICKERING and compared

to the gold standard in order to study the effects of ASR errors. The following interpreter pa-
rameters were systematically varied and combined:

• Agreement:

o Weak: Agreement inside phrases (mostly congruence in nominal phrases)
was preferred, but not required

o Strong: Agreement inside phrases was required
• Permitted insertions inside phrases:

o 0, 1, 2 or unlimited.

To simplify comparison of the results with the gold standard, an approximation was made by
flattening the semantic trees to form lists of minimal concepts (i.e., nodes in the trees). On
average, there were 32 such concepts per utterance. The lists were compared to the gold stan-
dard using standard WER calculation to get a concept error rate (CER). The percentage of
concept insertions and deletions were calculated separately. Substitutions were counted as a
combination of a deletion and an insertion, and were added to both groups.
The lexicon of the interpreter was also used to identify keywords in the utterances (i.e.,

words carrying semantics). This way, it was possible to estimate performance of PICKERING
compared to that of a simple keyword spotter.

7.1.2 Results

For transcribed utterances (i.e., WER=0), the CER was 20%, with 12.6% deletions and 9.9%
insertions (using the default setting, arbitrarily chosen when PICKERING was implemented: 2

9 The beam pruning level determines how much of the ASR HMM space is explored for the optimal

solution. A high pruning level means that less space is explored, which increases the speed of the ASR but
reduces the accuracy.

7.1 Pickering evaluation

133

allowed insertions, weak agreement). Figure 7.1 shows how the performance for insertions and
deletions (Y-axis) varies as WER increases. The X-axis represents the mean WER for the dif-
ferent beam pruning settings. The figure also includes the ASR insertion/deletion performance
for keywords.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

WER

Keyword deletions

Concept deletions

Keyword insertions

Concept insertions

Figure 7.1: The percentage of insertions and deletions for keywords and concepts, depending
on mean WER.

The figure shows that deletions rise steadily both for concepts and keywords, while insertions
rise to a certain peak for keywords, but not for concepts. This is probably due to the fact that
PICKERING may ignore erroneous content words in the input that do not fit into any syntax,
as described in 6.4.2.1. To test the significance of the differences between keywords and con-
cepts, the areas between the lowest and the highest WER’s under the curves shown in the fig-
ure were compared for all utterances. There were significant differences between keywords and
concepts for both insertions and deletions (two-tailed paired t-tests; dF=106; p<0.05).
To compare the effects of different parameter settings on the general robustness of

PICKERING, a mean relative CER score (CER minus WER) was calculated for each parameter
setting, which is shown in Figure 7.2. In order for this score to reflect the general performance
over the whole WER span (34-95%), the average of all values of CER (relative to WER) along
this span was calculated.

Chapter 7. Higgins evaluation

134

-4

-3

-2

-1

0

1

0 1 2 unlimited

Allowed insertions

C
ER

 (
re

la
ti

ve
 t

o
 W

ER
)

strong agreement

weak agreement

-4

-3

-2

-1

0

1

0 1 2 unlimited

Allowed insertions

C
ER

 (
re

la
ti

ve
 t

o
 W

ER
)

strong agreement

weak agreement

Figure 7.2: Mean CER (relative to WER) depending on parameter settings.

There were main effects for both strength of agreement and number of allowed insertions
(two-way repeated measures ANOVA; dF=106; p<0.05). Post tests revealed that there were
significant differences between 0, 1 and 2 insertions (p<0.05), but the performance did neither
decrease nor increase when more than two insertions were allowed.
The results indicate that PICKERING generalises well when applied to unseen utterances,

within the limited domain, produced by new speakers. As the WER of the ASR output in-
creases, the set of robustness techniques utilised leads to graceful degradation of the interpreta-
tion results. The two techniques used to relax the CFG-constraints that were tested – allowing
non-agreement and insertions – both improved performance. Since allowing insertions in-
creases the size of the chart during parsing and thus slows down the computation, there seems
to be no reason for allowing more than two insertions (given the circumstances).

7.2 GALATEA evaluation

To evaluate the performance of the HIGGINS system in general and GALATEA in particular, the
complete system was tested with naive subjects using the system in a laboratory setting with
given scenarios. The analysis of the results should be viewed as a proof-of-concept, to confirm
that the system can interact with naive users and perform reasonably well. No comparative
evaluation, involving other systems or different settings, is made. It is not possible to evaluate
all aspects of the error handling techniques; the analysis of the results will focus on robustness,
ellipsis resolution and fragmentary clarification.

7.2 Galatea evaluation

135

7.2.1 Method

7.2.1.1 Subjects
16 subjects participated in the evaluation, all native speakers of Swedish. They were 7 women
and 9 men, ranging in age from 24 to 63 years (38 on average). Four of the subjects had some
experience of speech technology, but no experience of dialogue system design.

7.2.1.2 Procedure
Each subject was given the task of finding the way to a given goal in a virtual city, by talking
to a computer to get route directions. They were told that they needed to tell the computer
where they wanted to go, that the computer had no knowledge of their current position, but
that the computer had a very detailed map of the city, and it was able to locate them if they
described their surroundings. The subjects were not given any information about what kind of
expressions the system could handle, or the level of detail of the system’s knowledge. Four
subsequent scenarios (goals) were given to each subject, resulting in a total of 64 dialogues.
The subject was placed in a sound-proofed room in front of a computer screen, where the

3D model of the virtual city was displayed from a first-person perspective, as seen in Figure
6.1. The subject spoke to the system through a headset and used a mouse to control the
movement in the virtual city. During the interaction, the experiment conductor was sitting in
another room, overlooking the interaction through a window, and did not answer any ques-
tions from the subject. For each scenario, there was a time limit of 10 minutes to reach the
goal. After each scenario, the subjects filled out a questionnaire about their experience of the
interaction. However, the results from this survey will not be used in the current analysis.

7.2.1.3 Data, ASR and TTS
The system was trained and configured mainly based on two different sets of data: the data
presented in Chapter 4 and the data used for the evaluation of PICKERING. In addition to this,
data were collected from four pilot sessions.
The collected data was used to write rules for PICKERING and GALATEA and to program

the action manager, as well as to train the ASR language models. Since the ASR used for the
PICKERING evaluation presented above did not support word confidence scores, an off-the-
shelf ASR with such support was used. A trigram class-based language model was used, trained
on the 1500 utterances that had been collected. Words that only occurred once in the training
material were pruned, resulting in a vocabulary size of approximately 600 words.
As described in 6.7.7, a diphone Swedish male MBROLA voice was used for TTS and a

very simple model for generating fragmentary clarification requests was used.

Chapter 7. Higgins evaluation

136

7.2.2 Results

7.2.2.1 Annotation
The dialogues were transcribed and annotated by one annotator. The segmentation of units
for assigning features on the “utterance” level is not straightforward. One segmentation was
based on the ASR endpoint detector – each ASR result was assigned a set of features. Another
set of features was assigned to each CA, as segmented by the annotator. There was a pretty
large discrepancy between these two methods for segmenting “utterances”; some CA’s were not
detected at all by the ASR, some were split over several ASR results, some ASR results con-
tained several CA’s. There were a total of 1894 ASR results and 2007 CA’s, 1565 of the ASR
results contained only one unsplit CA.
Both ASR results and CA’s were annotated based on how well they were understood by the

system. In the separate evaluation of PICKERING presented above, the commonly used measure
of concept error rate (CER) was used. In this evaluation, however, the result that is to be as-
sessed is an updated discourse model, including identified referents and enriched fragments. It
would be too time-consuming to hand-craft a target discourse model to compare with for each
utterance, at least if the whole data set is to be evaluated. To make the analysis more straight-
forward and the results easier to understand, five different levels of understanding were de-
fined, similar to those used in Chapter 4. These levels are described in Table 7.1.

Table 7.1: The definitions of the understanding levels used in the annotation of ASR results
and CA’s.

Und. Definition

FULLUND All concepts, relevant to the domain and task, are fully understood by the
system, including speech recognition, semantic interpretation, and dis-
course modelling. Note that the full propositional meaning must be under-
stood; fragmentary utterances have to be correctly transformed into full
propositions, and anaphoric expressions correctly resolved. This includes
cases where the system asks for clarification on some of the concepts that it
lacks confidence in.

PARTUND Some (but not all) concepts are fully understood, according to the definition
above. This includes cases where just a fragment of the utterance is inter-
preted, but the action manager uses this to pose a relevant question.

MISUND Some (or all) concepts in the interpretation of the utterance are incorrect.
This includes cases where the system asks for clarification on incorrect con-
cepts.

NONUND No concepts are understood. This includes cases where PICKERING might cor-
rectly interpret a fragment of the utterance (or a complete fragmentary ut-
terance), but GALATEA fails to resolve the ellipsis, and the action manager
fails to use the fragment to pose a relevant question.

NONHEAR The CA is not detected at all. (Not applicable to ASR results.)

7.2 Galatea evaluation

137

The CA’s were also annotated based on the form and function of the utterance, but the scheme
for this will not be described in detail here. An excerpt from the collected data with the differ-
ent understanding levels for each CA is shown in Table 7.2.

Table 7.2: A dialogue excerpt from the evaluation data, translated from Swedish. The third
column shows ASR results in which word confidence scores are represented with different
shades of grey, where dark means high confidence. The fourth column shows the understand-
ing level that was assigned to the CA by the annotator.

Turn Transcription ASR result CA und.

U.1 I– I want to see a bus stop. YES I WANT TO GO TO A

BUS STOP

FULLUND

S.2 Ok, where are you?

U.3 Eh, I stand in front of a a wooden
house with three storeys.

NOW IS I STAND IN FRONT

OF A WOODEN HOUSE

WITH THREE STOREYS

FULLUND

S.4 Three?

U.5 Yes YES FULLUND

S.6 Ok, describe something more.

U.7 I see a sign that reads ... I SEE A SIGN THAT READS PARTUND
(with U.7b)

S.8 Ok ...

U.7b Må – Måbär street. [undetected] (part of U.7)

S.9 Please wait ...

S.10 Can you see a brick building on your
left?

U.12 No, NOW ON MY RIGHT NONUND

U.13 on my right. PARTUND

S.14 What do you see on your right?

U.15 A brick building with three storeys. A BRICK BUILDING WITH

THREE STOREYS

FULLUND

S.16 Ok, a brick building with three sto-
reys, hm ...

U.17 That is correct. [undetected] NONHEAR

S.18 I think I know where you are. You
should see an orange building. Posi-
tion yourself between it and the
three storey building made of wood.

U.19 Ok OK FULLUND

Chapter 7. Higgins evaluation

138

7.2.2.2 General results
Of the 64 tasks, 50 were completed within the time limit of 10 minutes. The tasks that suc-
ceeded took 4.3 minutes on average.
On average, there were 3.8 words per CA. This average figure is weighted down by the fre-

quent use of short acknowledgements (like “yes” and “ok”) during the route description phases
of the dialogues, as well as the high number of fragmentary utterances. For assertions, the av-
erage number of words per CA were 7.3. Of all words spoken by the subjects, 1.6 % were out-
of-vocabulary, not counting truncated words.
The ASR results had an average word error rate (WER) of 23.6%. Table 7.3 shows the dis-

tribution of understanding levels for ASR results and CA’s, as well as for the ASR results con-
taining just one CA, and for the subset of these that had a WER of 0%.

Table 7.3: The number of instances and distribution of understanding for ASR results and CA’s.
The fourth column shows ASR results which contain one unsplit CA. The fifth column shows
the subset of these that had a WER of 0%. The understanding levels are defined in Table 7.1.

 ASR results CA’s ASR res.=CA ASR res.=CA
0% WER

Instances 1894 2007 1565 1033

FULLUND 65.4 % 66.2 % 73.8 % 92.9 %

PARTUND 9.2 % 5.8 % 5.0 % 1.6 %

MISUND 10.1 % 8.3 % 9.5 % 1.5 %

NONUND 15.3 % 11.8 % 11.7 % 3.9 %

NONHEAR 8.0 %

The rightmost column in Table 7.3 reflects the performance of PICKERING and GALATEA,
that is, how well the rules written to handle the training data generalised to new data, given
that there are no ASR errors. Considering the limited “training data”, 92.9% FULLUND
should be regarded as a promising performance. This also confirms that the ASR is the major
source of errors.
The third column (CA’s) shows that 8.0% of the CA’s were not detected by the system at all.

This is partly explained by the fact that there were a lot of feedback utterances from the user
(such as “mhm”) after separate display utterances from the system, which did not have enough
intensity to trigger the voice activity detection. Another explanation is that the ASR was not
allowed to deliver any results while the system was talking. It was never shut-off, but if a
speech endpoint was detected and a system utterance was playing, no result was delivered.
This was done to prevent some turn-taking problems that cannot yet be handled. An example
of this is U.7b in Table 7.2, where the utterance ends while S.9 is spoken.

7.2 Galatea evaluation

139

7.2.2.3 Robustness and early error detection
To study the robustness of PICKERING and GALATEA against ASR errors, the ASR results were
divided in WER intervals. The distribution of understanding for these spans is shown in
Figure 7.3.

0%

20%

40%

60%

80%

100%

0 1-20 21-40 41-60 61-80 81+ WER

NonUnd

MisUnd

PartUnd

FullUnd

Figure 7.3: The distribution of understanding depending on the WER of the ASR result
(rounded up).

The figure shows that the introduction of ASR errors immediately decreases the proportion of
FULLUND by about 40%. Roughly half of this performance drop consists of some deleted
concepts (PARTUND) and half by inserted concepts (MISUND). Interestingly, as the WER
increases, the performance degrades gracefully up to a WER as high as 60%. Even with a
WER above this, the proportion of misunderstandings seems to be stable, indicating an ac-
ceptable early error detection performance.

7.2.2.4 Ellipsis resolution
To find out how well GALATEA manages to resolve ellipsis, correctly recognised task-related
complete CA’s were grouped based on their form. Table 7.4 shows the distribution of under-
standing for some relevant forms. In this context, the form “fragment” includes adjectives,
nouns, nominal phrases, propositional phrases, etc. As the table shows, fragmentary utterances
– where ellipsis resolution is needed for full understanding – were almost as successful as asser-
tions. For fragments, there was a larger proportion of partial understandings. These are utter-
ances like U.13 in Table 7.2 which can be tricky to resolve correctly, but may be used by the
system to ask a request like S.14, resulting in a partial understanding. Acknowledgements and
yes/no-utterances also need ellipsis resolution. But, as the table shows, this is an easier task.

Chapter 7. Higgins evaluation

140

Table 7.4: The distribution of understanding for recognised task-related complete CA’s of dif-
ferent forms, where WER=0%.

 Assertion Fragment “Ok” “Yes”/“No”

FULLUND 90.1 % 88.6 % 100.0 % 98.2 %

PARTUND 1.6 % 8.4 % 0.0 % 0.0 %

MISUND 2.6 % 1.8 % 0.0 % 0.0 %

NONUND 5.8 % 1.2 % 0.0 % 1.8 %

7.2.2.5 Fragmentary clarification
There were a total of 94 fragmentary clarification requests in the data. Of these, 68.1% fol-
lowed upon a correct hypothesis of the user’s utterance and 31.9 % followed upon an incor-
rect hypothesis (i.e., a misunderstanding). The function and type of the user CA following the
request were used to group the user reactions to the requests based on six different types. Table
7.5 shows the distribution of these types.

Table 7.5: Immediate user reaction to fragmentary clarification requests. The second column
shows the distribution for cases where the request followed upon a correct hypothesis, and
the third column cases where the request followed upon an incorrect hypothesis.

Reaction Correct Incorrect

“Yes”-answer. 59.4 % 0.0 %

“No”-answer. 3.1 % 40.0 %

A correction or elaboration, in the form of a fragment or
assertion, as an answer to the request.

10.9 % 20.0 %

An utterance that relates to the request, but does not an-
swer it.

4.7 % 6.7 %

A signal of non-understanding (such as “what? ”). 9.4 % 6.7 %

The request is ignored. 12.5 % 26.7 %

Considering the large proportion of reactions that either ignore the request or signal non-
understanding, fragmentary clarification requests seem to be hard for the users to understand.
This may be explained partly by the fact that users may not expect such human-like behaviour
from dialogue systems. Another explanation is that the clarification requests were sometimes
used in contexts where a human would not have used them. A third explanation is that the
prosodic model used to realise them (as described in 6.7.7) was very simplistic and not tested.
This issue is explored in more depth in Chapter 9.
Fragmentary clarification requests seem to be even harder to understand after misunder-

standings. This is of course due to the fact that such requests may not make sense to the user
in some situations. For example, the request “red?” after a misrecognised “I want to go to a bus
stop” may be perceived as inadequate.

7.2 Galatea evaluation

141

There were many cases where the users ignored the clarification request after a correct rec-
ognition. However, it is possible that these should be interpreted as a “silent consent”. Purver
(2004) found that clarification requests in human-human dialogue are very often not an-
swered (in 17-39% of the cases). Thus, the assumption taken here – that the concepts that are
clarified must be confirmed to be considered as being correct – may be implausible.
Of the reactions that imply that the request was understood correctly by the user, it is in-

teresting to note that far from all started with simple “yes” or “no” answers. Especially after
misunderstandings, the user often corrects the system without starting with “no, ...”. For
many reactions, it is not obvious if they should be interpreted as answers to the preceding re-
quest, even if they relate to it. This supports the previously discussed assumption that clarifica-
tion requests should not be treated as some sort of “subdialogue”, but rather as a signal from
the system that it lacks understanding, in the form of a request, which makes a fragmentary
response possible to resolve. An interesting observation is the existence of some “no” answers
after clarification requests based on correct understanding. These are cases where the user
changes her mind, possibly because the system’s request is interpreted as if it doubted the cor-
rectness of the user’s description.
As discussed in Schlangen & Fernández (2007a), the frequent use of elaboration as a reac-

tion to clarification requests may suggest that the users interpret them as concerning the un-
derstanding level and not the perception level (as discussed in 3.1.4), that is, they may have
interpreted them as “do you really mean X”, instead of “did you say X”. If that was the case, it
is possible that these interpretations were caused by the simplistic prosodic model used (which
is explored further in Chapter 9).
Table 7.6 shows the distribution of understanding of the user reactions. For requests based

on correct interpretations, the understanding of the responses seems to be similar to that of
CA’s in general (compare with Table 7.3). However, the performance is poorer for responses to
requests based on misunderstandings, reflecting the fact that these were less predictable.

Table 7.6: The system’s understanding of the user reactions to fragmentary clarification re-
quests. The second column shows the distribution for cases where the clarified concepts were
correctly understood by the system, and the third column cases where the clarified concepts
were incorrect (i.e., after a misunderstanding).

Understanding Correct Incorrect

FULLUND 67.2 % 43.3 %

PARTUND 3.1 % 13.3 %

MISUND 6.3 % 6.7 %

NONUND 15.6 % 30 %

NONHEAR 7.8 % 6.7 %

Chapter 7. Higgins evaluation

142

7.2.2.6 Late error detection
The log files from the action manager showed that there were a total of 78 cases where there
was not any place where the user could be when matching the discourse model against the
database – indicating that a misunderstanding had occurred. In 45 of these cases, removing
concepts with low grounding status made it possible for the system to continue positioning
the user. This looks promising, but it does not tell us how many of the correct or incorrect
concepts actually were removed. Future work will focus on answering this question, as well as
finding methods for improving late error detection, as it is beyond the scope of this thesis.

7.3 Summary

An evaluation of the robust interpreter PICKERING indicates that it generalises well when ap-
plied to unseen utterances, within the limited domain, produced by new speakers. As the
WER of the ASR output increases, the set of robustness techniques utilised leads to graceful
degradation of the interpretation results. The two techniques used to relax the CFG-con-
straints that were tested – allowing non-agreement and insertions – both improved perform-
ance. Allowing an unlimited number of insertions into syntactical structures caused neither
decline nor increase in accuracy.
An evaluation of the complete HIGGINS system showed that the performance of GALATEA

and the rest of the system looks promising, not only when utterances are correctly recognised,
but also when ASR errors are introduced. There have previously not been many studies on the
use of fragmentary clarification requests in spoken dialogue systems interacting with real users.
The results from this evaluation show that users may have difficulties understanding these
requests, especially after incorrect speech recognition hypotheses, and that a more elaborate
model of when to use them, how to realise them, and how to understand the user’s reaction to
them is needed.

PART IV

Deciding and Realising

Grounding Actions

DAVE: Open the pod bay doors, HAL.
HAL: I'm sorry Dave, I'm afraid I can't do that.
DAVE: What's the problem?
HAL: I think you know what the problem is just as well as I do.
DAVE: What are you talking about, HAL?
HAL: This mission is too important for me to allow you to jeopardize it.

2001 – A Space Odyssey
screenplay by Stanley Kubrick and Arthur C. Clark

CHANCE: I like to watch.
EVE: To watch...? To watch me...?
CHANCE: Yes. I like to watch.

Being There
screenplay by Jerzy Kosinski

145

CHAPTER 8

Making grounding decisions

Given a speech recognition hypothesis, a dialogue system has the choice of accepting or reject-
ing this hypothesis, but can also choose to provide evidence of understanding, such as a clarifi-
cation request, or display its understanding. In 3.3.2.7, this choice was referred to as the
grounding decision problem. In the previous chapters, a static model with hand-crafted thresh-
olds was used. In this chapter, we will use a data-driven decision-theoretic model for the
grounding decision problem. Based on task analysis of the HIGGINS navigation domain, dia-
logue cost functions will be derived, which take dialogue efficiency, consequence of task failure
and information gain into account. The dialogue data presented in the previous chapter will
then be used to estimate parameters for these cost functions, so that the grounding decision
may be based on both confidence and dialogue context.

8.1 The grounding decision problem

The approach to grounding decisions used in the previous chapters (and which is used in
many other dialogue systems) is to simply accept a speech recognition hypothesis when the
confidence score is high, display understanding for middle-high scores, make a clarification
request for middle-low scores and reject the hypothesis for low scores. The problem is that the
confidence thresholds for these decisions are most often (as in the previous chapters) based on
intuition and not on any theoretically sound and empirically based principle.

Chapter 8. Making grounding decisions

146

In 3.1.2 three important factors for making this decision were discussed, which we may
summarise as follows:

1. The result of the early error detection: how confident the system is in its under-
standing.

2. Task consequences: the cost of falsely accepting an hypothesis (i.e., a misunder-
standing), as well as the cost of a false rejection (i.e., a non-understanding).

3. The cost of realising the grounding action and possible reactions to it.

In the simplest case, the choice is between accept and reject, and only Factor 1 above (confi-
dence of understanding) is considered, by comparing the confidence score against a static con-
fidence threshold. This threshold may be optimised to minimise the sum of false acceptances
and false rejections, as described in 3.3.1.2, assuming that these errors have the same costs
associated with them.
In order to take Factor 2 (task-related costs and utility) into account, Bohus & Rudnicky

(2001) use a data-driven technique to derive actual costs in data from the CMU Communica-
tor system, which showed that false acceptances were more costly than false rejections.
Another aspect is that the task costs often vary depending on dialogue state. To incorpo-

rate this aspect, Bohus & Rudnicky (2005c) present a method where binary logistic regression
is used to determine the costs (in terms of task success) of various types of understanding er-
rors involved in the rejection trade-off. Different regressions may then be calculated in differ-
ent dialogue states, resulting in dynamic thresholds. Surprisingly, for many dialogue states, the
optimal threshold was 0 (i.e., accept everything).
However, none of these methods consider other grounding options than accept and reject

and Factor 3 above (cost of grounding actions) is not considered. In some machine-learning
approaches to early error detection or n-best list reordering, the machine-learner has been
trained to not only consider accept and reject, but also grounding acts such as clarification
(Gabsdil & Lemon, 2004; Jonson, 2006). The problem here is how to annotate the training
material. When should the system ideally make a clarification? If we know that the hypothesis
is correct in the training material, the desired action would be to accept, and if it is incorrect,
the desired action would be to reject. Gabsdil & Lemon (2004) suggest that the system should
reject when the WER falls below 50% and clarify above that threshold. However, no theoreti-
cal motivation for this is provided.

8.1.1 A decision-theoretic approach

Paek & Horvitz (2003) present a decision theoretic approach to the grounding decision prob-
lem, based on the framework of decision making under uncertainty. According to this proposal,
the optimal grounding action GA should satisfy the Principle of Maximum Expected Utility
(MEU), which can be defined as follows: Choose an action a, so that the expected utility EU(a) is
maximised. When making this decision, the world may be in one of the states h1, h2, h3…hn,
and this state may have an impact on the effect of the action taken. This effect can be de-

8.1 The grounding decision problem

147

scribed by the function Utility(a,hi), which is the utility for action a under state hi. Thus, for
each action a, the probability for each possible state and the utility for taking action a, given
that state, should be summed up:

(51) ∑
=

×==

n

i
ii

aa

haUtilityhPaEUGA
1

),()(maxarg)(maxarg

In Paek & Horvitz (2003), the utilities used in the model were estimated directly by the dia-
logue designer. In this chapter, we will move one step further and show how this may be esti-
mated from data. We will also show how the model may account for both task-related costs
and grounding-related costs, thus accounting for all decision factors discussed above. Before
presenting the model, we give a brief overview of the research done on data-driven action se-
lection.

8.1.2 Data-driven action selection

As noted in 2.3.3.3, a lot of recent effort has been invested in making action selection in spo-
ken dialogue systems data-driven, and the grounding decision problem is clearly an instance of
action selection.

One approach to data-driven action selection is supervised learning, where a dialogue
corpus is used to learn a mapping between the current dialogue state and the action to be
taken. The main problem with this approach is how to collect the large amount of data that is
needed. The data should contain human-computer dialogues that are representative for the
system that is to be built. One possibility could perhaps be to use a complete spoken dialogue
system for the target domain interacting with users to collect the data, but this is normally not
available (otherwise one would not want to build the system). Also, the machine learner would
probably just learn the strategies already utilised by the system. Another solution is to use a
human operator acting as a dialogue manager in a Wizard-of-Oz setting. However, since the
amount of data that is needed typically is very large, this may be costly to perform. Such an
approach also rests on the assumption that the Wizard’s behaviour is an optimal model for
dialogue system behaviour. The approach is perhaps more suitable for learning general policies
for very specific choices. Bohus & Rudnicky (2005b) is an example of this.

Another data-driven approach is to model action selection as a Markov Decision Process
(MDP). MDP’s consist of a state space with transition probabilities and cost assignments.
Unlike supervised learning, an MDP chooses actions that maximise a long-term cumulative
sum of rewards (such as user satisfaction). Thus, it can be said to perform planning. Such a
model is trained by reinforcement learning, so that the long term reward may be propagated to
the different decisions that led to the outcome. An obvious problem is that reinforcement
learning may need even more data than supervised learning. To solve this problem, Levin et al.
(2000) present an approach in which they estimate a user model (MDP parameters that quan-
tify the users’ behaviour) by training a supervised learner on a smaller amount of dialogue data.
Reinforcement learning is then used to estimate optimal policies by interacting with the simu-

Chapter 8. Making grounding decisions

148

lated user. Levin et al. (2000) show how their system may learn policies for collecting informa-
tion from the user that seem to be intuitively sound.

A shortcoming with MDP’s is that the current state is supposed to be known. This is
problematic, since a fundamental problem for spoken dialogue systems is to deal with uncer-
tainty. Williams & Young (2007) proposes the use of an even more advanced stochastic model
for action selection: a Partially Observable Markov Decision Process (POMDP). The strengths
of POMDP models are that they combine the techniques of automated planning with parallel
dialogue state hypotheses and the use of confidence scores, into one statistical framework that
admits global optimisation. However, as pointed out by Williams & Young (2007), it is com-
putationally challenging to scale POMDP models to real-world problems, and it is yet unclear
whether they will be applicable to more complex domains. Also, a more general concern for
data-driven methods relying on user models is how representative such models are of real users.

8.2 The proposed model

In this chapter, we will show how the utilities in the decision-theoretic model discussed in
8.1.1 above may be estimated directly from a small amount of collected dialogue data, based
on task-analysis and boot-strapping. To do this, the problem will be described as that of
minimising costs, and a general cost measure will be defined. If we want to consider costs in-
stead of utilities, the principle of MEU can be transformed into the Principle of Minimum
Expected Cost (EC), where cost should be understood as negative utility:

(52) ∑
=

×==

n

i
ii

aa

haCosthPaECGA
1

),()(minarg)(minarg

Now, this can be applied to the grounding decision problem in the following way: Choose a
grounding action a, so that the sum of all task-related costs and grounding costs is minimised, con-
sidering the probability that the recognition hypothesis is correct. Thus, the world may be in two
states (correct and incorrect recognition), and a probability measure for these states is needed, as
well as a cost function for calculating the costs of the different grounding actions, given these
states. The problem is expressed in the following equation (where P(incorrect) equals 1-
P(correct)):

(53)

×

+×

=
),()(

),()(
minarg

incorrectaCostincorrectP

correctaCostcorrectP
GA

a

In this chapter, these cost functions will be defined by analysing the consequences of different
grounding actions. A unified cost measure (accounting for both task-related and grounding
costs) will be defined, and the cost functions will use parameters that can be estimated from
data.

8.2 The proposed model

149

The proposed model rests on some simplifying assumptions, which will be discussed in
more detailed later on:

• Only one concept in the recognised utterance will be considered as being correct or

incorrect.
• The possibility that an incorrect recognition hypothesis may be a substitution for a

similar concept is not considered. Alternative hypotheses are not considered.
• The costs and probabilities are not dependent on the dialogue history. For example,

the utility of grounding actions do not change when they are repeated subsequently.

To select the optimal grounding action according to equation (53) above, a probability meas-
ure of the state correct is needed, as well as a cost function for calculating the costs of the dif-
ferent grounding actions, given these states.

8.2.1 P(correct)

The most obvious candidate for an estimation of P(correct) is the speech recognition confi-
dence score. Although this score should generally not be used directly as a measure of prob-
ability (as discussed in 3.3.1.1), it should be possible to approximate such a probabilistic score
by using a phoneme recogniser, filler models, or deduce it from the word graph, as argued by
Wessel et al. (2001).
Another possibility is to deduce a probabilistic score given a specific application and data

collected within it. We will here analyse the confidence scores obtained in the data collection
presented in the previous chapter. In this collection, an off-the-shelf ASR was used, and we
did not have access to the exact workings of the ASR confidence scoring. In HIGGINS, the
word confidence scores from the ASR are averaged into concept confidence scores, as de-
scribed in 6.4.2.4. To analyse the relation between these confidence scores and P(correct), all
recognised concepts in the data were divided into ten interval groups, depending on their con-
fidence scores, that is, scores around 0.1, 0.2, 0.3, etc. Figure 8.1 (left) shows the total number
of instances in each such interval (black bars), as well as the number of correct instances (grey
bars). Figure 8.1 (right) shows the proportions of correct instances in each interval (dia-
monds), with a second order polynomial trendline (dotted). The trendline fits the data nicely
(R2 = 0.999), indicating that the confidence scores actually do reflect the probability of cor-
rectness, although not with a one-to-one mapping.
The rest of this chapter will continue on the assumption that P(correct) can be calculated.

If it cannot be directly estimated in the ASR, it may be deduced by a regression analysis on
collected data. It should be noted, however, that most scores are centred on the median in
these data, and are thus not contributing with much information.

Chapter 8. Making grounding decisions

150

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Assigned score

In
s

ta
n

c
e

s

Tot. inst.

Corr. inst.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Assigned score

P
ro

p
o

rt
io

n
 c

o
rr

e
c

t

Figure 8.1: The left figure shows the total number of concepts in each confidence interval and
the number of concepts that were correctly recognised. The right figure shows the proportion
of correct words for each interval, with a second order polynomial trendline.

8.2.2 Cost measure

The model presented in this chapter relies on a unified measure of cost, which may be used for
estimating both the task-related costs and the cost of grounding actions. The ultimate measure
of cost would be the reduction of user satisfaction. However, user satisfaction is practically
only obtainable on the dialogue level, and we need a much more detailed analysis. A cost
measure that is relevant for both grounding actions and the task, and that is obtainable on all
levels of analysis, is efficiency. This is reflected in Clark’s principle of least effort (mentioned in
3.1.2.2): “All things being equal, agents try to minimize their effort in doing what they intend
to do” (Clark, 1996). Thus, efficiency and user satisfaction should correlate to some degree, at
least in a task-oriented dialogue setting as the one used in this chapter. Efficiency may be
measured in different ways: by the time spent or the number of utterances, words or syllables
used.
To see if these measures had an impact on user satisfaction, the users’ estimation of their

satisfaction after the dialogues in the collected data were correlated against all these measures
of efficiency. As a measure of user satisfaction, the subject’s agreement to the statement “I was
satisfied with the system” on a scale ranging from 0 to 6 was used. It turned out that all meas-
ures of efficiency correlated fairly well with user satisfaction. The one that correlated best was
the total number of syllables uttered (from both the user and the system). This non-linear re-
gression is shown in Figure 8.2 (logarithmic regression; y = -2.19Ln(x) + 16.54; R2 = 0.622).
It should be noted that correlation with user satisfaction is problematic, partly because it is

an ordinal scale. Thus, it is hard to tell whether the non-linear relationship is due to a possible
non-linearity of the user satisfaction scale, or to the possibility that user satisfaction reduction
decreases as the dialogues get longer. This analysis is only meant to serve as a rough indicator
that efficiency is a relevant measure. The correlation is not perfect, and there are of course
other factors that are important as well. However, longer dialogues often reflect that a lot of
grounding actions (such as clarifications) have been needed, or that misunderstandings have

8.2 The proposed model

151

occurred, so that the user has to start all over again. The impact of efficiency on user satisfac-
tion in task-oriented dialogue has also been reported in other studies, such as Bouwman &
Hulstijn (1998).

8.2.3 Cost functions

Using efficiency as a cost measure, we will analyse the consequences of different actions, given
the correctness of the recognition hypothesis. The actions that will be considered are shown in
the following alternative system responses:

(54) U: I can see a red building.

S (ACCEPT): Ok, can you see a tree in front of you?
S (DISPLAY): Ok, a red building, can you see a tree in front of you?
S (CLARIFY): A red building?
S (REJECT): What did you say? [or just continue]

We will here analyse the costs (in terms of syllables) for these different grounding actions,
given the correctness of the recognition hypothesis. These costs will be based on a set of pa-
rameters that are deemed to be important for explaining the costs involved. The parameters
are all average estimations over a set of dialogues.

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400

Syllables

U
s

e
r

S
a

ti
s

fa
c

ti
o

n

Figure 8.2: Correlation between user satisfaction and total number of syllables per dialogue.

Chapter 8. Making grounding decisions

152

Cost(ACCEPT, correct)

Accepting a correct concept has no cost.

Cost(ACCEPT, incorrect)

Accepting an incorrect concept will lead to a misunderstanding. This error will in many cases
somehow slow down the dialogue. Either the user and system have to repair the error, or they
might have to start the task all over again. The number of extra syllables the misunderstanding
adds to the dialogue will be referred to as SylMis.

Cost(REJECT, correct)

If the system rejects a correct concept, the system and user must spend syllables on retrieving a
new concept of the same value, either by the system requesting the user to repeat, or by con-
tinuing the dialogue and retrieving another concept. The number of syllables it takes to receive
new information of the same value as the rejected concept will be referred to as SylRec.

Cost(REJECT, incorrect)

Rejecting an incorrect concept has no cost.

Cost(DISPLAY, correct)

Displaying a correct hypothesis will slow down the dialogue by the number of syllables spent
on the display utterance and the possible reaction from the user. This will be referred to as
SylDispCor. Since a concept that is displayed is treated as correct unless the user initiates a
repair, it does not matter if the user confirms the display or ignores it.

Cost(DISPLAY, incorrect)

Displaying an incorrect hypothesis will also slow down the dialogue by the number of syllables
spent on the display utterance and the possible reaction from the user. This will be referred to
as SylDispInc. However, since a concept that is displayed is treated as correct unless the user
initiates a repair, the user must object to the display. Otherwise, we may say that the ground-
ing has failed and a misunderstanding has been introduced (which will prolong the dialogue
by SylMis number of syllables, as described above). The probability that the user does not cor-
rect the system and the grounding fails will be referred to as P(Fail|Disp,Inc). Thus, the ex-
pected cost for displaying an incorrect hypothesis is:
SylDispInc + P(Fail|Disp,Inc) x SylMis

Cost(CLARIFY, correct)

Clarifying a correct hypothesis will slow down the dialogue by the number of syllables spent
on the clarification request and the possible reaction from the user. This will be referred to as
SylClarCor. A concept that is clarified is not treated as correct unless the user confirms it. Thus,
the clarification of a correct hypothesis will fail if the user does not confirm it. The probability

8.2 The proposed model

153

that this happens will be referred to as P(Fail|Clar,Cor). If this happens, the concept is lost and
the system and user must spend syllables on retrieving a new concept of the same value (Syl-
Rec). Thus, the expected cost for clarifying a correct hypothesis is:
SylClarCor + P(Fail|Clar,Cor) x SylRec

Cost(CLARIFY, incorrect)

Clarifying an incorrect hypothesis will slow down the dialogue by the number of syllables
spent on the clarification request and the possible reaction from the user. This will be referred
to as SylClarInc. Since a concept that is clarified is not treated as correct unless the user con-
firms it, it does not matter if the user disconfirms or ignores the clarification request.

The analysis given above is schematised in Figure 8.3. Together with equation (53), this analy-
sis may then be used to derive cost functions for the different actions, which are shown in
Table 8.1.

Figure 8.3: Costs involved in taking different grounding actions.

Grounding decision

ACCEPT REJECT CLARIFY

SylDispInc

No cost

DISPLAY

A misunderstanding needs
to be repaired

SylMis

Information needs to be
recovered

SylRec

SylDispCor

User does not repair
P(Fail|Disp,Inc)

No cost

SylClarInc SylClarCor

User does not confirm
P(Fail|Clar,Cor)

Incorrect

Correct

Chapter 8. Making grounding decisions

154

Table 8.1: Cost functions for different grounding actions.

Action Expected cost

ACCEPT P(incorrect) x SylMis

DISPLAY P(correct) x SylDispCor + P(incorrect) x (SylDispInc + P(Fail|Disp,Inc) x SylMis)

CLARIFY P(correct) x (SylClarCor + P(Fail|Clar,Cor) x SylRec) + P(incorrect) x SylClarInc

REJECT P(correct) x SylRec

8.3 Application to the Higgins navigation domain

The cost functions derived above should be applicable to many dialogue systems, regardless of
domain. However, the estimation of the parameters SylRec and SylMis is highly dependent on
the domain. To show how these parameters may be estimated from data, we will make a task
analysis specific for the HIGGINS navigation domain used in the previous chapters. In this
domain, it is possible to distinguish three different sub-tasks which have different costs associ-
ated with them: positioning the user, establishing the goal, and guiding the user. We will here
analyse the first two of these to show how different the task-related costs may be.

8.3.1 Positioning the user

We will start with the positioning task, when the user describes her position, as in the follow-
ing example:

(55) U: I can see a red building.

S: Red?

8.3.1.1 SylRec
The parameter SylRec describes the number of syllables it will take to get the same amount of
information after a concept has been rejected. This parameter is highly context dependent – it
depends on how much information the hypothesised concept provides (its information gain),
compared to the average concept. This proportion will be referred to as ConValueH. The sys-
tem and the user spent on average 15.0 syllables per important concept10 accepted by the sys-
tem. We will refer to this as SylCon. Based on these two parameters, SylRec can be calculated as
follows:

(56) ConValueHSylConSylRec ×=

10 By important concept, we mean concepts that contribute in the current task. In this example, RED

is important, but not BUILDING, since there are buildings everywhere.

8.3 Application to the Higgins navigation domain

155

How can ConValueH be estimated for an individual concept in the positioning phase? The
purpose of the positioning phase is to cut down the number of possible user locations. Thus,
the value of a concept can be described as the proportion of the set of possible user locations
that are cut down after accepting it, compared to the average concept. The proportion of pos-
sible locations that are reduced on average after a single concept is accepted can be estimated
from data (on average 0.34, which we will refer to as CutDownA). The dialogue system can
then use the domain database to calculate the proportion of possible locations that would be
cut down if the hypothesised concept would be accepted (CutDownH). By accepting ConVal-
ueH number of average concepts, each leaving a proportion of 1 - CutDownA possible loca-
tions, a proportion of 1 - CutDownH locations should be left. This is expressed in the follow-
ing formula:

(57))1()1(CutDownHCutDownA ConValueH
−=−

For example, if half of all possible positions are cut down on average for each concept (Cut-
DownA = 0.5), and the hypothesised concept reduces ¾ of the possible positions (CutDownH
= 0.75), it will take two average concepts to achieve the same effect (ConValueH = 2):
(1 - 0.5)2 = (1 - 0.75).
By combining equations (56) and (57), SylRec can be calculated with the following for-

mula:

(58)
)1log(

)1log(

CutDownA

CutDownH
SylConSylRec

−

−

×=

8.3.1.2 SylMis
We will now turn to the parameter SylMis, which describes the number of extra syllables a
misunderstanding adds to the dialogue. The risk of accepting an incorrect concept during the
positioning phase is that the set of possible user positions may be erroneously constrained. If
this happens, the positioning often has to start all over again. Thus, SylMis should reflect the
number of syllables a complete positioning takes (on average 97.0, which we will refer to as
SylPos). However, the set of possible user locations does not need to be erroneously constrained
when accepting an incorrect concept – the user may actually see a red building, even if this
was not what she said. The probability that the correct position actually is lost can be de-
scribed by the parameter CutDownH defined above, which describes the proportion of possi-
ble locations that is reduced if the hypothesised concept is accepted. Thus, SylMis can be cal-
culated as follows:

(59) CutDownHSylPosSylMis ×=

Chapter 8. Making grounding decisions

156

8.3.1.3 Grounding parameters
The rest of the parameters can be calculated from the data by counting the number of syllables
spent on the grounding subdialogues and the number of times they failed. These parameters
are shown in Table 8.2. SylGA is the number of syllables involved in the grounding act (in the
case of DISPLAY or CLARIFY).

Table 8.2: Initial estimation of parameters for example (6).

Parameter Value

SylClarCor SylGA + 1.4

SylClarInc SylGA + 2.1

SylDispCor SylGA + 0.1

SylDispInc SylGA + 1.2

P(Fail|Clar,Cor) 0.33

P(Fail|Disp,Inc) 0.82

As discussed in the previous chapter, the high value of P(Fail|Clar,Cor), and especially
P(Fail|Disp,Inc), might be explained by the fact that the system did not use an elaborate pro-
sodic model for the realisation of fragmentary DISPLAY and CLARIFY acts, that they were some-
times used in inadequate situations, and that the use of such fragments is still very uncommon
in dialogue systems.

8.3.1.4 Examples
We will now consider two examples where the concept information gain differs a lot (the con-
cepts under question are underlined):

(60) I can see a mailbox. (CutDownH = 0.782; SylGA = 2)
(61) I can see a two storey building. (CutDownH = 0.118; SylGA = 1)

Figure 8.4 shows the difference in number of possible user positions after accepting these two
different utterances. Using these parameters, the cost function for the different grounding
actions, depending on P(correct), can be calculated to find out which action has the lowest cost
for each value of P(correct) and thus derive confidence thresholds, as shown in Figure 8.5 and
Figure 8.6. In these figures, the costs for the different actions are plotted as functions of
P(correct). For each value of P(correct), the action with the lowest cost can be determined. The
thresholds at which the optimal action shifts are marked with vertical lines. As the figures
show, example (60) has a much higher information gain and thus a wide confidence interval
where a clarification request is optimal, whereas example (61) has less information gain and is
optimally either accepted or rejected, but never clarified.

8.3 Application to the Higgins navigation domain

157

Figure 8.4: Possible user positions (red dots) in the virtual city after accepting the utterance “I
can see a two storey building” (left) versus “I can see a mailbox” (right).

Figure 8.5: Cost functions and confidence thresholds for grounding the concept MAILBOX after
“I can see a mailbox”.

0

10

20

30

40

50

60

70

80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P(correct)

E
x

p
e

ct
e

d
 c

o
st

Accept

Display

Clarify

Reject

Chapter 8. Making grounding decisions

158

Figure 8.6: Cost functions and confidence thresholds for grounding the concept TWO after “I
can see a two storey building”.

Figure 8.7: Cost functions and confidence thresholds for grounding the concept ATM after “I
want to go to an ATM”.

0

2

4

6

8

10

12

14

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P(correct)

E
x

p
e

ct
e

d
 c

o
st

Accept

Display

Clarify

Reject

0

5

10

15

20

25

30

35

40

45

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P(correct)

E
x

p
e

ct
e

d
 c

o
st

Accept

Display

Clarify

Reject

8.4 Possible extensions

159

The graphs presented above, and the calculation of thresholds, are of course only useful for
illustrative purposes. A dialogue system would just calculate the most optimal action, given the
value of P(correct). It should be noted that these estimations are based on the data collected
with hand-crafted confidence thresholds. If the derived model would be applied to the system,
the parameters values would change, thus affecting the parameters in the model. This means
that the presented model should be derived iteratively, using bootstrapping, and the parameter
values presented here are just the first step in such an iteration. To estimate the parameters,
transcription of the dialogues and some annotation is needed. However, given that the logging
is adapted for this, we believe that this can be done rather efficiently.

8.3.2 Establishing the goal

In the previous examples, we considered the positioning of the user. However, there is another
important task, the establishing of the goal:

(62) U: I want to go to an ATM. (SylGA=3)

If this hypothesis would constitute a misunderstanding, it would lead to much higher costs
than a misunderstood positioning statement. The misunderstanding might not be identified
until the system has actually navigated the user to an ATM, which may take some time. Thus,
we can define SylMis as the number of syllables it takes on average until the user has reached
the (incorrect) goal or restated the goal, which can be estimated to 261.6 from the data. We
will assume that SylRec is equal to SylCon (15.0), and that the other parameters are the same as
in the positioning phase. The cost functions and thresholds for grounding “ATM” in the ex-
ample above are shown in Figure 8.7. Due to the high cost of misunderstandings, a simple
accept requires a very high confidence, and goal assertions will therefore most often be clari-
fied.

8.4 Possible extensions

The model presented above may be extended to incorporate other aspects and address some of
the simplifying assumptions behind it. We will here briefly discuss such extensions.

8.4.1 Substitutions

In the proposed model, there was no cost associated with rejecting an incorrect concept. This
may seem wrong, since the incorrect concept may often be a substitution for a correct concept
which is lost and must be recovered. But, if we would add this cost, it should also be added
when accepting an incorrect concept, in which case the incorrect concept must be repaired
and the lost concept must be recovered. If we add the same cost to all actions, the model will
not be affected.

Chapter 8. Making grounding decisions

160

However, in the case of DISPLAY or CLARIFY, a substituted concept may be more efficiently
recovered, as in the following example:

(63) U: I can see a green building? [RED]
S: Red?
U: No, green [GREEN]

Thus, the cost of these grounding actions has been somewhat overestimated. To compensate
for this, we must first calculate the probability that an incorrect concept is a substitution for a
similar concept, P(Subst), and multiply this with SylRec. This cost should be added to ACCEPT
and REJECT, in the case of an incorrect hypothesis. This cost should also be added to CLARIFY
and DISPLAY, if they do not succeed in recovering the substituted concept. The probabilities of
this can be described as P(Fail|Clar,Subst) and P(Fail|Disp,Subst), respectively. Table 8.3
shows the updated costs in case of incorrect hypotheses.

Table 8.3: Costs in case of an incorrect hypothesis that incorporates the possibility of a substi-
tution.

Action Cost(a, incorrect)

ACCEPT SylRep + P(Subst) * SylRec

REJECT P(Subst) * SylRec

DISPLAY SylDispU + SylDispInc + P(Fail|Disp,Inc) * SylRep + P(Fail|Disp,Subst) * P(Subst) * SylRec

CLARIFY SylClarU + SylClarInc + P(Fail|Clar,Subst) * P(Subst) * SylRec

8.4.2 Concept-level grounding

In the proposed model, only one concept in the hypothesis was considered. The model also
accounts for utterance-level grounding, where the whole utterance is considered as being cor-
rect or incorrect. However, the model could also be extended to cope with several concepts in
an utterance, of which some may be correct and some not, as in the following example (with
confidence scores in parenthesis):

(64) U: I can see a red building to the left. [RED (0.7) LEFT (0.2)]

In this case, we should consider 4 possible states instead of 2, as shown in Table 8.4. The com-
bination of grounding actions for each concept may lead to different realisations of grounding
moves. Some examples of such actions are shown in Table 8.5.

8.4 Possible extensions

161

Table 8.4: Example states when two concepts are considered.

RED LEFT P

CORRECT CORECT 0.14

CORRECT INCORRECT 0.56

INCORRECT CORECT 0.06

INCORRECT INCORRECT 0.24

Table 8.5: Example actions when two concepts are considered.

RED LEFT Utterance

CLARIFY ACCEPT Red?

DISPLAY CLARIFY Do you have the red building on your left?

CLARIFY CLARIFY A red building on your left?

8.4.3 Temporal modelling

Another assumption behind the proposed model was that the costs and probabilities were not
dependent on the dialogue history, in other words, there is no temporal aspect. However, as
Paek & Horvitz (2003) points out, for example repeated requests for repetitions or clarifica-
tion requests may decrease the utility of such actions.
It would of course be possible to increase the number of parameters and introduce a tem-

poral aspect. However, in the data collected here, there are very few instances of, for example,
repeated clarification requests.
Another temporal aspect is that not only the utility, but also the probability of a certain

hypothesis should be affected by a history of repeated clarifications. This should ideally be
considered in the early error detection, where both the ASR confidence score and the dialogue
history could be combined into a more elaborate model of P(correct).

8.4.4 Utterance generation

The model presented in this chapter encourages efficient system utterances by parameters such
as SylClarCor. However, the model also accounts for the users’ recognition of them by pa-
rameters such as P(Fail|Clar,Cor). For example, in the data studied here, the system used effi-
cient elliptical clarification requests and display utterances, but this had the negative conse-
quence that they often failed.
The proposed model should therefore be usable for testing the benefits of different utter-

ance realisations. For example, the fragmentary clarification requests used here could be com-
pared with sentential clarification requests (such as “did you say red?”). SylClarCor and Syl-
ClarInc would be higher, but P(Fail|Clar,Cor) would perhaps be lower.

Chapter 8. Making grounding decisions

162

8.4.5 User adaptation

Many of the parameters vary considerably between different users; see for example parameter
SylPos in Figure 8.8. Thus, if the parameters could be tuned for the specific user, the system
could adapt its behaviour accordingly. For example, some users may not respond well to clari-
fication requests. This would be reflected in some of the parameters, and the system could
avoid making clarifications.

Figure 8.8: How parameter SylPos varies between different subjects.

8.5 Discussion

There are still several aspects that are not considered in the proposed model. For example, it is
not possible to choose actions that maximise a long-term cumulative sum of rewards (i.e., per-
form planning). Another limitation is that it only considers one hypothesis from the ASR and
cannot hold parallel hypotheses. As discussed in 8.1.2, a more complex model that may ac-
count for these factors is Partially Observable Markov Decision Processes (POMDP). The
model proposed in this chapter is much simpler and more knowledge-driven (since it is based
on task analysis). Thus, it is based on more assumptions and includes more bias, but at the
same time it requires less resources and should be easier to apply. As Williams & Young
(2007) point out, it is also computationally challenging to scale POMDP models to more
complex applications.
Efficiency does not cover all costs involved in dialogue, even in a task-oriented domain

such as navigation. For example, the results presented in Chapter 4 indicated that the frustra-
tion that the signalling of understanding gives rise to may decrease user satisfaction per se, that
is, not just by the number of syllables added to the dialogue. It would be interesting to use a
more elaborate cost model, for example by applying regression analysis of user satisfaction, as
in the PARADISE evaluation framework (Walker et al., 2000a).

0

20

40

60

80

100

120

140

160

10 16 9 12 13 11 14 15

Subject

S
y
lL

o
c
a
te

8.6 Summary

163

The proposed model cannot be directly implemented in the HIGGINS architecture as de-
scribed in Chapter 6. In this architecture, the grounding action manager (GAM), which only
considers the discourse history, is separated from the navigation action manager (NAM),
which also looks into the domain database. This distinction was made in order for the ground-
ing actions to be realised as quickly as possible, while the NAM made more complex decisions.
However, the model proposed in this chapter relies on the possibility of looking into the do-
main database for making grounding decisions as well. This shows that it might be unfeasible
to maintain the separation of action managers if the system is to take more complex grounding
decisions.
As stated above, the cost functions presented in Table 8.1 should be applicable to other

domains as well. The two parameters that are task-dependent are SylRec and SylMis. In this
chapter, it was shown how these may be estimated for the HIGGINS navigation domain. For a
much simpler domain, such as a standard slot-filling travel booking domain, these parameters
could possibly be estimated in a more straightforward manner. In the navigation domain,
there is not a fixed set of slots that are to be filled. Thus, each concept may contribute with a
different amount of information (the concept information gain). In a domain where a fixed set
of slots needs to be filled, this notion is not relevant. Instead, SylRec could possibly be mapped
directly to SylCon (the number of syllables it takes on average to receive a new concept). If
there is a final confirmation dialogue at the end of the slot-filling, SylMis could possibly be
estimated as the number of syllables it takes on average to reach the final confirmation and
make the repair.
The presented model also remains to be evaluated, for example by comparing the perform-

ance of a system using this model with a system based on handcrafted thresholds, or a more
complex model, such as POMDP.

8.6 Summary

This chapter has presented a data-driven decision-theoretic approach to making grounding
decisions in spoken dialogue systems, that is, to decide which recognition hypotheses to con-
sider as correct and whether to make a clarification request or display understanding. This
model accounts for the uncertainty of the speech recognition hypothesis, as well as the costs
involved in taking grounding actions and the task-related costs that a misunderstanding or a
rejection would have. Based on a task analysis of the HIGGINS navigation domain, cost func-
tions were derived. It was argued that efficiency– the number of syllables uttered by the user
and system – was useful as a cost measure for the navigation domain. Dialogue data was then
used to estimate parameters for these cost functions, so that the grounding decision may be
based on both confidence and dialogue context. For example, it was shown how concepts with
high information gain should more often be clarified than concepts with low information gain,
which are either simply rejected or accepted. To silently accept a concept which is associated
with a very high cost of misunderstanding, a very high confidence in this concept is required.

Chapter 8. Making grounding decisions

164

165

CHAPTER 9

Prosody in fragmentary grounding

The evaluation of the HIGGINS system presented in Chapter 7 showed that fragmentary
grounding utterances often failed, in the sense that the users often did not seem to understand
them and act as expected. As already noted, this may be explained partly by the fact that users
do not expect such human-like behaviour from dialogue systems, partly because they were
used in contexts where a human would not have used them, and partly because the prosodic
model was very simplistic and not tested.
In this chapter, the effects of prosodic features on the interpretation of synthesised frag-

mentary grounding utterances in Swedish dialogue are studied. First, the users’ interpretation
of such utterances, depending on their prosodic realisation, will be explored in a perception
experiment. In a second experiment, we will test the hypothesis that users of spoken dialogue
systems not only perceive the differences in prosody of synthesized fragmentary grounding
utterances, and their associated pragmatic meaning, but that they also change their behaviour
accordingly in a human-computer dialogue setting.
The following scenario, taken from the pedestrian navigation domain used in previous

chapters, was used in the first experiment presented in this chapter:

(65) U.1: Further ahead on the right I see a red building.
S.2: Red (?)

As discussed in 3.1.4, the evidence of understanding that the system provides in S.2 in this
example may have different readings, depending whether we interpret it is as positive or nega-
tive evidence, and depending on what level of action the evidence concerns. Three possible
readings of S.2 are shown in Table 9.1.

Chapter 9. Prosody in fragmentary grounding

166

Table 9.1: Different readings of the fragmentary grounding utterance S.2 in example (65).

Reading Paraphrase Evidence of understanding

ACCEPT Ok, red Display of understanding. Positive on all levels.

CLARIFYUND Do you really mean red? Clarification request. Positive perception,
negative/uncertain understanding.

CLARIFYPERC Did you say red? Clarification request. Positive contact, uncer-
tain perception.

The reading “positive understanding, negative acceptance” (as discussed in 3.1.4) has not been
included here. The reason for this is that it is hard to find examples which may be applied to
spoken dialogue systems (at least in the studied domain) where reprise fragments may have
such a reading.

9.1 Prosody in grounding and requests

Considerable research has been devoted to the study of question intonation in human-human
dialogue. However, there has not been much study on the use of different types of interroga-
tive intonation patterns in spoken dialogue systems. Not only does question intonation vary in
different languages, but also different types of questions (e.g., wh and yes/no) can result in
different intonation patterns (Ladd, 1996).
In very general terms, the most commonly described tonal characteristic for questions is

high final pitch and overall higher pitch (Hirst & Cristo, 1998). In many languages, yes/no
questions are reported to have a final rise, while wh-questions typically are associated with a
final low. In Dutch, for example, van Heuven et al. (1999) have documented a relationship
between incidence of final rise and question type, in which wh-questions, yes/no questions
and declarative questions obtain an increasing number of final rises, in that order. Wh-
questions can, moreover, often be associated with a large number of various contours. Bolinger
(1989), for example, presents various contours and combinations of contours which he relates
to different meanings in wh-questions in English. One of the meanings most relevant to the
present study is what he terms the “reclamatory” question. This is often a wh-question in
which the listener has not quite understood the utterance and asks for a repetition or an elabo-
ration. This corresponds to the paraphrase, “What did you mean by red?”
In Swedish, interrogative mode is most often signalled by word order with the finite verb

preceding the subject (yes/no questions) or by lexical means (e.g., wh-questions). Question
intonation can also be used to convey interrogative mode when the question has declarative
word order. This type of echo question is relatively common in Swedish especially in casual
questions (Gårding, 1998). Question intonation of this type has been studied in scripted elic-
ited questions and has been primarily described as marked by a raised topline and a widened
F0 range on the focal accent (Gårding, 1998).

9.2 Experiment I: Interpretations

167

In recent perception studies, however, House (2003) demonstrated that a raised funda-
mental frequency (F0) combined with a rightwards focal peak displacement is an effective
means of signalling question intonation in Swedish echo questions (declarative word order)
when the focal accent is in final position. Furthermore, there was a trading relationship be-
tween peak height and peak displacement so that a raised F0 had the same perceptual effect as
a peak delay of 50 to 75 ms.
In a study of a corpus of German task-oriented human-human dialogue, Rodriguez &

Schlangen (2004) found that the use of intonation seemed to disambiguate clarification types
with rising boundary tones used more often to clarify acoustic problems than to clarify refer-
ence resolution.

9.2 Experiment I: Interpretations

In Experiment I, subjects were asked to listen to short dialogue fragments in Swedish, similar
to example (65) above, where the computer is saying a fragmentary grounding utterance after
a user turn, and to judge what was actually intended by the computer, based on prosodic fea-
tures of the utterance.

9.2.1 Method

9.2.1.1 Stimuli
Three test words comprising the three colours: blue, red and yellow (blå, röd, gul) were synthe-
sized using an experimental version of LUKAS (Filipsson & Bruce, 1997) diphone Swedish
male MBROLA voice (Dutoit et al., 1996) implemented as a plug-in to the WaveSurfer
speech tool (Sjölander & Beskow, 2000).
For each of the three test words, the intonational contour (i.e., the F0 curve) was manipu-

lated by changing the following parameters: 1) F0 peak POSITION, 2) F0 peak HEIGHT, and 3)
Vowel DURATION. Three peak positions were obtained by time-shifting the focal accent peaks
in intervals of 100 ms comprising early, mid and late peaks. A low peak and a high peak set of
stimuli were obtained by setting the accent peak at 130 Hz and 160 Hz respectively. Two sets
of stimuli durations (normal and long) were obtained by lengthening the default vowel length
by 100 ms. All combinations of three test words and the three parameters gave a total of 36
different stimuli. Six additional stimuli, making a total of 42, were created by using both the
early and late peaks in the long duration stimuli which created a double peaked stimulus. A
possible late-mid peak was not used in the long duration set since a late rise and fall in the
vowel did not sound natural. The stimuli are presented schematically for the word “yellow” in
Figure 9.1.
The first turn of the dialogue fragment in example (65) above was recorded for each colour

word and concatenated with the synthesized test words, resulting in 42 different dialogue
fragments similar to example (65).

Chapter 9. Prosody in fragmentary grounding

168

9.2.1.2 Experimental design and procedure
The subjects were 8 Swedish speakers in their 20s and 30s (2 women and 6 men, 2 second
language speakers and 6 native speakers). All of the subjects had some knowledge of speech
technology, although none of them worked with the issues addressed in the experiment.
The subjects were placed in front of a computer monitor in a quiet room. In order to give

a sense of the kind of domain envisaged in the experiment, the subjects were shown a video
demonstrating a typical dialogue between the HIGGINS spoken dialogue system and a user.
The subjects were told that they would listen to 42 similar dialogue fragments containing a
user utterance and a system utterance each, and that their task was to judge the meaning of the
system utterance by choosing one of three alternatives and to rate their own confidence in that
choice. They were also informed that they could only listen to each dialogue fragment once.
After the instructions, the test was started and the subjects were left alone for the duration of
the experiment.
During the experiment, the subjects were played each of the 42 stimuli once, in random

order, on a loudspeaker. After each stimulus, they used the GUI shown in Figure 9.2 to pick a
paraphrase for the system utterance and to judge their own confidence in that choice. The
different paraphrases corresponded to the ones shown in Table 9.1 above. The subjects could
not listen to the stimulus more than once, nor could they skip any stimuli. The total test time
was around five to ten minutes per subject.

9.2.2 Results

There were no significant differences in the distribution of votes between the different colours
(“red”, “blue”, and “yellow”) (χ2=3.65, dF=4, p>0.05). There were not any significant differ-
ences for any of the eight subjects (χ2=19.00, dF=14, p>0.05), nor had the DURATION pa-
rameter any significant effect on the distribution of votes (χ2=5.72, dF=2, p>0.05).

Figure 9.1: Stylized representations of the stimuli “gul” (“yellow”), showing the F
0
 peak posi-

tion. The left panel shows normal duration, the right lengthened duration.

9.2 Experiment I: Interpretations

169

Figure 9.2: The test GUI (translated from Swedish).

Both POSITION and HEIGHT had significant effects on the distribution of votes, which is
shown in Table 9.2 (χ2=70.22, dF=4, p<0.001 resp. χ2=59.40, dF=2, p<0.001). The interac-
tion of the parameters POSITION and HEIGHT also gave rise to significant effects (χ2=121.12,
dF=10, p<0.001), as shown in the bottom of Table 9.2. Figure 9.3 shows the distribution of
votes for the three interpretations as a function of position for both high and low HEIGHT.

Table 9.2: Interpretations that were significantly overrepresented, given the values of the pa-
rameters POSITION and HEIGHT, and their interactions. The standardized residuals from the χ2-
test are also shown.

POSITION Interpretation Std. resid.

early ACCEPT 3.1

mid CLARIFYUND 4.6

late CLARIFYPERC 3.6

HEIGHT Interpretation Std. resid.

high CLARIFYUND 3.2

low ACCEPT 4.0

POSITION* HEIGHT Interpretation Std. resid.

early*low ACCEPT 3.4

mid*low ACCEPT 3.4

mid*high CLARIFYUND 5.6

late*high CLARIFYPERC 4.4

Chapter 9. Prosody in fragmentary grounding

170

early

 mid
 late

Number of votes

A CCEPT

C LARIFY U ND

 C LARIFY P ERC

0

10

20

30

40

early

late

HIGH

 LOW

mid

Figure 9.3: The distribution of votes for the three interpretations as a function of position:
where HEIGHT is high on the left, and low on the right. The circles mark distributions that are
significantly overrepresented.

Weighting the votes with the subjects’ own confidence scores only seemed to strengthen the
results, so they were not used for further analysis. Results from the double-peak stimuli were
generally more complex and are not presented here.
In summary, this first experiment shows that three prototypical intonation patterns can be

distinguished, corresponding to the different readings of the fragmentary grounding utterance:
an early low F0 peak corresponds to ACCEPT (“ok, red”), a mid high F0 peak corresponds to
CLARIFYUND (“do you really mean red?”), and a late high F0 peak corresponds to CLARI-
FYPERC (“did you say red?”).

9.3 Experiment II: User responses

In Experiment II, we wanted to test the hypothesis that users of spoken dialogue systems not
only perceive the differences in prosody of synthesized fragmentary grounding utterances, and
their associated pragmatic meaning, but that they also change their behaviour accordingly in a
human-computer dialogue setting.

9.3.1 Method

To test our hypothesis, an experiment was designed in which subjects were given the task of
classifying colours in a dialogue with a computer. They were told that the computer needed
the subject’s assistance to build a coherent model of the subject’s perception of colours, and

9.3 Experiment II: User responses

171

that this was done by having the subject choose among pairs of the colours green, red, blue
and yellow when shown various nuances of colours in-between (e.g., purple, turquoise, orange
and chartreuse). An example classification task is shown in Figure 9.4.

Figure 9.4: An example colour classification task. The computer asked the subject which of the
two colours on the flanks was most similar to the one in the middle.

The subjects were also told that the computer may sometimes be confused by the chosen col-
our or disagree. The test configuration consisted of a computer monitor, loudspeakers, and an
open microphone in a quiet room. An extra close-talking microphone was fitted to the sub-
ject’s collar. An experiment conductor sat behind the subjects during the experiment, facing a
different direction. The total test time was around ten minutes per subject.
The experiment used a Wizard-of-Oz set-up: a person sitting in another room – the Wiz-

ard – listened to the audio from the close talking microphone (a radio microphone). The Wiz-
ard fed the system the correct colours spoken by the subjects, as well as giving a go-ahead sig-
nal to the system whenever a system response was appropriate. The subjects were informed
about the Wizard setup immediately after the experiment, but not before. Here is an example
of a typical dialogue fragment (translated from Swedish):

(66) S.1: [presents turquoise flanked by green and blue]
 which colour is closest to the one in the middle?
U.2: green
S.3: green
U.4: mm
S.5: okay
 [presents orange flanked by red and yellow]
 and this?
U.6: yellow perhaps

The Wizard had no control over what utterance the system would present next. Instead, this
was chosen by the system depending on the context, just as it would be in a system without a
Wizard. The grounding fragments (such as S.3 above) came in four flavours: a repetition of
the colour with one of the three prototype intonations found in Experiment I (ACCEPT,
CLARIFYUND or CLARIFYPERC) or a simple acknowledgement consisting of a synthesized /m/

Chapter 9. Prosody in fragmentary grounding

172

or /a/ (ACKNOWLEDGE) (Wallers et al., 2006). The system picked these at random so that for
every eight colours, each grounding fragment appeared twice.
All system utterances were synthesized using the same voice as the experiment stimuli used

in Experiment I. The prosody of each utterance was hand-tuned before synthesis in order to
raise the subjects’ expectations of the computer’s conversational capabilities as much as possi-
ble. As seen in the dialogue example above, the computer made heavy use of conversational
phenomena such as backchannels and ellipses. There was also a rather high degree of variabil-
ity in the exact rendition of the system responses. Each of the non-stimuli responses was avail-
able in a number of varieties, and the system picked from these at random. Due to the sim-
plicity of the task and the Wizard-of-Oz setup, the system was very responsive, with virtually
no delays caused by processing.
The subjects were 10 Swedish speakers between 20 and 65 years old (7 women and 3 men,

1 second language speaker and 9 native speakers). One of the subjects had some knowledge of
speech technology, although he did not work with the issues addressed in the experiment.

9.3.2 Results

The recorded conversations were automatically segmented into utterances based on the logged
timings of the system utterances. User utterances were then defined as the recorded audio
segments in-between these. Out of ten subjects, two did not respond at all to any of the
grounding utterances (i.e., didn’t say anything similar to U.4 in the example above). For the
other eight, responses were given in 243 out of 294 possible places. Since the object of our
analysis was the subjects’ responses, two subjects in their entirety and 51 silent responses dis-
tributed over the remaining eight subjects were automatically excluded from analysis.
In almost all cases, subjects simply acknowledged the system’s grounding utterance with a

brief “yes” or “mm” as the utterance U.4 in the example above. However, when listening to
the dialogues, we got the impression that the response time differed. For example, the response
time after a grounding fragment with the meaning “do you really mean red?” seemed to be
longer than after a fragment meaning “did you say red?”.
To test whether the response times were in fact affected by the type of preceding fragment,

the time between the end of each system grounding fragment and the user response (in the
cases there was a user response) was automatically determined using /nailon/, a software pack-
age for extraction of prosodic and other features from speech (Edlund & Heldner, 2006). Si-
lence/speech detection in /nailon/ is based on a fairly simplistic threshold algorithm, and for
our purposes, a preset threshold based on the average background noise in the room where the
experiment took place was deemed sufficient. The results are shown in Table 9.3. The table
shows that, just in line with our intuitions, ACCEPT fragments are followed by the shortest re-
sponse times, CLARIFYUND the longest, and CLARIFYPERC between these. The differences are
statistically significant (one-way within-subjects ANOVA; F=7.558; dF=2; p<0.05).
These response time differences are consistent with a cognitive load perspective that could

be applied to the fragment meanings ACCEPT, CLARIFYPERC and CLARIFYUND. To simply
acknowledge an acceptance should be the easiest, and it should be nearly as easy, but not quite,

9.4 Discussion

173

for users to confirm what they have actually said. It should take more time to re-evaluate a
decision and insist on the truth value of the utterance after CLARIFYUND. This relationship is
nicely reflected in the data.

Table 9.3. Average of subjects’ mean response times after grounding fragments.

Grounding fragment Response time

ACCEPT 591 ms

CLARIFYUND 976 ms

CLARIFYPERC 634 ms

9.4 Discussion

The results of these studies can be seen in terms of a tentative model for the intonation of
fragmentary grounding utterances in Swedish. A low-early peak would function as an ACCEPT
statement, a mid-high F0 peak as a CLARIFYUND question, and a late high peak as a CLARI-
FYPERC question. This would hold for single-syllable accent I words. Accent II words and
multi-word fragments are likely to be more complex.
For these single-word grounding utterances, the general division between statement (early,

low peak) and question (late, high peak) is consistent with the results obtained for Swedish
echo questions (House, 2003) and for German clarification requests (Rodriguez & Schlangen,
2004). However, the further clear division between the interrogative categories CLARIFYUND
and CLARIFYPERC is especially noteworthy. This division is related to the timing of the high
peak. The high peak is a prerequisite for perceived interrogative intonation in this study, and
when the peak is late, resulting in a final rise in the vowel, the pattern signals CLARIFYPERC.
This can also be seen as a yes/no question and is consistent with the observation that yes/no
questions generally more often have final rising intonation than other types of questions. The
high peak in mid position is also perceived as interrogative, but in this case it is the category
CLARIFYUND which dominates as is clearly seen in the left panel of Figure 9.3. This category
can also been seen as a type of wh-question similar to the “reclamatory” question discussed in
Bolinger (1989). For example, the question “do you really mean red?” is similar to (and may
have the same effect as) “what do you mean by red?”
Another interesting result is the evidence of an interaction between the parameters peak

height and peak position when the peak position is mid. Here, the high-mid peak is perceived
as the CLARIFYUND question, while the low-mid peak is perceived as the ACCEPT statement.
A similar type of interaction is the trading relationship between peak height and peak dis-
placement in House (2003), where a higher earlier peak has the same perceptual status as a
lower later peak.

Chapter 9. Prosody in fragmentary grounding

174

It is somewhat surprising that the longer duration was not perceived as more interrogative,
as this was expected to be interpreted as hesitation and uncertainty. The fact that the majority
of the stimuli ended in a very low F0 may have precluded this interpretation.
Although we have not quantified other prosodic differences in the users’ responses in Ex-

periment II, we also got the impression that there were subtle differences in, for example, pitch
range and intensity. These differences may function as signals of certainty following CLARI-
FYPERC and signals of insistence or uncertainty following CLARIFYUND. More neutral, un-
marked prosody seemed to follow ACCEPT.

9.4.1 Future Work

When listening to the resulting dialogs from Experiment II as a whole, the impression is that
of a natural dialogue flow with appropriate timing of responses, feedback and turn-taking. To
be able to create spoken dialogue systems capable of this kind of dialogue flow, we must be
able to both produce and recognise fragmentary grounding utterances and their responses.
Further work using more complex fragments and more work on analysing the prosody of user
responses is needed.
As grounding fragments become more complex, the interaction between focus and level of

action must also be understood. Consider the following examples:

(67) U: I can see a blue brick building.
S: A red brick building?
U: No, blue

(68) U: I can see a red concrete building.
S: A red brick building?
U: No, concrete

By using different prosodic realisations in these examples, the system may signal more pre-
cisely where the uncertainty is located. This should in turn affect how a potential negation by
the user should be integrated in the resulting semantic structure. However, it is also possible
that the uncertainty may be associated with the different levels of action dealt with in this
chapter. To understand the prosodic interplay between level of action and focus is an interest-
ing challenge.

9.5 Summary

In this chapter, two experiments have been presented. In the first experiment, subjects were
given the task of listening to short dialogue fragments containing synthesised fragmentary
grounding utterances, and choosing the most likely paraphrase. The prosody of these utter-
ances was systematically varied in order to study how the prosodic realisation affects the inter-
pretation of them; whether they signalled acceptance or were interpreted as a clarification re-
quest, and which level of action was concerned. The results show that a low early F0 peak is

9.5 Summary

175

interpreted as acceptance; a mid high F0 peak is interpreted as a clarification of understanding;
and a late high F0 peak is interpreted as a clarification of perception.
The second experiment show that users of spoken dialogue systems not only perceive the

differences in prosody of synthesized fragmentary grounding utterances, and their associated
pragmatic meaning, but that they also change their behaviour accordingly in a human-
computer dialogue setting. The results show that the subjects’ response times differed signifi-
cantly, depending on the prosodic features of the grounding fragment spoken by the system.

PART V

Conclusion

179

CHAPTER 10

Summary and discussion

10.1 Thesis summary

In spoken dialogue systems, uncertainty and errors are inevitable, mostly due to the error-
prone speech recognition process. Even as speech recognition technology improves, users and
developers of dialogue systems will likely try to make the interaction more efficient by taking
risks and introducing more ambiguity and uncertainty, at least in systems targeted towards
more human-like conversational dialogue. A dialogue system must therefore be aware of and
react appropriately to these errors. It must have models and methods for detecting potential
errors in its hypotheses of what the user is saying, for deciding what to do depending on its
uncertainty of these hypotheses and the costs of different outcomes, for displaying its under-
standing to the user, for making clarification requests, and for detecting errors in propositions
it has already accepted.
This thesis has presented experiments on these issues and suggested methods and models

for handling them. We will here make a brief summary of these contributions.

10.1.1 Methods for exploring human error handling

As stated in the introduction, apparently satisfactory communication may often take place
between humans without the listener arriving at a full interpretation of the words used. The
question is how this seemingly smooth handling of uncertainty and miscommunication in
human-human dialogue can be transferred to human-computer dialogue In Part II of this
thesis, two experimental setups were presented, exploring how humans might deal with errors
caused by imperfect models in the speech recognition process.

Chapter 10. Summary and discussion

180

In a first experiment, pairs of subjects were given the task of guiding each other on a vir-
tual campus by talking to each other. The person giving directions (the “operator”) could not
hear what the other speaker (the “user”) said. Instead, the user’s speech was recognised by a
speech recogniser and the operator could read the results on a screen. This way, their reactions
to speech recognition errors in a real dialogue setting could be studied.
In a second experiment, human judges were presented with data collected from the first

experiment. Their task was to study the erroneous speech recognition results and try to deter-
mine which words were correct and which were not. By varying the amount of information
given to them (such as dialogue context, ASR confidence scores, n-best lists), it was possible to
study which factors the operators might have relied upon when detecting errors in the first
experiment.

10.1.2 Non-understanding recovery

The first of the two experiments described above revealed that the operators did not routinely
signal non-understanding, such as uttering “what did you say?”, when faced with incompre-
hensible speech recognition results. Instead, they tried to ask task-related questions that con-
firmed their hypothesis about the user’s position. This strategy led to fewer non-
understandings of the subsequent user utterance, and thus to a faster recovery from the prob-
lem. When they did signal non-understanding, this had a negative effect on the user’s experi-
ence of task success. Despite the numerous non-understandings, users reported that they were
almost always understood.
This is very different from the behaviour of most current dialogue systems. When a system

is faced with a non-understanding, it is often assumed that there is nothing left to do but to
signal non-understanding and thereby encourage repetition. There are three possible reasons
why this strategy failed more often than others in the experiment, and why they often fail in
spoken dialogue systems. First, speakers tend to hyperarticulate when repeating themselves,
and hyperarticulated speech is something that many speech recognisers do not have in their
acoustic models. Second, non-understandings often occur because the utterance to recognise is
poorly covered by the speech recognition models (it may even be out-of-vocabulary). If the
models did not cover the utterance the first time, chances are that they will not do it a second
time either. Third, signalling non-understanding may be perceived as frustrating by the users,
who may experience the dialogue as dominated by explicit error handling. Thus, for the design
of spoken dialogue systems, the results suggest that when non-understandings occur, a good
domain model and robust parsing techniques should be used to, if possible, pose relevant task-
related questions to the user, instead of signalling non-understanding.

10.1.3 Early error detection

In, the second experiment on human error handling, early error detection on word level was
explored, in other words, the immediate detection of erroneous words in the speech recogni-
tion results. The results show that, in doing this task, humans benefit from both word confi-

10.1 Thesis summary

181

dence scores and 5-best lists delivered by the speech recogniser. Immediate dialogue context
(the previous operator/system utterance) was helpful (as long as the recognitions were not too
poor), but longer context had no effect.
A machine learning experiment using two different learners for the task (memory-based

and transformation-based) showed that word confidence scores were useful for automatic clas-
sification, and that other factors may contribute as well. Both lexical and contextual (from the
utterance and from the discourse) features further improve performance, especially for content
words.

10.1.4 Concept- and word-level error handling

A common approach to the decision between accepting and rejecting a hypothesis of what the
user has said is to simply use the confidence score and compare it against a threshold. The
results presented above, showing that other factors may contribute, is in line with previous
research done in the area. However, most previous studies on early error detection have focus-
sed on the detection of errors on the utterance level – the task has been to decide whether a
hypothesis of a complete user utterance is correct or not. Such utterance-level error handling is
often feasible in command-based dialogue systems where utterances are relatively short and
predictable. However, in conversational dialogue systems, utterance-level error handling is
often too simplistic. Humans engaging in conversation may often focus on parts of utterances,
for example by posing fragmentary clarification requests, and thereby increase the efficiency of
the dialogue. In dialogue systems that are targeted towards more human-like conversation,
speech recognition results and the semantic interpretations of them may often be partly correct.
This calls for error handling on a “sub-utterance” level.
As part of the work for this thesis, the HIGGINS spoken dialogue system has been devel-

oped and evaluated. The initial domain for this system has been pedestrian navigation. The
system has served as a test-bed for developing and evaluating techniques and models for con-
cept-level error handling, such as robust interpretation, modelling grounding status in the
discourse, displaying understanding, posing clarification requests, and late error detection.

10.1.5 Robust interpretation

The module for natural language understanding developed for HIGGINS, called PICKERING, is
a robust interpreter, designed to parse results from a speech recogniser with n-gram language
models in a conversational dialogue system. A context-free grammar (CFG) is used for parsing
the input, but to add robustness, the interpreter applies a number of additional techniques to
the standard CFG parsing algorithm. It allows unexpected words between and inside phrases,
allows non-agreement in phrases, and computes concept-confidence scores.
An evaluation of PICKERING indicates that it generalises well when applied to unseen ut-

terances, within the limited domain, produced by new speakers. As the WER of the ASR out-
put increases, the set of robustness techniques utilised leads to graceful degradation of the in-
terpretation results. The two techniques used to relax the CFG-constraints that were tested –

Chapter 10. Summary and discussion

182

allowing non-agreement and insertions – both improved performance. Allowing an unlimited
number of insertions into syntactical structures caused neither decline nor increase in accuracy.

10.1.6 Modelling grounding status

In HIGGINS, the dialogue management is divided into discourse modelling and action selec-
tion. The discourse modeller, called GALATEA, can be regarded as a final step in the interpreta-
tion processing chain, in which the dialogue context is considered. The task of GALATEA is to
resolve ellipses and anaphora, but also to model the grounding status of concepts. This
grounding status contains information about who has mentioned a given concept, when it has
been mentioned, the surface realisation of it, and the system’s confidence in it. As the same
concept is mentioned several times, the grounding information gets unified and the grounding
status is boosted. This way, the system may identify concepts in which it has low confidence,
and then decide to display its understanding to the user or make a clarification request. How-
ever, since the confidence is represented in the model, the system may also postpone error
handling and identify misunderstandings at a later stage, so-called late error detection. GALA-
TEA does not only model utterances from the user, but also from the system. The system may
therefore track how its own actions affect the grounding status of concepts. Since GALATEA
also resolves ellipses and anaphora, the choice of utterance realisation (for example choice of
referring expression) will affect how the grounding status gets updated.
An evaluation of the complete HIGGINS system showed that the performance of GALATEA

and the rest of the system looks promising, not only when utterances are correctly recognised,
but also when ASR errors are introduced.

10.1.7 Making grounding decisions

In the initial implementation of HIGGINS, the grounding decisions – that is, decisions about
which recognition hypotheses to consider as correct and which grounding actions to take –
were, as in most dialogue systems, based on hand-crafted confidence thresholds. In such an
approach, a low confidence leads to rejection, a mid confidence to a clarification or display of
understanding, and a high confidence to a silent acceptance. The problem with this approach
is that the thresholds used are static, and not based on any empirical material or any theoreti-
cally sound model.
Based on the data collected for evaluating HIGGINS, a decision-theoretic approach was

used to build a data-driven model for making grounding decisions. Ideally, the grounding
decision should take into account the uncertainty of the hypothesis, the costs involved in tak-
ing the different grounding actions, and the costs of rejecting a correct hypothesis or falsely
accepting an incorrect hypothesis. Based on task analysis of the HIGGINS navigation domain,
cost functions that take these factors into account were derived. It was argued that efficiency–
the number of syllables uttered by the user and system – is useful as a cost measure for the
navigation domain. Dialogue data was then used to estimate parameters for these cost func-
tions, so that the grounding decision may be based on both confidence and dialogue context.

10.1 Thesis summary

183

For example, it was shown how concepts with high information gain should more often be
clarified than concepts with low information gain, which are either simply rejected or accepted.
To silently accept a concept which is associated with a very high cost of misunderstanding, a
very high confidence in this concept is required.

10.1.8 Fragmentary grounding

Fragmentary utterances, like S.2 in the following example, are commonly used as evidence of
understanding in human-human dialogue:

(69) U.1: I can see a red building.
S.2: Red?

By using fragmentary grounding, speakers may not only improve the efficiency of the dialogue,
they may also pinpoint the source of the problem (in the example, the word “red”).
In this thesis, the use of fragmentary grounding for concept-level error handling in spoken

dialogue systems has been explored. It has been shown how such utterances are produced and
interpreted in the HIGGINS system, that is, how the system may choose the right lexical reali-
sation and how the grounding status gets updated after the user has responded. There have
previously not been many studies on the use of fragmentary clarification requests in spoken
dialogue systems interacting with real users. The results from the HIGGINS evaluation showed
that users of spoken dialogue systems may have difficulties understanding fragmentary clarifi-
cation, especially after incorrect speech recognition hypotheses, and that further research on
when to use them, how to realise them, and how to understand the user’s reaction to them is
needed.
One of the difficulties with fragmentary grounding utterances is that they provide little

syntactic guidance, and that their pragmatic meaning therefore is dependent on context and
prosody to a large extent. In two experiments, the relation between prosodic realisation and
interpretation of such utterances was explored. In the first experiment, subjects listened to
synthesised fragmentary grounding utterances in which prosodic features were varied system-
atically, and the subjects were given the task of choosing between different paraphrases. The
results showed that the position and height of the F0 peak not only affects whether the
grounding utterance is interpreted as positive or negative evidence, but also which level of
action is concerned in the case of negative evidence. In a second experiment, a Wizard-of-Oz
setting was used to show that users of spoken dialogue systems not only perceive the differ-
ences in prosody and the pragmatic meaning of grounding utterances, but that they also
change their behaviour accordingly in a human-computer dialogue setting.

Chapter 10. Summary and discussion

184

10.2 Discussion and future work

10.2.1 Integration and improvements

As stated in the introduction, all aspects of error handling cannot be covered in the scope of
this thesis, but the ambition has been to study how error handling may be performed in differ-
ent parts of a complete spoken dialogue system. It should be noted, though, that not all of the
models and methods explored in this thesis are currently integrated in the HIGGINS system.
There are also many ways in which they may be improved and explored further. We will con-
tinue with a brief discussion on some of these issues.
The machine-learning methods for early error detection explored in Chapter 5 are not yet

used by the HIGGINS system to sort out incorrect words. For these methods to be really useful
in HIGGINS, methods for assigning probabilistic scores instead of binary decisions should be
explored. A further improvement would be to do this confidence estimation on the concept-
level (i.e., on the PICKERING results), resulting in concept confidence scores that may be used
for modelling grounding status in GALATEA.
The action selection in HIGGINS was divided into a navigation action manager (NAM)

and a grounding action manager (GAM), where only the NAM consults the domain database.
The purpose of this division was to make the GAM more generic and responsive. However, if
the grounding decision model proposed in Chapter 8 was to be implemented in HIGGINS, this
division may not be viable. In order to make dynamic grounding decisions that take concept
information gain into account, the grounding decision maker has to consult the domain data-
base.
Much more work is needed to understand the relation between prosody and the pragmatic

effects of fragmentary grounding utterances, before it results in a full model that may be used
in a spoken dialogue system. However, the explorations in Chapter 9 may be regarded as a
step towards such a model for Swedish.
In Chapter 6, it was shown how clarification on the perception level is handled in HIG-

GINS. An important next step is to model the clarification of ambiguous referring expressions
or ellipses. As the system starts to make fragmentary clarification requests, users are likely to do
this as well. Thus, the system must also be capable of recognising such requests.
It was also shown how the modelling of grounding status and confidence over time made

it possible for the system to postpone error handling and detect errors later on (late error de-
tection). However, while this information is stored for later use, a very simplistic model for
detecting errors based on this information was used. Here, an empirical approach (such as
machine-learning) would be interesting to explore, as discussed in 6.8. Another aspect of late
error detection is to understand the users’ reactions after display of understanding and identify
the errors that they may reflect. As was evident in Chapter 8, display of understanding after
incorrect recognitions very often failed, in the sense that the users did not react to them in a
way that allowed the system to repair the misunderstanding.

10.2 Discussion and future work

185

10.2.2 Generalisation

Throughout this thesis, the guiding and navigation domain has been used in experiments and
implementations. This has allowed us to reuse data and experiences between the different
studies. As pointed out in previous chapters, the domain is similar to the Map Task setting
used in many linguistic studies on human-human dialogue. There are several reasons why this
domain is so frequently studied. Since the maps used are provided by the experimenter, it
gives her control over the task and what the subjects will talk about. If we want to study con-
versational dialogue systems, this predictability is very useful, since the vocabulary may be
restricted. The Map Task also allows the experimenter to make the maps different, in order to
study how speakers deal with such problems. This has not been done in the work presented
here, since the focus has been on problems that arise from speech recognition errors. Another
feature of this domain is the frequent use of referring expressions and anaphora, which is in-
teresting from a grounding perspective. As pointed out in 2.3.3.1, anaphora is not very often
addressed in dialogue systems. One explanation for this is that anaphora is not typically
needed in the extensively studied travel booking domain.
It remains to be investigated to what extent the results obtained in this thesis apply to

other types of dialogue systems in other domains. The possibility to generalise the results on
human non-understanding recovery presented in Chapter 4 was discussed in 4.4.2. The meth-
ods for early error detection investigated in Chapter 5 should be applicable to other systems
and domains. However, the set of features that is found to be useful will likely vary. The ge-
neric modules in the HIGGINS dialogue system presented in Chapter 6 have been used to im-
plement a few other domains, as mentioned in 6.8. The general model and parameters for
making grounding decisions presented in Chapter 8 should be applicable to other domains.
However, as discussed, the more specific estimation of the task-dependent parameters must be
adapted for the domain. The tentative prosodic model presented in Chapter 9 should not be
domain dependent.
As stated in the introduction, two general themes in this thesis have been to draw lessons

from human error handling and to explore concept-level error handling. These are issues that
may be more important for conversational dialogue systems than for command-based systems,
in which more human-like error handling strategies may seem confusing and in which a typi-
cal utterance may not contain too many concepts. However, early error detection and ground-
ing decisions are important in such systems as well, and the methods proposed here for these
issues should be applicable. It is possible that other error handling issues than the ones ad-
dressed in this thesis may be more important in command-based systems. For example, the
“speech graffiti” approach discussed in 2.1 may be used to provide the user with a pre-defined
set of error correction commands. A much larger vocabulary and shorter utterances may also
increase the usefulness of n-best lists, as discussed in 3.3.1.4.

187

References

Ainsworth, W. A., & Pratt, S. R. (1992). Feedback strategies for error correction in speech
recognition systems. International Journal of Man-Machine Studies, 36, 833-842.

Allen, J. F., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., & Stent, A. (2001a). To-
wards conversational human-computer interaction. AI Magazine, 22(4), 27-37.

Allen, J. F., & Core, M. (1997). Draft of DAMSL: Dialog act markup in several layers. Unpub-
lished manuscript.

Allen, J. F., & Ferguson, G. (1994). Events and actions in interval temporal logic. Journal of
Logic and Computation, 4(5), 531-579.

Allen, J. F., Ferguson, G., & Stent, A. (2001b). An architecture for more realistic conversa-
tional systems. In Proceedings of the 6th international conference on Intelligent user inter-
faces (pp. 1-8).

Allen, J. F., Miller, B. W., Ringger, E. K., & Sikorski, T. (1996). Robust understanding in a
dialogue system. In Proceedings of ACL 1996 (pp. 62-70).

Allen, J. F., & Perrault, C. R. (1980). Analyzing intention in utterances. Artificial Intelligence,
15(3), 143-178.

Allwood, J., Nivre, J., & Ahlsen, E. (1992). On the semantics and pragmatics of linguistic
feedback. Journal of Semantics, 9(1), 1-26.

Amalberti, R., Carbonell, N., & Falzon, P. (1993). User representations of computer systems
in human-computer speech interaction. International Journal of Man-Machine Studies,
38(4), 547-566.

Anderson, A., Bader, M., Bard, E., Boyle, E., Doherty, G., Garrod, S., Isard, S., Kowtko, J.,
McAllister, J., Miller, J., Sotillo, C., Thompson, H., & Weinert, R. (1991). The
HCRC Map Task corpus. Language and Speech, 34(4), 351-366.

Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.

Balentine, B., Morgan, D. P., & Meisel, W. S. (2001). How to build a speech recognition appli-
cation: a style guide for telephony dialogues. San Ramon CA: Enterprise Integration
Group.

References

188

Bangalore, S., Hakkani-Tür, D., & Tur, G. (2006). Introduction to the special issue on spo-
ken language understanding in conversational systems. Speech Communication, 48(3-4),
233-462.

Baus, J., Kray, C., Krüger, A., & Wahlster, V. (2002). A resource-adaptive mobile navigation
system. In Proceedings of the 7th international conference on Intelligent user interfaces (pp.
15-22).

Bell, L., Boye, J., & Gustafson, J. (2001). Real-time handling of fragmented utterances. In
Proceedings of NAACL 2001 Workshop: Adaptation in Dialogue Systems. Pittsburgh, PA.

Bell, L., & Gustafson, J. (1999). Repetition and its phonetic realizations: Investigating a
Swedish database of spontaneous computer directed speech. In Proceedings of ICPhS-99
(pp. 1221-1224).

Beskow, J. (2003). Talking heads - Models and applications for multimodal speech synthesis. Doc-
toral dissertation, KTH, Department of Speech, Music and Hearing, KTH, Stockholm.

Beskow, J., Edlund, J., & Nordstrand, M. (2005). A model for multi-modal dialogue system
output applied to an animated talking head. In Minker, W., Bühler, D., & Dybkjaer,
L. (Eds.), Spoken Multimodal Human-Computer Dialogue in Mobile Environments, Text,
Speech and Language Technology (pp. 93-113). Dordrecht, The Netherlands: Kluwer
Academic Publishers.

Black, A., & Lenzo, K. (2000). Limited domain synthesis. In Proceedings of ICSLP (pp. 410-
415). Beijing, China.

Bohus, D. (2007). Error awareness and recovery in conversational spoken language interfaces.
Doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.

Bohus, D., & Rudnicky, A. (2001). Modeling the cost of misunderstandings in the CMU
Communicator dialog system. In Proceedings of ASRU. Madonna di Campiglio, Italy.

Bohus, D., & Rudnicky, A. (2002). Integrating multiple knowledge sources for utterance-level
confidence annotation in the CMU Communicator spoken dialog system. Technical Report
CS-190, Carnegie Mellon University, Pittsburgh, PA.

Bohus, D., & Rudnicky, A. (2005a). Constructing accurate beliefs in spoken dialog systems.
In Proceedings of ASRU 2005.

Bohus, D., & Rudnicky, A. (2005b). Sorry, I didn't catch that! - An investigation of non-
understanding errors and recovery strategies. In Proceedings of SigDial (pp. 128-143).
Lisbon, Portugal.

Bohus, D., & Rudnicky, A. (2005c). A principled approach for rejection threshold optimiza-
tion in spoken dialog systems. In Proceedings of Interspeech (pp. 2781-2784). Lisbon,
Portugal.

Bohus, D., & Rudnicky, A. (2007). Implicitly-supervised learning in spoken language inter-
faces: an application to the confidence annotation problem. In Proceedings of SigDial
(pp. 256–264). Antwerp, Belgium.

References

189

Bolinger, D. (1989). Intonation and its uses: Melody in grammar and discourse. London: Ed-
ward Arnold.

Bos, J., & Oka, T. (2002). An inference-based approach to dialogue system design. In Proceed-
ings of the 19th international conference on Computational linguistics (pp. 1-7). Taipei,
Taiwan.

Bousquet-Vernhettes, C., Privat, R., & Vigouroux, N. (2003). Error handling in spoken dia-
logue systems: toward corrective dialogue. In Proceedings of Workshop on Error Han-
dling in Spoken Dialogue Systems (pp. 41-45). Chateau d'Oex-Vaud, Switzerland.

Bouwman, G., & Hulstijn, J. (1998). Dialogue strategy redesign with reliability measures. In
Proceedings of the First International Conference on Language Resources and Evaluation
(pp. 191-198). Granada, Spain.

Bouwman, G., Sturm, J., & Boves, L. (1999). Incorporating confidence measures in the
Dutch train timetable information system developed in the Arise project. In Proceed-
ings of ICASSP'99 (pp. 493-496).

Boves, L. (2004). Robust conversational system design. In Proceedings of the ITRW on Robust-
ness Issues In Conversational Interaction. Norwich, UK.

Boye, J., Gustafson, J., & Wirén, M. (2006). Robust spoken language understanding in a
computer game. Speech Communication, 48(3-4), 335-353.

Boye, J., Wiren, M., & Gustafson, J. (2004). Contextual reasoning in multimodal dialogue
systems: two case studies. In Proceedings of The 8th Workshop on the Semantics and
Pragmatics of Dialogue Catalogue'04 (pp. 19-21). Barcelona.

Brennan, S. E. (1996). Lexical entrainment in spontaneous dialog. In Proceedings of ISSD (pp.
41-44).

Brill, E. (1995). Transformation-based error-driven learning and natural langue processing: a
case study in part of speech tagging. Computational Linguistics, 21(4), 543-565.

Brill, E., Florian, R., Henderson, J., & Mangu, L. (1998). Beyond n-grams: Can linguistic
sophistication improve language modeling?. In Proceedings of the Thirty-Sixth Annual
Meeting of the Association for Computational Linguistics (pp. 186-190). San Francisco,
California.

Brown, G. (1995). Speakers, listeners and communication. Cambridge: Cambridge University
Press.

Brown, G., & Yule, G. (2004). Discourse analysis. Cambridge: Cambridge University Press.

Burnett, C., Walker, M., & Hunt, A. (2004). Speech synthesis markup language (SSML): version
1.0. http://www.w3.org/TR/speech-synthesis/.

Campbell, N. (2007). On the use of non-verbal speech sounds in human communication. In
Proceeedings of ParaLing'07 (pp. 23-28). Saarbrücken, Germany.

References

190

Carbonell, J. G. (1983). Discourse pragmatics and ellipsis resolution in task-oriented natural
language interfaces. In Proceedings ACL 1983 (pp. 164-168).

Carletta, J., & Mellish, C. S. (1996). Risk-taking and recovery in task-oriented dialogue. Jour-
nal of Pragmatics, 26(1), 71-107.

Carlson, R., Granström, B., & Hunnicutt, S. (1982). A multi-language text-to-speech module.
In Proceedings of the International Conference on Acoustics, Speech and Signal Processing,
(pp. 1604-1607). Paris.

Chapanis, A. (1951). Theory and method for analyzing errors in man-machine systems. An-
nals of the New York Academy of Science, 51, 1179-1203.

Chotimongkol, A., & Rudnicky, A. (2001). N-best speech hypotheses reordering using linear
regression. In Proceedings of Eurospeech (pp. 1829–1832).

Clark, H. H., & Schaefer, E. F. (1989). Contributing to discourse. Cognitive Science, 13(2),
259-294.

Clark, H. H. (1996). Using language. Cambridge University Press.

Clark, J. (1999). XSL Transformations (XSLT) Version 1.0. http://www.w3.org/TR/xslt.

Cohen, W. (1995). Fast effective rule induction. In Proceedings of the Twelfth International
Conference on Machine Learning.

Daelemans, W., Zavrel, J., van der Sloot, K., & van den Bosch, A. (2003). TiMBL: Tilburg
memory based learner, version 5.0, reference guide. Technical Report 03-10, Tilburg
University.

Dahlbäck, N., Jönsson, A., & Ahrenberg, L. (1993). Wizard of Oz studies – why and how. In
Proceedings from the 1993 International Workshop on Intelligent User Interfaces (pp. 193-
200).

Dascal, M. (1999). Introduction: Some questions about misunderstanding. Journal of Prag-
matics, 31(6), 753-762.

Dutoit, T., Pagel, V., Pierret, N., Bataille, F., & Vreken, O. v. d. (1996). The MBROLA pro-
ject: Towards a set of high-quality speech synthesizers free of use for non-commercial
purposes. In Proceedings of ICSLIP '96 (pp. 1393-1396).

Edlund, J., & Heldner, M. (2005). Exploring prosody in interaction control. Phonetica, 62(2-
4), 215-226.

Edlund, J., & Heldner, M. (2006). /nailon/ - software for online analysis of prosody. In Proc
of Interspeech 2006 ICSLP. Pittsburgh PA, USA.

Edlund, J., Heldner, M., & Gustafson, J. (2006). Two faces of spoken dialogue systems. In
Interspeech 2006 - ICSLP Satellite Workshop Dialogue on Dialogues: Multidisciplinary
Evaluation of Advanced Speech-based Interactive Systems. Pittsburgh PA, USA.

References

191

Edlund, J., & Hjalmarsson, A. (2005). Applications of distributed dialogue systems: the KTH
Connector. In Proceedings of ISCA Tutorial and Research Workshop on Applied Spoken
Language Interaction in Distributed Environments (ASIDE 2005). Aalborg, Denmark.

Edlund, J., Skantze, G., & Carlson, R. (2004). Higgins - a spoken dialogue system for investi-
gating error handling techniques. In Proceedings of the International Conference on Spo-
ken Language Processing, ICSLP 04 (pp. 229-231). Jeju, Korea.

Ericsson, S. (2005). Information enriched constituents in dialogue. Doctoral dissertation, Göte-
borg University.

Esteve, Y., Raymond, C., Bechet, F., & De Mori, R. (2003). Conceptual decoding for spoken
dialog systems. In Proceedings of Eurospeech (pp. 617–620).

Ferrer, L., Shriberg, E., & Stolcke, A. (2002). Is the speaker done yet? Faster and more accu-
rate end-of utterance detection using prosody. In Proceedings of ICSLP (pp. 2061-
2064).

Filipsson, M., & Bruce, G. (1997). LUKAS - a preliminary report on a new Swedish speech syn-
thesis. Department of Linguistics and Phonetics, Lund University.

Flycht-Eriksson, A. (2001). Domain knowledge management in information-providing dialogue
systems. Licentiate dissertation, Linköping University.

Fraser, N. M., & Gilbert, G. N. (1991). Simulating speech systems. Computer Speech and
Language, 5(1), 81-99.

Gabsdil, M. (2003). Clarification in spoken dialogue systems. In Natural Language Generation
in Spoken and Written Dialogue: Papers from the 2003 Spring Symposium (pp. 28-35).

Gabsdil, M., & Bos, J. (2003). Combining acoustic confidence scores with deep semantic
analysis for clarification dialogues. In Proceedings of IWCS-5 (pp. 137-150).

Gabsdil, M., & Lemon, O. (2004). Combining acoustic and pragmatic features to predict
recognition performance in spoken dialogue systems. In Proceedings of ACL 2004 (pp.
343-350).

Garrod, S., & Anderson, A. (1987). Saying what you mean in dialogue: A study in conceptual
and semantic co-ordination. Cognition, 27(2), 181-218.

Ginzburg, J., & Cooper, R. (2001). Resolving ellipsis in clarification. In Proceedings of the
39th Annual Meeting on Association for Computational Linguistics (pp. 236-243).

Ginzburg, J., Gregory, H., & Lappin, S. (2001). SHARDS: Fragment resolution in dialogue.
In Proceedings of the 4th International conference on Computational Semantics. Tilburg.

Gorin, A. L., Riccardi, G., & Wright, J. H. (1997). How may I help you?. Speech Communica-
tion, 23, 113-127.

Grosz, B. J., Joshi, A. K., & Weinstein, S. (1995). Centering: a framework for modeling the
local coherence of discourse. Computational Linguistics, 21(2), 203-225.

References

192

Gustafson, J., Bell, L., Beskow, J., Boye, J., Carlson, R., Edlund, J., Granström, B., House, D.,
& Wirén, M. (2000). AdApt - a multimodal conversational dialogue system in an
apartment domain. In Proc. of ICSLP 2000, 6th Intl Conf on Spoken Language Process-
ing (pp. 134-137). Beijing.

Gustafson, J., Larsson, A., Carlson, R., & Hellman, K. (1997). How do system questions in-
fluence lexical choices in user answers?. In Proc of Eurospeech '97, 5th European Confer-
ence on Speech Communication and Technology (pp. 2275-2278). Rhodes, Greece.

Gårding, E. (1998). Intonation in Swedish. In Hirst, D., & Di Cristo, A. (Eds.), Intonation
Systems (pp. 112-130). Cambridge: Cambridge University Press.

Harris, T. K., & Rosenfeld, R. (2004). A universal speech interface for appliances. In Proceed-
ings of ICSLP.

Hazen, T., Seneff, S., & Polifroni, J. (2002). Recognition confidence scoring and its use in
speech understanding systems. Computer Speech and Language, 16(1), 49-67.

He, Y., & Young, S. (2003). A data-driven spoken language understanding system. In Proceed-
ings of IEEE Automatic Speech (pp. 583–588).

Heisterkamp, P., & McGlashan, S. (1996). Units of dialogue management: an example. In
Proceedings of ICSLP 1996 (pp. 200-203).

Hinkle, D. E., Wiersma, W., & Jurs, S. G. (1994). Applied statistics for the behavioral sciences.
Boston: Houghton Mifflin Company.

Hirst, D., & Cristo, A. D. (1998). A survey of intonation systems. In Hirst, D., & Di Cristo,
A. (Eds.), Intonation Systems (pp. 1-45). Cambridge: Cambridge University Press.

Hirst, G., McRoy, S., Heeman, P., Edmonds, P., & Horton, D. (1994). Repairing conversa-
tional misunderstandings and non-understandings. Speech Communication, 15, 213-
230.

Hjalmarsson, A., Wik, P., & Brusk, J. (2007). Dealing with DEAL: a dialogue system for
conversation training. In Proceedings of SigDial (pp. 132-135). Antwerp, Belgium.

House, D. (2003). Perceiving question intonation: the role of pre-focal pause and delayed
focal peak. In Proc of ICPhS, XV Intl Conference of Phonetic Sciences (pp. 755-758).
Barcelona, Spain.

Huang, X., Acero, A., & Hon, H-W. (2001). Spoken language processing: a guide to theory,
algorithm and system development. Prentice Hall.

Jackson, E., Appelt, D., Bear, J., Moore, R., & Podlozny, A. (1991). A template matcher for
robust NL interpretation. In Proceedings of DARPA Speech and Natural Language Work-
shop.

Jiang, H. (2005). Confidence measures for speech recognition: A survey. Speech Communica-
tion, 45(4), 455-470.

References

193

Jonson, R. (2006). Dialogue context-based re-ranking of ASR hypotheses. In Proceedings of
Spoken Language Technology Workshop, IEEE (pp. 174-177).

Jurafsky, D., & Martin, J. (2000). Speech and language processing. Englewood, NJ, US: Pren-
tice Hall, Inc.

Jönsson, A. (1997). A model for habitable and efficient dialogue management for natural lan-
guage interaction. Natural Language Engineering, 3, 103-122.

Kasper, W., Kiefer, B., Krieger, H., Rupp, C., & Worm, K. (1999). Charting the depths of
robust speech parsing. In Proceedings of ACL.

Katagiri, Y., & Shimojima, A. (2000). Display acts in grounding negotiations. In Proceedings
of Gotalog.

Kilpeläinen, P. (1992). Tree matching problems with applications to structured text databases.
Doctoral dissertation, Department of Computer Science, University of Helsinki.

Klahr, D., Langley, P., & Neches, R. T. (1987). Production system models of learning and devel-
opment. MIT Press.

Knight, S., Gorrell, G., Rayner, M., Milward, D., Koeling, R., & Lewin, I. (2001). Compar-
ing grammar-based and robust approaches to speech understanding: a case study. In
Proceedings of Eurospeech 2001 (pp. 1779-1882).

Krahmer, E., Swerts, M., Theune, M., & Weegels, M. (2001). Error detection in spoken hu-
man-machine interaction. International Journal of Speech Technology, 4(1), 19-29.

Ladd, D. R. (1996). Intonation phonology. Cambridge: Cambridge University Press.

Lager, T. (1999). The µ-TBL system: logic programming tools for transformation-based learn-
ing. In Proceedings of the Third International Workshop on Computational Natural Lan-
guage Learning.

Larsson, S. (2002). Issue-based dialogue management. Doctoral dissertation, Goteborg Univer-
sity.

Larsson, S. (2003). Interactive communication management in an issue-based dialogue system.
In Kruijff-Korbayova, I., & Kosny, C. (Eds.), Proceedings of the 7th Workshop on the
Semantics and Pragmatics of Dialogue (DiaBruck) (pp. 75-82). Saarbrücken, Germany.

Larsson, S., & Traum, D. R. (2000). Information state and dialogue management in the
TRINDI dialogue move engine toolkit. Natural Language Engineering: Special Issue on
Best Practice in Spoken Language Dialogue Systems Engineering, 6(3-4), 323-340.

Levin, E., Pieraccini, R., & Eckert, W. (2000). A stochastic model of human-machine interac-
tion for learning dialog strategies. IEEE Transactions on Speech and Audio Processing,
8(1), 11-23.

Levinson, S. C. (1983). Pragmatics. Cambridge: Cambridge University press.

Levow, G. (1998). Characterizing and recognizing spoken corrections in human-computer
dialogue. In Proceedings of COLING/ACL.

References

194

Lippmann, R. P. (1997). Speech recognition by machines and humans. Speech Communication,
22, 1-15.

Litman, D., Hirschberg, J., & Swerts, M. (2000). Predicting automatic speech recognition
performance using prosodic cues. In Proceedings of the First Meeting of the North Ameri-
can Chapter of the Association for Computational Linguistics (pp. 218-225). Seattle, WA.

Litman, D., Swerts, M., & Hirschberg, J. (2006). Characterizing and predicting corrections in
spoken dialogue systems. Computational Linguistics, 32(3), 417-438.

McGlashan, S., Burnett, D. C., Carter, J., Danielsen, P., Ferrans, J., Hunt, A., Lucas, B., Por-
ter, B., Rehor, K., & Tryphonas, S. (2004). Voice extensible markup language
(VoiceXML): version 2.0. http://www.w3.org/TR/voicexml20/.

McRoy, S. W., & Hirst, G. (1995). The repair of speech act misunderstandings by abductive
inference. Computational Linguistics, 21(4), 435-478.

McTear, M., O'Neill, I., Hanna, P., & Liu, X. (2005). Handling errors and determining con-
firmation strategies - An object-based approach. Speech Communication, 45(3), 249-
269.

Mellish, C. (1989). Some chart-based techniques for parsing ill-formed input. In Proceedings of
ACL.

Mitchell, T. M. (1997). Machine learning. Singapore: McGraw-Hill Book Co.

Oviatt, S., Levow, G., MacEachern, M., & Kuhn, K. (1996). Modeling hyperarticulate speech
during human-computer error resolution. In Proceedings of ICSLP.

Paek, T. (2001). Empirical methods for evaluating dialog systems. In ACL 2001 Workshop on
Evaluation Methodologies for Language and Dialogue Systems.

Paek, T., & Horvitz, E. (2003). On the utility of decision-theoretic hidden subdialog. In
ISCA Workshop on Error Handling in Spoken Dialogue Systems (pp. 95-100).

Pfleger, N., Engel, R., & Alexandersson, J. (2003). Robust multimodal discourse processing.
In Proceedings of the 7th Workshop on the Semantics and Pragmatics of Dialogue
(DiaBruck).

Pieraccini, R., & Huerta, J. (2005). Where do we go from here? Research and commercial
spoken dialogue systems. In Proceedings of the 6th SIGdial Workshop on Discourse and
Dialogue (pp. 1-10). Lisbon, Portugal.

Purver, M. (2004). The theory and use of clarification requests in dialogue. Doctoral dissertation,
University of London.

Purver, M., Ginzburg, J., & Healey, P. (2001). On the means for clarification in dialogue. In
Proceedings of SIGdial 2001 (pp. 235-255).

Rayner, M., Carter, D., Digalakis, V., & Price, P. (1994). Combining knowledge sources to
reorder n-best speech hypothesis lists. In Proceedings of the 1994 ARPA Workshop on
Human Language Technology.

References

195

Reason, J. (1990). Human error. Cambridge University Press.

Reiter, E., & Dale, R. (2000). Building natural language generation systems. Cambridge Univer-
sity Press.

Rieser, V. (2004). Fragmentary clarifications on several levels for robust dialogue systems. Master's
thesis, University of Edinburgh.

Ringger, E. K., & Allen, J. F. (1997). Robust error correction of continuous speech recogni-
tion. In Proceedings of the ESCA-NATO Robust Workshop.

Rodriguez, K. J., & Schlangen, D. (2004). Form, intonation and function of clarification re-
quests in German task oriented spoken dialogues. In Proceedings of Catalog '04. Barce-
lona, Spain.

Satta, G., & Stock, O. (1994). Bidirectional context-free grammar parsing for natural lan-
guage processing. Artificial Intelligence, 69(1-2), 123-164.

Schegloff, E. (1982). Discourse as an interactional achievement: Some uses of 'uh huh' and
other things that come between sentences. In Tannen, D. (Ed.), Analyzing Discourse:
Text and Talk (pp. 71-93). Washington, D.C., USA: Georgetown University Press.

Schegloff, E. (1992). Repair after next turn: the last structurally provided defense of intersub-
jectivity in conversation. American Journal of Sociology, 97(5), 1295-1345.

Schegloff, E., & Sacks, H. (1973). Opening up closings. Semiotica, 8, 289-327.

Schlangen, D. (2003). A coherence-based approach to the interpretation of non-sentential utter-
ances in dialogue. Doctoral dissertation, School of Informatics, University of Edinburgh.

Schlangen, D. (2004). Causes and strategies for requesting clarification in dialogue. In Pro-
ceedings of SIGdial 2004 (pp. 136-143).

Schlangen, D., & Fernández, R. (2007a). Beyond repair? Testing the limits of the conversa-
tional repair system. In Proceedings of SigDial. Antwerp, Belgium.

Schlangen, D., & Fernández, R. (2007b). Speaking through a noisy channel: Experiments on
inducing clarification behaviour in human-human dialogue. In Proceedings of Inter-
speech. Antwerp, Belgium.

Searle, J. S. (1979). Expression and meaning: studies in the theory of speech acts. Cambridge Uni-
versity Press.

Segarra, E., Sanchis, E., Garcia, F., & Hurtado, L. F. (2002). Extracting semantic information
through automatic learning techniques. International Journal of Pattern Recognition,
16(3), 301–307.

Seward, A. (2003). Efficient methods for automatic speech recognition. Doctoral dissertation,
Department of Speech, Music and Hearing, KTH, Stockholm, Sweden.

Shriberg, E. (1994). Preliminaries to a theory of speech disfluencies. Doctoral dissertation, Uni-
versity of California.

References

196

Sjölander, K., & Beskow, J. (2000). WaveSurfer - an open source speech tool. In Yuan, B.,
Huang, T., & Tang, X. (Eds.), Proceedings of ICSLP 2000, 6th Intl Conf on Spoken
Language Processing (pp. 464-467). Beijing.

Skantze, G. (2002). Coordination of referring expressions in multimodal human-computer
dialogue. In Proceedings of ICSLP 2002 (pp. 553-556). Denver, Colorado, USA.

Skantze, G., & Edlund, J. (2004). Robust interpretation in the Higgins spoken dialogue sys-
tem. In ISCA Tutorial and Research Workshop (ITRW) on Robustness Issues in Conversa-
tional Interaction. Norwich, UK.

Skantze, G., Edlund, J., & Carlson, R. (2006). Talking with Higgins: Research challenges in a
spoken dialogue system. In André, E., Dybkjaer, L., Minker, W., Neumann, H., &
Weber, M. (Eds.), Proceedings of Perception and Interactive Technologies (pp. 193-196).
Springer.

Stuttle, M., Williams, J. D., & Yound, S. (2004). A framework for dialogue data collection
with a simulated ASR-channel. In Proceedings of ICSLP. Jeju, South Korea.

Traum, D. (1994). A computational theory of grounding in natural language conversation. Doc-
toral dissertation, University of Rochester.

Turunen, M. (2004). Jaspis - a spoken dialogue architecture and its applications. Doctoral disser-
tation, University of Tampere, Department of Computer Sciences.

van den Bosch, A., & Daelemans, W. (1993). Data-oriented methods for grapheme-to-
phoneme conversion. In Proceedings of European Chapter of ACL (pp. 45-53).

van Heuven, V. J., Hann, J., & Kirsner, R. S. (1999). Phonetic correlates of sentence type in
Dutch: Statement, question and command. In Proceedings of ESCA International Work-
shop on Dialogue and Prosody (pp. 35-40).

van Noord, G., Bouma, G., Koeling, R., & Nederhof, M-J. (1999). Robust grammatical
analysis for spoken dialogue systems. Natural Language Engineering, 5(1), 45-93.

Walker, M., Kamm, C., & Litman, D. (2000a). Towards developing general models of usabil-
ity with PARADISE. Natural Language Engineering, 6, 363-377.

Walker, M., Wright, J., & Langkilde, I. (2000b). Using natural language processing and dis-
course features to identify understanding errors in a spoken dialogue system. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning.

Walker, M. A., Langkilde, I., Wright, J., Gorin, A., & Litman, D. J. (2000c). Learning to
predict problematic situations in a spoken dialogue system: experiments with How
may I help you?. In Proceedings of North American Meeting of the Association of Compu-
tational Linguistics.

Wallers, Å., Edlund, J., & Skantze, G. (2006). The effects of prosodic features on the interpre-
tation of synthesised backchannels. In André, E., Dybkjaer, L., Minker, W., Neumann,
H., & Weber, M. (Eds.), Proceedings of Perception and Interactive Technologies (pp.
183-187). Springer.

References

197

Ward, N. (2004). Pragmatic functions of prosodic features in non-lexical utterances. In Pro-
ceedings of Speech Prosody (pp. 325-328).

Ward, W. (1989). Understanding spontaneous speech. In Proceedings of the workshop on
Speech and Natural Language Understanding (pp. 137-141). Philadelphia, Pennsylvania.

Weegels, M. (2000). User's conceptions of voice-operated information services. International
Journal of Speech Technology, 3(2), 75-82.

Weigard, E. (1999). Misunderstanding: the standard case. Journal of Pragmatics, 31(6), 763-
785.

Wessel, F., Schluter, R., Macherey, K., & Ney, H. (2001). Confidence measures for large vo-
cabulary continuous speech recognition. IEEE Trans. Speech Audio Process, 9(3).

Williams, J. D., & Young, S. (2007). Partially observable markov decision processes for spo-
ken dialog systems. Computer Speech and Language, 21(2), 393-422.

Yngve, V. (1970). On getting a word in edgewise. In Papers from the sixth regional meeting of
the Chicago Linguistic Society (pp. 567-578). Chicago.

Young, S. (2002). Talking to machines (statistically speaking). In Proceedings of ICSLP (pp. 9-
12). Denver, CO.

