
Algorithmic Verification Techniques for Mobile Code

IREM AKTUG

Doctoral Thesis

Stockholm, Sweden 2008

TRITA-CSC-A2008:13
ISSN-1653-5723
ISRN-KTH/CSC/A–08/13-SE
ISBN 978-91-7415-123-7

KTH CSC TCS
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i datalogi 8
Oktober 2008 10:00 i F3, Kungl Tekniska Högskolan, Stockholm.

© Irem Aktug, 2008

Tryck: Universitetsservice US AB

iii

Abstract

Modern computing platforms strive to support mobile code without putting
system security at stake. These platforms can be viewed as open systems, as
the mobile code adds new components to the running system. Establishing
that such platforms function correctly can be divided into two steps. First,
it is shown that the system functions correctly regardless of the mobile com-
ponents that join it, provided that they satisfy certain assumptions. These
assumptions can, for instance, restrict the behavior of the component to en-
sure that the security policy of the platform is not violated. Second, the
mobile component is checked to satisfy its assumptions, before it is allowed
to join the system. This thesis presents algorithmic verification techniques to
support this methodology. In the first two parts, we present techniques for
the verification of open systems relative to the given component assumptions.
In the third part, a technique for the quick certification of mobile code is
presented for the case where a particular type of program rewriting is used
as a means of enforcing the component assumptions.

In the first part of this study, we present a framework for the verifica-
tion of open systems based on explicit state space representation. We pro-
pose Extended Modal Transition Systems (EMTS) as a suitable structure for
representing the state space of open systems when assumptions on compo-
nents are written in the modal µ-calculus. EMTSs are based on the Modal
Transition Systems (MTS) of Larsen and provide a formalism for graphical
specification and facilitate a thorough understanding of the system by visu-
alization. In interactive verification, this state space representation enables
proof reuse and aids the user guiding the verification process. We present a
construction of state space representations from process algebraic open system
descriptions based on a maximal model construction for the modal µ-calculus.
The construction is sound and complete for systems with a single unknown
component and sound for those without dynamic process creation. We also
suggest a tableau-based proof system for establishing temporal properties of
open systems represented as EMTS. The proof system is sound in general and
complete for prime formulae.

The problem of open system correctness also arises in compositional verifi-
cation, where the problem of showing a global property of a system is reduced
to showing local properties of components. In the second part, we extend an
existing compositional verification framework for Java bytecode programs.
The framework employs control flow graphs with procedures to model com-
ponent implementations and open systems for the purpose of checking control-
flow properties. We generalize these models to capture exceptional and multi-
threaded behavior. The resulting control flow graphs are specifically tailored
to support the compositional verification principle; however, they are suffi-
ciently intuitive and standard to be useful on their own. We describe how the
models can be extracted from program code and give preliminary experimen-
tal results for our implementation of the extraction of control flow graphs with
exceptions. We also discuss further tool support and practical applications of
the method.

iv

In the third part of the thesis, we develop a technique for the certification
of safe mobile code, by adapting the proof-carrying code scheme of Necula
to the case of security policies expressed as security automata. In particular,
we describe how proofs of policy compliance can be automatically generated
for programs that include a monitor for the desired policy. A monitor is an
entity that observes the execution of a program and terminates the program
if a violation to the property is about to occur. One way to implement such
a monitor is by rewriting the program to make it self-monitoring. Given a
property, we characterize self-monitoring of Java bytecode programs for this
property by an annotation scheme with annotations in the style of Floyd-
Hoare logics. The annotations generated by this scheme can be extended in
a straightforward way to form a correctness proof in the sense of axiomatic
semantics of programs. The proof generated in this manner essentially estab-
lishes that the program satisfies the property because it contains a monitor for
it. The annotations that comprise the proofs are simple and efficiently check-
able, thus facilitate certification of mobile code on devices with restricted
computing power such as mobile phones.

v

Acknowledgements

I owe my deepest gratitude to my supervisor, Dilian Gurov. He always managed
to find the time and patience for guiding me in the past five years. Through our
long discussions, and his ingenious comments I have learned how to be a scien-
tist. Without his continuous encouragement and friendly support combined with
invaluable expert advice, this thesis would have never been finished.

I thank my co-advisor Mads Dam. I have learned so much from him, especially
when working together. I also thank all my co-workers: Marieke Huisman, Andreas
Lundblad, Katsiaryna Naliuka and all who have worked in the S3MS project, but
especially Fabio Massacci and Frank Piessens. The colleagues in the TCS group
have been all very helpful and kind.

I also want to thank two great scientists from my former university METU,
Halit Oǧuztüzün and Cem Bozşahin, who have supported me beginning from my
undergraduate days and gave me the initial excitement of science. I think of you
every step of the way as I try to live up to the title "diligent".

Mika Cohen has been my longest lasting office mate, my first friend in Sweden,
my first logician acquaintance and many more things. He was followed by Andreas
Lundblad, the ultimate work mate: java guru, sailor, good course partner, ideal
co-worker.

I thank everyone who has put up with me as I produced the work in this thesis
and complained incessantly in the meanwhile: Volkan Bilyar, all my friends at IMIT
Adam Strak, Steffen Albrecht, Sezi Yamaç, my dear home mate Bagşen Aktaş,
Anders Johansson and my friends from Turkey Utku Erdoǧdu, Bariş Sertkaya,
Sinan Kalkan, Ruken Çakici, Ayse Müge Sevinç, Ayşe Abbasoǧlu, all the friends
I have made at summer schools but especially the one and last but not least my
eternal student and co-blogger Bariş Tanrıkulu.

I am most grateful to my fairies, Şerife Tekin and Idil Aktuǧ, as always. They
give me inspiration, warmth; help me swim deep and fly high and write fluent.

I am indebted to my beloved friends Gokçen Baş, Elcil Kaya, Zeren Ergönül,
Elif Bato and Gonca Barıt from Izmir Science High School. Though we may not
see each other every year, I rejoice your being at all times. You are a part of me.

Finally, I am indebted to Mr. Karl Jonas Henrik Lundell for my uppehållstill-
stånd, for so many great(!) jokes, for reaching all the high points (e.g. shelves) and
for my perfect boyfriend and his amazingly kind parents. One does not need to be
a good scientist to prove that Karl is the best, for it is obvious.

I dedicate this thesis to my parents and to my two grandmothers... Siz olmasaniz
ben ne olurdum, ne ben olurdum.

vi

Contents

Contents vii

1 Introduction 1
1.1 Contributions . 4

2 State Space Representation 7
2.1 Introduction . 7

2.1.1 Overview of Notions and Results 9
2.2 Compositional Reasoning . 11
2.3 Structures for Capturing Properties 15
2.4 Specifying Open Systems . 17
2.5 Extended Modal Transition Systems 20
2.6 From Specification to State Space Representation 23

2.6.1 Maximal Model Construction 24
2.6.2 Construction for Terms . 28
2.6.3 Correctness Results . 33

2.7 Proof System . 34
2.7.1 Soundness and Completeness 42

2.8 Related Work . 45
2.8.1 MTS Extensions for Abstraction 46
2.8.2 Other Methods for the Verification of Open Systems 48

2.9 Conclusion . 50
2.9.1 Summary and Contributions 50
2.9.2 Future Work . 51

3 Program Models 53
3.1 Introduction . 53
3.2 Compositional Verification of Sequential Programs 55

3.2.1 Program Model . 55
3.2.2 Flow Graph Extraction . 57
3.2.3 Properties over Flow Graphs 59
3.2.4 Maximal Flow Graphs . 59
3.2.5 Compositional Verification . 60

vii

viii Contents

3.2.6 A Tool Set for Compositional Verification 62
3.3 Exceptional Control Flow . 63

3.3.1 Program Model with Exceptions 64
3.3.2 Extracting Flow Graphs with Exceptions from Java Classes . 64
3.3.3 Flow Graph Behavior with Exceptions 66
3.3.4 Properties over Flow Graphs with Exceptions 67
3.3.5 Interface Characterization of Flow Graphs with Exceptions . 68

3.4 Multi-threaded Control Flow . 69
3.4.1 Program Model with Multi-threading 69
3.4.2 Extracting Flow Graphs from Multi-threaded Java Classes . . 69
3.4.3 Flow Graph Behavior with Multi-threading 70
3.4.4 Properties over Flow Graphs with Multi-threading 73
3.4.5 Interface Characterization of Flow Graphs with Multi-threading 73

3.5 Related Work . 74
3.6 Conclusion . 75

3.6.1 Summary and Contribution 75
3.6.2 Future Work . 75

4 Provably Correct Runtime Monitoring 77
4.1 Introduction . 77
4.2 Program Model . 82

4.2.1 Notation . 82
4.2.2 Types and Values . 82
4.2.3 Methods . 83
4.2.4 Operational Semantics . 84

4.3 Policies and Security Automata . 87
4.3.1 Policies Enforceable by Monitors 88
4.3.2 Security Automata . 90

4.4 ConSpec . 91
4.4.1 Syntax . 93
4.4.2 Semantics . 96

4.5 Monitoring with ConSpec Automata 101
4.6 Annotation Language . 103
4.7 Checking Validity . 107

4.7.1 Bannwart-Müller Logic . 107
4.7.2 Local Validity . 109

4.8 Specification of Self-monitoring . 112
4.8.1 Policy Annotations (Level I) 112
4.8.2 Synchronisation Annotations (Level II) 118

4.9 Correctness of Inlining . 121
4.9.1 A Simple Inliner . 121
4.9.2 Correctness of Inlining . 124

4.10 Related Work . 127
4.10.1 Policy Languages . 127

Contents ix

4.10.2 Monitor Inliners . 128
4.10.3 Specifying Policy Adherence 129
4.10.4 Security Frameworks for Mobile Code 130

4.11 Conclusion . 132
4.11.1 Summary and Contributions 132
4.11.2 Future Work . 133

A Part I Appendix 137
A.1 Proofs for Part I . 137

A.1.1 Correctness of Maximal Model Construction 137
A.1.2 Correctness of Construction for Process Terms 144
A.1.3 Soundness and Completeness of the Proof System 150

B Part III Appendix 159
B.1 ConSpec Semantics Annex . 159
B.2 Example from Part III . 161
B.3 Proofs for Part III . 163

B.3.1 Proof of Theorem 4.10 . 163
B.3.2 Proof of Theorem 4.15 . 166
B.3.3 Proof of Theorem 4.18 . 177
B.3.4 Proof of Theorem 4.22 . 179

Bibliography 183

Chapter 1

Introduction

The effectiveness of the Internet in delivering software has resulted in the widespread
development and use of mobile code, despite the obvious security risks involved.
Mobile code is the name given to applications downloaded from a (possibly un-
trusted) source to be executed locally. One of the most well known examples of
mobile code is Java Web applets, small Java applications embedded into web pages.
Other examples include code embedded in documents such as e-mails, and Microsoft
Office documents. Mobile code emerged to distribute computations in order to en-
hance user experience without sacrificing network bandwidth and server computing
power [108] and it spread to promote ubiquitous computing. Modern smart card
platforms such as Java Card support post-issuance downloading of applications [93]
and most mobile phones currently have access to new applications through Java
midlets [92], both subject to the dynamic installation procedure typical to mobile
code.

A system that executes mobile code is designed as an open system. This is
a general term used to refer to a system where certain components are not yet
instantiated and are rather represented in the system by their specification. Hence
in an open system, every component is either given by an implementation or by
a specification in the form of, for instance, a property expressed with a suitable
formalism. Open systems may arise in many situations. Components may not have
been implemented yet or particular implementations may not be of importance
as they are foreseen to change with later updates. An open system has earlier
been defined as a system that executes in an environment which is not fully known
in advance. This definition is subsumed by our definition, if the partially specified
environment is viewed as a component of the open system. The missing components
of an open system may be mobile components that come from another source and
do not even join the system before it starts executing. A web browser can be viewed
this way, with slots for Java applets that may be downloaded and run as the browser
is executing. The execution of open systems is hard to predict and visualize, due to
interactions between the new components and the system as well as the interactions

1

2 CHAPTER 1. INTRODUCTION

between the new components themselves. In the first two chapters of this thesis, we
offer algorithmic techniques to analyze open systems for the purposes of simulation
and verification.

In chapter 2, we introduce a formal framework for reasoning about open systems.
As a first step we address the problem of modeling open system execution for both
visualization and verification purposes. In this chapter, we assume that each com-
ponent implementation is given by a process algebra term and that each component
without implementation is specified by a temporal property. For instance, such a
property can be that the component will terminate or that it will always interact
with the system using a predetermined set of actions. We replace this specification
by a model that is suitable for various analysis with connection to the rest of the
system. The ideal model to represent a property is its characteristic model, i.e. a
model that includes any behavior that can be performed by a component with the
property. This way the characteristic model embodies all implementations that can
be used as the specified component. We offer a characteristic model construction
for properties in the modal µ-calculus, following earlier work for less expressive log-
ics [77, 51, 71]. We use these models to create open system models, however, this
construction is an interesting result in itself as it is the first characteristic model
construction for modal µ-calculus that we know of. Given an open system, we
describe how to construct a model for the entire system by composing the models
for the components according to the system structure; the implementation of the
component is used in the process if available, the characteristic model constructed
for the given property, otherwise. This model is constructed automatically, can
easily be visualized and helps the system developer to understand the execution of
the open system.

The correctness of an open systems can be formulated as a verification problem,
i.e. given an open system and a property desired of the system, whether the open
system satisfies the property. A formal scheme that decomposes the desired system
property into properties on components can be practically used to ensure correct-
ness of an open system in the following way: the open system is verified for the
system property by substituting characteristic models of corresponding properties
in the place of missing components prior to execution, and each new component
is checked to satisfy the corresponding property before it joins the system at run-
time. Property decomposition has been studied in the context of compositional
verification, first introduced by the assume-guarantee paradigm of Pnueli [95]. The
goal in compositional verification has been to divide a system verification problem
into smaller parts by verifying properties of individual components, and inferring a
property of the system which is formed by a composition of these components.

When the correct functioning of an open system is specified as a temporal prop-
erty, open system models constructed as described above can be used to establish
correctness. Given an open system and a desired property in modal µ-calculus,
we further present in this chapter a proof system that can be used to show that
the open system has the property (provided the components that later join the
system obey their specifications). A proof tableau in this system mentions states

3

of a model of the open system, one constructed as described above. Proof tableaux
can be constructed automatically since rule application is deterministic. Open
system verification is also addressed in chapter 3. In this chapter, we extend a
compositional verification framework developed for the purpose of Java smart card
application verification by Gurov et al. [53]. In this framework, the component im-
plementations are given as Java bytecode classes and the specifications are control
flow properties written in a fragment of modal µ-calculus. The models that we con-
struct for this setting are essentially control flow graphs that are tailored to support
compositional verification. We propose two extensions to the basic program model
of the framework described in [53], for the purpose of increasing the precision of
the verification. The first extended model is sensitive to exceptional control flow,
while the second to multi-threaded control flow. We describe how these models can
be extracted from Java bytecode programs of which the first extraction procedure
has been implemented. The models can then be verified using pushdown automata
based model checkers.

Correct functioning of an open system, as is the case for any system, depends on
the correct functioning of its components. In chapter 2 and 3, we present methods
to show correctness of open systems assuming the components that later join the
system have certain properties. When these components are mobile ones that are
possibly obtained from untrusted sources, ensuring that they actually respect the
assumed properties becomes a major issue. Though verification techniques for these
components and the desired properties are usually available, it is most often not
feasible to apply these in a mobile setting where application “loading” is expected
to take no more than a few seconds and where the computational resources may
be very limited. Many companies and end users have been affected by rogue code,
such as viruses distributed in the form of executable e-mail attachments that cause
system crashes. Such attacks by mobile code have been successful since traditional
security models have fallen short to prevent them.

Practical techniques that have been applied for ensuring mobile code security
include sandboxing and code-signing. The first limits the privileges granted to
mobile code to a subset of available operations and amounts to hiding platform
functionality from untrusted applications. In the second approach, the mobile code
producer (e.g. the program developer, the Internet distributer) attaches to its
application a private key, which is used by the platform to identify this producer
when the code is obtained from an untrusted source. This technique depends on a
trust relationship that the producer is aware of and respectful to the requirements
of the platform that executes the code which takes a long time and a high cost to
establish. Recent years have seen a wide interest in the proof-carrying code (PCC)
approach to mobile code security, introduced by Necula [90]. This technique offers a
way to establish trust in the mobile program (rather than its producer) using formal
methods. The code producer ships its code with a proof that the code respects the
property required by the code consumer (e.g. the host system that executes the
code). Before the code is run on the consumer’s side, the proof is checked to validate
that the code respects the property and hence is used to certify that the code is

4 CHAPTER 1. INTRODUCTION

safe to execute. Since the proof checking procedure is sound, malicious code with
a fake proof would always be rejected.

In the last chapter of the thesis, we focus on mobile code safety in the context
of mobile devices, such as phones and PDAs. Increase in functionality available in
these devices puts even more on stake for the execution of mobile code. For instance,
unauthorized access of code to GSM services on a mobile phone may cause direct
financial loss to the device owner. We adapt the PCC scheme to the particular case
of security policies expressed as security automata. In particular, we describe how
proofs of safe execution can be automatically generated when the program includes a
monitor for the desired property. A monitor is an entity that observes the execution
of a program and terminates the program if a violation to the property is about to
occur. One way to implement such a monitor is by rewriting the program to make
it self-monitoring. Given a property, we characterize self-monitoring programs for
this property by an annotation scheme with annotations in the style of Floyd-
Hoare logics. The annotations generated by this scheme can be extended in a
straightforward way to form a proof in the sense of axiomatic semantics of programs.
The proof generated in this manner essentially establishes that the program satisfies
a property because it contains a monitor for the property. The annotations that
comprise the proofs are simple and are expected to be efficiently checkable on a
mobile device.

Organization The thesis consists of three independent parts, which can be read
separately. By part I, II and III, we refer to chapter 2, 3 and 4, respectively.
Part I and II are concerned with compositional verification problems. Part III
focuses on generating proofs of correct self-monitoring. The problems undertaken
are introduced in more detail in the respective part, along with the approach taken
to handle them. Similarly, results achieved in each part are summarized in the
respective concluding sections.

1.1 Contributions

The work presented in chapter 2 resulted in the following papers:

1. I. Aktug and D. Gurov, “Towards State Space Exploration Based Verification
of Open Systems” to appear in Proceedings of the 4th International Workshop
on Automated Verification of Infinite-State Systems (AVIS’05), April 2005,
Edinburgh, Scotland

2. I. Aktug and D. Gurov, “State Space Representation for Verification of Open
Systems”, in Proceedings of the 11th International Conference on Algebraic
Methodology and Software Technology (AMAST ’06), volume 4019 of Lecture
Notes in Computer Science, pages 5-20, July 2006, Kuressaare, Estonia

The work presented in chapter 3 resulted in the following paper:

1.1. CONTRIBUTIONS 5

1. M. Huisman, I. Aktug and D. Gurov, “Program Models for Compositional
Verification”, in Proceedings of the 10th International Conference on Formal
Engineering Methods (ICFEM’08), volume 5256 of Lecture Notes in Com-
puter Science, pages 147-166, October 2008, Kitakyushu-City, Japan

The work presented in chapter 4 resulted in the following papers:

1. I. Aktug and K. Naliuka, “ConSpec: A Formal Language for Policy Speci-
fication”, in Proceedings of The First International Workshop on Run Time
Enforcement for Mobile and Distributed Systems (REM’07), volume 197-1 of
Electronic Notes in Theoretical Computer Science, pages 45-58, September
2007, Dresden, Germany
Full version submitted to Science of Computer Programming, March 2008

2. I. Aktug, M. Dam and D. Gurov, “Provably Correct Runtime Monitoring”,
in the Proceedings of the 15th International Symposium on Formal Methods
(FM ’08), volume 5014 of Lecture Notes in Computer Science, pages 262-277,
May 2008, Turku, Finland,
Full version accepted for publication in Journal of Logic and Algebraic Pro-
gramming

My contribution In the first part of the thesis, the initial idea of state space
representation of open systems as a means of open system verification, analogical
to the verification of closed systems, is due to my advisor Dilian Gurov. The novel
notions presented here for achieving this purpose are joint work and have been
developed in our common discussions. Finally, the workout of the construction of
section 2.6 and the workout of the proofs are due to me. The papers published as
a result of the work have also been written jointly.

In the second part, I have worked with Marieke Huisman to create the extended
models. The multi-threaded model is our work while the exceptional model is
joint work with both Marieke Huisman and Dilian Gurov. Marieke Huisman has
layed down most of the formalizations in writing. In the resulting paper, I am
responsible in large for extensions of the applet analyzer to handle the new models.
In particular, I have updated the original analyzer implementation to work with
newer versions of Soot and extended it for the exceptional model.

Finally, in the last part the creation of ConSpec is largely due to me, although I
have to give credit to Fabio Massacci for his insights on the matching problem. The
concrete and symbolic security automata notions introduced as intuitive formalisms
for capturing semantics of ConSpec policies are also largely due to me; they have
been shaped in discussions with Dilian Gurov. Papers on the policy language are
joint work with Katsiaryna Naliuka. She wrote the motivation and the related work,
the rest of the text is mine. The annotation scheme is a result of long discussions
between me, Dilian Gurov and Mads Dam. (Later, Andreas Lundblad also joined
this group.) The formulation of the result on level II characterization is due to Mads
Dam. I am the one that first layed down the ideas in writing, when preparing the

6 CHAPTER 1. INTRODUCTION

S3MS deliverables. I have also worked out the ideas for handling language features
like exceptions and inheritance in the annotations. I have done all proofs in this
part, except the proof of theorem 4.22, which is Dilian Gurov’s work. I have only
detailed and extended this proof.

Chapter 2

State Space Representation Based

Verification of Open Systems

2.1 Introduction

Modern software is designed as a collection of components. Modularity brings flex-
ibility to both the development and use of software. For instance, components are
developed by different partners and put together at later stages or some component
of the system is replaced, after an initial phase of use, by a new component which
performs the same task in a more efficient manner. Mobile components can even
join the system after it has been put in operation.

In such scenarios, each intermediate system which “misses” components can
be thought of as an open system. An open system is a system with “holes” in it
standing for the missing components. Each hole is accompanied by some property
which is a condition that the component to fill the hole has to satisfy. In contrast,
a closed system has all its components fixed. An open system captures an infinite
set of closed systems, where each hole is filled with some component that satisfies
the corresponding property.

A common way of specifying desired behavior is through expressing it as a
collection of properties in some temporal logic. Verification of an open system
amounts to showing that all the closed systems captured by the open system display
these properties. This can only be achieved through a symbolic representation
of the open system behavior. In this chapter, we propose a framework for the
verification of open systems based on an explicit state space representation. In our
approach, we represent the behavior of the open system as a finite structure which is
comprised of states, transitions and an acceptance condition which excludes certain
non-terminating behavior. The variety in behavior induced by the assumptions
on the not-yet-available components is captured through necessary and admissible
transitions, which respectively correspond to common and possible behavior of the
closed systems captured by the open system.

7

8 CHAPTER 2. STATE SPACE REPRESENTATION

Such an explicit state space representation supports various phases of the de-
velopment of open systems:

• In the modeling phase, this formalism can be used as an alternative means
of graphical specification. Certain kinds of properties are easier to express
graphically than in temporal logics.

• In automatic verification, it provides a visualization of the system behavior.
This is mostly beneficial if the automatic proof construction fails and an
understanding of the open system behavior becomes necessary for debugging.
Furthermore, computing the whole state space enables proof reuse when the
same system is to be checked for several properties.

• In interactive verification, such a state space representation is all the more
vital. While it is possible to use conventional methods like encoding system
behavior with alternating automata [74] for cases that allow for automatic
verification, the human factor in interactive verification requires a more intu-
itive representation.

In a process algebraic setting, the behavior of an open system can be specified
by an open process term with assumptions (OTA). An OTA has the shape Γ � E
and consists of a process term E equipped with a list of behavioral assumptions Γ
of the shape X : Φ, where X is a process variable free in E and Φ is a temporal
property. Such an open term denotes a set of closed systems, namely those that can
be obtained by substituting each free process variable in E with a closed component
satisfying the respective assumptions specified in Γ. A property of an OTA is then
a property shared by all the closed systems in its denotation.

Modal Transition System (MTS) is a notion that was designed to capture sys-
tem behavior graphically for the purposes of specification [77]. Each MTS specifies
a set of processes through an interval determined by necessary and admissible tran-
sitions. MTSs characterize Hennessy-Milner logic (HML), a modal process logic
with box and diamond modalities. This makes MTSs a natural representation of
open systems when assumptions on the behavior of the abstract components are
specified in HML. However, an element of recursion needs to be present in a logic in
order to express temporal properties. Therefore, HML is in general not sufficient to
specify the missing components of an open system. Similarly, MTSs are not expres-
sive enough for representing the state space of open systems when assumptions are
temporal properties. We extend MTSs so that we can represent the state space of
open systems when the component assumptions are written in modal µ-calculus, a
process logic that adds the expressive power of least and greatest fixed point recur-
sion to HML. Besides the must and may transitions of MTS, our notion, Extended
Modal Transition System (EMTS) has sets of states (instead of single states) as
targets to transitions - an extension which is needed for dealing with disjunctive
assumptions. In addition, we add well-foundedness constraints to the structure to
handle least fixed point assumptions.

2.1. INTRODUCTION 9

j2

j3j4

j6

j7

j8

j9

j5

j1

-

-
?

@
@

@@I@
@

@@R

�
�

��	�
�

�
��

?

⊢E
V

�
E

⊢T
V

�
T

Extended Modal
Transition System

Logic

System

Labeled Transition

Term

Closed Process

Open Process Term
with Assumptions

Transition Rules

Construction

Denotation Denotation

Maximal Model Construction

Figure 2.1: Overview of Notions

Given the open system specification as an OTA, the state space representation
in the form of an EMTS can be automatically extracted. The first phase of this
process corresponds to a maximal model construction, performed for each compo-
nent assumption. The second phase consists of the composition of the maximal
models according to the structure of the OTA term. This two-phase construction
is sound (resp. complete) if the denotation of the OTA is a subset (resp. superset)
of the denotation of the resulting EMTS. We show soundness of the construction
for systems without dynamic process creation, and soundness and completeness
for systems without parallel composition. Furthermore, we present a proof sys-
tem to prove properties of EMTSs, expressed in modal µ-calculus. Proof search in
this proof system can be implemented efficiently, thus complementing the modeling
phase in open system development with automatic verification.

The proof system based method of Dam and Gurov [33] is an example of in-
teractive verification of open systems. Reasoning about open systems in such a
proof-theoretic manner can essentially be viewed as a symbolic execution of OTA
where the state space is implicit. EMTSs can be used to make (the explored part
of) the state space explicit in such a proof, thus enabling the visualization of the
behavior of the system which aids the current interaction as well as future veri-
fication efforts. It also serves proof reuse as mentioned above. We leave possible
interactive approaches based on EMTSs to future work.

2.1.1 Overview of Notions and Results

Figure 2.1 shows an overview of the central notions used in this chapter and the
relations between them. New concepts and constructions proposed by the chapter
are indicated in bold. OTA and EMTS are introduced in sections 2.4 and 2.5,
respectively, built on the already well-developed concepts of closed process term
and labeled transition system.

10 CHAPTER 2. STATE SPACE REPRESENTATION

We propose open process terms with assumptions on the free variables (OTA) for
modeling open systems. Such an open term denotes an infinite set of closed terms,
namely all those which can be obtained from the open term by substituting the free
variables with closed terms satisfying the respective assumptions. The relationship
between labeled transition systems (LTS) and extended modal transition systems
(EMTS) corresponds to that between closed and open terms (or that between closed
and open systems). The denotation of a state of an EMTS is the set of LTS states
that this state relates to with a suitably defined simulation relation.

The logic we use in this study is the modal µ-calculus (see section 2.4 for a short
introduction). The assumptions in an OTA and the properties to be checked for
the open system are both expressed in this temporal logic. We say an EMTS state
satisfies a temporal logic formula (Item 3 in figure 2.1), when the all the LTS in its
denotation satisfy the property (Item 1).

A proof system by Bradfield and Stirling [19, 104] can be used for showing that
states of an LTS satisfy a temporal property expressed in modal µ-calculus (Item 8).
We adapt this proof system to show (modal µ-calculus) properties of EMTS states
(Item 2). A summary of both proof systems along with an account of their more
significant differences can be found in section 2.7. The soundness and completeness
properties of the logic, which we show for prime formulae make our proof system
adequate for proving satisfaction for these type of properties.

The LTS corresponding to a closed process term can be constructed using tran-
sition rules. For the construction of the state space of an OTA in the form of
an EMTS, we present here an automatic construction (Item 6) through maximal
models. Given a temporal logic formula, an EMTS that characterizes it can be
constructed using the maximal model construction presented in section 2.6. The
maximal models for assumptions of an OTA are combined according to the struc-
ture of the process term to produce the EMTS of the open system.

If the various transformations are correctly defined, the diagram in figure 2.1
should commute. In particular, in the context of a given labeled transition system,
the construction of an EMTS from an OTA should preserve the denotation (Items 6
and 1 vs. Items 4 and 7). For the automatic construction in this chapter, this is the
case if the open system contains a single unknown component (see section 2.6.3).
Similarly, it is possible to prove the satisfaction of a property by a state of the
EMTS in a sound and complete proof system (Item 3) if and only if, for each LTS,
the set of all states that are denoted (Item 1) by this state satisfy the property
(Item 8).

Organization In the next two sections, we give a brief background on compo-
sitional reasoning and on structures that have been used for capturing properties.
In sections 2.4 and 2.5, we formally introduce the OTA and EMTS notions, respec-
tively. We present an OTA-to-EMTS construction in section 2.6, which includes
our maximal model construction for the modal µ-calculus. We introduce the proof
system for EMTSs, along with correctness results in section 2.7. In section 2.8, we
summarize other approaches related to ours. We conclude with a summary of the
chapter and suggestions for future work.

2.2. COMPOSITIONAL REASONING 11

2.2 Compositional Reasoning

Compositional reasoning aims to avoid state space explosion by taking advantage
of the natural decomposition of the system in components. The goal is to verify
properties of individual components, and infer a property of the system which is
formed by a composition of these components and thus avoid to compute the state
space of the whole system.The problem of open system verification naturally arises
in compositional verification. We consider here the approaches that have influenced
our work.

In the rest of the text, we assume the reader to be familiar with HML and
the temporal logics LTL, CTL, ∀CTL,∀CTL* (a comprehensive survey is by Emer-
son [37]).

The earliest formalization of this idea is Pnueli’s assume-guarantee paradigm [95].
A formula in Pnueli’s logic is a triple 〈ψ〉P 〈φ〉 where ψ and φ are temporal formu-
lae and P is a program. The formula is true if, whenever program P is part of a
system satisfying the formula ψ, the system also satisfies φ. The following inference
rule captures the assume-guarantee style proof strategy:

〈ψ〉P 〈φ〉
〈true〉P ′ 〈ψ〉

〈true〉P ′ ‖ P 〈φ〉
(2.1)

This rule uses knowledge about components P and P ′ to infer a property of the
system consisting of their composition P ′ ‖ P . Provided the environment it runs in
satisfies ψ, component P guarantees the satisfaction of φ. The system P ′ ‖ P then
has this property if the rest of the system components P ′ create an environment in
which ψ is satisfied.

The decomposition of the required property φ into an adequate assumption (or
local property) ψ for component P requires knowledge of the system and in most
cases is achievable only through human input. In order to automate the rest of
the tasks in compositional reasoning, a checker must have several properties. It
must be able to check that a property is true of all systems which can be built
using a given component. More generally, it must be able to restrict to a given
class of environments when doing this check. It must also provide facilities for
performing temporal reasoning. In order to obtain such a checker, Grumberg and
Long suggested the use of the simulation notion, a preorder on finite state models
that captures the notion of “more behaviors” [51]. Let � denote this simulation
relation so that the statement P ′ simulates P is denoted as P � P ′, and can be
informally understood as P ′ can perform all behaviors of P .

The compositional reasoning principle of Grumberg and Long requires that for
every local property, there exists a maximal model, which can be thought of as the
most generic model that satisfies the property ψ in that it simulates all models that
satisfies the property. Let P and P ′ be (finite state) structures defined in detail
below, and ‖ be the composition operator. LetMψ denote the maximal model for
property ψ. This framework uses the following rule for compositional verification:

12 CHAPTER 2. STATE SPACE REPRESENTATION

P |= ψ Mψ ‖ P
′ |= φ

P ‖ P ′ |= φ
(2.2)

The rule reduces checking P ‖ P ′ |= ψ to the following steps: (1) decomposition
of the global property φ to the local property ψ on component P , (2) construction
of a maximal model Mψ for ψ, (3) the check that P satisfies ψ and (4) the check
that Mψ ‖ P

′ satisfies φ. While the first step requires human intervention in
general, note that steps 3 and 4 can be performed using standard model checking
algorithms. We summarize work on step 2 below.

The correctness of Rule 2.2 depends on the relationships between the various
components of the framework:

1. The preorder should preserve satisfaction of formulae of the logic, i.e. if a
formula is true for a model, it should also be true for any model which is
smaller in the preorder. For programs P and P ′,

P � P ′ ⇒ ∀(φ. P ′ � φ⇒ P � φ)

2. Composition should preserve simulation. For programs P, P ′ and P ′′,

P � P ′ ⇒ (P ‖ P ′′ � P ′ ‖ P ′′)

3. For the local property ψ, there exists a maximal model. For program P and
property ψ,

P |= ψ ⇐⇒ P �Mψ

The soundness of the rule follows then from these properties in the following
way. Let us call P |= ψ premise (1) andMψ ‖ P

′ |= φ premise (2). From premise
(1) and property (3), we can infer that P �Mψ and using property (2), we further
infer that P ‖ P ′ � Mψ ‖ P

′. Then using property (1) and premise (2), we can
infer that P ‖ P ′ |= φ.

The finite models used in this study are synchronous parallel compositions of
Kripke structures under fairness assumptions. Kripke structures are essentially
transition systems where each state is labeled by a set of atomic propositions, and
are often used to model finite-state systems for model checking purposes.

Definition 2.1 (Kripke Structures with Fairness Constraints [51]). A structure
P = (S, S0, AP, L,→, F) is a tuple of the following form.

1. S is a finite set of states.

2. S0 ⊆ S is set of initial states.

3. AP is a finite set of atomic propositions.

4. L is a (labeling) function that maps each state to the set of atomic propositions
true in that state.

2.2. COMPOSITIONAL REASONING 13

5. →⊆ S × S is a transition relation.

6. F is a Streett acceptance condition, represented by pairs of sets of states.

The fairness constraint encoded by F selects a subset of paths (i.e. infinite state
sequences) of the Kripke structure as fair. When CTL formulae are interpreted,
path quantifiers are restricted to fair paths. Let ρ = s0s1 . . . be a path of the
structure P . We define inf(ρ) = {s | s = si for infinitely many i}. A path ρ is
accepted by the Streett acceptance condition F if for every (P,Q) ∈ F (where
P,Q ⊆ S), inf(ρ) ∩ P 6= ∅ implies inf(ρ) ∩Q 6= ∅. Finally, a path of the structure
is fair if it is accepted by the structure’s acceptance condition. Other acceptance
conditions can also be used to select fair paths. For instance, fairness constraints are
also a part of the structure we use for state space representation of open systems,
where a parity condition is used for this purpose (see section 2.5).

We can now define a simulation relation on two Kripke structures with fairness
constraints:

Definition 2.2 (Structure Simulation [51]). Let P = (S, S0, AP, L,→P , F) and
P ′ = (S′, S′0, AP

′, L′,→P ′ , F
′) be two structures with AP ⊆ AP ′. A relation

H ⊆ SP × SP ′ is a simulation relation if for all s ∈ S and s′ ∈ S′, the following
holds:

1. L(s) ∩AP ′ = L′(s′)

2. for every fair path ρ = s0s1s2 . . . from s = s0 in P , there exists a fair path
ρ′ = s′0s

′
1s
′
2 . . . from s′ = s′0 in P ′ such that for every i ≥ 0, H(si, s′i).

H is a simulation from P to P ′ if and only if for every initial state s0 ∈ S0 there
is an initial state s′0 ∈ S′0 such that H(s0, s

′
0). If there is such a simulation relation

from P to P ′, then we say P ′ simulates P .
It can easily be checked that this simulation relation is a preorder for Kripke

structures with fairness constraints, and that it preserves satisfaction of formulae of
CTL. Thus condition (1) for the correctness of the compositional rule is established.
The composition operator that Grumberg and Long use corresponds to Moore ma-
chine composition. Each transition of the composition is a joint transition of the
components, and states of the composition are pairs of component states that agree
on their common atomic propositions. This ensures that conditions (2) and (3) are
satisfied.

In section 2.5, we present a simulation relation for EMTSs, which also includes
fairness constraints.

Computing Maximal Models

The automatization of maximal model construction is one of the keys to the appli-
cability of compositional verification as captured by Rule 2.2. Grumberg and Long
describe a tableau construction for ∀CTL formulae in [51].

14 CHAPTER 2. STATE SPACE REPRESENTATION

A construction for ∀CTL* was later offered by Kupferman and Vardi [71]. Max-
imal model construction is explored by Gurov et al. for reasoning about sequential
programs with procedures which have potentially infinite-state behavior [53]. Pro-
grams are modeled by control flow graphs and the logic used in this study is the
fragment of modal µ-calculus without diamond modalities and least fixed points.
We take a closer look at this framework in the next chapter. Maximal model con-
struction is performed by stepwise transformation of formulae a normal form, for
which the mapping to maximal models is defined directly.

Compositional Reasoning for Open Systems

Verification of open systems can be performed by a compositional proof system due
to Dam et al. presented for CCS processes in [31] and for Erlang programs in [32].

The proof system is a Gentzen-style, compositional proof system. The sequents
are of the form Γ ⊢ ∆ where the set Γ consists of “assumed” assertions, while the set
∆ consists of “guaranteed” ones. Such a sequent is valid if, whenever all assertions
of Γ hold, at least one assertion of ∆ holds. The assertions are of three forms:
a process may be asserted to satisfy a temporal formula (e.g. E : φ), a process
may be asserted to be able to perform a certain transition and evolve to another
process (e.g. E α

−→ F) or a relation between ordinal variables (e.g. κ < κ′) may
be stated. The ordinal variables are used to relate the rates of progress for fixed
point formulae appearing in different parts of a sequent.

In this system, compositional reasoning is accomplished through a general rule
of subterm cut:

Γ ⊢ Q : ψ,∆ Γ, x : ψ ⊢ P : φ,∆
Γ ⊢ P [Q/x] : φ,∆

The rule expresses that if the assumptions in Γ guarantees that the process term
Q satisfies property ψ, and if the same set of assumptions Γ and the assumption
that the process variable x satisfies the temporal property ψ guarantee that the
term P (which potentially includes occurrences of x) satisfies φ, then the same set
of assumptions Γ guarantee that the system obtained by replacing each occurrence
of x in P by Q satisfies the property φ.

A proof in this proof system is guided by the temporal logic formula to be
verified and a global discharge condition is employed which recognizes proofs by
well-founded induction.

The open system verification problem can be formulated in this framework by
placing the assumptions on components in the set Γ, while the assertion that the
structure of the system along with the desired property is asserted as a process
algebra term in ∆. The notion of OTA was developed with this intuition.

2.3. STRUCTURES FOR CAPTURING PROPERTIES 15

2.3 Structures for Capturing Properties

Attempts to characterize formulae with finite structures resulted from different con-
cerns, such as specification and verification. Modal Transition Systems (MTS) can
be seen as a notion arising from the first concern. MTS is a graphical specification
language in the process algebra framework that was designed as an intuitive alter-
native to Hennessy-Milner logic. Whereas, for verification purposes, various types
of automata have been employed. For instance, maximal models used in many com-
positional reasoning frameworks have been constructed in the form of automata.
We aimed for a structure to represent the state space of open systems that is vi-
sualizable in order to facilitate a thorough understanding of the system and at the
same time can be directly used for verification. Therefore, we have been inspired
by both MTSs and automata when developing our notion. Our structure, EMTS,
is based on modal transition systems with an acceptance condition borrowed from
automata in order to encode prohibited infinite runs of the system.

Modal Transition Systems

MTSs were designed as a graphical specification language in the process algebra
framework by Larsen [77]. Each MTS specifies a set of processes through an interval
determined by necessary and admissible transitions.

Definition 2.3 (MTS). A modal transition system is a structure S = (S,A,−→2

,−→3) where S is a set of states, A is a set of actions and −→2,−→3⊆ S ×A× S
are transitions, satisfying the consistency condition −→2⊆−→3.

In the rest of this section, we let s range over MTS states. Larsen refers to
states of an MTS as “specifications”, stressing the fact that each state of an MTS
specifies a set of processes. A process can be viewed as an MTS where the must
and may transitions coincide, −→3=−→2.

An MTS can be refined stepwise to an implementation that performs all the must
transitions (−→2) of the MTS but performs only a subset of the may transitions
(−→3). The stepwise refinement indicates a preorder between MTSs so that as the
specification gets finer, the set of processes specified by the states of the MTS gets
smaller.

Definition 2.4 (Refinement). A refinement R is a binary relation on the states S
of the modal transition system S = (S,A,−→2,−→3) such that whenever s1Rs2

and a ∈ A, then the following holds:

1. Whenever s1
a
−→3 s′1, then s2

a
−→3 s′2 for some s′2 with s′1Rs

′
2

2. Whenever s2
a
−→2 s′2, then s1

a
−→2 s′1 for some s′1 with s′1Rs

′
2

The state s1 is said to be a refinement of state s2, denoted s1 � s2, if s1Rs2

for some refinement relation R. Refinement can be generalized to the states of two
different MTSs in the natural way.

16 CHAPTER 2. STATE SPACE REPRESENTATION

Given a labeled transition system T = (ST , A,−→T), a process t ∈ ST of T
implements a structure S if there is a refinement relation which contains (t,S), that
is if t� S.

The combinators of the employed process algebra can be lifted to MTSs, which
makes them suitable for modeling open systems when component assumptions are
given in HML. Furthermore, this enables a component to be replaced by its refine-
ment.

In [18], Boudol and Larsen introduce a concept similar to maximal models. The
class of formulae of HML for which a maximal model in the form of an MTS can be
constructed is termed graphically representable. The authors show that a formula is
graphically representable (i.e. by a single MTS state) if and only if it is consistent
and prime. A formula is prime if, whenever it implies a disjunction, then it implies
one of the disjuncts, i.e.

φ is prime ⇐⇒ ∀φ0, φ1.(φ⇒ (φ0 ∨ φ1))⇒ (φ⇒ φ0) ∨ (φ⇒ φ1)

Non-prime formulae are also representable with MTSs but by multiple (though
finitely many) MTS states. It is also shown that for each MTS (state), a charac-
teristic formula exists in Hennessy-Milner Logic so that s1 is a refinement of s2 if
and only if it satisfies s2’s characteristic formula, and when viewed as specifications
both the state s and its characteristic formula are implemented by the same set of
processes. Finally, these results establish a Galois connection between the logical
consequence preorder on consistent prime formulae and the refinement preorder on
MTS states.

Automata Theoretic Approaches

The establishment of a clean connection between Büchi automata and linear tem-
poral logic (LTL) enabled verification-related problems such as satisfiability and
model-checking to be reduced to standard automata-theoretic problems [114, 111].
The idea is to associate with each linear temporal logic formula a finite automaton
over infinite words that accepts exactly the computations that satisfy the formula.
As a result of this correspondence, optimal algorithms from automata theory could
be imported to verification. In this manner, a linear time, automata-based linear
temporal logic verification algorithm has been constructed [111].

Similar efforts for branching time logics require tree automata to be used, be-
cause in branching time logics, each moment in time may separate into several
possible futures, while in linear time logics, each moment in time has a unique pos-
sible future [76]. Tree automata run on infinite trees instead of infinite words, and
have been used with a number of different acceptance conditions in the literature,
of which the most frequently used are Müller, Rabin, Streett, and parity conditions.
(For a comprehensive survey of automata on infinite trees see Thomas [107].) Tree
automata yield, when used in this context, exponential algorithms for verification.
In order to reduce complexity, generalized forms of nondeterministic tree automata

2.4. SPECIFYING OPEN SYSTEMS 17

arose, e.g. alternating tree automata [89] and amorphous automata [14]. For in-
stance, Kupferman et al. present an automata-based model checking algorithm
in [74], reducing the problem to a special non-emptiness problem for alternating
automata, thus obtaining a linear time model-checking bound for CTL.

Automata-based algorithms for modal µ-calculus are relatively less explored as
the construction of . Emerson and Jutla have shown that modal µ-calculus formu-
lae and nondeterministic automata on trees are equiexpressive [38]. This result is
reached by establishing that the parse tree of a modal µ-calculus formula can be seen
as an alternating tree automaton with, for instance, Streett acceptance condition,
and by converting this alternating tree automaton to an equivalent nondeterminis-
tic tree automaton. This second step is in general not possible since alternating tree
automata are a generalization of nondeterministic tree automata, but alternating
tree automata obtained from modal µ-calculus formulae have a special property of
being “history-free” that enables the conversion. In order to characterize modal
µ-calculus, Janin and Walukiewicz created the µ-automata, automata that are al-
ternating automata with parity condition when restricted to binary trees, but more
general otherwise. This automata type has equivalent expressive power to the that
of µ-calculus.

The reason we introduce a new formalism to capture modal µ-calculus formulae
is our interest in representing the state space of processes satisfying a property by
a common structure. Although highly expressive, we believe that the aforemen-
tioned structures do not provide an intuitive representation of the state space in
terms of states and transitions. The combination of complicated transition rela-
tions with acceptance conditions (consider for instance alternating automata with
Streett acceptance [73]), make automata an unattractive choice for graphical spec-
ification. Therefore, our structure for capturing properties, and eventually state
space of open systems, brings together the may and must transitions of MTSs
with a parity acceptance condition. Our maximal model construction for modal
µ-calculus was inspired rather by the construction of Kaivola which converts for-
mulae from the alternation-depth class Π2 fragment of the modal µ-calculus to
Büchi Automata [65].

2.4 Specifying Open Systems

A system, the behavior of which is parameterized on the behavior of certain com-
ponents, is conveniently represented as a pair Γ � E, where E is an open process-
algebraic term, and Γ is a list of assertions of the shape X : Φ where X is a process
variable free in E and Φ is a closed formula in a process logic.

In the present study, we work with the class of Basic Parallel Processes (BPP)[23].
The terms of BPP are generated by:

E ::= 0 | X | a.E | E + E | E ‖ E | fix X.E

where X ranges over a set of process variables ProcVar and a over a finite set of

18 CHAPTER 2. STATE SPACE REPRESENTATION

actions A. We assume that ProcVar is partitioned into assumption process variables
AssProcVar used in assertions, and recursion process variables RecProcVar bound
by the fix operator. A term E is called linear if every assumption process variable
occurs in E at most once. The operational semantics of closed process terms (called
processes and ranged over by t) is standard. In the rest of this text, the symbol “‖”
signifies merge composition, while the symbol “|” is used as a symbol for parallel
composition in general.

·

a.E
a
−→ E

E1
a
−→ E′1

E1 + E2
a
−→ E′1

E2
a
−→ E′2

E1 + E2
a
−→ E′2

E1
a
−→ E′1

E1 ‖ E2
a
−→ E′1 ‖ E2

E2
a
−→ E′2

E1 ‖ E2
a
−→ E1 ‖E′2

E1[fix X.E1/X] a
−→ E′1

fix X.E1
a
−→ E′1

As a process logic for specifying both behavioral assumptions on components and
open system properties, we consider the modal µ-calculus [70]. We have selected
this logic as it subsumes most other well-known logics like CTL and LTL. The
formulae of modal µ-calculus are generated by:

Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a] Φ | 〈a〉Φ | νZ.Φ | µZ.Φ

where Z ranges over a set of propositional variables PropVar.
Variable X in σX.Φ, where σ ∈ {ν, µ}, is called guarded if every occurrence of

X in Φ is in the scope of some modality operator 〈a〉 or [a]. We say that a formula
is guarded if every bound variable in the formula is guarded. A formula Φ is a
normal formula if σ1Z1 and σ2Z2 are two different occurrences of binders in Φ then
Z1 6= Z2 and no occurrence of a free variable Z is also used in a binder σZ in Φ.
Let Φ be a normal formula and σ1X.Ψ1 and σ2Z.Ψ2 be subformulae of Φ, then X
subsumes Z if σ2Z.Ψ2 is a subformula of σ1X.Ψ1.

Definition 2.5 (Semantics of Modal µ-calculus). The semantics of the modal µ-
calculus is given in terms of the denotation ||Φ||TV ⊆ ST relative to a labeled tran-
sition system T = (ST , A,−→T) and a valuation V : PropV ar → ST as follows:

||tt||TV = ST
||ff||TV = ∅

||Z||TV = V(Z)
||Φ1 ∨Φ2||

T
V = ||Φ1||

T
V ∪ ||Φ2||

T
V

||Φ1 ∧Φ2||
T
V = ||Φ1||

T
V ∩ ||Φ2||

T
V

|| 〈a〉Φ||TV = {t | ∃t′. t a
−→T t

′ ∧ t′ ∈ ||Φ||TV}
|| [a] Φ||TV = {t | ∀t′. t a

−→T t
′ ∧ t′ ∈ ||Φ||TV}

||µZ.Φ||TV =
⋂

{T ⊆ ST | T ⊇ ||Φ||TV[T/Z]}

||νZ.Φ||TV =
⋃

{T ⊆ ST | T ⊆ ||Φ||TV[T/Z]}

2.4. SPECIFYING OPEN SYSTEMS 19

An alternative (equivalent) interpretation of extremal fixed points is through
approximants. We provide here a characterization for a set of ordinals Ord, ele-
ments of which are ranged over by α, κ. The symbol λ ranges over limit ordinals.
Let (σZ.Φ)α be the α-approximant (alternatively α-unfolding) of σZ.Φ with the
following interpretation:

||(νZ.Φ)0||TV = ST ||(µZ.Φ)0||TV = ∅

||(νZ.Φ)α+1||TV = ||Φ||T
V[||(νZ.Φ)α||T

V
/Z]
||(µZ.Φ)α+1||TV = ||Φ||T

V[||(µZ.Φ)α||T
V
/Z]

(νZ.Φ)λ =
⋂

{||(νZ.Φ)α||TV | α < λ} (µZ.Φ)λ =
⋃

{||(µZ.Φ)α||TV | α < λ}

Approximants are used in connection to theorem 2.6, and in the correctness
proof for the maximal model construction, found in Appendix A.1.1. The following
theorems present results on modal µ-calculus and approximants.

Theorem 2.6. The following hold for modal µ-calculus formulae:

(i) ||σZ.Φ||TV=||Φ[σZ.Φ/Z]||TV , σ ∈ {µ, ν}. (Unfolding theorem)

(ii) ||(µZ.Φ)||TV =
⋃

α
||(µZ.Φ)α||TV (Knaster-Tarski theorem)

(iii) ||(µZ.Φ)κ||TV =
⋃

α<κ
||Φ||T

V[||(µZ.Φ)α||T
V
/Z]

We define satisfaction t |=TV Φ by t ∈ ||Φ||TV . In what follows, we omit the
subscript V from ||Φ||TV when Φ is a closed formula. Satisfaction is lifted to sets
of states in the natural way, so that a set of states S ⊆ ST satisfies a property Φ,
S �V Φ, only if for all s ∈ S, s �V Φ.

We say that an OTA Γ�E is guarded when the term E and all modal µ-calculus
formula Φ in Γ are guarded. Similarly, we say an OTA is linear when the term it
contains is linear.

The behaviors specified by an open term with assumptions are given with respect
to a labeled transition system T that is closed under the transition rules and is
closed under substitution of processes for assumption process variables in subterms
of the OTA. The states of LTS correspond to processes in our process algebra.
The denotation of an OTA is then the set of all processes obtained by substituting
each assumption process variable in the term by a process from T satisfying the
respective assumptions.

Definition 2.7 (OTA Denotation). Let Γ � E be an OTA, T be an LTS, and
ρR : RecProcVar → ST be a recursion environment. The denotation of Γ � E
relative to T and ρR is defined as:

JΓ � EK
T
ρR

, {EρRρA | ∀(X : Φ) ∈ Γ. ρA(X) |=T Φ}
where ρA : AssProcVar→ ST ranges over assumption environments.

20 CHAPTER 2. STATE SPACE REPRESENTATION

Example. Consider an operating system in the form of a concurrent server that
spawns off handler processes each time it receives a request. These processes run
system calls for handling the given requests to produce a result (modeled by the

action out). The handler is defined as Handler
∆
= In ‖ out.0 where In

∆
= in.In.

Although it is possible to communicate with request handlers through the attached
channel (modeled by the action in), they do not react to further input. A property
one would like to prove of such a server is that it stabilizes whenever it stops
receiving new requests. Eventual stabilization can be formalized in the modal µ-

calculus as stab
∆= νX.µY. [in]X ∧

[

out
]

Y . We can reduce this verification task to
proving that the open system modeled by the OTA

X : stab �X ‖Handler

which consists of Handler and any stabilizing process X , eventually stabilizes.

2.5 Extended Modal Transition Systems

We propose Extended Modal Transition Systems (EMTS) as a structure for explicit
state space representation of open systems with temporal assumptions. In this
chapter, we summarize the main definitions around this notion.

The notion of EMTS is based on Larsen’s Modal Transition Systems presented
in 2.3. In addition to may and must transitions for dealing with modalities, EMTSs
include sets of states (instead of single states) as targets to transitions to capture
disjunctive assumptions, and a set of prohibited infinite runs defined through a
coloring function to represent termination assumptions.

Definition 2.8 (EMTS). An extended modal transition system is a structure

E = (SE , A,−→3
E ,−→

2
E , c)

where

(i) SE is a set of abstract states,

(ii) A is a set of actions,

(iii) −→3
E , −→2

E ⊆ SE ×A× 2SE are may and must transition relations, and

(iv) c : SE → Nk is a coloring function for some k ∈ N.

A must transition from a state is a shared transition of all those closed systems
captured by the state, while a may transition is a transition that may or may not
be exhibited by a closed system state captured by the EMTS state.

A run (or may–run) of E is a possibly infinite sequence of transitions ρE =

s0
a0−→E s1

a1−→E s2
a2−→E . . . where for every i ≥ 0, si

ai
−→3

E S for some S such that

2.5. EXTENDED MODAL TRANSITION SYSTEMS 21

si+1 ∈ S. Must–runs are defined similarly. We distinguish between two kinds of

a-derivatives of a state s: ∂3
a (s) , {S | s

a

−→3
E S} and ∂2

a (s) , {S | s
a

−→2
E S}.

The coloring function c induces a set WE of prohibited infinite runs by means of
a parity acceptance condition (cf. [88, 38]) as follows. The function c is extended to
infinite runs ρE = s0

a0−→E s1
a1. . . so that c(ρE) = (c(s0)(1)·c(s1)(1) . . . , . . . , c(s0)(k)·

c(s1)(k) . . .) is a k-tuple of infinite words where c(s)(j) denotes the jth component
of c(s). Let inf(c(ρE)(i)) denote the set of infinitely occurring colors in the ith word
of this tuple. Then the run ρE is said to be prohibited, ρE ∈ WE , if and only if
max (inf (c(ρE)(i))) is odd for some 1 ≤ i ≤ k, i.e. in one of these k infinite words,
the greatest number that occurs infinitely often is odd.

The choice of parity acceptance for capturing alternation of fixed points in
modal µ-calculus formulae is natural as was noted by Emerson and Jutla [38].
The typical coloring function used in earlier parity conditions (for instance the
one used by Emerson and Jutla in [38]) color states with a single natural number.
It is nonetheless possible to obtain a set of state-set pairs, to encode the set of
infinite runs represented by our parity condition by means of a Streett acceptance
condition. Streett acceptance, introduced for Kripke structures in section 2.2, can
also be used for EMTSs to select a subset of infinite runs. Given the EMTS E , let
maxj be the largest number that occurs in the jth entry of the states of SE and let
the colors used in the EMTS be m-tuples. The coloring function c of the EMTS
can be used to specify a set of pairs Ω such that for Lij , Uij ⊆ SE where 1 ≤ j ≤ m
and 1 ≤ 2 ∗ i+ 1 ≤ maxj , (Lij , Uij) ∈ Ω are constructed as follows:

• Lij = {s ∈ SE | c(s)(j) = 2 ∗ i+ 1} and

• Uij = {s ∈ SE | ∃i′.c(s)(j) = 2 ∗ i′ ∧ i′ ≥ i}

In this way, a run is not prohibited only if the odd color in the jth entry of an
infinitely often visited state is canceled out by infinitely often visiting a state which
has a larger, even color in the same entry.

Next, we define a simulation relation between the states of an EMTS as a form
of mixed fair simulation (cf. e.g. [51, 22]).

Definition 2.9 (Simulation). R ⊆ SE × SE is a simulation relation on the states
of E if whenever s1Rs2 and a ∈ A:

1. if s1

a

−→3
E S1, then there is a set of states S2 such that s2

a

−→3
E S2 and for

each s′1 ∈ S1, there exists a s′2 ∈ S2 such that s′1Rs
′
2;

2. if s2

a

−→2
E S2, then there is a set of states S1 such that s1

a

−→2
E S1 and for

each s′1 ∈ S1, there exists a s′2 ∈ S2 such that s′1Rs
′
2;

3. if the run ρs2
= s2

a1−→E s
1
2

a2−→E s
2
2

a3−→E . . . is in WE then every infinite run
ρs1

= s1
a1−→E s

1
1

a2−→E s
2
1

a3−→E . . . such that si1Rs
i
2 for all i ≥ 1 is also in WE .

22 CHAPTER 2. STATE SPACE REPRESENTATION

We say that abstract state s2 simulates abstract state s1, denoted s1 � s2, if
there is a simulation relation R such that s1Rs2. Simulation can be generalized to
two different EMTSs E1 and E2 in the natural way.

Labeled transition systems can be viewed as a special kind of EMTS, where:
−→2

E=−→3
E , the target sets of the transition relation are singleton sets of states,

and the set of prohibited runs W is empty.
We give the meaning of an abstract state relative to a given LTS, as the set of

concrete LTS states simulated by the abstract state.

Definition 2.10 (Denotation). Let E be an EMTS, and let T be an LTS. The
denotation of abstract state s ∈ SE is the set JsKT , {t ∈ ST | t � s}. This notion
is lifted to sets of abstract states S′ ⊆ SE in the natural way:

JS′KT ,
⋃

{JsKT | s ∈ S
′}

In the rest of this chapter, we assume that EMTSs obey the following consistency

restrictions: −→2
E⊆−→

3
E , s

a

−→2
E S implies S is non-empty, and W does not contain

runs corresponding to infinite must–runs of the EMTS.
In section 2.7, we present a proof system for proving properties of abstract states.

For this purpose, we define when an abstract state s satisfies a modal µ-calculus
formula Φ. The global nature of the set W in EMTSs makes it cumbersome to
define the denotation of a fixed point formula compositionally as a set of abstract
states. We therefore give an indirect definition of satisfaction, by means of the
denotation JsKT of a state s.

Definition 2.11 (Satisfaction). Let E be an EMTS, s ∈ SE be an abstract state
of E and Φ be a modal µ-calculus property. Then s satisfies Φ under valuation
V : PropVar→ 2SE , denoted s |=EV Φ, if and only if for any LTS T JsKT |=

T
V Φ where

valuation V : PropVar→ 2ST is induced by V as V(Z) ∆=
⋃

{JsKT | s ∈ V(Z)}.

Example. The state space of the open system introduced in the previous sec-
tion is captured by the EMTS in figure 2.2. In figures 2.2 and 2.3 start states of
the EMTSs are marked by a green arrow and blue, red, green circles correspond
to the state colors 0, 1 and 2, respectively. For any labeled transition system
T , the processes simulated by the state s1 are those denoted by the open term
X : stab �X ‖Handler. The EMTS consists of six abstract states, each state de-
noting the set of processes which it simulates. For instance, states s5 and s6 in the
example denote all processes which can engage in arbitrary interleavings of in and
out actions, but so that in has to be enabled throughout while out has not. Infinite
runs stabilizing on out actions are prohibited by the coloring of s3 and s6.

Consider the processes a) fix A.in.A, b) fix A.(in.A + out.(fix B.in.B)) and c)
fix A.(in.A+out.A), for which corresponding EMTSs are shown in figure 2.3. In or-
der to show that processes are denoted by the open system X : stab�X ‖Handler,
simulation relations between the start states of the EMTSs of processes and the

2.6. FROM SPECIFICATION TO STATE SPACE REPRESENTATION 23

out

out

out

out out

,,

,

out
out

out
out

,

,

,

,

,

,
out

out

out

out out

,,

,

out
out

out
out

,

,

,

,

,

,

in

in

in

in
in

in

in

in

in

in
in

in

s1s1

s2s2 s3s3

s4s4

s5s5 s6s6

Figure 2.2: EMTS for X : stab �X ‖Handler

start state of the EMTS of the open system should be established. With the help
of these two figures, it is possible to see that the second process is in the denotation
of this open system while the first and third processes are not:

1. The relation R1 = {(t1, s1), (t1, s2)} is not a simulation relation because of the
second item of definition 2.9. It is not possible to build a simulation relation
that contains the pair (t1, s1), since t1 does not have any successors to be
paired with s4. Since the transition from s1 to s4 is a must transition for the
action out, in order to be simulated by s1, t1 should have an out successor.

2. The relation R2 = {(t2, s1), (t2, s2), (t′2, s4), (t′2, s5)} is a simulation relation
for the second process and the open system. Furthermore, this is the only
possible simulation relation that contains the pair (t2, s1).

3. The relation R3 = {(t3, s1), (t3, s2), (t3, s4), (t3, s5)} is the obvious candidate
for a simulation relation for the third process. R3 is not a simulation relation
since the pair (t3, s5) does not satisfy the third condition of definition 2.9.
Because the color of state s3 and the colors of both its out-successors, s3 and
s6, are odd, processes simulated by this state are not permitted to stabilize
on out. But t3 can perform such a stabilizing run, hence t3 is not simulated
by s3.

2.6 From Specification to State Space Representation

We propose a two-phase construction ε that translates an open term Γ � E to an
EMTS, denoted ε(Γ � E). In the first phase, an EMTS is constructed for each

24 CHAPTER 2. STATE SPACE REPRESENTATION

(a)

,

,

in

,

in

out

, ,

out in

,

in

(c)(b)

t1

t2

t3

t′2

Figure 2.3: EMTSs for processes a) fix A.in.A, b)fix A.(in.A + out.(fix B.in.B))
and c) fix A.(in.A+ out.A)

underspecified component. This part is essentially a maximal model construction
for the modal µ-calculus. The second phase consists of combining the EMTSs
produced in the first step according to the structure of the term E.

We will illustrate the construction with the use of examples. In the examples
below, the set of actions is A = {a, b}. Blue, red and green circles around state
names correspond to integers 0, 1 and 2 respectively and are used to indicate the
color of the state. The number of circles around a state indicates the length of the
color tuple for this state. The outermost circle around a state corresponds to the
leftmost entry of its color, while the innermost circle corresponds to the rightmost.
For example, a green outer circle in combination with a red inner circle means that
the state has color (2,1). Color tuples are contracted into equivalent but shorter
tuples when possible.

2.6.1 Maximal Model Construction

We define the function ε which maps modal µ-calculus formulae to triples of the
shape (E , S, λ), where E = (SE , A,−→3

E ,−→
2
E , c) is an EMTS, S ⊆ SE is a set of

start states of E , and λ : SE → 2PropV ar is a labeling function.
The function is defined inductively on the structure of Φ as shown in figure 2.4.

The meaning of open formulae that arises in intermediate steps are given by the
by the valuation which assigns the whole set of processes ST to each propositional
variable. Essentially, the particular valuation used does not play a role in the final
EMTS, since the properties used as assumptions of an OTA are closed.

In the definition, let ε(Φ1) be ((SE1
, A, −→3

E1
, −→2

E1
, c1), S1, λ1) and ε(Φ2)

be ((SE2
, A, −→3

E2
, −→2

E2
, c2), S2, λ2) where SE1

and SE2
are disjoint sets. The

new state snew is not in SE1
and a and a′ are actions in A. The coloring functions

c1 : SE1
→ N

k1 and c2 : SE2
→ N

k2 color the states of E1 and E2 with integer tuples
of length k1 and k2 respectively.

For a set S, S |2 denotes the largest transition-closed set contained in S such

2.6. FROM SPECIFICATION TO STATE SPACE REPRESENTATION 25

that there is no element s ∈ S |2 with the empty set as the target to a must

transition, that is, there is no s such that for some a ∈ A, s
a

−→2
E ∅ and each state

s is reachable from some start state.
The EMTS for formula tt consists of the single state stt with may transitions

to itself for every action (See figure 2.5(a)), while the EMTS for ff is the empty
EMTS. The EMTS for a propositional variable consists of a single state with may
transitions to stt for each action. Essentially, the particular valuation used for
propositional variables does not play a role in the final EMTS, since the properties
used as assumptions of an OTA are closed. Nevertheless, the meaning of open
formulae that arises in intermediate steps are given by the by the valuation which
assigns the whole set of processes ST to each propositional variable. This is achieved
by constructing the EMTS for the propositional variable Z as a single start state,
which has may transitions to stt for each action (See figure 2.5(b)).

For the modal cases, a new state snew is set as the start state. The EMTS for
ε([a] Φ) has a single may transition for a, which is to the set of initial states of
ε(Φ) (See figure 2.6(a)). This is to ensure all simulated processes satisfy Φ after
engaging in an a. Additionally, there is a may transition to stt for all other actions.
The EMTS for ε(〈a〉Φ) includes a must transition for a from this start state to
the start states of ε(Φ), along with may transitions for all actions to stt forcing
the simulated processes to have an a transition to some process satisfying Φ and
allowing any other transitions besides (See figure 2.6(b)).

The states of the EMTS for the conjunction of two formulae is the cross product
of the states of the EMTSs constructed for each conjunct, excluding pairs with
incompatible capabilities (See figure 2.7(a)). The color of a state of ε(Φ1 ∧ Φ2) is
the concatenation of the colors of the paired states. In the case of disjunction, the
set of start states of ε(Φ1 ∨ Φ2) is the union of the start states of ε(Φ1) and ε(Φ2)
which reflects the union of their denotation (See figure 2.7(b)). The color of a state
is given by padding with 0’s from either the left or right.

The construction for fixed point formulae is a powerset construction which is
similar to the constructions given in [30] and [65] for the purpose of constructing
Büchi Automata for linear time and the alternation-depth class Π2 fragments of the
µ-calculus, respectively. The states of ε(σZ.Φ) consist of sets of states of ε(Φ) and
its start states are singletons containing some start state of ε(Φ). An invariant of the
maximal model construction is that start states do not have incoming transitions.
(The case for ε(tt) is the only exception and can be easily adapted to satisfy the
invariant.) For a transition of state q = {s1, . . . , sn} of ε(σZ.Φ), each state si has a
transition in ε(Φ). A member state of the target of this transition, then, contains a
derivative for each si. A member of the target state additionally contains an initial
state of ε(Φ) if one of the derivatives included is labeled by Z. The definition of
figure 2.4 makes use of the target set function ∂P defined below.

Definition 2.12 (Target Set Function ∂P). Let Φ be a modal µ-calculus formula,
σ be either µ or ν, ε(Φ) be (E1,S,λ) where E1 = (SE1

, A,−→3
E ,−→

2
E , c) is an EMTS,

S ⊆ SE1
is a set of start states, λ : SE1

→ 2PropV ar is a function that maps states

26 CHAPTER 2. STATE SPACE REPRESENTATION

• ε(tt)
∆
= (({stt}, A, −→3

E , ∅, {stt 7→ 0}), {stt}, {stt 7→ ∅})

where stt

a

−→3

E
{stt} for all a ∈ A.

• ε(ff)
∆
= ((∅, A, ∅, ∅, ∅), ∅, ∅)

• ε(Z)
∆
=(({snew , stt}, A, −→3

E , ∅, {stt 7→ 0, snew 7→ 0}), {snew}, {snew 7→ {Z}, stt 7→ ∅})

where snew

a

−→3

E {stt} and stt

a

−→3

E {stt} for all a ∈ A.

• ε(Φ1 ∧ Φ2)
∆
=(((SE1

× SE2
)|2, A, −→3

E
, −→2

E
, W), (SE1

× SE2
)|2 ∩ (S1 × S2), λ) where

−→3

E

∆
= {(s, r)

a

−→3

E
S′ ×∪∂3

a (r) | s
a

−→2

E1
S′}

∪ {(s, r)
a

−→3

E
∪∂3

a (s) × R′ | r
a

−→2

E2
R′}

∪ {(s, r)
a

−→3

E S′ × R′ | s
a

−→3

E1
S′ ∧ r

a

−→3

E2
R′ ∧ S′ 6∈ ∂2

a (s) ∧ R′ 6∈ ∂2
a (r)}

−→2

E

∆
= {(s, r)

a

−→2

E
(S′ ×∪∂3

a (r)) | s
a

−→2

E1
S′}

∪ {(s, r)
a

−→2

E (∪∂3
a (s) × R′) | r

a

−→2

E2
R′}

c
∆
= {(s, r) 7→ c1(s) · c2(r) | s ∈ SE1

∧ r ∈ SE2
}

λ
∆
= {(s, r) 7→ λ1(s) ∪ λ2(r) | s ∈ SE1

∧ r ∈ SE2
}

• ε(Φ1 ∨ Φ2)
∆
= ((SE1

∪ SE2
, A, −→3

E
, −→2

E
, c), S1 ∪ S2, λ1 ∪ λ2) with:

−→3

E

∆
= −→3

E1
∪ −→3

E2

−→2

E

∆
= −→2

E1
∪ −→2

E2

c
∆
= {s 7→ c1(s) · 0k2 | s ∈ SE1

} ∪ {s 7→ 0k1 · c2(s) | s ∈ SE2
}

• ε([a] Φ1)
∆
=((SE1

∪ {snew , stt}, A, −→3

E
, −→2

E1
, c), {snew}, λ) with:

−→3

E

∆
= −→3

E1
∪{stt

a′

−→3

E
{stt} | a′ ∈ A} ∪ {snew

a

−→3

E
S1}

∪ {snew

a′

−→3

E
{stt} | a′ 6= a ∧ a′ ∈ A}

c
∆
= c1 ∪ {snew 7→ 0k1} ∪ {stt 7→ 0k1}

λ
∆
= λ1 ∪ {snew 7→ ∅} ∪ {stt 7→ ∅}

• ε(〈a〉Φ1)
∆
= ε(ff) if S1 = ∅

ε(〈a〉Φ1)
∆
= ((SE1

∪ {snew, stt}, A, −→3

E
, −→2

E
, c), {snew}, λ) otherwise, with:

−→3

E

∆
= −→3

E1
∪{snew

a

−→3

E S1} ∪ {snew

a′

−→3

E {stt} | a′ ∈ A} ∪ {stt

a′

−→3

E {stt} | a′ ∈ A}

−→2

E

∆
= −→2

E1
∪{snew

a

−→2

E
S1}

c
∆
= c1 ∪ {snew 7→ 0k1} ∪ {stt 7→ 0k1}

λ
∆
= λ1 ∪ {snew 7→ ∅} ∪ {stt 7→ ∅}

• ε(σZ.Φ1) ((2SE1 |2, A,−→3

E ,−→2

E , cσ), 2SE1 |2 ∩ {{s} | s ∈ S1}, λ) where σ ∈ {ν, µ} with:

−→3

E

∆
= {{s1, . . . , sn}

a

−→3

E S | ∃i.∃S′
i.si

a

−→2

E1
S′

i∧

S = ∂P ((∪∂3
a (s1), . . . , S′

i, . . . ,∪∂3
a (sn)), S1, λ1, Z)}

∪ {{s1, . . . , sn}
a

−→3

E
S | ∀j.∃S′

j .sj

a

−→3

E1
S′

j ∧ S′
j 6∈ ∂2

a (sj)∧

S = ∂P ((S′
1
, . . . , S′

n), S1, λ1, Z)}

−→2

E

∆
= { {s1, . . . , sn}

a

−→2

E
S | ∃i.∃S′

i.si

a

−→2

E1
S′

i∧

S = ∂P ((∪∂3
a (s1), . . . , S′

i, . . . ,∪∂3
a (sn)), S1, λ1, Z)}

cν({s1, . . . , sn})(j)
∆
=

8>><>>: maxodd
1≤i≤n

(c1(si)(j)) if ∀i.Z 6∈ λ1(si)

evend

s∈SE1

c1(s)(j) if ∃i.Z ∈ λ1(si)

cµ({s1, . . . , sn})(j)
∆
=

8>>><>>>: maxodd
1≤i≤n

(c1(si)(j)) if ∀i.Z 6∈ λ1(si)

oddd

s∈SE1

c1(s)(j) if ∃i.Z ∈ λ1(si)

λ
∆
= {{s1, . . . , sn} 7→

S
1≤i≤n

λ1(si) − {Z} | {s1, . . . , sn} ∈ 2SE1 }

Figure 2.4: Maximal Model Construction

2.6. FROM SPECIFICATION TO STATE SPACE REPRESENTATION 27

(b)

a,b

a,b

a,b

(a)

stt

stt Z

Figure 2.5: (a) ε(tt), (b) ε(Z)

(b)

a,b a,b

,

a,b

a

b

a,b

a,b

a

(a)

sttstt

ZZ

s1s1

Figure 2.6: (a) ε([a]Z), (b) ε(〈a〉Z)

(b)

a

b

b

a

b

a,b

a,b a,b
a,b a,b

a,b

a

(a)

s1s1 s2

Y ZZZ

sttstt

Figure 2.7: (a) ε([a]Y ∧ [b]Z), (b) ε([a]Z ∨ [b]Z)

28 CHAPTER 2. STATE SPACE REPRESENTATION

of E to propositional variables, c : SE → Nk is a coloring function that maps
states of E to k-tuples, and let Z ∈ PropV ar be a propositional variable. Given a
tuple consisting of a target set for each element of a state of ε(σZ.Φ), the function
∂P : (2SE1 × . . .× 2SE1)× 2SE1 × (SE1

→ 2PropV ar)× PropV ar→ 22
SE1 defines the

target set of a transition of ε(σZ.Φ) for this state as follows:

∂P((S1, . . . , Sn), S, λ, Z) ∆= {{s1, . . . , sn} | ∀i.si ∈ Si∧ 6 ∃j.Z ∈ λ(sj)}∪
{{s1, . . . , sn, s0} | ∀i.si ∈ Si∧

∃j.Z ∈ λ(sj) ∧ s0 ∈ S}

Each component of the color of state q is determined by comparing the corre-
sponding entries of the member states si. When for at least one of these states
si, this entry is odd, the greatest of the corresponding odd entries is selected as
the entry of q, otherwise the maximum entry is selected for the same purpose. The
color of q is further updated if it contains a state si labeled by Z. When Z identifies
a greatest fixed point formula, each entry of the constructed tuple is defined to be
the least even upper bound of the integers used in this entry of ε(Φ). Whereas,
when Z identifies a least fixed point formula, the least odd upper bound of the
integers is the entry for the color of q. Figures 2.7(a) and 2.9(a,b) illustrate how
the alternation of fixed points is handled. In this example, the innermost fixed
point is a greatest fixed point which means that the color of the state labeled by
the variable identifying this fixed point (Z) is not changed going from figure 2.7(a)
to figure 2.9(a). On the other hand, the outer fixed point is a least fixed point
therefore the least odd upper bound of the colors of figure 2.9(a) is computed and
the result (1) is used to color the state labeled with the variable that identifies this
fixed point (Y) in figure 2.9(b).

In figure 2.10, an example which requires colors of states to be tuples with
multiple entries is given.

This part of the construction potentially causes an exponential blow-up in the
number of states. Ideally, an algorithm of this step would start with the set of start
state singletons and grow the EMTS by computing the target of one transition at
each step. Then, the average number of states would be much less since most of
the subset-states are not reachable from the start states. In figure 2.11, we can see
how the state space grows from the state state singletons and figure 2.12 shows the
EMTS constructed.

2.6.2 Construction for Terms

We extend the function ε to the domain of OTAs so that ε(Γ�E) = (E ,S,λ), where
E = (SE , A,−→3

E ,−→
2
E , c) is an EMTS, S ⊆ SE is the set of start states of E , and

λ : SE → 2RecProcV ar is a labeling function.
The function ε is defined inductively on the structure of E as shown in figure 2.8.

The EMTS corresponding to the nil process 0 consists of an abstract state without
outgoing transitions, indicating that no transition is allowed for processes simulated

2.6. FROM SPECIFICATION TO STATE SPACE REPRESENTATION 29

• ε(Γ � 0)
∆
=(({snew}, A, ∅, ∅, {snew 7→ 0}), {snew}, {snew 7→ ∅})

• ε(Γ � X)
∆
= ε(Φ) if X ∈ AssProcV ar

where Φ =
V

X:Ψ ∈ Γ

Ψ (defaults to tt when Γ contains no assumption on X).

• ε(Γ � X)
∆
=(({snew}, A, ∅, ∅, {snew 7→ 0}), {snew}, {snew 7→ {X}}) if X ∈ RecProcV ar

• ε(Γ � a.E1)
∆
= ((SE1

∪ {snew}, A, −→3

E , −→2

E , c), {snew}, λ1 ∪ {snew 7→ ∅}) with:

−→3

E

∆
= −→3

E1
∪{snew

a

−→3

E S1}

−→2

E

∆
= −→2

E1
∪{snew

a

−→2

E
S1}

c
∆
= c1 ∪ {snew 7→ 0k1}

• ε(Γ � E1 + E2)
∆
= ((SE1

∪ SE2
∪ (S1 × S2), A, −→3

E
, −→2

E
, c), S1 × S2, λ)

−→3

E

∆
= −→3

E1
∪ −→3

E2
∪{(s, r)

a

−→3

E
S′ | s ∈ S1 ∧ r ∈ S2 ∧ (s

a

−→3

E1
S′ ∨ r

a

−→3

E2
S′)}

−→2

E

∆
= −→2

E1
∪ −→2

E2
∪{(s, r)

a

−→2

E S′ | s ∈ S1 ∧ r ∈ S2 ∧ (s
a

−→2

E1
S′ ∨ r

a

−→2

E2
S′)}

c
∆
= {s 7→ c1(s) · 0k2 | s ∈ SE1

} ∪ {r 7→ 0k1 · c2(r) | r ∈ SE2
}

∪ {(s, r) 7→ c1(s) · c2(r) | (s, r) ∈ S1 × S2}

λ
∆
= λ1 ∪ λ2 ∪ {(s, r) 7→ λ1(s) ∪ λ2(r) | s ∈ S1 ∧ r ∈ S2}

• ε(Γ � fix X.E1)
∆
=((SE1

, A, −→3

E
, −→2

E
, c1), S1, λ) with:

−→3

E

∆
= {s

a

−→3

E
S | (s

a

−→3

E1
S) ∨

(∃s1 ∈ S1.s1

a

−→3

E1
S ∧ X ∈ λ1(s) ∧ s is reachable from s1)}

−→2

E

∆
= {s

a

−→2

E
S | (s

a

−→2

E1
S) ∨

(∃s1 ∈ S1.s1

a

−→2

E1
S ∧ X ∈ λ1(s) ∧ s is reachable from s1)}

λ
∆
= {s 7→ (λ1(s) − {X}) | s ∈ SE1

}

• ε(Γ � E1 ‖ E2)
∆
= ((SE1

× SE2
× {1, 2}, A, −→3

E , −→2

E , c), S1 × S2 × {1, 2}, λ)

−→3

E

∆
= {(s, r, x)

a

−→3

E
S′ × {r} × {1} | s

a

−→3

E1
S′}

∪ {(s, r, x)
a

−→3

E
{s} × R′ × {2} | r

a

−→3

E2
R′}

−→2

E

∆
= {(s, r, x)

a

−→2

E S′ × {r} × {1} | s
a

−→2

E1
S′}

∪ {(s, r, x)
a

−→2

E
{s} × R′ × {2} | r

a

−→2

E2
R′}

c
∆
= {(s, r, 1) 7→ c1(s) · 0k2 | s ∈ SE1

∧ r ∈ SE2
}

∪ {(s, r, 2) 7→ 0k1 · c2(r) | s ∈ SE1
∧ r ∈ SE2

}

λ
∆
= {(s, r, x) 7→ ∅ | s ∈ SE1

∧ r ∈ SE2
∧ x ∈ {1, 2}}

Figure 2.8: EMTS Construction for Process Algebra Terms

30 CHAPTER 2. STATE SPACE REPRESENTATION

a b

a

b
a b

(b)

a b

b
a

a,b

a,b
(a)

s1

Y s3

q1

q2 q3

stt

Figure 2.9: (a) ε(νZ. [a]Y ∧ [b]Z), (b) ε(µY.νZ. [a]Y ∧ [b]Z)

a b

a

b
a b

(a)

a b

a

b
a b

(b)

a b

a

b
a b

(c)

s1s1

s2s2 s3s3

s11

s22 s33

Figure 2.10: (a) ε(νY.µZ. [a]Y ∧ [b]Z), (b) ε(νZ.µY. [a]Y ∧ [b]Z), (c)
ε((νY.µZ. [a]Y ∧ [b]Z) ∧ (νZ.µY. [a]Y ∧ [b]Z))

2.6. FROM SPECIFICATION TO STATE SPACE REPRESENTATION 31

a

I II

a

a

a

III

a

a

{s1}

{s1}{s1}

{s2}

{s2}{s2}

{s1, s3}

{s1, s3} {s1, s3}

{s2, s3}

{s2, s3}{s2, s3}

{s1, s3, stt}

{s1, s3, stt} {s2, s3, stt}

{s2, s3, stt}

Figure 2.11: Three Steps of Constructing EMTS for µZ. [a]Z ∨ [b]Z from ε([a]Z ∨
[b]Z)

32 CHAPTER 2. STATE SPACE REPRESENTATION

b

a

b a
b

b

b a

a b

a,b

ba

a

b

a

a b

b aa

{s1} {s2}

{s1, s3} {s2, s3}

{s1, s3, stt}{s2, s3, stt}

{s2, s4}{s1, s4}

{s2, s4, stt}{s1, s4, stt}

{stt}

Figure 2.12: ε(µZ. [a]Z ∨ [b]Z)

by this state. If a process variable X in the term E stands for an underspecified
component of the system, that is if X is an assumption process variable, then the
EMTS for X is a maximal model for the conjunction of the properties specified for
this component in the assumption list Γ.

The EMTS for a recursion process variable X is a single state without outgoing
transitions, since the capabilities of the processes simulated are determined by the
binding fix-expression. The function λ labels the state X . Given the EMTS for the
term of the fix-expression where X is free, the transitions of the start states are
transferred to the states labeled by X .

The EMTS for a subterm prefixed by an action a is given by a start state with
a must a-transition to the set of start states of the EMTS for the subterm. The
EMTS for the sum operator consists of an EMTS where the start states are the
cross product of the start states of the EMTSs for the subterms. It is assumed for
this case that there are no incoming transitions to the start states of the EMTSs
being combined. This is an invariant of the construction, except the case for tt
which can be trivially converted to an equivalent EMTS to satisfy the property.

Finally, the states of the EMTS for a parallel composition of two components
consists of a state from each component. Each state has transitions such that one
of the components make a transition while the other stays in the same state. Each
state is further marked by 1 or 2 to keep track of which component has performed
the last transition; this is necessary to enable a run of the composition if the
interleaved runs are enabled.

2.6. FROM SPECIFICATION TO STATE SPACE REPRESENTATION 33

2.6.3 Correctness Results

The aim of the above construction is to capture by means of an EMTS exactly those
behaviors denoted by the given OTA. The construction is sound (resp. complete)
if the denotation of the OTA is a subset (resp. superset) of the denotation of the
resulting EMTS. Our first theorem establishes the soundness and completeness of
the maximal model construction.

Theorem 2.13. Let T be a transition-closed LTS, Φ be a closed and guarded modal
µ-calculus formula and ε(Φ) = (E, S, λ). Then JSKT = ||Φ||T .

Proof. The proof is done by induction on the structure of the logical formula and
can be found in Appendix A.1.1. 2

Our next result shows that the construction is sound and complete when as-
sumptions exist on only one of the components that are running in parallel and the
rest of the system is fully determined.

Theorem 2.14. Let T be a transition-closed LTS, Γ�E‖t be a guarded linear OTA
where E does not contain parallel composition, and t is closed, and let ε(Γ �E ‖ t)
= (E, S, λ). Then JSKT is equal to the set JΓ � E ‖ tKρ0

up to bisimulation, where
ρ0 maps each recursion process variable X to 0.

Theorems 2.13 and 2.14 are proved by induction on the structure of the logical
formula and the process term, respectively. The proof of the latter theorem can be
found in Appendix A.1.2.

In the general case, when multiple underspecified components run in parallel,
we only have soundness: our construction is sound for systems without dynamic
process creation. For systems with dynamic process creation, the construction does
not terminate.

Theorem 2.15. Let T be a transition-closed LTS, Γ �E be a guarded linear OTA
where every recursion process variable in the scope of parallel composition is bound
by a fix operator in the same scope, and let ε(Γ � E) = (E, S, λ). Then the set
JSKT includes JΓ � EKρ0

up to bisimulation.

The proof of the theorem is as the proof of theorem 2.14, but includes a more
general case for parallel composition and can be found in Appendix A.1.2.

Example. Take a system made up of two components that run in parallel with
the only available actions being a and b. The assumption on the first component is
called NeverDoes a and means that this component can never perform action a
and dually the assumption on the second component, NeverDoes b, is that action
b is always disabled. The state space of the system constructed through ε is given
in figure 2.13 after some simplifications. Unfortunately, the start state s1 of this
EMTS simulates any process and is clearly a proper superset of the intended set

34 CHAPTER 2. STATE SPACE REPRESENTATION

b

a b

a

b
a

s1

s21 s22

Figure 2.13: ε(X : NeverDoes a, Y : NeverDoes b�X‖Y)

of processes. This state space also captures systems where an a transition becomes
available although it was initially disabled while trying to capture the fact that
the first component may start at an arbitrary instant. This over-approximation
makes it impossible to prove some simple properties of the open system through
the constructed state space. One such property is 〈a〉ff ∨〈b〉 [a] tt which states that
either it is impossible to perform an a initially or for each initial b-transition there
exists a follower a-transition. Proving such a property of an EMTS requires the
presence of a must transition.

Our last result reflects the fact that verification of open systems in the presence
of parallel composition is undecidable for the modal µ-calculus in general. Com-
pleteness results can, however, be obtained for various fragments of the µ-calculus,
such as ACTL, ACTL* and the logic of [53]. In our approach, the tasks of con-
structing a finite representation of the state space in the form of an EMTS and
the task of verifying properties of this representation are separated. This allows
different logics to be employed for expressing assumptions on components and for
specifying system properties, giving rise to more refined completeness results.

2.7 Proof System

In this section we present the proof system we use for showing that a state of an
EMTS satisfies a modal µ-calculus property. Our proof system ΣE is a specialization
of a proof system ΣT by Bradfield and Stirling for showing properties of sets of LTS
states. It is sound and complete for prime formulae.

In both systems, a proof tree is constructed using the corresponding proof rules.
The construction starts with the goal and progresses in a goal-directed fashion,
checking at each step if a terminal node was reached. A successful tableau (or proof)
is a finite proof tree having successful terminals as leaves. Below, we contrast the
major components of the two proof systems for a better understanding: sequents,
proof rules and conditions for being a successful/unsuccessful terminal, in particular
discharge conditions for repeat nodes.

2.7. PROOF SYSTEM 35

Sequents Sequents of ΣT (left) include a set of LTS states S while sequents of
ΣE (right) include a single state s of the EMTS. Φ and Ψ are modal µ-calculus
properties. The similarity of the sequents is natural since the abstract state s
corresponds to a set of concrete states JsKT , its denotation with respect to the
labeled transition system, T .

S ⊢TV Φ s ⊢EV Ψ

Rules The rules of the two proof systems are shown in figure 2.14. Common
rules of the two proof systems reduce the goal in a similar manner. The rule of
disjunction in our proof system is not as powerful as the one in Stirling’s. When
we are to show an abstract state s satisfies property Φ1 ∨ Φ2, we have to choose
one of Φ1 and Φ2 for s to satisfy since s can not be split. In our proof system,
ΣE , we can show that the state s satisfies Φ1 ∨ Φ2, only if JsKT satisfies one of
these properties Ψ1 and Ψ2 in every T . This results in our proof system to be
prime-complete instead of complete.

Proof trees (possibly) branch in ΣE for 2 and 3-rules since each goal contains a
single abstract state and not a set of states. The choice in the 3-rule of ΣT result
in a goal with a single state, while the choice between 2-successors in ΣE results in
a set of states. The Cut rule does not exist in the original proof system of Stirling.
We extended ΣT with the Cut rule in order to be able to reflect branchings of a
proof tree of ΣE in a proof tree of ΣT , when we translate proof trees for showing
soundness and completeness of our proof system. Finally, we do not have a Thin
rule. In order to have such a rule in ΣE , we would have to define when a state
“includes” another, but for now we can only test two states for identity.

Terminals The conditions for being a terminal is also similar for ΣT and ΣE .
For both proof systems a successful tableau (or proof) is a finite proof tree having
successful terminals as leaves. We now describe the conditions for a node to be a
(successful/unsuccessful) terminal for both proof systems.

Terminals for ΣT A node n in a proof tree labelled by a sequent S ⊢TV Ψ is
denoted n : S ⊢TV Ψ. If n : S ⊢TV Z is a node where Z identifies a fixed point
formula σZ.Φ, and there is a ancestor node n′ : S′ ⊢TV Z above n with at least
one application of a rule other than Thin and Cut in between, S′ ⊇ S and for any
other fixed point variable Y on this path, Z subsumes Y , then node n is called a
σ-terminal. So no further rules are applied to it1. The most recent node making n
a σ-terminal is called n’s companion. The conditions for a leaf sequent R ⊢TV Ψ to
be a successful (resp. unsuccessful) terminal are as follows.

1In order to show completeness for our proof system, we relax this condition without harming
the soundness and completeness results.

36 CHAPTER 2. STATE SPACE REPRESENTATION

Name ΣT Rule ΣE Rule

∧
S ⊢T

V Φ1 ∧ Φ2

S ⊢T
V Φ1 S ⊢T

V Φ2

s ⊢E
V Φ1 ∧ Φ2

s ⊢E
V Φ1 s ⊢E

V Φ2

∨
S ⊢T

V Φ1 ∨ Φ2

S1 ⊢T
V Φ1 S2 ⊢T

V Φ2
S = S1 ∪ S2

s ⊢E
V Φ1 ∨ Φ2

s ⊢E
V Φ1

s ⊢E
V Φ1 ∨ Φ2

s ⊢E
V Φ2

2 S ⊢T
V [a] Φ

∂a(S) ⊢T
V Φ

s ⊢E
V [a] Φ

{s1, ..., sn} = ∪ ∂3
a (s)

s1 ⊢E
V Φ . . . sn ⊢E

V Φ

3
S ⊢T

V 〈a〉Φ

fa(S) ⊢T
V Φ

fa : s 7→ s′ ∈ ∂a(s)
s ⊢E

V 〈a〉Φ

s1 ⊢E
V Φ . . . sn ⊢E

V Φ
{s1, . . . , sn} ∈ ∂2

a (s)

σZ
S ⊢T

V σZ.Φ

S ⊢T
V Z

s ⊢E
V σZ.Φ

s ⊢E
V Z

Z
S ⊢T

V Z

S ⊢T
V Φ

Z identifies σZ.Φ
s ⊢E

V Z

s ⊢E
V Φ

Z identifies σZ.Φ

Thin
S ⊢T

V Φ

R ⊢T
V Φ

S ⊂ R

Cut
S ⊢T

V Φ

S1 ⊢T
V Φ S2 ⊢T

V Φ
S = S1 ∪ S2

In the rules above, σ ranges over µ and ν.

Figure 2.14: Proof Rules for ΣT and ΣE

Successful Terminals for ΣT

1. Ψ = tt, or else Ψ = Z, Z is free in the initial formula, and R ⊆ V(Z)

2. R = ∅

3. Ψ = Z where Z identifies a fixed point formula σZ.Φ, and the leaf sequent is
a σ-terminal with companion node n : S ⊢TV Ψ, then

a) If σ = ν, then the terminal is successful.

b) If σ = µ, then the terminal is successful if there is no infinite chain of
composable trails T0 ◦ T1 ◦ T2 . . . of n (see definition 2.17 below).

Unsuccessful Terminals for ΣT

1. Ψ = ff, or Ψ = Z and Z is free in the initial formula with R 6⊆ V(Z)

2.7. PROOF SYSTEM 37

2. Ψ = 〈a〉Φ and for some r ∈ R, ∂a({r}) = ∅

3. Ψ = Z where Z identifies a minimal fixed point formula µZ.Φ, there is an
ancestor node S ⊢EV Ψ with at least one application of a rule other than Thin
and Cut in between, S ⊂ R and for any other fixed point variable Y on this
path, Z subsumes Y .

We now explain the notion of trail used in the above definition.

Definition 2.16 (Dependent). If node n′ : S′ ⊢TV Φ′ is an immediate successor of
node n : S ⊢TV Φ, then state s′ ∈ S′ at n′ is a dependent of state s ∈ S at n if:

• s = s′ and the rule applied to n is ∧, ∨, σZ, Z, or Thin, or

• s
a
−→T s

′ and the rule is 2a, or

• s′ = fa(s) and the rule is 3a applied with choice function fa.

Definition 2.17 (T -Trail). Assume that node nk:Sk ⊢TV Z is a µ-terminal and node
n0:S0 ⊢

T
V Z is its companion. A trail T of the companion node n0 is a sequence of

state–node pairs (s0, n0), . . . , (sk, nk) from state s0 ∈ S0 at n0 to sk ∈ Sk at nk,
such that for all 0 ≤ i < k, one of the following holds:

1. si+1 ∈ Si+1 at ni+1 is a dependent of si ∈ Si at ni, or

2. ni is the immediate predecessor of a σ-terminal node n′ 6= nk whose compan-
ion is nj for some j : 0 ≤ j ≤ i, and ni+1 = nj and si+1 ∈ Si+1 at n′ is a
dependent of si ∈ Si at ni.

Two trails T1 and T2 of the same companion node are composable, if the last pair
of T1 and the first pair of T2 mention the same state; in this case their composition
is denoted by T1 ◦ T2.

Trails mention state–node pairs. Later in this chapter, we work with actual
sequences of transitions (runs). We therefore define a mapping α to extract the
corresponding run from a given trail.

Definition 2.18 (α: Trail to Run Conversion). Let T = (s0, n0), . . . , (sk, nk) be
a T -trail of proof tree Σ. The corresponding run α(T) is inductively defined as
follows:

α(s, n) ∆= ε

α((s1, n1) · (s2, n2) · T) ∆=

{

(s1
a
−→T s2) · α((s2, n2) · T) 2a or 3a-rule

is applied to n1

α((s2, n2) · T) otherwise.

Terminals for ΣE The conditions for being a σ-terminal and definition of com-
panion node is similar in our proof system, where σ-terminals and their companions
mention the same state. If n : r ⊢EV Z is a node where Z identifies a fixed point
formula, node n is called a σ-terminal if the following holds: there is an identical

38 CHAPTER 2. STATE SPACE REPRESENTATION

ancestor node of n, n′ : r ⊢EV Z and for any other fixed point variable Y on this
path, Z subsumes Y . The most recent node making n a σ-terminal is named n’s
companion. Similar to ΣT , no rules are applied to σ-terminals in our proof system.
The conditions for a leaf node r ⊢EV Ψ of a proof tree to be a successful terminal
are listed below.

Successful Terminals for ΣE

1. Ψ = tt, or else Ψ = Z, Z is free in the initial formula, and r ∈ V(Z)

2. Ψ = [a] Φ and ∪∂3
a (r) = ∅

3. Ψ = Z where Z identifies a fixed point formula σZ.Φ, and the sequent is a
σ-terminal with companion node n : r ⊢EV Ψ, then

a) If σ = ν, then the terminal is successful.

b) If σ = µ, then the terminal is successful if every infinite run of the EMTS
that corresponds to an infinite sequence of trails of the companion node
n0 is in WE . (The notion of trail is explained below.) When the set WE is
encoded using a coloring function c, the condition is that for any set ST
of trails of n0, there should exist 1 ≤ j ≤ k, so that max(∪

T∈ST
c(α(T))(j))

is odd. This ensures, for an infinite run wn0
= α(T1) ◦ α(T2) ◦ α(T3) . . .

where for all i ≥ 1, Ti is a trail of n0, that there exists some 1 ≤ j′ ≤ k
such that max (inf (c(wn0

)(j′))) is odd.

Unsuccessful Terminals for ΣE

1. Ψ = ff, or else Ψ = Z, Z is free in the initial formula, and r 6∈ V(Z)

2. Ψ = 〈a〉Φ and ∪∂2
a (r) = ∅

3. Ψ = Z where Z identifies the least fixed point formula µZ.Φ, and the sequent
is a σ-terminal with companion node n0, then the terminal is unsuccess-
ful if there exists a set ST of trails of n0 such that for every 1 ≤ j ≤ k,
max (∪

T∈ST
c(α(T))(j)) is even. This means that some infinite run wn0

of the

EMTS, which corresponds to an infinite sequence of trails of the companion
node n0, is not in WE .

The notion of E-trails of an EMTS is defined analogously to T -trails of an LTS.
Since the nodes of the proof trees mention single states, the notion of dependent be-
comes superfluous. What is more, E-trails of a node always begin and end with the
same state, and are thus always composable. The mapping α from definition 2.18
which converts an T -trail to an T -run can be applied in exactly the same way to
E-trails and proofs trees in ΣE . We present here the definitions of E-trail and the
corresponding mapping α for completeness.

2.7. PROOF SYSTEM 39

Definition 2.19 (E-Trail). Assume that node nk:r ⊢EV Z is a µ-terminal and node
n0:r ⊢EV Z is its companion. A trail T of the companion node n0 is a sequence of
state–node pairs (r, n0), . . . , (r, nk) such that for all 0 ≤ i < k, one of the following
holds:

1. ni+1 : ri+1 ⊢
E
V Ψi+1 is an immediate successor of ni : ri ⊢EV Ψi, or

2. ni is the immediate predecessor of a σ-terminal node n′ : r′ ⊢EV Z ′ where
n′ 6= nk whose companion is nj : r′ ⊢EV Z

′ for some j : 0 ≤ j ≤ i, ni+1 = nj,
and ri+1 = r′.

Definition 2.20 (α: Trail to Run Conversion). The function α and is defined for
E-trails as follows:

α(r, n) ∆= ε

α((r1, n1) · (r2, n2) · T) ∆=

(r1
a
−→E r2) · α((r2, n2) · T)

2a or 3a-rule
is applied to n1

α((r2, n2) · T) otherwise.

Example For the open system X : stab �X ‖Handler, a corresponding EMTS
was given in figure 2.2. Eventual stabilization of all processes denoted by the
abstract state s1 in this EMTS can be shown using ΣE . We include in figure 2.15
a part of this proof tree that is representative:

Node n15 is discharged with companion node n9 without appealing to color-
ings since X identifies a greatest fixed point formula. To discharge node n19 with
n16, however, we need to make sure that all infinite runs of E corresponding to
infinite sequences of trails of n16 are in W . Node n16 has only one unique trail
Tu = ((s3, n16), (s3, n17), (s3, n18), (s3, n19)). The maximum color occurring in the

corresponding run c(s3
out
−→ s3) is 1. So we have that max (c(α(Tu))(1)) is odd.

Therefore we can conclude that the infinite run s3
out
−→ s3

out
−→ . . ., which this trail

gives rise to, is prohibited. Hence the terminal is successful.
Example As a further example, we show how an attempt to show the same

system satisfies the property stab2 = µY. νX. [in]X ∧ [out]Y fails. This property
requires that the overall number of out actions is finite, though these may be inter-
leaved with arbitrarily many in actions. This is not necessarily the case in this open
system, for example if the process we plug in the process fix A.(in.out.A) for the
underspecified component. This process satisfies the stab property and so is eligible
to join the system. But the resulting system clearly violates the stab2 property de-
fined above. Each in action is matched with at least one out action, thus infinitely
many of the former action will result in infinitely many of the latter action. We
expect to find no successful proof tree for the goal s1 ⊢

E
V µY. νX. [in]X ∧ [out]Y .

Since there are no diamond modalities or disjunctions in the formula stab2, there

40 CHAPTER 2. STATE SPACE REPRESENTATION

s1 ⊢E
V νX.µY. [in]X ∧ [out]Y

n1 : s1 ⊢E
V X

n2 : s1 ⊢E
V µY. [in] X ∧ [out]Y

n3 : s1 ⊢E
V X

n4 : s1 ⊢E
V [in]X ∧ [out]Y

s1 ⊢E
V [in]X n5 : s1 ⊢E

V [out]Y

n6 : s3 ⊢E
V Y

n7 : s3 ⊢E
V [in]X ∧ [out]Y

n8 : s3 ⊢E
V [in]X

n9 : s2 ⊢E
V X

n10 : s2 ⊢E
V µY. [in] X ∧ [out]Y

n11 : s2 ⊢E
V Y

n12 : s2 ⊢E
V [in]X ∧ [out]Y

n13 : s2 ⊢E
V [in] X

n15 : s2 ⊢E
V X

n14 : s2 ⊢E
V [out]Y

n16 : s3 ⊢E
V Y

n17 : s3 ⊢E
V [in] X ∧ [out]Y

s3 ⊢E
V [in] X

s2 ⊢E
V X

n18 : s3 ⊢E
V [out]Y

n19 : s3 ⊢E
V Y s6 ⊢E

V Y
...

s4 ⊢E
V Y
...

s3 ⊢E
V [out]Y

...

s4 ⊢E
V Y
...

Figure 2.15: Successful Proof Tree Example

is only one possible proof tree. We present a part of this tree in figure 2.16, which
includes the unsuccessful terminal node n20.

In order for the terminal n20 to be successful for every unique trail Tu of the
companion node n8, there should exist 1 ≤ j ≤ k such that max (c(α(Tu))(j)) is
odd, since Y identifies a least fixed point formula. The unique trails of n20 and the
corresponding partial runs are given below:

1. Tu1 = ((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n13), (s2, n15), (s2, n16),
(s2, n18), (s3, n20))

α(Tu1) = s3
in
−→ s2

out
−→ s3

2. Tu2 = ((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n13), (s2, n15), (s2, n16),
(s2, n17), (s2, n15), (s2, n16), (s2, n18), (s3, n20))

α(Tu2) = s3
in
−→ s2

in
−→ s2

out
−→ s3

3. Tu3 = ((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n14), (s3, n8), (s3, n10),
(s3, n11), (s3, n12), (s3, n13), (s2, n15), (s2, n16), (s2, n18), (s3, n20))

α(Tu3) = s3
out
−→ s3

in
−→ s2

out
−→ s3

4. Tu4 = ((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n14), (s3, n8), (s3, n10),
(s3, n11), (s3, n12), (s3, n13), (s2, n15), (s2, n16), (s2, n17), (s2, n15),
(s2, n16), (s2, n18), (s3, n20))

α(Tu4) = s3
out
−→ s3

in
−→ s2

in
−→ s2

out
−→ s3

2.7. PROOF SYSTEM 41

n1 : s1 ⊢E
V µY. νX. [in]X ∧ [out]Y

n2 : s1 ⊢E
V Y

n3 : s1 ⊢E
V νX. [in]X ∧ [out]Y

n4 : s1 ⊢E
V X

n5 : s1 ⊢E
V [in] X ∧ [out]Y

n6 : s1 ⊢E
V [in]X n7 : s1 ⊢E

V [out]Y

n8 : s3 ⊢E
V Y

n10 : s3 ⊢E
V νX. [in]X ∧ [out]Y

n11 : s3 ⊢E
V X

n12 : s3 ⊢E
V [in] X ∧ [out]Y

n13 : s3 ⊢E
V [in]X

n15 : s2 ⊢E
V X

n16 : s2 ⊢E
V [in] X ∧ [out]Y

n17 : s2 ⊢E
V [in]X

n19 : s2 ⊢E
V X

n18 : s2 ⊢E
V [out]Y

n20 : s3 ⊢E
V Y n21 : s5 ⊢E

V Y

. . .

n14 : s3 ⊢E
V [out]Y

n22 : s3 ⊢E
V Y n23 : s6 ⊢E

V Y

. . .

n9 : s4 ⊢E
V Y

. . .

1

Figure 2.16: Unsuccessful Proof Tree Example

These trails show that the state s2 occurs infinitely often in some infinite runs,
which means that the color 2 will be occurring infinitely often. For all unique
trails Tui, where 1 ≥ i ≥ 4, of the companion node n8 with the terminal n20,
max (c(α(Tui))(1)) is 2, which is even. So the condition is not met and n20 is not
a successful terminal.

Terminal n22 has the same companion node n8. Similarly, all but one of the
unique trails of n8 with the terminal n22 mention s2. (The unique trail Tu′ =
((s3, n8), (s3, n10), (s3, n11), (s3, n12), (s3, n14), (s3, n22)) and the corresponding run

α(Tu′)=s3
out
−→ s3 does not mention s2 so the condition is met for this trail with

j=1.) Since unique trails that do not meet the condition exist, this terminal is also
unsuccessful.

Algorithms Based on the Proof System It is possible to give an algorithm for
showing that an abstract state satisfies a formula. The application of the rules in
our proof system are deterministic, except for the rules of disjunction and diamond,
and in these cases the number of possible applications are finite. For the discharge
condition, color sequences of all unique trails of a companion node should be checked
to have a dominating odd entry. It is possible to construct all unique trails of a
companion node. For a unique trail it is possible to “come back” to a state-node
pair only once hence there are only finitely many unique trails for a terminal.

42 CHAPTER 2. STATE SPACE REPRESENTATION

s ⊢E
V Φ1 ∧ Φ2

s ⊢E
V Φ1 s ⊢E

V Φ2

JsK
T

⊢T
V Φ1 ∧ Φ2

∧
JsK

T
⊢T

V Φ1 JsK
T

⊢T
V Φ2

s ⊢E
V Φ1 ∨ Φ2

s ⊢E
V Φ1

JsK
T

⊢T
V Φ1 ∨ Φ2

∨
JsK

T
⊢T

V Φ1

s ⊢E
V Φ1 ∨ Φ2

s ⊢E
V Φ2

JsK
T

⊢T
V Φ1 ∨ Φ2

∨
JsK

T
⊢T

V Φ2

s ⊢E
V [a] Φ and ∪ ∂3

a (s) = ∅ JsKT ⊢T
V [a] Φ

2a

∅ ⊢T
V Φ

s ⊢E
V [a] Φ

{s1, . . . , sn} = ∪ ∂3

a (s)
s1 ⊢E

V Φ . . . sn ⊢E
V Φ

JsK
T

⊢T
V [a] Φ

2a

∂a(JsK
T

) ⊢T
V Φ

Thin*
J∪ ∂3

a (s)K
T

⊢T
V Φ

Cut
Js1KT ∪ . . . ∪ Jsn−1KT ⊢T

V Φ
Cut...

Cut
Js1KT ⊢T

V Φ Js2KT ⊢T
V Φ

JsnK
T

⊢T
V Φ

s ⊢E
V 〈a〉Φ

{s1, . . . , sn} ∈ ∂2

a (s)
s1 ⊢E

V Φ . . . sn ⊢E
V Φ

JsKT ⊢T
V 〈a〉Φ

3a

fa(JsK
T

) ⊢T
V Φ

Thin*
J{s1, . . . , sn}KT ⊢T

V Φ
Cut

Js1KT ∪ . . . ∪ Jsn−1KT ⊢T
V Φ

Cut...
Cut

Js1KT ⊢T
V Φ Js2KT ⊢T

V Φ

JsnK
T

⊢T
V Φ

s ⊢E
V Z

Z identifies σZ.Φ
s ⊢E

V Φ

JsK
T

⊢T
V Z

σZ
JsK

T
⊢T

V Φ

s ⊢E
V σZ.Φ

s ⊢E
V Z

JsKT ⊢T
V σZ.Φ

Z
JsK

T
⊢T

V Z

Figure 2.17: Translation πT

2.7.1 Soundness and Completeness

To prove soundness of the proof system ΣE presented above, we show that every
successful tableau for sequent s ⊢EV Φ in ΣE can be transformed into a successful
tableau for sequent JsKT ⊢

T
V Φ in ΣT for any given T . Soundness of ΣE follows

then from the soundness of ΣT by definition 2.11.
We achieve this transformation by defining a translation from rule instances

in ΣE to proof trees in ΣT and we show that its extension to proof trees in ΣE
translates successful tableaux in ΣE to successful tableaux in ΣT .

Definition 2.21 (Translation). Translation πT , mapping rule instances in ΣE to
proof trees in ΣT for a given T , is defined through figure 2.17. In the definition, fa
is a choice function.

2.7. PROOF SYSTEM 43

Soundness

Lemma 2.22 (Correctness). For each rule instance in ΣE , translation πT assigns
a correct proof tree in ΣT , so that each premise (resp. conclusion), s ⊢EV Φ, of the
rule is matched by a leaf (resp. root), JsKT ⊢

T
V Φ, and all unmatched leaves of the

constructed proof tree are successful terminals.

Translation πT extends to proof trees in ΣE in the obvious way as defined by
the matching sequents.

Corollary 2.23. For proof tree AE with root sequent s ⊢EV Φ in ΣE , AT = πT (AE)
is a proof tree with root sequent JsKT ⊢

T
V Φ in ΣT , such that each leaf si ⊢

E
V Φi of

AE is matched by a leaf JsiKT ⊢
T
V Φi in AT , and all unmatched leaves in AT are

successful terminals.

Definition 2.24 (β:Trail Translation). Given a proof tree AE with nodes labeled
m0 . . .ml, the function β converts a trail, T = (t0, n0), . . . , (tk, nk), of the corre-
sponding LTS tree πT (AE) to the E-trail, E = (s0, n0), . . . , (sk′ , nk′) by replacing
each node with the matching one and deleting the remaining ones:

β(ε) ∆= ε

β((t1, n1) · T) ∆=
{

((s1′ , n1′) · β(T)) if n1′ matches n1 and s1′ is in n1′

β(T) if no node matches n1 in AE

Notice that whenever a pair (ti, ni) is replaced by (si′ , ni′), ti ∈ Jsi′KT , since
node ni contains the sequent Jsi′KT ⊢

T
V Φ′.

After a corresponding proof tree in Stirling’s proof system is created, it remains
to show that if the terminals of the former tree are successful, the terminals of the
latter tree will also be successful.

Lemma 2.25. s ⊢EV Φ implies JsKT ⊢
T
V Φ for any LTS T . That is, if there is a

successful tableaux for s ⊢EV Φ in ΣE , then for any T there is a successful tableaux
for JsKT ⊢

T
V Φ in ΣT .

Proof. Assume AE is a successful tableau for sequent s ⊢EV Φ, and assume T is an
LTS. To establish the result it suffices, due to Corollary 2.23, to show that each leaf
of tableaux AT = πT (AE) matching a (successful) terminal of AE is a successful
terminal. Consider the successful terminal m : r ⊢EV Ψ in AE and the matching
node of AT , n : JrKT ⊢

T
V Ψ. The proof that the latter is also a successful terminal

is trivial when Ψ = tt, when Ψ = Z and Z is free in the initial formula, when Z
identifies the formula νZ.Ψ′, or when Ψ = [a] Ψ′ and ∪∂3

a (r) = ∅.
The only interesting case occurs when Ψ = Z and Z identifies µZ.Ψ′. In such

a case, the condition of subset inclusion is trivially satisfied, so it remains to show
that no infinite sequences of composable trails of the companion node n′ exist in
AT , i.e. there is no κn′ = T1 ◦ T2 ◦ . . ., such that for all i ≥ 1, Ti begins with a
pair (ti, n′), where ti ∈ JrKT .

44 CHAPTER 2. STATE SPACE REPRESENTATION

Assume such an infinite sequence, κn′ = T1 ◦ T2 . . ., exists. Since the trails are
composable, we also know that for all i ≥ 1, Ti ends with the pair (ti′ , n) for some
ti′ ∈ JrKT . Then the corresponding sequence of the EMTS for terminal node m
and companion node m′, wm′ = β(T1) ◦ β(T2) . . . is an infinite sequence of E-trails,
and for all i ≥ 1, β(Ti) starts and ends with pairs (r,m′) and (r, m) respectively.
Because m : r ⊢EV Z is a successful terminal, the corresponding infinite run α(wm′)
is guaranteed to be in W . Then, by the definitions of simulation and denotation,
the run α(κn′) of T cannot be infinite, and therefore neither can κn′ be infinite.
We thus reached a contradiction. 2

Theorem 2.26 (Soundness). s ⊢EV Φ implies s �
E
V Φ.

Proof. Follows directly from lemma 2.25, the soundness of Bradfield and Stirling’s
proof system (cf. [19, 104]), and definition 2.11. 2

Completeness

We base our completeness argument on the existence of a universal LTS U , having
the property that every LTS T is isomorphic to a transition–closed sub–structure
of U . Because of the shape of our disjunction proof rule, completeness can only be
shown for formulae Φ, all subformulas of which are prime (cf. [18]). A formula Ψ
is prime if whenever it logically implies a disjunction Ψ1 ∨ Ψ2 then it also implies
one of the disjuncts.

By the completeness proof of Bradfield and Stirling’s proof system [19], [104],
whenever JsKU |=

U
V

Φ we know that there is a space of canonical proofs of JsKU ⊢
U
V

Φ,
which differ in the choice functions that are made use of in the 3-rule applications.
For the case when E is finite–state and all subformulas of Φ are prime, we show how
to construct a proof AU of JsKU ⊢

U
V

Φ that captures several of these canonical proofs
using the branching provided by Cut-rule. This proof is constructed mutually with
another proof A∗U for the same goal that is built using “macros” from πU instead of
single rules. Both proofs are built in the weaker version of Bradfield and Stirling’s
proof system, where repeat nodes are not necessarily terminals. In the final step of
the Completeness proof, A∗U is translated backward into a proof of s ⊢EV Φ using
the reverse function π−1

U .
The constructions of AU and A∗U guide each other. At each step, the rule

application in AU determines the corresponding subtree (or “macro”) application
taken from the range of translation πU in A∗U except when the rule is Thin. In
turn, A∗U determines the number of Cut-rules that are to be applied after each 2

and 3 rule in AU . As a result, each rule application in AU is matched by the
same rule application in A∗U except for Thin. In order to describe this, we define in
the construction process a γ function which matches nodes of AU and A∗U . If the
rule/macro to be used is 3, A∗U additionally constraints the choice function used
in AU so that the extension of the former to the set mentioned in the matching
node of AU gives the latter. Finally, when a repeat node of AU is to be taken as a
terminal is also determined by whether the matching node is a terminal in A∗U .

2.8. RELATED WORK 45

AU is similar to the canonical proofs from the completeness proof of ΣT
[19, 104] in the judicious application of the Thin rule, and in that the validity of
the sequent is preserved at each application. Besides being applied to the goal as
the first rule, Thin is applied in the rest of the tree only if the goal is of the form
S ⊢U

V
σZ.Ψ. The application of Thin should reduce the goal S ⊢TV Φ to the

subgoal ||Φ||T
V
⊢TV Φ, where ||Φ||T

V
is defined as the set of all states in ST that

satisfy Φ under valuation V. AU may include applications of a special version of
the Cut-rule, while no Cut-rule applications occur in canonical proofs. Cut may be
applied after 2 and 3 rule in AU , in such a way that the set mentioned in each of
the subgoals produced will be identical to the set mentioned in the original node.
(Note that this application merely duplicates the current subgoal hence giving the
possibility to combine several proof trees for the same subgoal in a single proof
tree.)

Theorem 2.27 (Completeness). Let E be a finite–state EMTS, s ∈ SE , and let Φ
have prime subformulae only. Then s �

E
V Φ implies s ⊢EV Φ.

Proof. The proof is carried by translating a proof tree in ΣT to one in ΣE when
the former tree obeys certain conditions. The transformation is carried through the
inverse translation π−1. The proof can be found in Appendix A.1.3 2

It is important to note that the proof system due to Dam et al. presented in
section 2.2, can handle more complicated verification problems than is currently
possible in our framework. For instance, it is possible to perform verification on
systems with dynamically changing configuration due to dynamic process spawning.
Nevertheless, our approach has also advantages. In the above proof system, (the
explored part of) the state space is only implicitly present in a proof. Building
an explicit representation of the state space allows proof reuse utilizing the (part
of) the behavior already explored during proof search. When the verification task
is undecidable (as in the present case, unless the temporal logic is appropriately
restricted), one has to rely on interactive methods, and then visualizing the state
space can be a significant aid in guiding the proof. Finally, separating the task
of building the state space from the task of checking its properties (even if in a
synchronized fashion as in local model checking) allows user interaction to focus
on the first, potentially undecidable task, and thus be freed from the second task
which is decidable for any finite representation of the state space.

2.8 Related Work

In this section, we present related work. We mention some extensions to MTSs
that are in certain ways similar to EMTSs but were created for use in abstraction
frameworks. Other methods that can be employed in open system verification like
robust satisfaction and partial model checking are also summarized.

46 CHAPTER 2. STATE SPACE REPRESENTATION

2.8.1 MTS Extensions for Abstraction

Abstraction is used to deal with the state space explosion problem and infinite
state spaces in model checking [25]. In this approach, knowledge about system
and specification-to-be-met is used to extract a simplified model of the system.
An abstraction framework therefore consists of a set of concrete objects, a set of
abstract objects and an abstraction relation that maps concrete objects to abstract
ones. We say that an abstraction framework is sound if, taken a concrete system
and one of its abstract representations in the framework, any property that is
satisfied by the abstract model is also satisfied by the concrete model. Thus in
a sound abstraction framework, desired properties of a system can be checked on
the simplified model. Abstraction aims to hide away details of the model and
concentrate on the aspects necessary to verify a property in order to reduce the state
space while still retaining the necessary information to perform the verification.

The crucial problem in this context is to come up with an appropriate abstract
model of the original system. This process is not straightforward considering that
the abstract model should be both simple enough to promote efficiency and ade-
quate for verification purposes. In abstraction refinement, this problem is solved by
beginning the verification process with a relatively simple initial abstraction of the
system and refining this model iteratively based on the feedback from the verifica-
tion process. For instance, in counter-example guided abstraction refinement [24],
the abstract model is checked against the desired property at each iteration. If the
model satisfies the property, the iterative process terminates with a positive answer
since the abstract model is conservative. If the verification ends unsuccessfully, a
counter-example on this model is produced. If this counter-example is also a be-
havior of the original model, one can deduce that the formula does not hold for
the original system, hence the iterative process terminates with a negative answer.
But since the model is abstract and may have behaviors that do not belong to the
actual system behavior, the counter-example may be spurious. In this case, the
abstract model is refined using this counter-example.

Another issue to consider when developing an abstraction framework is the
choice of abstract model that is used to represent concrete systems. MTSs have
been used by Godefroid et al [49] as such a (abstract) representation for the pur-
poses of checking properties written in modal µ-calculus. Since the refinement
preorder on MTSs preserves such properties, if an MTS satisfies a property, any
implementation of the MTS also satisfies the property. Most of the conventional
state-transition models (see [25] for examples) used in abstraction frameworks are
over-approximations and thus can only be used for verifying safety properties. The
advantage of employing MTSs in abstraction frameworks is that MTSs define an in-
terval thanks to the lower bound set on behavior by must transitions. This enables
both safety and liveness properties to be deduced.

Two structures inspired by the notion of MTS were designed for representing
state space abstractions in abstraction refinement frameworks. Kripke modal tran-
sition systems (KMTS) were introduced by Huth et al. [63]. KMTSs include two

2.8. RELATED WORK 47

labeling functions Lmust, Lmay that label states with atomic propositions. These
specify an interval of propositions to be satisfied by each state, besides the interval
of transitions specified by may and must transitions. Generalized Kripke modal
transition systems (GKMTS), introduced for counter-example guided abstraction
refinement by Grumberg and Shoham [52], are KMTSs with hyper must-transitions
that have sets of states as targets to transitions. The simulation relation between
two GKMTS states, referred to as generalized mixed simulation by the authors, is
defined with an intention to preserve CTL properties. This relation is similar to our
simulation relation as defined in definition 2.9, but without the well-foundedness
requirement stated by the third part of the definition.

We have noted earlier that soundness is a key property of abstraction frame-
works. If the abstract model satisfies a property, the property should also be
satisfied by the concrete model. Otherwise, the abstraction is clearly not useful for
verification. On the other hand, though sound, an abstraction framework may be
too weak. For a concrete model and a property, it may not be possible to find an
abstract model such that this model has the property. An abstraction framework
is complete if for each concrete model and a property that the concrete model sat-
isfies, there is an abstract model for the concrete model that satisfies the property.
Completeness is an important property for an abstraction framework regardless of
the way abstractions are obtained from concrete models. Of particular interest is
abstraction frameworks that are complete when only finite models are considered
as abstractions.

There is a strong relationship between the existence of maximal models in a
framework and its completeness. For a concrete model M and a formula φ that
it satisfies, a maximal model of φ can always be used as the abstract model for
M . (Completeness should not be confused with the finite-model property; there
should be a clear abstraction relationship between the concrete models and their
abstractions, for instance like our simulation relation or a Galois connection as in
abstract interpretation [29].) Hence, if a maximal model exists for each property in
the framework, the framework is complete, as noted by Dams and Namjoshi in [35].
The authors further note that any abstraction framework that uses one of the
aforementioned models (MTS, KMTS, GKMTS) as abstractions is incomplete with
respect to branching-time logics such as CTL and the modal µ-calculus. They state
that modal transition systems must be extended with hyper must-transitions and
fairness conditions to achieve completeness for existential and liveness properties,
respectively.

In order to create a complete framework using finite models for branching-time
logics, Dams et al. introduce focused transition systems (FTS) as abstractions [34].
FTSs are essentially KMTSs extended with the focus capability which enables split-
ting abstract states into sub-states and with a fairness constraint given by a set of
infinite sequences of states. The focus feature achieves what we achieve by hyper
transitions and the fairness constraint is given as a set of prohibited runs like the
earlier version of the EMTS notion, presented in [1]. Both an abstract state and
less abstract states that are obtained by splitting an abstract state can be included

48 CHAPTER 2. STATE SPACE REPRESENTATION

in a FTS, and the relationship of between the abstract state and its sub-states
is explicitly given. Both the satisfaction relation between FTSs and propositional
modal µ-calculus formulae and the abstraction relation between FTSs is defined
in terms of (infinite) games. An FTS may not satisfy a property (i.e. the “model
checking game” for an FTS and a property given by an alternating tree automaton
can fail) even if all concrete systems abstracted by this FTS have the property.
What is important for the authors is that, given a property and a concrete system
that satisfies the property, there exists an FTS that satisfies the property and that
abstracts the concrete system. The authors present a maximal model construction
that converts property automata to FTS. Possibly because an algorithmic maximal
model construction is not their goal, the authors do not concern themselves with
presenting the fairness constraints in a finite manner as we do in the EMTS notion.

The same authors propose in [35] to use tree automata as abstractions in ab-
straction frameworks. The abstraction relation between automata is naturally de-
termined by the language accepted by automata, i.e. automaton A abstracts au-
tomaton B if A accepts all trees accepted by B. Since checking tree-language
inclusion is expensive (EXPTIME-hard), the authors define a simulation pre-order
on automata that is sound. Deciding the existence of such a simulation relation
between two (finite) automata is in NP and can be done by a deterministic algo-
rithm. Such an algorithm can be used to check whether an automaton satisfies a
property by checking the existence of a simulation relation between the automaton
and the property automaton. The use of automata as abstract models simplifies
the proofs of soundness and completeness for the framework.

2.8.2 Other Methods for the Verification of Open Systems

The term open system has been used in the literature for referring to systems
whose behavior depends on its interaction with the environment, and is not fully
determined by its internal state [56, 72, 7]. In this sense of the term, a property
of an open system M is a property that is satisfied by the composition of the
system with any environment M ′. For such an open system M to satisfy property
Φ, then, the composed system M | M ′ should satisfy the property. In [72], this
notion of satisfaction is called robust satisfaction and is considered for systems
where M is given as a finite state (possibly nondeterministic) Moore machine that
communicates with the environment via input and output variables. The problem
is considered for the logics CTL, CTL* and µ-calculus and is solved by reduction to
the emptiness problem of alternating tree automata. Given a system as the process
algebra term EM , the problem of robust satisfaction can be stated in our framework
as showing that the open system modeled by the OTA

X : tt � EM | X

satisfies Φ where no unbound process variable occurs in EM . It is important to note
that, in our current framework transitions of the system M can not be disabled
by any other component X that runs in parallel since we use CSP-like parallel

2.8. RELATED WORK 49

composition without communication. In order to model such a dependency of X on
the environment, a synchronous notion of parallel composition should be employed
instead.

Another method that takes advantage of the compositional nature of the sys-
tem to deal with state space explosion is partial model checking introduced by
Anderson [8]. In this method, computing the state space of a concurrent system
is avoided by removing some component while transforming the specification ac-
cordingly. Given a process t and a property Φ, Andersen defines transformation
compute the quotient property Φ/t, making use of compositional reasoning. For any
process t′ that t is composed with, the quotient property Φ/t satisfies the following:

t′|t |= Φ ⇐⇒ t′ |= Φ/t

The “only if” direction of this equivalence allows us to model check t′ against the
quotient property Φ/t instead of model checking t′|t against the original property
Φ. The task of model checking the system is then simplified, assuming the size of
the quotient property is not much larger than the size of the original property. In
order to keep the size of the quotient property reasonably small, it is simplified at
each step with the help of heuristics.

Martinelli observes in [83] that “security protocols can be conveniently described
by open systems”. He gives two examples. In the first example, an attacker tries to
listen to the conversation between the two agents A and B. This can be modelled by
the open system consisting of the process algebra terms EA and EB which represent
the agents and X , a placeholder for the attacker with unpredictable behavior:

X : tt � EA | EB | X

The second example again mentions two parties willing to communicate, but this
time one of them can not be trusted. Let A and B be these two agents and suppose
B has unknown behavior and may try to exploit the protocol to gain advantage. If
the agent A is specified by the term EA, in this open system X is a placeholder for
the possibly malicious agent B:

X : tt � EA | X

In these two examples, it is possible to show that the communication is secure in any
scenario through showing properties of the open systems above provided the agents
are specified in a suitable process algebra and a suitable logic is used for expressing
properties. However, in [83] the verification is performed in a slightly different
manner. Only systems with one unknown component are considered. Suppose
the known participants of the system are given as the term ES and the desirable
property of the system is Φ, then partial model checking techniques mentioned
above are used to find a property Ψ on the unknown component X such that

X : tt � ES | X has property Φ ⇐⇒ X has property Ψ

50 CHAPTER 2. STATE SPACE REPRESENTATION

Then, the remaining task is to find if Ψ is satisfiable, that is to find if there exists
a malicious partner which may have the property Ψ. In the first system above,
for instance, this would mean that a potential attacker exists that can obtain the
secret message. Although his verification method is different, Martinelli’s work is
important for us since it provides us with a possible application area.

2.9 Conclusion

2.9.1 Summary and Contributions

Summary In this chapter, a finite structure is introduced that captures the state
space of open systems modeled as basic parallel processes, provided the component
assumptions are given in the modal µ-calculus. We provide a method that extracts
such a structure from open system descriptions in the form of process algebra terms
with assumptions, and show it sound for terms without dynamic process creation
and complete for systems with a single underspecified component. We also adapt
an existing proof system for the purposes of showing behavioral properties of open
systems. The proof system, based on the state space representation of the open
system, is sound for the logic and complete for prime formulae.

We offer a framework for verification of open systems based on state space rep-
resentation. The open system is input to the framework as a process algebraic term
with assumptions. A state space representation is extracted from this specification.
Open system properties can then be checked on the state space representation by
means of a proof system. The main feature of the approach is that the focus of the
verification process is on understanding the behavior of the system rather than prov-
ing properties. System behavior is captured by a finite structure which can easily be
visualized; the more tedious part of showing properties through this representation
can be performed automatically. This is an advantage over other methods for open
system verification, especially when a visualization of the behavior is important,
for instance for finding counter-examples in debugging.

Contributions Below are the contributions of this first part of the thesis:

• a finite structure (EMTS) suitable for the representation of the state space of
open systems in that it supports:

– visualization of the state space, i.e. the system behavior,

– graphical specification,

– state space exploration for interactive techniques,

– verification,

– proof reuse,

• a sound and prime-complete proof system that can be used to prove properties
using the state space representation,

2.9. CONCLUSION 51

• a maximal model construction for the modal µ-calculus that builds an EMTS
with the same denotation as the formula,

• and an automatic construction that extracts the state space of an open sys-
tem described as an open process algebraic term; the construction is exact
provided that the open system has a single unknown component and over-
approximating when the open system does not include dynamic process cre-
ation.

2.9.2 Future Work

Characterization The correctness results on the automatic construction of EMTSs
from open system specifications can be made more precise in a number of ways.
First of all, theorem 2.15 states that the construction over-approximates if the
open system includes parallel composition but no further information is given on
precision. We believe that any additions of must-transitions or the subtraction of
may-transitions in an effort to make the constructed structure more precise would
result in an under-approximation. Such a result would indicate that our construc-
tion comes as close to capturing the open term with an EMTS as possible. A more
practically interesting problem is to determine which temporal properties can still
be shown using the constructed EMTS, in the presence of the over-approximation.
The question can be put more formally as follows: for which class of temporal
properties Φ, it is the case that the open system Γ�E satisfies Φ if the start states
of the constructed EMTS satisfy Φ?

∀T . (ε(Γ � E) satisfies Φ⇒ JΓ � EKT satisfies Φ)

Yet another set of correctness results could be established by using different
logics to express assumptions on components and to express open system properties.

Parallel composition In order to extend the scope of the open systems handled
in our framework, it is essential to consider different types of parallel composition
in system specification and eventually in state space construction. Currently we
consider only systems where components act in parallel but independently of each
other, which leaves out many interesting open systems.

Interactive exploration The problem of verifying open systems when assump-
tions are expressed in modal µ-calculus is undecidable in general due to parallel
composition (consider for instance dynamic process spawning [33]). Therefore, user
interaction is necessary to perform the verification task in general. Hence, the
integration of interactive methods to the framework would enable it to handle a
larger class of open systems. A most natural way to accomplish this is to introduce
interactive state space exploration, which corresponds to the symbolic execution of
OTAs in a stepwise manner. Some extensions to the notion of EMTS like sub- and
super-states, and to the notion of OTA like transition assertions that keep historical
information about component behavior are foreseen as necessary for this purpose.
Another major problem in this context would be to fix a scheme for setting the

52 CHAPTER 2. STATE SPACE REPRESENTATION

colors of states in order to model terminating behavior, especially when fixed point
alternation is present in some component assumption.

Tool development Automatic construction of section 2.6 can be formulated as
an algorithm along with the proof system of section 2.7. These algorithms complete
the automatization of the framework and lay the basis for tool development. A tool
for the verification of open systems based on the work presented in this chapter can
potentially contain the following features:

• Specification: The specification of the open system is to be given either in
the form of an OTA or can be directly provided as an EMTS. The OTA may
include assumptions expressed in different fragments of modal µ-calculus.

• Automatic State Space Extraction The construction presented in section 2.6
can be used for automatic extraction of the state space when the specification
of the system is given as an OTA.

• Interactive State Space Exploration As an alternative, interactive exploration
may be employed for forming the (partial) state space when automatic ex-
traction is not possible. This feature is to appear similar to the “simulation”
command of Concurrency Workbench [27].

• Visualize State Space EMTSs can be visualized by the aid of a graph visualizer.
(Minimization may be necessary though for a comprehensible visualization.)

• Verification Verification of modal µ-calculus properties of the state space will
be possible by the implementation of an algorithm combining the encoding of
the proof system of section 2.7 and a proof search strategy.

Case Studies A tool as outlined above can be used for the evaluation of the
approach through case studies. Though the possible applications are limited by
the lack of modeling of data in the framework, it is nevertheless possible to find
examples that illustrate how helpful the tool is for working with open systems.
Applications in security, similar to those suggested by Martinelli in [83], can pose
as realistic case studies. These case studies may require, however, different logics
and process algebra be employed in the framework.

Chapter 3

Program Models for

Compositional Verification

3.1 Introduction

In this chapter, we focus on the verification of open systems in a compositional
verification setting. Here we model programs as flow graphs, in contrast to process
terms of the previous chapter. Furthermore, we describe the extraction of flow
graphs from actual code (Java bytecode). A maximal model construction is also
employed here to create models for partially specified components of open systems,
though this construction is somewhat simpler as the logic used to specify “missing”
components is only a fragment of the modal µ-calculus used in the previous part.

Compositional verification, as was formerly introduced, addresses the problem
of proving the correctness of a system based on the properties of its components.
This requires to reason about the correctness of the system in a modular fashion:
reasoning about components separately and then deducing a property about the
composed system. Such modular reasoning allows verification techniques to scale,
since the verification of large systems can be made feasible by dividing the problem
into the verification of system components. But what is equally important is that
compositional verification enables a certain flexibility in realizing a correct system.
It enables to work with specifications in the design phase of software development,
and still to have assurance in system correctness. This is necessary, for example,
for the development of safe open platforms with the ability to accommodate mobile
components. Designers of such a platform would not have access to all the mobile
components that may be installed on the platform after it has been put to use, but
can still guarantee correctness properties thanks to compositional reasoning. The
guarantee for the correct functioning of the platform can be formulated as a set of
properties which hold of the platform, provided certain assumptions hold on mobile
components. These assumptions can then be checked at runtime (whenever a new
component is to join the system) and can furthermore be used as guidelines by

53

54 CHAPTER 3. PROGRAM MODELS

mobile component developers. Compositional verification techniques thus provide
support for secure dynamic loading of applications by specifying local requirements
on applications to be installed, and verifying that these are sufficient to guarantee
the global security requirements.

In this chapter, we focus on the compositional verification method introduced
by Gurov, Huisman and Sprenger (see [53] for an overview of the approach and
previous results). The method supports the following abstract compositional verifi-
cation principle, where G1 and G2 are programs with procedures (i.e. components),
modeled as control flow graphs, and ⊎ denotes control flow graph composition:

G1 |= σ θI(σ) ⊎ G2 |= φ

G1 ⊎ G2 |= φ
G1 : I (3.1)

Informally, this rule lays out two tasks to prove that the composition G1 ⊎ G2

satisfies property φ, it is sufficient to find a “local” property σ of flow graph G1

(typically an unavailable component) for which one can verify that: (i) σ indeed
holds for G1, and (ii) the local property σ ensures the global property φ. Task (i)
is deferred until component G1 becomes available. Task (ii) assumes knowledge of
the names of the provided and required methods of G1 (i.e. its interface I), and
is achieved by constructing a maximal model for the local property in the form
of a control flow graph which respects the provided interface (denoted with θI(σ)
above) and by showing that its composition with G2 satisfies φ. In both tasks,
the verifications can be performed algorithmically, using finite-state and pushdown
automata-based model checking, respectively.

We are interested in both structural and behavioral control flow properties of
programs. A structural property is a property of the (finite) flow graph itself, such
as “every path from the entry of method m1 to a call instruction to method m2

passes a call instruction to method m3”. A behavioral property is a property of the
(infinite state) behavior induced by the flow graph, such as “in any execution of the
program, method m1 calls method m2 at most once”. All formulae are expressed in
the fragment of the modal µ-calculus [70] with boxes and greatest fixed-points only.
The technique of Gurov et al. supports the principle above for the case where the
local requirement σ is a structural property. In general, behavioral properties do not
give rise to a unique maximal flow graph. To handle local behavioral requirements,
behavioral requirements should be precisely characterized by a set of structural
requirements (see [61] for such a translation).

A maximal flow graph with respect to a property σ is a flow graph that simulates
all other flow graphs satisfying property σ. This notion is based on the notion of
maximal model for compositional reasoning [51] as was introduced in the previous
chapter, but in addition takes the provided interface into account: a maximal
flow graph only simulates flow graphs with the same interface. We assume all local
properties to be structural, therefore use a maximal model construction (detailed in
[53]) for structural properties. Furthermore, the way the components are composed
in the framework is rather simple in contrast to the systems of the previous chapter:
composition ⊎ of the flow graphs corresponds to set union.

3.2. COMPOSITIONAL VERIFICATION OF SEQUENTIAL PROGRAMS 55

The program model of this technique captures only sequential control flow, and
does not distinguish exceptional from normal control flow. In this part of the thesis,
we extend the model with exceptions and multi-threading, closely following the
semantics described in the Java language and virtual machine specifications [50, 81].
The extensions not only allow to increase the precision of the models, but also to
explicitly reference exceptional and concurrent behavior in property specifications.
Moreover, we prove that for both extensions the compositional verification principle
still applies.

A tool set has been developed to support the compositional verification method
and its utility has been demonstrated on an industrial case study provided by smart
card producer Gemplus [62]. The tool set which will be described in greater detail in
this chapter, contains, among other components, the program analyzer that extracts
the program model from Java bytecode classes. The program analyzer is a static
analysis tool, built on top of the SOOT Java Optimization Framework [109]. In this
chapter, we also describe how models that capture exceptional and multi-threaded
control flow can be extracted from bytecode programs and give experimental results
for the new implementation of the program analyzer that produces models with the
former extension.

Overview. In section 3.5, we present related work. Section 3.2 gives a brief
overview of the approach of Gurov et al. to compositional verification with defi-
nitions for the basic program model and described the tool set. In section 3.3, we
present an extension of the program model for precise representation of exceptional
behavior, while section 3.4 is concerned with the extension with multi-threading.
Finally, section 3.6 draws conclusions and discusses further extensions.

3.2 Compositional Verification of Sequential Programs with

Procedures

First we give a summary of the approach of Gurov et al. and their earlier results
on compositional verification of control-flow properties for sequential flow graphs
without exceptions. We also briefly describe the tool set supporting the method.
Details of both the framework and the tool set can be found in [53].

3.2.1 Program Model

Both control flow graph structure and behavior are defined in terms of specifications
which we formalize below.

Definition 3.1 (Model, Specification). A model over a set of labels L and a set of
atomic propositions A is a structureM = (S,L,→, A, λ), where S is a set of states,
→⊆ S×L×S a labeled transition relation, and λ : S → P(A) a valuation assigning
to each state a set of atomic propositions. A specification S is a pair (M,E), with
M a model and E ⊆ S a set of entry states.

56 CHAPTER 3. PROGRAM MODELS

The reachable part of a specification S = (M,E) is defined by R(S) = (M′,E),
whereM′ is obtained fromM by deleting all states and transitions not reachable
from E. Simulation on two models M1 and M2 is defined as simulation on their
disjoint unionM1 ⊎M2. The disjoin unionM1 ⊎M2 is defined as (S1 ⊎ S2, L1 ∪

L2, {ini(s)
a
−→ ini(s′)|s

a
−→ s′ ∈ Mi}, A1 ∪ A2, λ), where λ(ini(s)) = λi(s) and ini

(for i ∈ {1, 2}) injects Si into S1 ⊎ S2. The disjoint union is lifted to specifications
in the straightforward way and serves as the composition operation in 3.1. The
simulation relation between specifications is standard.

Definition 3.2 (Specification Simulation). Specification (M1,E1) is simulated by
specification (M2,E2), denoted (M1,E1) ≤ (M2,E2), if there is a simulation R on
M1 ⊎M2 such that for each s ∈ E1 there is some t ∈ E2 with (in1(s), in2(t)) ∈ R.

Notice that simulation is preserved by disjoint union.

S1 ≤ T1 ∧ S2 ≤ T2 ⇒ S1 ⊎ S2 ≤ T1 ⊎ T2 (3.2)

Let Meth be an infinite set of method names, and let ContVal be a possibly
infinite set of control values (disjoint from Meth) specific for each instantiation
of the model (in the program model with exceptions, for instance, it is a set of
exception names). Both sets are disjoint from any reserved symbols.

Every control flow graph comes equipped with an interface, specifying the pro-
vided and required methods, and the set of legal control values.

Definition 3.3 (Flow Graph Interface). A flow graph interface is a triple I =
(I+, I−, C), where I+, I− ⊆Meth are finite sets of names of provided and required
methods, and C ⊆ ContVal is a finite set of control values, respectively. We say
I is closed if I− ⊆ I+. The composition of two interfaces I1 = (I+

1 , I
−
1 , C1) and

I2 = (I+
2 , I

−
2 , C2) is defined as I1 ∪ I2 = (I+

1 ∪ I
+
2 , I

−
1 ∪ I

−
2 , C1 ∪ C2).

Method specifications are the basic building blocks of flow graphs. For the basic
program model for sequential programs with procedures, method specifications are
defined as below.

Definition 3.4 (Basic Method Specification). A method graph for m ∈Meth over
a set M ⊆Meth of method names is a finite modelMm = (Vm, Lm,→m, Am, λm),
where Vm is the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, and
m ∈ λm(v) for all v ∈ Vm (i.e. each node is tagged with the method name). A
method specification for m ∈ Meth over M is a specification (Mm,Em) such that
Mm is a method graph for m over M and Em ⊆ Vm a non-empty set of entry points
of m.

The atomic proposition r is used to mark the return nodes of the method, i.e.
a node v ∈ Vm is a return point of m if it is tagged with the atomic proposition r,
i.e. if r ∈ λm(v).

A flow graph is a collection of method specifications, joined with the disjoint
union operator ⊎.

3.2. COMPOSITIONAL VERIFICATION OF SEQUENTIAL PROGRAMS 57

class Number {

}

 if (n == 0)
 public static boolean even(int n){

 return true;
 else
 return odd(n−1);
 }

 public static boolean odd(int n){
 if (n == 0)

 else
 return even(n−1);

 }

 return false;

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8

ε

ε

ε

ε

ε

ε

even

even

even

odd

odd

odd

evenodd

even, r reven, rr odd, odd,

Figure 3.1: A simple Java class and its flow graph

Definition 3.5 (Flow Graph Structure). Flow graphs G with interface I, written
G : I, are inductively defined by

• (Mm,Em) : ({m},M,C) if (Mm,Em) is a method specification for m over
M and C,

• G1 ⊎ G2 : I1 ∪ I2 if G1 : I1 and G2 : I2.

A flow graph G : I is closed if its interface I is closed. We use ≤s to denote
structural simulation between flow graphs.

In the basic program model, a flow graph G : I is a model over I− ∪ {ε} and
I+ ∪ {r} as given by the method specification for this model.

Example 3.6. Figure 3.1 shows a simple Java class and the (simplified) flow graph
it induces in the basic program model. The flow graph consists of two method
specifications - one for method even and one for method odd. Entry nodes are
depicted as usual through edges without source.

3.2.2 Flow Graph Extraction

The tool set developed to support this compositional verification technique con-
tains the Program Analyzer (PA), that extracts flow graphs from Java (bytecode)
classes. These graphs are over-approximations of actual program behaviors, as
specified by the Java semantics. PA is built on top of the Soot Java Optimization
Framework [109].

Soot produces control flow graphs similar to ours, which are then further pro-
cessed by PA to produce control flow graphs as described above. Bytecode programs
are first converted by Soot into code in an intermediate language called Jimple.
Then, a safe over-approximation of the application’s call graph is produced, utiliz-
ing a class hierarchy analysis. For example, if the analysis cannot resolve which

58 CHAPTER 3. PROGRAM MODELS

method will be called by a virtual method call, a call edge is generated for every
method that can potentially be invoked by this call. Further, Soot produces a con-
trol flow graph for each method, abstracting away all values. PA incorporates the
information coming from the call graph to control flow graphs produced by Soot
to form flow graphs in the format of the program model. Extending PA for a dif-
ferent program model amounts to using additional information produced by Soot’s
different analysis when translating Soot’s control flow graphs into flow graphs of
the program model.

Flow Graph Behavior

The behavior of a flow graph G, denoted b(G), is also defined as an instance of the
general notion of specification. Since the local guarantees must be properties over
the flow graph structure, we only have to define the behavior of closed flow graphs.
Simulation on the behavioral level is denoted by ≤b: G1 ≤b G2 ⇔ b(G1) ≤ b(G2).
As will be discussed later, for the compositional verification principle to apply for a
concrete program model, structural simulation has to imply behavioral simulation:

G1 ≤s G2 ⇒ G1 ≤b G2 (3.3)

Basic Program Model The behavior of the basic flow graphs (where ContVal =
∅) is defined as follows.

Definition 3.7 (Basic Flow Graph Behavior). Let G = (M,E) : (I+, I−) be a
closed flow graph such thatM = (V, L,→, A, λ). The behavior of G is described by
the specification b(G) = (Mb,Eb), whereMb = (Sb, Lb,→bs, Ab, λb), s.t. Sb = V ×
V ∗, that is, states are configurations of control points and stacks, Lb = {m1 l m2 |
l ∈ {call, ret}, m1,m2 ∈ I

+} ∪ {τ}, Ab = A, λb((v, σ)) = λ(v), and →bs is defined
as follows:

[transfer] (v, σ)
τ
−→bs (v′, σ) if v

ε
−→m v′, v |= ¬r

[call] (v1, σ)
m1 callm2
−−−−−−−→bs (v2, v′1 · σ) if m1, m2 ∈ I+, v1

m2
−−→m1 v

′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[return] (v2, v1 · σ)
m2 retm1
−−−−−−−→bs (v1, σ) if m1, m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

The set of entry states Eb is defined by Eb = E × {ǫ}, where ǫ denotes the empty
sequence.

Example 3.8. Consider the flow graph from Example 3.6. Because of possible un-
bounded recursion, it induces an infinite-state behavior. One example execution of
the program is represented by the following path from an initial to a final configu-

3.2. COMPOSITIONAL VERIFICATION OF SEQUENTIAL PROGRAMS 59

ration:

(v0, ǫ)
τ
−→bs (v1, ǫ)

τ
−→bs (v2, ǫ)

even call odd
−−−−−−−→bs (v5, v3) τ

−→bs (v6, v3) τ
−→bs

(v7, v3) odd call even
−−−−−−−→bs (v0, v9 · v3) τ

−→bs (v1, v9 · v3) τ
−→bs

(v4, v9 · v3) even ret odd
−−−−−−−→bs (v9, v3) odd ret even

−−−−−−−→bs (v3, ǫ)

Flow graph behavior for the basic model can be viewed as the behavior of a
pushdown automaton (PDA) (see [53], Def.34). Thus, behavioral properties can be
verified using PDA model checking (see [21] for a survey of verification techniques
for infinite-state systems). Notice further that for basic flow graphs, structural
simulation implies behavioral simulation (i.e. (3.3) holds), see [53], Thm.36.

3.2.3 Properties over Flow Graphs

As property specification language, we use a fragment of the modal µ-calculus [70]
with boxes and greatest fixed-points only. A variety of useful safety properties of
program control flow structure and behavior are expressible in this fragment, as
illustrated in [53]. Let L be a set of labels, A a set of atomic propositions, and V a
set of propositional variables. The formulae of the logic are inductively defined by:

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX.φ

where p ∈ A, a ∈ L and X ∈ V .
Satisfaction of properties by graphs is defined in terms of the general notion of

specification in the standard way (see [70] or section 2.4). We use |=s and |=b to
denote satisfaction at the structural and behavioral levels, respectively: G |=s φ⇔
G |= φ, and G |=b φ⇔ b(G) |= φ.

Example 3.9. For the flow graph in the basic program model from Example 3.6,
the structural formula νX. [even]r∧ [odd]r∧ [ε]X expresses the property “on every
path from a program entry node, the first encountered call edge leads to a return
node”, in effect specifying that the program is tail-recursive. The behavioral formula
¬even ∨ νX. [even call even]ff ∧ [τ]X expresses the property “in every program
execution that starts in method even, the first call is not to method even itself”.

3.2.4 Maximal Flow Graphs

As mentioned above, the compositional verification technique we use is based on
the construction of maximal models. A maximal model construction is provided
in [53] for the logic described above. The process consists of a step-wise transforma-
tion of the formula into a semantically equivalent normal form, for which a direct
mapping to maximal models is given. Since the logic used here does not include
diamond modalities and least fixed points, the models are representable as standard
transition systems. They do not require the extensions such as a partition of the
transitions into may and must transitions (since there is no existential modality)

60 CHAPTER 3. PROGRAM MODELS

and fairness constraints (since no least fixed point is present). The models are
constructed as specifications in the sense of Def. 3.1.

When a component is partially specified (by a property σ and an interface I),
rather than given as an implementation, we construct a model to represent this
component as a flow graph that simulates all flow graphs with interface I satisfying
σ. However, a maximal model for the property need not be a flow graph since it
may not be legal. Therefore, the interface needs to be also taken into account in
the construction.

Definition 3.10. (Maximal Flow Graph) Let I be an interface and σ be a property,
then the graph SIσ is the maximal flow graph for property σ and interface I if it
is the maximal model (over labels and atomic propositions as induced by I) of the
property σ.

∀S.(S ≤s SIσ ⇔ S |= σ ∧R(S) : I)

The maximal model construction described above can be employed for maximal
flow graph construction provided that I can be formulated by a characteristic for-
mula that precisely defines all legal flow structures with interface I. More precisely,
for interface I, the formula ψI is a characteristic formula if the following holds:

∀S.(S |= ψI ⇔R(S) : I) (3.4)

Finally, given an interface I, a mapping θI from formulae to flow graphs is a
maximal flow graph construction if for any property σ, θI(σ) is a maximal flow
graph for property σ and interface I. Provided a maximal model construction θ (in
the standard sense) for the logic, and the characteristic formula ψI for the interface
I, θI(σ) can be implemented as θ(ψI ∧ σ).

Basic Program Model In the basic program model, flow graphs with interface I
are models over I− ∪ {ε} and I+ ∪ {r} that can be characterized by the following
formula ([53, Th. 31]), essentially specifying that every state is labeled by a unique
method name that is preserved along edges:

σI =
∨

m∈I+ νX.Pm ∧ [I−, ε]X Pm = m ∧
∧

m′∈I+\{m} ¬m
′

3.2.5 Compositional Verification

As was informally presented in the introduction, the compositional verification
method of this framework is based on the following principle. (The rule is repeated
here for readability purposes.) The aim is to deduce that the system which consists
of the composition of the flow graphs G1 and G2 has the property φ, when the
flow graph G1 is not available but is specified by the local property σ and its
interface I. This amounts to the problem of verifying the correctness of the open
system consisting of the composition of a component partially specified by σ and

3.2. COMPOSITIONAL VERIFICATION OF SEQUENTIAL PROGRAMS 61

I and the component G2. In order to perform verification on the open system, we
first construct the maximal flow graph with respect to property σ and interface
I, denoted θI(σ). The model for the open system can then be constructed by
composing this maximal flow graph with the flow graph G2 and checked to respect
the global safety property φ. The open system can later be “closed” by any flow
graph G1 with interface I and property σ joining the system. When G1 is to join the
open system, it suffices to check that it respects σ (provided it is known to respect
the interface I) in order to conclude that G1 ⊎ G2 satisfies φ:

(compos)
G1 |=s σ θI(σ) ⊎ G2 |=b φ

G1 ⊎ G2 |=b φ
G1 : I

If local properties σ are restricted to structural properties, the rule is sound
and complete as was shown in [53], Thm.39. This result is established using the
following properties:

(i) Logical satisfaction characterizes simulation, and vice versa, which holds for
the logic of section 3.2.3, thus making it suitable for our purposes. This
property can be stated as follows: there exists a mapping χ from finite spec-
ifications to formulae, and a mapping (maximal model construction) θ from
formulae to finite specifications, such that for any specifications S,S1 and
finite S2 (see [53, Ths. 8, 15]):

S1 ≤ S2 ⇔ S1 |= χ(S2) and S |= φ⇔ S ≤ θ(φ) (3.5)

(ii) Flow graphs with interface I can be logically characterized in the sense of 3.4
and the mapping θI is a maximal flow graph construction in the sense of
section 3.2.4.

(iii) Structural simulation is preserved by flow graph composition (the current
setup satisfies this as stated by 3.2):

A1 ≤s B1 ∧ A2 ≤s B2 ⇒ A1 ⊎ A2 ≤s B1 ⊎ B2

(iv) Structural simulation implies behavioral simulation (the current setup satisfies
this as stated by 3.3):

A ≤s B ⇒ A ≤b B

The results (i) and (iii) are general results about specifications, that can be
reused provided the extended program models are instantiations of the general
notion of specification. The results (ii) and (iv) have to be re-established for each
extension of the basic program model to show that the compositional verification
result still applies.

62 CHAPTER 3. PROGRAM MODELS

Maximal
Model
Constructor

Flow Graphs

CWB

YES/NO

YES/NOStructural

Interface

Implementation

specification

Program
Analyser
(+ Inliner)

specification

Behavioural
PDA MC

Figure 3.2: Tool Set for Compositional Verification

3.2.6 A Tool Set for Compositional Verification

A tool set was implemented to support the compositional verification method de-
scribed above for the basic program model presented in section 3.2.2. figure 3.2
gives a general overview of its architecture.

For each component, an implementation (in Java bytecode), or a structural
property restricting its possible implementations and an interface is required as
input. If the code of the implementation is provided, the Program Analyzer is used
to extract a flow graph (and if necessary, we use the Inliner to abstract the flow
graph to public methods,i.e.only to methods mentioned in the interface [53]). If
the specification of the component is provided instead, we construct a maximal
flow graph of the given property as described in section 3.2.4 using the Maximal
Model Constructor. Composition ⊎ of the resulting flow graphs amounts to a
concatenation of the textual graph representations.

The tool set also implements translations of flow graphs into models which serve
as input for different model checkers. In order to check structural properties, we
exploit the fact that flow graphs can be viewed as finite Kripke structures, and
convert flow graphs to CCS models. Since structural properties are µ–calculus for-
mulae, the verification can then be done using standard model checking tools such
as the Concurrency Workbench (CWB) [26]. To verify that a composed system
respects a behavioral safety property, we view the behavior of a flow graph as an
infinite state model generated by a Pushdown Automaton (PDA), and apply PDA
model checking. We are not aware of an efficient, off-the-shelf model checker for
(alternation–free) modal µ–calculus properties of PDAs. We are currently develop-
ing one ourselves.

The extensions to the Program Analyzer for handling exceptional and multi-

3.3. EXCEPTIONAL CONTROL FLOW 63

threaded control flow are described in the following sections. Extending the Max-
imal Model Constructor, Inliner and the translation into CCS and PDA models is
straightforward, and not discussed further.

The tool set has been evaluated on the PACAP case study [20], an electronic
purse developed for smart cards. In PACAP, a smart card may contain one purse
applet and several loyalty applets, which interact to exchange information. The
case study describes a potential “bad scenario” in terms of an illicit interaction
involving the purse applet and the loyalty applets, one of which is malicious. The
goal of the verification, presented in detail in [53], is to ensure the absence of such
illicit interactions for the given implementations of the purse and loyalties.

3.3 Exceptional Control Flow

Our first extension to the program model is for the purposes of modeling the raising
and catching of exceptions as detailed in the Java Virtual Machine Specification [81].
Program behavior in the presence of exceptions is sensitive to the type of the excep-
tional object thrown and caught. Since we do not represent data, we need to add a
set of exception names to the model. For this, we take ContVal (which is the empty
set in the basic program model) to be Excp, an infinite set of exception names. We
define method specifications over M ⊆Meth and E ⊆ Excp, accordingly.

In a flow graph with exceptions, a control point may be tagged with an excep-
tion: the state is said to be exceptional if the current control point is tagged with
an exception (cf. the state immediately after an exception is thrown, before it is
caught [81]). Model extraction from actual bytecode models every instruction that
might raise an exception with several transfer edges, one leading to a normal and
the others leading to exceptional control points (for all possible exceptions). Ex-
plicit throw statements are modeled as internal transfer edges that always lead to
an exceptional point. Catch statements are implicit: they are modeled as internal
transfer from an exceptional to a normal control point.

At behavioral level, the main difference with the basic model is that the deci-
sion of which control point execution resumes after completion of a method call is
postponed to the time of return, depending on whether the method call returns
normally, or with an exception. Model extraction for a method that may termi-
nate with an exception produces multiple edges labeled with this method, ending
in control points tagged with exceptions, in addition to an edge that ends in a
normal control point. When a method is called, the set of all possible return points
(exceptional and normal) is pushed on the call stack (instead of a single one), so
that the appropriate control point can be selected upon return.

Below, we instantiate the compositional verification principle for flow graphs
with exceptions in such a way that conditions (ii) and (iv) from section 3.2.5 are
met, by defining structure and behavior appropriately. We also discuss how model
extraction is adapted, and give typical example properties that refer to the excep-
tional structure or behavior of a flow graph.

64 CHAPTER 3. PROGRAM MODELS

3.3.1 Program Model with Exceptions

As mentioned above, we take ContVal as Excp. Interfaces of flow graphs with
exceptions are thus of the form (I+, I−, E), where E ⊆ Excp. We use IE to extract
the exception component from the interface.

Method specifications are similar to method specifications in the basic program
model, except that exceptions are also atomic propositions.

Definition 3.11. (Method Specification with Exceptions) A flow graph with ex-
ceptions for m ∈ Meth over sets M ⊆ Meth and E ⊆ Excp is a finite model
Mm = (Vm, Lm,→m, Am, λm) with Vm the set of control nodes ofm, Lm = M∪{ε},
Am = {m, r}∪E, m ∈ λm(v) for all v ∈ Vm, and for all e, e′ ∈ E, if {e, e′} ⊆ λm(v)
then e = e′, i.e., each control point is tagged with at most one exception. A
method specification with exceptions for m ∈ Meth over M and E is a specification
(Mm,Em) s.t. Mm is a flow graph with exceptions for m over M and E and
Em ⊆ VM a non-empty set of entry points of m.

We use the following abbreviation: v |= E ⇔ ∃e ∈ E.v |= e. Method specifi-
cations with exceptions have to satisfy two wellformedness constraints: (1) entry
nodes are not exceptional: ∀v ∈ Em.v 6|= IE ; and (2) all outgoing edges from excep-
tional control points are internal transfer edges ending in a normal control point:
∀v, v′ ∈ V, e ∈ IE , l ∈ Lm.v |= e ∧ v

l
−→ v′ ⇒ l = ε ∧ v′ 6|= IE . The second constraint

is not strictly necessary, but keeps the behavior of flow graphs clean: catching an
exception always results in a normal state in the same method. Throughout, we
will assume all method specifications to be wellformed.

3.3.2 Extracting Flow Graphs with Exceptions from Java
Classes

We extended the Program Analyzer to handle exceptions. This is accomplished in
the following manner. Explicit throw statements give rise to internal transfer edges
ending in an appropriately labeled exceptional control point. All other instructions
that might raise an exception (such as accessing a reference, which can lead to a
NullPointerException) are modeled by a choice: the current control point has mul-
tiple outgoing edges labeled ε, one ending in a normal control point and all others
ending in appropriate exceptional control points. To model method invocations,
edges are labeled either ε, modeling the case that the invocation instruction raises
an exception, or with the method name. At most one of the edges labeled with
the method name ends in a normal control point, modeling normal termination
of the method, all others lead to an exceptional control point, corresponding to
exceptional returns from the method. The exceptional control points are either
tagged with an exception listed in the method’s throw clause, or with a runtime
exception that can be thrown (and not caught) in the method. The analysis of
which exceptions might be returned by a method is transitive with respect to the
call graph.

3.3. EXCEPTIONAL CONTROL FLOW 65

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

m1

m2

m3 m3

Exc2 Exc1

m6
m4

m6

Exc1

m3

m6

Exc1

m5

Exc1 Exc2

Exc1

m1

m6

finally { m6(); }

catch Exc1 { m5(); }

 }

 catch Exc1 { m4(); }

 try { m3(); }

try { m2();

m1();

m2
v1

v2 v3

v4

v5

v6

Figure 3.3: Example extraction for a try-catch-finally statement

To illustrate how PA extracts a flow graph from a try-catch-finally block,
figure 3.3.2 shows an example code fragment1 together with the corresponding flow
graph. We assume that Exc1 and Exc2 are the only exceptions; m1, m2 and m3 and
m6 can throw Exc1, while m3 can also throw Exc2. (For presentation purposes,
some nodes are named.) A try-catch is modeled by branches in the control flow:
each instruction in the try-block that could raise an exception has an outgoing
edge to an exceptional control point (e.g., the call to m2 in v1 can lead to normal
point v3, or to exception point v2). If the exception is handled by one of the
catch clauses, the only outgoing edge from this point leads to the control flow
of the corresponding clause. For example, in v2, the exception is caught by the
outer catch clause, leading to a call of m5. All edges that correspond to normal
termination of the try-catch (i.e., termination of the try-block, and termination
of all catch-clauses) lead to the same control point, where the flow graph modeling
the next instruction starts. If the try-catch block is followed by a finally-clause,
at each possible exit of the try-catch block (e.g., nodes v4 and v5 in figure 3.3.2),
the graph extracted for the finally clause is inserted. In case the try-catch block
ended with an exception, the exception is saved until the end nodes of the graph of
the finally clause, thus the internal nodes of the finally graph are not tagged
with this exception. However if an end node of the finally graph is normal, an
edge is added to rethrow the exception. For example, if the call to m6 in v5 ends
normally in v6, then Exc2 is re-thrown. The end node of a finally clause can thus
be either normal, tagged with an exception thrown in the finally block or with
the exception inherited from the try-catch block (in case no exception is thrown
by the finally block itself).

In order to see the results of graph extraction on a realistic piece of software,
we analyzed a simulation application built on top of the JavaSim library, a tool
for building discrete event process-based simulation2. We considered 140 types of

1For illustrative purposes, the extraction is described in terms of source code, however the
actual implementation works on bytecode.

2Available via the JavaSim homepage: http://javasim.ncl.ac.uk.

66 CHAPTER 3. PROGRAM MODELS

exceptions, checked as well as unchecked, all subtypes of class Exception. The
exceptional control flow graph includes 55 methods in 14 classes (approximately
640 lines of code), of which 7 classes belong to the JavaSim library. On a Pentium4
2.2GHz computer with 512MB memory pool, the call graph construction takes 3
minutes, and can be decreased substantially by instrumenting Soot to prevent the
analysis of Java API methods. It takes 1,5 seconds to create the control flow graph,
which contains 1450 nodes and 1466 edges.

3.3.3 Flow Graph Behavior with Exceptions

Modeling the behavior of flow graphs with exceptions requires a different use of the
call stack than that in the basic program model. In the basic model, the return
point is determined at the time of method call and is pushed on the call stack at
this time. However, this is not possible when modeling exceptional behavior as it
cannot be predicted at the time of the call whether termination will be normal or
exceptional. Therefore, the transition that models the method call is adapted to
push the set of all possible return points on the call stack. The return transition
then selects the appropriate return point, i.e. with the matching exception (if any).
In addition, we introduce transition labels throw e and catch e; these labels make
raising and recovering from exceptions observable for specification purposes.

Definition 3.12. (Behavior with Exceptions) Let G = (M,E) : I be a closed
flow graph with exceptions such that M = (V, L,→, A, λ). The behavior of G is
described by the specification b(G) = (Mb,Eb), where Mb = (Sb, Lb,→be, Ab, λb)
s.t. Sb ∈ V ×(P(V)\{∅})∗, i.e., states are pairs of control points and stacks of non-
empty sets of nodes, Lb = {m1 l m2 | l ∈ {call, ret}, m1,m2 ∈ I

+} ∪ {τ} ∪{l e | l ∈
{throw, catch}, e ∈ IE}, Ab = A, λb((v, σ)) = λ(v) and →be is defined as follows:

[transfer] (v, σ)
τ
−→be (v′, σ) if m ∈ I+, v

ε
−→m v

′, v |= ¬r,

v 6|= IE , v′ 6|= IE

[call] (v1, σ)
m1 callm2−−−−−−→be (v2, V · σ) if m1,m2 ∈ I

+, v1 |= ¬r, v1 6|= I
E

v2 |= m2, v2 ∈ E

V = {v | v1
m2−−→m1 v}, V 6= ∅

[return] (v2, V · σ)
m2 retm1−−−−−−→be (v1, σ) if m1,m2 ∈ I

+, v1 |= m1, v2 |= m2 ∧ r,

v1 ∈ V , ∀e ∈ IE .v1 |= e⇔ v2 |= e

[throw] (v, σ)
throw e
−−−−→be (v′, σ) if m ∈ I+, v

ε
−→m v

′, v |= ¬r, v′ |= e

[catch] (v, σ)
catch e
−−−−→be (v′, σ) if m ∈ I+, v

ε
−→m v

′, v |= ¬r ∧ e

The set of initial states Eb is defined by Eb = E× {ǫ}.

As for the basic model, the behavior of a flow graph with exceptions is the
behavior of a PDA, and hence PDA model checkers can again be used for verification
of behavioral properties. Since there is a close correspondence between flow graph

3.3. EXCEPTIONAL CONTROL FLOW 67

structure and behavior, structural simulation between flow graphs with exceptions
implies their behavioral simulation (thus condition (iv) of section 3.2.5 holds).

Theorem 3.13. Let G1 and G2 be flow graphs with exceptions. If G1 ≤s G2 then
G1 ≤b G2.

Proof. Let R be a structural simulation between G1 and G2. Define relation Rb by
(where |σ| denotes the length of σ, and σ(i) the ith element in σ):

(v, σ)Rb(v′, σ′)⇔ vRv′ ∧ |σ| = |σ′| ∧ ∀i < |σ|.∀w ∈ σ(i).∃w′ ∈ σ′(i).wRw′

It can be easily checked that Rb is a behavioral simulation between G1 and G2. 2

3.3.4 Properties over Flow Graphs with Exceptions

Modeling exceptional control flow in flow graphs not only allows their behavior
to be approximated with greater accuracy, but it also allows to express and verify
properties that are related to exceptions (both at structural and at behavioral level).
Typical properties of a flow graph with exceptions G : I expressible in our logic are:

• Exception e ∈ IE is never thrown: νX.¬e ∧ [−]X (where [K]φ abbreviates
∧

a∈K [a]φ and ’−’ stands for L). This property can be expressed both at
structural and at behavioral level but with slightly different meanings. For the
same flow graph, the behavioral property may be satisfied while the structural
may not do to the fact that presence of recursion may render certain nodes
unreachable at the behavioral level.

• Exception e ∈ IE is always caught within the method where it is thrown:
νX.(¬e∨¬r)∧ [−]X (again, this property can be expressed both at structural
and behavioral level).

• After exception e ∈ IE is thrown, the first method that can be called is the
(e.g. state-restoring) method n ∈ I+: νX.(¬e∨νY.[M \{n}]ff∧ [ε]Y)∧ [−]X .

It is natural to handle exceptions locally. Hence, in a compositional verifica-
tion setting, global behavioral specifications would typically not mention throwing
and catching of exceptions; these labels can instead be relabelled into silent τ -
transitions.

The tool set has also been extended to translate control flow graphs with ex-
ceptions into CCS models. This has been used to produce the CCS model cor-
responding to the graph extracted for the simulation application described at the
end of section 3.3.2. Then, we used the Concurrency Workbench to verify various
local properties of the application. For instance, we checked whether exceptions are
caught locally, i.e., within the method. For the finalize() method of JavaSim’s
SimulationProcess class, shown in figure 3.3.4, and a particular exception e, the
property finalize⇒ νX.(¬(e ∧ r)) ∧ [−]X specifies that exceptions of type e are

68 CHAPTER 3. PROGRAM MODELS

public void finalize () {

if (!Terminated) {

Terminated = true; Passivated = true;

wakeuptime = SimulationProcess.Never;

if (!idle()) Scheduler.unschedule(this);

if (this == SimulationProcess.Current) {

try { Scheduler.schedule(); }

catch (SimulationException e) { } }

SimulationProcess.allProcesses.Remove(this); }}

Figure 3.4: The finalize() method of JavaSim’s SimulationProcess class

caught locally. The instructions in the finalize() method that may raise an excep-
tion are the calls to the virtual method idle(), the static methods unschedule(),
schedule(), Remove() and accesses to the fields Never, and Current. All but one
of these instructions raise only the NullPointerException: the call to method
schedule() might raise NullPointerException and SimulationException, an
application-defined exception. Model checking the property succeeded for all ex-
ceptions e except for NullPointerException, showing that not all exceptions are
caught locally.

3.3.5 Interface Characterization of Flow Graphs with
Exceptions

Given an interface for a flow graph with exceptions I, we can characterize the flow
graphs with this interface by the formula σI . We state by this characterization that
all initial control points are normal, and that after a transition, either the control
point is normal again, or it is an exceptional point where all outgoing edges from
this point are internal transfer edges leading to a normal control point:

σI =
∨

m∈I+(νX. Pm ∧
∧

e∈IE ¬e∧
[I−, ε](X ∨ (

∧

m∈I+ [m]ff ∧ Pm ∧
∨

e∈IE Pe ∧ [ε]X)))
Pm = m ∧

∧

m′∈I+\{m} ¬m
′ Pe = e ∧

∧

e′∈IE\{e} ¬e
′

The following result establishes that σI characterizes all flow graphs with ex-
ceptions with interface I, thus condition (ii) of section 3.2.5 holds.

Theorem 3.14. Let I be an interface for flow graphs with exceptions. For any
specification S = (M,E) over labels L = I− ∪ {ε} and atomic propositions A =
I+ ∪ {r} ∪ E we have (where R denotes the reachable part of a specification, as
defined on page 56): S |=s σI if and only if R(S) : I.

Proof. Similar to the proof of theorem 31 in [53]. 2

3.4. MULTI-THREADED CONTROL FLOW 69

Because of this result and theorem 3.13, the compositional verification princi-
ple (3.1) also applies to flow graphs with exceptions.

3.4 Multi-threaded Control Flow

As a second example, we extend the basic program model to capture multi-threaded
control flow. As with exceptions, a set of thread and lock names are to be added
to the model. Therefore, we take the set of control values to be the set of lock and
thread names, i.e., ContVal = Lock × T id, where Lock and T id are infinite sets
of lock and thread names, respectively. Given an interface I, we use IL and IT to
extract the legal lock and thread names, respectively.

Our program model supports all basic thread constructs as provided by Java:
thread creation, monitors, a wait-notify mechanism, and the possibility to join a
thread (i.e., wait for its completion). The behavior of this model maintains a config-
uration for each thread. We assume that (the interleaving behaviors of) programs
do not contain data races and thus, by virtue of the Java Memory Model [82], as-
sume an interleaving semantics. Notice that the program model described in this
section can be easily combined with the program model described above into a
single program model with multi-threading and exceptions.

3.4.1 Program Model with Multi-threading

To define method specifications for multi-threaded programs, we introduce edge
labels that correspond to the instructions specific to multi-threading. Following
the Java semantics, the body of a method is taken to execute sequentially, pos-
sibly starting new threads, interleaved with other threads. Let LM,L,T abbrevi-
ate the set of labels M ∪ {ε} ∪ {c l | c ∈ {lock, unlock, wait, notify, notifyAll}, l ∈
L} ∪ {spawn t withm | t ∈ T ,m ∈M} ∪ {join t | t ∈ T}.

Definition 3.15. (Method Specification with Multi-threading) A flow graph with
multi-threaded control flow for m ∈ Meth over sets M ⊆ Meth, L ⊆ Lock and
T ⊆ T id is a finite model Mm = (Vm, LM,L,T ,→m, Am, λm) with Vm the set of
control nodes of m, Am = {m, r}, and m ∈ λm(v) for all v ∈ Vm. A method
specification with multi-threaded control flow for m ∈ Meth over M , L and T is
a specification (Mm,Em) with Mm a method graph with multi-threaded control
flow for m over M , L and T , and Em ⊆ Vm a non-empty set of entry points of m.

3.4.2 Extracting Flow Graphs from Multi-threaded Java Classes

To extend the Program Analyzer to multi-threaded classes, we generate edges with
appropriate labels for all Java primitives and native methods still used in relation
to concurrency, with the exception of the timed wait and the interrupt mechanism.
For instance, calling the start (or fork) method on a thread object, is modeled by
an edge labeled spawn, while a call to join leads to an edge labeled join. Special

70 CHAPTER 3. PROGRAM MODELS

[exec.] (Σ, L,W)
(t,a)
−−−→bm (Σ(t:=(v′, σ′)), L,W) if t 6∈ W, Σ(t)

a
−→bs (v′, σ′)

[coord.] (Σ, L,W)
(t,a)
−−−→bm (Σ(t:=(v′, σ)), L′,W′) if Σ(t) = (v, σ),t 6∈ W,

v
a
−→m v

′, m ∈ I+,

(L,W)
(t,a)
−−−→c (L′,W′)

[resume] (Σ, L,W)
(t, resume l)
−−−−−−−→bm (Σ, L′,W′) if (t, n, tt) ∈ W(l),

L
′ = L(l:=(t, n)), L(l) =⊥,

W
′ = W(l:=W(l)\(t, n, tt))

[thr.-ops.] (Σ, L,W)
(t,a)
−−−→bm (Σ′(t:=((v′, σ)), L,W) if Σ(t) = (v, σ),t 6∈ W,

v
a
−→m v

′ m ∈ I+, Σ
a
−→t Σ′

Table 3.1: Transition rules −→bm for multi-threaded behavior

care is taken for calls to synchronized methods: they are preceded and followed by
edges labeled lock and unlock on the appropriate object, i.e. the synchronization is
made explicit.

Special care has to be taken to ensure that the extracted sets of thread and lock
names are finite. For threads, a safe over-approximation is to use the declared class
name of the thread as thread name in the model. Using a more precise analysis can
help to distinguish different threads that are instances of the same class. For locks,
abstracting with the class name might under-approximate the program behavior.
To overcome this problem, we require that the program has only a finite number
of lock objects with the same class name.

3.4.3 Flow Graph Behavior with Multi-threading

The behavior specification follows closely the Java Specification [81]. Instead of
only maintaining a single call stack as was done in the basic behavior, we maintain
a configuration (i.e. control point and call stack) per active thread. If a thread is
not active, we map it to the value ⊥. We also maintain a lock map and a wait map.
The lock map returns for each lock the identity of the thread holding the lock and
the lock counter (i.e. how many times the lock is held, necessary to correctly model
the reentrant locking behavior of Java). The wait map returns for each lock the
set of threads that are waiting for it, the number of times the thread was holding
the lock when it started waiting, and a flag whether the thread has been notified.
This ensures that the thread resumes in the exact same state as when it issued a
wait, thus making sure a correct number of unlock operations is executed to release
a lock. We explicitly require that a thread be active for it to wait for a lock.

We assume that execution always starts with a special thread called main, and
that any closed flow graph contains such a thread. Labels and atomic propositions
are paired with thread identifiers. Further, we introduce the atomic proposition
haslock(t, l) to hold in any state where thread t holds lock l.

3.4. MULTI-THREADED CONTROL FLOW 71

Definition 3.16. (Behavior with Multi-threading) Let G = (M,E) : I be a
closed multi-threaded flow graph such that M = (V, L,→, A, λ). The multi-
threaded behavior of G is described by the specification b(G) = (Mb,Eb), where
Mb = (Sb, Lb,→bm, Ab, λb) is defined as follows:

• Sb = {s ∈ (IT → (V × V ∗)⊥)× (IL → (IT × N)⊥)×
(IL → P(IT × N× B)) | ∀l, t, n, b.(t, n, b) ∈ π3(s)(l)⇒ π1(s)(t) 6=⊥},

• Lb = T × ({m1 c m2 | c ∈ {call, ret}, m1,m2 ∈ I
+} ∪ {τ}∪

{c l | c ∈ {lock, unlock, wait, notify, notifyAll, resume}, l ∈ IL}∪
{spawn t withm | t ∈ IT ,m ∈ I+} ∪ {join t | t ∈ IT }),

• →bm is defined in table 3.13 (using auxiliary rules −→c and −→t of table 3.2) ,

• Ab = (T ×A) ∪ {haslock(t, l) | t ∈ IT , l ∈ IL}, and

• λb(s) = {(t, p) | t ∈ IT ∧ π1(s)(t) 6=⊥ ∧ p ∈ λ(π1(π1(s)(t)))}∪
{haslock(t, l) | π2(s)(l) 6=⊥ ∧ π1(π2(s)(l)) = t}.

The set of initial states Eb is defined as Eb = {(ΣvI , λl. ⊥, λl.∅) | v ∈ E} where
ΣvI(main) = (v, ǫ,⊥) and ΣvI(t) =⊥ for all t ∈ IT .

The transition rules should be understood as follows.

• Rule [exec.] lifts the standard rules for sequential applets, repeated for com-
pleteness in Def. 3.7, to the multi-threaded case. In this rule and several
others, the thread progresses only if it is not in the wait set W. Note that this
is the only rule that (possibly) changes the call stack of the current thread.

• Rule [coord.] models the coordination of threads via locks, i.e. the operations
lock, unlock, wait, notify and notifyAll: the current thread changes control
point if the lock and wait maps can be updated appropriately (as defined by
the auxiliary transition rules −→c in table 3.2).

The first lock is obtained (i.e. [lock] transition succeeds) only if the lock l is
not held by any thread (i.e. l maps to ⊥ in L). As a result, in the updated lock
map l maps to (t, 1), where t is the current thread identifier. Subsequent lock
operations by t increase this counter, while unlock operations by t decrease
it until the value becomes ⊥, i.e. until the lock is released.

The wait notification mechanism is modeled using the wait map W. When a
thread t decides to wait on a lock l (which it holds n times), it releases the
lock, and (t, n,ff) is added to W(l). A notify(All) for l sets the notification
flag of some (all) thread waiting for l to tt (where rule [notify-cont] handles
the special case where no thread is waiting for the lock l). If lock l becomes

3We abbreviate ∃n, b, l.(t, n, b) ∈ W(l) as t ∈ W. We use f(i:=x) to denote function update.
Further, Σ(i) = (v, σ) implicitly implies that Σ(i) 6=⊥.

72 CHAPTER 3. PROGRAM MODELS

[lock] (L,W)
(t,lock l)
−−−−−→c (L′,W) if L(l) =⊥, L

′ = L(l:=(t, 1))

[re-lock] (L,W)
(t,lock l)
−−−−−→c (L′,W) if L(l) = (t, n), L

′ = L(l:=(t, n))

[unlock] (L,W)
(t,unlock l)
−−−−−−→c (L′,W) if L

′ = L(l :=
(L(l) =⊥ ∨L(l) = (t, 1)?
⊥:
(π1(L(l)), π2(L(l))− 1)))

[wait] (L,W)
(t,wait l)
−−−−−→c (L′,W′) if L(l) = (t, n), L

′ = L(l:=⊥),

W
′ = W(l:=W(l) ∪ {(t, n, ff)})

[notify] (L,W)
(t,notify l)
−−−−−−→c (L,W′) if L(l) = (t, n),(t′, n, ff) ∈ W(l),

W
′ = W(l :=

W(l)\{(t′, n,ff)} ∪ {(t′, n, tt)})

[notify-cont] (L,W)
(t,notify l)
−−−−−−→c (L,W) if L(l) = (t, n),∀t′.(t′, n, ff) 6∈W(l)

[notifyAll] (L,W)
(t,notifyAll l)
−−−−−−−→c (L,W′) if L(l) = (t, n),

W
′ = W(l :=

{(t′, n, tt) | (t′, n, r) ∈ W(l)})

[spawn] Σ
spawn t′ withm′

−−−−−−−−−→t Σ′ if Σ(t′) =⊥, m′ ∈ I+, v′′ ∈ E,

v′′ |= m′, Σ′ = Σ(t′:=(v′′, ǫ))

[join] Σ
join t′

−−−→t Σ if Σ(t′) = (v′′, ǫ), v′′ |= r

Table 3.2: Auxiliary transition rules −→c and −→t

available, any notified element in W(l) can acquire it, and resume execution
as specified by rule [resume] (in table 3.1). When a thread re-acquires a lock
l after a wait, it re-acquires it exactly as many times as it was holding the
lock, when starting to wait. This is recorded as the value n in the wait map.
This ensures that the thread has to execute exactly n releases to release the
lock.

• Rule [thread-ops] models the operations of creating and joining a thread (using
the auxiliary transition rules −→t). A thread can be spawned only if it was
not active before, starting with an empty call stack in one of the entry points
of the method it was spawned with (i.e. the method run in a Java program).
Only a thread executed to completion can be joined, i.e. it is blocked at a
return point, with an empty call stack.

• Rule [resume] handles the case where a thread is waiting on an object, has
been notified, and now continues execution as was described above.

Also in the case of multi-threaded flow graphs, there is a direct correspondence
between flow graph structure and behavior, and thus structural simulation implies
behavioral simulation.

3.4. MULTI-THREADED CONTROL FLOW 73

Theorem 3.17. Let G1 and G2 be flow graphs with multi-threading. If G1 ≤s G2

then G1 ≤b G2.

Proof. Let R be a structural simulation between G1 and G2. Define

(Σ, L,W)Rb(Σ′, L′,W′)⇔
(∀t ∈ T . if Σ(t) = (v, σ)

then Σ′(t) = (v′, σ′) ∧ vRv′ ∧ |σ| = |σ′| ∧ ∀i.i < |σ|.σ(i)Rσ′(i)
else Σ′(t) =⊥) ∧ L = L′ ∧W = W′

It is easy to check that Rb is a behavioral simulation between G1 and G2. 2

3.4.4 Properties over Flow Graphs with Multi-threading

The instantiation of the generic flow graph model with multi-threaded control flow
allows us to express properties that are related to the multi-threaded character of
the flow graph. Given a flow graph G : I with multi-threaded control flow, typical
(behavioral) properties expressible in our logic are:

• Method m ∈ I+ can only be called by thread t, if t has lock l:
νX.
∧

t ∈ IT (haslock(t, l) ∨
∧

m′∈I+ [(t,m′ callm)]ff) ∧ [−]X . If method m is
the only method accessing some data, this means that data is lock protected.

• Locks are acquired in a particular order, for example lock l2 can only be
acquired by a thread that already has lock l1: νX.

∧

t∈IT (haslock(t, l1) ∨
[(t, lock l2)]ff)] ∧ [−]X . This guarantees absence of deadlocks by synchro-
nization (however, it does not guarantee absence of deadlocks, caused by the
wait-notify mechanism, or by joining a non-terminating thread).

• No more than n threads are created in an application. This is an important
resource property. Formally, this can be expressed as MaxThr (n), inductively
defined as follows:

MaxThr (1) = νX1.
∧

m∈I+,t∈IT [spawn t withm]ff ∧ [−]X1

MaxThr (k + 1) = νXk+1.
∧

m∈I+,t∈IT [spawn t withm]MaxThr (k) ∧ [−]Xk+1

3.4.5 Interface Characterization of Flow Graphs with
Multi-threading

Given an interface for a flow graph with multi-threaded control flow I, the flow
graphs with this interface can be characterized by the formula σI , where LM,L,T is
as defined on Page 69:

σI =
∨

m∈I+(νX.Pm ∧ [LI−,IL,IT]X) Pm = m ∧
∧

m′∈I+\{m} ¬m

74 CHAPTER 3. PROGRAM MODELS

Theorem 3.18. Let I be an interface for multi-threaded flow graphs. For any
specification S = (M, E) over labels I− ∪ {ε} ∪ LM,L,T and atomic propositions
A = I+ ∪ {r} we have : S |=s σI if and only if R(S) : I.

Proof. Similar to the proof of theorem 31 in [53]. 2

Thus, the compositional verification principle (3.1) also applies to flow graphs
with multi-threading. However, applying the verification principle poses a prob-
lem to model checking, since the verification problem resulting from the second
premise, θI(ψ) ⊎ G2 |=b φ, is not decidable in general for the case of pushdown
systems with multiple stacks. This is a consequence of a basic undecidability result
due to Ramalingam [99], which is related to the undecidability of the problem of
emptiness of intersection of context-free languages. Hence, every such model check-
ing algorithm must use an under- or over-approximation of the program behavior.
Different approaches have been proposed, see e.g. [17, 45, 98]. It is future work to
study whether and how these solutions can be integrated into our framework.

3.5 Related Work

The maximal model technique for compositional verification was originally devel-
oped by Grumberg and Long [51] for the universal fragment of CTL, and was later
generalized by Kupferman and Vardi [73] for ACTL*. A more detailed background
on maximal model construction and its relationship with compositional verification
was already presented in section 2.2.

Gurov et al. have introduced a maximal model construction for the fragment
of the modal µ-calculus without least fixed-points and diamond modalities.This
program model has been inspired by the one of Besson et al. [15], who address the
problem of verifying stack invariants of Java programs. The model of Gurov et
al. is also close to that of Recursive State Machines, proposed by Alur et al. [6],
while somewhat courser. However, Recursive State Machines have not been used
to address compositional verification of programs with recursion. Still other mod-
els exist for capturing the control flow of applications in Java-like languages, see
e.g., [87]. However, because of the specific requirements of our compositional veri-
fication technique, we cannot directly reuse these models, and instead rely on our
own.

We create models of implementations in Java bytecode using the SOOT Frame-
work. When exceptional behavior is taken into account, the control flow graphs
SOOT creates are similar to ours. SOOT control graphs do not have explicit nodes
for exceptional program points however. Because in these graphs each node matches
an instruction in the Jimple program text.

Several tools exist for the (non-compositional) verification of behavioral pro-
gram properties. The behavior of programs with recursion is usually represented as
pushdown systems and model checked against temporal logic properties [16, 42, 44].

3.6. CONCLUSION 75

Moped [68, 43] and Alfred [97] are examples of tools that follow this scheme. In par-
ticular, a variant of Moped, jMoped [105], translates Java bytecode to a pushdown
system extended with a set of variables, where instructions are directly mapped to
transitions of the system. Also closely related is the two-step extraction technique
of Obdržálek [91], where a control flow graph of the program is produced first,
and the pushdown system is then generated from this graph. However, neither of
these translations addresses multi-threading. Further, existing model checkers for
multi-threaded Java (such as Bogor4 and JavaPathFinder5) typically use an im-
plicit program representation that is close to the program itself. Then, abstraction
is applied to make verification feasible. In contrast, our program model directly
abstracts the program behavior; without this abstraction a maximal flow graph
cannot be constructed.

3.6 Conclusion

In this section we summarize this chapter and propose some future work.

3.6.1 Summary and Contribution

In this part of the thesis, we show how the previously developed method of Gurov et
al. for compositional verification of control flow properties of sequential flow graphs
with procedures can be adapted to richer program models. In particular, we propose
extensions to the original program model that allow exceptional control-flow and
multi-threading to be captured. We show that for both extensions the compositional
verification principle still applies, by identifying the conditions under which the
compositional verification principle is sound and complete with respect to a given
program model, and proving that these conditions hold for the proposed extensions.
It is important to note, however, that in the case of multi-threaded flow graphs,
the model checking problem is not decidable due to a general undecidability result
for pushdown systems with multiple stacks. The restrictions on the instantiations
required to ensure soundness and completeness of the principle are not severe, and
the resulting models are intuitive and standard and can thus be used for other
analysis as well.

3.6.2 Future Work

The methodology we provide in this chapter can be employed for making further ex-
tensions to the program model underlying the compositional verification technique.
Especially of interest is to add data (from finite domains), and access control in-
formation. We are currently adapting the tool set to handle multi-threaded models
and plan to integrate a suitable pushdown model checking algorithm for the verifi-
cation of these models.

4See http://bogor.projects.cis.ksu.edu.
5See http://javapathfinder.sourceforge.net.

Chapter 4

Provably Correct Runtime

Monitoring

4.1 Introduction

As mobile devices gain capabilities, the demand for new applications increases.
However, running third-party applications on mobile devices is considered risky.
These devices contain personal information and provide access to costly functional-
ity (e.g. GSM services and GPRS connections), which not only makes the security
issue involved in running third-party applications more critical, but also results in
more complex requirements on applications by both the device platform and the
user. The user may, for example, want to allow a chat application more freedom
regarding connections than a gaming application. Therefore, crude sandboxes that
hide functionality from third-party code are not an option in this setting. Such
imposed handicaps would simply make the applications uninteresting.

Most mobile device users currently permit only signed third-party software on
their devices due to security concerns. This process goes as follows. After produc-
tion, the application is handed to a certifying party. The certifying party (ideally)
performs certain analysis that checks the adherence of the program to the policy of
the mobile platform provider. (The policy is usually the security policy of a fixed
platform, hence the certification has to be repeated for each platform.) After it
approves the application, the certifier signs it with its private key. In the deploy-
ment phase, the key attached to the application is used to designate the origin of
the application and the application is installed only if this party is recognized as a
trusted party by the platform developers or by the mobile operator. This security
model depends on mutual agreement and trust between various parties, namely
the application developer, the certifier party, the platform provider, and the mobile
operator. Therefore, this type of certification significantly prolongs the overall time
it takes for a product to reach the market and raises the production costs. An
efficient security mechanism that provides controlled access to the resources of the

77

78 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

device would be a superior alternative.
Many practical mobile device policies such as limiting the number of short mes-

sages that are sent by an application per hour, or disallowing connections to unse-
cure domains after access to personal information are access control policies. Access
control policies fall into the class of policies enforceable by monitors [102, 55]. A
monitor operates by observing the behavior of the target program at runtime and
intervenes to prevent any policy violation. Runtime monitoring is a firmly estab-
lished and efficient mechanism [64, 41, 69, 59, 80, 79], thus a candidate for being
included in mobile security frameworks.

The use of monitoring as a mechanism for enforcement of security policies in a
sensitive context such as mobile devices requires that the monitor is sound, i.e. the
monitor guarantees that the executions of the program adheres to the desired policy.
Soundness depends essentially on the ability of the monitor to intervene with the
execution of the program (target control), and to intercept all the security relevant
actions performed by the program, i.e. that the untrusted program can not perform
security relevant actions by circumventing the monitor (uncircumventability). In
explicit monitoring, target program actions are intercepted and approved by some
external monitoring agent [64, 69, 59]. Therefore, both target control and uncir-
cumventability are issues that need to be addressed when this type of monitoring
is employed.

A variant of monitoring is monitor inlining, in which target programs are rewrit-
ten to include the desired monitor functionality, thus making them self-monitoring.
General purpose monitor inlining has been pioneered in Evans and Twyman’s Nac-
cio [46] and in Erlingsson and Schneider’s SASI [41] tools. Security automata in-
troduced by Schneider [102] are a suitable formalism for expressing policies. These
are in essence Büchi automata where all the states are accepting. Inlining for a
policy given by a security automaton can be performed by adding new variables to
the target program in order to record the current automaton state and by inserting
code to perform necessary checks and corresponding updates on these variables at
each security relevant action, according to the transition relation of the automaton.
The program is terminated if there is no transition for the next security relevant
action in the current state. As a result, the monitor becomes part of the program,
so target control ceases to be an issue. What is more, uncircumventability can be
based directly on the semantics of the language and type safety [13].

Monitor inlining is especially suitable for mobile devices as it is simple, and
eliminates the need for a complicated security enforcement infrastructure which
may be costly. In terms of runtime overhead, inlining has an advantage over explicit
monitoring in that the information to decide on security issues is directly accessible
to the monitor from within the program. An inliner is typically a small program [39]
and can be incorporated into the device platform. There are several advantages,
however, of inlining in development time over performing the inlining on device. The
practical use of any security enforcement mechanism depends on the functionality of
the program not being unnecessarily hindered. To this end, the monitor should be
transparent so that those executions of the target program that adhere to the policy

4.1. INTRODUCTION 79

are not altered by the monitor. Performing inlining prior to deployment enables
developers to preserve full control over their applications. The code producer is free
to decide how the inlining is to be performed so to provide a transparent monitor,
not trading off functionality for security. Furthermore, the availability of resources
at development time allows for more optimizations on the inlined code.

Using “off-device” inlining to enforce policies does not solve the mobile code
security problem. A program may contain a sound monitor for the device policy,
yet it is as untrusted as any other program if the device does not have the means
to check this. Proof-carrying code (PCC) [90] has been introduced as a means to
establish trust in mobile code on the host that executes the code. A PCC setting
involves two parties, the code producer (e.g. the code developer) and the code
consumer (e.g. the platform in which the code executes). The code producer ships
an application with an additional piece of information that simplifies the check on
the consumer side that the application obeys the security policy.

The framework we support in this chapter (see figure 4.1) uses monitor inlining
in a proof-carrying code setting to facilitate quick certification and deployment of
applications1. In this framework, the software production process is extended by
monitor inlining and proof generation steps. The program is inlined by the soft-
ware producer or a third-party to adhere to a policy, the security requirements
on the program that are envisioned by the developer. The inlining step serves to
guarantee this behavior by inserting a monitor into the program that enforces the
requirements. The producer policy and the inlined program are then passed to the
proof generator which produces a proof of this guarantee. Finally, the inlined pro-
gram is packaged together with the producer policy and the proof of its compliance
to this policy, ready to be shipped to the code consumer.

The deployment phase on the mobile device consists of policy matching and
proof checking. The matcher checks that the security relevant behavior of the
program, represented by the producer policy, obeys the security requirements of
the platform. If matching returns a negative answer, the program is rejected.
Otherwise, it should be further checked that the program indeed complies to the
policy it was shipped with. To this end, the proof checker considers the shipped
policy and the proof and approves the program only if this proof is correct for the
program and the producer policy.

This framework has a number of advantages over the current certification pro-
cess based on code-signing. The policy matcher of the above framework may relieve
the developers from having to know the exact security requirements of the platform.
Instead, the developer guarantees a certain behavior for the program. This declared
behavior may cause the acceptance or the rejection of the program on the basis of
not only the platform requirements but also of the policy of the particular mobile
device user. Hence, it also provides a means for users to customize the requirements
for each application. Assuming that the proof checker component is a less complex

1The framework was designed within the IST programme of the EC, under the IST-STREP-
27004 Security of Software and Services for Mobile Systems (S3MS) project, URL: www.s3ms.org.

80 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

inlined
program

compliance
proof

platform (and user)
policy

producer
policy

proof

generator

.

?

-
-

.
-

???

? ?
-

-

? ?-6

Match

No match

AcceptedRejected

program activities

activities

policy

matcher

off-device

on-device

proof checker

inliner

Figure 4.1: Security Framework

software than the monitor inliner, the set of entities that build the security architec-
ture of the device and hence need to be trusted (i.e. the trusted computing base of
the device) becomes smaller. Most important of all, in this framework, employing
trust in a certifying party is no longer a necessity, which decreases the time and
cost of mobile application development considerably.

In order to support the above framework, we propose in this chapter a new
policy language and formalization of monitoring and monitor inlining. We focus
on policies expressed as security automata [102] that operate on calls to some fixed
API from a target program given as a Java Virtual Machine (JVM) class file.
Automaton transitions are allowed to depend locally on argument values, heap at
time of call and (normal or exceptional) return, and return value. We introduce the
language ConSpec for writing such policies, as a successor to earlier policy languages
devised for runtime monitoring such as PSLang [39]. It is designed to render a
clean semantics and tractability for the formal treatment of various security related
activities while retaining the intuitiveness of PSLang. In particular, when policy
matching is taken as language inclusion, the problem is decidable for ConSpec
policies. The language also allows a seamless treatment of inheritance, passing
constraints on methods to non-overriding subclasses.

We present a formalization of monitoring using, as monitors, security automata
derived from ConSpec policies. A co-execution of a program and an automaton is

4.1. INTRODUCTION 81

an interleaving of a program execution with an automaton run, where the program
execution is not affected by the monitor except for possible termination. Whereas,
the monitor transits on the security relevant actions of the program. A basic result
established here is monitor soundness and transparency.

The main goal of this work is to develop a suitable notion of proof to facilitate
automatic proof generation and efficient proof checking for the purpose of certifying
correctly inlined programs. By correctness, we mean here soundness and leave
dealing with transparency to future work. As in the original PCC framework by
Necula [90], we use annotated programs as proofs, which enables the reuse of some
existing machinery. In order to handle a large class of inlined programs, we do
not fix the inlining procedure that is to be used by the producer. Instead, we
use annotations to characterize self-monitoring programs, which would include any
correctly inlined program.

Our main contributions are characterizations, in terms of JVM class files an-
notated by formulae in a suitable Floyd-like program logic, of the following two
conditions on a program relative to a given policy:

1. that the program is policy-adherent;

2. that the program contains a method-local monitor for the policy, in the sense
that updates to the monitor state do not cross method call boundaries.

Note that the second condition entails the first condition.
The annotations serve as an important intermediate step towards a decidable

annotation validity problem, once the inliner is suitably instantiated. The method-
local nature of the embedded monitor enables compositional analysis: validity can
be checked per method. Being method-local is not an overly restrictive condition
on embedded monitors and is satisfied by all general purpose inliners we know of.

By these characterizations, the problem of showing correctness of inlined moni-
tors reduces to proving the validity of the corresponding annotations. We illustrate
the practicality of this approach by describing a monitor inliner for which we prove
correctness. We also sketch how, for this inliner, the annotations can be completed
to produce a fully annotated program for which validity can be efficiently decided
using a bytecode weakest precondition checker. Such a full annotation can thus
be used as the proof element in the setting of figure 4.1. The full annotations are
sufficient to decide whether the program complies to the contract, provided that:

• the full annotations imply the partial annotations that guarantee contract
adherence, and

• the fully annotated program is valid with respect to the axiomatic semantics
of the bytecode instructions,

both of which can be decided efficiently on device.
Organization This chapter is structured as follows. Section 4.2 presents the JVM

model used in this paper. The next two sections introduce the automaton model

82 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

in concrete and symbolic forms, the ConSpec language, and relations between the
three. Section 4.5 gives an account of monitoring by interleaved (co-)execution of a
target program with a monitor, and establishes the equivalence of policy adherence
and co-execution. In section 4.8, we present a two-level annotation scheme that
characterizes the two conditions mentioned above. In section 4.9 the inliner and
its correctness proof are sketched. We also sketch how to produce, for this inliner,
fully annotated programs with a decidable validity problem. We summarize related
approaches in section 4.10. Finally, in section 4.11 we conclude and discuss future
work.

4.2 Program Model

We assume the reader to be familiar with Java bytecode syntax, and the Java
Virtual Machine (JVM). Here we only present components of the JVM that are
essential for the definitions in the rest of the text.

4.2.1 Notation

We first introduce some notation that we will use in the rest of the chapter. For a
partial function f : S1 ⇀ S2, the domain of f is all elements x of S1 for which f(x)
is defined: Dom(f) = {x | x ∈ S1 ∧ f(x) ∈ S2}.

Function update, written f [x 7→ v], is defined as usual as

(f [x 7→ v])[y] =
{

v if x = y
f [y] otherwise

for all y ∈ Dom(f).
We use sequences to model stacks, as well as lists of values and types. The empty

sequence is ǫ and v ·s places v at the front of sequence s. Sequence concatenation is
written s1 • s2, and the substitution s[b/a] replaces all occurrences of a in s with b.

4.2.2 Types and Values

We denote bytecode programs with T. We fix a set of class names c ∈ C, a set of
method names m ∈M, and a set of field names f ∈ F. Primitive type set PrimType
consist of the types int and string. The type Unit is used for methods that do
not return a value. A type τ ∈ Type is either a primitive type, a class c, the type
Unit or the type Null. We let γ ∈ (Type)∗ range over tuples of types.

Each type τ ∈ Type determines a set ‖τ‖ of values. Val denotes the set of
all values. Values of types int and string are integers and strings, respectively,
and make up the values of type PrimType, which are called the primitive values
PrimVal . The sets determined by the types Unit and Null are singletons consisting
of the values void and null, respectively.

Values of object type are (typed) locations ℓ ∈ Loc, mapped to objects by a
heap h ∈ H = Loc ⇀ O. The partial function type : (ℓ, h) 7→ C returns the type

4.2. PROGRAM MODEL 83

of location ℓ in heap h, if ℓ ∈ Dom(h), and is otherwise undefined (i.e. ⊥). The
structure of objects in O is not further specified here. It suffices to assume that if
h : ℓ 7→ o ∈ O then h(ℓ) determines a field h(ℓ).f whenever the class which this
object is a member of, declares f .

We also introduce a static heap sh : c × f ⇀ Val that stores the values of the
static variables of a class. We assume shT

0 to be the initial mapping which maps
each static variable of a class reachable through the program T to its initial value
as given by its class definition. In this sense, we make two assumptions: the static
variables of all reachable classes are assumed to be initialized to constant values
(i.e. we disregard static initializers) and the initialization is assumed to have been
done before the program starts executing. The first assumption can be dropped
by extending our approach to handle static initializers, which is straightforward to
perform.

Each class determines a set of fields and methods defined for that type through
its declaration. The class declarations induce a hierarchy given by the subclassing
partial preorder <: on the set {Null} ∪ C. We write c1 <: c2 if c1 is a subclass
of (or extends) c2. Null is the bottom element with respect to this ordering:
∀τ ∈ {Null} ∪ C. Null <: τ . If c defines m (declares f) explicitly, then c defines
(declares) c.m (c.f). We say that c defines c′.m (declares c′.f) if c is the smallest
superclass of c′ that contains an explicit definition (declaration) of c.m (c.f). Single
inheritance ensures that definitions/declarations are unique, if they exist.

4.2.3 Methods

Method definitions are modeled through an environment Γ taking method refer-
ences to their definitions. The environment Γ is elided where possible. We assume
furthermore a partitioning on the set of methods which divides the set into API
methods (ApiMet) and application methods (AppMet): M = ApiMet

⊎

AppMet. To
simplify notation, method overloading is not considered, so a method is uniquely
identified by a method reference of the form M = (c,m). For a method (c.m),
(c.m) : γ → τ when γ is the list of argument types and τ is the return type of the
method. A method definition is a pair (P,H) consisting of a method body P and
an exception handler array H . The method body (the exception handler array) of
M is denoted PM (HM) when the environment Γ is clear from the context. For
each program, we assume that there exists a main method method which does not
have a class defining it. We identify this method with the special reference 〈main〉.

A method body P is a partial function from ω to the set of instructions such
that ADDRP = Dom(P) has the form {1, . . . , n} for some n ∈ ω. We use the
notation M [L] = I to indicate that Γ(M) = (P,H) and P (L) is defined and equal
to the instruction I. The exception handler array H is a partial map from integer
indices to exception handlers. An exception handler is a four-tuple (L1, L2, L3, c)
consisting of three program labels (L1, L2, L3 ∈ Dom(P)) and a class which is a
subtype of class Throwable, (c <: Throwable).

84 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

4.2.4 Operational Semantics

A configuration of the JVM is a triple C = (R, h, sh) of a stack R of activation
records, a normal heap h and a static heap sh. For normal execution, the activation
record at the top of the execution stack has the shape (M, pc, s, f), where

• The method reference M is the currently executing method.

• The program counter pc is an index into the currently executing instruction
array, i.e. it is a member of Dom(P) where P is the body of M . The
configuration C is calling, if P (pc) is an invoke instruction, and it is returning
normally, if P (pc) is a return instruction.

• The operand stack s is the stack of values (i.e. primitive values or locations)
currently being operated on.

• The local variables lv is a mapping of variables to values, preserving types.

For exceptional configurations C the top frame has the form (b)e where b is the
location of an exceptional object. For exceptional configurations, the current pro-
gram counter and executing method is given by the frame below the exceptional
frame. Then, C is returning exceptionally if there is no handler for this exception
and the current instruction label in the currently executing method. Configuration
C is returning if C is either returning normally or exceptionally. Finally, if C is
exceptional and there is a single frame in the activation record, then the program
is exiting exceptionally.

We assume a transition relation −→JVM on JVM configurations, presented in
tables 4.1, 4.2 and 4.3 for a subset of instructions of the JVM. This operational se-
mantics is a simplified version of the semantics by Freund and Mitchell [48] and does
not consider, for instance, details of object initialization2. Each row in these tables
describes the conditions under which a program represented by the environment Γ
can move from configuration C0 to configuration C1, i.e. Ci −→JVM Ci+1. The first
column of the first two tables indicates the instruction form captured by the rule.
If the instruction about to be executed matches that form and all conditions in the
‘Condition’ column are satisfied, then a transition occurs from configuration C0 to
configuration C1. The initial configuration is ((〈main〉 , 1, ǫ, lv0), h0, sh

T
0), consisting

of a single, normal activation record with an empty stack, an arbitrary mapping to
local variables (lv0), an empty heap (Dom(h0) = ∅) and the initial static heap.

For example, table 4.1 contains the rule for the getstatic instruction, which
pushes the value stored in the specified static field of the specified class, by ac-
cessing the static heap. The rule indicates that the execution may proceed from
configuration C0 to C1 in a single step if for the currently executing method M ,
M [pc] = getstatic c.f and C0 and C1 match the patterns in the table. In this

2Initialization information is not included in the configurations for reasons of clarity and
brevity.

4.2. PROGRAM MODEL 85

M [pc] Condition C C′

goto L ((M, pc, s, lv) ·R, h, sh) ((M,L, s, lv) · R, h, sh)
ifeq L v = 0 ((M, pc, v · s, lv) ·R, h, sh) ((M,L, s, lv) · R, h, sh)
ifeq L v 6= 0 ((M, pc, v · s, lv) ·R, h, sh) ((M, pc + 1, s, lv) ·R, h, sh)

getstatic c.f sh(c.f) = v ((M, pc, s, lv) ·R, h, sh) ((M, pc + 1, v · s, lv) ·R, h, sh)

putstatic c.f ((M, pc, v · s, lv) ·R, h, sh)
((M, pc + 1, s, lv)·
R, h, sh[c.f 7→ v])

iload/aload rx ((M, pc, s, lv) ·R, h, sh) ((M, pc + 1, lv(x) · s, lv) · R,h, sh)

istore/astore rx ((M, pc, v · s, lv) ·R, h, sh)
((M, pc + 1, s, lv[x 7→ v])·

R, h, sh)
athrow type(h, b) <: Throwable ((M, pc, b · s, lv) · R,h, sh) (b)exc · ((M, pc, s, lv) ·R, h, sh)

instanceof c type(h, d) <: c ((M, pc, 1 · s, lv) ·R, h, sh) ((M, pc, s, lv) · R, h, sh)
instanceof c ¬(type(h, d) <: c) ((M, pc, 0 · s, lv) ·R, h, sh) ((M, pc, s, lv) · R, h, sh)

ireturn
Γ(M) = γ → int

|γ| = |s′|

((M, pc, v · s, lv)·
(M ′, pc′, s′ • (d · s′′), lv′)·

R, h, sh)
((M ′, pc′ + 1, s′′, lv′) ·R, h, sh)

Table 4.1: Operational Semantics for a Subset of Instructions of the JVM

rule, and all others, if we apply a function g to an argument x, we have the im-
plicit requirement that x ∈ Dom(g). The athrow instruction raises an exception
by taking an object which is of a subtype of the type Throwable off the top of the
stack and pushing a new activation record containing that reference. The rule for
ireturn is understood better after considering table 4.2.

An execution E of a program (class file) T is then a (possibly infinite) sequence
of JVM configurations C1C2C3 . . . where C1 = is the initial configuration, Γ set
up according to T, and for each i ≥ 1, Ci −→JVM Ci+1. We restrict attention to
configurations that are type safe, in the sense that heap contents match the types
of corresponding locations, and that arguments and return/exceptional values for
primitive operations as well as method invocations match their prescribed types.
The Java bytecode verifier serves, among other things, to ensure that type safety
is preserved under machine transitions (cf. [78]).

Method Calls The rule for invokevirtual uses the type of the object stored in
the heap at the address provided by the stack in order to determine which method
is called in effect, i.e. the method for the new activation record. The notation
g[1 . . . n 7→ vn · vn−1 · . . . · v1] is an abbreviation for g[1 7→ v1][2 7→ v2] . . . [n 7→ vn].
The function lv0 maps the local variables to arbitrary values.

Table 4.2 shows the rules for virtual method calls, i.e. for the case where
M [pc] =invokevirtual c.m. We use the following abbreviations in the table:

ApiCallCond
△
= M ′ = c′.m,M ′ ∈ ApiMet, CallCond

AppCallCond
△
= M ′ = c′.m,M ′ ∈ AppMet, CallCond

CallCond
△
= d 6= null, type(h, d) <: c, c′ defines type(h, d).m, c′.m : γ → τ, |s| = |γ|

86 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

Condition C C′

AppCallCond ((M, pc, s • (d · s′), lv) ·R, h, sh)
((M ′, 1, ǫ, lv0[0 7→ d, 1 . . . |γ| 7→ s])·
(M, pc, s • (d · s′), lv) ·R, h, sh)

ApiCallCond

type(h′, v) = τ
((M, pc, s • (d · s′), lv) ·R, h, sh) ((M, pc + 1, v · s′, lv) ·R, h′, sh′)

ApiCallCond

type(h′, b) <: Throwable
((M, pc, s • (d · s′), lv) ·R, h, sh) ((b)exc · (M, pc, s′, lv) ·R, h′, sh′)

d = null

|s| = |γ|
b 6∈ Dom(h)

((M, pc, s • (d · s′), lv) ·R, h, sh)
((b)exc · (M, pc, s′, lv)·

R, h[e 7→ new(Throwable)], sh)

Table 4.2: Rules for Virtual Method Calls

The only non-standard aspect of −→JVM is the treatment of API methods. We
assume that we have access only to the signature of methods in ApiMet , but not
the implementation. We therefore treat API method calls as atomic instructions
with a non-deterministic semantics as seen in rules of table 4.2. This is similar
to the approach taken, e.g., in [100]. In this sense, we do not practice complete
mediation as defined by Saltzer in [101]. When an API method is called either the
pc is incremented and arguments popped from the operation stack and replaced
by an arbitrary return value of appropriate type, or else an arbitrary exceptional
activation record is returned. Similarly, the return configurations for API method
invocations contain an arbitrary heap, since we do not know how API method
bodies change heap contents.

Our approach hinges on our ability to recognize such method calls. This prop-
erty is destroyed by the reflect API, which is left out of consideration. Among the
method invocation instructions, we discuss here only invokevirtual; the remain-
ing invocation instructions are treated similarly.

Exception Handling An exception handler (L1, L2, L, c) catches exceptions of
type c and its subtypes raised by instructions in the range [L1, L2) and transfers
control to address L, if it is the topmost handler in the exception handler array
that covers the instruction for this exception type.

The predicates GoodHandler and Handles formalize the constraints for being a
handler for an exception:

GoodHandler (L, c, (L1, L2, L
′, c′))⇔ L1 ≤ L < L2 ∧ c <: c′

Handles(L,M,L′, c) ⇔ ∃i ∈ Dom(HM), L1, L2, c
′. HM [i] = (L1, L2, L

′, c′) ∧
GoodHandler (L, c,HM [i]) ∧
(∀j ∈ Dom(HM).j < i⇒ ¬GoodHandler (L, c,HM [j])

Table 4.3 shows how exceptions are handled. If a valid handler is found in the
topmost activation record, control is transferred to the destination of that handler.
Otherwise, the topmost activation record is popped off the stack, and the exception
is attempted to be caught again in the next activation record.

4.3. POLICIES AND SECURITY AUTOMATA 87

Condition C C′

type(h, d) = c
Handles(L,M, pc, c)

((d)exc · (M, pc, s, lv) ·R, h, sh) ((M,L, ǫ, lv) ·R, h, sh)

type(h, d) = c
¬∃L ∈ Dom(PM).
Handles(L,M, pc, c)

((d)exc · (M, pc, s, lv)·
(M ′, pc′, s′, lv′)·, h, sh)

((d)exc · (M ′, pc′, s′, lv′)·, h, sh)

((d)exc · ǫ, h, sh) (ǫ, h, sh)

Table 4.3: Exception Handling Rules

The fourth rule of table 4.2 gives an example of an instruction that raises an
exception as the conditions for it to execute normally is not satisfied. In this
invocation rule, the method can not be invoked since the provided address is not
of a class type (it is of type Null), so it is not mapped to an object in the heap.
Therefore, instead of an activation record for a new method call, an exceptional
activation record is pushed on top of the stack. In the semantics, rules with the
exception of athrow create a new Throwable object without calling its constructor,
which enables us to treat the process of generating an exception for a run-time error
as an atomic operation. The creation of an object is denoted by the function new
which returns for a class c, an arbitrary object of this type.

4.3 Policies and Security Automata

Security policies specify the acceptable executions of programs. Typical policies
met in applications are:

• Access control policies. These define restricted access to resources. Examples
include “Only user A can read file foo” (e.g. on a multi-user system), “An
applet can allocate at most 100KB memory” (e.g. on a smart card platform),
and “A game may send at most 3 SMS per game” (e.g. on a mobile device).

• Information flow policies. These policies capture that confidential informa-
tion does not flow to a location where this confidentiality is not preserved.
Examples are: “Information about a patient should not leak from the hospital
database”, and “Value of key should stay confidential”.

• Availability policies. These restrict continuous denial of a resource. An ex-
ample is “If the web page is requested, then it will eventually be available”,
and “Bandwidth can not reduce by more than %30 of its peak value”.

All these policies can be phrased and specified as sets of (acceptable) executions.
Hence, security policies are naturally defined as predicates on sets of executions.
Let T be a program for which we identify a set of security relevant actions A. Let
Ψ = A∗ ∪Aω denote the set of all executions, where executions are finite or infinite
sequences of actions. The executions of T determines a corresponding set Π(T) ⊆ Ψ
of finite or infinite traces of actions.

88 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

Definition 4.1 (Security Policy [102]). A security policy is a predicate P on 2Ψ.
Program T satisfies a policy P if P(Π(T)) holds.

In the previous section, we defined executions as sequences of JVM configura-
tions, while the above definition refers to them as sequences of (security relevant)
actions. In section 4.5, we describe how, given an execution of the former kind,
to obtain the corresponding execution of the latter kind, by mapping each two
consecutive configurations to a (possibly empty) sequence of actions.

The various types of policies introduced informally above are all of interest
in mobile code security. In our work, however, we use monitoring as the security
enforcement mechanism and hence focus on policies that can be effectively enforced
by monitoring. Therefore, we first describe this class.

4.3.1 Policies Enforceable by Monitors

Monitors enforce policies by checking, at each step of the target program, whether
the current execution satisfies the policy and halting the target program if the
policy is about to be violated. Though this definition is simple, different monitoring
implementations use different policy languages, thus making it difficult to compare
the enforced classes. Below we summarize previous work on enforcing capabilities
of monitors, which helps to understand the limitations of the approach and is used
in proofs later on in the text.

We let τ and σ range over executions, Ψ is the set of all executions, and σ[..i]
denotes the prefix of σ consisting of its first i steps.

We start by presenting four necessary conditions for a policy to be enforceable
by monitoring. The first observation is that the monitoring mechanism decides
whether a given execution is acceptable or not based on this execution alone, and
so can only enforce properties.

Definition 4.2 (Property [102]). A security policy P is a property if and only if
it is induced by a characteristic predicate P̂ over executions such that for every
subset Π of Ψ,

P(Π) ⇐⇒ Π ⊆ {σ ∈ Ψ | P̂(σ)} (4.1)

Properties are defined through their characteristic predicates and hence do not
depend on any relationship between the executions they render acceptable. This
definition then includes access control policies but leaves out information flow poli-
cies [86]. Information flow policies are clearly not enforceable by monitoring single
executions, since they state the indistinguishability of program executions with re-
spect to a certain aspect, for instance the values assigned to a subset of program
variables during the execution.

Monitors operate by terminating the execution if it the execution of the next
action will result in a violation of the the policy, hence if an execution is acceptable

4.3. POLICIES AND SECURITY AUTOMATA 89

with respect to a policy then all its prefixes are also acceptable, that is the predicate
P̂ is prefix-closed:

P̂(σ[..j])⇒ ∀i : 1 ≤ i < j : P̂(σ[..i]) (4.2)

Finally, any execution rejected by a monitor must be rejected in finite time:

¬P̂(σ)⇒ ∃i : 1 ≤ i : ¬P̂(σ[..i]) (4.3)

A predicate P that satisfies (4.1-4.3) is a safety property. A safety property is
a property that stipulates that no “bad thing” happens during an execution [75].
Schneider shows by these observations (4.1-4.3) that safety properties are an upper
bound on the set of policies enforceable by simple monitors.

Viswanathan tightens this bound by making explicit the computational con-
straint involved in the problem [112]. Given a finite execution, the monitor must
decide whether to reject it in finite time:

P̂(σ) is decidable when σ is finite (4.4)

The class defined by (4.1-4.4) corresponds to the class of co-recursively enumer-
able (coRE) properties of programs [112]. A property P is co-recursively enumerable
if a Turing machine MP can be constructed for this property such that MP takes
an arbitrary Turing Machine M as input and rejects it in finite time if M does not
have property P , and loops forever otherwise. MP simulates M to yield each of its
finite executions σ and uses P̂ as a decision procedure to determine if σ satisfies
the property. MP semi-decides ¬P , by taking a Turing machine encoding of target
program T and rejecting the program in finite time if some execution of T is not
in P .

It is important to note that there exist properties in class coRE that can not be
enforced by monitors [55]. The policy that “No execution should terminate” is not
enforceable by a monitor, since the only way a monitor can intervene to a violating
execution is by terminating it. This policy satisfies (4.1-4.4), showing that coRE is
a strict upper bound on the policies enforceable by simple monitors.

Hamlen, Schneider, and Morrisett compare the classes of properties enforceable
by static analysis, monitoring, and program rewriting [55]. For the comparison of
static analysis and monitoring, the interested reader is directed to this work. The
technique we use for enforcement is monitor inlining which is both a monitoring
and a rewriting technique, therefore we include here a summary of the discussion
about these two methods.

The authors define policies enforceable by rewriting through the existence of a
total, computable rewriter function, which rewrites a program so that all executions
of the resulting program satisfy the policy and if the original program already satis-
fies the policy, then the rewritten version will be equivalent to the original program.
Program equivalence is defined through some arbitrary, but decidable equivalence
relation on executions of the original and the rewritten program. Although these

90 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

properties capture soundness as introduced for monitors in section 4.1, it is impor-
tant to note that not all rewriter functions are monitor inliners. The equivalence
relation on programs is meant to impose transparency on the rewriter only if the
original program already obeys the policy. According to the above definition, a
rewriter function is free to change the program in an arbitrary way, in case the
program has even a single violating execution. For instance, all security relevant
actions may be taken out or remedying actions may be inserted before an action
which would otherwise cause a violation.

Rewriting is a clearly a more powerful enforcement mechanism then monitoring.
The secret file policy constitutes an example of a policy that is not coRE but still
RW-enforceable [55]. In order to satisfy the policy, the program should display
information about all files in a directory, except the secret ones. The monitor can
terminate the program if it is about to display information about a secret file, but
can not enforce that the information on the other files is actually displayed. The
program can easily be rewritten to enforce the policy though, by inserting a guard
before each information display action that skips the action if the current file is a
secret one.

There are policies not enforceable by RW-enforceability due to the computability
restriction on the rewriter function. There are even policies that are in the coRE
class, but that are not enforceable by rewriting. Thus, the set of policies that are
enforceable by an monitoring mechanism constitute the intersection of coRE with
RW-enforceable properties [55].

Our notion of monitoring takes termination as the only means available to the
monitor for interfering with program execution. We have seen above that this
restriction limits the enforcement capabilities of monitors. If different means of
intervention are available to the enforcement mechanism, then a larger class of
policies can be enforced [80]. Ligatti et al. [79] introduce a notion of monitoring
where the executions can be altered by the monitor by inserting and suppressing
actions besides truncation. This enables monitors to enforce properties that do
not satisfy (4.2). In fact, policies enforceable by these monitors are not limited
to safety properties. But since we focus on the former definition of monitoring
(monitors with only termination capability), we do not elaborate on the latter type
and direct the interested reader to [80] for further reading.

4.3.2 Security Automata

Any formalism that allows sets of executions consisting of (finite as well as infi-
nite) sequences of actions to be specified can be used to express security policies.
The most prominent classes of specification formalisms for this purpose are regular
expressions, automata and temporal logics.

The notion of security automata was introduced by Schneider [102] to define
security policies. Security automata capture safety properties. Here, we view a
security automaton over alphabet A as an automaton A = (Q, δ, q0) where Q is
a countable set of states, q0 ∈ Q is the initial state, and δ : Q × A ⇀ Q is

4.4. CONSPEC 91

a (partial) transition function. All q ∈ Q are viewed as accepting. A security
automaton A induces a security policy PA ⊆ 2A

∗∪Aω through its language LA by
PA(X)⇔ X ⊆ LA.

While security automata are a useful formalism, their direct use in the spec-
ification of security policies is in many ways inconvenient. For example, security
automata are not necessarily finite objects. Therefore, languages have been pro-
posed to aid policy writing. PSLang (Policy Specification Language) is one such
policy language, introduced by Erlingsson and Schneider [40, 39]. PSLang policies
consist of a set of variable declarations, followed by a list of security relevant events,
where each event is accompanied by a piece of Java-like code that specifies how the
security state variables should be updated in case the event is encountered in the
current state. A policy text is intended to encode a security automaton: the state
variables represent the automaton states and updates represent transitions. While
the intuition is given, the exact way to extract an automaton from a PSLang policy
is not provided by the authors. Such a task is not trivial due to the power of the
programming language constructs that can be used in the updates.

In this study, we use the PSLang inspired language ConSpec (see section 4.4)
to express policies. We focus on security automata that are induced by policies
in ConSpec and are therefore named ConSpec automata. The security relevant
actions are method calls, represented by the class name and the method name of the
method, along with a sequence of values that represent the actual arguments. We
partition the set of security relevant actions into pre-actions A♭ ⊆ C×M×Val∗×H

and post-actions A♯ ⊆ RVal × C ×M × Val∗ × H × H, corresponding to method
invocations and returns. Both types of actions may refer to the heap prior to
method invocation, while the latter may also refer to the heap upon termination
and to a return value from RVal = Val∪{exc} where exc is used to mark exceptional
return from a method call3. The partitioning on security relevant actions induces
a corresponding partitioning on the transition function δ of ConSpec automata.

4.4 ConSpec

In this section, we introduce the policy specification language ConSpec [3]. ConSpec
is intended for programs written in intermediate object-oriented languages such as
the bytecode languages of Java and .NET. Security relevant actions are taken as
method invocations, more specifically system calls or invocations of API methods.
ConSpec is designed to be used for both specification of requirements and the
description of the security-relevant behavior of systems, e.g. for specifying the
producer policy in the framework introduced in section 4.1. For this reason, the
formalism selected is based on automata, which have been used for both purposes.
For instance, the SPIN tool [60] inputs system specifications as models written
in the guarded-command language Promela and performs model checking on the

3We disregard the exceptional value since we do not, as yet, put constraints on these in
ConSpec policies.

92 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

Büchi automata extracted from these models. Security properties and security
relevant behavior of systems are expressed as automata in various other approaches
(e.g. [102, 103]).

ConSpec is strongly inspired by the policy specification language PSLang, which
was developed by Erlingsson and Schneider [39] for runtime monitoring. However,
ConSpec is more restricted than PSLang. This is a design decision taken in order
to enable automatic matching of contracts against policies, and not just runtime
monitoring. More specifically, ConSpec does not allow arbitrary types in represent-
ing the security state and restricts the way the security state variables are updated.
We have used a guarded-command language for the updates where the guards are
side-effect free and commands do not contain loops. The simplicity of the language
then allows for a comparatively simple semantics.

Example 4.3. Assume method Open of class File is used for creating files (when
argument mode has value “CreateNew”) or for opening files (mode is “Open”), either
for reading (argument access is “OpenRead”) or for writing. Assume further that
method Open of class Connection is used for opening connections, that method
AskConnect is used for asking the user for permission to open a connection and
that this latter method returns true in case of approval. Now, consider the secu-
rity policy, which allows applications to access existing files for reading only, and
requires, once such a file has been accessed, applications to obtain approval from
the user each time a connection is to be opened. This policy can be specified in
ConSpec as follows:

SCOPE Session

SECURITY STATE

bool accessed= false;

bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM

mode.equals("CreateNew") -> { skip; }

mode.equals("Open") && access.equals("OpenRead")

-> { accessed= true; }

BEFORE Connection.Open(string type, string address)

PERFORM

!accessed -> { permission = false; }

accessed && permission -> { permission = false; }

AFTER bool answer= GUI.AskConnect() PERFORM

answer -> { permission=true; }

!answer -> { permission=false; }

4.4. CONSPEC 93

MAXINT M

MAXLEN N

SCOPE <Object ClassName PersistentStateDec

| Session
| Multisession PersistentStateDec

| Global PersistentStateDec>

SECURITY STATE

PrimType SecVar1 = InitVal1

.

.

.
PrimType SecVarN = InitValN

Clause1

.

.

.
ClauseK

(a) Policy Syntax

<BEFORE
|EXCEPTIONAL

|AFTER [Type Name =]> Signature

PERFORM

Guard1 -> {UpdateBlock1}

.

.

.
GuardM -> {UpdateBlockM}

[ELSE -> {UpdateBlock}]

(b) Event Clause Syntax

Figure 4.2: ConSpec Syntax

We specify by setting the scope to Session that the policy applies to each sin-
gle execution of an application. Scope declaration is followed by a security state
declaration: the security state of the example policy is represented by the boolean
variables accessed and permission, which are both false initially to mark, respec-
tively, that no file has been accessed and that no permissions are granted when
the program begins executing. The example policy contains three event clauses
that state the conditions for and effect of the security relevant actions: call to
the method File.Open, call to the method Connection.Open and return from the
method GUI.AskConnect. The types of the method arguments are specified along
with representative names, which have the event clause as their scope. The mod-
ifiers BEFORE and AFTER mark whether the call of or the normal return from
the method specified in the event clause is security relevant (exceptional returns
can be specified by the modifier EXCEPTIONAL). Event clauses contain guards
and associated updates to the security state variables.

4.4.1 Syntax

Figure 4.2 summarizes the syntax of ConSpec. Before the actual policy, ConSpec
policies set a limit on values of the type int which consist of some initial segment
of natural numbers. Similarly, a maximum length for strings is specified. (We have
skipped these in the example policy.) This aims to limit the state space of the
corresponding automata, in order to enable matching. The Scope construct is used
for expressing security requirements on different levels and explained in more detail
below.

States. The security state variables of ConSpec are restricted to the primitive
types (PrimType): booleans, integers, and strings.

94 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

Event Clauses. An event clause (figure 4.2(b)) gives us a security relevant
action and its modifier. Security relevant events are bound to the API methods in
the program (we support programs delivered in either Java or .NET intermediate
bytecode language). In order to resolve which method is of interest in case of
overloading, the argument types of the method is to be specified as part of the action
specification. The security relevant action is then fully specified by its signature
which consists of the name of the method, the class to which the method belongs
and the types of its arguments. The signature of an event clause is defined as the
signature of the method associated with it. In ConSpec policies, all event clauses
with the same modifier have a unique signature. This restriction has been imposed
in order to ensure determinism and means that one can not, for example, have
two BEFORE clauses for the same method. Notice that since the signature does not
include the type of the return variable, it is not possible to have two AFTER event
clauses for the same method, even if they do not agree on the return variable types.
The modifier states when the update to the state will be performed: before the
event, after the event or immediately after the throwing of an exception by the
event.

Guards and Update Blocks. The event specification is followed by a sequence of
pairs of guards and update blocks. The update block specifies how a state will be
updated for the security relevant action while the guard selects the states, which
the particular update will apply to. The guards are evaluated top to bottom and
the update corresponding to the first guard that holds is performed. In case none
of the guards evaluates to true, there is no transition for that action from the
current state, unless an ELSE block is present, in which case the update of this
block is executed. The guard is a side-effect free boolean expression which can
only mention argument values (and the return value when the AFTER modifier is
used) and the security state. The update block begins with declarations of the local
variables, which have the current block as their scope. A list of assignments to local
variables and security state variables follow the declarations. If no assignments are
present, the update block consists of the statement skip. The expression language
used for forming guards and right hand side of assignments are explained below.

Expressions. The expression language of ConSpec has been designed to ensure
that checking language containment of the induced automata (i.e. the matching
problem) is decidable. The sets of expressions and boolean expressions of Con-
Spec are Exp and BoolExp, respectively. Variables except security state and local
variables can be of a primitive type or an object. The expressions on integers are
built using basic arithmetic and comparison operators. Strings can be checked for
equality and the prefix relation using the functions equals and beginsWith respec-
tively. The expression language of ConSpec can potentially be extended with calls
to other side-effect free functions. Expressions can also include field accesses using
object references, expressed by the “.” operator. Regardless of the modifier used,
accesses to fields of method arguments are interpreted on the heap at the time of
call, while accesses to fields of the return value are interpreted at the time of return.
Therefore, it is not, as of yet, possible to put constraints on the fields of a method

4.4. CONSPEC 95

argument at the time of return. The last field accessed in a field access expression
should always be of one of the primitive types.

Example 4.4. The following policy specifies executions where at most one message is
sent per day, and where all messages are sent to a single phone number, determined
by the first message sent.

SCOPE Session

SECURITY STATE

int lastmessageday = 1;

string usednumber = "";

BEFORE WindowsMobile.PocketOutlook.SmsMessage.Send()

PERFORM

usednumber == "" &&

this.To.Count == 1 -> { lastmessageday = Now.GetDay();

usednumber = this.To[0]; }

this.To.Count == 1 &&

this.To[0] == usednumber &&

!Now.GetDay().equals(lastmessageday)

-> { lastmessageday = Now.GetDay(); }

The security state of the policy includes the integer variable lastmessageday

that stores the date of the last text message, and the string usednumber, which
is used to record the phone number of the recipient. The example contains a
single event clause, bound to the call of the .NET API method WindowsMobile.

PocketOutlook.SmsMessage.Send. This method does not have any arguments,
and all parameters about the message are stored in the fields of the SmsMessage

object. In particular, the Count field of the To field of a message states how many
times the message will be sent and the first recipient address is provided in the first
member of this field.

Scopes. Case studies show that many interesting real-life policies concern the
entire execution history rather than a single run of the application [115]. However,
most policy languages (including PSLang) do not contain the feature of distinguish-
ing between events in the current run and in the previous runs. ConSpec is expres-
sive enough to write policies on multiple executions of the same application (scope
Multisession) and on executions of all applications of a system (scope Global),
in addition to policies on a single execution of the application (scope Session) and
on lifetimes of objects of a certain class (scope Object). The syntax of persistent
state declaration is similar to security state declaration and aims to specify the
state that is preserved across single executions when the scope is Multisession

or Global. When the scope is Object, the security state declaration specifies the
state local to each object of the class, while the persistent state is equivalent to the
security state of scope Session, that is the security state of the application for a
single execution.

96 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

Example 4.5. The personal information manager (PIM) saves personal information
(e.g. phonebook) in mobile devices. Secure connections are established by con-
necting to destinations starting with “https://”. The policy below specifies that an
application must not access the PIM while unsecure connections are open and can
only open secure connections after the PIM is accessed.

SCOPE Object Connection

PERSISTENT SECURITY STATE

bool opened = false;

SECURITY STATE

bool secure = false;

bool active = false;

BEFORE PIM.open()

PERFORM

secure || !active -> { opened = true; }

BEFORE Connection.open(string url)

PERFORM

!opened && url.startsWith("https")

-> { active = true; secure = true; }

!opened && !url.startsWith("https")

-> { active = true; secure = false; }

opened && url.startsWith("https")

-> { active = true; }

AFTER Connection.close()

PERFORM

true -> { active = false;}

4.4.2 Semantics

The formal semantics of ConSpec policies is defined in terms of symbolic security
automata, which in turn induce ConSpec automata.

Definition 4.6 (Symbolic Security Automaton). Given a set Svar of security state
variables and a set Var of variables, a symbolic security automaton is a tuple As =
(qs, As, δs, Inits), where:

(i) qs = Svar is the initial and only state;

(ii) Inits : qs → Val is an initialization function;

4.4. CONSPEC 97

(iii) As = A♭s ∪A
♯
s is a countable set of symbolic actions, where:

A♭s ⊆ C ×M× (Type × V ar)∗ are symbolic pre-actions, and

A♯s ⊆ {({PrimType ∪C} × V ar) ∪ Unit∪ {exc}} × C ×M× (Type × V ar)∗

are symbolic post-actions;

(iv) δs = δ♭s ∪ δ
♯
s is a symbolic transition relation, where:

δ♭s ⊆ A
♭
s × BoolExp × (qs → Exp) and

δ♯s ⊆ A
♯
s × BoolExp × (qs → Exp)

are the symbolic pre- and post-transitions, respectively.

ConSpec policies and symbolic automata are two very similar representations.
The set of security state variables of a ConSpec policy is the state of the symbolic
automaton. Each event clause clause gives rise to one symbolic action, and each
guarded command of the clause gives rise to a symbolic transition consisting of the
security relevant action itself, the guard of the guarded command in conjunction
with negations of the guards that lie above it in the clause, and the effect of the
guarded command. The updates to security state variables, which are presented as
a sequence of assignments in ConSpec, are captured in the automaton as functions
that return one ConSpec expression per symbolic state variable, determining the
value of that variable after the update.

Symbolic Automaton Extraction From Policy Text

The semantics of a ConSpec policy P is given in terms of a symbolic automaton
As = (Qs, As, δs, qs, Inits) as described below. The set of variables V ar and the
set of types Ω are fixed for ConSpec policies as the set of all variable names and
the set of types: {int, bool, string} ∪ C.

States. The set of states Qs of the symbolic automaton As is determined by the
declarations in the SECURITY STATE block of the policy P . Consider the security
state declaration of P :

SECURITY STATE τs1
s1 = v1

...
τsk sk = vk

The set of variable names that are induced by such a state declaration is the
set of security state variables which give us the only state of the automaton:
qs = {s1, . . . , sk} and Qs = {qs}. The initialization function simply maps the
variables in state qs to their initial values: ∀si ∈ qs. Inits(si) = vi.

Actions. The actions As of the automaton are the events mentioned in event
clauses of the policy.

98 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

• The action (c.m(τ1x1, . . . , τnxn)) ∈ A♭s, if and only if the C contains an event
clause with the modifier BEFORE followed by the event c.m (τ1 x1, . . . , τn xn)

• The action (r, c,m, ((τ1, x1), . . . , (τn, xn))) ∈ A♯s and r = (τ, x) or r = void ,
if and only if C contains an event clause with the modifier AFTER followed by
τ x and the event c.m (τ1 x1, . . . , τn xn) or the modifier AFTER followed by
only the event c.m (τ1 x1, . . . , τn xn), respectively.

• The action (exc, c,m, ((τ1, x1), . . . , (τn, xn))) ∈ A♯s, if and only if C con-
tains an event clause with the modifier EXCEPTIONAL followed by the event
c.m (τ1 x1, . . . , τn xn).

Transitions. Each event clause of the policy induces a partial transition function.
The transition functions δ♭s and δ♯s of the automaton are the union of the partial
functions corresponding to event clauses with the BEFORE and AFTER/EXCEPTIONAL

modifiers, respectively. The definition of the partial functions is similar for both
types of event clauses. For brevity, here we only the case for an AFTER clause.

Consider an AFTER event clause φ♯:

AFTER τ x = c.m (τ1 x1, . . . , τn xn)
PERFORM

G1 -> U1

...
Gm -> Um

Let Avar = {x1, . . . , xn} be the set of formal arguments of the event and Pvar =
{x}∪Avar be the set of all program variables of the event clause, where Pvar ⊆ Var .
Below, let states q ∈ Q be valuations for the security state variables that respect
their types, q : Svar → PrimVal, and let σ : Pvar → Val range over the set Σ
of valuations of program variables that respect the declared types of the variables.
We assume for any ConSpec expression E ∈ Exp occurring in this AFTER event
clause, the semantic function:

JEK : Q× Σ×H×H→ PrimVal

and every update block Uj of φ♯, we assume the semantic function:

JUjK : Q× Σ×H×H→ Q

where the two heaps in the function types refer to the heap of the program before
and after the execution of the method call, respectively.

Semantics of field access expressions occurring in guards and update blocks are
relativized on heaps. The heap is not changed by the automata, but is used to look
up fields of object references. To fetch the field values of method arguments, the
heap at the time of call is accessed. In order to get the field values of the return

4.4. CONSPEC 99

value, however, heap at the time of return is used. Below, we denote the heap
before the call with h♭, and the heap after the call with h♯. The value of a field
access expression with depth k is as follows:

x.f1.f2fk =
{

(h♭(. . . (h♭(h♭(σ(x)).f1).f2) . . .).fk) if x ∈ Avar

(h♯(. . . (h♯(h♯(σ(x)).f1).f2) . . .).fk) if x ∈ Pvar\Avar

The updates performed by an update block U can be captured by a function
fU : Svar → Exp which maps each security state variable to a ConSpec expression
such that the execution of U and the application of fU have the same effect on the
security state:

∀q ∈ Q, σ ∈ Σ, h, h′ ∈ H. JUK(q, σ, h, h′) = λs ∈ Svar. JfU (s)K(q, σ, h, h′)

In appendix B.1, a method for obtaining fU using syntactic transformations on U
is presented.

The set of transitions induced by the event clause φ♯ above is denoted δ♯φ and
is the least set for which:

(i) (a♯s, G1, fU1
) ∈ δ♯φ

(ii) ∀1 < i < m. (a♯s,¬G1 ∧ . . .¬Gi−1 ∧Gi, fUi) ∈ δ
♯
φ

Notice that φ induces all transitions of the automaton with the action a♯s =
((τ, x), c,m, ((τ1 , x1), . . . , (τn , xn))). This definition captures that the guards are
evaluated top to bottom in order to select the right update block.

Finally, the post-transition function δ♯s is the union of the transitions induced
by each event clause (with disjoint domains):

δ♯s =
⊎

φ♯∈P

δ♯φ

Example 4.7. In figure 4.3 we present the symbolic automaton corresponding to the
ConSpec policy of example 4.3, using “a” for accessed and “p” for permission.

ConSpec Automaton Induced by Symbolic Automaton

Symbolic automata determine ConSpec automata in the following way: Let As =
(qs, As, δs, Inits) be a symbolic automaton. The ConSpec automaton induced by
As is the automaton A = ((qs → Val)⊥, δ, Inits) over alphabet A, determined as
follows:

• The post-actions of A are all tuples (v, c,m, v1 · · · vn, h
♭, h♯) such that there

is a symbolic post-action a♯s = (r, c,m, ((τ1 x1), . . . , (τn xn))) with vi : τi for
all i : 1 ≤ i ≤ n, and either r = τx and v : τ or else x = r ∈ {void, exc}. The
pre-actions are defined similarly.

100 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

ask_user:

conn_open:

file_open:

file_open:

{ a,p }

file_open_exc:ask_user:

mode.equals("CreateNew") ? [p 7→ p, a 7→ a]

!mode.equals("CreateNew") && mode.equals("Open")

&& access.equals("OpenRead") ?

answer.equals("Yes") ?

!answer.equals("Yes") ?

!a || p ?

FALSE ?

[p 7→ p, a 7→ true]

[p 7→ true, a 7→ a]

[p 7→ false, a 7→ a]

A♭s={file_open, conn_open}

[p 7→ false, a 7→ a]

[]

A♯s={ask_user, file_open_exc}

file_open=(File,Open,(string path, string mode, string access))

ask_user=(string answer, GUI,AskConnect,())

conn_open=(Connection,Open,(string type, string address))

file_open_exc=(exc,File,Open,(string path, string mode, string access))

Inits =[p 7→ false, a 7→ false]

Figure 4.3: Symbolic Automaton for the Example Policy

• The post-transition function δ♯ is defined indirectly, by referring to the stan-
dard denotational semantic functions for expressions e ∈ Exp and boolean
expressions b ∈ BoolExp such that JeK : (Svar → Val) → (Var → Val) →
H → H → Val and JbK : (Svar → Val) → (Var → Val) → H → H → Val,
defined as expected. Then, if δ♯s(a

♯
s, b, E) in As, we define δ♯(q, a♯) = q′ in A

if and only if there exists an interpretation I and heaps h♭ and h♯ such that
Ja♯sKIh

♭h♯ = a♯, JbKqIh♭h♯ = true, and JE(v)KqIh♭h♯ = q′(v) for all v ∈ Svar .
The pre-transition function δ♭ is defined similarly. In addition, given post-
action a♯s, let B be the set of boolean expressions b such that δ♯s(a

♯
s, b, E) for

some E. Then, for every state q ∈ Q, interpretation I, and heaps h♭ and h♯,
we define δ♯(q, a♯) = ⊥ if Ja♯sK I h

♭ h♯ = a♯ and JbK q I h♭ h♯ = false for all
b ∈ B.

The language of a symbolic automaton As is defined as the language LA of the
induced ConSpec automaton A.

Converting ConSpec Automata to Büchi Automata

Each ConSpec automaton extracted from a policy can be written as a determin-
istic Büchi automaton by adding a self loop to all states with a new action that
represents all security irrelevant steps of the program. This new action is also
used for completing finite traces of the program to infinite traces in order to meet

4.5. MONITORING WITH CONSPEC AUTOMATA 101

the Büchi acceptance condition. Finally, a non-accepting state is added and all
missing transitions of the original automaton are directed to this new state; the
idea is that the automaton is stuck in this state if it violates the policy. The au-
tomaton is deterministic as all ConSpec automata induced by ConSpec policies are
deterministic.

Matching

Although we do not address the policy matching problem in this work, we give some
insight on this issue and present some pointers to related work. One way to match
a producer policy against a device policy when both are expressed in ConSpec is
to check that the language of the producer policy automaton is included in the
language of the policy automaton. Since the domains of the security state variables
are bounded, the extracted automata have finitely many states (but possibly in-
finitely many transitions) and standard methods for checking language inclusion for
automata (see for instance [28]) can be facilitated for matching. Such an approach
is taken in [85] for matching producer policies (referred as contracts) against de-
vice policies, when both are expressed as automata modulo theory (AMT), a type
of symbolic Büchi automata. The idea is essentially to check, given the producer
policy automaton AP and the device policy automaton AD, whether the language
of the product automaton AP × AD is empty. ConSpec policies can be converted
to AMT s in order to make use of the matching algorithms provided in [85].

4.5 Monitoring with ConSpec Automata

In this section, we first formalize the infinite or finite sequence of security relevant
actions induced by a target program execution. Each target transition can give rise
to zero, one, or two security relevant actions, namely, in the latter case, a preaction
followed by a postaction. Given the action set A, and the configurations C1 and
C2, we define the security relevant preaction, act♭A(C1), of the configuration C1,
and the corresponding postaction act♯A(C1, C2), as in the table below. If none of
the conditions of the table hold, the corresponding action is ǫ.

act♭
P

(C) Condition

(c,m, s, hb)

C = ((M, pc, s · [d] · s′, lv) · R,h♭)

M[pc] = invokevirtual c′.m, c defines type(h♭, d).m, type(h♭, d) <: c′

(c,m, s, h♭) ∈ A♭

act
♯
P

(C1, C2) Condition

(void, c,m, s, h♭, ha)

C1 = ((M, pc, s · d · s′, lv) · R,h♭), C2 = ((M, pc + 1, s′, lv) · R,h♯),

M[pc] = invokevirtual c′.m, c defines type(h♭, d).m, type(h♭, d) <: c′,

(void, c,m, s, h♭, h♯) ∈ A♯

(v, c,m, s, h♭, h♯)

C1 = ((M, pc, s · d · s′, lv) · R,h♭), C2 = ((M, pc + 1, v · s′, lv) · R, h♯),

M[pc] = invokevirtual c′.m, c defines type(h♭, d).m, type(h♭, d) <: c′,

(v, c,m, s, h♭, h♯) ∈ A♯

(exc, c,m, s, h♭, h♯)

C1 = ((M, pc, s · d · s′, lv) · R,h♭), C2 = ((b)e · (M, pc, s′, lv) · R, h♯),

M[pc] = invokevirtual c′.m, c defines type(h♭, d).m, type(h♭, d) <: c′,

(exc, c,m, s, h♭, h♯) ∈ A♯

102 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

We obtain the security relevant trace, srtA(E), of an execution E by lifting the
operations act♭A and act♯A co-inductively to executions in the following way:

srtA(ǫ) = ǫ srtA(C) = act♭A(C)
srtA(C1C2 · E) = act♭A(C1) · act♯A(C1, C2) · srtA(C2 ·E)

Then a target program T adheres to a policy P , if the security trace of each
execution of T is in the language of the corresponding ConSpec automaton AP , i.e.

∀E ∈ Π(T). srtA(E) ∈ LAP

Monitor co-execution A basic application of a ConSpec automaton is to exe-
cute it alongside a target program to monitor for policy compliance. We can view
such an execution as an interleaving w = (C0, q0)(C1, q1) · · · such that C0 and q0 is
the initial configuration and state of T and A, respectively, and such that for each
consecutive pair (Ci, qi)(Ci+1, qi+1), either the target (only) progresses:

Ci −→JVM Ci+1 and qi+1 = qi

or the automata (only) progresses:

Ci+1 = Ci and ∃a ∈ A. δ(qi, a) = qi+1.

In the former case we write (Ci, qi) −→JVM (Ci+1, qi+1), and in the latter case we
write (Ci, qi) −→AUT (Ci+1, qi+1). We can, without loss of generality, assume that
at most one of these cases apply, for instance by tagging each interleaving step.

The first projection function w ↓ 1 on interleavings w = (C1, q1)(C2, q2) · · ·
extracts the underlying execution as follows:

((C1, q1)(C2, q2) · w′) ↓ 1 =
{

C1(((C2, q2) · w′) ↓ 1) C1 −→JVM C2

((C2, q2) · w′) ↓ 1) otherwise
(C, q) ↓ 1 = C

To similarly extract automata derivations we use the (co-inductive) function
extract such that

extract((C1, q1)(C2, q2)w) = q1q2extract((C2, q2)w)

if (C1, q1) −→AUT (C2, q2),

extract((C1, q1)(C2, q2)w) = act♭A(C1)act♯A(C1, C2)extract((C2, q2)w),

if (C1, q1) −→JVM (C2, q2), extract(C, q) = act♭A(C), and extract(ǫ) = ǫ. We call
such an extracted sequence of automaton states and security relevant action a
potential derivation. Note that extract(w) may well be finite even if w is infinite.

4.6. ANNOTATION LANGUAGE 103

Definition 4.8 (Co-Execution). Let E♭ = {qq′a♭ | q, q′ ∈ Q, a♭ ∈ A♭, δ♭(q, a♭) =
q′}, E♯ = {a♯qq′ | q, q′ ∈ Q, a♯ ∈ A♯, δ♯(q, a♯) = q′}. An interleaving w is a co-
execution if

extract(w) ∈ (E♭ ∪ E♯)∗ ∪ (E♭ ∪ E♯)ω

In other words, an interleaving is a co-execution, if the potential derivation it
extracts corresponds to a real derivation.

A monitor is conservative if all monitored executions are also executions of
the original program, i.e. if the monitor does not introduce new behavior. When
monitoring is done by ConSpec automata in the sense captured by the notion of
co-execution, the monitor is sound, transparent and conservative.

Theorem 4.9 (Correctness of Monitoring by Co-execution). Let T be a program,
and P a policy. The following holds, where A is the action set of AP :

{w ↓ 1 | w is a co-execution of T and AP} = {E ∈ Π(T) | srtA(E) ∈ LAP}

Proof. The proof can be found in Appendix B.3.1. 2

A corollary of this result is that the set of executions of a program that obeys
the policy are identical to the set of executions of the program monitored for the
policy.

Corollary 4.10. Program T adheres to policy P if, and only if, for each execution
C0C1 · · · of T there is a co-execution w of T and the automaton AP such that
w ↓ 1 = C0C1 · · · .

4.6 Annotation Language

We specify self-monitoring using annotations in a Floyd-style logic for bytecode.
We build on the program logic of Bannwart and Müller [10]. As an extension
to their logic, our annotation language makes use of “ghost” variables. These are
essentially specification variables that can be assigned values by a multi-assignment
statement.

Methods are equipped with annotations consisting of assertions on the extended
state (current configuration and current ghost variable environment), and ghost
variable assignments. We first introduce the syntax of this annotation language.

Assertions Let g range over ghost variables, i over natural numbers, and let
Op and Bop range over a standard, not further specified, collection of unary and
binary operations on strings and integers. Expressions e and assertions a have the
following shape:

e ::= ⊥ | v | g | e.f | s[i] | ri | Op e | e Op e

a ::= e Bop e | e : c | e <: c | ¬a | a ∧ a | a ∨ a

104 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

Here, s[i] is the value at the ith position of the current operation stack, if defined,
and⊥ otherwise, e : c is a class membership test and e <: c is a subclass membership
test. The notation ri denotes the ith local variable. The assertions are evaluated
with respect to extended states. Extended states consist of a program configuration
C and a ghost environment σ that maps ghost variables to integer values, addresses
or the value ⊥, which captures that the variable is undefined. Referring to standard
denotational semantics, we assume a semantic function ‖a‖(C, σ) that returns, for
assertion a and extended state (C, σ), a truth value.

Example 4.11. The following example assertion states that if the address at the top
of the stack points to an object of type GUI in the heap, then the ghost variables
ga and gp are both defined.

s[0] : GUI⇒ (ga, gp) 6= (⊥,⊥)

Ghost Variable Instructions Ghost variables are assigned using a single, guarded
multi-assignment of the form

−→gs := a1 →
−→e1 | · · · | am →

−→em (4.5)

where −→gs is a vector of ghost variables and −→ei (1 ≤ i ≤ m) are vectors of expressions,
such that the arities (and types) of −→gs and the −→ei match. The multi-assignment is
performed with vector −→ei if guard ai is the first guard (from left) that holds in the
current extended state. If no guard is true, the ghost state is assigned the constant
vector with all elements ⊥ and the arity matching to that of −→gs. This is the case,
in particular, when m = 0 in (4.5) above. This case is written as follows: −→gs := ().

Method Annotations A target program is annotated by an extended environ-
ment, Γ∗, which maps method references M to tuples (P,H,A,Requires,Ensures)
such that A is an assignment to each program point n ∈ Dom(P) of a sequence, ψ,
of atomic annotations, i.e. assertions and ghost variable assignments. Requires also
consists of a sequence of atomic annotations, while Ensures is a single assertion.
These two clauses do not mention method arguments or return values. The pre-
condition Requires is allowed to contain ghost assignments, since we occasionally
use these clauses to initialize ghost variables.

Annotation Semantics In the absence of ghost variable assignments the notion
of annotation validity is the expected one, i.e. the assertions annotating a given
program point (or the point of exceptional return) hold whenever control is at
that program point. To extend this account to ghost variables, the ghost variable
assignments should be given a suitable semantics. We present such a semantics
in this section, which essentially treats ghost variables as program variables. For
this purpose, the program state is extended by a store for ghost variables which is
altered only by ghost variable assignments, method calls and returns.

4.6. ANNOTATION LANGUAGE 105

The rewrite semantics we use for annotated programs is built on top of the
transition relation −→JVM of section 4.2 and is shown on table 4.4. The semantics
uses extended configurations that are quintuples of the form (ψ,C, σ,Σ) such that
ψ is the sequence of annotations remaining to be evaluated for the current program
point of C, and σ is the ghost environment introduced above, mapping ghost vari-
ables to values. Each ghost environment σ can be partitioned to the global and
local ghost environments σl and σg where the domain of σg is the variables of the
ghost state, which are declared and initialized in the beginning of 〈main〉 and the
domain of σl is all other ghost variables that have been set values in the current
method. Finally Σ is a sequence of local ghost (variable) environments. The top
element of Σ is the local ghost environment that belongs to the caller of the current
method. Each method call causes a new local ghost environment σ0

l to be created,
which is defined as [gpc 7→ 0]. Note that local ghost variables are not allowed to
occur in Requires or Ensures clauses, like it is the case for local program variables.

We overload M , pc, A, Requires, Ensures, to refer to the first, second, third,
fourth, and fifth projections on configurations, respectively. MethodRet holds of a
configuration if the program counter of the top frame points to a return instruction.
MethodCall holds of a configuration if the program counter of the top frame points
to a method invocation instruction, which resolves to an application method call.
Notice that these predicates can not be satisfied simultaneously. The predicate
Unhandled holds of a configuration if it has an exceptional frame on top of the
frame stack, and Γ∗ does not contain a handler for that exception in the current
method. Finally, Exc holds of a configuration that has an exceptional frame on the
top of the stack.

The condition Assert(a, C, σ) in Rule (1) always returns true, and does not
effect the execution. But as a side-effect causes the predicate argument a to be
“asserted”, e.g. to appear on some output channel. The asserted predicate is
valid if ‖a ‖ (C, σ)‖ returns true. Rules (2), (3) and (4) capture the ghost variable
assignment semantics as described above. Rule (5) is for intra-procedural execution,
and applies to exception handling steps, but not to exception raising steps, which
are handled by rule (8). Rule (6) causes any assertions in Ensures to be asserted at
times of method exit, which are method returns and exceptional exits. Note also
that the values assigned to the local ghost variables σl by the current method are
discarded as the method terminates, and instead the environment is updated to use
the assignments σ′l of the calling method. Similarly, if the current instruction is a
method call to an application method and executes without raising exceptions, rule
(7) causes all assertions in the Requires clause of the called method to be asserted.
When a new method starts executing, the local ghost environment of the caller
method are pushed to the stack and the ghost environment uses the environment
σ0
l . Finally, when the execution of an instruction raises an exception, no predicates

are asserted, as captured by rule (8).
The initial extended configuration (ψ0, C0, σ0,Σ0) of program T is as follows:

ψ0 is Requires(Γ∗(〈main〉)) · A〈main〉[1], C0 is the initial configuration of T, σ0 =
σ0
l = [gpc 7→ 0], Σ0 = ǫ.

106 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

(1)
Assert(a, C, σ)

Γ∗ ⊢ (aψ,C, σ,Σ)→ (ψ,C, σ,Σ)

(2)
‖a1‖(C, σ) = true, m > 0

Γ∗ ⊢ ((−→gs := a1 →
−→e1 | · · · |am →

−→em)ψ,C, σ,Σ)→
(ψ,C, σ[−→gs 7→‖ −→e1 ‖ (C, σ)],Σ)

(3)
‖a1‖(C, σ) 6= true, m > 0

Γ∗ ⊢ ((−→gs := a1 →
−→e1 | · · · |am →

−→em)ψ,C, σ,Σ)→
((−→gs := a2 →

−→e2 | · · · |am →
−→em)ψ,C, σ,Σ)

(4)
·

Γ∗ ⊢ ((−→gs := ())ψ,C, σ,Σ) → (ψ,C, σ[−→gs 7→
−→
⊥],Σ)

(5)
C −→JVM C′ ¬(MethodCall (C) ∨MethodRet(C)) ∧ ¬Exc(C′))

Γ∗ ⊢ (ǫ, C, σ,Σ)→ (A(Γ∗(M(C′)))(pc(C′)), C′, σ,Σ)

(6)
C −→JVM C′, MethodRet(C) ∨ Unhandled(C)

Γ∗ ⊢ (ǫ, C, σg ⊎ σl, σ′l · Σ)→
(Ensures(Γ∗(M(C))), C′, σg ⊎ σ′l,Σ)

(7)
C −→JVM C′, MethodCall(C) ∧ ¬Exc(C′)

Γ∗ ⊢ (ǫ, C, σg ⊎ σl,Σ)→
(Requires(Γ∗(M(C′))) ·AM(C′)[1], C′, σg ⊎ σ0

l , σl ·Σ)

(8)
C −→JVM C′ ¬Exc(C) ∧ Exc(C′)

Γ∗ ⊢ (ǫ, C, σ,Σ)→ (ǫ, C′, σ,Σ)

Table 4.4: Operational Semantics of Annotated Programs

Definition 4.12 (Validity of an Annotated Program). A program annotated ac-
cording to the rules set up above is valid for the extended environment Γ∗, if
all predicates asserted as a result of a Γ∗-derivation (ψ0, C0, σ0,Σ0) → · · · →
(ψn, Cn, σn,Σn)→ · · · are valid, where (ψ0, C0, σ0,Σ0) is the initial extended con-
figuration of the program.

4.7. CHECKING VALIDITY 107

4.7 Checking Validity

For a fully annotated program, checking validity can be reduced to the simpler
problem of checking “local” validity by referring to the axiomatic semantics of
instructions. Local validity can be checked by generating verification conditions for
each instruction and for method entry and exit points, by using the corresponding
pre- and post-conditions and checking that these verification conditions hold. As
mentioned before, our logic is an adaptation of the logic of Bannwart and Müller [9,
10], which in turn is a specialization of the logic of Poetzsch-Heffter and Müller
[96] to bytecode. In this section, we first introduce this logic briefly, noting the
differences it has with the one presented in the previous section. Then we define a
notion of local validity, the correctness of which is based on the results of Bannwart
and Müller.

4.7.1 Bannwart-Müller Logic

The logic is for a bytecode language with object-oriented features such as classes and
objects, inheritance, fields, and virtual method resolution, as well as unstructured
control flow with conditional and unconditional jumps, which makes it suitable for
our purposes. Instead of using triples for instruction specifications as in classic
Hoare logic, programs are annotated by associating a single assertion with each
instruction, interpreted as its precondition. For an instruction I, its precondition
has to be established by all predecessors of I, which usually includes the instruction
that precedes I in the program text as well as all instructions that jump to I. We
also follow this approach for specifying instructions.

Bannwart and Müller allow different specifications to be attached to the method
implementation and the method body. What is more, it is possible to pose a
common pre- and post-condition to all methods that can be invoked using the
same method invocation instruction. Properties of methods are expressed by Hoare
triples of the form {P}comp{Q}, where P and Q are first-order formulae and comp
is a method body, a method implementation, or a “virtual” method, explained in
more detail below. The triple {P}comp{Q} expresses the following refined partial
correctness property: if the execution of comp starts in a state satisfying P , then
(1) this computation terminates in a state in which Q holds, or (2) comp aborts due
to errors beyond the semantics of the programming language (for instance, internal
JVM errors), or (3) comp does not terminate.

In both our logic and this logic, individual instruction specifications can be com-
bined at the level of method bodies. This is due to the following guarantees on the
structure of Java bytecode: the instruction sequence constituting a method body
is always entered at the first instruction and left after the last instruction4 and all
jumps are local within a method body. The body of the method c.m is denoted
with body(c.m). A method body specification is then written as {P}body(c.m){Q},

4Note that methods in which return instructions occur earlier can be rewritten so to redirect
all returns to the last return instruction in order to satisfy this condition.

108 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

where the precondition P is the precondition of the first instruction and the post-
condition Q is the precondition of the return instruction. Method implementation
specifications play a similar role to that of Requires and Ensures in our logic, except
that the postcondition of a method implementation need not hold at an exceptional
exit from the method. These are denoted with {P}imp(c.m){Q} for method c.m.

The proofs are constructed in this logic using rules that combine specifications on
a lower level to infer specifications on a higher level and language independent rules.
Here we only present a few rules from the version of this logic where exceptions
not considered (i.e. [10]) in order to give an intuition to the user. The details of
the logic, including reasoning on programs that contain exception handling can be
found in [9]. A sequent in this proof system has the following form:

Φ ⊢ {P}comp{Q}

where Φ is a set of method specifications needed for dealing with recursive methods.
The rule about method body specifications, which combines the assertions occurring
in the method body as explained above is as follows:

∀i ∈ {|body(c.m)|}. (Φ ⊢ {A[i]}Li : Ii)
Φ ⊢ {A[1]}body(c.m){A[|body(c.m)|]}

To infer the method implementation specifications, the following rule is used:

Φ, {P}imp(c.m){Q} ⊢ {P ∧ r0 6= null}body(c.m){Q}
Φ ⊢ {P}imp(c.m){Q}

The assertion r0 6= null guarantees that, at the point where the method body starts
executing, the address to the object the method is called on is stored in the local
variable r0 and that it is not null. Notice that this is indeed the case, as captured
by the first rule of figure 4.2 in the language semantics. The rule also shows how
assertions such as {P}imp(c.m){Q} are added to the set of assumptions.

Specifications on virtual methods are meant to capture method specifications
imposed by the specification of an invokevirtual instruction on any method that
can be called as a result of the execution of this instruction. In order to prove the
precondition P for the instruction invokevirtual c.m, it has to be proven that
(i) {P ′}virtual(c.m){Q′}, i.e. the methods that can be called by this instruction
satisfy their method specification, (ii) that P implies the precondition P ′ of the
virtual method specification, with actual arguments substituted for the formal pa-
rameters, and that (iii) the postcondition Q′ of the method specification implies
the precondition of the instruction following invokevirtual. In turn, to be able to
prove {P}virtual(c.m){Q}, it has to be proven that the specification holds for each
method that can be called. This is done through proving {P ∧r0 : c′}imp(c′.m){Q}
for the implementation of each method c′.m where c′ <: c and where the assertion
r0 : c′ guarantees that the method is called on an object of type c′.

Our method specifications and the related rules are simplifications of this logic.
While Bannwart-Müller logic is both sound and complete [9] with respect to the lan-

4.7. CHECKING VALIDITY 109

guage presented above, we only aim at soundness for program specifications of a par-
ticular shape. We will introduce these specifications in detail in section 4.8.1, 4.8.2
and 4.9. Here we only note that when the program is fully annotated in our scheme,
all methods (with the exception of 〈main〉 which is not to be called from inside
the program) have the same specification. Furthermore, both method specifica-
tions (the pre- and post-condition of methods) and the pre- and post-condition of
method invocation instructions mention the same (invariant) assertion. Finally, this
invariant does not mention formal arguments. Our Requires and Ensures clauses
correspond to method implementation pre- and post-conditions of Bannwart-Müller
logic, respectively. Notice that method body specifications do not correspond to our
Requires and Ensures clauses, as a method body pre-condition is asserted each time
there is a jump to the first instruction from within the body, since it is identical
to the precondition of the first instruction. Therefore the rules of Bannwart-Müller
logic become superfluous. Our only extension to this logic is the use of ghost vari-
ables and ghost assignments. Ghost variables can be seen as regular variables which
are not affected by program code. We treat ghost assignments the same way as
program instructions as these are not boolean expressions.

4.7.2 Local Validity

In section 4.9, we describe how a program inlined for a policy with a simple inliner
can be fully annotated so that the validity of the annotations implies adherence of
the program to the policy. Consequently, the problem of policy adherence for an
inlined program is reduced to checking local validity. In this section, we introduce
a suitable notion of fully annotated programs and conditions for a fully annotated
program to be locally valid.

A fully annotated program is, then, a program where a sequence of annotations
γ are associated with each instruction and with the Requires clause, and where only
a single assertion is associated with the Ensures clause; each instruction specifica-
tion and Requires clause consists of a single boolean expression or an alternating
sequence of ghost assignments and boolean expressions α, with the first and last
elements being a boolean expression. This definition guarantees that each ghost
assignment is preceded and succeeded by a boolean expression. The expression
before a ghost assignment can then be used as its specification, like it is done for
program instructions.

In the definition of local validity, we use the function wp(M [L]) for computing
the local weakest precondition of an instruction, which is the weakest precondi-
tion of the instruction with respect to all its possible successors. This function is
exemplified in table 4.5 and is adapted for JVM instructions from the weakest pre-
condition function of Bannwart-Müller [10]. In the definition, the function shift(A)
denotes the substitution, for all i, of s[i] by s[i + 1] in assertion A, while function
unshift(A) denotes the inverse function.

The notion of local validity is defined as expected, namely that (i) the method
precondition implies the annotation associated with the first instruction, (ii) the

110 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

M [L] wp(M [L])

dup unshift((head(AM [L+ 1]))[s[1]/s[0]])
iload r / aload r unshift((head(AM [L+ 1]))[r/s[0]])
istore r / astore r (shift(head(AM [L + 1])))[s[0]/r]
putstatic m (shift(head(AM [L + 1])))[s[0]/m]
goto L′ head(AM [L′])
ifeq L′ (s[0] = 0⇒ shift(head(AM [L′])))∧

(¬(s[0] = 0)⇒ shift(head(AM [L + 1])))
instanceof c s[0] <: c⇒ (head(AM [L + 1]))[1/s[0]]∧

¬(s[0] <: c)⇒ (head(AM [L + 1]))[0/s[0]]

Table 4.5: Weakest precondition function wp(M [L])

precondition of the return instruction implies the method post-condition, (iii) the
pre-condition of an instruction implies the weakest precondition of the instruction
provided it is not a method invocation, (iv) the last assertion before a ghost assign-
ment implies the first assertion after the ghost assignment where the ghost values
are replaced with the conditional expression of the assignment, (v) the pre-condition
of an instruction implies the pre-condition of any handler that covers the instruc-
tion and it implies the post-condition of the method if it can raise an exception not
covered by any handler of the method, (vi) for all method invocation instructions
L, there exists an assertion α such that the pre-condition of the instruction implies
the conjunction of the pre-condition of any method, which can be called by the in-
struction and α, while the conjunction of α and the post-condition of any method,
which can be called by the instruction, imply the pre-condition of L + 1, further-
more if a method that can be called by this instruction raises exceptions, then the
post-condition of the called method implies the pre-condition of the corresponding
handler if any, or implies the postcondition of the caller method, (vii) finally, the
initializations to the static variables done by the initial static heap is sufficient to
make the pre-condition of 〈main〉 valid.

In the definition below, the function head returns the first element of an annota-
tion sequence and last, the last element. StaticsT denotes the set of static variables
c.f of T and for all c.f ∈ StaticsT, vc.f is equal to shT

0 (c.f). We let |= denote
standard first-order logic validity.

Definition 4.13 (Local Validity). A fully annotated program T is locally valid if
for every virtual method M = (P,H,A,Requires,Ensures) the following holds:

(i) |= last(Requires)⇒ head(A[1]),

(ii) |= last(A[|P |])⇒ Ensures,

(iii) for all L ∈ Dom(P) where M [L] is not a method invocation instruction:
last(A[L])⇒ wp(M [L]),

4.7. CHECKING VALIDITY 111

(iv) whenever γ · α · (−→g := ce) · α′ · γ′ is an instruction specification,

|= α⇒ α′[ce/−→g]

(v) for all L ∈ Dom(P), if M [L] can raise an exception with type c, one of the
following holds:

a) There exists a handler (L1, L2, L
′, c′) that handles this exception, and

|= last(A[L])⇒ head(A[L′])

b) There does not exist a handler for label L and exception c, and

|= last(A[L])⇒ Ensures

(vi) for a label L ∈ Dom(P) where M [L] = invokevirtual c.m, and for all meth-
ods c′.m that can be invoked as a result of the execution of this instruction
and virtual method resolution, let c′.m = (P ′, H ′, A′,Requires′,Ensures′) and
c′.m be of arity n. Then there exists the assertion α which mentions only local
and (local) ghost variables, such that:

– |= last(A[L])⇒ (head(Requires′) ∧ α),

– |= α ∧ Ensures′ ⇒ head(A[L + 1]),

– If c′.m raises an exception then either there exists a handler with des-
tination L′ and |= Ensures′ ⇒ head(A[L′]) or there is no such handler
and |= Ensures′ ⇒ Ensures.

(vii)
|=

∧

c.f∈StaticsT

c.f = vc.f ⇒ head(Requires〈main〉)

The assertion α mentioned in item (vi) is used for assertions that are preserved
by the method call, that is assertions on local program and ghost variables. Note
that this notion of local validity includes recursive methods, since we do not require
that the called method be a different method from the caller method. This, in effect,
means that the method specification can be assumed at the point of the recursive
call, which is in line with [10].

Showing that a locally valid program is valid also in the sense of definition 4.12
can be done based on the soundness result5 of [10], detailed and extended to excep-
tions in [9]. Such a proof consists of extending Bannwart-Müller logic with a rule

5Their soundness result states that whenever ⊢ {P}body(c.m){Q}, it is the case that for all
initial configurations C that c.m can start running with (i.e. configurations with the right number
of values for arguments are on the stack etc.) and all configurations C′, if C′ is a terminating
configuration with the current method c.m, C is related to C′ with the reflexive, transitive closure
of the transition relation of the operational semantics and P holds at C, then Q holds at C′. In
order to prove this result, they prove a similar result for single steps of the machine.

112 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

for ghost assignments, extending the soundness proof they present with this rule and
showing that a proof tree can be constructed to infer {RequiresM}imp(M){EnsuresM}
for each method M of the program in this logic. The proof construction is straight-
forward as our local validity definition is simply an application of the proof rules in a
restricted setting. A rule for handling ghost variables is not hard to develop either,
guided by the fact that ghost assignments are very much like ordinary assignment
statements that do not alter the machine configuration, and would resemble rule
(iv) above.

4.8 Specification of Self-monitoring

The idea behind our annotation scheme is the following. In a first annotation,
referred to as policy annotation (or level I), we specify a correct monitor for the given
policy by means of “ghost” variables, updated before or after every security relevant
action according to the symbolic automaton induced by the given security policy. In
a second annotation, referred to as synchronisation annotation (or level II), we add
assertions that state at all relevant program points that the actual inlined monitor
(represented by global program variables) is “in sync” with the correct monitor
(represented by the ghost variables).

4.8.1 Policy Annotations (Level I)

The policy annotations define a monitor for the given policy by means of ghost
variables. The ghost variables, which constitute the specified security state, are
initialized in the precondition of the 〈main〉 method and updated at relevant points
by annotating all the methods defined by the classes of the target program. We
call each such method a target method.

When adding the level I annotations, we make the following assumptions. We
assume that 〈main〉 is not called by any target method (including itself) and that all
exceptions that may be raised by a security relevant instruction (i.e. an instruction
that may lead to a security relevant action) are covered by an exception handler.
We also assume that the exception handling is structured such that unexceptional
execution can not “fall through” to an exception handler, i.e. the only way an
instruction in an exception handler gets executed is when an exception has been
raised previously in the execution and caught by the handler that the instruction
belongs to. We assume that the first instruction of a program can not be a handler
instruction.

Updating the Specified Security State The updates to the specified security
state are done according to the transitions of the symbolic automaton. If the
automaton does not have a transition for a security relevant method call, the call is
violating and the corresponding annotation sets the value of the specified state to
undefined. Such a program should terminate without executing the next security

4.8. SPECIFICATION OF SELF-MONITORING 113

relevant action in order to adhere to the policy. This is specified by asserting, as
a precondition to each security relevant method invocation and before each update
to the specified state, that the specified state is not undefined.

If the execution of a method invocation instruction of a target method may lead
to a preaction of the automaton, then an annotation is inserted as a precondition to
this instruction, which updates the specified security state. If a method invocation
instruction may lead to a postaction, we record the object the method is called
on, values of the method arguments (and possibly a part of the heap) by assigning
them to ghost variables as the precondition to the instruction. The updates to
the specified state are done in the postcondition of the instruction, if the method
invocation can lead to a normal (unexceptional) postaction. If the instruction can
cause an exceptional postaction, however, the update to the specified security state
is inserted as a precondition to the first instruction of each exception handler that
cover the instruction. The recorded label is used then at the handler to resolve which
instruction has caused the exception, so that the correct update (or no update if
the exception was raised by an irrelevant instruction) is performed.

Preliminary Definitions In the definitions below, assume given a program T
and a policy P . Let As = (qs, As, δs, Inits) be the symbolic automaton induced
by P , and let qs = {s1, . . . , sn}. We define the set Aes ⊆ A

♯
s of exceptional symbolic

post-actions as those post-actions which have the value exc as their first component.
Given a symbolic action set A′s, the function RS((c,m), A′s) returns those subclasses
c′ of c for which the method (c′,m) is defined by a class c′′ such thatA′s has an action
with the reference (c′′,m). In the annotations, the ghost variables that represent
the security state are named identically with the security state variables of the
automaton, and we use the tuple −→gs = (s1, . . . , sn) in guarded multi-assignments.
We use the ghost variable gpc to record labels of security relevant instructions.
Ghost variables g also used for recording stack values. For an expression mapping
E : qs → Exp, let −→eE denote the corresponding expression tuple and for a boolean
ConSpec expression b ∈ BoolExp, let ab denote the corresponding assertion.

Level I Annotation Further below, we define an initializing ghost annota-
tion IA, and for every method M , three arrays of annotations: a pre-annotation
array A♭M [i], a post-annotation array A♯M [i][j], and an exceptional annotation ar-
ray AeM [i][k], where i ranges over the instructions of method M . The second index
j ∈ {0, 1}, k ∈ {0, 1, 2} indicates whether the annotation will be placed as a pre-
condition of the instruction (j, k = 0), as a precondition to the next instruction
(j, k = 1), or as a precondition to all the exception handlers of the instruction
(k = 2). The predicate Handler holds for a label L and a method M if L is a
destination of some exception handler, i.e. (L1, L2, L, c) ∈ HM for some labels L1,
L2, and class name c. In addition, we define Exc(L,M) as the sequence of all an-
notations AeM [L′][2] where L′ is a security relevant instruction and there exists an
exception handler (L1, L2, L, c) ∈ HM such that L1 ≤ L

′ < L2, and as ǫ if such an

114 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

L′ does not exist.
Given these annotations, the level I annotation of program T is given for each

application method M as a precondition RequiresI
M and an array AI

M of annotation
sequences defined as follows (where L > 0):

RequiresI
M =
{

(−→gs := −−−→eInits) if M = 〈main〉
ǫ otherwise.

AI
M [1] = A♭M [1] ·A♯M [1][0] ·AeM [1][0]

AI
M [L] =

{

Exc(L,M) · A♭M [L] · A♯M [L][0] · AeM [L][0] if Handler(L,M)
AeM [L− 1][1] · A♯M [L− 1][1] · A♭M [L] · A♯M [L][0] · AeM [L][0] otherwise

The annotation Requires〈main〉 initializes the ghost state using function Inits of
the automaton. The following paragraphs define the annotation arrays mentioned
in the above definition.

After Annotations For every method M , the elements of the post-annotation
array A♯M [i][j] are defined for each label L as follows:

(i) If the instruction at label L is not an invokevirtual instruction or is of the
form M [L] = invokevirtual (c.m) where RS((c,m), A♯s\A

e
s) = ∅, we define

the pre- and postconditions to be empty:

A♯M [L][0] = A♯M [L][1] = ǫ

(ii) Otherwise, if the instruction at label L is of the formM [L] = invokevirtual (c.m)
with (c.m) : (γ → τ) and |γ| = n and RS((c,m), A♯s \A

e
s) = {c′1, . . . , c

′
p}, then

the precondition of the instruction saves the arguments and the object in
ghost variables:

A♯M [L][0] = ((g0, . . . , gn−1, gthis) := (s[0], . . . , s[n])) · Defined♯

The assertion Defined♯ checks if the ghost variables are defined:

Defined♯ = (gthis : c′1 ∨ . . . ∨ gthis : c′p)⇒ (−→gs 6=
−→
⊥)

while the postcondition of the instruction uses these saved values to compute
the new security state:

A♯M [L][1] = (−→gs := α1 | · · · | αm | α)

where the αk are the guarded expressions

(−→gs 6=
−→
⊥) ∧ gthis : c′i ∧ abρi →

−→eEρi

4.8. SPECIFICATION OF SELF-MONITORING 115

AI [L] L M [L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1
{

gthis := s[0] ·
gthis : GUI⇒ (ga, gp) 6= (⊥,⊥)

}

L5 invokevirtual GUI/AskConnect()Z

{

(ga, gp) :=
(ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ s[0]→ (ga, true) |
(ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]→ (ga, false) |
¬(gthis : GUI)→ (ga, gp)

}

L6 istore r2

L7 aload r1

L8 instanceof GUI
L9 ifeq L12
L10 iload r2

L11 putstatic SecState/permission
L12 iload r2

L13 ireturn

Figure 4.4: An application method with level I annotations for the example policy

where class c′′ defines (c′i,m) and there exists a♯s = (r, c′′,m, (τ0x0, . . . τn−1

xn−1)) ∈ A♯s \ A
e
s such that (a♯s, b, E) ∈ δ♯s. The substitution ρi is defined

as [s[0]/x, g0/x0, . . . gn−1/xn−1, gthis/this] if r = (τ x) and as [g0/x0, . . .
gn−1/xn−1, gthis/this] if r = void . Finally, α = ¬(gthis : c′1 ∨ . . . ∨ gthis :
c′p) →

−→gs.

Example 4.14. An application method annotated with level I annotations for the
example policy 4.3 is shown in figure 4.4. The ghost state is represented by the
ghost variables ga and gp, i.e. −→gs = (ga, gp). (The setting of the ghost variable gpc

is ignored since the policy does not include an exceptional clause.) The annotations
are valid if the class GUI does not have any subclasses. The annotations are identical
as long as all subclasses of this class overrides AskConnect.

Let us suppose GUI has a single subclass MyGUI and that it inherits AskConnect.
Then the annotated program is as in figure 4.5.

The annotation array A♭M is defined similar to A♯M except that the transitions
of the automaton on pre-actions are considered. The values of the arguments of the
security relevant instruction can be obtained by accessing the stack directly, so the
argument names in the guards and update expressions of the symbolic automaton
should be substituted with corresponding stack positions in this case.

The exceptional annotation array AeM [i][k] is defined considering transitions of
the automaton on exceptional post-actions (the set Ae). The precondition AeM [L][0]
of an instruction M [L] that may cause an exceptional post-action saves its label L
in the ghost variable gpc, in addition to recording the object and arguments to the
method. The conditions of the ghost variable update placed in the precondition to
the corresponding handler AeM [L][2], then include the conjunct gpc = L to check
that the exception was indeed raised by this instruction. The ghost variable gpc is

116 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

AI [L] L M [L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1
{

gthis := s[0] ·
(gthis : GUI ∨ gthis : MyGUI)⇒ (ga, gp) 6= (⊥,⊥)

}

L5 invokevirtual GUI/AskConnect()Z

(ga, gp) :=
(ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ s[0]→ (ga, true) |
(ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]→ (ga, false) |
(ga, gp) 6= (⊥,⊥) ∧ gthis : MyGUI ∧ s[0]→ (ga, true) |
(ga, gp) 6= (⊥,⊥) ∧ gthis : MyGUI ∧ ¬s[0]→ (ga, false) |
¬(gthis : GUI ∨ gthis : MyGUI)→ (ga, gp)

L6 istore r2

L7 aload r1
L8 instanceof GUI

L9 ifeq L12
L10 iload r2

L11 putstatic SecState/permission
L12 iload r2

L13 ireturn

Figure 4.5: A application method with level I annotations for the example policy

set back to 0 after the update in the annotation (i.e. in AeM [L][2]) or if the method
never raises an exception (i.e. in AeM [L][1]).

The formalizations are presented here for completeness.

Before Annotations For every method M , the elements of the pre-annotation
array A♭M [i] are defined for each label L as follows:

(i) If the instruction at label L is not an invokevirtual instruction or is of the
form M [L] = invokevirtual (c.m) where RS((c,m), A♭s) = ∅, we define the
precondition to be empty: A♭M [L] = ǫ.

(ii) Otherwise, if the instruction at label L is of the formM [L] = invokevirtual (c.m)
with (c.m) : (γ → τ) and |γ| = n and RS((c,m), A♭s) = {c′1, . . . , c

′
p}, then the

precondition of the instruction computes the new security state using the ar-
guments and the object of the called method and updates the ghost variables:

A♭M [L] = (−→gs := α1 | · · · | αm | α) ·Defined♭

The assertion Defined♭ checks if the ghost variables are defined:

Defined♭ = (s[n] : c′1 ∨ . . . ∨ s[n] : c′p)⇒ (−→gs 6=
−→
⊥)

The αk are the guarded expressions

(−→gs 6=
−→
⊥) ∧ s[n] : c′i ∧ abρi →

−→eEρi

where class c′′ defines (c′i,m) and there exists a♭s = (c′′,m, (τ0x0, . . . τn−1xn−1))
∈ A♭s such that (a♭s, b, E) ∈ δ♭s. The substitution ρi is defined as [s[0]/x0, . . . ,
s[n− 1]/xn−1, s[n]/this]. Finally, α = ¬(s[n] : c′1 ∨ . . . ∨ s[n] : c′p) →

−→gs.

4.8. SPECIFICATION OF SELF-MONITORING 117

Exceptional Annotations For every method M , the elements of the exceptional
annotation array AeM [i][j] are defined for each label L as follows:

(i) If the instruction at label L is not an invokevirtual instruction or is of the
form M [L] = invokevirtual (c.m) where RS((c,m), Aes) = ∅, we define the
pre- and post-conditions to be empty: AeM [L][0] = AeM [L][1] = AeM [L][2] = ǫ.

(ii) Otherwise, if the instruction at label L is of the formM [L] = invokevirtual (c.m)
with (c.m) : (γ → τ) and |γ| = n and RS((c,m), Aes) = {c′1, . . . , c

′
p}, then the

precondition of the instruction saves the arguments, the object and the label
of the instruction in ghost variables:

AeM [L][0] = ((g0, . . . , gn−1, gthis, gpc) := (s[0], . . . , s[n]), L) · Definede

The assertion Definede checks if the ghost variables are defined:

Definede = (gthis : c′1 ∨ . . . ∨ gthis : c′p)⇒ (−→gs 6=
−→
⊥)

The postcondition of the instruction resets the value of gpc to 0. Notice that
this annotation gets executed only if the method invocation did not return
with an exception.

AeM [L][1] = gpc := 0

The precondition of each handler that covers this instruction uses gpc to check
whether the exception catched was thrown by a security relevant instruction.
If the exception was raised by a method called by the instruction with the rel-
evant label, the annotation uses the saved values to compute the new security
state:

AeM [L][2] = (−→gs := α1 | · · · | αm | α) · (gpc := 0)

where the αk are the guarded expressions

(gpc = L) ∧ (−→gs 6=
−→
⊥) ∧ gthis : c′i ∧ abρi →

−→eEρi

where class c′′ defines (c′i,m) and there exists aes = (exc, c′′,m, (τ0x0, . . .
τn−1xn−1)) ∈ Aes such that (aes, b, E) ∈ δes . The substitution ρi is defined
as [g0/x0, . . . gn−1/xn−1, gthis/this]. Finally, α = ¬(gthis : c′1 ∨ . . . ∨ gthis :
c′p) →

−→gs.

Correctness Each execution of a program that is valid with respect to level I
annotations for policy P is a co-execution of the program and the automaton for
P , where the automaton states are given by the ghost state; hence the program
adheres to P .

Theorem 4.15 (Correctness of Level I Annotations). The level I annotated pro-
gram T for policy P is valid if, and only if, T adheres to P.

Proof. The proof can be found at Appendix B.3.2. 2

118 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

4.8.2 Synchronisation Annotations (Level II)

An inlined program can be expected to contain an explicit representation of the
security state, an embedded state, which is updated in synchrony with the execution
of security relevant actions. The level II annotations aim to capture this idea in a
generic enough form that it is independent of many design choices a specific inliner
may make. In particular, it seems natural to require of an inlined monitor that it
maintains agreement between the ghost state and the embedded state immediately
prior to execution of a security relevant action. That is, program and monitor state
are both tested and, where necessary, updated whenever a security relevant action
is about to be performed. This is by no means a necessary condition: For instance,
a monitor implementation may in advance determine that some fixed sequence of
security relevant actions is permissible without necessarily reflecting this through
an explicit sequence of updates to the embedded state. Thus, in the middle of such
a sequence, the embedded state and the ghost state may disagree. In this paper,
however, we assume that this type of optimized inlining is not performed.

The second assumption we make in this section is that updates to the embed-
ded state are made locally, by the same method that executes the security relevant
method call. This allows correctness to be expressed by asserting equality of the
ghost state and the embedded state for every method at point of entry, at normal
and exceptional exit, and at each method invocation. This compositionality prop-
erty has the important advantage that virtual call resolution can be avoided for the
level II annotations: The specified and the embedded states are synchronized at all
call points, not just at the points where a security relevant action is invoked.

For simplicity we assume that the embedded state is determined as a fixed
vector −→ms of global static variables of the target program, of types corresponding
pointwise to the type of ghost state vector −→gs. The synchronisation assertion is
the equality −→gs = −→ms, and the level II annotations are formed by appending the
synchronization assertion to the level I annotations of each method M of the target
program at the following points:

1. Each annotation A(Γ∗(M))(i) such that P (Γ∗(M))(i) is an invoke or a return
instruction.

2. The annotation Ensures(Γ∗(M)).

We explain a sense in which the level II annotations can be argued to character-
ize exactly the two conditions assumed in this section (the synchronous update
assumption, and the method-local update assumption).

Consider a level II annotated program T with the extended environment Γ∗.
Consider an execution E = C0C1 · · · from the initial configuration C0 of T. We
sample the embedded state −→ms at all configurations that are either invoke instruc-
tions, return instructions, the first instruction of a method, or an unhandled ex-
ception. More precisely, the index i is a sampling point if one of the following two
conditions hold:

4.8. SPECIFICATION OF SELF-MONITORING 119

AII [L] L M [L]
L1 aload r0

L2 getfield gui

L3 dup

L4 astore r1
{

gthis := s[0] ·
gthis : GUI⇒ (ga, gp) 6= (⊥,⊥) ·
(ga, gp) = (SecState.accessed, SecState.permission)

}

L5 invokevirtual GUI/AskConnect()Z

{

(ga, gp) :=
(ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ s[0]→ (ga, true) |
(ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]→ (ga, false) |
¬(gthis : GUI)→ (ga, gp)

}

L6 istore r2

L7 aload r1
L8 instanceof GUI

L9 ifeq L12
L10 iload r2

L11 putstatic SecState/permission
L12 iload r2

{

(ga, gp) = (SecState.accessed, SecState.permission)
}

L13 ireturn

Figure 4.6: An application method with level II annotations for the example policy

1. The top frame of Ci has the shape (M, pc, s, f), and M [pc] is either an
invokevirtual instruction, a return instruction, or else pc = 1.

2. Alternatively, the top frame of Ci is exceptional, of the form (b)e.

We can then construct a sequence w = (C0, q0)(C1, q1) · · · (or, w(E,−→ms) if the
underlying execution and embedded state needs emphasis) such that:

• q0 is the initial automaton state,

• for all sampling points i > 0, qi = Ci(−→ms), the value of −→ms in configuration
Ci, and

• for any two consecutive sampling points i and i′, for all j : i ≤ j < i′, qj = qi.

In other words, the embedded state is sampled at the sampling points and main-
tained constant in between.

Example 4.16. An application method annotated with level II annotations for the
example policy of section 4.4 is shown in figure 4.6. This is an augmented version
of figure 4.4, where the embedded state consists of the static fields accessed and
permission of the SecState class. The Ensures clause is the synchronization
assertion

(ga, gp) = (SecState.accessed, SecState.permission)

and Requires = ǫ. The annotated method is valid since the embedded state is
updated as is described by the policy, after a call to the method GUI.AskConnect.

120 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

The role of the sequence w is roughly similar to the role of interleavings in
section 4.5. However, a slightly different treatment is needed here since the sequence
q0q1 · · · may not necessarily correspond to an automaton derivation. This is so for
the case of post-actions followed by pre-actions where the intermediate automaton
state is not sampled, as there is no well-defined point where this might be done.
Also, the construction needs to account for the method-local nature of embedded
state updates.

For this reason define the operation extractII taking sequences w to strings over
the alphabet Q ∪ A ∪ {brk} where brk is a distinguished symbol by the following
conditions:

• extractII((C1, q1)(C2, q2)w) = q1 act♭(C1) act♯(C1, C2)q2 extractII((C2, q2)w),
if C1 is an API method call.

• extractII((C, q)w) = brkq extractII(w), if C is entering to or returning (possi-
bly exceptionally) from an application method call.

• extractII((C, q)) = q act♭(C)

• extractII(ǫ) = ǫ

Definition 4.17 (Method-local Co-execution). Let Σ1 = {brk} ∪ Q ∪ E♭ ∪ E♯ ∪
{a♯qq′a♭ | q, q′ ∈ Q, a♭ ∈ A♭, a♯ ∈ A♯, ∃q′′.δ♭(q, a♭) = q′′, δ♯(q′′, a♯) = q′}, and
Σ2(q) = {qbrkq}∪ {qq}∪ {qaq | a ∈ A}∪ {(qa♭a♯q) | a♭ ∈ A♭, a♯ ∈ A♯}. A sequence
w is a method-local co-execution, if extractII(w) ∈ (Σ∗1 ∪ Σω1) ∩ ((∪

q∈Q
Σ2(q))∗ ∪

(∪
q∈Q

Σ2(q))ω) .

We can then extend theorem 4.15 to the situation where a target program T
has a monitor for the given policy inlined into it.

Theorem 4.18 (Level II Characterization). The level II annotation of T with
embedded state −→ms is valid if, and only if, for each execution E of T, the sequence
w(E,−→ms) is a method-local co-execution.

The idea of the proof is to sample pre- and post-actions from E, immediately
preceded and followed by a sample of the embedded state −→ms. The sequence ex-
tracted in this way is almost a potential derivation, but in the case of a post-action
followed, some time later, by a pre-action, an intermediate automaton state may be
missing. It is not clear, however, how to sample this state. Also, it is necessary to
ensure that embedded state updates do not cross method boundaries. To this end,
extracted sequences need to be completed by (a) missing intermediate automaton
states, and (b) indicators of method boundary crossings at: method invocations
that are not security relevant actions, return instructions, configurations that con-
tain an exceptional frame at the top of the frame stack, and at the first instruction
of each method.

4.9. CORRECTNESS OF INLINING 121

First, we note that the embedded state −→ms is equal to the ghost state −→gs at
sampling points if and only if the synchronisation assertions added at level II hold.
We show in the proof of theorem 4.15 that the ghost state and machine configu-
rations constitute a co-execution if and only if the program annotated with level
I annotations is valid. If the program annotated with level II annotations is valid
then the sampling of the embedded stated as described above amounts to taking
the co-execution of the ghost state and the program and “skipping” some ghost up-
dates, which the embedded state does not follow (as the sampling of the embedded
state is not done as frequently). Then extractII applied to this sequence falls in the
set stated in definition 4.17.

4.9 Correctness of Inlining

As an application of the annotation scheme described in the previous section, we
characterize the correctness of a class of inliners in the flavor of PoET/PSLang [40,
39]. We first describe the operation of a simple inliner that embeds, in target
programs, a method-local monitor for a ConSpec policy. Then we show how level II
annotations for these inlined programs can be efficiently completed to produce fully
annotated code, thus reducing the policy adherence problem to checking the validity
of these annotations.

4.9.1 A Simple Inliner

The inliner inputs a ConSpec policy and a program, and inserts code for (i) storing
the security state and (ii) for updating it according to the policy clauses at calls to
security relevant methods.

Storing the Security State The inliner adds a single class definition to the
program. The class stores the embedded state in its static fields. Since this new
class is not in the previous name space, the embedded state is safe from interference
by the target program. Here, we assume that SecState is a fresh name for the target
program, and use this name for referring to the class storing the embedded state.

Compiling Policy Body to Bytecode The first part of the transformation
compiles the policy to bytecode, and is independent of the method(s) for which
inlining is to be performed. For each clause in the policy, a code fragment is
produced. These fragments are inlined in application methods in the rewriting
stage.

Each clause of a policy consists of an event modifier, an event specification and
a list of guarded commands. The created code evaluates, in turn, the guards and

122 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L+1:

L:

and jump to

Evaluate Guard2

If false, jump to G3

Update for Guard2

Else quit program

G1:

Exception Table

(L,L+1,H,java.lang.Throwable)

If method is (,m)

BEFORE .m

If method is (,m)

BEFORE .m

H:

Save return value

Load return value

 invokevirtual c.m

Resolve method

to be called

Update for the clause

Update for the clause

Else continue

G2:

and jump to

Evaluate Guard1

If false, jump to G2

Update for Guard1

Save arguments

Updates for

the relevant

BEFORE clause

Load arguments

the relevant

Updates for

the relevant

clauseAFTER

clauseEXCEPTIONAL

Rethrow exception

Updates for

Lload
Lload

Lload

c1

c1

c2

c2

Figure 4.7: Inlining of an Instruction

either updates the security state according to the update block associated with the
first condition that holds or quits the program if none of them hold6.

The variables that occur in an event clause are of three kinds: security state
variables, method arguments and fields of method arguments. Security state vari-
ables are stored in the SecState class. Since the fields storing the embedded state
are static, they are created and initialized as soon as the class is loaded to the JVM.
Actual arguments of a method (including the reference to the object it operates on)
reside on top of the stack immediately before the method invocation. In order to
use argument values while computing the new values of the security state variables,
the arguments are copied from the stack to local variables that are not used by the
original program. Since local variables of the calling method are not affected by
the execution of the callee, argument values stored in this manner can be accessed
even after the control returns to the calling method. Finally, fields of arguments are
accessed using the arguments and the heap. Notice that ConSpec policies specify
only updates to security state variables. The compiled code uses fresh variables for
both the security state and storing arguments. Therefore inlining does not modify
the original program behavior beyond forcing its exit upon violation.

Rewriting Methods According to Policy The rewriting process consists of
identifying method invocation instructions that lead to security relevant actions (se-

6In order to abort the program, the method System.exit() can be used in standard API’s, so
that a security violation is distinguished from a normal return.

4.9. CORRECTNESS OF INLINING 123

Method before inlining Method after inlining
L1 aload r0 aload r0

L2 getfield gui getfield gui
L3 invokevirtual GUI/AskConnect()Z dup

L4 ireturn astore r1
L5 invokevirtual GUI/AskConnect()Z

L6 istore r2
L7 aload r1
L8 instanceof GUI

L9 ifeq L12
L10 iload r2

L11 putstatic SecState/permission
L12 iload r2
L13 ireturn

Figure 4.8: An application method inlined with the example policy

curity relevant instructions), and for each such instruction, inserting code produced
by policy compilation in an appropriate manner. The inlined code is depicted for a
single instruction in figure 4.7. The inliner inserts, immediately before the security
relevant instruction, code that records the object the method is called for, and the
arguments (and possibly parts of the heap) in local variables. Then, code for the
relevant BEFORE clauses of the policy (if any) is inserted. Next, the object and
the method arguments are restored on the stack. If there are AFTER clauses in
the policy for the instruction, first the return value (if there is any) is recorded in
a local variable, the code compiled from the AFTER clauses is inlined, followed by
code to restore the return value on the stack. Finally, if there are EXCEPTIONAL
clauses for the instruction, an exception handler is created that covers only the
method invocation instruction and catches all types of exceptions. It is placed
highest amongst the handlers for this label in the handler list, so that whenever the
instruction throws an exception, this handler will be executed. The code of this
exception handler consists of code created for the related EXCEPTIONAL clauses
and ends by rethrowing the caught exception. All (original) exception handlers of
the program that cover the security relevant instruction are redirected to cover this
last throw instruction instead.

Method Resolution Due to virtual method call resolution, execution of an in-
vocation instruction can give rise to different security relevant actions. The inliner
inserts code to resolve, at runtime, the signature of the method that is called, using
the type of the object that the method is invoked on, and information on which
methods have been overridden. A check to compare this signature against the sig-
nature of the event mentioned in the clause is prepended to code compiled for the
clause7.

We have implemented such an inliner to be used in a mobile code context; the
tool is available at [2].

7 This can be accomplished using the instanceof instruction or methods of the Reflect API.

124 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

Example 4.19. Figure 4.8 shows an inlined method example. The original method
is given on the left, while the method inlined for the example policy is presented
on the right. The method is inlined assuming that the class GUI does not have any
subclasses. Notice that the inlined method is the one we have been employing in
the annotation examples in sections 4.8.1 and 4.8.2.

4.9.2 Correctness of Inlining

We first describe how, for programs inlined with an inliner such as the one described
above, level II annotations can be efficiently completed to an (equivalent full) level
III annotation in the sense of section 4.7, and then show that local validity of
level III annotations – and thus policy adherence – holds for such programs and is
efficiently checkable.

The completion of level II annotations to level III annotations consists of back-
wards propagation of assertions using the weakest precondition function for inlined
instructions, and insertion of the synchronization annotation to the other program
points which have not already been annotated in level II. Method specifications
assert that the synchronization annotation holds at points of entry and exit.

The completion also includes placing a boolean expression before and after each
ghost assignment. We use the normalizing function norm on annotations for this
purpose, with the combined effect of conjuncting consecutive logical assertions and
backward weakest precondition propagation:

norm(α) = α
norm(γ · α0 · α1) = norm(γ · (α0 ∧ α1))

norm(γ · (−→g := ce) · α) = norm(γ · α[ce/−→g]) · (−→g := ce) · α

where α, α0, and α1 range over logical assertions, γ over annotation sequences, and
where α[ce/−→g] denotes the substitution in α of each ghost variable gi ∈ −→g by the
conditional expression cei, obtained from ce by replacing each expression vector −→eE
occurring in ce with its i-th component. The normalizing procedure is in line with
our treatment of ghost assignments as instructions.

The completion uses the weakest precondition function wp(M [L]) introduced in
table 4.5 of section 4.7. To deal with side-effect free API methods that are used
in inlining (i.e. the string operations), we add two more rules to the table. In
particular, the weakest precondition of the static method System.exit is taken
to be true. In both rows, n denotes the arity of method c.m, and fc.m denotes
the operation implemented by method c.m (which is of arity n + 1 in the case of
invokevirtual, with the reference to the object as an implicit argument).

We can now define how to construct a level III annotated program from a level II
annotated one.

Level III Annotation A level III (or “full”) annotation is obtained as follows.

4.9. CORRECTNESS OF INLINING 125

M [L] wp(M [L])

invokevirtual c.m (shiftn(head(AM [L+ 1])))[fc.m(s[0], . . . , s[n])/s[n]]
invokestatic c.m (shiftn−1(head(AM [L + 1])))[fc.m(s[0], . . . , s[n− 1])/s[n− 1]]

Table 4.6: Weakest precondition function for side-effect free API method calls

1. Requires(Γ∗(M)) and Ensures(Γ∗(M)) are both defined as the synchronisa-
tion assertion, −→gs = −→ms.

2. For all non-inlined instructions M [L], not (level II) annotated with the syn-
chronisation assertion, define

AIIIM [L] = norm(AIIM [L] · (−→gs = −→ms))

3. For all (non-inlined) potentially post-security relevant instructions M [L], de-
fine

AIIIM [L] = norm(AIIM [L] · (g0 = r0) · . . . · (gn−1 = rn−1) · (gthis = rthis))

where r0, . . . , rn−1, rthis are the local variables used by the inliner to store
the values of the parameters and the reference to the object with which the
method is invoked.

4. For all remaining non-inlined instructions M [L], define

AIIIM [L] = norm(AIIM [L])

5. For all blocks of inlined code, we apply the weakest precondition function
wp(M [L]) defined in table 4.5 and table 4.6 to propagate backwards the head
assertion of the first instruction following the block (which is the synchro-
nisation assertion −→gs = −→ms). Notice that these blocks are cycle-free and do
not contain jumps to any other instruction outside of the block, thus the
backward wp-propagation is well-defined (and in effect computes the weakest
precondition of the whole block with respect to the synchronisation assertion).

Thus, if M [L] is an inlined instruction immediately following a potential
(nonexceptional) post-security relevant instruction or the first instruction of a
handler for a potential (exceptional) post-security relevant instruction, define

AIIIM [L] = norm((g0 = r0) · . . . · (gn−1 = rn−1) · (gthis = rthis) ·
−→gs = −→ms ·
AIIM [L] ·
wp(M [L]))

and otherwise define
AIIIM [L] = wp(M [L])

126 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

AIII [L] L M [L]
{

INV
}

L1 aload r0
{

INV
}

L2 getfield gui
{

(s[0] : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (s[0] = s[0])
}

L3 dup
{

((s[1] : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (s[1] = s[0]))
}

L4 astore r1
{

((s[0] : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (s[0] = r1)) ·
(gthis := s[0]) ·
((gthis : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (gthis = r1))

}

L5 invokevirtual GUI/AskConnect()Z

(gthis = r1) ∧ INV ∧ (r1 <: GUI⇒ (Φ = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI)⇒ (Φ = (SecState.accessed, SecState.permission))) ·
((ga, gp) := Φ ·
((r1 <: GUI⇒ ((ga, gp) = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI)⇒ INV)))

L6 istore r2

{

¬(r1 <: GUI) ⇒ INV ∧
(r1 <: GUI) ⇒ (ga, gp) = (SecState.accessed, r2)

}

L7 aload r1
{

¬(s[0] <: GUI) ⇒ INV ∧
(s[0] <: GUI) ⇒ (ga, gp) = (SecState.accessed, r2)

}

L8 instanceof GUI
{

(s[0] = 0) ⇒ INV ∧
¬(s[0] = 0) ⇒ (ga, gp) = (SecState.accessed, r2)

}

L9 ifeq L12
{

(ga, gp) = (SecState.accessed, r2)
}

L10 iload r2
{

(ga, gp) = (SecState.accessed, s[0])
}

L11 putstatic SecState/permission
{

INV
}

L12 iload r2
{

INV
}

L13 ireturn

Figure 4.9: An application method with level III annotations for the example policy

Example 4.20. For the method presented in the example of section 4.8.2, level III
annotations of the method body are shown in figure 4.9 below. The synchronization
assertion (ga, gp) = (SecState.accessed, SecState.permission) is denoted by
INV . The post-condition and last element of the pre-condition of the method are
the synchronization assertion:

Ensures = Requires = INV

The symbol Φ denotes the following multi-assignment expression:

(ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ s[0]→ (ga, true) |
(ga, gp) 6= (⊥,⊥) ∧ gthis : GUI ∧ ¬s[0]→ (ga, false) |
¬(gthis : GUI)→ (ga, gp)

Details of the computation are found in Appendix B.2.

We assume that inliners as described above have the following property:

Property 4.21. Given a policy P , and a program T, let T′ be the program inlined
for the policy. Then the following holds for each post-security relevant instruction
M [L] of T′: Let M [L] = invokevirtual (c.m) for some c and m, α1, . . . , αm
be the guarded expressions gthis : c′i ∧ abρi →

−→eEρi, 1 ≤ i ≤ m, and α be
¬(gthis : c′1 ∨ . . . ∨ gthis : c′p) →

−→gs, induced, by the policy, for M [L] as described
in section 4.8.1. Furthermore, let rthis be the local variable used by the inliner

4.10. RELATED WORK 127

to record the reference of the object M [L] operates on. Then the weakest pre-
condition of the block of code inlined immediately after the instruction M [L] in T′

with respect to the synchronisation assertion −→gs = −→ms is the logical assertion
∧

1≤i≤m rthis : c′i ∧ abρ
′
i →

−→gs = −→eEρ′i
∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) →

−→gs = −→ms

The blocks inlined above and at the exception handlers of security relevant
instructions can be specified similarly.

We conjecture that the inliner of [2] has this property. Let I range over inliners
described as above and satisfying property 4.21 and let I(T,P) denote the program
T inlined by I for the policy P .

The following result uses the full annotation to show that programs inlined for
a policy (rewritten as described above and having property 4.21) contain a monitor
for the policy as characterized by theorem 4.18.

Theorem 4.22. Let T be a program, and P a ConSpec policy. The inlined program
I(T,P), fully annotated as above, is locally valid, and validity is efficiently checkable.

Proof. The proof can be found in Appendix B.3.4. 2

Hence by the above result, the level III annotation of I(T,P) is also valid in terms
of definition 4.12. As a consequence, the inlined program is valid with respect to
the level I annotation for policy P , and therefore, by theorem 4.15, adheres to the
policy.

Corollary 4.23 (Correctness of Inlining). Let P be a ConSpec policy and T be a
program. The inlined program I(T,P) adheres to the policy.

Notice that a level III annotation as described above can be used for on-device
checking of inlining correctness in a proof-carrying code setting.

Another corollary of theorem 4.22 is that for any program T and policy P the
inlined program I(T,P) yields only method-local co-executions. This is so since
programs that validate level III annotations validate also level II annotations and
thus theorem 4.18 applies to inlined programs.

4.10 Related Work

In this section, we review related work in policy languages, monitor inliners, speci-
fying policy adherence and several other security frameworks for mobile code.

4.10.1 Policy Languages

There exist a number of automata-based languages for security policy specification.
Amongst these, ConSpec is closest to PSLang [39] which has also introduced the

128 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

modifiers used in ConSpec. The language is intended solely for runtime monitoring
and freely uses programming language constructs such as loops. The expressive
power of the language enables a larger class of policies to be specified than can be
done with ConSpec, but complicates the task of providing a formal semantics and
policy matching becomes undecidable. Since the authors do not provide a formal
semantics for PSLang, their monitor inlining algorithm is to be trusted on intuition
as no proof of its correctness can be constructed.

The Polymer language [12] has the same drawback. Polymer policies consist of
Java classes which, when inlined, may trigger various actions in case of violation.
For instance it is possible to execute some recovery action as a response to the
violation, after which the application is allowed to progress. Polymer policies im-
plement edit automata [79], which extend security automata. But the correctness
of the Polymer policy inlining cannot be proven either, as its semantics is not for-
mally presented. In a recent work [13], the same authors present a simpler version
of the Polymer language with its semantics. The Polymer semantics is given in the
context of a lambda calculus, which is used to present the programming language
semantics. Using this formalization, the authors prove uncircumventability of the
monitor and type safety of the monitored programs.

Many logic-based formalisms are also used to express security properties for
monitoring purposes (e.g. [57, 58, 106, 84, 113, 11]). We only note here that tem-
poral logic formulae expressing safety properties can be translated to automata and
vice versa (see e.g. [66]).

4.10.2 Monitor Inliners

Monitor inlining has been employed as a security enforcement mechanism in a
number of application areas. We account here the basic types of monitor inlining
implementations offered in the context of language-based security, in terms of where
the code is inlined. We focus on method calls as security relevant actions, although
it is possible to monitor many other events with existing tools such as PoET [40].

The inliners that input policies in the form of security automata can be cate-
gorized according to where they insert code to perform the inquiry on whether the
security relevant action is safe to perform in the current state and the update on
the security state. The inlining style of PoET and our tool creates code where se-
curity checks and updates are scattered in the program: the code is inserted around
the security relevant method call at the caller side. An alternative is to inline the
program by altering the methods of the untrusted program only through rewriting
method invocation instructions so that calls to security relevant API methods are
redirected to new methods added in the inlining process. These new methods are
then dedicated and consist of code for performing necessary security checks for the
particular security relevant API method, the call to the method and the update
to the security state. Such a wrapping approach is taken in Naccio, one of the
first tools for monitor inlining [46]. A rather clean way of implementing inlining is
through centralizing, i.e. using a dedicated component that implements the policy.

4.10. RELATED WORK 129

The information about the method call (or return), like the name of the method
and the values of arguments are passed to this module which performs the necessary
operations. The inliner of Vanoverberghe and Piessens is an example [110]. The
Polymer system also practices a centralized inlining where a policy is specified as
a Java class8 but API method bodies are altered in the course of the inlining.

All of these approaches have advantages and disadvantages. Scattered inlin-
ing allows better optimizations to be performed. For instance, security checks
and updates may be found unnecessary, depending on the information on method
arguments at a certain call point obtained from static analysis. On the other
hand, a scattered implementation of a policy is more difficult to understand than
a centralized implementation. We are not concerned here with evaluating different
implementations. What is important is that our annotation scheme can handle
wrapping and scattered implementations. For handling centralized implementa-
tions, however, some adaptation is needed as the updates to the security state do
not occur in the caller method boundaries. We do not support the inlining of code
in API methods, either.

Monitor inlining can also be implemented through aspect-oriented programming
(AOP) [67, 47]. In such an approach, the security policy is programmed as an
aspect, which gets inserted into the program at the compilation stage (aspect weav-
ing) resulting in scattered or wrapped code. In [36], an example can be found
for contract enforcement for a Java application in AspectJ [94], an AOP environ-
ment. In this example, the contract, provided through assertions, is programmed
as an aspect. In this manner the two concerns, development and contract declara-
tion, are elegantly separated. We have not carried out this study in the context of
aspect-orientation as this makes reasoning compositionally on the level of program
methods more difficult.

4.10.3 Specifying Policy Adherence

Alpern and Schneider propose in earlier work a method for showing that a program
adheres to a temporal property by producing proof obligations [5]. This work is
more general than ours in a number of aspects: (i) concurrent, as well as sequential,
programs are considered, (ii) properties are not just safety properties but the set of
properties expressible by the conjunction of a set of Büchi automata (i.e. includes
liveness properties) and (iii) the program is not expected to be inlined with a
monitor. The advantage of our method, on the other hand, is that it is decidable.

The problem that we address here can be seen as a special case of the above
method. Note that our policies correspond to safety properties and that a ConSpec
automaton induced by such a policy can be converted to a deterministic Büchi
automaton (see section 4.4.2 for details). Since, in this case, the desired property
can be expressed by a single deterministic Büchi automaton, coming up with proof

8An advantage is that this particular implementation allows different types of policy compo-
sitions to be implemented as operations on these objects.

130 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

obligations for a program using the method of Alpern and Schneider becomes trivial
and amounts to asserting that the automaton is at an accepting state throughout
the execution of the program. The drawback of this approach is that the resulting
verification conditions are not presented as assertions on the program text but
rather as conditions on the state space of the program, presented as a transition
system. Therefore, in order to apply this method, such a model of the program
should be extracted. Considering that the states of this model includes a program
counter value along with variable values, the models are expected to be very large
for bytecode programs, thus making this method unattractive in our setting.

A result closely related to ours is the recent work on type-based monitor cer-
tification by Hamlen et al. [54]. Policies supported by their language Mobile are
attached to security relevant classes and restrict the sequences of security relevant
actions exhibited by instances of these classes. (ConSpec policies with scope Object

are Mobile policies when a persistent, global state is not present.) Thus the focus
is on per-object monitoring, as compared to the “per-session” model we consider in
our annotation scheme. Mobile programs are essentially programs in the intermedi-
ate language of the .NET framework with additional typing annotations that track
an abstract representation of program execution history. The important property
of Mobile programs is that a program that types correctly with respect to a security
policy is guaranteed to adhere to the policy. Thus the authors reduce the problem
of correct inlining to that of type-checking, which is an efficient, well-studied pro-
cedure. However, their results are restricted to one particular inliner, whereas we
give a characterization of a whole class of compositional inliners.

4.10.4 Security Frameworks for Mobile Code

Many frameworks have been developed in recent years for ensuring safe execution
of mobile code. We focus here on those concerned with security as defined by safety
properties and that are, at least partially, based on the PCC idea.

Abstraction-Carrying Code In [4], Albert et al. introduce a PCC framework
using abstract interpretation as enabling technology. In the Abstraction-Carrying
Code (ACC) approach, an abstract model of the program’s behavior is computed
by a static analyzer based on abstract interpretation and shipped together with the
program. On the consumer side, the abstraction is first checked to be faithful to
the program, after which policy adherence can be checked by proving the arising
verification conditions. The former step is performed on the consumer side by an
efficient checker, which simply verifies that the abstraction is loyal to the program,
in contrast to the fixpoint calculation needed to perform the abstraction on the
producer side. The class of policies handled by the framework are restricted to
the class of stateless ConSpec policies, as the abstract interpretation proceeds by
abstraction on the infinite domains of method arguments and return values. This
approach can handle a larger class of programs however, as the program does not
need to have been inlined for the proof to be generated.

Model-Carrying Code The S3MS framework presented in section 4.1 is quite

4.10. RELATED WORK 131

similar to that of model-carrying code (MCC) introduced by Sekar et al. [103]. In
the MCC setting, the program is shipped together with a model of its security
relevant behavior. To extract such a model would be too costly to be performed
with precision on the consumer side. On the producer side, however, more resources
are available and the process can potentially be performed on the source code rather
than the bytecode. In order to be assured of the safety of the code, the consumer
should perform two tasks in the MCC framework: the model should be checked to
satisfy the device policy and the model should be checked to be a safe approximation
of the program. Since the latter may be a costly task due to the size of the model
extracted from the program, an under-approximation of the program behavior is
captured by the model instead and this model is enforced on the program execution
at runtime by monitoring. (Note that if the model is precise and therefore has a
small number of spurious misbehavior, the runtime aborts due to this enforcement
are expected to occur infrequently.)

The first task mentioned above to be performed on the consumer side is policy
matching. Extended finite state automata (EFSA) are used to represent program
models and policies in MCC. These are finite state automata extended with a set of
variables for recording argument values. EFSA are similar to ConSpec automata,
except that the variables used for recording arguments can range over infinite do-
mains. (Recall that to enable the matching of two ConSpec policies, we require that
the domains of security state variables be finite.) In order to enable matching in
the presence of infinite domains, the current MCC framework allows only equality
conditions of the variables, while our language allows more sophisticated expres-
sions, including basic arithmetic operations and comparisons of numeric values.
For the program automaton M and the policy automaton P , the matching step is
performed on the consumer side by checking that the language of the automaton
M × P̄ is empty, i.e. that all the behaviors of the program are contained in the
behaviors allowed by the policy.

As noted also by the authors, in the MCC approach, the code producers need
not know anything about the security policy of the code consumer, except for the
security relevant action set. With a precise enough model, it will be possible to check
whether the program violates the user policy on the consumer side even without
prior knowledge on the policy. This is not the case in our framework, as the producer
policy is not constructed as a model of the program but rather preconceived and
then enforced on the program. In this aspect, the MCC framework is superior to
ours. What is more, MCC does not employ a proof checker component, but only
a policy matcher. On the other hand, a runtime monitoring component is used to
enforce the model on the program and the model for each program needs to be saved
for this purpose. This may be a drawback of this approach when storage space is
scarce as these models are admittedly rather large. The main difficulty in applying
MCC in practice is to develop a suitable model extraction scheme. In [103], the
authors suggest a method of “learning” the model through executing the program
on test cases. It may not be even possible to produce a model when more precise
models than EFSA (e.g. pushdown automata (PDA)) are used, as the problem

132 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

becomes undecidable in this case.
Developers of MCC view runtime aborts as unpleasant and some of their design

choices are taken to avoid them. This, however, may result in programs to be
rejected although they obey the security policy in most cases. The reason is that,
in this framework the program is not run at all on the consumer side if its model
contains violating behavior. Whereas, it may be the case that, these execution
paths are seldom taken in practice (e.g. a certain feature may not be used at all by
some users). In our framework, on the other hand, the producer policy is enforced
on the program by monitor inlining, therefore it is enough that the producer policy
is in line with the consumer policy and that the program is correctly inlined to run
the program safely. In other words, in our framework, the consumer gets to try
out the program and the decision on whether the runtime aborts are too many is
left to the consumer. This is a general advantage of using runtime monitoring over
static approaches as the program is not disqualified based on one “bad” execution
but rather such executions are prevented from doing harm in the hope that the
program has enough “good” executions to be of use.

4.11 Conclusion

4.11.1 Summary and Contributions

The contributions of this chapter can be summarized as follows:

• The policy language ConSpec is a guarded-command language with bounded
domains and a restricted language for updates, rendering the policy matching
problem decidable. Policies in this language are sets of sequences of security
relevant actions which are considered safe. Calls to and returns from API
methods are taken as the security relevant actions. Constraints can be put
on the actual arguments and return value of such an action and heap at time
of call/return. These are propagated to subclasses to handle inheritance in a
seamless manner. Semantics of “per-session” policies written in this language
is presented as symbolic and as concrete security automata.

• Monitoring as co-execution We present a formalization of monitoring with
security automata induced from ConSpec policies. The notion of co-execution
is introduced as a predicate on interleavings of (possibly infinite) program
executions with automata runs. In a co-execution, the automaton makes
transitions on the security relevant actions of the program and the program
terminates when no transition is possible. A program execution complies to
the policy if there exists a corresponding co-execution with the policy induced
automaton.

• Level I annotations We give a characterization of policy-adherence for pro-
grams, in terms of JVM class files annotated by formulae in a Floyd-like logic.

4.11. CONCLUSION 133

In order to specify policy adherence, we insert a correct monitor into the pro-
gram using annotations. The monitor state is represented by “ghost” vari-
ables, essentially specification variables that can be assigned values through
a conditional update statement. The annotations are constructed to mimic
updates to the monitor state as specified in the policy and inserted at rel-
evant method call instructions in the program. Finally, the ghost variables
representing the monitor state is asserted to be defined immediately before
any security relevant action. We prove in particular that a level I annotated
program is valid if and only if the program is policy adherent. This result
reduces the problem of showing policy-adherence to establishing the validity
of the level I annotated program.

• Level II annotations We define how level I annotations can be extended to level
II annotations. These annotations capture the existence of a concrete repre-
sentation of the monitor state in the target program, by asserting the equality
of the ghost state and the concrete monitor state at method boundaries. As
a consequence, level II annotations characterize correct, compositional inlin-
ing and can be used to show the correctness of a particular inliner after the
concrete monitor state is suitably instantiated as the inlined state.

• Correctness of Inlining In order to show the practical use of the annota-
tions, we present a simple monitor inlining scheme and show correctness for
this inliner. We sketch how, for the inliner, the level II annotations can be
completed to produce a fully annotated program for which validity can be
efficiently decided using a weakest precondition checker. Hence, full annota-
tions that imply level II annotations can be used as proof of correct inlining
to certify compliance to a third party such as a mobile device.

4.11.2 Future Work

There are many possibilities for extending our work, we enumerate most significant
of these below.

• Semantics of Policies with Different Scopes In section 4.4, we have introduced
four scopes (Global, Multisession, Session and Object) for policies, out of
which we have presented semantics, introduced inlining techniques and devel-
oped an annotation scheme for only one, the Session scope. We would like to
extend our framework for policies of scope Multisession and Object. (The
Global scope is of less interest as this type of policy restricts all applications
on a platform and hence could be viewed as a “global” Multisession policy.)

• Transparency Transparency is a prerequisite for the practical use of any mon-
itor for the purpose of security enforcement. Showing transparency is a subtle
issue when the monitor is embedded into the program. In this case, the mon-
itor is part of the program state so transparency can not be defined as the

134 CHAPTER 4. PROVABLY CORRECT RUNTIME MONITORING

identity of the executions of the original and the inlined program, on the
same input, provided the original program execution is non-violating. Trans-
parency of the monitor is not the concern of the code consumer, however,
but rather a concern to the code producer and therefore would be checked
off-device.

• Monitoring multi-threaded programs Provided an interleaving semantics for
multi-threaded bytecode programs, the notion of co-execution can be used
even for the monitoring of this type of program. However, monitor inliners
for multi-threaded programs have to implement mechanisms to avoid races
such as those which occur when several threads attempt to execute security
relevant actions at the same time.

• Handling other self-monitoring programs As we stated earlier, level I anno-
tations characterize self-monitoring programs. This is a much larger class
than correctly inlined programs. A program may obey the policy simply as
a result of security-aware development. However, checking validity of such a
level I annotated program is not straightforward and would require heuristics
to instantiate the security state in order for level II (and gradually level III)
annotations to be created.

4.11. CONCLUSION 135

Appendix A

Part I Appendix

A.1 Proofs for Part I

A.1.1 Correctness of Maximal Model Construction

Preliminaries Before we proceed to the proof of the correctness, we give some
definitions. We extend the notion of simulation for “labeled” EMTSs, that is for
EMTS E equipped with a labeling function λ : SE → 2PropV ar that labels the states
of E with propositional variables.

Definition A.1 (Simulation). R ⊆ ST × SE is a simulation with respect to valua-
tion V : PropV ar → 2ST if whenever tRs, a ∈ A and Z ∈ PropV ar:

1. if s1

a

−→3
E S1, then there is a set of states S2 such that s2

a

−→3
E S2 and for

each s′1 ∈ S1, there exists a s′2 ∈ S2 such that s′1Rs
′
2;

2. if s2

a

−→2
E S2, then there is a set of states S1 such that s1

a

−→2
E S1 and for

each s′1 ∈ S1, there exists a s′2 ∈ S2 such that s′1Rs
′
2;

3. if the run ρs2
= s2

a1−→E s
1
2

a2−→E s
2
2

a3−→E . . . is in WE then every infinite run
ρs1

= s1
a1−→E s

1
1

a2−→E s
2
1

a3−→E . . . such that si1Rs
i
2 for all i ≥ 1 is also in WE ;

4. if Z ∈ λ(s), then t ∈ V(Z).

We write tRVs when tRs with respect to valuation V. We say that abstract
state s simulates state t with respect to valuation V, denoted t �V s, if there is a
simulation relation R such that tRVs.

We define the notion of denotation of an EMTS E with respect to a valuation
as follows:

Definition A.2 (EMTS Denotation). Let E an EMTS with (SE , A,−→3
E ,−→

2
E , c),

S ⊆ SE a set of start states of E , and λ : SE → 2PropV ar a labeling function.

137

138 APPENDIX A. PART I APPENDIX

The denotation of a state s ∈ SE with respect to an LTS T and valuation

function V : PropV ar → 2ST is defined as JsK
T
V

∆
= {t | t �V s}. The notion of

denotation is lifted to sets of states in the natural way.
The denotation of a triple (E , S, λ), then, is defined as the denotation of the

start states:
J(E , S, λ)KTV

∆= JSK
T
V

Proof Using these definitions, we restate the theorem 2.13 to include valuation
V. Notice that the valuation does not have any effect when the states of E are not
labeled.
Theorem 2.13 Jε(Φ)KTV = ||Φ||TV .

Proof. The proof proceeds by induction on the structure of Φ. Let ε(Ψ1) = ((SE1
,

A, −→3
E1

, −→2
E1

, W1), S1, λ1) and ε(Ψ2)= ((SE2
, A, −→3

E2
, −→2

E2
, W2), S2, λ2) be

constructed as defined in Figure 2.4.

• Φ ≡ tt
JSKU = SU = ||tt||UV0

• Φ ≡ ff
JSKU = ∅ = ||ff||UV0

• Φ ≡ Z
JSKU = J0K≈ = ||Z||UV0

• Φ ≡ 〈a〉Ψ1

t � S
⇐⇒ t � snew (Construction)
⇐⇒ ∃t′.t

a
−→T t

′ where t′ � S1 (Def. A.1)
⇐⇒ ∃t′.t

a
−→T t

′ where t′ |=UV0
Ψ1 (Induction Hyp.)

⇐⇒ t |=UV0
〈a〉Ψ1 (Def., page 2.5)

• Φ ≡ [a] Ψ1

t � S
⇐⇒ t � snew (Construction)
⇐⇒ if there exists a transition t a

−→T t
′, then t′ � S1 (Def. A.1)

⇐⇒ ∀t′.t
a
−→T t

′ ⇒ t′ |=UV0
Ψ1 (Induction Hyp.)

⇐⇒ t |=UV0
[a] Ψ1 (Def., page 2.5)

• Φ ≡ Ψ1 ∧Ψ2

Assume Jε(Ψi)K
T
V = ||Ψi||

T
V for i ∈ {1, 2} (Induction Hyp.)

We show Jε(Ψ1 ∧Ψ2)KTV = ||Ψ1 ∧Ψ2||
T
V in two parts.

(⊆) Assume t ∈ Jε(Ψ1 ∧ Ψ2)KTV , then there is a simulation relation R1 ⊆
ST ×Sε(Ψ1∧Ψ2) for V such that tRV

1 (s, r) for some (s, r) ∈ (Sε(Ψ1)×Sε(Ψ2))|2∩

A.1. PROOFS FOR PART I 139

(S1 × S2) by definition of construction. We define R′2 ⊆ ST × Sε(Ψ1) as tR′2s
if and only if there exists r ∈ Sε(Ψ2).tR1(s, r). We prove R′2 is a simulation
relation below. Hence, t ∈ Jε(Ψ1)KTV . By a similar argument we can show
t ∈ Jε(Ψ2)KTV . Therefore, t ∈ ||Ψ1 ∧Ψ2||

T
V .

We now prove that R′2 is a simulation relation. Assume t R′2 s.

1. Whenever a ∈ A,

a) If t a
−→T t′, by definition of simulation there exists S such that

(s, r)
a

−→3
E S and t′R1(s′, r′) for some (s′, r′) ∈ S. By construction

(s, r)
a

−→3
E S if and only if there exists S′ and R′ such that s

a

−→3
E1

S′, r
a

−→3
E2
R′ and S = S′ × R′. Thus s

a

−→3
E1
S′ where t′R′2s

′ for
some s′ ∈ S′.

b) If s
a

−→2
E1
S′, then (s, r)

a

−→2
E S where S = S′ × ∪∂3

a (r). (The set
∂3
a (r) can not be empty since in this case this state would not be a

part of the constructed EMTS) Since tR1(s, r), t a
−→T t

′ such that
t′R′2(s′, r′) where s′ ∈ S′ and r′ ∈ ∪∂3

a (r), so t′R′2s
′.

2. If ρs = s
a1−→E1

s2
a2−→E1

s3
a3−→E1

. . . is in W , then no infinite run
ρt = t

a1−→T t2
a2−→T t3

a3−→T . . . of t such that ti R′2 si for all i ≥ 1 is
possible. Such an infinite run ρt is not possible because the run ρ(s,r) =
(s, r) a1−→E (s2, r2) a2−→E (s3, r3) a3−→E . . . ∈W by construction.

(⊇) Assume t ∈ Jε(Ψ1)KTV and t ∈ Jε(Ψ2)KTV , then there are simulation re-
lations R1 ⊆ ST × Sε(Ψ1) and R2 ⊆ ST × Sε(Ψ2) for V such that tRV

1 s and
tRV

2 s for some s1 ∈ S1 and r1 ∈ S2 by definition of construction. We define
R ⊆ ST × Sε(Ψ1∧Ψ2) as tR(s, r) if and only if tR1s and tR1r. We prove R is
a simulation relation below. Hence, t ∈ Jε(Ψ1 ∧Ψ2)KTV .

We now prove that R is a simulation relation. Assume t R (s, r).

1. Whenever a ∈ A,

a) If t a
−→T t′, by induction hypothesis and definition of simulation

there exists S′ and R′ such that s
a

−→3
E1
S′, r

a

−→3
E1
R′ and t′R1s

′,
t′R2r

′ for some s′ ∈ S′ and r′ ∈ R′. Then by construction there

exists S where (s, r)
a

−→3
E S and (s′, r′) ∈ S and t′R(s′, r′).

b) If (s, r)
a

−→2
E S, then either there exists S′ such that s

a

−→2
E S
′ and

S = {(s′, r′) | s′ ∈ S′ ∧ r′ ∈ ∪∂3
a (r)} or there exists R′ such that

r
a

−→2
E R

′ and S = {(s′, r′) | s′ ∈ ∪∂3
a (s) ∧ r′ ∈ R′}.

If it is the first case, by the definition of of simulation there exists
t′ such that t a

−→T t′, and t′R1s
′ for some s′ in S′. Since t is also

simulated by r, there exists some R′ ∈ ∪∂3
a (r) such that t′R2r

′ for

140 APPENDIX A. PART I APPENDIX

some r′ ∈ R′. Then (s′, r′) ∈ S and t′R(s′, r′).
The second case is similar.

2. If ρ(s,r) = (s, r) a1−→E (s2, r2) a2−→E (s3, r3) a3−→E . . . is in W , then the
infinite run ρt = t

a1−→T t2
a2−→T t3

a3−→T . . . such that ti R (si, ri) for
all i ≥ 1 should not be possible.
Assume that such an infinite run ρt1 exists. By construction, ρ(s,r) ∈W

if and only if ρs = s
a1−→E1

s2
a2−→E1

s3
a3−→E)1

. . . ∈ W1 or ρr = r
a1−→E2

r2
a2−→E2

r3
a3−→E)2

. . . ∈ W2. If it is the first case and ρs ∈ W1, by
definition of simulation there is no infinite run ρt = t

a1−→T t
′
2

a2−→T−→T
t′3

a3−→T . . . where t′i R1 si for all i ≥ 1. However, ρt is such a run hence
we reach a contradiction. The argument is similar if ρr ∈ W2.

• Φ ≡ Ψ1 ∨Ψ2

Assume Jε(Ψi)K
T
V = ||Ψi||

T
V for i ∈ {1, 2} (Induction Hyp.)

We show Jε(Ψ1 ∨Ψ2)KTV = ||Ψ1 ∨Ψ2||
T
V in two parts.

(⊆) Assume t ∈ Jε(Ψ1 ∨ Ψ2)KTV , then there is a simulation relation R1 ⊆
ST × Sε(Ψ1∨Ψ2) for V such that tRV

1 s for some s ∈ S1 ∪ S2 by definition of
construction. We define R′2 ⊆ ST × Sε(Ψ1) as tR′2s if and only if tR1s and
s ∈ Sε(Ψ1) and similarly R′′2 ⊆ ST × Sε(Ψ2) as tR′′2s if and only if tR1s and
s ∈ Sε(Ψ2). These relations are well defined as Sε(Ψ1) and Sε(Ψ2) are disjoint
sets. As the sets are disjoint, showing these relations are indeed simulation
relations is trivial as the conditions are satisfied by R1. Hence t ∈ Jε(Ψ1)KTV
or t ∈ Jε(Ψ2)KTV and by (Induction Hypothesis) t ∈ ||Ψ1||

T
V or t ∈ ||Ψ2||

T
V .

Therefore, t ∈ ||Ψ1 ∨Ψ2||
T
V .

(⊇) Assume t ∈ Jε(Ψ1K
T
V . Then there is a simulation relationR′2 ⊆ ST ×Sε(Ψ1)

for V such that tR
′V
2 s for some s ∈ S1. We define R1 ⊆ ST × Sε(Ψ1∨Ψ2) as

tR1s if and only if tR′2s. It is again trivial to show that R1 is a simulation
relation since it is identical to R′2. Hence t ∈ Jε(Ψ1 ∨ Ψ2)KTV . The case for
t ∈ Jε(Ψ2K

T
V is similar.

• Φ ≡ νZ.Ψ1

Dual to least fixed point case.

• Φ ≡ µZ.Ψ
Let ε(Ψ) = ((Sε(Ψ), A, −→3

E , −→2
E , c), S1, λ) and ε(µZ.Ψ)= ((Sε(µZ.Ψ), A,

−→3
E′ , −→

2
E′ , c

′), S′1, λ′) be constructed as defined in figure 2.4. We will prove

Jε(µZ.Ψ)KTV = ||µZ.Ψ||TV

in two steps.

(⊆) We make use of ordinal approximants and the unfolding theorem for fixed
point formulae (i.e. theorem 2.6).

A.1. PROOFS FOR PART I 141

We show
Jε(µZ.Ψ)KTV ⊆ ||µZ.Ψ||

T
V

Note first that
||(µZ.Ψ)κ||TV =

⋃

β<κ

||(µZ.Ψ)β ||TV

and so

||(µZ.Ψ)κ||TV = ||Ψ||T
V[
⋃

β<κ

||(µZ.Ψ)β ||T
V
/Z]

Using the induction hypothesis then, we can replace the formula with its
EMTS:

||(µZ.Ψ)κ||TV = Jε(Ψ)KTV[
⋃

β<κ

||(µZ.Ψ)β ||T
V
/Z]

Assume t ∈ Jε(µZ.Ψ)KTV . Then there is a simulation relation R1 ∈ ST ×
Sε(µZ.Ψ) for V such that tR1s for some state state s ∈ S1.

Then there is a mapping ord : ST → Ord+ such that whenever t′R1q
′, t′ a
−→T

t′′, q′
a

−→3
E q
′′ and t′′R1q

′′, then ord(t′′) < ord(t′) whenever Z ∈ λ1(∪q′′) and
ord(t′′) ≤ ord(t′) otherwise.

Define SκT
def
= {t′ ∈ ST | ord(t′) ≤ κ} and Rκ1

def
= R1|Sκ

T

We claim that Rκ1 is a simulation with respect to V. We show the following
by induction on ord(t′).

∀t′ ∈ ST .(∃q′ ∈ Sε(µZ.Ψ).q
′ ∩ S1 ∧ t

′R
ord(t′)
1 q′)⇒ t′ ∈ ||(µZ.Ψ)ord(t′)||TV

Assume it holds for all t′′ ∈ ST such that ord(t′′) ≤ κ by ordinal induction
hypothesis. Assume t′ ∈ ST is such that ord(t′) = κ, and there exists q′ ∈

Sε(µZ.Ψ).∃q
′ ∈ Sε(µZ.Ψ).q

′∩S1 6= ∅∧t′R
ord(t′)
1 q′). we show t′ ∈ Jε(Ψ)KTVκ where

Vκ = V[
⋃

β<κ

||(µZ.Ψ)β ||TV/Z], and then by the original induction hypothesis

and the unfolding of formula illustrated above we obtain t′ ∈ ||(µZ.Ψ)ord(t′)||TV
since κ = ord(t′).

Define Rκ2 ⊆ ST × Sε(Ψ) as {(t′, s′) | ∃q′ ∈ Sε(µZ.Ψ).(s′ ∈ real(q′) ∧ t′Rκ1q
′)},

where real(q) is defined inductively as follows:

– real(q) = q if q is a singleton,

142 APPENDIX A. PART I APPENDIX

– real(q) ⊆ q is defined otherwise as the set of derivatives of
⋃

Q in q,
where the set Q in turn is defined as follows, q′′ ∈ Q if and only if such

that ∃Q′ ⊆ Sε(µZ.Ψ). q′′
a

−→3
E Q

′ where q ⊆ Q′ .

We show that Rκ2 ⊆ ST × Sε(Ψ) is a simulation with respect to Vκ. Then,
by the assumption on t′, we have t′Rκ2s

′ for some s′ ∈ S1, and hence t′ ∈
Jε(Ψ)KTVκ .

(⊇) We show
Jε(Ψ)KTV[Jε(µZ.Ψ)KT

V
/Z] ⊆ Jε(µZ.Ψ)KTV(∗)

Then by the induction hypothesis

||Ψ||T
V[Jε(µZ.Ψ)KT

V
/Z]
⊆ Jε(µZ.Ψ)KTV

The result holds since Jε(µZ.Ψ)KTV is a prefixed point of the function λS.||Ψ||T[S/X],
and since ||µZ.Ψ||TV is the least such prefixed point by the semantics of modal
µ-calculus.

Let V∗ = V[Jε(µZ.Ψ)KTV/Z]. Proof of Jε(Ψ)KTV∗ ⊆ Jε(µZ.Ψ)KTV is as follows:

We show that if there exists an s ∈ S1 such that tRV∗s for some simulation
relation R ⊆ ST × Sε(Ψ), then there exists a simulation relation R′ ⊆ ST ×

Sε(µZ.Ψ) and a state {q} ∈ S′1 such that tR′V{q}.

We define R′ for V using R for V∗ as the least relation that satisfies the fol-
lowing:

– If tRs and s ∈ S1, tR′{s}

– If t′R′{q} and t′
a
−→T t

′′ since t′Rq there exists q′ such that q′ ∈ Q′ for

some Q′ where q
a

−→3
E Q

′ and t′′Rq′. Then,

1. if Z ∈ λ(q′), then we know by the definition of simulation that
t ∈ Jε(µZ.Ψ)KTV . Then there exists a simulation relation R′′ such
that and for some s′′ ∈ S1 t

′′R′′V{s′′} by construction and the def.
of denotation. Then t′′R′{q′, s′′}.

2. if Z 6∈ λ(q′), then t′′R′V{q′}.

– If t′R′V{q1, . . . , qn}, n > 1 and t′
a
−→T t

′′

since there exists

∗ qi 6∈ S1 such that t′Rqi, there exists q′ such that q′ ∈ Q′ for some Q′

where q
a

−→3
E Q

′ and t′′Rq′. This is justified through an invariant
of the construction, namely that for every EMTS in the range of ε,
the start states of the EMTS do not have incoming transitions.

A.1. PROOFS FOR PART I 143

∗ Q1, . . . , Qm ∈ S(ε(µZ.Ψ)) such that (
⋃

1≤j≤m

Qj) ∪ qi = {q1, . . . , qn}

and for 1 ≤ j ≤ m, t′R
′V
j Qj for some simulation relation R′j ⊆

ST × S(ε(µZ.Ψ)). (INV 2.) There exists Q′1, . . . , Q
′
m such that for

1 ≤ j ≤ m Q′j ∈ SQj for some SQj where Qj
a

−→3

ε(µZ.Ψ) SQj and

t′′R
′V
j Q

′
j.

1. If Z ∈ λ(q′), then we know by the definition of simulation that
t ∈ Jε(µZ.Ψ)KTV , then there exists a simulation relation R such that
and for some s′′ ∈ S1 t

′′R′′V{s′′} by construction and the def. of
denotation. In this case t′′R′(

⋃

1≤j≤m

Q′j ∪ {q
′} ∪ {s′′}).

2. If Z 6∈ λ(q′), then t′′R′(
⋃

1≤j≤m

Q′j ∪ {q
′}).

That the resulting states are actually reachable in ε(µZ.Ψ) is by the definition
of ε.

The proof that R′ is a simulation for V is as follows:

Assume tR′{q1, . . . , qn} where n > 1, a ∈ A and X ∈ PropV ar, then by the
invariants 1 and 2:

– there exists qi ∈ {q1, . . . , qn} such that qi 6∈ S1 and tRqi,

– Q1, . . . , Qm ∈ S(ε(µZ.Ψ)) such that (
⋃

1≤j≤m

Qj)∪qi = {q1, . . . , qn} and for

1 ≤ j ≤ m, tR
′V
j Qj for some simulation relation R′j ⊆ ST × S(ε(µZ.Ψ)).

1. Straightforward.

2. If {q1, . . . , qn}
a

−→2

ε(µZ.Ψ) S, then by construction there exists a q ∈

{q1, . . . , qn} such that q
a

−→2

ε(Ψ) S
′ and

S = ∂P((∪∂3
a (q1), . . . , S′, . . . ,∪∂3

a (qn)), S1, λ, Z).

– If q = qi, then by the definition of simulation there exists t a
−→T t

′

such that t′Rq′i for some q′i ∈ S
′. Again by the definition of simula-

tion, if t a
−→T t

′, then there should existQ′1 ∈ ∪∂
3
a (Q1), . . . , Q′Q−1 ∈

∪∂3
a (qi−1), q′i+1 ∈ ∪∂

3
a (qi+1), . . . , q′n ∈ ∪∂

3
a (qn)

– If q ∈ Qj for some j, then let Qj = {s1, . . . , sk}. By construction

Qj
a

−→2

ε(µZ.Ψ) S
′
j where S = ∂P ((∪∂3

a (s1), . . . , S′, . . . ,∪∂3
a (sk)), S1, λ, Z).

3. If for ρµZ.Ψ = {q1, . . . , qn}
a1−→E S

µ
1

a2−→E S
µ
2

a3−→E . . .max(inf (cµ(ρµZ.Ψ)(j)))
is odd, where 1 ≤ j ≤ k, then there does not exist an infinite run
ρt = t

a1−→T t1
a2−→T t2

a3−→T . . . such that tiR′S
µ
i for all i ≥ 0.

4. If X ∈ λ′({q1, . . . , qn}) then there is at least one member qj of this set for
which X ∈ λ(qj) and X 6= Z by construction. By the invariants 1 and

144 APPENDIX A. PART I APPENDIX

2, tRqi for some qi ∈ {q1, . . . , qn} and there exists a set Q ⊆ {q1, . . . , qn}
where qj ∈ Q and tR′′Q for some R′′:

– If qj = qi then t ∈ V∗(X) but since V(X) = V∗(X) when Z 6= X ,
so t ∈ V(X), or

– Then by construction, X ∈ λ′(Q), so t ∈ V(X).
2

A.1.2 Correctness of Construction for Process Terms

Proposition A.3. Let fix X.E be a guarded term. E′[fix X.E/X]ρAρ0
a
−→

E′′[fix X.E/X]ρAρ0 if and only if E′[0/X] a
−→ E′′[0/X] and E′ 6≡ X.

Proof. This can be proved by induction on the structure of E′.
We will illustrate by giving one case, the others are similar. Suppose E′ ≡ a.F . By
transition rules of CCS a.F [fix X.E/X] a

−→T F [fix X.E/X]. Then a.F [0/X] a
−→T

F [0/X].
Suppose E′ ≡ F+G. By transition rules of CCS either (F+G)[fix X.E/X] a

−→T
F ′[fix X.E/X] or (F + G)[fix X.E/X] a

−→T G′[fix X.E/X] and this is the case
if F [fix X.E/X] a

−→T F ′[fix X.E/X] or G[fix X.E/X] a
−→T G′[fix X.E/X] re-

spectively. And since G,F 6≡ X , we can use the induction hypothesis. Suppose
E′ ≡ F | G. This is the case if F and G does not contain occurrences of X , be-
cause of the assumption on the syntax of the algebra terms in the theorem. Then
(F | G)[fix X.E/X] ≡ (F | G)[0/X]. So the claim holds trivially. 2

Lemma A.4. Let Γ � E be a guarded OTA without composition and let ε(Γ � E)
= (E, S, λ). Then JSKU is equal to the set JΓ � EKρ0

up to bisimulation denoted
JSKU ⋍ JΓ � EKρ0

where ρ0 maps each recursion process variable X to 0.

Proof. The proof proceeds on the structure of E. Note that in the proofs below
t ≈ t′ denotes that t is bisimilar to t′. Let ε(Γ �E1)=((SE1

, A, −→3
E1

, −→2
E1

, W1),
S1, λ1) and ε(Γ � E2)= ((SE2

, A, −→3
E2

, −→2
E2

, W2), S2, λ2) be constructed as
defined in figure 2.8. In the cases below, Induction Hypothesis stands for induction
hypothesis and TR for transition rules of CCS.

• E ≡ 0

t � S
⇐⇒ t � s (Construction)
⇐⇒ for no a ∈ A exists t′ such that t a

−→T t
′. (Def. A.1)

⇐⇒ t ≈ 0 (Def. 2.7), {0} = JΓ � 0Kρ0

• E ≡ X

A.1. PROOFS FOR PART I 145

1. X ∈ AssProcV ar
JΓ�XKρ0

=ε(
∧

X:Ψ ∈ Γ

Ψ) and we can directly use theorem 2.13. Note that

since the logical formulae Ψ are closed, the returned labeling function
labels all states with the empty set.

2. X ∈ RecProcV ar
JΓ �XKρ0

=ρ0(X)={0} by Def. 2.7.

• E ≡ a.E1

t � S
⇐⇒ t � snew (Construction)
⇐⇒ ∃t′.t

a
−→T t

′ where t′ � S1 and

∀k ∈ A where k 6= a there exists no t′′ s.t. t k
−→T t

′′ (Def. A.1)
⇐⇒ ∃t′.t

a
−→T t

′ where t′ ≈ u′ where u′ ∈ JΓ � E1Kρ0
and ∀k ∈ A

where k 6= a there exists no t′′ s.t. t k
−→T t

′′ (Induction Hyp.)
⇐⇒ ∃u′.t ≈ a.u′ and u′ ∈ JΓ � E1Kρ0

⇐⇒ ∃u.t ≈ u and u ∈ JΓ � a.E1Kρ0
(Def. 2.7)

• E ≡ E1 + E2

t � S
⇐⇒ ∃s1 ∈ Sυ1

, r1 ∈ Sυ2
. t � (s1, r1)

⇐⇒ ∃t1, u1, s1 ∈ Sυ1
, r1 ∈ Sυ2

.t ≈ t1 + u1 ∧ t1 � s1

∧u1 � r1 (See below)
⇐⇒ ∃t1, u1.t ≈ t1 + u1 ∧ (∃v1.t1 ≈ v1 ∧ v1 ∈ JΓ � E1Kρ0

)
∧(∃v2.u1 ≈ v2 ∧ v2 ∈ JΓ � E2Kρ0

) (Induction Hyp.)
⇐⇒ ∃v1, v2.t ≈ v1 + v2 ∧ v1 ∈ JΓ � E1Kρ0

∧ v2 ∈ JΓ � E2K

⇐⇒ ∃v1, v2.t ≈ v1 + v2 ∧ v1 + v2 ∈ JΓ � E1 + E2Kρ0

⇐⇒ ∃v.t ≈ v ∧ v ∈ JΓ � E1 + E2Kρ0
(Def. 2.7)

The second equivalence is established by separate proofs of the two directions:

(⇒)Consider some t such that t � (s1, r1) where s1 ∈ Sυ1
and r1 ∈ Sυ2

.
By the Expansion theorem and by our construction definition, we take t ≈
(a0.t0 + . . . + ak.tk) + (ak+1.tk+1 + . . . + an.tn) for some processes ti ∈ U

and where for each ai.ti in this sum, ∃S′.(s1, r1)
ai
−→3

E S
′ and ti � S

′ where
S′ ⊆ SE1

if 0 < i ≤ k, and S′ ⊆ SE2
if k < i ≤ n by the definition of simulation.

The arguments for (a0.t0+. . .+ak.tk) � Sυ1
and (ak+1.tk+1+. . .+an.tn) � Sυ2

are then trivial.

(⇐) By Induction Hypothesis there exists simulation relations R1 and R2

between elements of JΓ �E1Kρ0
and Eυ1

, JΓ �E2Kρ0
and Eυ2

respectively. We
define the relation R′ ⊆ SU × SE using R1 and R2 as follows:

146 APPENDIX A. PART I APPENDIX

tR′q
∆=

t1R1s1 ∧ t2R2r1
if t = t1 + t2 and q = (s, r) for
s1 ∈ Sυ1

, r1 ∈ Sυ2

tR1q if q ∈ SE1

tR2q if q ∈ SE2

We show that R′ is a simulation relation.

Assume tR′q. The argument is obvious if q /∈ Sυ1
× Sυ2

. So we assume
q = (s1, r1) for some s1 ∈ Sυ1

and some r1 ∈ Sυ2
.

(i)(a) ∃t′.(t1 + u1) a
−→T t

′

⇒ ∃t′.(t1
a
−→T t

′ ∨ u1
a
−→T t

′) (TR)

⇒ ∃S′.(s1

a

−→3
E S

′ ∧ t′R1S
′) or

∃S′.(r1

a

−→3
E S

′ ∧ t′R2S
′) (Def A.1)

⇒ ∃S′.((s1, r1)
a

−→3
E S

′) ∧ t′RS′ (Construction)

(i)(b) ∃S′.(s1, r1)
a

−→2
E S
′

⇒ ∃S′.s1

a

−→2
E1
S′ or ∃S′.r1

a

−→2
E2
S′ (Construction)

⇒ ∃t′.t1
a
−→T t

′ ∧ t′R1S
′ or

∃t′.u1
a
−→T t

′ ∧ t′R2S
′ (Def. 2.9)

⇒ t1 + u1
a
−→T t

′ ∧ t′RS′

(ii) We show that if (s1, r1) a1−→ q1
a2−→ q2 . . . ∈ W , then ρt = t

a1−→T t1
a2−→T

t2 . . . where tiRqi for all i > 1 is not a run of t.

Assume such a ρt exists, and let t = u1+u2 where u1R1s1 and u2R2r1. By the
construction either s1

a1−→ q1
a2−→ q2 . . . ∈ Wυ1

or r1
a0−→ q1

a2−→ q2 . . . ∈ Wυ2
.

Assume it is the first case. Then tiRqi where qi ∈ SE1
for all i > 0. For this

to be the case, tiR1qi for all i > 0. Then u1
a0−→T t1

a2−→T t2 . . . is an infinite
run where tiR1qi for all i > 0 but such an infinite run can not exist by the
definition of simulation.

• E ≡ fix X.E1

v ∈ JΓ � fix X.E1Kρ0

⇐⇒ v ≡ (fix X.E1ρAρ0) for some ρA (Def. 2.7)
⇐⇒ v ≡ X [fix X.E1/X]ρAρ0 for some ρA
⇐⇒ ∃t.t ≡ E1[0/X]ρAρ0 ∧ t ∈ JΓ � E1Kρ0

(Def. 2.7)
⇐⇒ ∃s1 ∈ S1.t ≡ E1[0/X]ρAρ0 ∧ t � s1 (Def. 2.9)
⇐⇒ ∃s1 ∈ S1.v � s1 (See below)

We establish the last equivalence as follows. By induction hypothesis, there
exists a simulation relation R1 between processes in JΓ �E1Kρ0

and states of
E1. Using this relation R1, we define R ⊆ SU × SE as follows:

(E′1[fix X.E1/X])ρAρ0Rs
∆=
{

E′1[0/X]ρAρ0 R1 s if E′1 6≡ X
E1[0/X]ρAρ0 R1 s if E′1 ≡ X

A.1. PROOFS FOR PART I 147

We show that R is a simulation relation.
Assume E′1[fix X.E1/X]ρAρ0Rs
(i)(a) First let us take the case where E′1 ≡ X , then
E′1[fix X.E/X]ρAρ0 ≡ (fix X.E1)ρAρ0.

(fix X.E1)ρAρ0t
a
−→T E

′′
1 [fix X.E1/X]ρAρ0

⇐⇒ E1[fix X.E1/X]ρAρ0t
a
−→ E′′1 [fix X.E1/X]ρAρ0 (TR)

⇐⇒ E1[0/X]ρAρ0
a
−→T E

′′
1 [0/X]ρAρ0 (fix X.E1 is guarded, Prop. A.3)

⇐⇒ E1[0/X]ρAρ0 ∈ JΓ � E1Kρ0

⇐⇒ s ∈ S1 ∧ E1[0/X]ρAρ0R1s (Def. 2.7)

⇐⇒ ∃S′.s
a

−→3
E S

′ where E′′1 [0/X]ρAρ0R1s
′ for some s′ in S′ (Def. 2.9)

⇐⇒ E′′1 [fix X.E/X]ρAρ0Rs
′

Argument for E′1 6≡ X is similar.

b)First let us take the case where s ∈ S1.

s
a

−→2
E S
′

⇐⇒ E1[0/X]ρAρ0
a
−→T E

′′
1 [0/X]ρAρ0

and E′′1 [0/X]ρAρ0R1s
′ for some s′ ∈ S′(Def. 2.9)

⇐⇒ E1[fix X.E1/X]ρAρ0
a
−→T E

′′
1 [fix X.E1/X]ρAρ0

and E′′1 [fix X.E1/X]ρAρ0R1s
′ for some s′ ∈ S′(Prop. A.3, E1 6≡ X)

⇐⇒ fix X.E1ρAρ0
a
−→ E′′1 [fix X.E1/X]ρAρ0 and E′′1 [fix X.E1/X]ρAρ0Rs

′

for some s′ ∈ S′ (TR)
Argument for s 6∈ S1 is similar.

2) Take some prohibited run of s1, s1
a1−→E s2 . . .

an−1

−→E sn).ρsn where n ≥ 1
and ρsn ∈ W1. For all mentioned states sm in this run, where m > n,
sm /∈ S1. Suppose there is an infinite run of t = E′[fix X.E/X]ρAρ0: (t a1−→T

t2 . . .
an−1

−→T tn).ρtn , such that for all i > 1, tiRsi.

Assume sn ∈ S1. We have E[0/X]ρAρ0R
′sn and so

tn = X [fix X.E/X]ρAρ0Rsn by Induction Hypothesis. Then, the infinite run
ρtn has the form X [fix X.E/X]ρAρ0

an−→T En+1[fix X.E/X]ρAρ0
an+1

−→T . . .
where for all i > 1, En+i[fix X.E/X]ρAρ0Rsn+i and sn+i 6∈ S1. By the
way we defined R, this is possible if for all i > 1, En+i[0/X]ρAρ0R

′sn+i

and En+1 6≡ E. Then we can construct a run of E[0/X]ρAρ0, if we re-
place the fix expression substitution at each process with a 0 substitution:
E[0/X]ρAρ0

an−→T En+1[0/X]ρAρ0
an+1

−→T . . . where E[0/X]ρAρ0R
′sn and for

all i > 1, En+i[0/X]ρAρ0R
′sn+i. This run is a legal run of E[0/X]ρAρ0 in E1,

since the transitions between these terms exist also in E1 (Proposition. A.3,
TR) This results in an infinite run of E[0/X]ρAρ0 which is simulated by ρsn ,
but this is impossible by Def. 2.9 since ρsn ∈ W1. Hence no such infinite run
simulated by ρs1

is possible. The case for sn 6∈ S1 is similar.
2

148 APPENDIX A. PART I APPENDIX

Lemma A.5. Let T be a transition-closed LTS, Γ � E1 ‖ E2 be a guarded linear
OTA where every recursion process variable in the scope of parallel composition is
bound by a fix operator in the same scope, and let ε(Γ �E) = (E, S, λ). Then the
set JSKT includes JΓ � E1 ‖ E2Kρ0

up to bisimulation.

Proof. Let ε(Γ �E1)=((SE1
, A, −→3

E1
, −→2

E1
, W1), S1, λ1) and ε(Γ �E2)= ((SE2

,
A, −→3

E2
, −→2

E2
, W2), S2, λ2) be constructed as defined in figure 2.8.

v ∈ JΓ � E1‖E2Kρ0

⇐⇒ ∃t1, u1. v ≈ t1‖u1 ∧ t1 ∈ JΓ � E1Kρ0
∧ u1 ∈ JΓ � E2Kρ0

(linearity)
⇒ ∃t1, u1, s1, r1. v ≈ t1‖u1 ∧ s1 ∈ S1 ∧ r1 ∈ S2∧

t1 � s1 ∧ u1 � r1 (Induction Hyp.)
⇒ ∃s1, r1, x1. v � (s1, r1, x1)(See below)

In order to show the last implication we define a relation R ⊆ SU × SE (see
below). By Induction Hypothesis, simulation relations R1 and R2 exist between
elements of JΓ � E1Kρ0

, JΓ � E2Kρ0
and states of E1, E2 respectively.

R is the least relation that satisfies the following:

• if tR1s1 and uR2r1 where s1 ∈ S1 and r1 ∈ S2, then (t‖u)R(s1, r1, x) for all
x ∈ {1, 2}

• if tR1s and uR2r and t a
−→T t

′ and t′R1s
′, then (t′‖u)R(s′, r, 1)

• if tR1s and uR2r and u a
−→T u

′ and u′R2r
′, then (t‖u′)R(s, r′, 2).

We claim that the relation R is a simulation relation.
Assume (t‖u) R (s, r, x) for some x ∈ {1, 2}.

1. Whenever a ∈ A,

a) If (t‖u) a
−→T (t′‖u′), then by TR either t a

−→T t
′ and u′ = u or u a

−→T
u′ and t′ = t. In the first case, tR1s by assumption. Then, by the

Def. 2.9 there is a S′1 ⊆ SE1
such that s

a

−→3
E1
S′1 and t′R1s

′ for some

s′ ∈ S′1. So (s, r)
a

−→3
E S, where S = {(s′, r, 1)‖s′1 ∈ S′1}. Again by

assumption uR2r, then (t′‖u) R (s′, r, 1). The second case is similar.

b) If (s, r, x)
a

−→2
E S, then either s

a

−→2
E1
S′1 and S = {(s′, r, 1)‖s′1 ∈ S

′
1)}

or r1

a

−→2
E2
S′2 and S = {(s, r′, 2)‖r′ ∈ S′2}. In the first case, tR1s by

assumption. Then, Def. 2.9 there is t′ such that t a
−→T t

′ and t′R1s
′ for

some s′ ∈ S′1. Then by TR, (t | u) a
−→T (t′‖u). Again by assumption

uR2r. Then (t′‖u) R (s′, r, 1). The second case is similar.

2. If ρ(s,r,x) = (s, r, x) a1−→E (s1, r1, x1) a2−→E (s2, r2, , x2) a3−→E . . . is in W , then
no infinite run ρ(t‖u) = t‖u

a1−→E t1‖u1
a2−→E t2‖u2

a3−→E . . . such that (ti‖ui)
R (si, ri, xi) for all i ≥ 1 can exist. Suppose that such a run of (t‖u) exists.
This run would clearly be an interleaving of runs of t and u, where at least one

A.1. PROOFS FOR PART I 149

of these runs are infinite. Since ρ(s,r,x) is prohibited and Sε(Γ�E1‖E2) is finite,
there exists an infinitely occurring state (s′, r′, x′) in this run such that for
some 1 ≤ j ≤ k, the color entry of this state c(s′, r′, x′)(j) is odd and larger
than the other infinitely occurring integers in the jth entry of c(ρ(s,r,x)).

If 1 ≤ j ≤ k1, then we know that the infinitely occurring state (s′, r′, x′) is
a state where the last transition was performed by the first component, so
x = 1. By just selecting from the run ρ(s,r,x) those transitions which are
followed by some state labeled with 1 and the first component of these states,
we can extract a run ρs of the first component. By a similar selection of the
first component from the same positions of ρ(t‖u), we can build an infinite
run of t. By our assumption these two runs follow each other, although ρs is
in W , ρt is not. But again by assumption tR1s, so we reach a contradiction.
Same argument then applies to u if k1 < j ≤ k2 + k1.

2

Theorem 2.14 Let T be a transition-closed LTS, Γ�E‖t be a guarded linear OTA
where E does not contain parallel composition, and t is closed, and let ε(Γ �E ‖ t)
= (E , S, λ). Then JSKT is equal to the set JΓ �E ‖ tKρ0

up to bisimulation, where
ρ0 maps each recursion process variable X to 0.

Proof. This is similar to the proof of lemma A.4 with the additional case of the
parallel composition.

Let ε(Γ � E)=((SE1
, A, −→3

E1
, −→2

E1
, W1), S1, λ1) and ε(Γ � t)= ((SE2

, A,
−→3

E2
, −→2

E2
, W2), S2, λ2) be constructed as defined in figure 2.8. The may and

must transitions of ε(Γ � t) coincide, and all colors are 0 since no maximal model
construction is done for this case.

v � S
⇐⇒ ∃s1 ∈ S1, r1 ∈ S2, x1 ∈ {1, 2}. v � (s1, r1, x1) (Construction)
⇐⇒ ∃t1, u1, s1 ∈ S1, r1 ∈ S2. v ≈ t1‖u1 ∧ t1 � s1 ∧ u1 � r1 (See below)
⇐⇒ ∃t1, u1. v ≈ t1‖u1 ∧ t1 ∈ JΓ � EKρ0

∧

u1 ∈ JΓ � tKρ0
(Induction Hypothesis)

⇐⇒ v ∈ JΓ � E‖tKρ0

We show the second equality in two directions:
(⇒) For this case, t1 and u1 can be constructed inductively, using the state

space of (s1, r1, x1). The process u1 is to be chosen bisimilar to t. At each step we
know which component will make a transition through the last entry of the tuple,
x.

(⇐) Corollary of lemma A.5. 2

Theorem 2.15 Let T be a transition-closed LTS, Γ �E be a guarded linear OTA
where every recursion process variable in the scope of parallel composition is bound
by a fix operator in the same scope, and let ε(Γ � E) = (E , S, λ). Then the set
JSKT includes JΓ � EKρ0

up to bisimulation.

Proof. This is a direct corollary of lemma A.4 and lemma A.5. 2

150 APPENDIX A. PART I APPENDIX

A.1.3 Soundness and Completeness of the Proof System

Proposition A.6. For any s ∈ SE and LTS T , ∂a(JsKT) ⊆ J∪ ∂3
a (s)KT

Proof. Assume t′ ∈ ∂a(JsKT). Then, by the notion of a-derivatives for LTS, there
is a t ∈ JsKT s.t. t a

−→T t
′. Then, by the definition of denotation, t � s and hence,

by the definition of simulation, there are S′ and s′ ∈ S′ such that s
a

−→3
E S

′ and
t′ � s′. Therefore t′ ∈ Js′KT and hence, by the definition of a-derivatives for EMTS,
t′ ∈ J∪∂3

a (s)KT . 2

Lemma 2.22 For each rule instance in ΣE , translation π assigns a correct proof
tree in ΣT , so that each premise (resp. conclusion), s ⊢EV Φ, of the rule is matched
by a leaf (resp. root), JsKT ⊢

T
V Φ, and all unmatched leaves of the constructed proof

tree are successful terminals.

Proof. We consider each rule of ΣE in turn. The cases for ∧-rule, ∨-rule, σ-rule,
and Z-rule are trivial.

For the 2a-rule, in the first case we have ∪∂3
a (s) = ∅ Then 2a rule is applied

to node JrKT ⊢
T
V [a] Ψ′ in ΣT . Since none of the states implementing r have a-

derivatives, the resulting node is ∅ ⊢TV Ψ′, which is a successful terminal. For the
second case, we use ∂a(JsKT) ⊆ J∪∂3

a (s)KT by Proposition A.6. Then, the Thin rule
is only applied if the subset relation between the range of fa and J{s1 . . . sn}KT is
proper. Finally, a sequence of Cut-rules are applied.

For the 3a-rule, by the side condition we have s
a

−→2
E {s1, . . . , sn}, and hence,

by the definitions of simulation and denotation, for every t ∈ JsKT there must be a
s′ ∈ {s1, . . . , sn} and t′ ∈ Js′KT such that t a

−→T t
′. Then the mapping fa mapping

each t ∈ JsKT to such a corresponding t′ is a valid choice function for rule 3a of
ΣT . Again the Thin rule is applied only when the subset relation is a proper one.
The applications of the Cut-rules follow to split J{s1, . . . , sn}KT to the denotation
of individual states. 2

Corollary 2.23 For proof tree AE with root sequent s ⊢EV Φ in ΣE , AT = πT (AE)
is a proof tree with root sequent JsKT ⊢

T
V Φ in ΣT , such that each leaf si ⊢EV Φi of

AE is matched by a leaf JsiKT ⊢
T
V Φi in AT , and all unmatched leaves in AT are

successful terminals.

Proof. Follows directly from lemma 2.22 by induction on the depth of AE . 2

Canonical Proof Constructions and the Matching Function γ. Let E be a finite-
state EMTS, s ∈ SE , and Φ have prime subformulas only. If s �

E
V Φ, then the

construction process of the proof trees AU and A∗U in the weakened version of ΣT
for the goal JsKU ⊢

U
V

Φ is presented below. The construction is described through
the matching function γ : ΓN → ΓM ∪ {⊥}, where ΓN and ΓM are the node spaces

A.1. PROOFS FOR PART I 151

of AU and A∗U , respectively and ⊥ stands for the “undefined value”. The definition
of γ is given as the construction progresses.

Construction

1. The root nodes n0 of AU and m0 of A∗U both contain the sequent: JsKU ⊢
U
V

Φ.

(γ(n0) ∆= m0)

2. Thin rule is applied to n0 to produce the subgoal n1 : ||Φ||U
V
⊢U

V
Φ. (γ(n1)

∆
=

m0)

3. If the current subgoal in AU is n : Sn ⊢UV Ψ:

a) γ(n) = m, where m : JsmKU ⊢
U
V

Ψ

• Ψ = Ψ1 ∧Ψ2 : Apply ∧-rule to n and ∧-macro to m to get the new
subgoals n1 : Sn ⊢UV Ψ1,n2 : Sn ⊢UV Ψ2 and m1 : JsmKU ⊢

U
V

Ψ1,

m2 : JsmKU ⊢
U
V

Ψ2 respectively. (γ(n1) ∆= m1 and γ(n2) ∆= m2).
• Ψ = Ψ1 ∨ Ψ2 : Pick Ψi where i ∈ 1, 2 so that Ψ implies Ψi. Apply
∨-rule to n and ∨-macro to m to get the new subgoals n′ : Sn ⊢UV Ψi

and m′ : JsmKU ⊢
U
V

Ψi respectively. (γ(n′) ∆= m′)
• Ψ = [a] Ψ′ : Apply 2-rule to n and the corresponding 2-macro1 to
m according to whether ∂3

a (sm) = ∅. Let the immediate subgoals

of n and m be n′ and m′, respectively. (γ(n′) ∆= m′)
If ∪∂3

a (sm) = {s1 . . . sk} where k > 1, then apply k − 1 consecutive
Cut-rules to n′. For every application, if the current subgoal is
nj , then the newly produced subgoals are nj+1 : ∂a(Sn) ⊢U

V
Ψ′

and nj+2 : ∂a(Sn) ⊢U
V

Ψ′ with the subgoals of γ(nj) being mj+1 :
J{s1 . . . sk′−1}KU ⊢

U
V

Ψ′ and mj+2 : Jsk′KU ⊢
U
V

Ψ′ where 1 ≤ k′ ≤ k.

Apply the next Cut rule to nj+1. (γ(nj+1) ∆= mj+1 and γ(nj+2) ∆=
mj+2)

• Ψ = 〈a〉Ψ′ : Pick S′ ∈ ∂2
a (sm) with for all s′ ∈ S′, s′ �EV Ψ′. Apply

3-rule to n and 3-macro2 to m using the choice functions fa and fEa
respectively, where fa is some choice function that preserves validity
with fa|JsmK

U
= fEa and fEa maps each t ∈ JsmKU to some t′ ∈ JS′KU

such that t a
−→ t′ and there exists s′ ∈ S′ where s′ simulates t′.

Let the immediate subgoals of n and m be n′ and m′, respectively.

(γ(n′) ∆= m′)
If S′ = {s1 . . . sk} where k > 1, then apply k − 1 consecutive
Cut-rules to n′. For every application, if the current subgoal is
nj , then the newly produced subgoals are nj+1 : fa(Sn) ⊢U

V
Ψ′

1No application of the Thin rule is needed in this macro. See Proof of Proposition A.6
2No application of the Thin rule is needed in this macro. See proof of Proposition A.7

152 APPENDIX A. PART I APPENDIX

and nj+2 : fa(Sn) ⊢U
V

Ψ′ with the subgoals of γ(nj) being mj+1 :
J{s1 . . . sk′−1}KU ⊢

U
V

Ψ′ and mj+2 : Jsk′KU ⊢
U
V

Ψ′ where 1 ≤ k′ ≤ i.

Apply the next Cut rule to nj+1. (γ(nj+1) ∆= mj+1 and γ(nj+2) ∆=
mj+2)

• Ψ = σZ.Ψ′ : Apply the Thin rule to n to get the new subgoal n′′.

(γ(n′′) ∆= m)
Apply σZ rule to n′′ and σZ macro to m to get the new subgoals

n′ and m′, respectively. (γ(n′) ∆= m′)
• Ψ = Z where Z identifies the fixed point formula σZ.Ψ′: Apply Z

rule to n and Z macro to m to get the new subgoals n′ and m′,

respectively. (γ(n′) ∆= m′)

Let n1 . . . ni where i ∈ {1, 2} be the current subgoals in AU :
Test for each subgoal nj if it is a terminal using the conditions below. If
nj is a terminal than no further rules are applied to γ(nj). If nj is not
a terminal, repeat Step (iii) for each nj .

b) γ(n) = m, where m : ∅ ⊢TV Ψ, which means m is a successful terminal
of A∗U and will not be applied any further rules.
Apply to n the corresponding rule according to the structure of Ψ as in
a). If the rule to be applied is 3, the choice function f can be picked as
any that preserves validity.
Let n1 . . . ni where i ∈ {1, 2} be the subgoals of n. A subgoal nj of
n is a terminal if it obeys one of the termination conditions for the
original proof system, stated on page 36. For the subgoals that are not

terminals the process is repeated beginning from Step (iii).(γ(nj) ∆= ⊥
where 1 ≤ j ≤ i)

c) γ(n) = ⊥ Apply corresponding rule according to the structure of Ψ as
in a). If the rule to be applied is 3, the choice function f can be picked
as any that preserves validity.
Let n1 . . . ni where i ∈ {1, 2} be the subgoals of n. A subgoal nj of
n is a terminal if it obeys one of the termination conditions for the
original proof system, stated on page 36. For the subgoals that are not

terminals the process is repeated beginning from Step (iii).(γ(nj) ∆= ⊥
where 1 ≤ j ≤ i)

Successful Termination for node n′ : S′n ⊢
T
V Ψ′ of AU :

1. Ψ′ = tt, or else Ψ′ = Z, Z is free in the initial formula, and S′n ⊆ V(Z)

2. S′n = ∅

3. Ψ′ = Z where Z identifies a fixed point formula σZ.Φ, then this sequent is a
σ-terminal if node γ(n′) = m′ in A∗U where m′ : Jsm′KU ⊢

U
V

Ψ′ is a σ-terminal

A.1. PROOFS FOR PART I 153

with companion node m′′, which mentions same sequent m′′ : Jsm′KU ⊢
U
V

Ψ′

and the companion node of n is γ−1(m′′). The terminal is successful when
σ = ν. If σ = µ, then the terminal is successful if there is no infinite chain of
composable trails T0 ◦ T1 ◦ T2 . . . of γ−1(m′′) and n′.

It can be shown that the matching function γ is surjective, that is for each node
m of A∗U there exists at least one node n of AU such that γ(n) = m. Furthermore,
one can say that for all nodes m of A∗U , the set γ−1(m) is either a singleton or
γ−1(m) has two elements n1 and n2, when the rule applied to n1 is a Thin, with
n2 as the resulting subgoal.

Proposition A.7. Let E be an EMTS. For universal LTS U , s ∈ SE , for every
S′ ∈ ∂2

a (s), there exists a choice function fa such that fa(JsKU) = JS′KU .

Proof. By definition 2.9, for every t ∈ JsKU there exists t′ ∈ JS′KU such that t a
−→T

t′. So we know that at least one choice function fa exists which takes the elements
of JsKU to a subset of JS′KU . What is more, we can construct such an fa whose range
covers all elements of JS′KU : Take any t ∈ JsKU and let t′ ∈ ∂a(t) and t ∈ JS′KU .
For each state t′′ ∈ JS′KU , define fa(tnew) = t′′ where tnew is a state that has all
transitions of t plus the transition tnew

a
−→T t

′′. It is clear that each tnew defined
in this manner is simulated by s and exists in U .

2

Proposition A.8. Let E be an EMTS. For universal LTS U and s ∈ SE , if
s �
E
V 〈a〉Ψ, then there exists S′ ∈ ∂2

a (s) such that for all s′ ∈ S′, s′ �EV Ψ.

Proof. First, we prove that ∂2
a (s) is not empty. Assume ∂2

a (s) = ∅. Then, the
state tnew which has all the transitions of some t ∈ JsKU , with the exception of a-
transitions would still be simulated by s. Then by definition 2.11, tnew |=UV 〈a〉Ψ

′,
but this is clearly not the case so we reach a contradiction.

Next, we prove that there exists S′ ∈ ∂2
a (s) such that for all s′ ∈ S′, s′ �EV Ψ.

Assume for all S′ ∈ ∂2
a (s), S′ does not satisfy Ψ′. In such a case the state tbrandnew

which has all the transitions of a state t ∈ JsKU excluding a-transitions of t and with
the addition of the transition tbrandnew

a
−→T t

′ for some t′ ∈ JS′KU , is still simulated
by s. But then tbrandnew does not satisfy 〈a〉Ψ′, which is a contradiction. 2

Lemma A.9. Let E be a finite-state EMTS and AU and A∗U be proof trees con-
structed as described above. If for node n : Sn ⊢UV Φn in AU , γ(n) = m where
m : Sm ⊢UV Φm in A∗U , then Sm ⊆ Sn.

Proof. In order to make our proof, we can use induction on the depth of the rule
applications in AU .

As a base case, n0 and γ(n0) are the roots of the trees and mention the same
sets, so initially Sm = Sn.

154 APPENDIX A. PART I APPENDIX

Suppose node n : Sn ⊢UV Ψ of AU matches m : Sm ⊢UV Ψ of A∗U and Sm ⊆ Sn we
show the same subset condition holds for each subgoal produced by rule induction.
If the rule applied to n is:

• Thin, then let the immediate successor of n be n′ : ||Ψ||U
V
⊢U

V
Ψ. We know

that γ(n′) = m by definition and that Sn ⊆ ||Ψ||UV , hence Sm ⊆ ||Ψ||UV

• ∨, ∧, σZ or Z, the sets Sn and Sm also occur in the immediate successors,
so the property is preserved.

• Cut, then the set Sn occurs in both subgoals n1 and n2, meanwhile the sets
mentioned in γ(n1) and γ(n2) are both subsets of Sm, so they are also subsets
of Sn.

• 2a, then Sm = JsmKU for some state sm of E . Then ∂a(JsmKU) = J∪∂3
a (sm)KU

by Proposition A.8. Since JsKU ⊆ Sn, ∂a(JsKU) ⊆ ∂a(Sn). Hence J∪∂3
a (sm)KU ⊆

∂a(Sn).

• 3a This is the case since we have selected fa|JsmK
U

= fEa in the construction.
2

Lemma A.10. Let E be a finite-state EMTS, s ∈ SU , and Φ have prime subfor-
mulas only. If s �

E
V Φ, then let AU and A∗U be proof trees constructed as described

above. If AU is a finite proof tree, than A∗U is also a finite proof tree.

Proof. First, we have to show the correctness of the application of the rules involved
in macro applications, i.e. A∗U is indeed a proof tree. Next, we show that validity
is preserved with each macro application. Finally. we show that the application
of macros guided by the rule applications in AU can not go on forever, i.e. A∗U is
finite.

Let m : JsmKU ⊢
U
V

Ψ be a node of A∗U where JsKU |=
U
V

Ψ. If the macro applied
to m is:

• ∧, σZ or Z, the application is identical to the corresponding rule application
in ΣT .

• ∨ and Ψ = Ψ1 ∨Ψ2, the goal is guaranteed to be reduced to a single subgoal
because Ψ is a subformula of Φ and hence prime.

• 2a where Ψ = [a] Ψ′ and JsKU |=
U
V

[a] Ψ′. We first have to show that no
application of the Thin rule is needed. This is the case since ∂a(JsKU) =
J∪∂3

a (s)KU by the definition of satisfaction, definition 2.11. This automatically
shows that J∪ ∂3

a (s)KU |=
U
V

Ψ′ by the preservation of validity in AU .

• 3a where Ψ = 〈a〉Ψ′ and JsKU |=
U
V
〈a〉Ψ′. The existence of a proper choice

function fEa is a result of Proposition A.7 and Proposition A.8.

A.1. PROOFS FOR PART I 155

This concludes the proof of the correctness of the macro applications.
The fact that validity is preserved comes from lemma A.9 and that validity is

preserved in canonical proofs and hence is preserved in AU .
The fact that the tree is finite is obvious, because a macro is applied to a

sequent of A∗U , if a rule is applied to the matching sequent in AU . Cut-rules are
applied in AU when a macro includes them so that after the whole construction
each rule application in AU is matched by a rule application in A∗U except for Thin.
The possible causes of nontermination could be the modifications we made on the
proof system: the addition of the Cut-rule applications and the new termination
condition.

The modified proof system allows for infinitely many Cut-rule applications since
the sequent is not changed with each application, but the number of consecutive
Cut-rule applications allowed in the construction is equal to the number of states
the particular state of the E has transition to. So the number of applications is
guaranteed to be finite since E is finite state.

The new termination condition used in the construction requires that for a
repeating node in AU to be a terminal, its matching node in A∗U must be a σ-
terminal which mentions exactly the same sequent with its companion. The set
mentioned in repeating nodes is always the denotation of a single set and the
number of states of the E is finite, so eventually we are guaranteed to reach the
identical sequent in A∗U . Therefore the modified termination condition does not
cause infinite proof trees. 2

Definition A.11 (Trail Translation). Let AU and A∗U be constructed as described
above, and T = (ti,mi), . . . , (tk,mk) be a trail in A∗U of the terminal node mk and
its companion mi. The function δ converts T to a trail of the matching σ-terminal
and its companion in AU by replacing each node with the matching one(s) in AU :

δ(ε)
∆
= ε

((t,m) · T) ∆=
{

((t, n) · δ(T)) γ−1(m) = {n}
((t, n) · (t, n′) · δ(T)) γ−1(m) = {n, n′} with n above n′ in AU

It is possible to use the same state ti for the trail of AU because for each mi that
is matched by a ni, a state ti that occurs in node mi is also in ni, by lemma A.9.

Lemma A.12. If AU is a successful proof tree, then A∗U is also a successful proof
tree.

Proof. We know by lemma A.10 that we will get a correct tableaux A∗U . It remains
to prove that if the first tableaux is successful, then the second is also successful.

Let m : Sm ⊢UV Ψ be a leaf of A∗U , and n : Sn ⊢UV Ψ where γ(n) = m and the
rule applied to n is not Thin. Assume n is a successful terminal.

If Sm = ∅, then it is trivially a successful terminal. For all other cases, since
the termination is checked only after (possible) Cut-rule applications, Sm = JsmKU
for some state sm of E .

156 APPENDIX A. PART I APPENDIX

If Ψ is tt, m is trivially successful. If Ψ is a variable Z which is free in the
initial formula, then it should be the case that Sn ⊆ V (Z), and by lemma A.9,
JsKU ⊆ V (Z).

In the case where Ψ is a variable Z that identifies σZ.Ψ′, let n′ be the companion
node of n. By construction, γ(n′) = m′ where m′ : JsmKU ⊢

U
V
Z in A∗U , and m′ a

predecessor of m. Then m is a successful terminal if Z identifies νZ.Ψ′.
If Z identifies µZ.Ψ′, it has to be shown that there is no infinite chain of com-

posable trails of the companion node m′. Suppose there is such an infinite chain of
composable trails, κm′=T0◦T1◦T2 . . . in A∗U . Then there is a corresponding infinite
chain of composable trails in AU given by κn′=δ(T0) ◦ δ(T1) ◦ δ(T2) However,
n is a successful terminal, therefore no such infinite chain of n′ exists. Hence we
reach a contradiction. 2

Lemma A.13. If proof trees AU and A∗U constructed as described above are suc-
cessful, then AE = π−1

U (A∗U) is also a successful proof tree.

Proof. If AU is a successful proof tree, A∗U is a successful proof tree by lemma A.12.
The side conditions of the rules of ΣE are satisfied by the correctness of the macro
applications in A∗U . Thus, to establish the rest of the result, it suffices to show that
each leaf of AE = π−1

U (A∗U) is a successful terminal.
By the definition of πT , it is easy to observe that each leaf of AE is matched

by a leaf of A∗U , except the case where the leaf node is m : r ⊢EV Ψ with the
matching node being n : JrKU ⊢

T
V Ψ with ∪ ∂3

a (r) = ∅. Since r does not have
may-transitions, m is a successful terminal.

Consider the successful terminal n : JrKU ⊢
T
V Ψ in A∗U and the matching node

of AE , m : r ⊢EV Ψ. The proof that the latter is also a successful terminal is trivial
when Ψ = tt, when Ψ = Z and Z is free in the initial formula, or when Z identifies
the formula νZ.Ψ′.

For the terminal node m to be successful when Ψ = Z and Z identifies µZ.Ψ′,
all runs that correspond to an infinite sequence of E-trails of m and its companion
node m′ should be in W , that is there is no wm′ = E1 ◦ E2 . . ., where for all i ≥ 1,
Ei begins with (r,m′) and ends with (r,m), and α(wm′) is not in W .

Assume that such an infinite sequence, wm′ = E1 ◦ E2 . . . exists, where α(wm′)
is not in W . Then an LTS, T , can be constructed such that for each ri in SE , there

exists ri′ in ST and there exists a transition ri′
a
−→T rj′ , if and only if ri

a

−→3
E rj .

It is clear that each state, ri′ , of T is simulated by a state ri of E , so ri′ ∈ JriKT .
Since U contains T , there is an infinite sequence of composable trails in A∗U of the
terminal node n and its companion n′ that mentions the same states, ri′ . But since
n is a successful terminal, there can be no such infinite sequence of trails, hence we
reach a contradiction.

2

Theorem 2.27 (Completeness) Let E be a finite–state EMTS, s ∈ SE , and let
Φ have prime subformulas only. Then s �

E
V Φ implies s ⊢EV Φ.

A.1. PROOFS FOR PART I 157

Proof. Assume s �
E
V Φ. Then, by definition 2.11, JsKT |=

T
V

Φ for any T , and hence
also JsKU |=

U
V

Φ. By completeness of ΣT , there exists a family of canonical proofs
for the goal JsKU ⊢

U
V

Φ. AU , which can be viewed as a combination of several of
these canonical proofs, can be constructed with A∗U as described above. Then, by
lemma A.13, π−1

U (A∗U) is a proof of s ⊢EV Φ in ΣE . 2

Appendix B

Part III Appendix

B.1 ConSpec Semantics Annex

In section 4.4.2, we described how ConSpec policies induce symbolic automata.
We assumed in this description a semantic function fU for each update block U
of the policy. While update blocks U are comprised of sequences of assignments
to security state variables, the function fU returns for each security state variable.
The property of fU is that the value of a security state variable s has the same value
as a result of the execution of U on the initial state σ of security state variables
and the assignment to s of the expression fU (s) interpreted on σ. Here we describe
how to obtain an fU from the update block U .

We consider update blocks in the context of event clauses. Here we describe the
case where the update blocks to be translated belong to an AFTER event clause:

AFTER τ xret = c.m (τ1 x1, . . . , τn xn)
PERFORM

G1 -> U1

...
Gm -> Um

Let Avar = {x1, . . . , xn} be the set of formal arguments of the event and Pvar =
{xret} ∪Avar be the set of all program variables of the event clause.

Below, let states (q : Svar→ PrimVal) ∈ Q be as mappings from security state
variables of the policy to primitive values, and let σ : Pvar → Val range over the set
Σ of mappings from program variables to values which respect the declared types
of the variables. We assume for any ConSpec expression E occurring in an AFTER
event clause, the semantic function:

JEK : Q× Σ×H×H→ PrimVal

and every update block UpdateBlock, or U for short, of ϕ♯, we assume the semantic

159

160 APPENDIX B. PART III APPENDIX

function:
JUK : Q× Σ×H×H→ Q

where the two heaps in the function types refer to the heap of the program before
and after the execution of the method call, respectively.

The function fU for a ConSpec update block U has the following property:

∀q ∈ Q, σ ∈ Σ, h, h′ ∈ H.JUK(q, σ, h, h′) = λs ∈ Svar.JfU (s)K(q, σ, h, h′)

The goal is to come up with expressions that use the original values of the
security variables, i.e. the state of the automaton before the action has occurred.
The function fU can be produced by going through the sequence of assignments in
the update block from top to bottom and replacing the occurrences of security state
variables by their latest assigning expressions. The auxiliary function faux takes as
argument a mapping from security state to ConSpec expressions and the update
block; with each assignment statement, the function updates the latest assigning
expressions recorded in the mapping. Let UV ar be the set of all variables occurring
in the update block (i.e. the union of Svar, Avar, the return value xret and any
local variables), and its cardinality be m. We let y range over the variables of
this set. Furthermore, we take substitution ρ to be [y1/g(y1), . . . , ym/g(ym)]. The
function faux is defined recursively as follows:

faux(g)(y = E; Rest) = faux(g[y 7→ (Eρ)])(Rest)
faux(g)(local τ y = E; Rest) = faux(g[y 7→ (Eρ)])(Rest)
faux(g)(skip;Rest) = faux(g)(Rest)
faux(g)(ǫ) = g

The function fU then uses this auxiliary function by calling it with an initial
mapping f0, which maps each security state variable to some fixed symbol as a rep-
resentative of their original value. These symbols are exchanged with the variables’
names when the auxiliary function returns.

fU = (faux(f0)(U))ρ0 where ρ0 = [f0(s1)/s1, . . . , f0(sn)/sn]

Example B.1. Suppose the following is an update block U for a policy with security
state variables s1, s2, s3 and the program variable x:

local int foo= 0;

foo = s1;

s1 = s2;

s2 = foo;

s3 = x;

Then the calls to the auxiliary method with f0=[s1 7→ X1, s2 7→ X2, s3 7→ X3]
is as follows:

B.2. EXAMPLE FROM PART III 161

faux(f0)(U)
= faux([s1 7→ X1, s2 7→ X2, s3 7→ X3])(local int foo = 0;foo = s1;s1 = s2;s2 = foo;s3 = x;)

= faux([s1 7→ X1, s2 7→ X2, s3 7→ X3, foo 7→ 0])(foo = s1;s1 = s2;s2 = foo;s3 = x;)

= faux([s1 7→ X1, s2 7→ X2, s3 7→ X3, foo 7→ X1])(s1 = s2;s2 = foo;s3 = x;)

= faux([s1 7→ X2, s2 7→ X2, s3 7→ X3, foo 7→ X1])(s2 = foo;s3 = x;)

= faux([s1 7→ X2, s2 7→ X1, s3 7→ X3, foo 7→ X1])(s3 = x;)

= faux(s1 7→ X2 , s2 7→ X1, s3 7→ x, foo 7→ X1)()

= s1 7→ X2 , s2 7→ X1, s3 7→ x, foo 7→ X1

fU
= faux(f0)(U)ρ0

= (s1 7→ X2, s2 7→ X1, s3 7→ x, foo 7→ X1)[X1/s1, X2/s2,X3/s3]
= s1 7→ s2, s2 7→ s1, s3 7→ x

B.2 Example from Part III

The text contains a complete example. The Java source code of the program is as
follows. The program contains the Ask class, which has a single field called gui

of type GUI. The ask method of this class calls GUI.AskConnect() on the object
stored in the gui field and returns the return value of this method.

public class MyClass {

GUI gui;

public bool ask() {

return gui.AskConnect();

}

}

The policy is the example policy from section 4.4. The corresponding bytecode
program is presented on the left of figure 4.8. The program is inlined for the
example policy; the inlined program is as presented on the right of figure 4.8. The
level I annotated program for the example policy is presented in figure 4.4. Both
these steps are performed assuming that GUI does not have any subclasses. The
level II annotated program for the program is given in figure 4.6. Finally, the level
III (fully) annotated program is given in figure 4.9. We now show in detail how to
compute level III annotations from the level II annotated program.

Requires and Ensures are determined by rule 1
Requires = Ensures = INV

Annotations of L1− L2 are computed using rule 2.

AIII [L1] = norm(INV)
= INV

AIII [L2] = norm(INV)
= INV

162 APPENDIX B. PART III APPENDIX

Annotation of L5 (used for computing the annotations L3− L4) is computed using rule 3.

AIII [L5] = norm((gthis := s[0]) ·
(gthis : GUI⇒ (ga, gp) 6= (⊥,⊥)) ·
((ga, gp) = (SecState.accessed, SecState.permission)) ·
(gthis = r1))

= ((s[0] : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (s[0] = r1)) ·
(gthis := s[0]) ·
((gthis : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (gthis = r1))

Annotations of L3− L4 are computed using rule 5 using wp computation.

AIII [L4] = wp(M [L4])

= (shift(head(AIIIM [L5])))[s[0]/r1]
= ((s[1] : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (s[1] = r1))[s[0]/r1]
= ((s[1] : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (s[1] = s[0]))

AIII [L3] = wp(M [L3]

= unshift((head(AIIIM [L + 1]))[s[1]/s[0]])
= unshift((s[1] : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (s[1] = s[1]))
= (s[0] : GUI⇒ (ga, gp) 6= (⊥,⊥)) ∧ INV ∧ (s[0] = s[0])

Annotation of L13 (used for computing the annotations of L6− L12) is computed using rule 4.

AIII [L13] = norm(INV)
= INV

Annotations of L6− L12 are computed using rule 5 using wp computation.

AIII [L12] = wp(M [12])

= unshift(head(AIIIM [L13])[s[0]/r2])
= unshift(INV)
= INV

AIII [L11] = wp(M [11])

= (shift(head(AIIIM [L12])))[s[0]/SecState.permission]
= INV [s[0]/SecState.permission]
= (ga, gp) = (SecState.accessed, s[0])

AIII [L10] = wp(M [10])

= unshift(head(AIIIM [L13])[r2/s[0]])
= unshift((ga, gp) = (SecState.accessed, r2))
= (ga, gp) = (SecState.accessed, r2)

AIII [L9] = wp(M [9])

= (s[0] = 0⇒ shift(head(AIIIM [L12]))) ∧

(¬(s[0]) = 0⇒ shift(head(AIIIM [L10])))
= (s[0] = 0⇒ INV) ∧

(¬(s[0]) = 0⇒ (ga, gp) = (SecState.accessed, r2))

AIII [L8] = wp(M [8])

= (s[0] <: GUI⇒ (head(AIIIM [9]))[1/s[0]]) ∧

(¬(s[0] <: GUI)⇒ (head(AIIIM [9]))[0/s[0]])
= (s[0] <: GUI⇒ ((ga, gp) = (SecState.accessed, r2))) ∧

(¬(s[0] <: GUI)⇒ (INV))

AIII [L7] = wp(M [L7])

= unshift((head(AIIIM [L8]))[r1/s[0]])
= unshift((r1 <: GUI⇒ ((ga, gp) = (SecState.accessed, r2))) ∧

(¬(r1 <: GUI)⇒ (INV)))
= (r1 <: GUI⇒ ((ga, gp) = (SecState.accessed, r2))) ∧

(¬(r1 <: GUI)⇒ INV)

We denote with Φ below the right hand side of the ghost assignment of AIIM [L6].

AIII [L6] = norm(gthis = r1 · INV · AIIM [L6] · wp(M [L6]))

= norm(gthis = r1 · INV · AIIM [L6] ·
(shift(head(r1 <: GUI⇒ ((ga, gp) = (SecState.accessed, r2))) ∧
(¬(r1 <: GUI)⇒ INV)))[s[0]/r2])

= norm(gthis = r1 · INV ·
((ga, gp) := Φ ·
((r1 <: GUI⇒ ((ga, gp) = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI)⇒ INV)))

= (gthis = r1) ∧ INV ∧ (r1 <: GUI⇒ (Φ = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI)⇒ (Φ = (SecState.accessed, SecState.permission))) ·
((ga, gp) := Φ ·
((r1 <: GUI⇒ ((ga, gp) = (SecState.accessed, s[0]))) ∧
(¬(r1 <: GUI)⇒ INV)))

B.3. PROOFS FOR PART III 163

B.3 Proofs for Part III

B.3.1 Proof of Theorem 4.10

Theorem 4.9 (Correctness of Monitoring by Co-execution) Let T be a program,
and P a policy. The following holds, where A is the action set of AP :

{w ↓ 1 | w is a co-execution of T and AP} = {E | E ∈ Π(T) ∧ srtA(E) ∈ LAP}

Proof. (⊇) We prove that for all executions E of the program such that the security
relevant trace of E is in the language of the policy automaton, there is an execution
w of the program and the policy automaton, where w ↓ 1 = E.

Let q0q1 . . . be the run of the automaton for srtA(E). We (1) construct a
configuration-automaton state pair sequence w for E, using the automaton run
and (2) prove that w is a co-execution with w ↓ 1 = E.

(1) Intuitively, we begin the construction with the initial configuration C0 of E
and the initial state q0. We add the following configurations, paired with this state
until a security relevant action (s.r.a.) is produced. Whenever an s.r.a. is produced,
the state component of the added pair is changed with the next automaton state
in the run. This process is repeated until both the end of the execution and of the
automaton run is reached, for infinite executions the process is repeated infinitely
many times. Security relevant actions are detected by using the actA functions on
consecutive configurations of the execution.

Formally, letwn denote the sequence constructed for the (finite) prefix C0C1 . . . Cn
of E. The sequence w0 is defined as (C0, q0) if act♭(C0) = ǫ and (C0, q0)(C0, q1) if
act♭(Cn) ∈ A♭. When constructing the sequence wn for longer executions, we use
the current state as the state component of the last pair of wn−1, denoted below
by qk. The sequence wn for n > 0 is defined as follows:

wn =

wn−1 · (Cn, qk) if act♯(Cn−1, Cn)act♭(Cn) = ǫ

wn−1 · (Cn, qk) · (Cn, qk+1) if act♯(Cn−1, Cn)act♭(Cn) ∈ A♭

wn−1 · (Cn, qk) · (Cn, qk+1) if act♯(Cn−1, Cn)act♭(Cn) ∈ A♯

wn−1 · (Cn, qk) · (Cn, qk+1) · (Cn, qk+2) if act♯(Cn−1, Cn) ∈ A♯, act♭(Cn) ∈ A♭

(2) We prove that wi is a co-execution and wi ↓ 1 = C0C1 . . . Ci for all finite
prefixes C0 . . . Ci of E. The result then follows since this is a continuous predicate
on configuration sequences with respect to the immediate prefix ordering and Π(T)
is prefix-closed.

In the proof, we use the fact that ConSpec automata are deterministic (by
definition) and their language is prefix-closed (since each ConSpec automaton is a
security automaton as defined by Schneider [102]). We can then conclude for each
prefix E′ of E that E′ is in the language of the automaton and the run of the
automaton which accepts E′ is a prefix of the run accepting E.

(Base Case) Consider the execution consisting of the initial configuration C0.
If act♭(C0) ∈ A♭, then the security relevant trace of C0 is act♭(C0). Then w0 =

164 APPENDIX B. PART III APPENDIX

(C0, q0)(C0, q1) by construction. This sequence is an interleaving since : (C0, q0) −→AUT

(C0, q1). By definition then, w0 ↓ 1 = C0 and extract(w0) = q0q1 act♭(C0). Clearly
extract(w0) ∈ E♭. On the other hand, if act♭(C0) = ǫ, the security relevant trace is
empty. The accepting run then consists of q0 and the constructed sequence w0 of
(C0, q0). Again by definition, w0 ↓ 1 = C0, and extract(w0) = ǫ.

(Induction Hypothesis) Assume that wi is a co-execution and wi ↓ 1 = C0C1 . . . Ci
for all i < n.

(Inductive Step) Consider the sequence wn constructed for the prefix C0 . . . Cn−1Cn
using the automaton run q0 . . . qm where m is the number of security relevant ac-
tions of C0 . . . Cn−1Cn. By definition, the following holds:

srtA(C0 . . . Cn−1Cn) = srtA(C0 . . . Cn−1) act♯(Cn−1, Cn) act♭(Cn)

We consider the most difficult case where act♯(Cn−1, Cn) ∈ A♯, act♭(Cn) ∈ A♭.
(The other cases are similar) Since q0 . . . qm is an accepting run for this execution:

δ(qm−2, act♯(Cn−1, Cn)) = qm−1 (i)
δ(qm−1, act♭(Cn)) = qm (ii)

Then the sequence wn−1, constructed (as described above) for En−1 using the
run q0 . . . qm−2, is a co-execution by the induction hypothesis. Note that the last
component of this co-execution is Cn−1, qm−2 by the construction. Again by con-
struction, the sequence wn is an extension of wn−1 (last case):

wn = wn−1(Cn, qm−2)(Cn, qm−1)(Cn, qm)

We prove that:

• wn is an interleaving: The sequence wn−1 is an interleaving by the induction
hypothesis. Since En is an execution, there is a machine transition from Cn−1

to Cn. There are transitions between the consecutive states qm−2qm−1qm of
the automaton run. Thus the extension to wn−1 consists of one machine
transition followed by the automaton transitions:

(Cn−1, qm−2) −→JVM (Cn, qm−2) −→AUT (Cn, qm−1) −→AUT (Cn, qm)(∗)

• w is a co-execution: By assumptionwn−1 is a co-execution. Then extract(wn−1) ∈
(E♭ ∪ E♯)m−2 since there m − 2 s.r.a’s in En−1. By definition of the extract
function and using (*):

extract(wn) = extract(wn−1)act♯A(Cn−1, Cn) · qm−2qm−1qm−1qm · act♭A(Cn)

By (i), act♯A(Cn−1, Cn)qm−2qm−1 ∈ E
♯ and by (ii), qm−1qmact♭A(Cn) ∈ E♭.

Hence extract(wn) ∈ (E♭ ∪ E♯)m.

• w ↓ 1 = En: This simply follows from the induction hypothesis and applying
the first projection function to wn.

B.3. PROOFS FOR PART III 165

(⊆) We prove that for all co-executions w of the program and the policy au-
tomaton, the projection to the first component is (i) an execution of the program
and that (ii) its security relevant trace is in the language of the policy automaton.

(i) We prove this by induction on the length of w.
(Base Case) If w = (C, q), since w is an interleaving, C = C0 and q = q0. Then,

w ↓ 1 = C0, which is an execution.
(Induction Hypothesis) We assume the statement for wn of length n.
(Inductive Case) We prove the statement for wn+1, where wn+1 = wn•[(Cn+1, qn+1)]

for some qn+1. Let the last element of wn be (Cn, qn) and wn ↓ 1 = En. By the
definition of ↓ 1 (page 4.5), En = E′ • [Cn] for some sequence of configurations E′.
Again by the definition of ↓ 1, wn+1 ↓ 1 = E′Cn • [Cn+1] if Cn −→JVM Cn+1 and
wn+1 ↓ 1 = E′ • [Cn+1] otherwise.

1. If the first case applies, wn+1 ↓ 1 = (wn ↓ 1) • [Cn+1] and everything but
the last element is an execution by the induction hypothesis and the last two
configurations are related with the JVM transition relation. Hence this is an
execution of T. We also note the observation here that Π(T) is closed under
the transitive closure of the suffix relation built using the JVM transition
relation.

2. If the second case applies, by the definition of interleaving, Cn+1 = Cn and
therefore wn+1 ↓ 1 = wn ↓ 1. The result follows from the inductive hypothe-
sis.

(ii) We prove this also by induction on the length of w.
(Base Case) If w = (C, q), since w is an interleaving, C = C0 and q = q0. Then,

w ↓ 1 = C0. According to the table of page 4.5, srtA(C0) = a♭ ∈ A♭ for some
pre-action a♭, or srtA(C0) = ǫ. The statement trivially holds in the latter case, as
ǫ is in the language of all security automata with at least one state. Let us assume
the first case. We will prove that such a co-execution does not exist, thus reaching a
contradiction and hence the statement will hold vacuously for the first case. By the
definition of extract, extractw = a♭ if the first case applies. But by the definition of
being a co-execution a♭ should be in the set (E♭ ∪ E♯)∗ ∪ (E♭ ∪ E♯)ω. This is not
possible as there is no string of length 1 in this set. Hence we reach a contradiction.

(Induction Hypothesis) We assume the statement for all wi of length i, where
i < n+ 1.

(Inductive Case) We prove the statement for wn+1. We have to consider the
cases of how a co-execution is produced by extending another co-execution. We
prove the statement for wn+1, where wn+1 = wn • [(Cn+1, qn+1)] for some qn+1.
Notice that since both are co-executions, the function extract maps both to the
same set. It can not be however that extractwn+1 = extractwn • E

′ for some E♭

or E♯, for these extensions contain always three elements, two automata states and
an action, and therefore can not be extracted when the co-execution is extended
with only one pair. This means that the security relevant trace of En+1 is the same

166 APPENDIX B. PART III APPENDIX

with that of En and the result holds by induction hypothesis. The other cases are
proved similarly. 2

B.3.2 Proof of Theorem 4.15

The proof of this theorem is quite complicated as it brings together many concepts
of the paper such as the symbolic and the ConSpec automaton, co-execution, and
operational semantics of annotations.

Let us first assume that the level I annotated program is valid. Intuitively,
our goal is to show that any execution of the program can be “completed” with
automaton states to form a co-execution of the program with the policy automaton
(the ConSpec automaton for the policy). This means for each configuration in the
execution such an automaton state should be found that the pair sequence that is
formed is a co-execution. We use the value of the ghost state as the automaton
state. Remember the conditions for a configuration-automaton state pair sequence
to be a co-execution. The first condition is that the automaton component of the
first pair is the initial automaton state. When execution begins, the ghost state is
the initial state, thus satisfies this condition. The second is that for a pre-action,
the automaton state is updated sometime before the action takes place, but after
the previous action in the series. The ghost state is updated immediately before the
execution of a pre-action, since a ghost assignment is placed before each instruction
which may yield a preaction when executed. (Similarly for post-actions but with an
update to automaton state/ghost state immediately after.) We call a co-execution
where the monitor updates are done immediately before (or after) a s.r.a. a closest
updating co-execution. For the ghost state to be a monitor for the program, it should
also be updated to the correct automaton state. We prove this using the way a
ConSpec automaton is induced by a symbolic automaton and the way the (same)
symbolic automaton induces the level I annotations. There is one catch: if at some
configuration of the execution, the ghost state is undefined and a security relevant
action is performed, the ghost state remains undefined; but such a sequence can
never be co-execution. The reason is that the “undefined” state of the automaton
does not have any outgoing transitions, thus the automaton sequence extracted
from such a pair sequence would not be a run of the automaton. The validity
assumption is used to rule out this possibility. So we also show in the course of the
proof that if the annotated program is valid, then a security relevant action is not
executed when the ghost state is undefined.

We first present some new definitions that will be used in the course of the proof
like extended execution and closest updating co-execution.

Preliminaries In the text below, the program T annotated with level I anno-
tations for policy P is TP . Furthermore, pc(C) denotes the value of the program
counter and M(C) the method at the top frame of configuration C. Finally, σ(−→gs)
denotes the value of the ghost state given at the environment σ.

The following property follows from the definition of level I annotations.

B.3. PROOFS FOR PART III 167

Property B.2. LetC be an unexceptional configuration of program T. IfA♭M [pc(C)] =
ǫ in TP , then act♭A(C) = ǫ. Let C′ be configuration following C in an execution of
program T. If C′ is unexceptional and A♯M [pc(C)] = ǫ in TP , then act♯A(C,C′) = ǫ.

Definition B.3 (Extended Execution). Given an annotated program TA, a se-
quence of extended configurations
(ψ0, C0, σ0,Σ0)(ψ1, C1, σ1,Σ1) . . . is termed an extended execution of TA, if:

• (ψ0, C0, σ0,Σ0) is the initial extended configuration as defined on page 4.6,
and

• ∀i. Γ∗ ⊢ (ψi, Ci, σi,Σi)→ (ψi+1, Ci+1, σi+1,Σi+1)

That is, any Γ∗-derivation that definition 4.12 refers to is an extended execution.
The projection of an extended execution to its second component isolates the

execution of the JVM program, and is described similar to the definition of the first
projection function in section 4.5. An extended execution is called complete if it
executes the precondition (if any) of the instruction at the program counter of its
last configuration to completion.

Definition B.4. (Complete Extended Execution) Given a finite execution E =
C0 . . . Cn−1Cn of program T, the extended execution
XE = (ψ0, C

′
0, σ0,Σ0) . . . (ψm−1, C

′
m−1, σm−1,Σm−1)(ψm, C′m, σm,Σm−1) of the an-

notated program TP is the complete extended execution of E if XE ↓ 2 = E and
ψm = ǫ.

Given a finite execution En = C0 . . . Cn of program T, notice that the following
hold for the execution En+1 = C0 . . . CnCn+1, where (ǫ, Cn, σ,Σ) is the last element
of XEn :

1. If Cn is not an application method call or a return, and Cn+1 is not excep-
tional, i.e. rule (5) of table 4.4 applies:

XEn+1
= XEn • (AM(Cn+1)[pc(Cn+1)], Cn+1, σ,Σ) . . . (ǫ, Cn+1, σ

′,Σ) (B.1)

for some σ′.

2. If Cn is a return or is exceptional with an exception that can not be handled
in the current method, i.e. rule (6) applies:

XEn+1
= XEn • (Ensures(Γ∗(M(Cn))), Cn+1, σg ⊎ σ

′
l,Σ
′) . . . (ǫ, Cn+1, σ

′,Σ′)
(B.2)

where σ = σg ⊎ σl for some σg and σl and Σ = σ′lΣ
′.

3. If Cn is an application method call and Cn+1 is not exceptional, i.e. rule (7)
applies:

XEn+1
= XEn •

Requires(Γ∗(M(Cn+1))) ·AM(Cn+1)[1], Cn+1, σg ⊎ σ
0
l , σl · Σ)

. . . (ǫ, Cn+1, σ
′, σl · Σ)

(B.3)

168 APPENDIX B. PART III APPENDIX

where σ = σg ⊎ σl for some σg and σl.

4. Finally, if Cn was not exceptional but Cn is exceptional, i.e. rule (8) applies:

XEn+1
= XEn • (ǫ, Cn+1, σ,Σ) (B.4)

Constructing the Co-execution A sequence of configuration-automaton state
pairs are constructed from a sequence of extended configurations using the function
subw. This function forms a sequence by sampling the machine configuration and
the ghost state whenever one of the two is updated. If the machine configuration
changes in consecutive extended configurations, the sequence is extended with the
machine configuration and the ghost state of this second If the current extended
configuration is the last in the sequence, then the sequence is not extended further.
If a configuration induces a preaction, the annotated program TP updates the ghost
state immediately before transiting to the next configuration (that is “executing the
method”). If two consecutive configurations induce a non-exceptional postaction,
the ghost state is updated immediately after transiting to the second configuration
(that is upon return). However, in the case of an exceptional postaction the up-
date is not immediate. When two consecutive configurations C and C′ induce an
exceptional action, the new state can not be obtained by sampling the ghost state
some time during the extended execution that ends with C′. The reason is that
there is no annotation associated with exceptional configurations and the ghost up-
date is done in this case at the precondition of the first instruction of the handler.
This precondition is executed after at the extended execution of the configuration
following C′. In order to sample the ghost value in such a situation, we consider a
maximal execution of which the finite execution is a prefix of. This way we get to
“peek” to the new value of the ghost state.

Let E = C0 . . . Cj−1Cj be a finite execution and let XE = (ψ0, C
′
0, σ0,Σ0)

. . . (ψk, C′k, σk,Σk) be its corresponding extended execution. Notice that the first
extended configuration correspond to the execution of RequiresI〈main〉. If the last two
configurations (Cj−1, Cj) of E do not induce an exceptional action, the sequence
of configuration-automaton state pairs corresponding to this extended execution is
defined as

w(XE) = (C0, q0) subw((ψ1, C
′
1, σ1,Σ1) . . . (ψk, C′k, σk,Σk))

where q0 is the initial state of AP and subw is defined below. If Cj−1 and Cj induce
an exceptional action, we extract the co-execution using the complete extended
execution X ′ of E′ = C0 . . . CjCj+1. The value of the ghost state at the last
element of X ′ is taken in this case.

• subw((ψ1, C1, σ1,Σ1)·(ψ2, C2, σ2,Σ2)·X ′) = (C2, σ2(−→gs))·subw((ψ2, C2, σ2,Σ2)·
X ′) if C1 −→JVM C2

• subw((ψ1, C1, σ1,Σ1)·(ψ2, C2, σ2,Σ2)·X ′) = (C2, σ2(−→gs))·subw((ψ2, C2, σ2,Σ2)·
X ′) if ψ1 = (−→gs := α1| . . . |αk) · ψ2 for some k 6= 1

B.3. PROOFS FOR PART III 169

• subw((ψ1, C1, σ1,Σ1) · (ψ2, C2, σ2,Σ2) · X ′) = subw((ψ2, C2, σ2,Σ2) · X ′) oth-
erwise.

• subw(ψ,C, σ,Σ) = ǫ

In the definition above, the update of the ghost state causes a sampling only if
the update is not done by the last condition of the conditional update. The reason
is that when the program is annotated with level I annotations, an update on the
ghost state using the last condition of the conditional expression is a stutter.

Definition 4.8 captures all interleavings of the monitor and the program, for a
monitor that updates the security state every time a s.r.a. occurs. If a configuration
induces a preaction, the update should happen before the transition to the next
configuration. If two consecutive configurations induce a postaction, the update
should be done after the transition to the latter configuration. The definition aims
to specify the interval where the update may be done for the interleaving to be a co-
execution. A co-execution is a closest updating co-execution if the monitor makes
a corresponding transition at the latest possible point when the update is for a
preaction and at the earliest possible point when the update is for a postaction.

Definition B.5 (Closest Updating Co-execution). A co-execution is closest updat-
ing co-execution if the following holds for consecutive pairs (C1, q1)(C2, q2)(C3, q3)
(C4, q4):

• act♭A(C1) ∈ A♭ ∧ (C2, q2) −→JVM (C3, q3)⇒ (C1, q1) −→AUT (C2, q2)

• act♯A(C1, C2) ∈ A♯ ∧ ¬Exc(C2)⇒ (C2, q2) −→AUT (C3, q3)

• act♯A(C1, C2) ∈ A♯ ∧ Handled(C2)⇒ (C2, q2) −→JVM (C3, q3) ∧
(C3, q3) −→AUT (C4, q4)

The Proof We now prove that, the configuration-automaton state pairs extracted
from a level I annotated program is a co-execution, provided that the annotations
are valid and vice versa. What is more, due to the shape of the annotations, we
prove that these co-executions are closest updating.

Lemma B.6. TP is valid, if and only if, for every maximal execution E of T, the
extracted sequence w(XE) of the complete extended execution XE of TP is closest
updating and w(XE) ↓ 1 = E.

Proof. There are two aspects to the proof. First, we are showing that ghost
assignments follow security relevant method executions and are performed accord-
ing to the way described in the policy. Second, that no security relevant action
execution happens when the ghost state is undefined if and only if the annotated
program is valid.

We proceed by induction on the length of E.

170 APPENDIX B. PART III APPENDIX

(Base Case) When the number of configurations in E is 1, the complete ex-
tended execution is the execution of RequiresI〈main〉 and the precondition of the
first instruction of 〈main〉. The more involved case arises if this precondition is
not empty. Otherwise, w(C0) = (C0, q0) by construction. Similarly, if AI〈main〉[1]
includes a ghost assignment then the constructed sequence depends on which con-
dition the assignment was done for. Let us consider the case when k 6= 1. In this
case, the constructed sequence is w(C0) = (C0, q0)(C0, σ0(−→gs)), where σ0 is the
mapping at the end of the extended execution. By definition, this is a co-execution
if act♭〈main〉(C0) ∈ A♭ and δ♭(q0, act♭〈main〉(C0)) = σ0(−→gs). This can be proven using
the definition of before annotations and the way ConSpec automaton is extracted
from symbolic automaton.

(Induction Hypothesis) For all executions Ei = C0 . . . Ci−2Ci−1 of length i such
that i ≤ n and act♯A(Ci−2, Ci−1) is not an exceptional post action, we assume that
w(Xi) is a co-execution where w(Xi) ↓ 1 = Ei if and only if all boolean formulae
asserted in the complete extended execution Xi holds except possibly the assertions
Defined♯ and Definede asserted in the course of the execution of the precondition
of pc(Ci−1).

Notice that this induction hypothesis is sufficient, since no maximal execution
can end with an exceptional configuration that is immediately preceded by an ex-
ceptionally security relevant API method call. Similarly, for no maximal execution
Defined♯ or Definede is asserted in the course of the execution of the precondition
of pc(Ci−1). If the maximal execution is one which returns from the 〈main〉, then
pc(Ci−1) is return and hence no definedness precondition. If the maximal execu-
tion is one which ends exceptionally, then this exception is not one thrown by a
security relevant API method.

(Inductive Step) Consider the execution En+1 = C0 . . . Cn−1Cn of T and its
corresponding extended execution XEn+1

.
We consider the different forms of the pair Cn−1, Cn:

• Cn−1 and Cn are both not exceptional, and Cn−1 is not an application method
call:
We have assumed that the statement holds for En = C0 . . . Cn−1. Since
XEn+1

is an extension of XEn , the assertions met in XEn+1
hold if and only if

assertions met in XEn and X hold where XEn+1
= XEn ·X . By the induction

assumption, the assertions met in XEn of TP hold if and only if w(XEn) is a
co-execution and w(XEn) ↓ 1 = En.

Let the last element of XEn be (ǫ, Cn−1, σ,Σ) for some σ and Σ, executing
method of Cn be M and pc(Cn) be L. Notice that since Cn−1 is not excep-
tional, L is not a handler instruction. By the definition of a complete extended
execution, the first element of the suffix X is (AM [L], Cn, σ,Σ), and its last
element is (ǫ, Cn, σ′,Σ) for some σ′ that is determined by the assignments in
AM [L]. That is X corresponds to the execution of the annotation sequence

B.3. PROOFS FOR PART III 171

that is associated with L in M : AM [L]. By the definition of subw and w:

w(XEn+1
) = w(XEn)(Cn, σ(−→gs)) · subw(X)

By the definition of level I annotations,

AM [L] = AeM [L − 1][1] ·A♯M [L − 1][1] ·A♭M [L] ·A♯M [L][0] ·AeM [L][0]

In the rest of the argument of this case, we take AeM [L−1][1] = ǫ for simplicity.
This annotation otherwise would set gpc to 0, which does not change the
argument.

Notice that, again by the definition of level I annotations, AM [L] contains at
most two assignments to the ghost state in this case. (For all L′, A♯M [L′][1]
and A♭M [L′] can contain at most one ghost assignment (to the ghost state),
while A♯M [L′][0], AeM [L′][0] and AeM [L′ − 1][1] can not contain any.) In order
to go through all shapes the suffix subw(X) can have, we consider the possible
ghost assignments in X :

– A♯M [L− 1][1] = ǫ, A♭M [L] = ǫ
In this case there are no ghost assignments in AM [L] and so subw(X) = ǫ
by definition. Then, w(XEn+1

) = w(XEn)(Cn, σ(−→gs)).
From this and the induction hypothesis, the following can be concluded:
(i) w(XEn+1

)) ↓ 1 = En+1 by the definition of ↓, (ii) w(XEn+1
) is

an interleaving, since the last element of w(XEn) is (Cn−1, σ(−→gs)) and
Cn−1 −→JVM Cn.
By the definition of the extract function:

extract(w(XEn+1
)) = extract(w(XEn))act♯A(Cn−1, Cn)act♭A(Cn)

By property B.2, act♭A(Cn) = ǫ and act♯A(Cn−1, Cn) = ǫ. By the induc-
tion hypothesis, w(XEn+1

) is a co-execution.
Assume that w(XEn+1

) is a closest updating co-execution The only way
this is possible is that w(XEn) is itself a closes updating (c.u.) co-
execution, and act♭A(Cn) = ǫ, act♯A(Cn−1, Cn) = ǫ. (Otherwise there
would be ghost updates executed in w(XEn+1

))). The latter we have
already shown to hold. By the induction hypothesis, if w(XEn) is a
c.u. co-execution then all assertions (except possibly the definedness
assertions Defined♯ and Definede executed for pc(Cn−1)) hold. Since
A♭M [L] = ǫ, there is no Defined♭ that is asserted in the precondition of
pc(Cn−1), hence the only assertions that should be shown to hold are
Defined♯ and Definede of pc(Cn−1). If pc(Cn−1) is not a method invo-
cation instruction, there is no definedness assertions in its precondition,
and we are done. If pc(Cn−1) is a method invocation instruction, either

172 APPENDIX B. PART III APPENDIX

Cn−1 is either an application method call or an API method call. In
the former case, both Defined♯ and Definede hold vacuously since the
premise of the boolean formula does not hold, that is the object that the
method is invoked on is not one of those mentioned in these assertions.
Let us consider the case where Cn−1 is an API method call. Since there
are no jumps to instructions after method calls, pc(Cn−1) should be L−1.
By the definition of AFTER annotations, A♯M [L− 1][1] = ǫ implies that
A♯M [L − 1][0] = ǫ, so there is no Defined♯ for pc(Cn−1). If it is also the
case that AeM [L− 1][0] = ǫ, we are done. If there is a Definede however,
we have to show that this also holds.
Suppose that Definede which comes from AeM [L − 1][0] does not hold.
Then an alternative execution of the program can be constructed by
replacing Cn with C′n where C′n is exceptional. Since L− 1 is exception-
ally security relevant (otherwise there would be no Definede asserted for
Cn−1), there is a handler H for L − 1. Now consider the alternative
execution that is archived by extending the execution with C′n+1 where
pc(Cn−1) = H : E′ = C0 . . . Cn−1C

′
nC
′
n+1. Then w(XE′) can not be a

co-execution. We reach a contradiction.

– A♯M [L− 1][1] 6= ǫ, A♭M [L] = ǫ
Then the suffix X is as follows:

((−→gs := ce) ·A♯M [L][0] ·AeM [L][0], Cn, σ,Σ) (1)
→∗ ((−→gs := α1| · · · · · |αk) ·A♯M [L][0] ·AeM [L][0], Cn, σ,Σ) (2)
→ (A♯M [L][0] · AeM [L][0], Cn, σ′,Σ) (3)
→∗ (ǫ, Cn, σ′′,Σ) (4)

By definition, subw(X) = ǫ if k = 1 and subw(X) = (Cn, σ′(−→gs)) other-
wise. Notice that σ′′(−→gs) = σ′(−→gs) since there are no assignments to the
ghost state in the steps between (3) and (4) and furthermore if k = 1,
σ′(−→gs) = σ(−→gs), by the definition of level I annotations.

By the definition of AFTER annotations, A♯M [L−1][1] 6= ǫ if M [L−1] =
invokevirtual (c.m) for some class c and method m. That is the in-
struction at above the current program counter is a method invocation
instruction. By the assumption that there are no direct jumps to in-
structions immediately below method calls, the previous configuration is
either a method call (to an API method) or a method return (from an
application method).

(⇐) This direction is similar to the argument for the case above.
(⇒) As is apparent from the execution of X , subw(X) is determined by

the value of k above:
1. k = 1:

This corresponds to the case where we have a stuttering if the

B.3. PROOFS FOR PART III 173

ghost state is defined when the assignment begins executing.
This type of stuttering is meant to occur when the current call
is not to a security relevant action, in order to not to update the
state unnecessarily with this assignment. This last condition
can be satisfied also if the ghost state is not defined when the
assignment begins executing. In this case, for the extracted
sequence to be a co-execution, the method return should not be
a postaction.
By the definition of subw, subw(X) = ǫ and w(XEn+1

) is the
same as case 1 above. The argument that this is an interleaving
and that its first projection is En is also identical. The equa-
tion B.3.2 also holds. For w(XEn+1

) to be a co-execution then,
we should show that no security relevant actions are induced
by the addition of configuration Cn to the execution En−1. By
property B.2, act♭A(Cn) = ǫ. If Cn−1 is a return from an ap-
plication method, act♯A(Cn−1, Cn) = ǫ. The case where Cn−1 is
a method call to an API is more complicated. This case is to
prove that, although this instruction has been annotated, in this
case the method called as a result of virtual method resolution
turned out not to be security relevant.
Let Cn−1 be ((M,L− 1, s ·d · s′, lv) ·R, h♭) and Cn be ((M,L, v ·
s′, lv)·R, h♯) for some actual arguments s, some location d, some
stack s′ and return value v. Notice that there exists a class
c′ such that c′ defines type(h♭, d).m and type(h♭, d) <: c. (If
this was not the case, Cn would be exceptional.) Now suppose
(v, c′,m, s, h♭, h♯) is a postaction of the induced automaton AP .
Then there should exist, for some names x, x1, . . . xn, a symbolic
postaction a♯s = (τx, c′,m, ((τ1x1), . . . , (τnxn))) of As such that
the type of v is τ , the type of s[0] is τ1 etc. It would then be the
case that type(h♭, d) ∈ RS((c,m), A♯s \ A

e
s), by the definition of

RS. Notice that σ(gthis) = d by the execution of A♯[L− 1][0] in
XEn−1

.

Since k = 1, either ¬(gthis : c′1∨. . .∨gthis : c′p) or −→gs =
−→
⊥ or both

of them holds at (2) where RS((c,m), A♯s \A
e
s) = {c′1, . . . , c

′
p}. If

only the first holds, at (2), d is not an object of one of these
classes, type(h♭, d) 6∈ RS((c,m), A♯s \ A

e
s). (We assume that

type(h♭, d) = type(h♯, d), that is an API call does not change
the type of the object it is called on) We reach a contradiction,
showing that act♯A(Cn−1, Cn) = ǫ. Hence, extract(w(XEn+1

))
is a co-execution. If both holds, then the return is again not
security relevant and extract(w(XEn+1

)) is a co-execution.
If only the second holds however act♯A(Cn−1, Cn) ∈ A♯ and
extract(w(XEn+1

)) can not be a co-execution since there is no

174 APPENDIX B. PART III APPENDIX

outgoing transitions from the undefined state in a ConSpec au-
tomaton induced from the symbolic automaton of the policy. In
order to rule out this case, we should prove that σ(−→gs) 6= ⊥. Now
we use the assumption that all assertions in XEn+1

holds. This
is only the case if all assertions of XEn holds. By the definition
of AFTER annotations, A♯[L − 1][0] asserts that if gthis is of a
class which is a member of RS((c,m), A♯s \A

e
s, then σ(−→gs) 6= ⊥.

Hence it can not be the case only the second conjunct holds.
2. k > 1:

Let σ(−→gs) = q and σ′(−→gs) = q′, by the definition of subw and of
extract:

w(XEn+1
) = w(XEn)(Cn, q)(Cn, q′)

extract(w(XEn+1
)) = extract(w(XEn))act♯A(Cn−1, Cn)qq′act♭A(Cn)

In order to show that w(XEn+1
) is an interleaving, we should

prove that there exits an action a ∈ A such that δ(q, a) = q′.
From this, it will also follow that w(XEn+1

) ↓ 1 = En+1. To
prove that w(XEn+1

) is a co-execution, however, we should prove
a stronger statement, namely that δ♯(q, act♯A(Cn−1, Cn)) = q′.
(This is the only possibility since by property B.2, act♭A(Cn) = ǫ)
This is the case when one of the conditions (other than the
last condition) of the conditional assignment is satisfied and the
ghost state is set accordingly. We show that this is the case only
if Cn−1 is a return from a post security relevant method call and
that the ghost state is set correctly.
Since k > 1, in the execution segment above, α1 has the following
form: (−→gs 6=

−→
⊥)∧ gthis : c′i ∧a →

−→e , where c′i ∈ RS((c,m), A♯s \
Aes). Note that α1 holds at (2). This implies that −→gs 6=

−→
⊥ at σ.

We first show that Cn can not be a return from an application
method. (If this was the case the return would be from an
application method, hence not security relevant). Assume that
this is the case, let this method which is returning be c′,m and
the object it was called on to be d. (That is the second frame
in the activation stack of Cn−1 is (M,L − 1, s · d · s′) for some
actual arguments s, and some stack s′) Since the call was made
by the instruction invokevirtual c.m, it should be the case
that c′ defines (type(d, h),m) where h is the heap at the time
of the method call. Notice that gthis = d, since it was set to
this value by A♯[L− 1][0] just before the method call was made
and since it is local so could not have been changed during the
execution of the application method. (We further assume that
the application method does not change the type of the object
it is called on) This means that c′ ∈ RS((c,m), A♯s \A

e
s), which

B.3. PROOFS FOR PART III 175

can not be the case since it is an application method. Hence we
reach a contradiction, showing that Cn can not be a return from
an application method.
The only possibility left is that Cn is a return from an API
method. Let Cn−1 be ((M,L − 1, s · d · s′, lv) · R, h♭) and Cn
be ((M,L, v · s′, lv) · R, h♯) for some actual arguments s, some
location d, some stack s′, return value v and heaps h♭, h♯. Let
(c.m) : (γ → τ). Since α1 is a part of the ghost assignment, the
symbolic automaton should include the action
a♯s = (τx, c′i,m, ((τ1x1), . . . , (τ|γ|x|γ|))) for some names x, x1, . . .
and types τ, τ1, . . . such that the type of v is τ , the type of s[0] is
τ1 etc. What is more there exists a predicate b and an expression
tuple E such that (a♯s, b, E) ∈ δ♯s and a = abρ where ab is the
boolean formula for predicate b and−→eE as defined in section 4.8.1.
The substitution ρ = [v/x, g0/x0, . . . gk−1/xn−1, gthis/this] by
construction. Notice that σ(gthis) = d by the execution of
A♯[L − 1][0] in XEn−1

and hence c′i defines type(h♭, d).m. Thus
(v, c′,m, s, h♭, h♯) is a postaction of the induced automaton AP .
We have proven that act♯A(Cn−1, Cn) ∈ A♯.
We are left to prove that δ♯(q, act♯A(Cn−1, Cn)) = q′. Since α1

holds at (2),

‖ abρ ‖ (Cn, σ) = true⇔‖ b ‖ qIh♭h♯ = true

where I = [x 7→ v, x1 7→ s[0], . . .]. Using the same interpretation,

‖ −→eEρ ‖ (Cn, σ) = q′ ⇔‖ E(si) ‖ qIh♭h♯ = q′(si)

for all security state variables si of −→gs. The result then follows
from the way a ConSpec automaton is induced by a symbolic
automaton.

3. k = 0:

Let σ(−→gs) = q and σ′(−→gs) = q′, by the definition of subw and of
extract:

w(XEn+1
) = w(XEn)(Cn, q)(Cn, q′)

extract(w(XEn+1
)) = extract(w(XEn))act♯A(Cn−1, Cn)qq′act♭A(Cn)

In order to show that w(XEn+1
) is an interleaving, we should

prove that there exits an action a ∈ A such that δ(q, a) = q′.
From this, it will also follow that w(XEn+1

) ↓ 1 = En+1. To
prove that w(XEn+1

) is a co-execution, however, we should prove
a stronger statement, namely that δ♯(q, act♯A(Cn−1, Cn)) = q′.
(This is the only possibility since by property B.2, act♭A(Cn) = ǫ)

176 APPENDIX B. PART III APPENDIX

It is possible to show in this case that Cn is a return from a
security relevant method call by a similar argument. The idea
is that if Cn was a return from an application method call, the
last condition of the conditional assignment would instead have
been satisfied, hence k would have been 1. Since this is not the
case, we know that Cn is a return from an API call. What is
more, let this method be c′.m. Then c′ ∈ RS((c,m), A♯s \ A

e
s.

Notice that none of the conditions in the assignment hold, that
is k = 0, if either σ(−→gs) = ⊥ or σ(−→gs) 6= ⊥ but the guards are
not satisfied. In both cases, after this assignment the ghost state
is undefined: σ′(−→gs) = ⊥.
The case that k = 0 may only occur if the ghost state becomes
undefined since the return from the API method was a violation.
Since the last condition does not hold, we know that the ghost
state was not undefined at σ and we know that the object the
method was called is of one of the classes in RS((c,m), A♯s \A

e
s.

This means that the call is security relevant. Since none of
the conditions before the last was satisfied, this is a violating
postaction. By the definition of the way a ConSpec automaton
is extracted from a symbolic automaton, any such state has a
transition to the undefined state. Hence δ♯(q, act♯A(Cn−1, Cn)) =

q′, where q′ =
−→
⊥ and we are done.

Hence, w(XEn+1
) is a co-execution.

– The cases whereA♯M [L−1][1] = ǫ, A♭M [L] 6= ǫ and whereA♯M [L−1][1] 6= ǫ,
A♭M [L] 6= ǫ are proved similar to the case above.

• Cn−1 and Cn are both not exceptional, and Cn−1 is an application method
call:
This case is similar to the one above when Cn−1 is not an application method
call.

• Cn−1 is exceptional, while Cn is not exceptional: The only interesting subcase
of this case is when Cn−2 is an API method call and act♯A(Cn−2, Cn−1) 6= ǫ.
In this case, notice that w(XEn+1

) is not an extension of w(XEn), but rather
of w(XEn−1

), by the definition of w function.

• Cn−1 is not exceptional, while Cn is exceptional: The only interesting subcase
of this case is when Cn−2 is an API method call and act♯A(Cn−2, Cn−1) 6= ǫ.
Then the special construction described for w(X) when X has an exceptional
configuration as last element and the element before the last is an API call is
used.

2

B.3. PROOFS FOR PART III 177

Proposition B.7. Given a program T and a policy P, if for every execution E of
T there exists a co-execution w of T and AP such that w ↓ 1 = E, then the sequence
w(XE) extracted from the extended execution XE corresponding to this execution is
also a co-execution such that w(XE) ↓ 1 = E and w(XE) is closest updating.

Proof. For each co-execution, a closest updating co-execution can be constructed
by postponing the transition of the monitor for a preaction until the configuration
which calls this security relevant method is reached and by performing the transition
of the monitor right after the return of the security method call if the update is for
a postaction.

2

Theorem 4.15 (Correctness of Level I Annotations) The level I annotated
program T for policy P is valid, if and only if, T adheres to P.

Proof. The result follows in one direction from theorem 4.10, proposition B.7 and
lemma B.6; the other direction follows from lemma B.6 and theorem 4.10. 2

B.3.3 Proof of Theorem 4.18

Theorem 4.18 The level II annotated program T with embedded state −→ms is valid
if and only if for each execution E of T, the sequence w(E,−→ms) is a method-local
co-execution.

Proof. (Sketch) The idea of the proof is to sample pre- and post-actions from E,
immediately preceded and followed by a sample of the embedded state −→ms. The
sequence extracted in this way is almost a potential derivation, but in the case of
a postaction followed, some time later, by a preaction, an intermediate automaton
state may be missing. It is not clear, however, how to sample this state. Also, it is
necessary to ensure that embedded state updates do not cross method boundaries.
To this end, extracted sequences need to be completed by (a) missing intermediate
automaton states, and (b) indicators of method boundary crossings at: method
invocations that are not security relevant actions, return instructions, exceptional
configurations with an unhandled exception, and at the first instruction of each
method.

First, we note that the embedded state −→ms is equal to the ghost state −→gs at
sampling points if and only if the synchronisation assertions added at level II hold.
We show in the proof of theorem 4.15 that the ghost state and machine configu-
rations constitute a co-execution if and only if the program annotated with level
I annotations is valid. If the program annotated with level II annotations is valid
then the sampling of the embedded stated as described above amounts to taking
the co-execution of the ghost state and the program and “skipping” some ghost up-
dates, which the embedded state does not follow (as the sampling of the embedded
state is not done as frequently). Then extractII applied to this sequence falls in the
set stated in definition 4.17.

178 APPENDIX B. PART III APPENDIX

(⇐) In this direction, we show the result by taking any execution E of a level
II annotated program, which is valid. Since level II annotations include level I
annotations, by theorem B.6 one can construct a co-execution of this program and
the automaton AP , in the sense of section 4.5, using the ghost state. By the
placement of the synchronisation annotations, the value of the embedded state can
be inferred at sampling points, using the value of the ghost state. Then, it is left to
show that for the embedded state to be a monitor for the policy, it is sufficient that
the embedded state is in synch with the ghost state at the points where level II
annotations are asserted. For instance, the ghost state gets updated for a preaction,
immediately before the action and by the validity of the level II annotations, at
this point the embedded state is equal to the ghost state, hence if the embedded
state has been a monitor until this point, this property will be preserved for the
next action.

The proof is by induction on the length of the execution:
(Base Case:) The sequence produced for an execution C0 depends on whether

it is a sampling point or not. C0 is not preceded by any configuration, and is
not exceptional. Therefore, if pc(C0) is an invokevirtual or a return C0 is
a sampling point and the sequence is w(C0,

−→ms) = (C0, q) where q = C0(−→ms).
Otherwise, w(C0,

−→ms) = (C0, q0). Let us carry out the case when this is a return.
By the synchronisation annotation asserted by the Ensures clause of 〈main〉, −→ms =
−→gs at C0. Since there are no ghost assignments associated with a return instruction,
the ghost state is still the initial state of the automaton at C0. The result of applying
the extract function is then extractII(w) = q0brkq0.

(Induction Hypothesis:) For all executions Ek of length k ≤ n, if the level II
annotation of T with embedded state −→ms is valid, then w(Ek,−→ms) is a method-local
co-execution.

(Inductive Step:) Assume that the level II annotation of T with embedded
state −→ms is valid and consider the execution En+1 = C0 . . . Cn. The sequence
w(C0 . . . Cn,

−→ms) is built by extending w(En,−→ms) with the pair (Cn, q). Notice
that since w(En,−→ms) is a method-local co-execution, the result of applying the
extractII function returns a sequence ending with some state q, except the case
where Cn−1 is an API method call that induces a preaction. If Cn is a sampling
point, the state component q of this pair is Cn(−→ms); the state component is the
same as the state component of the last pair of w(C0 . . . Cn−1,

−→ms), if Cn is not
a sampling point. By lemma B.6, we know that w(XEn) is a closest updating co-
execution and w(XEn) ↓ 1 = En. Let the last element of XEn be ǫ, Cn, σ,Σ for
some σ and Σ.

We consider the different cases for the pair Cn−1, Cn. Notice that for all cases
except the last, Cn is a sampling point.

• Cn is an API method call and Cn−1 is not a method call: By the definition
of extractII,

extractII(w(En,−→ms)) = extractII(w(C0 . . . Cn−1,
−→ms)) Cn(−→ms)act♭(Cn)

B.3. PROOFS FOR PART III 179

By the validity assumption and the way level II annotations are inserted,
Cn(−→ms) = σ(−→gs).

• Unhandled(Cn): invokevirtual instruction or if n = 0.

• Cn is not of the above: In this case, Cn is not a sampling point. Furthermore,
by the definition of extractII: hence extractII(w(En,−→ms)) = extractII(w(En−1,

−→ms))
and the claim holds by the induction hypothesis.

• The other cases are similar.

(⇒) The argument goes as follows: we take an arbitrary method-local co-execution
and show that any execution that yields such a co-execution validates its assertions.
For instance, as a base case, take qbrkq. By definition of extractII, the sequence
that yields this co-execution includes one and only one configuration which is an
application method call. There are no other method calls (if this was the case the
resulting co-execution would contain more automaton states.). Since the sampling
begins with the initial automaton state q0, q should be q0. There are no s.r.a’s and
the ghost state is also the initial state throughout the execution, thus validating
both the assertions on the ghost state being defined (if any) and the synchroni-
sation assertion immediately before the method call. (Notice that there are no
other assertions as there are no other states extracted and hence no other sampling
points.) 2

B.3.4 Proof of Theorem 4.22

Theorem 4.22 Let T be a program, P a ConSpec policy, and I(T,P) denote pro-
gram T inlined for policy P. The level III annotation of I(T,P) is locally valid, and
validity is efficiently checkable.

Proof. (Sketch) We show that the verification conditions resulting from the level
III annotation of I(T,P) are valid and efficiently checkable. To simplify the pre-
sentation, we consider here post-actions only; the argument is easily adapted to
pre-actions and exception actions.

Notice that for level III annotated programs, every instruction is annotated
by a non-empty sequence of logical assertions alternated with ghost variable as-
signments, always starting and ending with a logical assertion. Notice also that
Ensures(Γ∗(M)) and Exsures(Γ∗(M)) are all equal to the synchronization asser-
tion −→gs = −→ms for fully annotated programs. The first and last elements of the
annotation sequence of Requires(Γ∗(M)) is also the synchronization assertion (ex-
cept for 〈main〉, in which case last(Requires(Γ∗(M))) is again −→gs = −→ms). Similarly,
notice that for all instructions L, where L is not the label of an inlined instruction
and is not a security relevant action, last(AIIIM [L]) is the synchronization assertion.

We assume that the return instruction is not the first instruction of an excep-
tion handler, the last element in its annotation sequence is the synchronisation
annotation. We also assume that the inlined instructions do not raise exceptions.

180 APPENDIX B. PART III APPENDIX

Then, a level III annotation of I(T,P) gives rise to a set of verification conditions
described as follows.

First, there are three types of verification conditions arising from method com-
positionality, namely:

• last(Requires(Γ∗(M)))⇒ head(AIIIM [1]),

• last(AIIIM [R])⇒ Ensures(Γ∗(M)),

• For all instructions L that is not a method call and that can raise an unhandled
exception last(AIIIM [L])⇒ Exsures(Γ∗(M))

where R is the label of the return instruction in method M , and where last
is a function on sequences returning the last element. The inlined instructions
are assumed not to raise any exceptions, so no verification condition for exception
raising is generated by these. Additionally, only inlined instructions and method
calls change the embedded monitor state, hence the simple form of the verification
conditions of the latter type. In the first two cases and in the last case when L is not
the label of a method call, the antecedent and the consequent are (syntactically)
equal to the synchronisation assertion. These verification conditions are therefore
valid, and validity is efficiently checkable.

Second, every ghost variable assignment −→g := ce gives rise to a verification
condition. If α · (−→g := ce) · α′ is a subsequence of AIIIM [L] for some L where α
and α′ are logical assertions, then α ⇒ α′[ce/−→g] is a verification condition. Due
to the normalization performed in the construction of the level III annotation, α
must contain a conjunct α′[ce/−→g]. Such verification conditions are therefore valid,
validity being efficiently checkable.

Third, every non-method-call instruction M [L] gives rise to a verification con-
dition last(AIIIM [L]) ⇒ wp(M [L]). There are three cases to be considered: (a)
if M [L] is a non-inlined instruction with non-inlined successor instructions only,
last(AIIIM [L]) is syntactically equal to wp(M [L]) by construction; (b) if M [L] is a
non-inlined instruction followed by an inlined instruction (in the case of post-actions
only, the latter indicates the beginning of an inlined block serving to record the cur-
rent values of the parameters and the object with which the following potentially
security relevant instruction is called), then the synchronization assertion −→gs = −→ms
must appear as a conjunct in both last(AIIIM [L]) and wp(M [L]), and the only other
conjuncts in the latter must be either of the shape Defined♯ or s[i] = s[i]; (c) if
M [L] is an inlined instruction, last(AIIIM [L]) must contain a conjunct wp(M [L]) by
construction. In all three cases, the verification condition is valid, validity being
efficiently checkable; the only interesting case here is presented by Defined♯, the
consequent −→gs 6=

−→
⊥ of which is implied by −→gs = −→ms. Similarly, every non-method

call instruction M [L] that can raise an exception which is handled by the handler
at label H gives rise to the verification condition last(AIIIM [L]) ⇒ head(AIIIM [H]).
By the assumption that the inlined instructions do not raise an exception, this in-
struction can not be an inlined instruction. There are two cases to consider: (a) if

B.3. PROOFS FOR PART III 181

M [H] is a non-inlined instruction, then both the antecedent and the consequent are
the synchronisation annotation; (b) if the handler M [H] is an inlined instruction
(which is possible only if it is the first instruction a code inlined for a potentially
preaction occuring in the original handler) this case becomes a subcase of the proof
for pre-actions, handled similar to the final part of this proof.

Finally, every method-call instruction M [L] calling some method M ′ gives rise
to three types of verification conditions. If the method call is not potentially post-
security relevant, these are:

• last(AIIIM [L])⇒ Requires(Γ∗(M ′)),

• Ensures(Γ∗(M ′))⇒ head(AIIIM [L + 1]), and

• For all handler instructions H of L, Exsures(Γ∗(M ′))⇒ head(AIIIM [H])

In the first two formulae, the antecedent and the consequent are (syntactically)
equal by construction, and hence valid. The last set of verification conditions are
valid and efficiently checkable by the argument for the case when M [L] is not a
method-call presented above where last(AIIIM [L]) should be replaced by Exsures(Γ∗(M ′)).

If M [L] is calling some method M ′ which is potentially security relevant, the
three types of verification conditions are

• last(AIIIM [L])⇒ Requires(Γ∗(M ′)) ∧ φ,

• Ensures(Γ∗(M ′)) ∧ φ⇒ head(AIIIM [L+ 1]), and

• For all instruction handler instructions H of L, Exsures(Γ∗(M ′)) ∧ φ ⇒
head(AIIIM [H])

where φ is the formula (g0 = r0)∧ . . .∧ (gn−1 = rn−1)∧ (gthis = rthis). Notice that
the invoked method does not change the local variables and the evaluation stack
of the caller method (except for popping arguments from the stack and pushing its
return value). Then a formula mentioning variables not changed by the invoked
method (such as φ) can be added to both the pre-and postconditions of the invoked
method [10].

The first of these conditions is again easy to show valid, since Requires(Γ∗(M ′))
and all conjuncts in φ also appear as conjuncts in last(AIIIM [L]) by construction.
The third set of verification conditions are similar to the last cases of the argument
above, when M [L] is calling a non-potentially security relevant action. The only
really involved case in the whole proof is the second verification condition.

Let α1, . . . , αm be the guarded expressions gthis : c′i ∧ abρi →
−→eEρi, 1 ≤ i ≤ m,

and α be ¬(gthis : c′1 ∨ . . . ∨ gthis : c′p) →
−→gs, all induced by the policy for the

instruction M [L] = invokevirtual (c.m) as described in section 4.8.1 (cf. After
Annotations). Then the second element of AIIIM [L+ 1] must be a ghost assignment
−→gs := ce where ce is the conditional expression α1 | · · · | αm | α. The block
inlined immediately after the (potentially post-security relevant) instruction M [L]
has the important property that its weakest pre-condition with respect to the head

182 APPENDIX B. PART III APPENDIX

assertion of the first instruction following the block (which is the synchronisation
assertion −→gs = −→ms) is the logical assertion

∧

1≤i≤m rthis : c′i ∧ abρ
′
i →

−→gs = −→eEρ′i
∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) →

−→gs = −→ms

where the substitution ρ′i is defined as [s[0]/x, r0/x0, . . . rn−1/xn−1, rthis/this,−→ms/−→gs]
if r = (τ x) and as [r0/x0, . . . rn−1/xn−1, rthis/this,−→ms/−→gs] if r = void . Therefore,
head(AIIIM [L+ 1]) must be the logical assertion

φ

∧ Defined♯

∧
∧

1≤i≤m rthis : c′i ∧ abρ
′
i → ce = −→eEρ′i

∧ ¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) → ce = −→ms

where φ is as explained above, and where ce is the tuple of conditional expressions
−→cei, obtained from ce by replacing each expression vector −→eE occurring in ce with its
i-th component. Now, validity of the verification condition Ensures(Γ∗(M ′))∧φ⇒
head(AIIIM [L + 1]) is established as follows. The first conjunct φ (actually a set
of conjuncts) of head(AIIIM [L + 1]) appears as a conjunct in Ensures(Γ∗(M ′)) ∧
φ. The second conjunct Defined♯ is implied by Ensures(Γ∗(M ′)) ∧ φ because
Ensures(Γ∗(M ′)) is −→gs = −→ms, which implies −→gs 6=

−→
⊥ . Every conjunct rthis :

c′i ∧ abρ
′
i → ce = −→eEρ′i is valid under the equalities of Ensures(Γ∗(M ′)) ∧ φ,

since then every guard rthis : c′i ∧ abρ
′
i matches exactly the guard of αi, and −→eEρi

is equal to −→eEρ′i. Validity can thus be easily checked mechanically by simple equa-
tional reasoning and (syntactic) guard matching. Finally, validity of the conjunct
¬(rthis : c′1 ∨ . . . ∨ rthis : c′p) → ce = −→ms is established similarly.

When M [L] can give rise to an exceptional postaction, the last set of verification
conditions look slightly different. Notice that our inliner inserts a handler for each
such potentially security relevant instruction that handles all types of exceptions.
Let the label of the first instruction of this handler to be H for the instruction
M [L], then the three verification conditions are:

• last(AIIIM [L])⇒ Requires(Γ∗(M ′)) ∧ φ ∧ (gpc = L) and

• Ensures(Γ∗(M ′)) ∧ φ ∧ (gpc = L)⇒ head(AIIIM [L + 1]), and

• Exsures(Γ∗(M ′)) ∧ φ ∧ (gpc = L)⇒ head(AIIIM [H])

where φ is the formula (g0 = r0) ∧ . . . ∧ (gn−1 = rn−1) ∧ (gthis = rthis). The
non-trivial case is then to show that the third verification condition is valid and
efficiently checkable. This argument is similar to the argument made above for the
non-exceptional case. 2

Bibliography

[1] I. Aktug and D. Gurov. Towards state space exploration based verification
of open systems. In Proc. of the 4th International Workshop on Automated
Verification of Infinite-State Systems (AVIS’05), To appear, 2005.

[2] I. Aktug and J. Linde. An inliner tool for mobile platforms. Available at
http://www.csc.kth.se/~irem/S3MS/Inliner/

[3] I. Aktug and K. Naliuka. ConSpec – a formal language for policy specification.
In F. Piessens and F. Massacci, editors, Proc. of The First Int. Workshop
on Run Time Enforcement for Mobile and Distributed Systems (REM’07),
volume 197-1 of Electronic Notes in Theoretical Computer Science, pages 45–
58, 2007.

[4] E. Albert, G. Puebla, and M. V. Hermenegildo. Abstraction-carrying code.
In Proc. 11th Int. Conf. on Logic for Programming Artificial Intelligence and
Reasoning (LPAR’04), volume 3452 of Lecture Notes in Artificial Intelligence,
pages 380–397. Springer Verlag, 2004.

[5] B. Alpern and F. B. Schneider. Verifying temporal properties without tem-
poral logic. ACM Transactions on Programming Languages and Systems, 11
(1):147–167, 1989.

[6] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yan-
nakakis. Analysis of recursive state machines. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 27(4):786–818, 2005.

[7] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49(5):672–713, 2002.

[8] H. R. Andersen. Partial model checking. In Proc. of the 10th Annual IEEE
Symposium on Logic in Computer Science (LICS ’95), page 398, Washington,
DC, USA, 1995. IEEE Computer Society.

[9] F. Y. Bannwart and P. Müller. A logic for bytecode. Technical Report 469,
ETH Zurich, 2004. Available at
http://www.sct.inf.ethz.ch/publications/

183

184 BIBLIOGRAPHY

[10] F. Y. Bannwart and P. Müller. A logic for bytecode. In Proc. of Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE’05), vol-
ume 141-1 of ENTCS, pages 255–273, 2005.

[11] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and
TLTL. Technical Report TUM-I0724, TU München, 2007.

[12] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with Poly-
mer. In Proc. of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 305–314, 2005.

[13] L. Bauer, J. Ligatti, and D. Walker. Composing expressive run-time security
policies. ACM Transactions on Software Engineering and Methodology, 2008.
To appear, Available at
http://www.cse.usf.edu/~ligatti/papers/polymer-tosem.pdf

[14] O. Bernholtz and O. Grumberg. Branching time temporal logic and amor-
phous tree automata. In Proc. of the 4th International Conference on Con-
currency Theory (CONCUR ’93), volume 715, pages 262–277, London, UK,
1993. Springer Verlag-Verlag.

[15] F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model checking security
properties of control flow graphs. Journal of Computer Security, 9(3):217–250,
2001.

[16] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model checking. In Proc. of the 8th International
Conference on Concurrency Theory (CONCUR ’97), pages 135–150, London,
UK, 1997. Springer Verlag-Verlag.

[17] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static
analysis of concurrent programs with procedures. ACM SIGPLAN Notices,
38(1):62–73, 2003.

[18] G. Boudol and K. Larsen. Graphical versus logical specifications. Theoretical
Computer Science, 106:3–20, 1992.

[19] J.C. Bradfield and C.P. Stirling. Local model checking for infinite state spaces.
Theoretical Computer Science, 96:157–174, 1992.

[20] E. Bretagne, A. El Marouani, P. Girard, and J.-L. Lanet. Pacap purse and
loyalty specification. Technical Report V 0.4, Gemplus, 2000.

[21] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook
of Process Algebra, pages 545–623. North Holland, 2000.

185

[22] D. Bustan and O. Grumberg. Applicability of fair simulation. In Proc. of 8th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02), volume 2280 of Lecture Notes in Computer
Science, pages 401–414. Springer Verlag-Verlag, 2002.

[23] S. Christensen. Decidability and Decomposition in Process Algebras. PhD
thesis, University of Edinburgh, 1993.

[24] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample–
guided abstraction refinement. In Proc. of the International Conference on
Computer Aided Verification (CAV’00), volume 1855 of Lecture Notes in
Computer Science, pages 154–169. Springer Verlag-Verlag, 2000.

[25] E.M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems (TOPLAS), 16
(5):1512–1542, 1994.

[26] R. Cleaveland, J. Parrow, and B. Steffen. A semantics based verification
tool for finite state systems. In Proc. 9th IFIP Symp. Protocol Specification,
Verification and Testing, 1989.

[27] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench. In
Proc. of the International Workshop on Automatic Verification Methods for
Finite State Systems, pages 24–37, New York, NY, USA, 1990. Springer
Verlag-Verlag New York, Inc.

[28] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Formal Methods in
System Design, 1(2-3):275–288, 1992.

[29] P. Cousot. Verification by abstract interpretation. In N. Dershowitz, editor,
International Symposium on Verification – Theory & Practice - Honoring
Zohar Manna’s 64th Birthday, number 2772 in Lecture Notes in Computer
Science, pages 243–268. Springer Verlag, 2003.

[30] M. Dam. Fixed points of Büchi automata. In Proc. of the 12th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS ’92), volume 652 of Lecture Notes in Computer Science, pages 39–
50, 1992.

[31] M. Dam. Proving properties of dynamic process networks. Information and
Computation, 140(2):95–114, 1998.

[32] M. Dam, L.-Å. Fredlund, and D. Gurov. Toward parametric verification of
open distributed systems. In H. Langmaack, A. Pnueli, and W.-P. de Roever,
editors, Compositionality: the Significant Difference, volume 1536 of Lecture
Notes in Computer Science, pages 150–185. Springer Verlag-Verlag, 1998.

186 BIBLIOGRAPHY

[33] M. Dam and D. Gurov. Compositional verification of CCS processes. In Proc.
of the Third International Andrei Ershov Memorial Conference on Perspec-
tives of System Informatics (PSI ’99), pages 247–256. Springer Verlag-Verlag,
2000.

[34] D. Dams and K.S. Namjoshi. The existence of finite abstractions for branching
time model checking. In Nineteenth Annual IEEE Symposium on Logic in
Computer Science (LICS’04), pages 335–344, Los Alamitos, CA, 2004. IEEE
Computer Society Press.

[35] D. Dams and K.S. Namjoshi. Automata as abstractions. In R. Cousot, edi-
tor, Verification, Model Checking, and Abstract Interpretation (VMCAI’05),
volume 3385, pages 216–232. Springer Verlag, 2005.

[36] F. Diotalevi. Contract enforcement with AOP. Available at
http://www-128.ibm.com/developerworks/library/j-ceaop/

[37] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of theoretical computer science, vol. B, Formal Models and Semantics,
pages 995–1072. MIT Press, Cambridge, MA, USA, 1990.

[38] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In Proc. of the 32nd Annual Symposium on Foundations
of Computer Science, IEEE, pages 368–377. Computer Society Press, 1991.

[39] Ú. Erlingsson. The inlined reference monitor approach to security policy en-
forcement. PhD thesis, Dep. of Computer Science, Cornell University, 2004.

[40] Ú. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection.
In Proc. of the IEEE Symposium on Security and Privacy, page 246. IEEE
Computer Society, 2000.

[41] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a
retrospective. In Proc. of the Workshop on New Security Paradigms (NSPW
’99), pages 87–95, New York, NY, USA, 2000. ACM Press.

[42] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms
for model checking pushdown systems. In Computer Aided Verification (CAV
’00), number 1855 in Lecture Notes in Computer Science, pages 232–247.
Springer Verlag, 2000.

[43] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig in-
terpolation and symbolic pushdown systems. In H. Hermanns and J. Palsberg,
editors, Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’06), volume 3920 of Lecture Notes in Computer Science, pages 489–
503, Vienna, Austria, 2006.

187

[44] J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular
valuations for pushdown systems. In Proc. of the 4th International Symposium
on Theoretical Aspects of Computer Software (TACS ’01), number 2215 in
Lecture Notes in Computer Science, pages 316–339. Springer Verlag, 2001.

[45] J. Esparza and A. Podelski. Efficient algorithms for pre and post on interpro-
cedural parallel flow graphs. In Proc. of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’00), pages 1–
11, New York, NY, USA, 2000. ACM.

[46] D. Evans and A. Twyman. Flexible policy-directed code safety. In Proc. of
the IEEE Symposium on Security and Privacy, pages 32–45, 1999.

[47] R. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software
Development. Addison-Wesley, 2004.

[48] S. N. Freund and J. C. Mitchell. A type system for object initialization in
the Java bytecode language. ACM Transactions on Programming Languages
and Systems (TOPLAS), 21(6):1196–1250, 1999.

[49] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction–based model check-
ing using modal transition systems. In Proc. of the 12th International Confer-
ence on Concurrency Theory (CONCUR ’01), volume 2154 of Lecture Notes
in Computer Science, pages 426–440, 2001.

[50] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
third edition. The Java Series. 2005.

[51] O. Grumberg and D. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems (TOPLAS), 16(3):
843–871, 1994.

[52] O. Grumberg and S. Shoham. Monotonic abstraction-refinement for CTL. In
Proc. of the 10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’04), volume 2988 of Lecture
Notes in Computer Science, pages 546–560. Springer Verlag-Verlag, 2004.

[53] D. Gurov, M. Huisman, and C. Sprenger. Compositional verification of se-
quential programs with procedures. Information and Computation, 206(7):
840–868, 2008.

[54] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified in-lined ref-
erence monitoring on .NET. In Proc. of the ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security (PLAS’06), pages 7–16,
June 2006.

188 BIBLIOGRAPHY

[55] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes
for enforcement mechanisms. ACM Transactions on Programming Languages
and Systems (TOPLAS), 28(1):175–205, 2006.

[56] D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt,
editor, Logics and models of concurrent systems, volume 13, pages 477–498.
Springer Verlag, New York, NY, USA, 1985.

[57] K. Havelund and G. Roşu. Efficient monitoring of safety properties. In-
ternational Journal on Software Tools for Technology Transfer (STTT), 6-2:
158–173, 2004.

[58] K. Havelund and G. Roşu. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, 2004.

[59] K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In
Proc. of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’02), pages 342–356, London,
UK, 2002. Springer Verlag-Verlag.

[60] G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):
279–295, 1997.

[61] M. Huisman and D. Gurov. Composing modal properties of programs with
procedures. In Formal Foundations of Embedded Software and Component-
Based Software Architectures (FESCA 2007), 2008. To appear.

[62] M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov. Checking absence of
illicit applet interactions: a case study. In M. Wermelinger and T. Margaria,
editors, Fundamental Approaches to Software Engineering, FASE’04, number
2984 in Lecture Notes in Computer Science, pages 84–98. Springer Verlag,
2004.

[63] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A
foundation for three-valued program analysis. In Proc. of the 10th European
Symposium on Programming Languages and Systems (ESOP ’01), volume
2028, pages 155–169, London, UK, 2001. Springer Verlag-Verlag.

[64] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A lightweight architecture
for program execution monitoring. In Proc. of the ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE
’98), pages 67–74, New York, NY, USA, 1998. ACM Press.

[65] R. Kaivola. On modal mu-calculus and Büchi tree automata. Information
Processing Letters, 54(1):17–22, 1995.

189

[66] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for
full propositional temporal logic. In Proc. of the 5th International Conference
on Computer Aided Verification (CAV ’93), pages 97–109, London, UK, 1993.
Springer Verlag-Verlag.

[67] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka,
editors, Proc. of the European Conference on Object-Oriented Programming,
volume 1241, pages 220–242. Springer Verlag-Verlag, Berlin, Heidelberg, and
New York, 1997.

[68] S. Kiefer, S. Schwoon, and D. Suwimonteerabuth. The Moped Tool.
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

[69] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a run-time assur-
ance tool for Java. In Proc. of the 1st International Workshop on Run-time
Verification (RV’01), volume 55 of Electronic Notes in Theoretical Computer
Science, July 2001.

[70] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[71] O. Kupferman and M. Vardi. An automata-theoretic approach to modular
model checking. ACM Transactions on Programming Languages and Systems
(TOPLAS), 22(1):87–128, 2000.

[72] O. Kupferman and M. Y. Vardi. Robust satisfaction. In Proc. of the 10th
International Conference on Concurrency Theory (CONCUR ’99), volume
1664 of Lecture Notes in Computer Science, pages 383–398, London, UK,
1999. Springer Verlag-Verlag.

[73] O. Kupferman and M. Y. Vardi. An automata-theoretic approach to modular
model checking. ACM Transactions on Programming Languages and Systems,
22(1):87–128, 2000.

[74] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. Journal of ACM, 47(2):312–360, 2000.

[75] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, 3(2):125–143, 1977.

[76] L. Lamport. “Sometime” is sometimes “not never”: on the temporal logic of
programs. In Proc. of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’80), pages 174–185, New York, NY, USA,
1980. ACM.

190 BIBLIOGRAPHY

[77] K. Larsen. Modal specifications. In Automatic Verification Methods for Finite
State Systems, number 407 in Lecture Notes in Computer Science, pages 232–
246. Springer Verlag-Verlag, 1989.

[78] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal
of Automated Reasoning, 30(3–4):235–269, 2003.

[79] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security,
4(1–2):2–16, February 2005.

[80] J. Ligatti, L. Bauer, and D. Walker. Enforcing non-safety security policies
with program monitors. In Proc. of the 10th European Symposium on Re-
search in Computer Security (ESORICS’05), pages 355–373, Sep 2005.

[81] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Second
Edition. Sun Microsystems, Inc., 1999.

[82] J. Manson, W. Pugh, and S. Adve. The Java memory model. In Proc.
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’05), 2005.

[83] F. Martinelli. Analysis of security protocols as open systems. Theoretical
Compututer Science, 290(1):1057–1106, 2003.

[84] F. Massacci and K. Naliuka. Multi-session security monitoring for mobile
code. Technical Report DIT-06-067, UNITN, 2006. Available at
http://eprints.biblio.unitn.it/archive/00001091/

[85] F. Massacci and I. Siahaan. Matching midlet’s security claims with a platform
security policy using automata modulo theory. In Proc. of The 12th Nordic
Workshop on Secure IT Systems (NordSec’07), October 2007.

[86] J. McLean. A general theory of composition for a class of “possibilistic”
properties. IEEE Transactions on Software Engineering, 22(1):53–67, Jan
1996.

[87] M. Méndez, J. Navas, and M.V. Hermenegildo. An efficient, parametric fix-
point algorithm for analysis of Java bytecode. In M. Huisman and F. Spoto,
editors, Bytecode 2007, pages 51–66, 2007.

[88] A. W. Mostowski. Regular expressions for infinite trees and a standard form
of automata. Computation Theory, 208:pages 157–168, 1984.

[89] D. E. Müller and P. E. Schupp. Alternating automata on infinite objects,
determinacy and rabin’s theorem. In Automata on Infinite Words, Ecole de
Printemps d’Informatique Théorique,, volume 192, pages 100–107, London,
UK, 1985. Springer Verlag-Verlag.

191

[90] G. C. Necula. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’97),
pages 106–119, New York, NY, USA, 1997. ACM Press.

[91] J. Obdrz̃áek. Model checking Java using pushdown systems. In Proceedings
of FTfJP’02, Malaga, June 2002. Available as Technical Report NIII-R0204,
Computing Science Department, University of Nijmegen.

[92] C. E. Ortiz. An introduction to Java Card technology.
http://developers.sun.com/mobility/javacard/articles/javacard1/,
2003.

[93] C. E. Ortiz. A survey of Java ME today.
http://developers.sun.com/mobility/getstart/articles/survey/,
2007.

[94] AspectJ Project Home Page. http://eclipse.org/aspectj. URL http://

eclipse.org/aspectj.

[95] A. Pnueli. In transition from global to modular temporal reasoning about
programs. In K.R. Apt, editor, Logics and Models of Concurrent Systems,
volume 13 of NATO ASI Series. Springer Verlag, 1984.

[96] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential java. In
S. D. Swierstra, editor, Proc. of the 8th European Symposium on Programming
(ESOP’99), volume 1576 of Lecture Notes in Computer Science, pages 162–
176. Springer, March 1999.

[97] D. Polansky. Implementation of the model checker for pushdown systems and
alternation-free mu-calculus. Master’s thesis, FI MU Brno, 2000.

[98] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent soft-
ware. In Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’05, Lecture Notes in Computer Science. Springer Verlag, 2005.

[99] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is un-
decidable. ACM Transactions on Programming Languages and Systems
(TOPLAS), 22(2):416–430, 2000. ISSN 0164-0925.

[100] T. Rezk. Verification of Confidentiality Policies for Mobile Code. PhD thesis,
INRIA Sophia Antipolis and University of Nice Sophia Antipolis, November
2006.

[101] J.H. Saltzer. Protection and the control of information sharing in multics.
Communications of the ACM, 17(7):388–402, 1974.

[102] F. B. Schneider. Enforceable security policies. ACM Transactions on Infor-
mation and System Security, 3(1):30–50, 2000.

192 BIBLIOGRAPHY

[103] R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar, and
Daniel C. DuVarney. Model-carrying code: a practical approach for safe
execution of untrusted applications. In Proc. of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’03), pages 15–28, New York, NY,
USA, 2003. ACM.

[104] C. Stirling. Modal and Temporal Properties of Processes. Texts in Computer
Science. Springer Verlag-Verlag, 2001.

[105] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A Java bytecode
checker based on Moped. In N. Halbwachs and L. Zuck, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’05), vol-
ume 3440 of Lecture Notes in Computer Science, pages 541–545, Edinburgh,
UK, 2005. Springer Verlag. Tool paper.

[106] P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic spec-
ifications. Electronic Notes in Theoretical Computer Science, 113:145–162,
2005.

[107] W. Thomas. Handbook of Theoretical Computer Science (vol. B): Formal
Models and Semantics, chapter Automata on Infinite Objects, pages 133–191.
MIT Press, Cambridge, MA, USA, 1990.

[108] T. Thorn. Programming languages for mobile code. ACM Computing Surveys,
29(3):213–239, 1997.

[109] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co.
Soot - a Java Optimization Framework. In CASCON 1999, pages 125–135,
1999. Available at
http://www.sable.mcgill.ca/soot/

[110] D. Vanoverberghe and F. Piessens. A caller-side inline reference monitor for an
object-oriented intermediate language. In Proc. of the 10th IFIP International
Conference on Formal Methods for Open Object-based Distributed Systems
(FMOODS’08), Lecture Notes in Computer Science. Springer Verlag, 2008.
to appear.

[111] M. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proc. of the First Symposium on Logic in Computer
Science, pages 332–344, 1986.

[112] M. Viswanathan. Foundations for the run-time analysis of software systems.
PhD thesis, University of Pennsylvania, 2000. Supervisor-Sampath Kannan
and Supervisor-Insup Lee.

[113] S. Winwood, G. Klein, and M. M. T. Chakravarty. On the automated syn-
thesis of proof-carrying temporal reference monitors. In G. Puebla, editor,

193

Logic-Based Program Synthesis and Transformation, 16th International Sym-
posium (LOPSTR’06), volume 4407 of Lecture Notes in Computer Science,
pages 111–126. Springer Verlag, 2006.

[114] P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computa-
tion paths (extended abstract). In Proc. of the 24th Annual Symposium on
Foundations of Computer Science, pages 185–194. IEEE, 1983.

[115] A. Zobel, C. Simoni, D. Piazza, X. Nunez, and D. Rodriguez. Business case
and security requirements. Public Deliverable D5.1.1, S3MS, http://s3ms.org,
October 2006.

