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Abstract

This thesis concerns the approximation of optimally controlled partial

differential equations for inverse problems in optimal design. Important ex-

amples of such problems are optimal material design and parameter recon-

struction. In optimal material design the goal is to construct a material that

meets some optimality criterion, e.g. to design a beam, with fixed weight,

that is as stiff as possible. Parameter reconstrucion concerns, for example,

the problem to find the interior structure of a material from surface displace-

ment measurements resulting from applied external forces.

Optimal control problems, particularly for partial differential equations,

are often ill-posed and need to be regularized to obtain good approxima-

tions. We here use the theory of the corresponding Hamilton-Jacobi-Bellman

equations to construct regularizations and derive error estimates for optimal

design problems. The constructed Pontryagin method is a simple and gen-

eral method where the first, analytical, step is to regularize the Hamiltonian.

Next its Hamiltonian system is computed efficiently with the Newton method

using a sparse Jacobian. An error estimate for the difference between exact

and approximate objective functions is derived, depending only on the dif-

ference of the Hamiltonian and its finite dimensional regularization along the

solution path and its L2 projection, i.e. not on the difference of the exact and

approximate solutions to the Hamiltonian systems.

Another treated issue is the relevance of input data for parameter recon-

struction problems, where the goal is to determine a spacially distributed

coefficient of a partial differential equation from partial observations of the

solution. It is here shown that the choice of input data, that generates the

partial observations, affects the reconstruction, and that it is possible to for-

mulate meaningful optimality criteria for the input data that enhances the

quality of the reconstructed coefficient.

In the thesis we present solutions to various applications in optimal ma-

terial design and reconstuction.
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Sammanfattning

Denna avhandling handlar om approximation av optimalt styrda parti-

ella differentialekvationer för inversa problem inom optimal design. Viktiga

exempel på sådana problem är optimal materialdesign och parameterskatt-

ning. Inom materialdesign är målet att konstruera ett material som uppfyller

vissa optimalitetsvillkor, t.ex. att konstruera en så styv balk som möjligt un-

der en given vikt, medan ett exempel på parameterskattning är att hitta den

inre strukturen hos ett material genom att applicera ytkrafter och mäta de

resulterande förskjutningarna.

Problem inom optimal styrning, speciellt för styrning av partiella differen-

tialekvationer, är ofta illa ställa och måste regulariseras för att kunna lösas

numeriskt. Teorin för Hamilton-Jacobi-Bellmans ekvationer används här för

att konstruera regulariseringar och ge feluppskattningar till problem inom op-

timal design. Den konstruerade Pontryaginmetoden är en enkel och generell

metod där det första analytiska steget är att regularisera Hamiltonianen. I

nästa steg löses det Hamiltonska systemet effektivt med Newtons metod och

en gles Jacobian. Vi härleder även en feluppskattning för skillnaden mellan

den exakta och den approximerade målfunktionen. Denna uppskattning be-

ror endast på skillnaden mellan den sanna och den regulariserade, ändligt di-

mensionella, Hamiltonianen, båda utvärderade längst lösningsbanan och dess

L
2-projektion. Felet beror alltså ej på skillnaden mellan den exakta och den

approximativa lösningen till det Hamiltonska systemet.

Ett annat fall som behandlas är frågan hur indata ska väljas för parame-

terskattningsproblem. För sådana problem är målet vanligen att bestämma

en rumsligt beroende koefficient till en partiell differentialekvation, givet ofull-

ständiga mätningar av lösningen. Här visas att valet av indata, som genererar

de ofullständiga mätningarna, påverkar parameterskattningen, och att det

är möjligt att formulera meningsfulla optimalitetsvillkor för indata som ökar

kvaliteten på parameterskattningen.

I avhandlingen presenteras lösningar för diverse tillämpningar inom opti-

mal materialdesign och parameterskattning.
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Chapter 1

Introduction

This thesis deals with the problem on how to solve ill-posed inverse problems with
optimal control techniques. The purpose of optimal control is to control a dy-
namical system to achieve a desired goal in an optimal way. Optimal control is
of great importance in many areas of science such as finance, economics, aeronau-
tics, chemistry, physics and mechanics. In fact, almost any discipline that deals
with dynamical systems also have applications where it is of interest to control
that dynamical system. Another area where optimal control is of interest is inverse
problems, cf. [3, 13, 24, 13]. The goal is then to determine input data to an equation
from its solution, i.e. if the solution y to the forward problem is given by

y = A(x),

where x is the input, and A is a (non-linear) operator, then the inverse problem to
find x is simply

x = A−1(y).

In the finite dimensional case for a linear operator, e.g. A(x) = Ax where A is
an invertible matrix, the inverse problem is just to solve a linear system. For the
infinite dimensional case, however, the inverse problem may be ill-posed, i.e. one
or more of the following properties for well-posedness is not satisfied:

1. There exists a solution x.

2. The solution is unique.

3. The solution depends continuously on the input y.

A simple example of an ill-posed inverse problem is to find x∗ : [0, T ]→ R for

y∗(t) =

∫ T
0

x∗(t) dt := A(x∗), (1.1)

1



2 CHAPTER 1. INTRODUCTION

where y∗ : [0, T ] → R is non-differentiable. For the corresponding discretized
problem, with A−1 being the difference operator, the sensitivity to data is reflected
by the condition number which grows as the step size goes to zero.

To formulate an optimal control problem for the inverse problem (1.1) it is
necessary to introduce an objective functional, e.g. the least-squares functional

∫ T
0

(
y(t)− y∗(t)

)2
dt. (1.2)

The optimal control problem is then to find x, y : [0, T ]→ R that satisfies

dy(t)

dt
= x(t), t ∈ (0, T ],

x(0) = 0.

and minimizes (1.2). Since the optimal control problem still is ill posed it is nec-
essary to modify it to allow a solution and to lessen the dependence on data. One
way is to regularize it by adding an extra penalty on the control x, e.g. to replace
(1.2) with ∫ T

0

(
y(t)− y∗(t)

)2
+ δx2(t) dt,

see [19].
In this thesis optimal design problems are considered, i.e. inverse problems

for partial differential equations, cf. [19, 20] . Optimal design also includes con-
trol problems without time dynamics, e.g. control of stationary partial differential
equations, and can in the general form be written as the mimimization of a func-
tional

F (u, σ) : V (U)×W (U)→ R,

where U is a domain (possibly in both time and space), and the state u and the
control σ belongs to Hilbert spaces V and W , and satisfies a partial differential
constraint

G(u, σ) = 0 in U.

Usually the control is also restriced to only attain values in some admissible set in
W . In the following chapter, the special case of optimal design problems where the
control is only able to attain discrete values, e.g. σ : U → {σ−, σ+}, is discussed.
The theory for this case can easily be extended to the more general cases σ : U →
[σ−, σ+] or σ : U → R.



Chapter 2

Optimal Design

Optimal design has with the increase of computational capacity and commercial
software for solving partial differential equations become an important industrial
field, with applications in virtually all fields of science. Two important applications
are optimal design of material structures, and inverse optimal reconstruction of
physical properties from experimental data, see e.g. [5] and [6], respectively.

Mathematically, optimal design can be described as the particular inverse prob-
lem of controlling one or more a partial differential equations to meet some design
criteria in an optimal way. For example, consider the general problem to find a
bounded open set D ⊂ Ω ⊂ R

d such that

inf
D∈Dad

{∫
D

F (u) dx

∣∣∣∣ G(u) = 0 in D

}
, (2.1)

where the design criteria is described by the functional F : R
n → R, the state

variable u : Ω → R
n satisfies the partial differential equation G(u) = 0 in D, and

Dad describes a set of admissible designs. Typically, the partial differential operator
G here describes a physical state, while the design criteria consists of some energy to
minimize or, for a reconstruction problem, an error functional relating the solution
u to measurements.

The above problem (2.1) is usually referred to as an optimal shape problem [20]
and is in general ill-posed in the sense that small perturbations of data lead to large
changes in the solution [13, 24]. Also, for a too large set of admissible designs Dad,
the infimum in (2.1) may not even be attained.

An alternative way to write the optimal shape problem (2.1) is as a parameter
design problem

inf
χ∈χad

{∫
Ω

χF (u) dx

∣∣∣∣ χG(u) = 0 in Ω

}
, (2.2)

where the domain Ω is fixed and the infimum is taken is over all characteristic
functions χ : Ω→ {0, 1} in the admissible set χad.

3



4 CHAPTER 2. OPTIMAL DESIGN

Example 2.1 (Optimal design in conductivity). Consider the problem of minimiz-
ing the power loss in an electric conductor, by placing a given amount C of con-
ducting material in a given domain Ω ⊂ R

d, for a given surface current q : Γ→ R,
Γ ⊆ ∂Ω. In the shape optimization setting this can be formulated as finding the
conducting domain D ⊂ Ω, Γ ⊆ ∂D, such that

inf
D∈Dad

{∫
D

|∇ϕ|2 dx

∣∣∣∣ − div(∇ϕ)
∣∣
D

= 0,
∂ϕ

∂n

∣∣
∂D\Γ

= 0,
∂ϕ

∂n

∣∣
Γ

= q,

}
, (2.3)

where ∂/∂n denotes the normal derivative on the boundary,

ϕ ∈ V ≡

{
v ∈ H1(D) :

∫
D

v dx = 0

}
,

is the electric potential, and where

Dad ≡

{
D ⊂ Ω : Γ ⊆ ∂D,

∫
D

dx = C

}
.

A corresponding parameter design problem can be formulated as to find the char-
acteristic conductivity function σ : Ω→ {0, 1} such that

inf
σ

{∫
Ω

σ|∇ϕ|2 dx

∣∣∣∣ − div(σ∇ϕ)
∣∣
Ω

= 0, σ
∂ϕ

∂n

∣∣
∂Ω

= q,

∫
Ω

σ dx = C

}
. (2.4)

This parameter design problem is studied in detail in [10].

Remark 2.1 (Two materials). For two materials, with objective functionals F 1

and F 2, and state equations G1 and G2, an optimal shape problem is

inf
D∈Dad

{∫
D

F 1(u) dx+

∫
Ω\D

F 2(u) dx

∣∣∣∣ G1(u) = 0 in D, G2(u) = 0 in Ω \D

}
,

with the corresponding parameter design problem

inf
χ∈χad

{∫
Ω

χF 1(u) + (1 − χ)F 2(u) dx

∣∣∣∣ χG1(u) + (1 − χ)G2(u) = 0 in Ω

}
.

Example 2.2 (Time dependent reconstruction). An example of a time dependent
optimal design problem is to reconstruct a time independent wave coefficient σ∗ :
Ω→ {σ−, σ+} of the wave equation from boundary measurements ϕ∗ : ∂Ω×[0, T ]→
R. This can be formulated as

inf
σ

∫ T
0

∫
∂Ω

(ϕ− ϕ∗)2 ds dt,
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such that
ϕtt = div(σ∇ϕ) in Ω× (0, T ],

σ
∂ϕ

∂n
= q on ∂Ω× (0, T ],

ϕ = ϕ0, on Ω× {0},

ϕt = ϕ̃0, on Ω× {0},

for given Neumann boundary values q : ∂Ω × (0, T ] → R and initial data ϕ0 and
ϕ̃0.

Remark 2.2 (Continuous material). In Example 2.1 and 2.2 it is possible to allow
the sought coefficient σ to have intermediate values, e.g. σ : Ω → [σ−, σ+] for
Example 2.2. For some optimal design problems allowing intermediate values leads
to a well posed problem while, e.g. the problem in Example 2.2 remains ill posed.

2.1 Existence of Solutions

Without any restrictions on the class of admissible designs, optimal design problems
often do not admit any solutions. A simple example is the problem to find the set
D ⊂ Ω ∈ R

2 that minimizes 1/l(D), where l(D) is the length of the boundary ∂D.
This unconstrained minimization problem clearly has no minimizer although the
minimum tends to zero, and to attain a minimizer we must add extra constraints
on for example the shape of the domain D, or the boundary ∂D.

To understand why the set of admissible designs is so important we review some
conditions on the existence of minimizers, see [20]: To assure existence of a solu-
tion D with a corresponding state variable u to the minimization problem (2.1),
a necessary condition is that there exists a minimizing sequence Dm to (2.1) such
that D̄m → D̄, in the Hausdorff sense. This does not imply that the corresponding
characteristic functions χDm : Ω→ L∞(Ω) converges pointwise or even weakly * to
a characteristic function χD (see Definition 2.1 for weak * convergence). However,
there always exists a minimizing sequence such that the characteristic functions
χDm converges in the weak * sense to a limit not belonging to the class of charac-
teristic functions. For the problem (2.1) this means that even if the state variables
um, corresponding to the minimizing sequence of shapes Dm, satisfies the constraint
G(um) = 0, the limit u may not be a solution to the original partial differential
constraint G(u) = 0.

Definition 2.1. By weak * convergence of χm ∈ L
∞(Ω) to χ ∈ L∞(Ω) we mean

that

lim
m→∞

∫
Ω

χm(x)φ(x) dx =

∫
Ω

χ(x)φ(x) dx,

for all test functions φ ∈ L1(Ω). The notation ’weak *’ is here used since L1(Ω) is
not the dual space of L∞(Ω).
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To find a minimizing sequence of characteristic functions that converges to a
characteristic function, we can either alter the original optimal design problem by
adding penalty terms in the design criterion, or change the set of admissible designs,
for example by adding conditions on the smoothness of the boundary, e.g. only
allowing Lipschitz boundaries. One problem is that this restriction usually gives a
minimum different from the infimum of the original problem, i.e. the problem has
been altered significantly. Another approach is to extend the admissible set χad in
(2.2) to include not only characteristic functions, e.g. by introducing composites
of laminated materials as in the homogenization method [1]. Such composites
describes periodic material micro-structures and can for certain laminations give a
minimum that coincides with the true infimum. It is worth to mention that even if
a solution exists, optimal design problems may be ill-posed in the sense that small
perturbations of data lead to large changes in the solution.

In Chapter 3, a different approach more connected with optimal control and
calculus of variations, is used for finding a regularization. For some problems we
can derive sufficient conditions for a minimizer [8, 10].

Remark 2.3. For the particular example of minimizing energy in Example 2.1,
there exists a unique minimizer without any restriction on the shape [20]. On the
other hand, changing the ’inf’ for a ’sup’ needs regularization to admit a solution.
This particular maximization problem has is addressed in [10], and can be regular-
ized by convexification or homogenization [1, 15, 16, 17, 18].

2.2 Solution Methods

Roughly, the computational methods solving for optimal design problems can be
divided into two classes: Methods with optimality conditions derived from (2.1),
and methods based on approximation of the characteristic function χ in (2.2).

In the first class we find the classical method of shape derivatives, which de-
rives the optimal variation of the boundary. Topological derivatives, or the bubble
method, is a similar method that derives optimality conditions for the creation of
holes in the domain, i.e not only moves the boundary but also changes the topology.
The shape optimization methods commonly use a finite element or finite difference
discretization of the domain D to solve the partial differential equation G(u) = 0
and update both D and the discretization from the optimality conditions. Alter-
natively, a fixed mesh and a mapping onto the domain D can be used. Another
method that uses the shape derivative, the topological derivative, or a combina-
tion of both is the level-set method. A level-set function is then used to indicate
the boundary, and boundary movement and creation of holes is done by solving a
transport equation for the level-set function on the whole domain Ω.

The second class of computational methods is based on the formulation (2.2)
and relaxes the class of admissible designs to allow a global minimum, either by
smooth approximation of χ, or as in the homogenization method, by a special class
of admissible controls χad based on periodic micro-structures. Since these methods
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uses a discretization of the whole region Ω it is here often necessary to use a weak
material to mimic void, i.e. χ > 0. Also, to produce sharp boundaries between, in
this case, the weak and the solid phase, some penalization procedure is often added.
This may seem counter productive, but the hope is to first reach a global minimum
to the relaxed problem, followed by a penalization which removes existence of a
global minimum but forces the solution to a nearby local minimum.

In this presentation, we only deal with the continuous problem, and do not
discuss any of the many optimization methods dealing with the discretized versions
of (2.1) and (2.2). An introduction to discrete methods concerning optimal design
of material structures can be found in [5].

Shape and Topological Derivative

Consider the problem (2.1) and define the objective functional

J(D) ≡

∫
D

F (u) dx,

where u : D → V is the solution, belonging to some Hilbert space V , to the partial
differential equation G(u) = 0 in (2.1)

For a small perturbation θ : R
d → R

d of the domain D ⊂ R
d into D + θ =

{x+ θ(x), x ∈ D} the shape derivative in the direction θ can be defined as

δJ(D; θ) =

∫
∂D

L
(
u(s), λ(s)

)
θ(s) · n ds, (2.5)

where n denotes the outward boundary normal. The functional L is here a certain
problem dependent functional which is described for an example below, see Example
2.3. The variable λ : D → V is here the solution to a corresponding adjoint problem.
One way to define the adjoint problem is from the Lagrangian

L(D,u, λ) ≡ J(D,u) + 〈λ,G(u)〉,

where 〈v, w〉 is the duality pairing on V , which reduces to the L2 inner product if
v, w ∈ L2(D). The Gâteaux derivative with respect to λ gives the original constraint
G(u) = 0, in the distribution sense, while the Gâteaux derivative with respect to u
gives the dual problem for λ. The shape derivative (2.5) gives the sensitivity of the
value function J with respect to change in the domain, and indicates how to move
the boundary ∂Ω, or the individual mesh points in the discretization of D.

Example 2.3. Consider a simplified version of the conductivity optimization prob-
lem (2.3), given in Example 2.1, where the objective functional now is

J(D) =

∫
D

|∇ϕ|2 dx+ η

∫
D

dx,
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and the state variable ϕ solves

−div(∇ϕ)
∣∣
D

= 0,
∂ϕ

∂n

∣∣
∂D\Γ

= 0,
∂ϕ

∂n

∣∣
Γ

= q.

The shape derivative is then given by

δJ(D; θ) =

∫
∂D

(∇u · ∇λ) θ · n ds+ η

∫
∂D

θ · n ds

where the dual solution is given by λ = ϕ, see [20].

Unfortunately, the shape derivative does not deal with changes in the topology,
e.g. nucleation of holes in the domain. A method which does consider topological
changes is the method of topological derivatives, see e.g. [11]. The topological
derivative is an extension of the shape derivative, and derives an expression for the
change in the value function with respect to the creation of a small hole inside the
domain.

Level-Set Methods

The level-set method, conveniently connects the two problems (2.1) and (2.2) by
parameterizing the boundary between the phases using a level-set function ψ :
Ω× [0, T ]→ R, given by

⎧⎨
⎩

ψ(x, ·) > 0, x ∈ Ω−D,
ψ(x, ·) = 0, x ∈ ∂D,
ψ(x, ·) < 0, x ∈ D,

where the normal n of ∂D is given by∇ψ/|∇ψ| and the curvature by div(∇ψ/|∇ψ|).
The time is here an artificial variable used to evolve the shape towards its optimum,
by the dynamics of the Hamilton-Jacobi equation

∂tψ + V |∇ψ| = 0 in Ω (2.6)

where V : Ω × [0, T ] → R denotes the normal velocity of ∂D. Here, the normal
velocity can be chosen according to the shape or topological derivatives, see [2, 7],
and the time T corresponds to the length of the gradient step. In practice, the
T is chosen such that the normal and curvature of the level-set function does not
become too distorted. From the solution ψ(·, T ), a reinitialization where the partial
differential equation in (2.2) is solved, gives new initial data ψ(·, 0) for solving (2.6)
again. The level-set method requires using a weak phase to mimic void when
solving the partial differential equation in (2.2), and extra computational work is
introduced from introducing the additional function ψ. Also, a fixed discretization
of the whole domain Ω is used for both (2.6) and the partial differential equation
constraint in (2.2).
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Homogenization

The previous methods all tried to find an optimal domain D ∈ Ω, which may
not exist for certain problems, unless some restriction is put on the shape of the
boundary ∂D. The homogenization method, on the other hand, looks for optimal
designs in the class of periodic micro-structures. Such structures do not in general
form sharp boundaries, but instead share the property that there exists a minimum
which coincides in average with the infimum of the original problem, as mentioned
in Section 2.1.

x

y

φ

θ

1 − θ

σ−

σ+

Figure 2.1: The rank-1 laminate used in (2.8)

To exemplify, we state the problem briefly mentioned in Remark 2.3: Find the
conductivity function σ : Ω→ {σ−, 1} that maximizes the power loss in an electric
conductor, i.e.

sup
σ

{∫
Ω

σ|∇ϕ|2 dx

∣∣∣∣ − div(σ∇ϕ)
∣∣
Ω

= 0, σ
∂ϕ

∂n

∣∣
∂Ω

= q,

∫
Ω

σ dx = C

}
, (2.7)

for σ : Ω→ {σ−, 1}. Note that we have here filled the void with a weak phase σ− >
0. This maximization problem lacks maximizers, but can be relaxed to allow the
existence a maximizer by simply using σ : Ω→ [σ−, 1] instead of σ : Ω→ {σ−, 1}. A
more clever approach is to use the homogenization method for laminated materials.
We then look at the problem

max
θ,φ

{∫
Ω

σ∗|∇ϕ|2 dx

∣∣∣∣ −div
(
σ∗∇ϕ

)∣∣
Ω

= 0, σ∗
∂ϕ

∂n

∣∣
∂Ω

= q,

∫
Ω

θ dx = C

}
. (2.8)

with θ : Ω→ [0, 1], φ : Ω→ [0, π] and the rank-1 laminate tensor

σ∗(θ, φ) =

(
cosφ sinφ
− sinφ cosφ

)(
λ+
θ 0

0 λ−θ

)(
cosφ − sinφ
sinφ cosφ

)
,
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with

λ−θ =

(
θ

σ−
+

1− θ

σ+

)−1

, λ+
θ = θσ− + (1− θ)σ+.

The tensor σ∗ is obtained from rotation and mixing of the two tensor valued controls
σ−I and σ+I in proportions θ and 1− θ and direction φ, see Figure 2.1. We have
thus enlarged the set of admissible controls by introducing two new parameters
θ, φ describing a laminated material. The effective conductivities in the principal
directions of the material is λ+

θ and λ−θ , while (λ+
θ )−1 and (λ−θ )−1 correspond to the

total resistances for resistors connected in parallel and in series, respectively. The
homogenization method has the advantage that a maximizer (θ, φ) is found and that
that the value of (2.8) coincides with (2.7). This particular problem uses a rank-1
laminate, but higher rank laminates, sufficient to find minimizers (or maximizers)
for many important optimal design problems, can be found [1].



Chapter 3

Optimal Control and the

Pontryagin Method

In the previous chapter we saw that optimal design problems often need to be
regularized to obtain good approximations, and that regularization may also be
necessary to assure the mere existence of a solution. In this chapter we present
a method for optimal design using a regularization derived from the Hamilton-
Jacobi-Bellman equations for the corresponding optimal control problem. We first
describe the method for control of a system of ordinary differential equations, and
then apply the methodology to control partial differential equations.

3.1 Dynamic Programming

Consider an optimal control problem for a controlled ordinary differential equation

inf
α∈A

{
g
(
X(T )

)
+

∫ T
0

h
(
X(s), α(s)

)
ds

∣∣∣∣X ′(t) = f
(
X(t), α(t)), X(0) = X0

}
, (3.1)

with given data g : R
n → R, h : R

n × B → R, f : R
n × B → R

n, X0 ∈ R
n, the

state variable X : [0, T ] → R
n and a set of controls A = {α : [0, T ] → B ⊂ R

m}.
Optimal control problems like (3.1) can be solved by dynamic programming or by
the Lagrange principle, cf. [14]. From the dynamic programming approach a value
function u : R

n × [0, T ]→ R, defined by

u(x, t) ≡ inf
X(t)=x,α∈A

{
g
(
X(T )

)
+

∫ T
t

h
(
X(s), α(s)

)
ds

}
, (3.2)

is the unique viscosity solution (see Definition 3.1 and [14, 12]) of the nonlinear
Hamilton-Jacobi-Bellman partial differential equation

∂tu(x, t) +H
(
∂xu(x, t), x

)
= 0, (x, t) ∈ R

n × (0, T ),

u(x, T ) = g(x), x ∈ R
n,

(3.3)

11
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where the Hamiltonian function H : R
n × R

n → R is defined by

H(λ, x) ≡ min
α∈B

{
λ · f(x, α) + h(x, α)

}
. (3.4)

The value function (3.2) indicates the least cost from starting at a point (x, t) and
following an optimal path X(s) and control α(s) for the remaining time s ∈ [t, T ],
and the infimum of (3.1) is given by the solution to (3.3) in the point (X0, 0).
Although we can here find a global minimum, the Hamilton-Jacobi equation can in
practice not be solved numerically for high dimensional problems where n
 1.

Definition 3.1. (Viscosity solution) A bounded uniformly continuous function u
is a viscosity solution to (3.3), if u(·, T ) = g(·), and for each v ∈ C∞(Rn × (0, T ))

• ∂tv(x, t) +H
(
∂xv(x, t), x

)
≥ 0 when u− v has a local maximum in (x, t), and

• ∂tv(x, t) +H
(
∂xv(x, t), x

)
≤ 0 when u− v has a local minimum in (x, t).

The viscosity solution u is also unique, see [14, 12].

3.2 The Pontryagin Principle

To derive information on the optimal path X(t) and the corresponding optimal
control α(t), we consider the Pontryagin (Minimum) Principle, see [21], which states
the following necessary condition for an optimal control to (3.1): Assuming that
f, g, h are differentiable, then given an optimal path X(t) with an optimal control
α(t), there exists a path λ(t) such that

X ′(t) = f
(
X(t), α(t)

)
,

X(0) = X0,

−λ′i(t) = ∂xif
(
X(t), α(t)

)
· λ(t) + ∂xih

(
X(t), α(t)

)
,

λ(T ) = g′
(
X(T )

)
,

(3.5)

and

λ(t) · f
(
X(t), α(t)

)
+ h
(
X(t), α(t)

)
≤ λ(t) · f

(
X(t), a

)
+ h
(
X(t), a

)
, a ∈ B,

or equivalently

α(t) ∈ argmina∈B
{
λ(t) · f

(
X(t), a

)
+ h
(
X(t), a

)}
. (3.6)

Also, assuming that the Hamiltonian H defined in (3.4) is differentiable, the Pon-
tryagin Principle (3.5) and (3.6), equals the Lagrange principle, i.e. an optimal
path X(t) satisfies the Hamiltonian boundary value system

X ′(t) = ∂λH
(
λ(t), X(t)

)
, X(0) = X0,

−λ′(t) = ∂xH
(
λ(t), X(t)

)
, λ(T ) = g′(X(T )),

(3.7)
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cf. [4], which in fact is the method of characteristics for the Hamilton-Jacobi equa-
tion (3.3) provided λ(t) ≡ ∂xu(X(t), t) exists. The Lagrange principle has the
advantage that high dimensional problems, n 
 1 can be solved computationally
and the drawback is that in practice only local minima can be found computation-
ally. When using (3.7) to solve the minimization problem (3.1) it is assumed that
the Hamiltonian is explicitly known and differentiable. In general, Hamiltonians
are only Lipschitz continuous for smooth f , g and h.

Many optimal control problems lead to non-smooth optimal controls, which
occur by two reasons: the Hamiltonian is in general only Lipschitz continuous, even
though f, g, h are smooth, and backward optimal paths X(t) may collide. To be
able to use the computational advantage of solving the Hamiltonian boundary value
system (3.7) a regularized problem with a C2(Rn × R

n) λ-concave approximation
Hδ of the Hamiltonian H , is introduced in [22]. This approximation not only
gives meaning to (3.7), but is well defined in the sense that the corresponding
approximated value function uδ is close to the original value function u, see [22].
In [22], error analysis yields the estimate

‖uδ − u‖L∞(Rn×R+) = O(δ), (3.8)

for the real and approximate value functions u and uδ, and with a regularization
parameter δ, such that ‖Hδ − H‖L∞(Rn×Rn) = O(δ). This error estimate is not
explicitly dependent on the dimension n, which makes the regularization suitable
for optimal control of discretized partial differential equations. Observe that ‖uδ −
u‖L∞(Rn×R+) → 0 does not necessarily imply convergence of the optimal paths X(t)
or the controls α(t).

3.3 Pontryagin Approximations for Optimal Design

In [10], the above analysis for optimal control of ordinary differential equations is
extended to control of a time dependent partial differential equation

∂tϕ(x, t) = f
(
ϕ(x, t), α(x, t)

)
, (x, t) ∈ Ω× (0, T )

ϕ(x, 0) = ϕ0, x ∈ Ω

where f is a partial differential operator, Ω ⊂ R
n, and ϕ(·, t) belongs to some

Hilbert space V on Ω. The minimization problem corresponding to (3.1) then
becomes

inf
α:Ω×[0,T ]→B

{
g
(
ϕ(·, T )

)
+

∫ T
0

h
(
ϕ(·, t), α(·, t)

)
dt

∣∣∣∣
∂tϕ = f

(
ϕ(·, t), α(·, t)

)
, ϕ(·, 0) = ϕ0

}
,

(3.9)

The Hamiltonian H : V × V → R is defined as

H(λ, ϕ) ≡ min
α:Ω→B

{〈λ, f(ϕ, α)〉 + h(ϕ, α)}, (3.10)
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and the value function u : V × [0, T ]→ R,

u(φ, τ) ≡ inf
α:Ω×[0,T ]→B

{
g
(
ϕ(·, T )

)
+

∫ T
τ

h
(
ϕ(·, t), α(·, t)

)
dt

∣∣∣∣
∂tϕ = f

(
ϕ(·, t), α(·, t)

)
, ϕ(·, τ) = φ ∈ V

}

solves the Hamilton-Jacobi-Bellman equation

∂tu(φ, t) +H
(
∂φu(φ, t), φ

)
= 0, u(·, T ) = g, (3.11)

Here, ∂ now denotes Gâteaux derivatives (except for ∂t), and 〈v, w〉 is the duality
pairing on V , which reduces to the L2(Ω) inner product if v, w ∈ L2(Ω). The
Lagrange principle gives the Hamiltonian system

∂tϕ = ∂λH(λ, ϕ), ϕ(·, 0) = φ

∂tλ = −∂ϕH(λ, ϕ), λ(·, T ) = ∂ϕg
(
ϕ(·, T )

)
.

(3.12)

In [8, 10], the time-independent version of Equation (3.12) is solved for ϕ, λ
defined on a finite element subspace V̄ ⊂ V and using a C2 regularized approximate
Hamiltonian H̄δ, and in [9, 23] the time dependent problem is solved.

As an example of a time-independent optimal control problem for partial dif-
ferential equations we review problem (2.4) in Example 2.1, which using Gauss
theorem and a prescribed multiplier η ∈ R corresponding to the volume constraint
C, can be written as

inf
σ:Ω→{0,1}

{∫
∂Ω

qϕ ds+ η

∫
Ω

σ dx

∣∣∣∣ − div(σ∇ϕ)
∣∣
Ω

= 0, σ
∂ϕ

∂n

∣∣
∂Ω

= q

}
. (3.13)

In this case, the Hamiltonian becomes

H(λ, ϕ) = min
σ:Ω→{0,1}

{∫
Ω

σ(η −∇ϕ · ∇λ︸ ︷︷ ︸
v

) dx+

∫
∂Ω

q(ϕ+ λ) ds

}

=

∫
Ω

min
σ∈{0,1}

{σv}

︸ ︷︷ ︸
h(v)

dx+

∫
∂Ω

q(ϕ+ λ) ds.

By replacing h with a smooth function hδ (see Figure 3.1) the time-independent
version of the Hamiltonian system (3.12) can by symmetry ϕ = λ be reduced to
the non-linear partial differential equation⎧⎪⎨

⎪⎩
−div
(
h′δ(η − |∇ϕ|

2)∇ϕ
)

= 0, in Ω

h′δ(η − |∇ϕ|
2)
∂ϕ

∂n
= q, on ∂Ω
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The regularization is here similar to adding a standard Tikhonov penalty, c.f. [13],
on the L2-norm of σ in problem (3.13), which combined with allowing intermediate
conductivities σ : Ω→ [0, 1] gives the problem

inf
σ:Ω→[0,1]

{∫
∂Ω

qϕ ds+η

∫
Ω

σ dx+δ

∫
Ω

σ2 dx

∣∣∣∣ −div(σ∇ϕ)
∣∣
Ω

= 0, σ
∂ϕ

∂n

∣∣
∂Ω

= q

}
,

with a regularization parameter δ > 0. The Hamiltonian then becomes

H(λ, ϕ) = min
σ:Ω→[0,1]

{∫
Ω

σ(η −∇ϕ · ∇λ︸ ︷︷ ︸
v

+δσ) dx+

∫
∂Ω

q(ϕ+ λ) ds

}

=

∫
Ω

σ∗(v) v dx+

∫
∂Ω

q(ϕ+ λ) ds,

with the optimal control

σ∗(v) =

⎧⎪⎪⎨
⎪⎪⎩

1, v < −2δ,

−v

2δ
, −2δ ≤ v ≤ 0,

0, 0 < v,

see, Figure 3.1.
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h

hδ

v

h, hδ

σ∗ h′

δ

v

h′

δ
, σ∗

Figure 3.1: Top: The function h and its regularization hδ with respect to v. Bottom:
The approximation h′δ compared to a control σ∗ obtained from adding a Tikhonov
type penalty δ

∫
Ω σ

2 dx to (3.13) with σ : Ω→ [σ−, σ+].



Chapter 4

Summary of Papers

Paper 1: Pontryagin Approximations for Optimal Design

In this paper the Pontryagin method presented in Chapter 3 is used to solve three
different typical optimal design problems; one scalar concave maximization problem
in conductivity, one scalar non-concave maximization problem in elasticity, and one
inverse reconstruction problem in impedance tomography. An error estimate for the
difference in the true and approximated value functions, using only the difference
of the true and approximated Hamiltonians along the same paths, is also derived.
This estimate gives an error estimate which in practice can be bounded in terms of
the regularization parameter and the finite element mesh size, such that the value
functions converge even though the optimal paths do not.

Paper 2: Pontryagin Approximations for Optimal Design of

Elastic Structures

Here, the derived Pontryagin method is tested for two problems in optimal design
of elastic structures: to distribute a limited amount of material in a structure to
minimize its compliance, and to detect interior material distributions from surface
measurements. The problem to construct a structure with minimal compliance,
or maximum stiffness, is severely ill posed and needs to be regularized. It is well
known that common regularizations for inverse problems gives infeasible optimal
designs for minimal compliance problems, and this is also the case for the regularized
Pontryagin method. To achieve physically feasible stuctures, a different approach is
used, where the unregularized Pontryagin method is combined with a restriction on
how much material is allowed to change in each iteration. This type of restriction
acts as a regularization and gives meaningful designs that agree with other topology
optimization methods.

17
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Paper 3: Symplectic Reconstruction of Data for Heat and

Wave Equations

This paper deals with the inverse problem of estimating a spacially dependent
coefficient of a time dependent partial differential equation from observations of
the solution at the boundary. The asumption that the coefficient is independent of
time causes some extra difficulties in the Pontryagin method and different remedies
are here investigated.

Paper 4: Inverse Reconstruction from Optimal Input Data

Here, the spacially dependent wave speed coefficient of the acoustic wave equation is
sought given observations of the solution on the boundary. The reconstruction of the
coefficient is highly dependent on input data, e.g. if Neumann boundary values serve
as input data it is in general not possible to determine the coefficient for all possible
input data. This paper shows that it is possible to formulate meaningful optimality
criteria for finding optimal input data that enhances quality of the reconstructed
coefficient, which is also verified by numerical experiments. An interesting property
of the gradient method used to find optimal input data is that it depends on not
only the observed solution to the forward problem, but also on observed solutions
to a dual problem.
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SYMPLECTIC PONTRYAGIN APPROXIMATIONS FOR

OPTIMAL DESIGN

JESPER CARLSSON, MATTIAS SANDBERG, AND ANDERS SZEPESSY

Abstract. The powerful Hamilton-Jacobi theory is used for constructing reg-

ularizations and error estimates for optimal design problems. The constructed

Pontryagin method is a simple and general method for optimal design and re-

construction: the first, analytical, step is to regularize the Hamiltonian; next

the solution to its stationary Hamiltonian system, a nonlinear partial differen-

tial equation, is computed with the Newton method. The method is efficient

for designs where the Hamiltonian function can be explicitly formulated and

when the Jacobian is sparse, but becomes impractical otherwise (e.g. for non

local control constraints). An error estimate for the difference between exact

and approximate objective functions is derived, depending only on the dif-

ference of the Hamiltonian and its finite dimensional regularization along the

solution path and its L
2

projection, i.e. not on the difference of the exact and

approximate solutions to the Hamiltonian systems.
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1. Introduction to Optimal Design

As the computational capacity increases it becomes possible to solve more de-
manding construction problems. For instance, instead of only computing the defor-
mation of a given construction, it is possible to computationally design an optimal
construction with minimal deformation for a given load. In a mathematical setting
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optimal design is a particular inverse problem where the goal is to determine input
functions in a partial differential equation that meet the design criteria in an opti-
mal way; for instance, to distribute a fixed amount of material in space to construct
a bridge with minimal deformation, for a given load, means to solve the elasticity
equations and determine a material configuration. The start of this computational
work is presented in [30] and has now become an activity with large international
optimal design conferences and several books [4],[1],[30]. Inverse problems are of-
ten ill posed, e.g. small perturbations of data lead to large changes in the solution.
To computationally solve inverse problems therefore requires some regularization,
cf. [19],[36],[4],[1],[30]. The standard Tikhonov method [35] requires to choose a
penalty, usually a norm and a parameter, with the purpose to regularize the compu-
tational method. Although there is good understanding how to choose the penalty
for some problems, e.g. in tomography [29], with norms related to the required reg-
ularity of solutions and parameters related to the error in data, there is no complete
theory for how to regularize general nonlinear problems.

The objective of this work is to show how the powerful theory of viscosity solu-
tions, for time dependent optimal control problems in the dynamic programming
setting, can be used as a theoretical tool to find a regularization criterion and es-
timate its approximation error; based on this regularization we then construct a
simple and general computational method also for some highly nonlinear time in-
dependent optimal design problems, extending the work [33] on time dependent
problems. Our method [32] reduces to solve a Hamiltonian system, where the
Hamiltonian is a C2-regularized version of the original Hamiltonian. This Hamil-
tonian system is a nonlinear partial differential equation, where the Newton method
with a sparse Jacobian becomes efficient and simple to use, e.g. in standard PDE
software. The idea is to start by computing solutions to the Hamiltonian system
with a highly regularized Hamiltonian. When this is done a less regularized Hamil-
tonian is chosen, and the previously computed solutions serve as a starting position
for the Newton method with the new Hamiltonian. This procedure of successively
decreasing the regularization is repeated as far as possible. As it is sufficient to
use a one-parameter family of regularized Hamiltonians, it is only needed to tune
this one parameter. In the ideal situation, however, this parameter may succes-
sively be decreased to zero. Therefore only one parameter needs to be set at the
start of the first Newton iteration. This is an advantage compared to methods
based on regularizations using penalization of terms involving the control variable,
and (sometimes many) differentials of it; in such methods there are often several
parameters.

A clear limitation of our method is the requirement to obtain an explicit formula
for the regularized Hamiltonian. The optimal design and reconstruction problems
presented in this paper need local constraints on the control and have explicit
formulas. Non local constraints on the control or Lagrangians depending on deriva-
tives of the control typically do not admit explicit formulas, and then our method
may become impractical; in other words, we use an advantage of those particular
problems having explicit formulas of the Hamiltonian. When penalty terms with
derivatives are present, these derivatives must be considered as control variables.
Another limitation is that the solution to the Hamiltonian system gives the pri-
mal and dual variables, but not the control function directly. As will be shown
in the examples considered in this paper, it is however often possible to obtain an
approximate control using the approximate primal and dual solutions.

We present a natural regularization to meet the (minimal) requirement that
there is a regularized discrete solution, which is accurately approximating the op-
timal objective function (but not necessary the optimal control function). This
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regularization is derived from viscosity solutions theory for time dependent prob-
lems. Future work may use better insight also on the more demanding task to be
able to iteratively compute solutions (instead of as above only approximate them)
- e.g. in the time independent setting - to find further improved regularizations.

We derive an error estimate for the difference between exact and approximate
objective functions, depending only on the difference of the Hamiltonian and its
finite dimensional regularization along the solution path and its L2 projection, i.e.

not on the difference of the exact and approximate solutions to the Hamiltonian
systems. This error estimate is of the right form to be a good starting point for
new studies on adaptive methods for optimal control problems: the difference of the
Hamiltonians yields an error density which measures errors both from discretization
and the regularization. Our experiments show that the estimate is relatively sharp.

One way to characterize so called symplectic time discretizations for Hamiltonian
systems is that these approximations are exact solutions to another Hamiltonian
system, cf. [23]. In this sense, our approximation in space and regularization shares
this symplectic property. An equivalent definition of symplectic time discretization
methods for Hamiltonian systems derived from optimal control problems is that
the first variation of the discrete value function agrees with the discretization of
the Lagrange multiplier, see [32] where symplectic time discretizations are analyzed
for optimal control problems with the the similar use of viscosity solution theory
as here. This property that the first variation of the discrete value function agrees
with the discretization of the Lagrange multiplier only makes sense for time depen-
dent problems, which is one reason our analysis starts by extending the original
time independent optimal control problem to an artificial time dependent dynamic
programming formulation.

We study three different examples where the nonlinear PDEs are of different
character: scalar concave maximization, scalar non-concave maximization and an
elliptic system for reconstruction. The homogenization method is a theoretically
powerful way to regularize some optimal design problems [1], based on a change of
control variables related to composite micro structure. This regularization changes
the differential operator part of the Lagrangian. Section 3.2 suggests a simple
alternative regularization based on the material constraint part of the Lagrangian:
the constraint on material volume

∫
Ω σdx = C, which usually is included in the

Lagrangian by a term η
∫
Ω

σdx, is now instead represented by η′ ∫
Ω

σ−1dx which
turns out to give the same regularized Hamiltonian as the homogenization method
for a scalar problem.

2. Symplectic Pontryagin Approximations in Optimal Control

Consider a differential equation constrained minimization problem with solution
ϕ in some Hilbert space V on a domain Ω and control σ ∈ A := {σ : Ω → B}:

f(ϕ, σ) = 0 in distribution,

min
σ∈A

h(ϕ, σ),
(1)

and its approximation with solution ϕ̄ ∈ V̄ ⊂ V and control σ̄ ∈ Ā:

f̄(ϕ̄, σ̄) = 0

min
σ̄∈Ā

h̄(ϕ̄, σ̄).
(2)

Example 2.1 (Optimal conductor). Section 3.1 presents minimization of the power

loss in an electric conductor, by distributing a given amount of conducting material

in a domain Ω ⊂ R
d, with a surface current q. Let η ∈ R be a constant Lagrange
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multiplier, associated to the given amount of material, and find an optimal conduc-

tion distribution σ : Ω → {σ−, σ+} =: B, where σ± > 0, such that

(3) min
σ

{∫
∂Ω

qϕ ds + η

∫
Ω

σ dx

∣∣∣∣ f(ϕ, σ) := div(σ∇ϕ)
∣∣∣
Ω

= 0, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q

}
.

Here ∂/∂n denotes the normal derivative, ds is the surface measure on ∂Ω and

ϕ ∈ V := {v ∈ H1(Ω) :
∫
Ω v dx = 0} is the electric potential.

The corresponding Lagrangians

L(λ, ϕ, σ) := 〈λ, f(ϕ, σ)〉 + h(ϕ, σ),

L̄(λ̄, ϕ̄, σ̄) := 〈λ̄, f̄(ϕ̄, σ̄)〉 + h̄(ϕ̄, σ̄),

can be used to formulate the conditions

∂1L = f(ϕ∗, σ∗) = 0,

∂2L = 〈λ∗, ∂f(ϕ∗, σ∗)〉 + ∂h(ϕ∗, σ∗) = 0,

σ∗
∈ argmin

σ∈A
{〈λ∗, f(ϕ∗, σ)〉 + h(ϕ∗, σ)},

(4)

inspired by the corresponding time dependent condition (10). Here, ∂1 =: ∂ and
∂2 are the Gateaux derivatives with respect to the first and second arguments
respectively, and 〈v, w〉 is the duality pairing on V , which reduces to the L2(Ω)
inner product if v, w ∈ L2(Ω).

Optimal control problems are inverse problems. It is well known that inverse
problems often are ill-posed; therefore they need to be regularized. We will use
a formulation of (4) based on the Hamiltonian to regularize our optimal design
problems. The Hamiltonians H : V × V → R and H̄ : V × V̄ → R defined as

(5)

H(λ, ϕ) := min
σ∈A

{〈λ, f(ϕ, σ)〉 + h(ϕ, σ)}

H̄(λ, ϕ̄) := min
σ̄∈Ā

{〈λ, f̄(ϕ̄, σ̄)〉 + h̄(ϕ̄, σ̄)}

eliminate the control variables in the local equilibrium conditions

∂1H(λ∗, ϕ∗) = 0

−∂2H(λ∗, ϕ∗) = 0,
(6)

and similarly for (λ̄∗, ϕ̄∗)

∂1H̄(λ̄∗, ϕ̄∗) = 0

−∂2H̄(λ̄∗, ϕ̄∗) = 0.

It turns out that for our optimal design problems it is easy to find an explicit ex-
pression for the Hamiltonian; for some other constrained minimization problems
the Hamiltonian can be too complicated to use computationally. The Hamiltonian
is in general only Lipschitz continuous even if f, g and h are smooth and we shall
see that in particular for optimal design the Hamiltonians indeed are not differen-
tiable everywhere. We also see that the stationary Hamiltonian system (6) becomes
undefined where the Hamiltonian is not differentiable. At a point where the Hamil-
tonian is not differentiable the optimal control depends discontinuously on (λ, ϕ).
The Hamiltonian form has the advantage that the Newton method can be used
to iteratively solve the nonlinear constrained optimization problem (1) when the
Hamiltonian can be written using a simple formula so that the Hessian of H is
explicitly known, while Hessian information is in general not available for direct
constrained minimization based on the control variable σ. We want to understand
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how to regularize and to estimate errors introduced by approximation and regular-
ization of the optimal control problem. In particular we seek an estimate of the
error

E := min
σ̄∈Ā

{h̄(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0} − min
σ∈A

{h(ϕ, σ) | f(ϕ, σ) = 0}.

The definition of λ∗, ϕ∗ and H imply

min
σ∈A

{h(ϕ, σ) | f(ϕ, σ) = 0} = H(λ∗, ϕ∗)(7)

min
σ̄∈Ā

{h̄(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0} = H̄(λ̄∗, ϕ̄∗)(8)

which seems to require estimates of (ϕ̄∗
− ϕ∗, λ̄∗

− λ∗) to yield a bound on E.
To obtain bounds on ϕ̄∗

− ϕ∗ is in fact a harder problem than to estimate E.
The situation is similar to minimization of a non strictly convex function where
convergence of the minimum value may hold without having convergence of the
minimizing points. In our case the error in the objective function can be small
although the difference of the controls is large, e.g. near a point where H is not
differentiable.

We shall see that the corresponding time dependent optimal control problem is
useful for understanding regularizations and error estimates; in particular we use the
time dependent formulation to derive bounds on E depending only on the difference
of the two Hamiltonians along the same path, i.e. depending on H(λ, ϕ̄)− H̄(λ, ϕ̄),
so that no estimate of ϕ∗

− ϕ̄∗ or λ∗
− λ̄∗ is needed. Let us now state and compare

computational methods for time dependent optimal control problems. Consider
two controlled differential equations

∂tϕt = f(ϕt, σt),

∂tϕ̄t = f̄(ϕ̄t, σ̄t),

with solutions ϕ : [0, T ] → V , and ϕ̄ : [0, T ] → V̄ , and given initial values ϕ0,
ϕ̄0. Here, ∂t denotes the partial derivative with respect to time and ϕt := ϕ(t),
σt := σ(t). The objective is to minimize

min
σ∈B

{∫ T

0

h(ϕt, σt) dt + g(ϕT )

∣∣∣∣ ∂tϕt = f(ϕt, σt)

}
, B := {σ : [0, T ] → A},

min
σ̄∈B̄

{∫ T

0

h̄(ϕ̄t, σ̄t) dt + ḡ(ϕ̄T )

∣∣∣∣ ∂tϕ̄t = f̄(ϕ̄t, σ̄t)

}
, B̄ := {σ̄ : [0, T ] → Ā}.

(9)

These optimal control problems can be solved either directly using constrained
minimization or by dynamic programming. The Lagrangian becomes

L :=

∫ T

0

〈λt, f(ϕt, σt) − ∂tϕt〉 + h(ϕt, σt) dt + g(ϕT )

and the constrained minimization method is based on the Pontryagin method

∂tϕt = f(ϕt, σt)

∂tλt = −〈λt, ∂f(ϕt, σt)〉 + ∂h(ϕt, σt)

σt ∈ argmin
σ∈A

{〈λt, f(ϕt, σ)〉 + h(ϕt, σ)}.
(10)

This can be written as a Hamiltonian system

(11)
∂tϕt = ∂1H(λt, ϕt)

∂tλt = −∂2H(λt, ϕt)

with ϕ0 given, and λT = ∂g(ϕT ).
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The alternative dynamic programming method is based on the value functions
u : V × [0, T ] → R and ū : V̄ × [0, T ] → R,

u(φ, τ) := inf
σ∈B

{∫ T

τ

h(ϕt, σt) dt + g(ϕT )

∣∣∣∣ ∂tϕt = f(ϕt, σt), ϕτ = φ ∈ V

}

ū(φ, τ) := inf
σ̄∈B̄

{∫ T

τ

h̄(ϕ̄t, σ̄t) dt + ḡ(ϕ̄T )

∣∣∣∣ ∂tϕ̄t = f(ϕ̄t, σ̄t), ϕ̄τ = φ ∈ V̄

}
,

(12)

which solve the nonlinear Hamilton-Jacobi-Bellman equations

∂tu(φ, t) + H
(
∂u(φ, t), φ

)
= 0, u(·, T ) = g,

∂tū(φ, t) + H̄
(
∂ū(φ, t), φ

)
= 0, ū(·, T ) = ḡ.

(13)

with Hamiltonians defined as in (5).
The Hamilton-Jacobi formulation has two advantages and a severe disadvantage:

+ there is complete well posedness theory for Hamilton-Jacobi equations,
based on viscosity solutions, see [15], although, in general, the value func-
tion is not everywhere differentiable, corresponding in the constrained opti-
mization method to optimal backward paths ϕ∗ that collide and hence the
Lagrange multiplier λ∗ becomes ill defined in a standard sense;

+ the Hamilton-Jacobi formulation finds a global minimum, while constrained
minimization focuses on local minima;

– the drawback with dynamic programming is that the method is only com-
putationally feasible for problems in low dimension, ϕ̄t ∈ R

n, while con-
strained minimization is computable also for high dimensional problems
where ϕ̄ is an approximation of a solution to a partial differential equation
with n � 1.

Therefore the computational option is to use constrained minimization for problems
in high dimension and we will choose a discretization of the stationary Hamiltonian
system (6) to solve optimal design problems. However, we shall use the Hamilton-
Jacobi equation in infinite dimension to understand regularizations and to derive
error estimates. The additional structure extending our optimal design problems
to dynamic programming problems is hence a useful theoretical tool. Note however
that not all constrained optimal control problems have such extensions. Note also
that solving the Hamiltonian system (11) is the method of characteristics for the
Hamilton-Jacobi equation (13), with λt = ∂u(ϕt, t).

Example 2.2 (Artificial time dependent optimal conductor). The time dependent

extension of example 2.1 is to find an optimal time dependent conductivity σ :
Ω× [0, T ] → {σ−, σ+} to minimize the power loss under constraint of the parabolic

equation

∂tϕ = div(σ∇ϕ),

where ϕ = ϕ(x, t). The Lagrangian takes the form

L(σ, λ, ϕ) :=

∫ T

0

∫
∂Ω

q(ϕ + λ) ds dt +

∫ T

0

∫
Ω

σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸
v

−∂tϕλ dx dt,

with λ = λ(x, t) and the Hamiltonian

H(λ, ϕ) = min
σ:Ω→{σ±}

{∫
Ω

σv dx +

∫
∂Ω

q(ϕ + λ) ds

}

=

∫
Ω

min
σ∈σ±

{σv}︸ ︷︷ ︸
h(v)

dx +

∫
∂Ω

q(ϕ + λ) ds,
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where we have introduced the function h(v) = minσ∈σ±
{σv}. The value function

u(φ, τ) = inf
σ

{∫ T

τ

∫
∂Ω

qϕ ds + η

∫
Ω

σ dx dt

∣∣∣∣ ∂tϕ = div(σ∇ϕ), ϕτ = φ

}

yields the infinite dimensional Hamilton-Jacobi equation

∂tu(φ, t) + H(∂u(φ, t), φ) = 0 t < T, u(·, T ) = 0,

using the Gateaux derivative ∂u(φ, t) of the functional u(φ, t) in L2(Ω). The corre-

sponding Hamiltonian system is the parabolic system∫
Ω

∂tϕw + h′(η −∇ϕ · ∇λ)∇ϕ · ∇w dx =

∫
∂Ω

qw ds, ϕ(·, 0) given,∫
Ω

−∂tλv + h′(η −∇ϕ · ∇λ)∇λ · ∇v dx =

∫
∂Ω

qv ds, λ(·, T ) = 0,

for all test functions v, w ∈ V ≡ {v ∈ H1(Ω) :
∫
Ω

v dx = 0}.

2.1. Derivation of Approximation Error. We simplify by considering the case
when ḡ = g. A similar approximation study is in [33]. Let us first derive the

approximation error, ū(ϕ̄0, 0) − u(ϕ0, 0) =: Ẽ, of the value functions (12) given
solutions σ, σ̄ and ϕ, ϕ̄ to the time dependent optimal control problems (9)

Ẽ :=

∫ T

0

h̄(ϕ̄t, σ̄t) dt + g(ϕ̄T ) −
( ∫ T

0

h(ϕt, σt) dt + g(ϕT )
)

=

∫ T

0

h̄(ϕ̄t, σ̄t) dt + u(ϕ̄T , T ) − u(ϕ0, 0)

=

∫ T

0

h̄(ϕ̄t, σ̄t) dt + u(ϕ̄T , T ) − u(ϕ̄0, 0) + u(ϕ̄0, 0) − u(ϕ0, 0)

(14)

To simplify the analysis choose the initial data for the exact path to coincide with
the initial data for the approximate path, i.e. ϕ0 = ϕ̄0. Also assume that u is
Gateaux differentiable; the general case with only sub differentiable u is in Section
2.2. Then the right hand side simplifies to∫ T

0

du(ϕ̄t, t) +

∫ T

0

h̄(ϕ̄, σ̄) dt

=

∫ T

0

∂tu(ϕ̄t, t) + 〈∂u(ϕ̄t, t), f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, σ̄t) dt

≥

∫ T

0

−H
(
∂u(ϕ̄t, t), ϕ̄t

)
︸ ︷︷ ︸

=∂tu(ϕ̄t,t)

+H̄
(
∂u(ϕ̄t, t), ϕ̄t

)
dt.

(15)

where the inequality follows from the definition (5) of H̄ . Note that the Pontryagin
principle

〈∂ū(ϕ̄t, t), f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, σ̄t) = H̄
(
∂ū(ϕ̄t, t), ϕ̄t

)
,

is not applicable here since we have ∂u instead of ∂ū. The more general case with
ḡ �= g yields the additional error term

(g − ḡ)(ϕ̄T )

to the right hand side in (15).
Similarly, exchange the role of the exact value function along the approximate

path, (u, ϕ̄), with the approximate value function along the exact path, (ū, ϕ), to

obtain an upper bound on Ẽ. This requires a new step; to give meaning to ū along
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the exact path ϕt. For this purpose we introduce the projection P : V → V̄ . We
have, using ϕ̄0 = ϕ0 = Pϕ0,

−Ẽ =

∫ T

0

h(ϕt, σt) dt + g(ϕT ) −
( ∫ T

0

h̄(ϕ̄t, σ̄t) dt + g(ϕ̄T )
)

=

∫ T

0

h(ϕt, σt) dt + g(ϕT ) + ū(PϕT , T ) − g(PϕT ) − ū(ϕ̄0, 0)

=

∫ T

0

h(ϕt, σt) dt + ū(PϕT , T ) − ū(Pϕ0, 0) + g(ϕT ) − g(PϕT )

(16)

The first three terms in the right hand side become∫ T

0

dū(Pϕt, t) +

∫ T

0

h(ϕt, σt) dt

=

∫ T

0

∂tū(Pϕt, t) + 〈∂ū(Pϕt, t), Pf(ϕt, σt)〉 + h(ϕt, σt) dt

=

∫ T

0

∂tū(Pϕt, t) + 〈P∂ū(Pϕt, t), f(ϕt, σt)〉 + h(ϕt, σt) dt

≥

∫ T

0

∂tū(Pϕt, t) + H
(
∂ū(Pϕt, t), ϕt

)
dt

=

∫ T

0

−H̄
(
∂ū(Pϕt, t), Pϕt

)
+ H

(
∂ū(Pϕt, t), ϕt

)
dt.

(17)

Combining (16) and (17) we now have

Ẽ ≤

∫ T

0

H̄
(
∂ū(Pϕt, t), Pϕt

)
− H

(
∂ū(Pϕt, t), ϕt

)
dt − g(ϕT ) + g(PϕT )

=

∫ T

0

(
H̄ − H

)(
∂ū(Pϕt, t), Pϕt

)
dt

+

∫ T

0

H
(
∂ū(Pϕt, t), Pϕt

)
− H

(
∂ū(Pϕt, t), ϕt

)
dt + g(PϕT ) − g(ϕT ).

(18)

Assume now that h, g and H are Lipschitz continuous in V , with respect to the
variable ϕ. Then the projection error terms in the right hand side of (18) are

ẼP :=

∣∣∣∣
∫ T

0

H
(
∂ū(Pϕt, t), Pϕt

)
− H

(
∂ū(Pϕt, t), ϕt

)
dt + g(PϕT ) − g(ϕT )

∣∣∣∣
= sup

t∈[0,T ]

‖Pϕt − ϕt‖V O(T ).

Combine (15) and (18) to obtain∫ T

0

(
H̄ − H

)(
∂u(ϕ̄t, t), ϕ̄t

)
dt ≤ Ẽ ≤

≤

∫ T

0

(
H̄ − H

)(
∂ū(Pϕt, t), Pϕt

)
dt + ẼP .

(19)

Remark 2.1 (No minimizers). If there are no minimizers to (9), then for every

ε > 0, we can choose controls σ, σ̄ with corresponding states ϕ, ϕ̄ such that

Elhs − ε ≤ Ẽ ≤ Erhs + ε

with Elhs, Erhs being the left and right hand sides of (19).

To estimate the error in the case of time independent optimal control problems
with solutions ϕ and ϕ̄, we assume that the time dependent control problems with
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initial data ϕ0 = ϕ̄0 for some given ϕ̄0 ∈ V̄ (close to some approximation of ϕ̄)
asymptotically have the same solutions as the time independent versions, i.e.

lim
T→∞

inf
σ∈A

{
1

T

∫ T

0

h(ϕt, σt) dt

∣∣∣∣ ∂tϕt = f(ϕt, σt), ϕ0 = ϕ̄0

}

= inf
σ∈B

{h(ϕ, σ) | f(ϕ, σ) = 0}

lim
T→∞

inf
σ̄∈Ā

{
1

T

∫ T

0

h̄(ϕ̄t, σ̄t) dt

∣∣∣∣ ∂tϕ̄t = f(ϕ̄t, σ̄t), ϕ̄0 = ϕ0

}

= inf
σ̄∈B̄

{h̄(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0},

(20)

which implies

Theorem 2.1. Assume that (20) holds, and that g is a bounded function. Then

the error E satisfies

E = lim
T→∞

Ẽ

T
,

where Ẽ, given in (14), (16) and Section 2.2, only depends on the difference between

the Hamiltonians H and H̄ along a solution path and on the projection error ‖ϕt −

Pϕt‖V , but not on the error between the paths (ϕ − ϕ̄, λ − λ̄).

2.2. Non Differentiable Solution to Hamilton-Jacobi Equations. Solutions
to Hamilton-Jacobi equations are in general not differentiable. Let us extend the
derivation (15), (17) to a case when u is not differentiable. The theory of viscosity
solutions to Hamilton-Jacobi equations gives well posedness for solutions, which are
continuous but not necessarily differentiable, cf. [20, 3, 2]. This theory is now rather
complete in the finite dimensional setting, cf. [16]. Let us therefore consider a case
when V and V̄ are two finite element spaces, with V̄ ⊂ V so that the corresponding
Hamilton-Jacobi equations are defined on finite dimensional spaces. By theory in
e.g. [10], which covers finite dimensional optimal control systems, it follows that the
value functions, u and ū, in all problems treated in this report, are semiconcave on,
respectively, V × [0, T ] and V̄ × [0, T ]. One of the requirements for semiconcavity
in [10] is that the flux (here f(ϕ, σ)) and its spatial derivative (∂ϕf(ϕ, σ)) must
both be Lipschitz in the state variable, ϕ, with a constant independent of σ. This
can be verified for the fluxes in the present problems using a discrete H2 norm
which is equivalent to the Euclidean norm since the spaces are finite dimensional.
The other requirements for semiconcavity are easily verified. Therefore the error
estimate (19) extends to the general case when u, ū are viscosity solutions that
are not differentiable functions as follows. If u is a non differentiable semiconcave
solution to a Hamilton-Jacobi equation the definition of viscosity solution reduces
to

q + H(p, ϕ) ≥ 0 for all (p, q) ∈ D+u(ϕ, t)

u(·, T ) = g,
(21)

where D+u(x) := {z ∈ V × R : u(y + x) − u(x) − 〈z, y〉 ≤ o(‖y‖)} is the super
differential of u at the point x = (ϕ, t). This means that in (15) we can for each t
choose a point (p, q) ∈ D+u(ϕ̄t, t) so that∫ T

0

du(ϕ̄t, t) +

∫ T

0

h̄(ϕ̄t, t) dt =

∫ T

0

q + 〈p, f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, t) dt,

and by the definition (8) of H̄ we have∫ T

0

q + 〈p, f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, t) dt ≥

∫ T

0

(
q + H̄(p, ϕ̄t)

)
dt.
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Finally, by (21),∫ T

0

(
q + H̄(p, ϕ̄t)

)
dt ≥

∫ T

0

(
− H + H̄

)
(p, ϕ̄t) dt.

The analogous formulation holds for ū. Consequently (19) holds for some (p, q) ∈
D+u(ϕ̄t, t) replacing (∂u(ϕ̄t, t), ∂tu(ϕ̄t, t)) and some (p̄, q̄) ∈ D+ū(Pϕt, t) replacing
(∂ū(Pϕt, t), ∂tū(Pϕt, t)).

The present analysis is, however, in principle valid even when we let V be an
infinite dimensional Hilbert space, although existence and semiconcavity of solu-
tions is not derived in full generality. For instance parabolic problems with fluxes f
where the terms including second order derivatives depend on the control (as here)
seem to not have been studied. In [9] and [7] the case of semilinear control prob-
lems is treated. This theory is used in [33] to perform analysis similar to the one in
this section when V is infinite dimensional. For theory involving more nonlinearly
operators, see e.g. [34].

2.3. Derivation of Regularization Error. In the examples treated in this report
the Hamiltonian, H , is nondifferentiable, as the function h is nondifferentiable.
Therefore it can not be expected that using the Hamiltonian system (11), even in the
discretized case, would give an optimal path which could be used to determine the
value of ū. For this reason we will consider solutions to the regularized Hamiltonian
system

(22)
∂tϕ̄t = ∂1H̄δ(λ̄t, ϕ̄t),

∂tλ̄t = −∂2H̄δ(λ̄t, ϕ̄t),

where H̄ ≡ H̄δ is a smooth regularization of H , which is also concave in the λ̄
variable, for δ > 0 and H̄0 = H . To find an optimal control problem corresponding
to (22), we may relate to the Hamiltonian, H̄δ, the Legendre transform in the λ̄
variable:

(23) L(ϕ̄, l̄) ≡ sup
λ̄∈V̄

{
− 〈l̄, λ̄〉 + H̄δ(λ̄, ϕ̄)

}
.

The function L is a running cost for the following variational problem:

(24) ūδ(φ, t0) = inf
{∫ T

t0

L(ϕ̄t, ∂tϕ̄t)dt + g(ϕ̄T )
∣∣ ϕ̄t0 = φ

}
,

where the infimum is taken over all absolutely continuous functions ϕ : [t0, T ] → V̄ .
This can be formulated as the optimal control problem

(25) inf
σ̄∈L1([t0,T ];V̄ )

{∫ T

t0

L(ϕ̄t, σ̄)dt + g(ϕ̄T )
∣∣ ∂tϕ̄ = σ̄, ϕ̄t0 = φ

}
,

and its associated Hamiltonian system is (22), since the Legendre transform of L
gives

(26) H̄δ(λ̄, ϕ̄) = − sup
σ̄∈V̄

{
− 〈λ̄, σ̄〉 − L(ϕ̄, σ̄)

}
= inf

σ̄∈V̄

{
〈λ̄, σ̄〉 + L(ϕ̄, σ̄)

}
.

Note that the equivalent problem with time reversed, s = T − t, corresponds to

inf
{∫ T

t0

L̃(ϕ̄s, ∂sϕ̄s)ds + g(ϕ̄0)
∣∣ ϕ̄T = φ

}
where

L̃(ϕ̄, l̄) := sup
λ̄∈V̄

{
〈l̄, λ̄〉 + H̄δ(λ̄, ϕ̄)

}
= L(ϕ̄,−l̄)

is the usual Legendre transformation of the convex function −H̄δ(·, ϕ̄).
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The problems described in sections 3.1 and 3.3 have concave Hamiltonians which
are not coercive, which implies that their corresponding running costs, L, takes the
value +∞ for some arguments. Such running costs are treated in [14], where it is
shown that the problem (24), with the aforementioned running cost, has a minimizer
φ̄ : [t0, T ] → V̄ . Furthermore, such a minimizer solves the Hamiltonian system (22)
together with a function λ̄, granting existence of a solution to this Hamiltonian
system.

The value function ūδ is a viscosity solution to the Hamilton-Jacobi equation

∂tūδ(φ, t) + H̄δ(∂ūδ(φ, t), φ) = 0, ūδ(·, T ) = ḡ(·).

This result can easily be obtained from Theorem 6.4.5 in [10]. This theorem treats
only running costs, L, with finite values, but the proof is basically unchanged by
allowing the running costs of interest here. The error estimate of Theorem 2.1 is
applicable both to estimate u − ūδ, with approximation of both V and H , and to
ū0− ūδ, with approximation only of H . We may alternativly estimate the difference
between ū and ūδ by using known results of the Hamilton-Jacobi equations

∂tūδ(φ, t) + H̄δ(∂ūδ(φ, t), φ) = 0,

∂tū0(φ, t) + H̄0(∂ū0(φ, t), φ) = 0,

and the fact that ū0(·, T ) = ūδ(·, T ) = ḡ(·); the comparison principle for viscosity
solutions gives that

||ū − ūδ||C(V̄ ×[0,T ]) ≤ T ||H̄0 − H̄δ||C(V̄ ×V̄ ),

see [32].
The value of ūδ for a case with constant solutions φ̄∗ and λ̄∗ to (22) is approxi-

mately T · L(φ̄∗, 0) when T is large (so that we can neglect ḡ(φ̄T )). The definition
of L gives that

(27) L(φ̄∗, 0) = H̄δ(λ̂, φ̄∗),

where λ̂ is the maximizer of H̄δ(·, φ̄
∗). As the Hamiltonian system for constant

solutions is

(28) ∂1H̄δ = ∂2H̄δ = 0,

and H̄δ is concave in the λ argument we have that λ̂ = λ̄∗. Hence the candidate
for a value approximating (8) is H̄δ(λ̄

∗, φ̄∗), where φ̄∗ and λ̄∗ are solutions to (28).

2.4. Smoothed Hamiltonian as Tikhonov regularization. Tikhonov regular-
ization in optimal control consists of penalization functions containing the control
variable, and sometimes derivatives of it. The Legendre transform makes it possible
to relate the regularized Hamiltonian with such penalization functions. At every
point (λ̄, ϕ̄) where the derivative ∂1H̄ exists, there is an element σ̄ ∈ Ā such that
∂1H̄(λ̄, ϕ̄) = f̄(ϕ̄, σ̄), see [8], [21]. We now make the following assumption:

(29) ∂1H̄δ(λ̄, ϕ̄) ∈ co f̄(ϕ̄, Ā) for all (λ̄, ϕ̄) ∈ V̄ × V̄ ,

where co denotes the convex hull. This assumption holds for all regularizations we
will consider in this paper. It also holds for regularizations by convolution

H̄δ(λ̄, ϕ̄) =

∫
V̄

H̄(λ̄ − ȳ, ϕ̄)η(ȳ)dȳ,

where η is a mollifier with support in the closed ball with radius δ centered at the
origin.

By the definition of L in (23), it follows that L(ϕ̄, l̄) = +∞, if

(30) l̄ /∈
{
∂1H̄δ(λ̄, ϕ̄) | λ̄ ∈ V̄

}
,
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where the big bar denotes set closure. Since the sets f̄(ϕ̄, Ā) are supposed to be
closed, the assumption in (29) implies that

{
∂1H̄δ(λ̄, ϕ̄) | λ̄ ∈ V̄

}
⊂ co f̄(ϕ̄, Ā).

The infimum in (26) may therefore be reduced to an infimum over the set co f̄(ϕ̄, Ā).
Furthermore, the function L(ϕ̄, ·) is lower semicontinuous, see [31], and therefore
the infimum is attained:

(31) H̄δ(λ̄, ϕ̄) = min
{
〈λ̄, l̄〉 + L(ϕ̄, l̄) | l̄ ∈ co f̄(ϕ̄, Ā)

}
.

In order to see the relation with ordinary Tikhonov regularization, let us now
assume that the sets f̄(ϕ̄, Ā) are convex. Then the regularized Hamiltonian satisfies

H̄δ(λ̄, ϕ̄) = min
σ̄∈Ā

{
〈λ̄, f̄(ϕ̄, σ̄)〉 + h̄δ(ϕ̄, σ̄)

}
,

where

h̄δ(ϕ̄, σ̄) = L
(
ϕ̄, f̄(ϕ̄, σ̄)

)
.

Comparing with the expression for the Hamiltonian without regularization, H̄ ,
in (5), we see that the difference h̄δ(ϕ̄, σ̄) − h̄(ϕ̄, σ̄) is a penalization function of
Tikhonov-type for the optimal control problem. Relation (31) is inspired by such
a comparison for an example in [11].

3. Three Different Conduction Designs

In the following sections we will study numerical approximation of three optimal
control problems related to optimal design, using the Hamiltonian system (11) with
a regularized Hamiltonian. By optimal design we mean that we seek to optimize
some physical property, such as energy loss, by distributing a discrete valued con-
trol, such as an electric conductor, on a fixed domain. The problems considered
are: to optimally design an electric conductor, to design an elastic domain and to
reconstruct the interior of an object from measured electrical surface currents.

All three problems produce non-smooth controls due to lack of regularity in the
Hamiltonian, which for the success of a discrete Pontryagin Principle needs to be
regularized. However, in the time-independent setting, even a smooth Hamiltonian
may result in an ill-posed minimization problem in the sense that one cannot find a
minimizer as the limit of a minimizing sequence. The existence of such a minimizer
essentially depends on the weak lower semicontinuity of the Hamiltonian, which in
the standard theory of variational calculus is a necessary condition closely connected
to quasi-convexity [18].

Ill-posed problems related to optimal design, as the one described in Section 3.2,
has been studied extensively in the context of relaxation by quasi-convexification
and homogenization in [1, 22, 26, 27, 28, 24].

In Section 3.3, we study the now classical problem of impedance tomography,
reviewed in [5]. Since there seems to be no algorithm to directly compute the quasi-
convexification of a general problem we will here show that a simple regularization,
which in Section 3.1 and 3.2 much resembles a Tichonov regularization, can pro-
duce good approximations in the value functions, with the advantage that, by the
Pontryagin approach, the Newton method with a sparse Hessian can be used.

3.1. Concave Maximization. A concave problem of electric conduction is to dis-
tribute a given amount of conducting material in a domain Ω ⊂ R

d in order to
minimize the power production for a surface current q, satisfying

∫
∂Ω q ds = 0: let
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C be the given amount of material and find an optimal conduction distribution
σ : Ω → {σ−, σ+}, where σ± > 0, such that

(32) min
σ

{∫
∂Ω

qϕ ds

∣∣∣∣ div(σ∇ϕ) = 0 in Ω, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q,

∫
Ω

σ dx = C

}
.

Here ∂/∂n denotes the normal derivative and ds is the surface measure on ∂Ω and
ϕ ∈ V ≡ {v ∈ H1(Ω) :

∫
Ω v dx = 0} is the electric potential. Note that (32) implies

that the power loss satisfies∫
∂Ω

qϕ ds = −

∫
Ω

div(σ∇ϕ)ϕ dx +

∫
∂Ω

σ
∂ϕ

∂n
ϕ ds =

∫
Ω

σ|∇ϕ|2 dx.

For simplicity, let η > 0 be a constant, associated to the given amount of material,
and replace (32) with the easier problem to find an optimal conduction distribution
such that

(33) min
σ

{∫
∂Ω

qϕ ds + η

∫
Ω

σ dx

∣∣∣∣ div(σ∇ϕ) = 0 in Ω, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q

}
.

Observe, that although there exists a corresponding multiplier η for each volume
constraint C, the converse may not be true.

The Lagrangian takes the form∫
Ω

σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸
v

dx +

∫
∂Ω

q(ϕ + λ) ds

and the Hamiltonian becomes

(34)

H(λ, ϕ) = min
σ

{∫
Ω

σv dx +

∫
∂Ω

q(ϕ + λ) ds

}

=

∫
Ω

min
σ

{σv}︸ ︷︷ ︸
h(v)

dx +

∫
∂Ω

q(ϕ + λ) ds

with the concave regularization

(35) H̄δ(λ, ϕ) =

∫
Ω

hδ(η −∇ϕ · ∇λ) dx +

∫
∂Ω

q(ϕ + λ) ds,

depending on a smooth approximation, hδ ∈ C2(R), for δ > 0, of the Lipschitz
continuous and monotonically increasing function h (with discontinuous derivative
h′ at the origin, see Figure 2). Note that h0 = h. In this case the regularization
H̄δ is therefore similar to a Tichonov regularization with penalty δ

∫
Ω σ2dx, see

Figure 1. Note that σ need not to be restricted to discrete values in (33), since

Tichonov h′δ

v

σ

Figure 1. A Tichonov type penalty δ
∫
Ω σ2dx compared to the

approximation h′δ.

σ : Ω → [σ−, σ+] will lead to the same Hamiltonian.
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h

hδ

v

h, hδ

Figure 2. The function h and its regularization hδ with respect to v.

By symmetry in the stationary Hamiltonian system (6), the primal and dual
variables are equal, λ = ϕ, and the Hamiltonian system for the electric potential
reduces to finite element discretizations of the nonlinear elliptic partial differential
equation

(36) div
(
h′δ(η − |∇ϕ|2)∇ϕ

)
= 0 in Ω, h′δ

∂ϕ

∂n

∣∣∣
∂Ω

= q,

which can be formulated as the concave maximization problem: ϕ̄ ∈ V̄ is the unique
maximizer of

(37) H̄δ(ϕ̄) =

∫
Ω

hδ(η − |∇ϕ̄|2) dx + 2

∫
∂Ω

qϕ̄ ds,

where H̄δ(ϕ̄) means H̄δ(ϕ̄, ϕ̄) and V̄ ⊂ V denotes a finite element subspace, while
ϕ ∈ V is the unique maximizer of

(38) H(ϕ) =

∫
Ω

h0(η − |∇ϕ|2) dx + 2

∫
∂Ω

qϕ ds,

where H(ϕ) means H(ϕ, ϕ).
An advantage with the Pontryagin approach (36) is that the Hessian D2H̄δ can

be determined explicitly and is sparse, so that the Newton method can be used for
iterative solution of (36). In fact, the Newton method works well to solve the finite
element version of (36) by successively decreasing δ, see Section 4.1.

Since σ can be determined explicitly by the Pontryagin method an alternative
approach would be to solve (36) according to the scheme

(39) σi+1 = h′δ(η − |∇ϕ̄i|
2)

where ϕ̄i solves

(40) div
(
σi∇ϕ̄i(x)

)
= 0, x ∈ Ω, σi

∂ϕ̄i

∂n

∣∣∣
∂Ω

= q,

given an initial guess σ0. This type of scheme, which essentially is the Jacobi
method, is highly unstable with respect to the initial guess since information from
the Hessian is lost. In Section 3.2, we will however use this method, with δ = 0,
as a post-processing method to eliminate areas of intermediate density generated
by the Newton method. These iterations are allowed as long as the value of the
Hamiltonian stays relatively unchanged. As pointed out in [22] convergence to
a global maximum of (37) by iterating in σ ≡ h′0 and ϕ separately, can not be
guaranteed since it can be compared to minimizing f(x, y) = |x − y| + 1

2 |x + y| by
iterating in x and y separately; such iterations would terminate at x = y although
f is convex.
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3.2. Non-Concave Maximization. Consider the conduction problem (33) where
the objective now is changed to maximize the power production

max
σ

{∫
∂Ω

qϕ ds + η

∫
Ω

σ dx

∣∣∣∣ div(σ∇ϕ) = 0 in Ω, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q

}
.

A problem with the same qualitative property of nonconcave maximization is to
maximize the torsional rigidity of the cross section Ω of an infinitely long elastic
bar

(41) max
σ

{∫
Ω

ϕ dx + η

∫
Ω

σ dx

∣∣∣∣ − div(σ∇ϕ) = 1 in Ω, ϕ
∣∣
∂Ω

= 0

}
,

with shear moduli σ−1, see [1, 22, 24].
The maximization problem (41) has the Lagrangian∫

Ω

(λ + ϕ) dx +

∫
Ω

σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸
v

dx

and the Hamiltonian

H(λ, ϕ) =

∫
Ω

(λ + ϕ) dx +

∫
Ω

max
σ

{σv}︸ ︷︷ ︸
h(v)

dx

which, as in Section 3.1, is regularized by H̄δ with the C2-approximation hδ of the
Lipschitz continuous function h. Similarly to (37) we have ϕ = λ by symmetry
and from the Hamiltonian system we arrive at finite element discretizations of the
nonlinear elliptic partial differential equation

(42) −div
(
h′δ(η − |∇ϕ|2)∇ϕ

)
= 1 in Ω, ϕ

∣∣
∂Ω

= 0,

which is the Euler-Lagrange equation of the problem to find an extremal point
ϕ ∈ H1

0(Ω) of

(43) H̄δ(ϕ) =

∫
Ω

2ϕ dx +

∫
Ω

hδ(η − |∇ϕ|2) dx.

In contrast to (37), the existence of an extremal point can not be guaranteed for
(43) since it lacks weak lower or upper semicontinuity as δ becomes small.

hc

h

hδ

|∇ϕ|

h, hδ, hc

Figure 3. The function h, its regularization hδ and its concavifi-
cation hc with respect to |∇ϕ|, for the non-concave case.

Note that existence of minimizers to general functionals

(44) F (ϕ) =

∫
Ω

f(x, ϕ(x),∇ϕ(x)) dx.

where Ω ⊂ R
d is a bounded open set, ϕ : Ω → R

n, can be guaranteed if F fulfills
appropriate growth conditions (coercivity) and is weakly lower semi-continuous on
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H1
0(Ω). Weak lower semi-continuity is generally hard to verify, but for the scalar

case n = 1, or d = 1, F is weakly lower semicontinuous if and only if f(x, ϕ, ·)
is convex [18]. For the vector case convexity is a sufficient but far from necessary
condition and can be replaced by quasi-convexity which is both a necessary and
sufficient condition, but almost as hard to verify as weak lower semi-continuity.

To achieve, in this case, a weakly upper semicontinuous functional one can re-
place the function hδ, for δ = 0, in (43) with its concavification

(45) hc =

⎧⎪⎨
⎪⎩

σ+(η − |∇ϕ|2), |∇ϕ|2 < η σ−

σ+

η(σ+ + σ−) − 2
√

ησ+σ−|∇ϕ|, η σ−

σ+
≤ |∇ϕ|2 ≤ η σ+

σ−

σ−(η − |∇ϕ|2), |∇ϕ|2 > η σ+

σ−
,

as in [22, 24], see Figure 3. This gives a concave functional in (43) which not
only has a maximizer but achieves the same supremum as the Hamiltonian H0,
and has maximizers which are exactly the weak limits of maximizing sequences
for H0. If d > 1 and n > 1, maximizers with equivalent properties are given by
quasi-concavification, see [18].

Numerical experiments using a finite element discretization of (42) shows that,
although existence of solutions cannot be guaranteed for small δ, the Pontryagin
approach generates approximations close to the true concavified solutions in the
sense that the error in the value functions is small, see Section 4.2. Of course, the
sensitivity of the controls with respect to the value function may still be large.

An alternative to the above concavification (45) is to simply replace the original
maximization problem in (41) by

(46) max
σ

{∫
Ω

ϕ dx − γ

∫
Ω

1

σ
dx

∣∣∣∣ − div(σ∇ϕ) = 1 in Ω, ϕ
∣∣
∂Ω

= 0

}
,

with a given multiplier γ ≥ 0 and σ : Ω → {σ−, σ+}. This formulation only differs
in the choice of the given constant γ, associated to the amount of material.

From the new Hamiltonian

(47) H(ϕ) =

∫
Ω

2ϕ dx +

∫
Ω

max
σ

{
−

γ

σ
− σ|∇ϕ|2

}
︸ ︷︷ ︸

h

dx.

we then see that, allowing intermediate controls σ : Ω → [σ−, σ+], the explicit
maximization in σ gives the concave function

h =

⎧⎪⎪⎨
⎪⎪⎩

−

γ
σ+

− σ+|∇ϕ|2, |∇ϕ| <
√

γ

σ+

−2
√

γ|∇ϕ|,
√

γ

σ+
< |∇ϕ| <

√
γ

σ−

−

γ
σ−

− σ−|∇ϕ|2,
√

γ

σ+
< |∇ϕ|.

and we thus have the concave maximization problem: to find the unique maximizer
ϕ ∈ H1

0(Ω) to (47). In fact, the formulation (46) is related to relaxation by the
homogenization method [1]. Instead of just expanding the set of admissible controls
for the original problem (41) to σ : Ω → [σ−, σ+], we look at the problem

(48) max
θ,φ

{∫
Ω

ϕ dx − η

∫
Ω

θ dx

∣∣∣∣ − div
(
σ∗(θ, φ)∇ϕ

)
= 1 in Ω, ϕ

∣∣
∂Ω

= 0

}
,

with θ : Ω → [0, 1], φ : Ω → [0, π] and the rank-1 laminate tensor

σ∗ =

(
cosφ sin φ

− sinφ cosφ

)(
λ+

θ 0
0 λ−

θ

)(
cosφ − sinφ
sin φ cosφ

)
,

with

λ−
θ =

(
θ

σ−
+

1 − θ

σ+

)−1

, λ+
θ = θσ− + (1 − θ)σ+.
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The tensor σ∗ is obtained from rotation and mixing of the two tensor valued controls
σ−I and σ+I in proportions θ and 1 − θ and direction φ, see Figure 4. We have
thus enlarged the set of admissible controls by introducing two new parameters θ, φ
describing a laminated material, where the effective conductivities in the principal
directions of the material is λ+

θ and λ−
θ . It is easy to see that (λ+

θ )−1 and (λ−
θ )−1

corresponds to the total resistances for resistors connected in parallel and in series,
respectively.

x

y

φ

θ
1 − θ

σ−
σ+

Figure 4. Laminate

Using symmetry, ϕ = λ, the Hamiltonian derived from (48) is

(49) H(ϕ) =

∫
Ω

2ϕ dx +

∫
Ω

max
θ,φ

{
− ηθ −

(
σ∗(θ, φ)∇ϕ

)
· ∇ϕ

}
dx.

Rewriting the maximization in (49) as

(50) max
θ,φ

{
− ηθ −

(
diag(λ+

θ , λ−
θ )qφ

)
· qφ

}

where qφ is the rotation of ∇ϕ, it is evident that since λ−
θ ≤ λ+

θ , aligning qφ in the

λ−
θ -direction or equivalently aligning the material perpendicular to ∇ϕ, maximizes

(50) with respect to φ. The maximization over φ thus gives

(51) H(ϕ) =

∫
Ω

2ϕ dx +

∫
Ω

max
σ

{
−

ησ+σ−
σ+ − σ−

(
1

σ
−

1

σ+

)
− σ|∇ϕ|2

}
dx,

with the change of variables σ = λ−
θ . Defining γ = ησ+σ−(σ+ − σ−)−1, (47) and

(51) have the same minimizer ϕ.

3.3. Interior Reconstruction. In the previous sections we discussed problems
with symmetry, i.e. ϕ = ±λ, for which convexification is a straightforward and
simple approach. Although symmetry is present in many optimization problems
connected to minimization of energy, there are other important problems, such as
inverse problems related to reconstruction from measurements, where both ϕ and
λ need to be determined. Even the simplest reconstruction problems are known to
be highly ill-posed [19].

We will here focus on the problem to reconstruct the interior of an object from
measured electrical surface currents, i.e. electric impedance tomography [5]: Let
σ∗ : Ω → {σ−, σ+} denote a real valued unknown conductivity distribution, with
σ± > 0, in a given domain Ω ⊂ R

d. Using given surface currents qi, i = 1, . . . , N on
∂Ω, satisfying

∫
∂Ω qi ds = 0, and the resulting measured surface potentials ϕ∗

i on
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∂Ω, the goal in this inverse problem is to find the optimal conductivity distribution
σ : Ω → {σ−, σ+} such that

(52) min
σ

{ N∑
i=1

∫
∂Ω

(ϕi − ϕ∗
i )

2 ds

∣∣∣∣ div(σ∇ϕi) = 0 in Ω, σ
∂ϕi

∂n

∣∣∣
∂Ω

= qi

}
,

with ϕi ∈ V ≡ {v ∈ H1(Ω) :
∫
Ω

v dx = 0}. Note, that we have here chosen the
simpler case with measurements on the whole boundary; in reality often only a
discrete number of contacts are allowed.

The Lagrangian becomes

N∑
i=1

∫
∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +

∫
Ω

σ
N∑

i=1

−∇ϕi · ∇λi

︸ ︷︷ ︸
v

dx

and the Hamiltonian

H(λ1, . . . , λN , ϕ1, . . . , ϕN ) =

N∑
i=1

∫
∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +

∫
Ω

min
σ

{σv}︸ ︷︷ ︸
h(v)

dx.

As in previous sections the Hamiltonian needs to be regularized such that

H̄δ(λ1, . . . , λN , ϕ1, . . . , ϕN ) =

N∑
i=1

∫
∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +

∫
Ω

hδ(v) dx.(53)

which generates the coupled non-linear elliptic partial differential equations

div

(
h′δ

( N∑
k=1

−∇ϕk · ∇λk

)
∇ϕi

)
= 0, in Ω, h′δ

∂ϕi

∂n

∣∣∣
∂Ω

= qi

div

(
h′δ

( N∑
k=1

−∇ϕk · ∇λk

)
∇λi

)
= 0, in Ω, h′δ

∂λi

∂n

∣∣∣
∂Ω

= 2(ϕi − ϕ∗
i )

(54)

for i = 1, . . . , N . Even though the lack of symmetry prohibits any simplification,
this system is only locally coupled, and finite element discretizations can be solved
by the Newton method with a sparse Hessian, see Section 4.3.

It is clear that the minimization problem (52) attains its minimum for σ = σ∗

and ϕi = ϕ∗
i , but it has not necessarily a unique solution. To determine uniqueness

of solutions would require knowledge of the Neumann-Dirichlet map

Λσ : σ
∂ϕi

∂n

∣∣∣
∂Ω

→ ϕ
∣∣
∂Ω

associating boundary voltages with currents at the boundary for a fixed σ. Perfect
knowledge of the map Λσ can in general only be gained by measuring the resulting
potentials for all possible input currents. However, if σ ∈ {σ−, σ+} inside or outside
a possibly multiple-connected domain D ⊂ Ω, it is possible to uniquely determine σ
with only partial knowledge of Λσ, i.e by using only a finite number of experiments,
see [5] for references.

If the reconstruction problem (52) has a unique solution it is still ill-posed in the
sense that the slightest disturbance in measurements ϕi or having a true conduc-
tivity which allows intermediate values σ∗

∈ [σ−, σ+] would destroy all results on
existence and uniqueness of solutions. This is also the case for a discrete number
of contacts or for measurements on only parts of the boundary.

Alternative formulations of the impedance tomography problem related to re-
laxation of functionals as in Section 3.2 is found in [37] and [25]. In the latter the
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reconstruction problem is formulated as

min
σ,ϕi,Ji

{
I :=

N∑
i=1

∫
Ω

∣∣σ 1
2
∇ϕi + σ− 1

2 Ji

∣∣2 dx

∣∣∣∣
div(Ji) = 0 in Ω, Ji · n|∂Ω = qi, ϕi|∂Ω = ϕ∗

i

}
.

Here the need for regularization to guarantee existence of solutions comes from the
lack of lower semicontinuity of the functional I. This formulation also allows an
explicit expression for σ since expanding the squares gives

min
σ>0,ϕ,J

{
σ

N∑
i=1

∫
Ω

∣∣
∇ϕi

∣∣2 dx + σ−1
N∑

i=1

∫
Ω

∣∣Ji

∣∣2 dx

∣∣∣∣
div(Ji) = 0 in Ω, Ji · n|∂Ω = qi, ϕi|∂Ω = ϕ∗

i

}

from the constraint div(J) = 0, which allows pointwise minimization in σ, as in our
case, such that

σ =

( N∑
i=1

|Ji|

) 1
2
( N∑

i=1

|∇ϕi|

)− 1
2

.

4. Numerical Examples

4.1. Electric Conduction. In all numerical tests for the electric conduction prob-
lem (33) we let Ω be the unit square, sometimes with holes cut out, and apply cur-
rents on contacts at the boundary. We also let V̄ ⊂ V ≡ {v ∈ H1(Ω) :

∫
Ω v dx = 0}

be the linear finite element subspace with Ω partitioned into a quasi uniform mesh
with triangles of maximum diameter hmax = 0.01. The bounds on the conductivity
are σ− = 10−3 and σ+ = 1, and the regularized function hδ is chosen to be a hy-
perbola with asymptotes coinciding with h and with a closest distance δ from the
origin, see Figure 2.

For solving the non-linear partial differential equation (36), or equivalently max-
imizing (37), we use the Newton method ϕ̄new = ϕ̄old + φ, where the update

φ =
∑N

i=1 φivi comes from solving the system

(55)

N∑
j=1

D2
vi,vj

H̄δ(ϕ̄old)φj = −Dvi
H̄δ(ϕ̄old), i = 1, . . . , N,

with the sparse positive definite Hessian

D2
vi,vj

H̄δ(ϕ̄) = −2

∫
Ω

h′δ(η − |∇ϕ̄|2)∇vi · ∇vj dx+

4

∫
Ω

h′′δ (η − |∇ϕ̄|2)(∇ϕ̄ · ∇vj)(∇ϕ̄ · ∇vi) dx,

and

Dvi
H̄δ(ϕ̄) = −2

∫
Ω

h′δ(η − |∇ϕ̄|2)∇ϕ̄ · ∇vi dx + 2

∫
∂Ω

qvi ds.

Here vi ∈ V̄ denotes the nodal Lagrange element basis functions of V̄ , with vi(xj) =
δij and xj denoting the corners of the triangles and δij the Kronecker delta.

To decrease the regularization δ we use the following scheme, with the idea to
decrease δ to αδ, 0 < α < 1, if the Newton method converged and increase δ to the
average of δ and the last successful regularization if the iterations did not converge:

(1) Choose an initial stepsize αold = 0.5 and an initial regularization δold.
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(2) If the Newton method for δold converged choose

δnew = αoldδold, αnew = αold

otherwise let

δnew =
1

2
δold(1 +

1

αold

), αnew =
2αold

αold + 1
.

(3) Set δold=δnew, αold=αnew and go to (2).

Results for different regularizations can be seen in Figure 5. Figure 6 shows
solutions for different multipliers η, corresponding to different volume constraints.
Solutions for other geometries and boundary conditions are presented in Figure 7.
The Newton method works well but requires some additional iteration steps for
smaller regularizations or finer grids since the Hessian becomes ill-conditioned. It
is possible that other methods using or approximating Hessian information, such as
quasi-Newton methods, may be used. However, from our experience we conclude
that good aproximation of the Hessian is vital for convergence. Some experiments
using the non-linear multigrid method with a modification preventing large course-
level corrections close to the jump in hδ has also showed good results.

δ = 6.25 · 10−1 δ = 7.11 · 10−2
δ = 2.50 · 10−3

Figure 5. Electric conduction: Contour plots of h′δ for different
regularizations and with η = 0.5. The countours are equally spaced
in the range [σ−, σ+], with σ+ at the contacts. Current enters the
top contacts (q = −1) and leaves on the bottom contact (q = 2).
All contacs are of width 0.1. The regularization was initialized
to δ = 10 and the pictures show the result after 5, 10 and 30
reductions of δ. For each value of δ no more than 5 Newton steps
was necessary to reach a residual error of 10−6 in the maximum
norm. For two values of δ the Newton method fails to converge,
leading to a change in the update parameter α.

To verify the error estimates in Section 2.1 we see that for given solutions ϕ ∈ V
to (38) and ϕ̄ ∈ V̄ to (37) the error in the value functions is by (24) - (27)

(56) E = H̄δ(ϕ̄, ϕ̄) − H(ϕ, ϕ).

Section 2.1 and Theorem 2.1 estimate such errors in terms of the L2 projection error
|Pϕ − ϕ| and the difference between the Hamiltonians H and H̄ along the same
path. Now we apply this using the Hamiltonian H̄δ defined in (35). The Legendre
transform can be used as in Section 2.3 to obtain from H̄δ a flux f̄ and a running
cost h̄ defined on V̄ . By (5) this defines a Hamiltonian H̄ : V × V̄ → R, which
is used in the analysis in Section 2.1. Definition (5) and the fact that H̄ and H̄δ

coincide on V̄ × V̄ show that

(57) H̄(λ, ϕ̄) = H̄(Pλ, ϕ̄) = H̄δ(Pλ, ϕ̄).

We expect λ = ∂u and λ̄ = ∂ū in (15) and (17). Replacing ∂u by λ and ∂ū by λ̄
would give an upper and a lower bound

Ê+ := H̄δ(λ̄, Pϕ) − H(λ̄, ϕ), Ê− := (H̄δ − H)(λ, ϕ̄),
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δ = 1.7 · 10−4
δ = 6.4 · 10−3

Figure 6. Electric conduction: Contour plots of h′δ for different
values of η. Left: Data as in Figure 5 but with η = 0.1. Right:
Data as in Figure 5 but with η = 1.5. The left example has reached
δ ≈ 10−4 in 23 reductions of δ starting with δ = 10, while the right
example was stopped after 30 reductions of δ.

δ = 2.5 · 10−3 δ = 1.1 · 10−3

Figure 7. Electric conduction: Contour plots of h′δ for different
geometries and boundary currents q. Left: Data as in Figure 5 but
with two holes cut out. Right: Data as in Figure 5 but with four
contacts of width 0.1 and currents q = −1 and q = −2 on the top
contacts and q = 1.5 on the bottom contacts.

of the error. The symmetry λ = ϕ, λ̄ = ϕ̄ and (57) imply Ê+ = Ê− = Ê, where

Ê := H̄δ(ϕ̄, Pϕ) − H(ϕ̄, ϕ)

=

∫
Ω

hδ(η −∇ϕ̄ · ∇Pϕ︸ ︷︷ ︸
v̄

) − h(η −∇ϕ̄ · ∇ϕ︸ ︷︷ ︸
v

) dx +

∫
∂Ω

q(Pϕ − ϕ) ds,(58)
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and from (58) we get the error bound

|Ê| =

∣∣∣∣
∫

Ω

hδ(v̄) − h(v) dx +

∫
∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣
=

∣∣∣∣
∫

Ω

hδ(v̄) − hδ(v) + hδ(v) − h(v) dx +

∫
∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣
≤ C0δ +

∣∣∣∣
∫

Ω

hδ(v̄) − hδ(v) dx +

∫
∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣
= C0δ +

∣∣∣∣
∫

Ω

∫ 1

0

h′δ
(
tv̄ + (1 − t)v

)
(v̄ − v) dt dx +

∫
∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣
≤ C0δ +

∫
Ω

σ+

∣∣∣∇ϕ̄ · ∇(ϕ − Pϕ)
∣∣∣ dx +

∣∣∣∣
∫

∂Ω

q(Pϕ − ϕ) ds

∣∣∣∣︸ ︷︷ ︸
E3

,

(59)

which can be estimated by

(60) |Ê| ≤ C0δ + C1hmax‖ϕ̄‖W 1,∞(Ω)‖ϕ‖W 2,1(Ω) + C2hmax‖q‖L∞(∂Ω)‖ϕ‖W 2,1(Ω)︸ ︷︷ ︸
E4

.

This estimate follows from stability of the L2 projection onto V , cf. [17], combined
with a standard interpolation error estimate [6]. The regularized function hδ in
(59) is chosen such that C0 ≈ 0.05 independently of δ.

To numerically verify the different estimates (56), (58), (59) and (60), we let
ϕ̄ ∈ V̄ and ϕ ∈ V be finite element solutions to (37) and (38) with Hamiltonians
H̄δ and H = H̄δ0

where δ0 ≈ 0. Estimate (56) then becomes

(61)

E1 : = H̄δ(ϕ̄, ϕ̄) − Hδ0
(ϕ, ϕ)

=

∫
Ω

hδ(η − |∇ϕ̄|2) − hδ0
(η − |∇ϕ|2) dx + 2

∫
∂Ω

q(ϕ̄ − ϕ) ds,

and (58) becomes

(62)

E2 : = H̄δ(ϕ̄, Pϕ) − Hδ0
(ϕ̄, ϕ)

=

∫
Ω

hδ(η −∇ϕ̄ · ∇Pϕ) − hδ0
(η −∇ϕ̄ · ∇ϕ) dx +

∫
∂Ω

q(Pϕ − ϕ) ds.

Figure 8 shows the approximation error by comparing the different estimates E1,
E2, E3 and E4 when ϕ is computed on a finite element mesh considerably finer than
the one for ϕ̄, and δ = δ0 ≈ 0. We see that E2 and E3 are accurate approximations
of the true error E1 ≈ E, while E4 overestimates the error although it has the
correct rate. Note that the interpolation constants satisfy C1 ≈ C2 ≈ 1. In Figure
9 the regularization error is shown by using the same mesh to compute ϕ and ϕ̄ for
different regularizations δ and a fixed δ0 ≈ 0. We see that E2 again is an accurate
approximation of E1 while E4 overestimates the error although it has the correct
rate; it does not vary with δ. Note that E3 is not presented in Figure 9 since it has
the order of machine precision. We conclude that the approximation of the error
estimate (58) in Theorem 2.1 is accurate.

4.2. Elastic Domain. For the problem of maximizing the torsional rigidity of
an elastic bar (41), we let the cross section Ω of the bar be the unit square. The
inverse shear moduli and the multiplier is, as in [1], chosen to be σ− = 1, σ+ = 2 and
η = 0.0165., respectively. We also let V̄ be the linear finite element subspace of V ≡

H1
0(Ω) with maximum triangle diameter hmax = 0.01 and choose a regularization

as in Section 4.1.
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Figure 8. Electric conduction: Error estimates for different
meshes. Both ϕ̄ and ϕ are solutions to the regularized problem
with δ ≈ 10−5. The solution ϕ is computed on a mesh with
hmax = 0.015 and the mesh for ϕ̄ is varying.
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Figure 9. Electric conduction: Error estimates for different reg-
ularizations. Both ϕ̄ and ϕ are solutions to regularized problems
with hmax = 0.015. The regularization for ϕ is δ0 ≈ 10−3 and
the regularization for ϕ̄ is varying. E3 disappears and E4 remains
constant since no approximation error is present in this case.

The maximization problem (41) has a Hamiltonian (43) which for small regular-
izations lacks upper semicontinuity, and thus there may not exist any solutions to
the corresponding non linear partial differential equation (42). We solve (42) using
the Newton method and a simple scheme to reduce the regularization, as in the
previous section. As expected, the Newton method works well for sufficiently large
regularizations, but does not converge for small regularizations, see Figure 10.

In Section 3.2 we concavify the unregularized Hamiltonian, which not only gu-
rarantees existence of at least one solution, but also gives a maximum that coincides
with the supremum of the unregularized Hamiltonian. Figure 10 compares the re-
sult from solving the regularized problem (42) with the solution of the concavified
problem. The regularized problem was solved by succesively reducing the regular-
ization 30 times, starting with δ = 2.
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In Figure 11 we see how the value of the regularized Hamiltonian approaches the
value of the concavified Hamiltonian as the regularization decreases. We can also
see that the Newton iterations fail when δ becomes too small.

Since the goal is to find an optimal design with a discrete control σ ∈ {σ−, σ+} a
few additional elementwise iterations with the Discrete Pontryagin method in (39)–
(40) is done for postprocessing. These iterations are allowed as long as the value
function does not increase substantially. In general, the discrete iterations does not
converge and we may need to control the amount of material allowed to change
in each iteration; for the non-concave problem this appears however not necessary.
The right plot in Figure 10 shows the solutions after a few discrete iterations with
initial data from the middle figure.

The Discrete Pontryagin method much resembles the method in [12], which uses
topological shape derivatives and starts from a domain with σ = σ+ and sucessively
replaces volume fractions with σ−. This method is appealing since it is simple and
gives interesting designs, but it may not converge to the true optimal design if it is
possible to remove too much material, which never can be added again.

Finally, in Figure 12, we show the results from solving the concavified and reg-
ularized problem with a different multiplier η = 0.025.

Figure 10. Elastic Domain: Left: Contour plot of h′c for the con-
cavified solution with η = 0.0165. The value of the Hamiltonian is
0.0555. Middle: Contour plot of h′δ with δ = 0.08 and η = 0.0165.
The value of the Hamiltonian is 0.0570. Right: Five discrete itera-
tions with (39)–(40) using initial data from the middle figure. The
value of the Hamiltonian has converged to 0.0554.

10
−1

10
0

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

Regularized

Convexified

Hamiltonians

δ

H̄
δ
,H

c

Figure 11. Elastic Domain: Plot of the regularized and concav-
ified Hamiltonians for the solutions in Figure 10 with respect to
regularization. Only regularizations for which the Newton method
has converged are plotted. The regularized Hamiltonian approches
the concavified Hamiltonian as δ → 0, and the relative error for
the smallest regularization, δ = 0.08, is 2.7%.
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Figure 12. Elastic Domain: Left: Contour plot of h′c for the con-
cavified solution with η = 0.025. The value of the Hamiltonian is
0.0695. Middle: Contour plot of h′δ with δ = 0.1 and η = 0.025.
The value of the Hamiltonian is 0.0715. Right: Five discrete itera-
tions with (39)–(40) using initial data from the middle figure. The
value of the Hamiltonian has converged to 0.0695, with a relative
error of 0.9%.

4.3. Impedance Tomography. When solving the impedance tomography prob-
lem (52) one major issue affecting the reconstruction of the interior conductivity is
the choice of input currents q1, . . . , qN . Consider applying a surface current q on two
different conductivity distributions σ and σ∗ and measuring the resulting poten-
tials ϕ = Λσq and ϕ∗ = Λσ∗q. Due to the nonlinearity of the inverse map Λσ → σ,
the different conductivities σ and σ∗ may produce similar surface potentials ϕ and
ϕ∗ when subjected to a certain input current q, thus causing redundancy in the
coupled equations (54). To prevent this we choose, following [13], the input current
q to be optimal in the sense that it best distinguishes one conductivity distribution
from another, i.e

(63) max
q

{
‖Λσq − Λσ∗q‖L2(∂Ω)

∣∣∣ ‖q‖L2(∂Ω) = 1,

∫
∂Ω

q ds = 0
}
,

which from self-adjointness of the Neumann-to-Dirichlet map Λσ is maximized by
the eigenfunction corresponding to the largest eigenvalue of Λσ −Λσ∗ . For multiple
experiments we choose q1. . . . , qN to be the eigenfunctions corresponding to the N
largest eigenvalues.

In the numerical experiments we have calculated the input currents using σ = 1.5
and a true conductivity profile with σ∗ = 1 inside the region marked by a dashed
line in Figure 14, and σ∗ = 2 outside. Note, that to calculate an optimal discretized
boundary current q iteratively, e.g. by the power method, only measurements from
the corresponding boundary potentials Λσq and Λσ∗q are needed in each iteration.
In Figure 13 the currents corresponding to the eigenfunctions of the four largest
eigenvalues are shown. The boundary currents and potentials were calculated using
a maximum element diameter of hmax = 0.01.

The results from solving the coupled non-linear partial differential equations (54)
using piecewise linear elements with hmax = 0.03 can be seen in Figure 14 and 15.
Here, the regularization parameter δ must not be too small since different grids are
used for measurements and solutions in Figure 14, and 10% white noise is added to
the measurements in Figure 15. This means that the discrete solution ϕ is disturbed
componentwise by independent standard normal distributed stochastic variables ξi

according to ϕ(xi)(1 + 0.1ξi), with nodal points xi.
How to choose a good value of the regularization parameter, δ, in a real problem

may be difficult, at least a separate problem. Here we test how our regulariza-
tion works by choosing the best possible regularization parameter value, using the
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”unknown” solution σ∗ to find the parameter value, but nothing else. In the calcu-
lations we thus start with an initial regularization δ = 1, reduce δ at most 30 times
and stop if δ ≤ 10−4 or if there is no decrease in the L2(Ω)-norm of h′δ − σ∗.

From Figure 14 it is evident that increasing the number of experiments has a
significant effect on the reconstruction. The impedance tomography problem seems
here to behave as the concave problem in Section 4.1. However in our experience
there are cases, such as large differences between σ∗

− and σ∗
+ ,where (54) is harder

to solve.
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Figure 13. Boundary currents used for the impedance tomogra-
phy problem plotted as a function of the angle variable in polar
coordinates starting at the lower left corner of Ω.
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Figure 14. Impedance tomography: Plots of h′δ for different num-
ber of experiments with hmax = 0.03. The measured data was gen-
erated from solving the forward problem with hmax = 0.01 using
the conductivity profile marked with a dashed line in the upper left
figure. The true conductivity is σ∗ = 1 inside and σ∗ = 2 outside
the marked region.
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Figure 15. Impedance tomography: Plots of h′δ for different num-
ber of experiments. Data as in Figure 14 but with 10% noise added
to the measurements.
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Figure 16. Impedance tomography: Plots of h′0 after one discrete
iteration (N = 4). Left: Initial data taken from the lower right
plot in Figure 14. Right: Initial data taken from the lower right
plot in Figure 15.
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[3] Guy Barles. Solutions de viscosité des équations de Hamilton-Jacobi, volume 17 of
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PONTRYAGIN APPROXIMATIONS FOR OPTIMAL DESIGN OF

ELASTIC STRUCTURES

JESPER CARLSSON

Abstract. This article presents a numerical method for approximation of

some optimal control problems for partial differential equations. The method

uses regularization derived from consistency with the corresponding Hamilton-

Jacobi-Bellman equations in infinite dimension. In particular, optimal designs

of elastic structures such as distributing a limited amount of material to min-

imize its compliance, or to detect interior material distributions from surface

measurements, are computed. The derived Pontryagin based method pre-

sented here is simple to use with standard PDE-software using Newton itera-

tions with a sparse Hessian.
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1. The Optimal Design Problem

Optimal design can be described as the particular inverse problem of controlling
a partial differential equation to meet some design criteria in an optimal way. The
control typically consists of changing the computational domain (shape optimiza-
tion) or distributing a coefficient in the partial differential equation (parameter
design). It is well known that these inverse problems often are ill posed, e.g. small
perturbations of data lead to large changes in the solution, and need to be regu-
larized to obtain good approximations, cf. [6, 13]. The goal of this article is to
investigate a numerical method, based on a regularization derived from consistency
with the corresponding Hamilton-Jacobi-Bellman equation in infinite dimension,
for the particular problem of optimally controlling the partial differential equations
of linear elasticity. This extends the work in [11], for control of ordinary differential
equations, and [3], for control of scalar partial differential equations.

This article focuses on two types of inverse problems in elasticity: to optimally
design an elastic structure and to optimally reconstruct an unknown elastic struc-
ture from boundary measurements. The first is a typical problem in optimal design
where the objective is to place a given amount of elastic material, submitted to
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static equilibrium and prescribed volume and surface forces, in a given domain
Ω ∈ R

d, in order to maximize its stiffness. An alternative similar problem is to
minimize the compliance

(1) l(u) ≡

∫
Ω

fb · u dx +

∫
ΓN

fs · u ds,

where u : Ω → R
d denotes the displacements at static equilibrium when applying

given volume forces fb : Ω → R
d and surface forces fs : ΓN → R

d, ΓN ⊂ ∂Ω. For
convenience it is here assumed that a part of the boundary is fixed, i.e. uΓD

= 0
where ΓD = ∂Ω \ ΓN �= ∅.

For a linearly elastic material, the work done by a virtual displacement v at
static equilibrium, can described by the bilinear energy functional

(2) aρ(u, v) ≡

∫
Ω

ρεij(u)Eijklεkl(v) dx, i, j, k, l = 1, . . . , d,

with a relative material density ρ, linearized strains εij(u) = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
) and

an elasticity tensor Eijkl . We here use the Einstein summation convention for
summation over indices occurring more than once in an expression. The elasticity
tensor relates linearized strains to linearized stresses by Hooke’s law σij = Eijklεkl,
which for an isotropic material can be written as

(3) σij = λδijεkk + 2μεij

where λ and μ are the Lamé coefficients, and δij denote the Kronecker delta. From
the principle of virtual work, the displacement u ∈ V = {v ∈ H1(Ω)d

|vΓD
= 0} at

equilibrium, must then satisfy the variational equation

(4) aρ(u, v) = l(v), ∀v ∈ V.

To indicate void or material an ideal relative material density would be to let
ρ : Ω → {0, 1}, but in order for (4) to be well defined we restrict the density to
ρ : Ω → {ρ−, 1} with some small ρ− > 0.

In summary, the problem to optimally design a structure with minimal compli-
ance, for some fixed volume C, can be formulated as the minimization problem

(5) inf
ρ:Ω→{ρ− ,1}

{
l(u)

∣∣∣∣ aρ(u, v) = l(v), ∀v ∈ V,

∫
Ω

ρ dx = C

}
.

Since the volume constraint in (5) is difficult to handle, we here use an alternative
formulation, were the volume constraint is relaxed by introducing a corresponding
Lagrange multiplier η ∈ R. This gives the simpler problem

(6) inf
ρ:Ω→{ρ−,1}

{
l(u) + η

∫
Ω

ρ dx

∣∣∣∣ aρ(u, v) = l(v), ∀v ∈ V

}
.

In a real application, η of course needs to be determined to meet the desired volume
C, but as a preliminary step we consider (6) with some a priori value of η. In
practice, the multiplier could be determined by solving (6) in an inner loop and
iteratively changing η in an outer loop, but to come up with an effective procedure
for this is a difficult task not dealt with here. Observe that (5) and (6) are not
truly equivalent, since even though every choice of volume in (5) corresponds to a
unique multiplier η, the converse is not necessarily true.

It is well known that (5) and (6) are ill-posed minimization problems in the
sense that existence of a minimizer cannot be guaranteed [1]. In fact, a minimizing
sequence {ρn} would oscillate more wildly as n → ∞ and the limit would not even
belong to the discrete set {ρ−, 1} anymore. The general cure of ill-posedness of this
optimal design problem is to introduce a proper relaxation of the set of admissible
designs, thus replacing (6) with a well-posed problem. This can be done by adding
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a penalty on the variation of the control ρ, so called Tikhonov regularization, or in
this particular case by allowing intermediate densities ρ : Ω → [ρ−, 1], the so called
plate thickness problem [2]. Another approach is to minimize (6) over the class EC
of elasticity tensors for certain composites of materials, i.e.

(7) min
ρ∈[ρ−,1],E∈EC

{
l(u) + η

∫
Ω

ρ dx

∣∣∣∣ aρ,E(u, v) = l(v), ∀v ∈ V

}
,

where aρ,E(u, v) ≡ aρ(u, v) to indicate the dependence of E. Here, the tensor E
now describes the micro-structure of the material, and for the right choice of EC , e.g.

sequential laminated composites, the minimization problem (7) is well posed, and
the solution corresponds to a homogenized optimal design, cf. [1]. Homogenization
in optimal design is closely connected to the concept of quasi-convexity, which in the
standard theory of variational calculus is a necessary condition for the existence of a
minimizer [5]. In fact, homogenization or quasi-convexification gives truly optimal
designs in the sense that the minimum of (7) coincides with the infimum of (6).
Ill-posed problems related to optimal design has been studied extensively in the
context of relaxation by quasi-convexification and homogenization in for example
[1, 7, 8] and [9].

In Section 2, we derive an alternative regularization which can be compared
to a Tikhonov type penalty. The regularization is based on the Hamilton-Jacobi-
Bellman equation corresponding to the optimal control problem (6) and the exis-
tence of a minimizer essentially depends on the quasi-convexity of the Hamiltonian.
Numerical examples for the particular problem (6) are studied in Section 4.

Another inverse problem studied in Section 4 is the reconstruction of an un-
known density from boundary measurements: apply given forces fs : ΓN → R

d

and reconstruct the interior density ρ : Ω → {ρ−, 1} from the resulting boundary
displacements umeas on ΓN by minimizing

(8) inf
ρ:Ω→{ρ− ,1}

{∫
ΓN

|u − umeas|
2 ds

∣∣∣∣ aρ(u, v) = l(v), ∀v ∈ V

}
.

The problem to determine ρ is in general ill-posed due to non-continuous depen-
dence on measured data. For this problem Tikhonov type regularization methods
therefore seem standard, since to introduce intermediate values ρ : Ω → [ρ−, 1] is
not sufficient. Note, that the measurements umeas may be restricted to a subset of
ΓN and can also be contaminated by noise, which makes (8) even harder to solve
without proper regularization. Also note that the above optimal control problems
(6) and (8) are single-load problems which easily can be extended to the multi-load
case. In Section 4 we present some numerical results for the reconstruction problem
(8) using multiple loads.

2. Pontryagin Approximations for Optimal Control

It is well known that inverse problems need to be regularized to obtain good
approximations [6], and regularization may also be necessary to assure the mere
existence of a solution. In the following section we present a Pontryagin method
for optimal control of partial differential equations using a regularization derived
from consistency with the corresponding Hamilton-Jacobi-Bellman equations in
infinite dimension. To make the presentation clear and concise we first describe the
method for controlling a system of ordinary differential equations, and then apply
the methodology to control of partial differential equations, following [3].

Consider the optimal control problem for a controlled ordinary differential equa-
tion

(9) inf
α∈A

{
g(X(T )) +

∫ T

0

h(X(s), α(s)) ds

∣∣∣∣ X ′(t) = f(X(t), α(t)), X(0) = X0

}
,
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with given data g : R
n
→ R, h : R

n
× B → R, f : R

n
× B → R

n, X0 ∈ R
n, the

state variable X : [0, T ] → R
n and a set of controls A = {α : [0, T ] → B ⊂ R

m
}.

Optimal control problems like (9) can be solved by dynamic programming or by
the Lagrange principle. Defining the value function

u(x, t) ≡ inf
X(t)=x,α∈A

{
g
(
X(T )

)
+

∫ T

t

h
(
X(s), α(s)

)
ds

}
,

the dynamic programming approach gives that u : R
n
× [0, T ] → R is the bounded

uniformly continuous viscosity solution of the nonlinear Hamilton-Jacobi-Bellman
partial differential equation

(10)
∂tu(x, t) + H

(
∂xu(x, t), x

)
= 0, (x, t) ∈ R

n
× (0, T ),

u(x, T ) = g(x), x ∈ R
n,

where the Hamiltonian function H : R
n
× R

n
→ R is defined by

H(λ, x) ≡ min
α∈B

{
λ · f(x, α) + h(x, α)

}
.

The Hamilton-Jacobi partial differential equation approach has the advantage that
a global minimum is found, but cannot be used computationally for high dimen-
sional problems where n � 1, and gives no direct information on the optimal
path X(t) and control α(t). On the other hand, assuming that H, f, g, h are dif-
ferentiable, the Lagrange principle gives that an optimal path X(t) satisfies the
Hamiltonian boundary value system

(11)
X ′(t) = ∂λH

(
λ(t), X(t)

)
, X(0) = X0,

−λ′(t) = ∂xH
(
λ(t), X(t)

)
, λ(T ) = g′(X(T )),

Solving (11) is actually the method of characteristics for the Hamilton-Jacobi equa-
tion (10) provided λ(t) ≡ ∂xu(X(t), t) exists. Also note that equation (11) is equal
to

X ′(t) = f
(
X(t), α(t)

)
,

X(0) = X0,

−λ′
i(t) = ∂xi

f
(
X(t), α(t)

)
· λ(t) + hxi

(
X(t), α(t)

)
,

λ(T ) = g′
(
X(T )

)
.

with the control α determined by the Pontryagin principle

(12) α(t) ∈ argmina∈B

{
λ(t) · f(X(t), a) + h(X(t), a)

}
,

The Lagrange principle has the advantage that high dimensional problems, n � 1
can be solved computationally and the drawback is that in practice only local min-
ima can be found computationally. Also, when using (11) to solve the minimization
problem (9) it is assumed that the Hamiltonian is explicitly known and differen-
tiable. In general, Hamiltonians are only Lipschitz continuous for smooth f , g and
h. As we will see in Section 4, explicit Hamiltonians do exist for many interesting
applications, and they can be approximated by differentiable ones. To emphasize
the connection with the optimal control we refer to solving (11) as the Pontryagin

method.
Many optimal control problems lead to non-smooth optimal controls, e.g. bang-

bang controls, which occur by two reasons: the Hamiltonian is in general only
Lipschitz continuous, even though f, g, h are smooth, and backward optimal paths
X(t) may collide. The theory of viscosity solutions to Hamilton-Jacobi equations
elegantly handles non-smooth solutions, but to be able to use the computational
advantage of solving the Hamiltonian boundary value system (11) we introduce
a regularized problem with a C

2(Rn
× R

n) λ-concave approximation Hδ of the
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Hamiltonian H . This approximation not only gives meaning to (11), but is well
defined in the sense that the corresponding approximated value function uδ is close
to the original value function u. In [11], error analysis yields the estimate

(13) ‖uδ − u‖L∞(Rd×R+) = O(δ),

for the real and approximate value functions u and uδ, and with a regularization
parameter δ, such that ‖Hδ − H‖L∞(Rn×Rn) = O(δ). This error estimate is not
explicitly dependent on the dimension n and is thus suitable for optimal control
of discretized partial differential equations. Observe that ‖uδ − u‖L∞(Rn×R+) → 0
does not necessarily imply convergence of the optimal paths X(t) or the controls
α(t).

Now, consider the above analysis extended to control of a time dependent partial
differential equation, as in [3],

∂tϕ(x, t) = f
(
ϕ(x, t), α(x, t)

)
, (x, t) ∈ Ω × (0, T )

ϕ(x, 0) = ϕ0, x ∈ Ω

where f is a partial differential operator, Ω ⊂ R
n, and ϕ(·, t) belongs to some Hilbert

space V on Ω. The minimization problem corresponding to (9) then becomes

inf
α:Ω×[0,T ]→B

{
g
(
ϕ(·, T )

)
+

∫ T

0

h
(
ϕ(·, t), α(·, t)

)
dt

∣∣∣∣
∂tϕ = f

(
ϕ(·, t), α(·, t)

)
, ϕ(·, 0) = ϕ0

}
,

(14)

The Hamiltonian H : V × V → R is defined as

(15) H(λ, ϕ) ≡ min
α:Ω→B

{〈λ, f(ϕ, α)〉 + h(ϕ, α)},

and the value function u : V × [0, T ] → R,

u(φ, τ) ≡ inf
α:Ω×[0,T ]→B

{
g
(
ϕ(·, T )

)
+

∫ T

τ

h
(
ϕ(·, t), α(·, t)

)
dt

∣∣∣∣
∂tϕ = f

(
ϕ(·, t), α(·, t)

)
, ϕ(·, τ) = φ ∈ V

}

solves the Hamilton-Jacobi-Bellman equation

(16) ∂tu(φ, t) + H
(
∂φu(φ, t), φ

)
= 0, u(·, T ) = g.

Here, ∂ now denotes Gâteaux derivatives (except for ∂t), and 〈v, w〉 is the duality
pairing on V , which reduces to the L2(Ω) inner product if v, w ∈ L2(Ω). From the
Lagrange principle we get the Hamiltonian system

(17)
∂tϕ = ∂λH(λ, ϕ), ϕ(·, 0) = φ

∂tλ = −∂ϕH(λ, ϕ), λ(·, T ) = ∂ϕg
(
ϕ(·, T )

)
.

To solve (17), consider a finite element subspace V̄ ⊂ V and a corresponding C

2

regularized approximate Hamiltonian H̄δ : V × V̄ → R,

H̄δ(λ, ϕ̄) ≡ min
α:Ω→B

{〈λ, fδ(ϕ̄, α)〉 + hδ(ϕ̄, α)},

with approximations fδ and hδ. For ϕ, λ ∈ V̄ , the problem has now been trans-
formed into the control of a system of ordinary differential equations, so the esti-
mate (13) still holds for the value functions ūδ and ū solving (16) using H̄δ and
the unregularized Hamiltonian H̄ : V × V̄ → R respectively, see [3, 11]. An error
estimate for the difference between the true value function u and the regularized
approximate value function ūδ is however harder to derive, since it seems to require
knowledge of the difference between true optimal paths (ϕ, λ) and approximated
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optimal paths (ϕ̄δ, λ̄δ). As noted earlier these paths does in general not converge
for a non-differentiable Hamiltonian, since the control becomes discontinuous. In
[3], an estimate of u − ūδ, using only the difference of H and H̄δ along the same
path, is derived. This estimate gives an error estimate which in practice can be
bounded in terms of the regularization parameter δ and the finite element mesh
size, such that the value functions converge even though the optimal paths do not.
For more on this issue, see [3, 12].

In the following sections the Pontryagin method is used for solving time in-
dependent optimal design problems with only Lipschitz continuous Hamiltonians.
All examples presented give Lipschitz continuous Hamiltonians which need to be
regularized.

3. Concave Maximization

To apply the methodology of time dependent optimal control from Section 2 to
the time independent optimal design problem in Section 1, we first concentrate on
a simpler scalar problem of electric conductivity [10]: to place a given amount of
conducting material in a given domain Ω ⊂ R

d in order to minimize the power loss
for a given surface current q, satisfying

∫
∂Ω q ds = 0. Let, as in Section 1, η ∈ R be

a given constant, associated to the given amount of material, and find an optimal
conduction distribution σ : Ω → {σ−, σ+}, where σ± > 0, such that

(18) inf
σ

{∫
∂Ω

qϕ ds + η

∫
Ω

σ dx

∣∣∣∣ div(σ∇ϕ)
∣∣∣
Ω

= 0, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q

}
,

here ∂/∂n denotes the normal derivative, ds is the surface measure on ∂Ω and
ϕ ∈ V ≡ {v ∈ H1(Ω) :

∫
Ω v dx = 0} is the electric potential.

Now, consider the parabolic variant of the constraint in (18), with σ : Ω×[0, T ] →
{σ−, σ+}, ϕ : Ω × [0, T ] → R and initial data ϕ0 ∈ V :

∂tϕ = div
(
σ∇ϕ

)
, (x, t) ∈ Ω × (0, T )

σ
∂ϕ

∂n
= q(x), (x, t) ∈ ∂Ω × (0, T )

ϕ(x, 0) = ϕ0, x ∈ Ω,

and the time dependent minimization problem

inf
σ

{ ∫ T

0

∫
∂Ω

qϕ ds + η

∫
Ω

σ dx dt

∣∣∣∣
∂tϕ = div(σ∇ϕ), σ

∂ϕ

∂n

∣∣∣
∂Ω

= q, ϕ(·, 0) = ϕ0

}
.

(19)

The Lagrangian takes the form

L(σ, λ, ϕ) :=

∫ T

0

∫
∂Ω

q(ϕ + λ) ds dt +

∫ T

0

∫
Ω

σ (η −∇ϕ · ∇λ)︸ ︷︷ ︸
v

−∂tϕλ dx dt,

with λ = λ(x, t) and the Hamiltonian corresponding to (15) becomes

H(λ, ϕ) = min
σ:Ω→{σ±}

{∫
Ω

σv dx +

∫
∂Ω

q(ϕ + λ) ds

}

=

∫
Ω

min
σ∈{σ−,σ+}

{σv}

︸ ︷︷ ︸
h(v)

dx +

∫
∂Ω

q(ϕ + λ) ds.
(20)
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As in Section 2, the value function

u(φ, τ) = inf
σ

{∫ T

τ

∫
∂Ω

qϕ ds + η

∫
Ω

σ dx dt

∣∣∣∣
∂tϕ = div(σ∇ϕ), σ

∂ϕ

∂n

∣∣∣
∂Ω

= q, ϕτ = φ

}

satisfies the infinite dimensional Hamilton-Jacobi equation

∂tu(φ, t) + H(∂φu(φ, t), φ) = 0 t < T, u(·, T ) = 0,

using the Gâteaux derivative ∂φu(φ, t) of the functional u(φ, t) in L2(Ω). The
corresponding Hamiltonian system is the parabolic system

(21)

∫
Ω

∂tϕw + h′(η −∇ϕ · ∇λ)∇ϕ · ∇w dx =

∫
∂Ω

qw ds, ϕ(·, 0) = ϕ0,∫
Ω

−∂tλv + h′(η −∇ϕ · ∇λ)∇λ · ∇v dx =

∫
∂Ω

qv ds, λ(·, T ) = 0,

for all test functions v, w ∈ V ≡ {v ∈ H1(Ω) :
∫
Ω

v dx = 0}.
From (20) it is evident that the control becomes undefined and the Hamilton-

ian non-differentiable when v ≡ η − ∇ϕ · ∇λ = 0. We thus replace H with the
concave regularization Hδ depending on a smooth approximation, hδ ∈ C

2(R), of
the Lipschitz continuous and monotonically increasing function h, see left part of
Figure 1. In this case the regularization Hδ is therefore similar to a Tikhonov reg-

h

hδ

v

h, hδ

σ∗ h′δ

v

h′δ, σ
∗

Figure 1. Left: The function h and its regularization hδ with
respect to v. Right: The approximation h′δ compared to a control
σ∗ obtained from adding a Tikhonov type penalty δ

∫
Ω σ2 dx to

(20) with σ : Ω → [σ−, σ+].

ularization with penalty on the L2 norm of σ, see right part of Figure 1. Note that
σ : Ω → [σ−, σ+] in (20) will lead to the same Hamiltonian as σ : Ω → {σ−, σ+}.

To connect the optimal design problem (18) with the artificial time-dependent
problem (19) we assume that

lim
T→∞

u(·, 0)

T
= inf

σ

{ ∫
∂Ω

qϕ ds + η

∫
Ω

σ dx

∣∣∣∣ div(σ∇ϕ)
∣∣∣
Ω

= 0, σ
∂ϕ

∂n

∣∣∣
∂Ω

= q

}
,

which can be achieved by assuming ∂tϕ = ∂tλ = 0 in the Hamiltonian system
(21). Time independent solutions to (21) exhibits symmetry ϕ = λ and solves the
nonlinear elliptic partial differential equation

(22)

div
(
h′δ(η − |∇ϕ|2)∇ϕ

)
= 0, x ∈ Ω

h′δ
∂ϕ

∂n
= q, x ∈ ∂Ω
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which can be formulated as the concave maximization problem: ϕ ∈ V is the unique
maximizer of

Hδ(ϕ, ϕ) =

∫
Ω

hδ(η − |∇ϕ(x)|2) dx + 2

∫
∂Ω

qϕ ds.

An advantage with the Pontryagin approach (22) is that the Hessian of Hδ can be
determined explicitly and is sparse, so that the Newton method can be used for
iterative solution of (22). Note that the opposite problem of maximizing power
loss, i.e. replacing the ’inf’ in (18) with a ’sup’, would in general not give a concave
regularized Hamiltonian Hδ. The existence of a maximizer ϕ depends on the weak
upper semi-continuity of Hδ, which in this particular case can be guaranteed if
hδ is concave with respect to |∇ϕ|, see [5]. In Figure 2, h and hδ are shown as
functions of |∇ϕ| for both minimizing and maximizing power loss. The function
hδ for the problem of maximizing power loss is only concave for sufficiently large
regularizations.

h

hδ

|∇ϕ|

h, hδ

h

hδ

|∇ϕ|

h, hδ

Figure 2. The function h and its regularization hδ with respect
to |∇ϕ| when minimizing power loss (left) and maximizing power
loss (right).

4. Numerical Examples

To numerically solve the optimal design problems (6) and (8) in Section 1, we
consider the planar stress case, σ3l = σl3 = 0, l = 1, 2, 3, for a thin plate located in
the xy-plane. The plate can be described by the two dimensional domain Ω ⊂ R

2,
and the material density ρ can be interpreted as the thickness of the plate. For
planar forces fb : Ω → R

2 and fs : ΓN → R
2, ΓN ⊂ ∂Ω, the planar displacements

u : Ω → R
2 can be separated from the anti-planar displacement, and satisfy the

variational equation (4), for d = 2. The Lamé coefficients in Hooke’s law (3) takes
the form

μ =
E

2(1 + ν)
, λ =

Eν

1 − ν2
,

with a Young’s modulus E and a Poisson ratio ν. In all examples we assume
E = 100, ν = 0.3, and that no volume forces are present, i.e. fb = 0.

4.1. Compliance Optimization. Recall the compliance minimization problem
(6), i.e.

inf
ρ

{
l(u) + η

∫
Ω

ρ dx

∣∣∣∣ aρ(u, v) = l(v), ∀v ∈ V

}
.

with relative material density ρ : Ω → {ρ−, 1}, displacement u : Ω → R
2, compli-

ance functional l(u) and bilinear energy functional aρ(u, v). Similarly to Section 3,
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we note that the Lagrangian takes the form

L(u, λ, ρ) = l(u) + l(λ) +

∫
Ω

ρ

(
η −

∑
ijkl

εij(u)Eijklεkl(λ)

︸ ︷︷ ︸
v

)
dx,

and the Hamiltonian is

H(u, λ) = l(u) + l(λ) +

∫
Ω

min
ρ∈{ρ−,1}

{ρv}

︸ ︷︷ ︸
h(v)

dx.

Regularizing h with hδ, and consequently H with Hδ, gives a Hamiltonian system
which by symmetry, u = λ, can be reduced to the variational equation

(23)

∫
Ω

h′δ

(
η −

∑
mnop

εmn(u)Emnopεop(u)

)
εij(u)Eijklεkl(v) dx = l(v)

for all admissible displacements v ∈ V = {H1(Ω)d, vΓD
= 0}, which is the Euler-

Lagrange equation of the problem to find the unique maximizer u ∈ V of the
functional

(24) Hδ = 2l(u) +

∫
Ω

hδ

(
η −

∑
ijkl

εij(u)Eijklεkl(u)

)
dx.

In all numerical tests for the compliance minimization problem we let Ω be the
rectangular domain defined by (x, y) ∈ (0, 2) × (0, 1), and solve (23) on the finite
element subspace consisting of nine-node quadrilateral elements on a uniform mesh.
The left boundary is fixed and a downward force, fs(2, y) = −10, y ∈ [0.45, 55],
is applied to the middle of the right boundary. The lower bound on the material
density is ρ− = 10−3, and the regularized function hδ is chosen such that

h′δ(v) =
1

2

(
ρ− + 1 + (ρ− − 1) tanh

(
v tanh−1(0.99)

δ

))
,

see Figure 1. The resulting discrete system is solved with Newton’s method and
for successively smaller regularizations according to the scheme:

• if the Newton method for δold converged choose

δnew = αoldδold, αnew = αold,

• otherwise let

δnew =
1

2
δold(1 +

1

αold

), αnew =
2αold

αold + 1
.

This means that if the Newton method fails to converge for some regularization δ,
the new regularization will be the average of δ and the last successful regularization.
Also, the parameter α is constructed such that if this new averaged regularization
works, we will once again try the regularization where the method previously failed.
Here, αold = 0.5 is used as initial step-size.

In the left part of Figure 3 to Figure 7, the variational equation (23) is solved
using FEMLAB and the Newton method for successively smaller values of δ. As δ
is reduced the density will not achieve purely discrete values, but rather remain at
intermediate values in large regions. This agrees with results from other regulariza-
tions, such as the plate thickness approach [2] or the homogenization method [1].
The smooth density is consistent with the fact that a minimizing sequence for the
original formulation (6) will oscillate in these areas, and the regularized solution
will behave approximately as an average of these oscillations.
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Figure 3. Plot of h′δ as an approximation of the relative material
density when minimizing compliance of an elastic plate with a fixed
right side and an external load fs(2, y) = −10, y ∈ [0.45, 55]. A
uniform mesh with 80× 40 nine-node quadrilateral finite elements
and a multiplier η = 5 · 10−3 was used. In the left figure, (4) was
solved with the Newton method and by successively reducing the
regularization δ until δ ≈ 3.5 · 10−4. The right figure shows the
density after 100 iterations using (25) with δ = 0 and with the
solution from the left part taken as initial guess.

Figure 4. Plot of h′δ calculated with data as in Figure 3 but using
a 240× 120 mesh. Note that the unregularized design on the right
is mesh dependent. The discrete designs are also sensitive to the
initial data and the fraction of elements allowed to change in each
iteration. Although the discrete design here differs a lot from the
one in Figure 3, the compliance only differs by less than 0.1 percent.

Since ρ can be determined explicitly by the Pontryagin method an alternative
approach to solving (23) with the Newton method is to iterate separately over ρ
and u according to the scheme

(25) ρm+1 = h′δ

(
η −

∑
ijkl

εij(um)Eijklεkl(um)

)

where um solves (23) with ρ = ρm. This scheme, which essentially is the Jacobi
method, is highly unstable since information from the Hessian is lost. It is, however,
still possible to use this method, with δ = 0, as post-processing to eliminate areas
of intermediate density generated by the Newton method. In general, such discrete



PONTRYAGIN APPROXIMATIONS FOR OPTIMAL DESIGN OF ELASTIC STRUCTURES 11

10
−4

10
−3

10
−2

10
−1

10
0

5.5

6

6.5

7
x 10

−3

δ

C
om

pl
ia

nc
e

10
−4

10
−3

10
−2

10
−1

10
0

0.009

0.01

0.011

0.012

δ

H
am

ilt
on

ia
n

10
−4

10
−3

10
−2

10
−1

10
0

0.8

1

1.2

δ

V
ol

um
e

0 20 40 60 80 100 120
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Iterations
C

om
pl

ia
nc

e

Figure 5. Convergence plots corresponding to Figure 4. Left:
Convergence of the compliance, the Hamiltonian, and the volume
with respect to the regularization. Right: Plot of the compliance
for the discrete iterations corresponding to the right plot in Figure
4. The values from the left plot is included in the first iterations
for comparison. Note that although the compliance for the dis-
crete iterations decreases it will never reach the compliance for the
regularized problem.

Figure 6. Plot of h′δ with η = 2 · 10−2 and a 80 × 40 mesh. The
regularization in the left figure is δ ≈ 1.5 · 10−3.

Figure 7. Plot of h′δ with data as in Figure 6 but with a 240×120
mesh. The compliance of the discrete design is here 1.6 · 10−2

compared with 3.6 · 10−2 for the discrete design in Figure 6, and
9.7 · 10−3 for the regularized designs.
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iterations do not converge and we may need to restrict the amount of material al-
lowed to change in each iteration. The right part of Figure 3 to Figure 7 shows the
density after 100 iterations using a variant of (25) with δ = 0 and with solutions
from the left part of the figures taken as initial guesses. Here, ρ is updated ele-
mentwise and only a fraction of elements, corresponding to the smallest and largest
values of v, is allowed to change, such that the volume remains constant. In all
experiments, the compliance initially drops but eventually starts to oscillate, and
at this point the control ρ will start to form checkerboard structures in large areas.
To prevent the formation of such structures we here reduce the fraction of elements
allowed to change as soon as the compliance starts to oscillate.

Figure 8. The relative material density when material has been
iteratively removed from a completely filled domain by sorting
εij(u)Eijklεkl(u) and removing the material corresponding to the
largest values. In each iteration the volume to be removed is ad-
justed to follow a geometric sequence of volumes such that the final
volume is the same as in Figure 4. The final compliance after 70
iterations has converged to 6.78 · 10−3 compared to 6.65 · 10−3 for
the discrete iterations in Figure 4 and 5.

Figure 9. Plot of h′δ as an approximation of the relative material
density when maximizing compliance. A uniform mesh with 240×
120 nine-node quadrilateral finite elements, a lower relative density
ρ− = 0.5, and a multiplier η = 2 · 10−3, was used. The discrete
iterations give no further information in this case.

It can also be noted that the expression v ≡ η − εij(u)Eijklεkl(u) resembles the
the topological gradient used in the topological shape method [4]. The topological
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Figure 10. Convergence history for the compliance maximization
problem. Although the volume does not converge as the regular-
ization decreases, the compliance here seems to increase and level
out. For comparison the compliance for a intuitive guess, with ρ−
close to the left and right boundary, ρ+ in the middle, and the same
volume, gives a compliance of 5.7 ·10−3 compared with 6.4 ·10−3 in
the figure. Also, note that the Newton iterations fail to converge
for small regularizations.

Figure 11. The compliance minimization problem for a down-
ward force fs(x, 0) = −10, x ∈ [0.95, 1.05], and with supports lo-
cated at x ∈ [0.2, 0.25] and x ∈ [1.75, 1.8]. Both supports are fixed
in both the x- and y-direction. A uniform mesh with 240 × 120
elements and a multiplier η = 5 ·10−3 was used. In the left plot the
regularization is δ ≈ 10−3 and the compliance is 1.3 · 10−3. The
compliance after 100 discrete iterations, shown in the right plot, is
1.5 · 10−3.

shape method starts from a completely filled domain and successively removes ma-
terial according to the sign of the topological derivative. This method is appealing
since it is simple and gives interesting designs, but it may not converge to the true
optimal design if it is possible to remove too much material, which never can be
added again. In Figure 8, material has been iteratively removed from a completely
filled domain by sorting εij(u)Eijklεkl(u) and removing the material corresponding
to the largest values. In each iteration the volume to be removed is adjusted to
follow a geometric sequence such that the final volume is approximately the same
as the one in Figures 3 and 4.
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Figure 12. The compliance minimization problem with data as
in Figure 11 but with both supports fixed in the y-direction and
free to move in the x-direction. The smallest regularization was
δ ≈ 10−3 with a compliance of 1.5 · 10−3. The compliance after
100 discrete iterations was 2.8 · 10−3.

As a comparison with the concave maximization problem of minimizing com-
pliance, it is interesting to see what happens for the problem of maximizing com-
pliance. Replacing the ’inf’ in (24) with a ’sup’ gives, similarly to Section 3, a
regularized Hamiltonian which only has a unique minimizer for sufficiently large
regularizations. In Figure 9, the Pontryagin method is used to maximize compli-
ance by placing two materials with ρ ∈ {0.5, 1}. The reason to not have ρ− = 10−3,
is that maximizing compliance here seems to lead to a structure not connected to
the part of the boundary where the external force is applied, thus making the prob-
lem harder to solve. It is also not clear that the solution for a small value of ρ−
is a good approximation of the solution for ρ− = 0 in this example. The solution
to the regularized Hamiltonian system gives, in Figure 9, a design which has the
interesting shape of a turning fork. In Figure 10, we see that the Newton iterations
do not converge for small regularizations, which indicates that there does not longer
exist any minimizer to the regularized Hamiltonian. Also, discrete iterations with
(25) does not give any additional information.

Finally, in Figures 11 and 12 the compliance minimization problem is solved
for a slightly different example where a downward force is applied to the middle
of the lower side, fs(x, 0) = −10, x ∈ [0.95, 1.05], and supports are located at
x ∈ [0.2, 0.25] and x ∈ [1.75, 1.8]. In Figure 11 the supports are fixed in both the
x- and y-direction whereas they are only fixed in the y-direction in Figure 12.

4.2. Interior Reconstruction. For the compliance optimization problem (6) sym-
metry, u = λ, reduced the Hamiltonian system to the variational equation (23).
Symmetry is common in many optimization problems connected to minimization
of energy, but there are important exceptions such as inverse problems related to
reconstruction from measurements. For example, consider the multi-experiment
case of the reconstruction problem (8) stated in Section 1: reconstruct an un-
known density ρ : Ω → {ρ−, 1} from M different boundary measurements umeas,i,
i = 1, . . . , M on ΓN resulting from applying given forces fs,i, fb,i : ΓN → R

d,
i = 1, . . . , M . One strategy is then to find the density ρ such that

inf
ρ:Ω→{ρ−,1}

{ M∑
m=1

∫
ΓN

|um − umeas,m|

2 ds

∣∣∣∣
aρ(um, v) = lm(v), ∀v ∈ V, m = 1, . . . , M

}
,

(26)
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where aρ(u, v) is given by (2) and the compliance is given by

lm(u) ≡

∫
Ω

fb,m · u dx +

∫
ΓN

fs,m · u ds.

The Lagrangian is then

L(u1, . . . , uM , λ1, . . . , λM , ρ) =

M∑
m=1

∫
ΓN

|um − umeas,m|

2 ds + lm(λm)

+

∫
Ω

−ρ

M∑
m=1

εij(um)Eijklεkl(λm)

︸ ︷︷ ︸
v

dx,

and the Hamiltonian is

(27) H =
M∑

m=1

∫
ΓN

|um − umeas,m|

2 ds + lm(λm) +

∫
Ω

min
ρ∈{ρ−,1}

{ρv}

︸ ︷︷ ︸
h(v)

dx.

In this case no symmetry is present and the regularized Hamiltonian system be-
comes

(28)

ah′
δ
(um, vm) dx = lm(vm),

ah′
δ
(um, wm) dx = 2

∫
ΓN

(um − umeas,m) · wm ds,

for all test functions vm, wm ∈ V , m = 1, . . . , M . Note, that replacing ρ : Ω →

{ρ−, 1}, in the original formulation (26), with ρ : Ω → [ρ−, 1], gives the same
Hamiltonian (27).

Figure 13. Material densities to be reconstructed. The density
is 0.5 in the white region, and 1 elsewhere.

In Figures 14 and 17 the system (28) is solved, for M = 1, 2, using the finite
element method on a quadrilateral 40 × 40 mesh with nine-node elements, and
Newton iterations. In all examples we use the computational domain Ω = (−1, 1)×
(−1, 1), with a fixed right boundary, and external boundary forces applied to the
lower and left boundaries. Two sets of measurements were simulated by solving (4)
on a quasi-uniform triangular mesh with 28000 quadratic Lagrange elements, for a
given material density, with applied boundary forces fs,1 = (10 cos(πy/2), 0) on the
left boundary and fs,2 = (0, 10 cos(πx/2)) on the lower boundary. No external force
is applied to the top boundary and no volume forces are present. In all examples
we use ρ : Ω → {0.5, 1} and seek to reconstruct two cases of material distributions:
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Figure 14. Approximated material density, h′δ, from reconstruc-
tion of the amoeba shaped density. Left: Measurements from one
experiment. Right: Measurements from two experiments. Using
measurements from two different experiments here sharpens the
edges and better resolves the region close to the fixed boundary.

Figure 15. Material density reconstructed from experiment with
an amoeba and a circle. Left: Data from one experiment is used.
Right: Data from two experiments is used. In this example the re-
constructed density does not gain much from using multiple mea-
surements. Choosing different boundary forces could here poten-
tially give an improvement of the finest details of the amoeba
shape.

First we use a material with a density distribution in the form of an amoeba (see
left part of Figure 13),

ρ =

{
1, x2 + (y − 0.1)2 ≥ 0.2 + 0.1e1.4 cos(3θ−2)+0.4 sin2 θ

0.5, x2 + (y − 0.1)2 < 0.2 + 0.1e1.4 cos(3θ−2)+0.4 sin2 θ

with θ = arctan(x/(y − 0.1)). Then, we combine the amoeba shape with a circle of
radius 0.2, see right part of Figure 13.

In figure 14 and 15, we see how using multiple experiments increases the quality
of the recovered material distribution, and in Figure 16 we see how the quality
decreases after adding Gaussian random values to the measured data. The added
noise is here scaled to correspond to 5% of the measured data. Note that despite
the bad reconstructions in Figure 16, the L2(∂Ω) error between u and the noisy
measurements umeas levels out, so we can in this case therefore not hope for a better
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reconstruction, even if we continue to reduce the regularization. This is known as
the discrepancy principle, see [6] and [13].

As in section 4.1, discrete iterations in ρ and u can be done as post-processing
to remove intermediate values of ρ. Such iterations does not, however, seem to
give any additional information in this example. Also, using a small value for ρ−
to mimic void, makes the problem too ill-posed to solve with such accuracy in
the reconstructed density as in the examples shown here. From our experience,
solving the system (28) for a small ρ− only seems possible for reconstruction of
small circular inclusions close to the boundaries.

Figure 16. Material density reconstructed from noisy data, using
two experiments and adding 5% white noise to the measured data.
Although, artifacts are here introduced near the forced boundaries,
and the resolution of the shapes is lost, the positions of the regions
are still visible.
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Figure 17. Plot of the L2(∂Ω) norm of u−umeas with respect to
the regularization. Left: Error history corresponding to the single
experiment case in Figure 14. Right: Error history corresponding
to the single experiment case in Figure 15. The error in the right
figure reaches its minimum value, and no better reconstruction can
here be expected without additional post-processing of the mea-
surements.
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SYMPLECTIC RECONSTRUCTION OF DATA FOR HEAT AND

WAVE EQUATIONS

JESPER CARLSSON

Abstract. This report concerns the inverse problem of estimating a spacially
dependent coefficient of a partial differential equation from observations of the
solution at the boundary. Such a problem can be formulated as an optimal
control problem with the coefficient as the control variable and the solution
as state variable. The heat or the wave equation is here considered as state
equation. It is well known that such inverse problems are ill-posed and need
to be regularized. The powerful Hamilton-Jacobi theory is used to construct
a simple and general method where the first step is to analytically regularize
the Hamiltonian; next its Hamiltonian system, a system of nonlinear partial
differential equations, is solved with the Newton method and a sparse Jacobian.
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1. Introduction

In this paper we study the inverse problem to determine a spacially dependent
coefficient σ of a partial differential equation from partial knowledge of the forward
solution u. In particular, we seek the diffusion coefficient in the heat equation
and the wave speed coefficient in the wave equation. Inverse problems arise in
many applications such as inverse scattering, impedance tomography and topology
optimization, see e.g. [1, 3, 6, 14], and share the property that they are ill posed
i.e. given data u there may not exist a corresponding coefficient σ, and if it exists
it may not be unique nor depend continuously on u. To be able to determine σ
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the problem thus needs to be regularized such that it becomes well posed. The
method used here to regularize and to solve the inverse problem is based on the
work [7, 8, 15, 16] where the inverse problem is formulated as an optimal control
problem and the corresponding Hamilton-Jacobi equation is used to construct a
regularization, to obtain convergence results, and to finally solve the regularized
problem by using the method of characteristics, i.e. to solve the corresponding
Hamiltonian system.

The paper is stuctured as follows: In Section 2 the general theory of optimal
control of partial differential equations and Hamilton-Jacobi-Bellman is presented.
In Section 3 the idea of how to optimally control the heat equation is discussed
together with numerical examples, and in Section 4 the control of the wave equation
is treated.

2. Optimal Control and Dynamic Programming

Consider a differential equation constrained minimization problem with solution
ϕ : Ω × [0, T ] → R, ϕ(·, t) ∈ V and control σ : Ω × [0, T ] → B, σ(·, t) ∈ W for
an open domain Ω, some Hilbert spaces V and W on Ω, and a closed bounded set
B ⊂ R:

(1)
min

σ:Ω×[0,T ]→B

∫ T
0

h(ϕ, σ) dt+ g(ϕT ),

ϕt = f(ϕ, σ),

with ϕT := ϕ(·, T ) and given initial value ϕ0 = ϕ(·, 0). Here, ϕt denotes the partial
derivative with respect to time, f : V ×W → V is the flux, and h : V ×W → R,
g : V → R are given functions.

This optimal control problem can be solved either directly using constrained
minimization or by dynamic programming. The Lagrangian becomes

L(ϕ, λ, σ) :=
∫ T

0

〈λ, f(ϕ, σ)− ϕt〉+ h(ϕ, σ) dt,

with Lagrange multiplier λ : Ω × [0, T ] → R, λ(·, t) ∈ V , and the constrained
minimization method is based on the Pontryagin method

(2)

ϕt = f(ϕ, σ),
λt = −〈λ, fϕ(ϕ, σ)〉+ hϕ(ϕ, σ),

σ(·, t) ∈ argmin
a:Ω→B

{〈λ, f(ϕ, a)〉+ h(ϕ, a)}.

with given initial value ϕ0, final value λT := λ(·, T ) = gϕ(ϕT ), and where fϕ,
hϕ denotes the Gateaux derivatives with respect to ϕ and 〈v, w〉 is the duality
pairing on V , which reduces to the L2(Ω) inner product if v, w ∈ L2(Ω). For a
differentiable Lagrangian that is convex in σ the Pontryagin principle coincides
with the Lagrangian formulation for a constrained interior minimum

(3)

ϕt = f(ϕ, σ),
λt = −〈λ, fϕ(ϕ, σ)〉+ hϕ(ϕ, σ)
0 = 〈λ, fσ(ϕ, σ)〉+ hσ(ϕ, σ),
σ ∈ B,

but in general (2) and (3) may have different solutions ϕ, λ, σ although both describe
necessary conditions for a minimizer to (1). If an explicit minimizer in (2) can
be found the Pontryagin principle gives additional information about the control.
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Pontryagin’s minimum principle can also be written as a Hamiltonian system, see
[2],

(4)
ϕt = Hλ(ϕ, λ)
λt = −Hϕ(ϕ, λ)

with ϕ0 given, λT = gϕ(ϕT ), and the Hamiltonian H : V × V → R defined as

(5) H(λ, ϕ) := min
a:Ω→B

{〈λ, f(ϕ, a)〉+ h(ϕ, a)}.
The alternative dynamic programming method is based on the value function

U : V × [0, T ]→ R,

U(φ, τ) := inf
σ:Ω×[τ,T ]→B

{∫ T
τ

h(ϕ, σ) dt+ g(ϕT )
∣∣∣∣ ϕt = f(ϕ, σ), ϕ(·, τ) = φ ∈ V

}

which solves the nonlinear Hamilton-Jacobi-Bellman equation

(6) ∂tU(φ, t) +H
(
Uφ(φ, t), φ

)
= 0, U(φ, T ) = g(φ),

with Hamiltonian defined as in (5). Note that solving the Hamiltonian system
(4) is the method of characteristics for the Hamilton-Jacobi equation (6), with
λ(x, t) = Uϕ(ϕ(x, t), t). In general, the value function is however not everywhere
differentiable and the multiplier λ becomes ill defined in a classical sense.

The Hamilton-Jacobi formulation (6) has the advantages that there is a com-
plete well-posedness theory for Hamilton-Jacobi equations, based on non-differential
viscosity solutions, see [9], and it finds a global minimum. However, (6) is not com-
putationally feasible for problems in high dimension, such as the case where ϕ is
an approximation of a solution to a partial differential equation. The Hamiltonian
form (4) has the advantage that it is computationally feasible but the drawbacks
are that it only focuses on local minima and that the Hamiltonian (5) in general
only is Lipschitz continuous, even if f, g and h are smooth, which means that the
optimal control depends discontinuously on (λ, ϕ) and (4) becomes undefined where
the Hamiltonian is not differentiable.

In the following sections we will use a regularized version of (4) to iteratively
solve the nonlinear constrained optimization problem (1).

3. Parameter Reconstruction for the Heat Equation

A distributed parameter reconstuction problem for the heat equation is to find
a heat conductivity (the control) e.g. σ : Ω̄ × [0, T ] → [σ−, σ+], σ(·, t) ∈ W ,
0 < σ− < σ+, and a temperature distribution (the state) u : Ω̄ × [0, T ] → R,
u(·, t) ∈ V that satifies the heat equation

(7)

ut = div(σ∇u), in Ω× (0, T ],
σ∇u · n = j, on ∂Ω× (0, T ],

u = 0, on Ω̄× {t = 0},
such that the error functional

(8)
∫ T

0

∫
∂Ω

(u− u∗)2 ds dt,

is minimized. The function u∗ = u∗(x, t) often represents physical measurements
contaminated by some noise, e.g. u∗(x, t) = utrue(x, t) + w(x, t) where w is a
noise term and utrue satisfies the above heat equation for some unknown parameter
σtrue, and in practice the control is only spacially dependent, σtrue = σtrue(x). The
primary goal is thus to determine the unknown diffusion coefficient σtrue and the
method to do so is to minimize the objective functional (8).
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Inverse problems like (7), (8) are in general ill-posed due to one or more of the
following reasons:

(1) There exists no minimizer (u, σ), something that may occur with noisy
data. Given unperturbed data u∗ corresponding to σtrue, it is evident that
there exists a minimizer to (7), (8).

(2) The minimizer is not unique, e.g. although it may be possible to find an
optimal state that minimizes (8), u and σ may not be unique in Ω.

(3) The solution (u, σ), and particularly the control σ, depends discontinuously
on data u∗.

A simple and common way to impose well-posedness to many inverse problems is to
add a Tikhonov regularization of the form ε‖σ‖2L2(Ω×(0,T )) for ε > 0, to the objective
functional (8), see [1, 10, 14, 17]. Using the Pontryagin principle presented in the
previous section we will in Section 3.2 regularize the inverse problem (7), (8) in a
way that is comparable to a Tikhonov regularization.

Formulated as an optimal control problem the most natural assumption on the
control σ is that it is dependent on both time and space but as we will see in Section
3.3 it is also possible to let σ = σ(x), σ = σ(t), or even let σ be constant in time
and space.

3.1. The Hamiltonian System. Following Section 2 the Hamiltonian associated
to the optimal control problem (7) and (8) is

(9)

H(u, q, t) := min
σ:Ω→[σ−,σ+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω

div(σ∇u)q dx

=
∫
∂Ω

(u− u∗)2 + jq ds+ min
σ:Ω→[σ−,σ+]

∫
Ω

−σ∇u · ∇q dx

=
∫
∂Ω

(u− u∗)2 + jq ds−
∫

Ω

max
σ∈[σ−,σ+]

{σ∇u · ∇q}
︸ ︷︷ ︸

h(∇u·∇q)

dx.

and the Hamiltonian system, in strong form, then becomes

(10)

ut = div
(
σ̃∇u), in Ω× (0, T ],

σ̃∇u · n = j, on ∂Ω× (0, T ],

u = 0, on Ω̄× {t = 0},
−qt = div

(
σ̃∇q), in Ω× (0, T ],

σ̃∇q · n = 2(u− u∗), on ∂Ω× (0, T ],
q = 0, on Ω× {t = T},

with

(11) σ̃ := h′(∇u · ∇q).

It is here evident that the Hamiltonian only is Lipschitz continuous and the control
σ̃ is a bang-bang type control which depends discontinuously on the solutions (u, q),
see Figure 1. From the optimality conditions (3) an optimal solution has to satisfy
∇u · ∇q = 0 and (10) is thus undefined since h′(0) is set valued, which calls for a
regularization.
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3.2. Regularization. A simple regularization of the Hamiltonian system (10), and
consequently of the Hamiltonian (9), is to approximate h′ with the parabolic func-
tion

(12) h′δ(∇u · ∇q) :=
σ+ + σ−

2︸ ︷︷ ︸
σ̄

+
σ+ − σ−

2︸ ︷︷ ︸
σ̂

tanh(
1
δ
∇u · ∇q),

for some small δ > 0, see Figure 1. This regularization can be compared with a
classic Tikhonov regularization where a small L2-penalty of the control is added to
the objective function (8), i.e. to minimize

(13)
∫ T

0

∫
∂Ω

(u− u∗)2 ds dt+ δ
∫ T

0

∫
Ω

σ2 dx dt.

Minimizing (13) under the constraint (7) will lead to a C2-Hamiltonian with

H(u, q, t) =
∫
∂Ω

(u− u∗)2 + jq ds−
∫

Ω

max
σ∈[σ−,σ+]

{σ(∇u · ∇q − δσ)}
︸ ︷︷ ︸

hTikhonov(∇u·∇q)

dx,

which can be seen in Figure 1.

−5 0 5
−10

−5

0

5

10

−5 0 5

1

1.2

1.4

1.6

1.8

2

∇u · ∇q∇u · ∇q

Figure 1. The functions h (solid line), hδ (dashed line), hTikhonov
(dash-dotted line) to the left and their derivatives to the right.

Another way to describe the simple regularization (12) is to see what kind of
penalty on the objective function it corresponds to. We note that the regularized
Hamiltionian system can be written as∫

Ω

−utv − h′δ(∇u · ∇q)∇u · ∇v dx+
∫
∂Ω

jv ds = 0, ∀v ∈ V,∫
Ω

qtv − h′δ(∇u · ∇q)∇q · ∇v dx+
∫
∂Ω

2(u− u∗)v ds = 0, ∀v ∈ V,

or by a redefinition of σ

(14)

∫
Ω

−utv − σ∇u · ∇v dx+
∫
∂Ω

jv ds = 0, ∀v ∈ V,∫
Ω

qtv − σ∇q · ∇v dx+
∫
∂Ω

2(u− u∗)v ds = 0, ∀v ∈ V,∫
Ω

(
σ − h′δ(∇u · ∇q)

)
v dx = 0, ∀v ∈W.
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Let H be the primitive function of the inverse function of h′δ i.e.

H(σ) :=
δ

2σ̂

(
(σ − σ−) ln

(σ − σ−
σ̂

)
+ (σ+ − σ) ln

(σ+ − σ
σ̂

))
,

then it is evident that (14) can be seen as the first order optimality conditions for
the problem to minimize

∫ T
0

∫
∂Ω

(u− u∗)2 ds dt+
∫ T

0

∫
Ω

H(σ) dx dt,

under the constraint (7). In Figure 2, the function H(σ) is compared with a
Tikhonov regularization of the form δ(σ − σ̄)2.

1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

σ

Figure 2. The function H(σ) (solid line) compared to the L2

penalty function δ(σ − σ̄)2 (dashed line) for δ = 1, σ− = 1 and
σ+ = 2.

It is often beneficial to prevent spacial oscillations of the coefficient by adding
a penalty on the L2-norm of the gradient of the coefficient, i.e. ε‖∇σ‖2L2(Ω×(0,T )),
for ε > 0, to the objective function (8). For such a penalty the minimization in the
corresponding Hamiltonian

(15) H(u, q, t) := min
σ:Ω→[σ−,σ+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω

div(σ∇u)q + ε|∇σ|2 dx,

can not be done explicitly, and instead taking the first variation in σ would give
the system

ut = div
(
σ∇u),

−qt = div
(
σ∇q),

2εΔσ = −∇u · ∇q,
σ ∈ [σ−, σ+].

which corresponds to the usual first order optimality conditions for the Lagrangian.
How to treat different penalties on the control in an optimal control setting is
discussed in Section 3.4.
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3.3. Time Independent Control. To study the case when the control σ is in-
dependent of time we first assume that it not only is independent of time but also
depends on an auxilliary variable z, i.e. σ : Ω̄ × [0, T̃ ] → [σ−, σ+], σ = σ(x, z).
For a moment we also assume that u : Ω̄ × [0, T ] × [0, T̃ ] → R, u = u(x, t, z), but
with the same measurements as in (8). If we treat z as the time and t as a spacial
variable we can define the optimal control problem

(16) min
σ:Ω̄×[0,T̃ ]→[σ−,σ+]

1
T̃

∫ T̃
0

∫ T
0

∫
∂Ω

(u− u∗)2 ds dt dz,

where the state u satisfies the partial differential equation

(17)

uz =
1
T̃

(
div(σ∇u)− ut

)
, in Ω× (0, T )× (0, T̃ ],

σ∇u · n = j, on ∂Ω× (0, T )× (0, T̃ ],

u = 0, on Ω̄× {t = 0} × (0, T̃ ],

u = u0, on Ω̄× (0, T )× {z = 0}.
for some arbitrary initial condition u(x, t, 0) = u0.

The Hamiltonian for (16), (17) is

(18)

H(u, q, z) := min
σ:Ω→[σ−,σ+]

1
T̃

∫ T
0

∫
∂Ω

(u− u∗)2 ds dt

+
1
T̃

∫ T
0

∫
Ω

(
div(σ∇u)− ut

)
q dx dt

=
1
T̃

∫ T
0

∫
∂Ω

(u− u∗)2 + jq ds dt− 1
T̃

∫ T
0

∫
Ω

utq dx dt

− 1
T̃

∫
Ω

max
σ∈[σ−,σ+]

{
σ

∫ T
0

∇u · ∇q dt
}

︸ ︷︷ ︸
h

(∫ T
0
∇u·∇q dt

)
dx,

and the Hamiltonian system is given by

(19)

uz =
1
T̃

(
div(h′∇u)− ut

)
, in Ω× (0, T )× (0, T̃ ],

h′∇u · n = j, on ∂Ω× (0, T )× (0, T̃ ],

u = 0, on Ω̄× {t = 0} × (0, T̃ ],

u = u0, on Ω̄× (0, T )× {z = 0},
−qz =

1
T̃

(
div(h′∇q) + qt

)
, in Ω× (0, T )× (0, T̃ ],

h′∇q · n = 2(u− u∗), on ∂Ω× (0, T )× (0, T̃ ],

q = 0, on Ω̄× {t = T} × (0, T̃ ],

q = 0, on Ω̄× (0, T )× {z = T̃}.
Under the assumption that the solutions u and q in (19) are asymptotically sta-
tionary as T̃ → ∞, the Hamiltonian system for the problem (7), (8), with a time-
independent control, is given by (10) and

(20) σ̃ := h′
(∫ T

0

∇u · ∇q dt
)
.
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Similarly, the case of a space independent coefficient σ = σ(t) will lead to

σ̃ := h′
(

1
|Ω|
∫

Ω

∇u · ∇q dx
)
,

and for the case where σ is constant

σ̃ := h′
(

1
|Ω|
∫ T

0

∫
Ω

∇u · ∇q dx dt
)
.

3.4. Penalty on the Control. If we want to reconstruct a time independent
control it can be beneficial to put a penalty on σt, i.e. we want to minimize the
objective functional

(21) F (u, σt) :=
∫ T

0

∫
∂Ω

(u− u∗)2 ds dt+ ε
∫ T

0

∫
Ω

σ2
t dx dt,

under the usual constraint (7). To do this the optimal control problem has to be
reformulated such that σ is a state variable and the control is defined as z := σt(x, t),
z : Ω̄ × [0, T ] → [z−, z+]. The optimal control problem is thus to find a control z
and state variables u and σ such that F (u, z) is minimized and the system

ut = div(σ∇u), in Ω× (0, T ],
σt = z in Ω× (0, T ],

σ∇u · n = j, on ∂Ω× (0, T ],

u = 0, on Ω̄× {t = 0},
σ = σ0 > 0, on Ω̄× {t = 0}.

is satisfied. The Hamiltonian becomes

H(u, q, σ, λ, t) := min
z:Ω→[z−,z+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω

div(σ∇u)q + zλ+ εz2 dx

=
∫
∂Ω

(u− u∗)2 + jq ds−
∫

Ω

σ∇u · ∇q dx

+
∫

Ω

min
z:Ω→[z−,z+]

{z(εz + λ)}
︸ ︷︷ ︸

h(λ)

dx,

and the corresponding Hamiltonian system is
ut = div

(
σ∇u), in Ω× (0, T ],

σt = h′(λ) in Ω× (0, T ],
σ∇u · n = j, on ∂Ω× (0, T ],

u = 0, on Ω̄× {t = 0},
σ = σ0 > 0, on Ω̄× {t = 0}.
−qt = div

(
σ∇q), in Ω× (0, T ],

−λt = −∇u · ∇q in Ω× (0, T ],
σ∇q · n = 2(u− u∗), on ∂Ω× (0, T ],

q = 0, on Ω× {t = T},
λ = 0, on Ω× {t = T},

which is equivalent to (10) with

σ̃ := σ0 +
∫ t

0

h′
(∫ T
y

−(∇u · ∇q)(x, z) dz
)

dy.
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Note, since we no longer have a constraint σ > 0, the bound z− has to be carefully
chosen to ensure well-posedness of the forward problem.

In a similar fashion as for penalizing temporal variations of the control it is
also possible to penalize spacial variations, as was briefly mentioned in Section 3.2,
where the objective was to minimize F (u, |∇σ|) under the constraint (7), which
leads to the Hamiltonian (15). To be able to explicitly find the minimum in the
Hamiltonian we once again let σ act as a state variable, introduce the control z and
the dynamics

(22)
σt =

z − |∇σ|2
γ

, in Ω× (0, T ],

σ = σ0 > 0, in Ω× {t = 0},
for γ > 0. The slightly perturbed control problem is now to minimize the objective
function F (u, z) such that (7) and (22) holds, which leads to the Hamiltonian

H(u, q, σ, λ, t) := min
z:Ω→[z−,z+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω

div(σ∇u)q + λ
z − |∇σ|2
γ

+ εz dx

=
∫
∂Ω

(u− u∗)2 + jq ds−
∫

Ω

σ∇u · ∇q + λ
|∇σ|2
γ

dx

+
∫

Ω

min
z:Ω→[z−,z+]

{z(ε+
λ

γ
)}

︸ ︷︷ ︸
h(λ)

dx,

and the Hamiltonian system

ut = div
(
σ∇u),

σt = h′(λ)− |∇σ|
2

γ
,

−qt = div
(
σ∇q),

−λt = ∇u · ∇q − 2λ
Δσ
γ
.

3.5. Numerical Approximation and Symplectic Methods. Let V̄ ⊂ V :=
H1(Ω) be the finite element subspace of piecewise linear functions defined on a
triangulation of Ω, which implies that our optimal control problems in the previ-
ous sections are approximated by optimal control problems for ordinary differential
equations. We also let the functions hδ,Hδ and hδ denote the regularized counter-
parts to h,H and h. The regularized version of h is given by (12) from which the
definition of Hδ follows. The regularized function hδ can be derived from Hδ by
hδ := Hδ − 〈λ,Hδλ〉 and a regularized version of f can be defined as fδ := Hδλ.

Now, introduce the uniform partition {ti = ki}Ni=0, k = T/N of the time interval
[0, T ], and the corresponding finite element approximations at each time step ϕn :=
ϕ(tn), λn := λ(tn). Also define a discrete regularized version Ū : V̄ × [0, T ]→ R of
the value function (2),

Ū(φ, tm) := min
ϕm=φ

{
g(ϕN ) + k

N−1∑
n=m

hδ(ϕn, λn+1)
}
,

where ϕn and λn satisfy a symplectic scheme, e.g. the symplectic forward Euler
method

(23)
ϕn+1 − ϕn = kHδλ(ϕn, λn+1), for n = m, . . . , N − 1 given ϕm = φ,

λn − λn+1 = kHδϕ(ϕn, λn+1), for n = m, . . . , N − 1 given λN = gϕ(ϕN ).
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Symplecticity here means that Ūϕ(ϕn, tn) = λn, i.e. the gradient of the discrete
value function coincides with the discrete dual λn, and given that |H−Hδ| = O(δ)
it can be shown that for symplectic one-step schemes∣∣∣∣U(ϕ0, t0)− g(ϕN )− k

N−1∑
n=m

hδ(ϕn, λn+1)
∣∣∣∣ = O(k),

for δ ∼ k, see [15]. It is thus essential to use a symplectic time discretization of the
regularized Hamiltonian system

ϕt = Hδλ(ϕ, λ),

λt = −Hδϕ(ϕ, λ),

in order to have convergence in the value function.
Some examples of other symplectic schemes are the the backward Euler method

(24)
ϕn+1 − ϕn = kHδλ(ϕn+1, λn), for n = 0, . . . , N − 1 given ϕ0,

λn − λn+1 = kHδϕ(ϕn+1, λn), for n = 0, . . . , N − 1 given λN ,

and the implicit midpoint method

(25)
ϕn+1 − ϕn = kHδλ

(
ϕn + ϕn+1

2
,
λn + λn+1

2

)
, n = 0, . . . , N − 1, given ϕ0,

λn − λn+1 = kHδϕ
(
ϕn + ϕn+1

2
,
λn + λn+1

2

)
, n = 0, . . . , N − 1, given λN .

See [12] for a thorough description of symplectic methods.

3.6. The Newton Method. To solve the coupled nonlinear symplectic schemes
(23)-(25) above, it is tempting to propose fix-point schemes that partly removes the
coupling between the forward and bacward equation, e.g. by iterating separately in
ϕ and λ. Such methods has the advantage that existing partial differential equation
solvers can be used to efficiently solve the forward and backward problems in each
iteration, but the disadvantage is that the convergence to an optimal solution tends
to be slow, and also dependent on the discretization. A more suitable strategy is
to use information of the Hessian of Hδ; e.g. Quasi-Newton methods, or since the
Hessian in our case can be found explicitly and is sparse, the Newton method itself.

For the Hamiltonian system (10) with σ̃ := h′δ given by (12) the symplectic
backward Euler can be written as

Fn(w) = 0, Gn(w) = 0, n = 0, . . . , N − 1, ∀w ∈ V̄
where

(26)

Fn(w) :=
∫

Ω

(un+1 − un)w + kh′δ(∇un+1 · ∇qn)∇un+1 · ∇w dx

−
∫
∂Ω

kjn+1w ds,

Gn(w) :=
∫

Ω

(qn − qn+1)w + kh′δ(∇un+1 · ∇qn)∇qn · ∇w dx

−
∫
∂Ω

2k(un+1 − u∗n+1)w ds,

and u0 = qN = 0. Given an initial guess u[0], q[0] the (damped) Newton method
yields that

u[i+ 1] = u[i]− αû,
q[i+ 1] = q[i]− αq̂,
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where α ∈ (0, 1] and, for each iteration, the updates û and q̂ solve a linear system
of the form

(27)
(
K11 K12

K21 K
T
11

)(
û
q̂

)
=
(
f
g

)
,

where
û =
(
û1 . . . ûN

)T
, q̂ =

(
q̂0 . . . q̂N−1

)T
,

f =
(
F0 . . . FN−1

)T
, g =

(
G0 . . . GN−1

)T
.

The matrix K11 is a bi-diagonal block matrix with M + Si for i = 0, . . . , N − 1 on
the diagonal and −M on the sub-diagonal, where M denotes the mass matrix∫

Ω

ww̄ dx,

and
Sn :=

∫
Ω

kh′′δ (∇un+1 · ∇qn)∇qn · ∇w ∇un+1 · ∇w̄ dx

+
∫

Ω

kh′δ(∇un+1 · ∇qn)∇w · ∇w̄ dx.

for w, w̄ ∈ V̄ . The matrices K12, K21 are symmetric block-diagonal matrices with∫
Ω

kh′′δ (∇un+1 · ∇qn)∇un+1 · ∇w ∇un+1 · ∇w̄ dx,

and ∫
Ω

kh′′δ (∇un+1 · ∇qn)∇qn · ∇w ∇qn · ∇w̄ dx−
∫
∂Ω

2kw̄w ds,

for n = 0, . . . , N − 1 on the the diagonals, respectively.
If we repartition the block 2× 2 linear system (27) to

(28)
(
K21 K

T
11

K11 K12

)(
û
q̂

)
=
(
g
f

)
,

we see that it is a generalized saddle point system [4] with symmetric matrices
K21,K12, and KT11 �= 0, K21 �= 0. However, unlike saddle point problems aris-
ing from e.g. the steady-state Navier-Stokes equations or from the Karush-Kuhn-
Tucker optimality conditions for equality constrained minimization problems, both
K12 and K21 may here be indefinite and singular.

Since (27) and (28) are increasingly ill-conditioned with respect to reduction in
mesh size, step size and regularization, the success of iterative algorithms like Krylov
sub-space methods will depend heavily on the choice of preconditioner. Standard
algebraic preconditioners like incomplete LU-factorization are often unsuitable for
saddle-point problems due to the indefiniteness and lack of diagonal dominance, so
the preconditioner must be tailored for the specific problem at hand. One popular
approach for PDE-constrained optimization problems is to base the preconditioner
on the solution from a reduced approximated problem where the Schur complement
is replaced by an approximation e.g. by quasi-newton methods, see [5].

In our case we use the GMRES method to solve the non-symmetric system (27)
and base our preconditioner on the approximate solution of a simple blockwise
Gauss-Seidel method i.e. to start with a guess q̂0 and iteratively solve

(29)
K11û

i+1 = f −K12q̂
i,

KT11q̂
i+1 = g −K21û

i+1,

which works well for large regularizations i.e. when h′′δ is small and the diagonal
blocks of (27) are dominant. Also, each iteration with this method only requires
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one forward and one backward solve in time of a modified heat equation so the com-
putational work for one iteration is concentrated to solving N − 1 smaller systems
with system matrices (M + Si). In practice, the Gauss-Seidel method will break
down for small regularizations but for our problems (and discretizations) only one
iteration with (29) turns out to be a fairly good approximation to use as precondi-
tioner. Note that for q̂0 = 0, one Gauss-Seidel iteration is the same as solving (27)
with the approximation K12 = 0.

Another more elaborate idea is to use a preconditioner based on the solution of
an approximated Schur complement system(

K11 K12

0 S

)(
û
q̂

)
=
(

g
f −K12K

−1
11 g

)
,

where S is an approximation of the Schur complement

KT11 −K21K
−1
11 K12.

which essentially is to find a good approximation of the lower triangular block
matrix K−1

11 .
Although solution algorithms for saddle point systems on the symmetric form

(28) are extensively treated in the litterature, see [4] for an overview, we here favour
the non-symmetric form (27), since a Schur complement reduction of (28) means
to find an approximation to the Schur complement

K12 −K11K
−1
21 K

T
11,

which since K21 here can be singular, is unavailable. One way around this obstacle
is to rewrite (28) by e.g. the augmented Lagrangian method which leads to a
symmetric invertible Schur complement but where the physical meaning of the
original system, on PDE level, is partially lost.

If a direct solver is used for the Newton system it is appropriate to reorder (27)
such that the solution vector and right hand side contains time steps in increasing
order, which leads to a banded Jacobian with band-width of the same order as the
number of spacial degrees of freedom.

Our computations were implemented MATLAB (for the one dimensional exam-
ples), and in DOLFIN [13], the C++/Python interface of the finite element solver
environment FEniCS [11] (for the two dimensional examples). Piecewise linear ba-
sis functions were used for the finite element subspace V̄ , and in all examples the
solution u, q was first calculated for a large regularization which was succesively
reduced such that the solution from the previous regularization served as starting
guess for a smaller regularization.

For the two dimensional examples the sadde-point system (27) was solved with
the PETSc implementation of GMRES (used by DOLFIN) with preconditioning
based on the solution from one iteration of blockwise Gauss-Seidel method. For
the one dimensional examples a direct solver was used. The number of iterations
for GMRES with the Gauss-Seidel preconditioner seems to be relatively insensitive
with respect to temporal and spacial discretization but still highly sensitive to the
regularization in our examples.

To give a time independent approximation σ(x) of the time dependent control
σ(x, t), approximated by σ̃ := h′δ(∇u ·∇q) where u, q are solutions to the Hamilton-
ian system (10), three different types of averaging were tested as post-processing:

(1) Let the time independent control be defined by the Hamiltonian (18), i.e.

(30) σ := h′δ

(∫ T
0

∇u · ∇q dt
)
.
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(2) Let the time independent control be the average of the time dependent
control, i.e.

(31) σ :=
1
T

∫ T
0

h′δ(∇u · ∇q) dt.

(3) Let the time independent control be the weighted average

(32) σ :=
∫ T

0
h′δ(∇u · ∇q)|∇u · ∇q| dt∫ T

0
|∇u · ∇q| dt

,

of the time dependent control h′δ(∇u · ∇q).
The weighted average turned out to be the most successful aproximation and can
be explained by first extending the Hamiltonian (9) to also depend on the artifical
variable z as in Section 3.3

H(u, q, z) :=
1
T̃

∫ T
0

∫
∂Ω

(u− u∗)2 + jq ds dt− 1
T̃

∫ T
0

∫
Ω

utq dx dt

− 1
T̃

∫
Ω

∫ T
0

h′(∇u · ∇q)∇u · ∇q dt dx,

where h′(∇u · ∇q)∇u · ∇q = h(∇u · ∇q) by definition. For the problem with a time
independent control we now seek an approximation of the Hamiltonian (18) of the
form

H̄(u, q, z) :=
1
T̃

∫ T
0

∫
∂Ω

(u− u∗)2 + jq ds dt− 1
T̃

∫ T
0

∫
Ω

utq dx dt

− 1
T̃

∫
Ω

f(∇u · ∇q)
∫ T

0

∇u · ∇q dt dx,

that best approximates H, i.e.

f(∇u · ∇q) :=
∫ T

0
h′(∇u · ∇q)∇u · ∇q dt∫ T

0
∇u · ∇q dt

.

In Figure 3, one dimensional reconstructions from three sets of simulated data
u∗, generated from a time independent conductivity σtrue, are compared:

(1) Data calculated with the same discretization as u and q.
(2) Different discretizations used for data and solutions.
(3) Different discretizations used for data and solutions and with noise in the

data u∗.
The last set is the most realistic one since for true experimental data of u∗ it is in-
evitable to have noisy measurements. To simulate noise the discrete solution u∗ was
multiplied componentwise by independent standard normal distributed stochastic
variables εij according to u∗(xi, tj)(1 + ηεij), where η denotes the percentage of
noise. It is notable that the systematic error from using different meshes can have
a much bigger effect on the solutions than additional noise, which can be observed
from the dual solution q in Figure 3.

In Figure 4 the time independent post-processing of the time dependent recon-
struction can be found. It is here evident that the weighted average (32) performs
better than (31), but since the reconstruction is highly dependent on the given
boundary condition, see Figure 5 for comparison, there are situations where the
different post-processing techniques perform equally well. It would of course be
optimal to use the knowledge that σtrue is independent of time in the calculations,
i.e. to use the Newtion system for (10) with time independent-control (20). This
would however lead to a dense Jacobian.
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Note that in the examples the limits σ− and σ+ were chosen to be the biggest
and smallest values of σtrue. In our experience the Pontryagin method is not well
suited for reconstruction of values between σ− and σ+, if there is noise or other
measurement errors present in data.

Figure 6 shows two-dimensional reconstructions of two different time indepen-
dent conductivities. Unlike the one-dimensional example the quality of the recon-
struction here deteriorates quickly as the distance to the measurement locations is
increased.

Figure 3. 1D reconstruction of σtrue = 0.75− 0.5 tanh(20x− 10)
for δ = 10−6, σ− = 0.5, and σ+ = 1. Measurements were collected
on both boundaries and the Neumann boundary condition was
σux(0, t) = −σux(1, t) = sin(4t) for t < 0.5 and 0 elsewhere. The
plot shows, from top to bottom, u, q, h′δ and the objective function
‖u− u∗‖L2(∂Ω×[0,T ]). In all cases u, q was calculated with 50 steps
in space and time. In the left column, the data u∗ was generated
by solving the heat equation for σtrue with 50 steps in time and
space, while 200 steps in time and space was used in the middle
and right columns. In the right column 10% noise was also added
to u∗.
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Figure 4. The time independent post-processed conductivity for
the 1D reconstructions in Figure 3. The true control σtrue is indi-
cated by a solid line and the averaged controls (30), (31) and (32)
are indicated by dotted, dash-dotted and dashed lines, respectively.

Figure 5. 1D reconstruction with data as in Figure 3 and 4 but
with Neumann boundary condition σux(0, t) = −σux(1, t) = 1.
The top row shows h′δ and the bottom row the averaged conduc-
tivities, as described in Figure 4.

4. Reconstruction from the Wave Equation

In this section the goal is to determine the wave speed for a scalar acoustic wave
equation: Given measured data u∗, find the state u : Ω̄ × [0, T ] → R, u(·, t) ∈ V
and a control σ : Ω̄× [0, T ]→ [σ−, σ+], σ = σ(x, t) where 0 < σ− < σ+, that solves
the partial differential equation

(33)

utt = div(σ∇u), in Ω× (0, T ],
σ∇u · n = j, on ∂Ω× (0, T ],

u = ut = 0, on Ω̄× {t = 0},
such that the error functional

(34)
∫ T

0

∫
∂Ω

(u− u∗)2 ds dt,

is minimized. The control σ is here the square of the wave speed of the medium
and u is the pressure deviation.
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Figure 6. 2D reconstruction on the unit square with final time
T = 1 and Neumann boundary condition σ ∂u∂n = 1 on ∂Ω× [0, T ].
The data u∗ was simulated by solving the forward equation on a
quasi-uniform mesh with 13000 triangles and 80 time steps while
the inverse problem was solved on a uniform mesh with 3200 tri-
angles and 40 time steps. Measurements from the whole boundary
were used. Top: True conductivity σtrue. Middle: Reconstructed
condictivity for δ ≈ 0.002 using the weighted average (32). Bot-
tom: As in middle but for δ ≈ 0.05 and with 5% noise in the
measurements.

To use the framework of the previous section we note that (33) can be written
as the first order system

(35)

vt = div(σ∇u), in Ω× (0, T ],

ut = v, in Ω̄× (0, T ],
σ∇u · n = j, on ∂Ω× (0, T ],

u = v = 0, on Ω̄× {t = 0}.
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4.1. The Hamiltonian System. As in Section 3.1 we have a Hamiltonian asso-
ciated with the optimal control problem (34) and (35) which is defined by

(36)

H := min
σ:Ω→[σ−,σ+]

∫
∂Ω

(u− u∗)2 ds+
∫

Ω

div(σ∇u)q + vp dx

=
∫
∂Ω

(u− u∗)2 + jq ds+ min
σ:Ω→[σ−,σ+]

∫
Ω

−σ∇u · ∇q + vp dx

=
∫
∂Ω

(u− u∗)2 + jq ds+
∫

Ω

vp− max
σ∈[σ−,σ+]

{σ∇u · ∇q}
︸ ︷︷ ︸

h(∇u·∇q)

dx,

and the Hamiltonian system becomes

(37)

vt = div
(
σ̃∇u), in Ω× (0, T ],

ut = v, in Ω̄× (0, T ],
σ̃∇u · n = j, on ∂Ω× (0, T ],

u = v = 0, on Ω̄× {t = 0},
−pt = div

(
σ̃∇q), in Ω× (0, T ],

−qt = p, in Ω̄× (0, T ],
σ̃∇q · n = 2(u− u∗), on ∂Ω× (0, T ],

p = q = 0, on Ω× {t = T},
or equivalently

(38)

utt = div
(
σ̃∇u), in Ω× (0, T ],

σ̃∇u · n = j, on ∂Ω× (0, T ],

u = ut = 0, on Ω̄× {t = 0},
qtt = div

(
σ̃∇q), in Ω× (0, T ],

σ̃∇q · n = 2(u− u∗), on ∂Ω× (0, T ],

q = qt = 0, on Ω̄× {t = T}.
with

σ̃ := h′(∇u · ∇q).
4.2. Symplecticity for the Wave Equation. As a natural case the symplectic
methods discussed in 3.5, with ϕ = (u, v), λ = (p, q), can be used to solve the system
(37). It is however also possible to use a time-discretization that is symmetric in
time i.e.

(39)

un+1 − 2un + un−1 = k2div
(
σ̃n∇un

)
, in Ω,

σ̃n∇un · n = jn, on ∂Ω,
u0 = u1 = 0, in Ω,

qn+1 − 2qn + qn−1 = kdiv
(
σ̃n∇qn

)
, in Ω,

σ̃n∇qn · n = 2(un − u∗n), on ∂Ω,
qN = qN−1 = 0, in Ω,

for σ̃n := h′(∇un · ∇qn) and n = 1, . . . , N − 1. For a given σ̃, constant in time, this
scheme is the symplectic backward Euler method for the forward wave equation for
u, which can be written as the Hamiltonian system (35) with Hamiltonian

Hwave(u, v) :=
1
2

∫
Ω

|σ̃∇u|2 + v2 dx,
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and the symplectic forward Euler method for the backward wave equation for q.
To see that that the scheme (39) is symplectic for σ̃n := h′(∇un · ∇qn) we note

that a one-step method (ϕn, λn) → (ϕn+1, λn+1) is symplectic if there exists a
function H(ϕn, λn+1) such that (23) holds, or equivalently H(ϕn+1, λn) such that
(24) holds, see Remark 4.8 in [15] or [12] for details. It thus follows that the one-step
method

vn+1 − vn = kdiv
(
h′(∇un · ∇qn)∇un

)
,

un+1 − un = kvn+1,

pn − pn+1 = kdiv
(
h′(∇un · ∇qn)∇qn

)
,

qn − qn+1 = kpn+1,

corresponds to the symplectic forward Euler method for the Hamiltonian

H̃(un, qn︸ ︷︷ ︸
ϕn

, vn+1, pn+1︸ ︷︷ ︸
λn+1

) := H(un, vn+1, pn+1, qn)− 2
∫

Ω

vn+1pn+1 dx,

where H is given by (36). Since (39) only is stable for sufficiently small time-steps
and still requires to solve a complex saddle point system we will use the symplectic
midpoint method in our experiments.

4.3. Numerical Examples. Let σ̃ := h′δ where h′δ is given by (12). The symplectic
midpoint method for the regularized Hamiltonian system (37) can then be written
as

F 1
n(w) = 0, F 2

n(w) = 0, G1
n(w) = 0, G2

n(w) = 0,

for n = 0, . . . , N − 1, and ∀w ∈ V̄ , where

F 1
n(w) :=

∫
Ω

(vn+1 − vn)w + kh′δ
(∇un+ 1

2
· ∇qn+ 1

2

)∇un+ 1
2
· ∇w dx

−
∫
∂Ω

kjn+ 1
2
w ds,

F 2
n(w) :=

∫
Ω

(un+1 − un − kvn+ 1
2
)w dx,

G1
n(w) :=

∫
Ω

(qn − qn+1 − kpn+ 1
2
)w dx.

G2
n(w) :=

∫
Ω

(pn − pn+1)w + kh′δ(∇un+ 1
2
· ∇qn+ 1

2
)∇qn+ 1

2
· ∇w dx

−
∫
∂Ω

2k(un+ 1
2
− u∗n+ 1

2
)w ds,

and u0 = v0 = pN = qN = 0. The index n + 1
2 implies the average of the values

at n and n + 1, i.e. un+ 1
2

:= 1
2 (un + un+1). Taking the variations with respect to

u, v, p, q gives the Newton system

(40)

⎛
⎜⎜⎝
K11 K12 0 K14

K21 K22 0 0
0 0 K33 K34

K41 0 K43 K44

⎞
⎟⎟⎠
⎛
⎜⎜⎝
û
v̂
p̂
q̂

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
f1
f2
g1
g2

⎞
⎟⎟⎠ ,

with increments

û =
(
û1 . . . ûN

)T
, v̂ =

(
v̂1 . . . v̂N

)T
,

p̂ =
(
p̂0 . . . p̂N−1

)T
, q̂ =

(
q̂0 . . . q̂N−1

)T
,
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and right hand side

f1 =
(
F 1

0 . . . F 1
N−1

)T
, f2 =

(
F 2

0 . . . F 2
N−1

)T
,

g1 =
(
G1

0 . . . G
1
N−1

)T
, g2 =

(
G2

0 . . . G
2
N−1

)T
.

with submatrices with the following structure:
• K11 is lower block bi-diagonal with

(41)

1
2

∫
Ω

kh′′δ (∇un+ 1
2
· ∇qn+ 1

2
)∇qn+ 1

2
· ∇w ∇un+ 1

2
· ∇w̄ dx

+
1
2

∫
Ω

kh′δ(∇un+ 1
2
· ∇qn+ 1

2
)∇w · ∇w̄ dx,

on its main diagonal for n = 0, . . . , N − 1 and on its sub-diagonal for
n = 1, . . . , N − 1.
• K44 is upper block bi-diagonal with (41) on its diagonal for n = 0, . . . , N−1

and on its super-diagonal for n = 0, . . . , N − 2.
• K12 = K21 = KT34 = KT43 is lower block bi-diagonal with mass matrices M

on the main diagonal and −M on the subdiagonal.
• K22 = KT33 is lower block bi-diagonal with −kM2 on the diagonal and the

sub-diagonal.
• K14 is upper block bi-diagonal with

1
2

∫
Ω

kh′′δ (∇un+ 1
2
· ∇qn+ 1

2
)∇un+ 1

2
· ∇w ∇un+ 1

2
· ∇w̄ dx,

on its diagonal for n = 0, . . . , N − 1 and on its super-diagonal for n =
0, . . . , N − 2.
• K41 is lower block bi-diagonal with
1
2

∫
Ω

kh′′δ (∇un+ 1
2
· ∇qn+ 1

2
)∇qn+ 1

2
· ∇w ∇qn+ 1

2
· ∇w̄ dx−

∫
∂Ω

kw̄w ds,

on its diagonal for n = 0, . . . , N − 1 and sub-diagonal for n = 1, . . . , N − 1.
As in the previous section we will solve the Newton system using GMRES and

an approximate solution as preconditioner, e.g. from the the 2×2 blockwise Gauss-
Seidel method

K11û
i+1 +K12v̂

i+1 = f1 −K14q̂
i,

K21û
i+1 +K22v̂

i+1 = f2,

K33p̂
i+1 +K34q̂

i+1 = g1,

K43p̂
i+1 +K44q̂

i+1 = g2 −K41û
i+1,

which can be written as

(42)
(K11 −K12K

−1
22 K21)ûi+1 = f1 −K12K

−1
22 f2 −K14q̂

i,

(K44 −K43K
−1
33 K34)q̂i+1 = g2 −K43K

−1
33 g1 −K41û

i+1.

Note that (42) is easily solved since inverting K22 and K33 only involves the cal-
culation of M−1. In fact, the Schur complements K11 − K12K

−1
22 K21 and K44 −

K43K
−1
33 K34 becomes lower and upper block trianglar matrices, respectively, and

(42) can be solved by one forward substitution in time for ûi+1 and one backward
substitution in time for q̂i+1. Of course, to save memory the Schur complement
system (42) should never be formed explicitly. For large regularizations the Schur
complements can be seen as approximations of the operator −Δ + ∂tt. As for the
case with the heat equation starting with q̂0 = 0, one iteration with (42) is the
same as solving (40) with K14 = 0.

In Figure 7, a two dimensional example of reconstruction two different speed
coefficients is shown. The measured data was here simulated by solving the wave
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equation for σtrue with the symplectic backward Euler method for (35), which can
be written as the second order scheme∫

Ω

(un+1 − 2un + un−1)w dx =
∫
∂Ω

jw ds−
∫

Ω

σ∇un · ∇w dx, ∀w ∈ V̄ .
Since the wave equation is a conservation law and is reversible in time it is tempting
to believe that it would be easier to control than the heat equation but there are
some computational drawbacks: numerical errors are propagated in time and there
seems to be many local minima. From the approximation h′δ(∇u · ∇q) in Figure 8
it is evident that the time dependent reconstruction varies a lot over time and is
not a good approximation of the time independent wave coefficient σtrue.
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Figure 7. 2D reconstruction using the weighted average (32), fi-
nal time T = 1.5 and Neumann boundary condition 2 sin(4πt) for
(x, y, t) ∈ {0} × [0.4, 0.6] × [0, 0.5] and 0 elsewhere. The data u∗
was simulated by solving the forward equation on a quasi-uniform
mesh with 3232 triangles and 328 time steps while the inverse prob-
lem was solved on a uniform mesh with 1250 triangles and 30 time
steps. Measurements from the whole boundary were used. Top:
Reconstruction of σtrue = 0.5 inside the square [0.2, 0.5]× [0.5, 0.8]
and σtrue = 1 elsewhere, with no noise in data (left) and 10% noise
in data (right). Bottom: Reconstruction of σtrue = 0.5 inside the
square [0.35, 0.65]× [0, 0.3] and σtrue = 1 elsewhere, with no noise
in data (left) and 10% noise in data (right).
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Figure 8. Measurements u∗ (top) and h′δ(∇u · ∇q) (bottom) for
timesteps 5, 15 and 25. The data here corresponds to the top left
plot in Figure 7, and u∗ is interpolated onto the mesh used for the
calculation of u and q.
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INVERSE RECONSTRUCTION FROM OPTIMAL INPUT DATA

JESPER CARLSSON

Abstract. This report concerns the problem to find optimal input data for an
inverse reconstruction problem. In a classical parameter reconstruction prob-
lem the goal is to determine a spacially distributed (and optionally time de-
pendent) coefficient of a partial differential equation from observed data. Here,
the spacially dependent wave speed coefficient of the acoustic wave equation is
sought, given observations of the solution on the boundary. The reconstruction
of the coefficient is highly dependent on input data, e.g. if Neumann boundary
values serve as input data it is in general not possible to determine the coef-
ficient for all possible input data. It is shown that it is possible to formulate
meaningful optimality criteria for the input data that enhances quality of the
reconstructed coefficient. Both the problem of estimating the coefficient and
the problem of finding optimal input data are ill-posed inverse problems and
need to be regularized.
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1. Introduction

This paper describes a method to find optimal input data for inverse scattering
problems. It is well known that inverse problems are ill-posed and need to be
regularized [6]. Much of the research on inverse problems today is focused on
how to regularize and to solve them efficiently. A more unusual question is how
the choice of input data affects the solution to the inverse problem, and if it is
possible to enhance the quality of the solution by simply choosing other input data.
This question was asked in [3, 5] for time independent reconstruction problems in
impedance tomography, and later for inverse scattering problems [4].
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In [4], it was investigated how to best distinguish two different spacially depen-
dent wave coefficients c(x) and c0(x), for the acoustic wave equation in the half
space x3 < 0 in R

3, from each other by using information of the downgoing and
upgoing waves at the boundary x3 = 0. As a measure of distinguishability the
difference in energy flux between the upgoing fields for c and c0 was chosen, and it
was shown that this difference is maximized by a time-harmonic downgoing wave
with frequency depending on the two coefficients. In this paper, a similar approach
is used, but with the focus on how the choice of the incoming wave affects the
reconstruction for the inverse problem to reconstruct an unknown wave coefficient.

2. Problem Formulation

Consider the acoustic wave equation in an bounded open domain Ω ∈ R
2 and

for times t ∈ [0, T ]:

(1)

ϕ∗
tt = div(σ∗∇ϕ∗), in Ω × (0, T ],

σ∗∇ϕ∗ · n = j, on ΓN × (0, T ],

σ∗∇ϕ∗ · n = 0, on ∂Ω \ ΓN × (0, T ],

ϕ∗ = ϕ∗
t = 0, on Ω̄ × {t = 0},

where ϕ∗ : Ω̄ × [0, T ] → R denotes acoustic pressure, σ∗ : Ω̄ → R, σ∗ > 0 is
the squared wave speed and ΓN ⊆ ∂Ω. To find the acoustic pressure ϕ∗, for
a given coefficient σ∗ and boundary data j : ΓN × (0, T ] → R, is the forward
problem. Given sufficient regularity of the input data, e.g. σ∗ ∈ C1(Ω) and j ∈
L2(0, T ; L2(ΓN )), the forward problem is well posed, i.e. there exists a unique
(weak) solution ϕ ∈ L2(0, T ; H1(Ω)) which depends continuously on j and σ∗, see
[7]. A typical corresponding inverse problem to (1) is to find σ∗, for given input
boundary data j and measurements ϕ∗.

2.1. Inverse Scattering. Unlike the forward problem above, the inverse problem
is ill posed, i.e. there may not exist a solution σ∗, and if it exists it may not be
unique nor depend continuously on the data j and ϕ∗. To formulate an inverse
problem that has a unique solution, with continuous dependence on data, it is
necessary to add some regularization [6].

The regularized inverse scattering problem is here: for given Neumann boundary
data j and measurements ϕ∗ on ΓM ⊂ ∂Ω, find the coefficient σ : Ω̄ → R, σ > 0,
and the state ϕ : Ω̄ × [0, T ] → R, that minimizes the error functional

(2)
1
2

∫ T

0

∫
ΓM

(ϕ − ϕ∗)2 ds dt +
δ

2

∫
Ω

(σ2 + |∇σ|2) dx,

and satisfies the acoustic wave equation

(3)

ϕtt = div(σ∇ϕ), in Ω × (0, T ],

σ∇ϕ · n = j, on ΓN × (0, T ],

σ∇ϕ · n = 0, on ∂Ω \ ΓN × (0, T ],

ϕ = ϕt = 0, on Ω̄ × {t = 0}.
The second term in (2) is a Tikhonov regularization, with δ > 0, that ensures
that the minimization problem is well posed [7]. Also, it is assumed that the
measurements ϕ∗ satisfy (1) for some unknown σ∗.

Note that, for simplicity a pure Neumann boundary condition is here used, but
it is possible to use a Dirichlet condition on a subset ΓD ⊂ ∂Ω, ΓD ∩ ΓM �= ΓM ,
without complication.



INVERSE RECONSTRUCTION FROM OPTIMAL INPUT DATA 3

2.2. Optimal Input Data. The objective of this paper is not only to solve the
above minimization problem (2), but also to find the best possible boundary input
data j that ensures a good reconstruction of σ∗. For the acoustic wave equation
the choice of input data is highly important since a wave may only visit a subset
of the region Ω before it is measured, and it can thus only be expected to find an
approximation of σ∗ in that subset.

One way to define what is meant by the ”best” input j is to first define the
concept of distinguishability, i.e. how to best distinguish two coefficients σ and σ∗

from each other. Following [3], let Λσ denote the Neumann-to-Dirichlet map

Λσ : σ
∂ϕ

∂n

∣∣∣
∂Ω×(0,T ]

→ ϕ|∂Ω×(0,T ]

which associates the input j with the solution ϕ on the boundary, and define the
distinguishability as

d(σ, σ∗) :=
‖(Λσ − Λσ∗)j‖∂Ω×(0,T )

‖j‖∂Ω×(0,T )
=

‖ϕ − ϕ∗‖∂Ω×(0,T )

‖j‖∂Ω×(0,T )
,

where ‖·‖A denotes the L2(A) norm with corresponding inner product (·, ·)A. Here,
the L2 norm was chosen for simplicity, but it may happen that two coefficients that
are not distinguishable in the L2 norm are still distinguishable in norms that better
reflect the regularity of j and ϕ, see [3].

Given σ and σ∗, the best input j can be defined as the maximizer to d(σ, σ∗), i.e.
the eigenfunction that corresponds to the dominating eigenvalue of the difference
operator Λσ −Λσ∗ . To find the eigenfunction for the dominating eigenvalue, power
iteration can be used, an approach that was used in [2] to find good input currents
for impedance tomography.

2.3. Minimax Problem. If the Neumann data j is normalized by introducing a
new variable q : ΓN × (0, T ] → R such that

j :=
q

‖q‖ΓN×(0,T )
, on ΓN × (0, T ],

the problem to find both the coefficient σ∗ and an optimal input j can be formulated
as the minimax problem

(4) min
σ

max
q

‖ϕ − ϕ∗‖2
ΓM×(0,T ) +

δ

2

(
‖σ‖2

Ω + ‖∇σ‖2
Ω

)
,

with the constraints (1) and (3). Remember, that since σ∗ is unknown Equation
(3) cannot be solved, but the measurements ϕ∗ on the boundary are still accessible
through experiments.

Similarly to the minimization of (4), the maximization is an inverse problem and
can be expected to be ill posed. The normalization of j here acts as a Tikhonov
regularization, and ensures that the objective fucnction is bounded, but it is not
clear if the maximization admits a solution, or if the solution is unique. Addi-
tional regularization may thus be needed. In Section 3.5, it is observed that q and
correspondingly ϕ tends to oscillate in time as the measurement error grows, and
to prevent large oscillations the numerical method is interrupted prematurely. An
alternative measure would be to add a penalty on the time derivative of q in (4).
Physically, it would also be suitable to include a constraint on the energy, as in [4],
but this approach is not pursued in this paper.

Since the concavity with respect to q is unclear, the minimization and maximiza-
tion problems will here be treated as two separate subproblems:

Max: Given σ and σ∗, maximize (4) with respect to j under the constraints
(1) and (3).
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Min: Given j and ϕ∗, minimize (4) with respect to σ under the constraint
(3).

Even if the min and max in (4) could switch place, there are numerical consid-
erations which leads to two separate subproblems. This will be explained in the
following sections.

3. Numerical Solution

3.1. Discretization. Let V ⊂ H1(Ω) be the finite element subspace of continuous
piecewise linear functions on a triangular finite element mesh on Ω, and divide
the interval [0, T ] into N intervals of equal length k = T/N . An explicit scheme,
discretized in time and finite elements in space, for the weak form of Equation (3)
is

(5)
(ϕn+1 − 2ϕn + ϕn−1, v)Ω = k2(jn, v)ΓN

− k2(σ∇ϕn,∇v)Ω, ∀v ∈ V,

ϕ0 = ϕ1 = 0,

for n = 1, . . . , N − 1. Also, even though Equation (1) is never solved computa-
tionally, since ϕ∗ is measured, it is assumed that the measured data uses the same
discretization

(6)
(ϕ∗

n+1 − 2ϕ∗
n + ϕ∗

n−1, v)Ω = k2(jn, v)ΓN
− k2(σ∗∇ϕ∗

n,∇v)Ω, ∀v ∈ V,

ϕ∗
0 = ϕ∗

1 = 0,

for n = 1, . . . , N − 1. Using formulation (4) above, with Neumann boundary data
jn defined by

jn :=
qn√

k
∑N−1

n=1 ‖qn‖2
ΓN

,

the discretized minimax problem is thus to find ϕ2, . . . , ϕN , ϕ∗
2, . . . , ϕ

∗
N , q1, . . . , qN−1

and σ such that

(7) min
σ

max
q1,...,qN−1

k

2

N∑
n=0

‖ϕn − ϕ∗
n‖2

ΓM
+

δ

2
(‖σ‖2

Ω + ‖∇σ‖2
Ω),

under the constraints (5) and (6).

3.2. Optimality Condition. To formulate an optimality condition for the dis-
cretized problem (7), (5) and (6), the Lagrangian is introduced:

L :=
k

2

N∑
n=0

‖ϕn − ϕ∗
n‖2

ΓM
+

δ

2
(‖σ‖2

Ω + ‖∇σ‖2
Ω)+

+
N−1∑
n=1

1
k

(ϕn+1 − 2ϕn + ϕn−1, λn−1)Ω − k(jn, λn−1)ΓN
+ k(σ∇ϕn,∇λn−1)Ω

+
N−1∑
n=1

1
k

(ϕ∗
n+1 − 2ϕ∗

n + ϕ∗
n−1, λ

∗
n−1)Ω − k(jn, λ∗

n−1)ΓN
+ k(σ∗∇ϕ∗

n,∇λ∗
n−1)Ω

with multipliers λn, λ∗
n ∈ V, n = 0, . . . , N − 2.

An optimal solution to the discretized minimax problem is also stationary point
to the Lagrangian, and satisfies

(8)

∂ϕn+1
L = 0, ∂λn−1

L = 0,

∂ϕ∗
n+1

L = 0, ∂λ∗
n−1

L = 0,

∂qnL = 0, ∂σL = 0,
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for n = 1, . . . , N − 1. The variation with respect to λn−1 and λ∗
n−1 in (8) becomes

Equation (5) and (6), respectively. Variation in ϕn+1 and ϕ∗
n+1 gives the adjoint

equations

(9)
(λn+1 − 2λn + λn−1, v)Ω = − k2(ϕn+1 − ϕ∗

n+1, v)ΓM
− k2(σ∇λn,∇v)Ω,

λN = λN−1 =0,

and

(10)
(λ∗

n+1 − 2λ∗
n + λ∗

n−1, v)Ω =k2(ϕn+1 − ϕ∗
n+1, v)ΓM

− k2(σ∗∇λ∗
n,∇v)Ω,

λ∗
N = λ∗

N−1 = 0,

for all v ∈ V . Stationarity with respect to qn and σ is given by

(11)
k2(qn, λn−1 + λ∗

n−1)ΓN
(qn, v)ΓN(

k
∑N−1

n=1 ‖qn‖2
∂Ω

) 3
2

− k(λn−1 + λ∗
n−1, v)ΓN(

k
∑N−1

n=1 ‖qn‖2
ΓN

) 1
2

= 0,

and

(12) δ(σ, v)Ω + δ(∇σ,∇v)Ω + k
N−1∑
n=1

(v∇ϕn,∇λn−1)Ω = 0,

respectively, for all v ∈ V . For simplicity, it is here assumed that σ, qn ∈ V .
Expressions (9) and (10) are discretizations of the adjoint equations

(13)

λtt = div(σ∇λ), in Ω × [0, T ),

σ∇λ · n = −(ϕ − ϕ∗), on ΓM × [0, T ),

σ∇λ · n = 0, on ∂Ω \ ΓM × [0, T ),

λ = λt = 0, on Ω̄ × {t = T},
and

(14)

λ∗
tt = div(σ∗∇λ∗), in Ω × [0, T ),

σ∗∇λ∗ · n = (ϕ − ϕ∗), on ΓM × [0, T ),

σ∗∇λ∗ · n = 0, on ∂Ω \ ΓM × [0, T ),

λ∗ = λ∗
t = 0, on Ω̄ × {t = T},

but compared to the discretization of the forward problem (3) the boundary con-
ditions are evaluated at a different time step. Equation (12) is an approximation
to the equation

(15)
δ(Δσ − σ) =

∫ T

0

∇ϕ · ∇λ dt, in Ω,

∇σ · n = 0, on ∂Ω.

Observe, that since σ∗ is unknown neither (1), (14) nor their discretized counter-
parts (6), (10) can be solved. However, it is possible to experimentally apply the
appropriate Neumann boundary conditions and measure the resulting boundary
values ϕ∗ and λ∗.

The fact that ϕ∗, λ∗ and σ∗ are not acessible in Ω makes it hard to solve the opti-
mality system (8) efficiently since not all of the second variations of the Lagrangian
are accessible. Also, as mentioned in Section 2.3, the minimax problem may not
be convex-concave, so to simultaneously solve the equations in (8) may not give
the same results as treating the minimization and maximization separately. The
regularized minimization problem is convex in a neighbourhood of the optimal σ
and all second variations are accessible, so Newton’s method can be used. However,
for the maximization problem none of the second variations are available.
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3.3. Minimization Problem. Assume that Neumann boundary data j and mea-
surements ϕ∗ are given. The forward equation (5) for ϕ, the dual equation (9) for
λ and the steady state equation (12) for σ can be written as

fn :=
1
k

(λn+1 − 2λn + λn−1, v)Ω + k(ϕn+1 − ϕ∗
n+1, v)ΓM

+ k(σ∇λn,∇v)Ω = 0

gn :=
1
k

(ϕn+1 − 2ϕn + ϕn−1, v)Ω − k(jn, v)ΓN
+ k(σ∇ϕn,∇v)Ω = 0

h :=δ(σ, v)Ω + δ(∇σ,∇v)Ω + k
N−1∑
i=1

(v∇ϕi,∇λi−1)Ω = 0

for n = 1, . . . , N − 1 and ∀v ∈ V . The Newton method for finding the sta-
tionary point to the above system is to, given ϕ, λ and σ, find the updates
ϕ̂ := (ϕ̂2, . . . , ϕ̂N )T , λ̂ := (λ̂0, . . . , λ̂N−2)T and σ̂ that satisfies

k(ϕ̂n+1, v)ΓM
+

1
k

(λ̂n+1 − 2λ̂n + λ̂n−1, v)Ω+

+k(σ∇λ̂n + σ̂∇λn,∇v)Ω = −fn, n = 1, . . . , N − 3,

k(ϕ̂n+1, v)ΓM
+

1
k

(−2λ̂n + λ̂n−1, v)Ω+

+k(σ∇λ̂n + σ̂∇λn,∇v)Ω = −fn, n = N − 2,

k(ϕ̂n+1, v)ΓM
+

1
k

(λ̂n−1, v)Ω + k(σ̂∇λn,∇v)Ω = −fn, n = N − 1,

1
k

(ϕ̂n+1, v)Ω + k(σ̂∇ϕn,∇v)Ω = −gn, n = 1,

1
k

(ϕ̂n+1 − 2ϕ̂n, v)Ω + k(σ∇ϕ̂n + σ̂∇ϕn,∇v)Ω = −gn, n = 2,

1
k

(ϕ̂n+1 − 2ϕ̂n + ϕ̂n−1, v)Ω + k(σ∇ϕ̂n + σ̂∇ϕn,∇v)Ω = −gn, n = 3, . . . , N − 1,

and

k

N−1∑
n=2

(v∇ϕ̂n,∇λn−1)Ω + k

N−1∑
n=1

(v∇ϕn,∇λ̂n−1)Ω + δ(σ̂, v)Ω + δ(∇σ̂,∇v)Ω = −h,

for all v ∈ V , or in matrix notation

(16)

⎛
⎝ K11 K12 K13

KT
12 0 K23

KT
13 KT

23 K33

⎞
⎠

⎛
⎝ ϕ̂

λ̂
σ̂

⎞
⎠ = −

⎛
⎝ f

g
h

⎞
⎠ .

where f := (f1, . . . , fN−1)T and g := (g1, . . . , gN−1)T .
Let M , M̄ , S(σ) and P (ϕ) be matrices with the elements

Mij = (vi, vj)Ω, M̄ij = (vi, vj)∂Ω,

Sij(σ) = (σ∇vi,∇vj)Ω, Pij(ϕ) = (vj∇ϕ,∇vi)Ω,

where vi denotes the basis functions of the finite element space V , then the subma-
trices in the Newton system (16) are of the form (for N = 4)

K11 = k

⎛
⎝ M̄

M̄
M̄

⎞
⎠ , K12 =

1
k

⎛
⎝ M k2S(σ) − 2M M

M k2S(σ) − 2M
M

⎞
⎠ ,

and

K13 = k

⎛
⎝ P (λ1)

P (λ2)
P (λ3)

⎞
⎠ , K23 = k

⎛
⎝ P (ϕ1)

P (ϕ2)
P (ϕ3)

⎞
⎠ , K33 = δ

(
M + S(1)

)
.
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To solve the Newton system (16) with a direct solver is very demanding for large
problems and in practice it must be done iteratively. For the examples in this report,
the GMRES method with a simple preconditioner, was used. The preconditioner is
based on solving the system approximately, for an arbitrary right hand side (f, g, h),
with the Gauss-Seidel method, i.e. given (ϕ̂i, λ̂i, σ̂i) an approximate solution is
given by iterating according to the scheme

KT
12ϕ̂

i+1 = g − K23σ̂
i,

K11ϕ̂
i+1 + K12λ̂

i+1 = f − K13σ̂
i,

KT
13ϕ̂

i+1 + KT
23λ̂

i+1 + K33σ̂
i+1 = h.

For the examples in Section 3.5, it turned out that one single iteration with the
Gauss-Seidel method provided a sufficiently good preconditioner to achieve accept-
able convergence with the GMRES method. This could not be done with any of the
standard algebraic preconditioners like Jacobi, ILU or SOR, which worked poorly
due to the block structure of the Newton system.

To achieve reasonable convergence for larger problems a more clever approach is
needed. One idea is to use the approximate Gauss-Newton system

(17)

⎛
⎝ K11 K12 0

KT
12 0 K23

0 KT
23 K33

⎞
⎠

⎛
⎝ ϕ̂

λ̂
σ̂

⎞
⎠ = −

⎛
⎝ f

g
h

⎞
⎠ .

which arises from the observation that λ ≈ 0 close to an optimum. A preconditioner
can be derived from (17) by noting that eliminating ϕ̂ and λ̂ from (17) leads to the
reduced system

(18) (K33 + KT
23K

−1
12 K11K

−T
12 K23)︸ ︷︷ ︸

Hr

σ̂ = KT
23K

−1
12 (f − K11K

−T
12 g) − h.

with a symmetric positive definite reduced Hessian Hr which then can be approxi-
mated by e.g. a quasi-Newton method, see [1].

3.4. Maximization Problem. Given σ, the maximization problem is solved by
the gradient method:

a. Start with an initial guess qi.
b. Solve the forward equation (5) and the dual equation (9) to get ϕ and λ.
c. Apply the Neumann boundary values j (given by qi) and −ϕ + ϕ∗ to the

physical system (1) with unknown coefficient σ∗, and measure the resulting
boundary values ϕ∗ and λ∗, respectively.

d. Take a step in the gradient direction in q i.e.

qi+1
n = qi

n + α∂qn
L,

for n = 1, . . . , N − 1, α ∈ (0, 1], and with ∂qn
L given by the left hand side

of (11).
e. Goto step (a) unless tolerance is achieved or oscillations in q become too

large.

3.5. Results. In the following examples a slightly different objective function

(19) max
q

‖ϕ − ϕ∗‖2
ΓM×(0,T )

‖ϕ‖2
ΓM×(0,T )

.

is used for the maximization problem but not for the minimization problem. Even
though ϕ is bounded in the L2 norm on ΓM × (0, T ) it may be a good idea restrict
ϕ even more. This does however not change the generality of the prevoius sections
other than changing the boundary values σ∇λ · n and σ∗∇λ∗ · n on ΓM × [0, T )
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Figure 1. Left: The sought coefficient σ∗. Right: σ after first
minimization. Boundary data: q = sin(2πt) sin(πy) at x = 0.

when performing the maximization. Also, the results do not differ much from using
the original objective function (4).

In Figure 1 to 6, three different examples are shown. In all examples a wave
coefficient σ∗ is reconstructed in the unit square by sending in a wave at ΓN ×
(0, T ] := {x = 0}× (0, 1] and measuring the acoustic pressure ϕ∗ at ΓM × (0, T ] :=
{x = 0} × (0, 1] ∪ {x = 1} × (0, 1]. First, the minimization problem is solved
for a small regularization δ = 10−5, then the calculated σ is used to maximize
(19) with respect to q. Before the maximization the incoming wave is modelled
by q = sin(2πt) sin(πy), in Figures 1 and 3, and q = sin(πt) sin(πy) in Figure 5.
Finally, the minimization problem is solved again but with Neumann data j given
by the new q. Of course, this can be done repeatedly and it is not necessary to
start by solving the minimization problem, but instead start with some qualified
guess for σ.

The Newton method for the minimization problem is solved such that the abso-
lute residual error is less than 10−13 and the gradient method for the maximization
problem is terminated when the L2 norm of jt gets to big. The calculations were
done on a uniform triangular mesh with 1800 triangles and 125 time steps, and the
measurements were simulated by using the same mesh.

The left part of Figure 1, 3 and 5 show the unknown coefficient σ∗, and the right
part of the figures show σ after the first minimization. Figure 2, 4 and 6 show
σ after the second minimization. In Figure 7 the simulated solution ϕ∗ is shown
before and after the maximization in q.
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norm of qt increased 100%. The decrease in the L2(Ω) norm of
σ − σ∗ between the first and second minimization was 30%.

Figure 3. Left: The sought coefficient σ∗. Right: σ after first
minimization. Boundary data: q = sin(2πt) sin(πy) at x = 0.

Figure 4. The coefficient σ after the second minimization. In the
maximization of q, the value function increased 1200% and the L2

norm of qt increased 100%. The decrease in the L2(Ω) norm of
σ − σ∗ between the first and second minimization was 32%.
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Figure 5. Left: The sought coefficient σ∗. Right: σ after first
minimization. Boundary data: q = sin(πt) sin(πy) at x = 0.

Figure 6. The coefficient σ after the second minimization. In
the maximization of q, the value function increased 400% and the
L2 norm of qt increased 50%. The decrease in the L2(Ω) norm of
σ − σ∗ between the first and second minimization was 40%.

Figure 7. The measured solution ϕ∗ before (top) and after (bot-
tom) the maximization in q, for three different timesteps. The
oscillations in q after the maximization are clearly visible in ϕ∗.
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